Technology Forecasting: The Garden of Forking Paths
Pessimistic forecasters are overconfident in fixating, hedgehog-like, on only one scenario for how they think something must happen; in reality, there are always many ways through the garden of forking paths, and something needs only one path to happen.
A classic cognitive bias in technological forecasting is motivated-stopping and lack of imagination in considering possibilities for a steelman.
Many people use a mental model of technologies in which they proceed in a serial sequential fashion and assume every step is necessary and only all together are they sufficient, and note that some particular step is difficult or unlikely to succeed and thus as a whole it will fail & never happen. But in reality, few steps are truly required.
Progress is predictably unpredictable: A technology only needs to succeed in one way to succeed, and to fail it must fail in all ways. There may be many ways to work around, approximate, brute force, reduce the need for, or skip entirely a step, or redefine the problem to no longer involve that step at all. Examples of this include the parallel projects used by the Manhattan Project & Apollo program, which reasoned that despite the formidable difficulties in each path to the end goal, at least one would work out—and they did.
In forecasting, to counter this bias, one should make a strong effort to imagine all possible alternatives which could be pursued in parallel, and remember that overall failure requires all of them to fail.
One of the most common errors in criticizing a technology or in forecasting future progress is to engage in overly rigid interpretation of what that technology is: ask “how can it fail” and not “how can it work”, to assume that it will be the same in 20 years as it is now, using the same components to achieve the same goals, and each component helplessly dependent on another component such that failure of one is failure of all. This then leads to pessimistic extrapolations and assumptions of imminent failure which will look comic in retrospect, as the current technology is merely a strawman of the true (but then unknown) technology. And too often a critic settles for finding a single way in which, if a technology were implemented or used in the dumbest way possible, that would be bad, as if that was the only way possible or if misuse were universally-inevitable, and declares the question settled. An example is noting that a problem, say, protein-folding is difficult in some sense such as a computational complexity class, and declaring that it is impossible to solve well, and that in fact, AI is impossible in general, without asking about whether there is any way around the conditions for that specific technical statement—as there so often are. (One is reminded of the joke about a patient who goes to the doctor, assumes a yoga position, and complains, “doctor, it hurts when I do this!”, to which he replies, “don’t do that, then.”)
Functional Fixedness
The core mistake in this fallacy is reminiscent of the creativity tests which ask the subject to accomplish a task like making a candle holder from common objects like a box of soap and thumbtacks, or to come up with as many possible uses for a brick as possible; a subject who insists that a brick is a brick, and will not reimagine the box of soap as an open box which could be mounted on the wall, will never solve the tasks well, will be surprised when others accomplish it easily, and perhaps feel deep down that the others cheated (even if it worked perfectly well).
Defining a system, one might treat it as a “conjunctive” system where everything has to work: D depends on C1, C1 depends on B1, and B1 depends on A1; so if any problem is found is A1, B1, or C1, the entire system can be treated as debunked and an impossible contraption. It suffices to show that probably A1~, so probably ~D too. The problem with this way of thinking is that it may be adequate for immediate criticism of a specific system and a useful approach for engineering it, but it is not the same thing as answering whether D will be accomplished in 10 years or if the system is a good idea! Because such a criticism can be fixed by using a different A2, or perhaps A3, or A4, or A5, or A6, or maybe not even needing something like A at all and switching to a different system {D, X1, Y1, Z1}. And omitting any of these scenarios by considering only a subset will lead to downwards bias in total probability. The critic asks “is there any way this system might not work?” and stops there; but the forecaster asks, “is there any system with a way that works?” and keeps going.
Try, Try, Try Again
Gallant fellows, these soldiers; they always go for the thickest place in the fence.
Admiral De Robeck, of the Gallipoli landing2
Most technology goals are “disjunctive” in the sense that “anything goes” as long as it accomplishes the final goal, and it doesn’t matter how many dead ends get tried. If one way ‘hurts’, “don’t do that, then” and find a different way. The critic needs to disprove all possible ways, and not just fall for the curse of expertise in settling for using their expertise for the far easier (and far more useless) task of scattering around doubts about a handful of ways. To fly, it is not necessary to recreate a bird’s wing, only to find some way to fly—and there turn out to be many different propulsion methods which succeed at the task of flight but bear little resemblance to how a bird flies (hot air, lighter-than-air gases, jet engines, ramjets, rockets, ground-effect, propellers, helicopters/
There is rarely a need to be rigid about the exact method, as long as the result works; we are free to be flexible.
If virtual reality headsets require 4K resolution per eye to deliver satisfactory VR experiences but this is too hard for GPUs to render fast enough, does this prove VR is impossible, or does it simply mean we must get a little creative and explore alternative solutions like using “foveated rendering” to cheat and render only a fraction of the 4K? In 10 years, should you expect this to be an issue? No, because resolution & quality is a disjunctive problem, just like motion-sickness in VR before it, which was fixed by a combination of continuous resolution/
Often, these arguments seem impressive but in practice, people continue to do the impossible or go where they shouldn’t; why?
The proofs may be entirely correct, but as with any proof’s assumptions and theorem, the devil is in the details: perhaps the assumptions are not plausible in the first place, or the theorem doesn’t mean what you thought it meant. It might be impossible to create an algorithm with 100% accuracy, but the errors occur only on inputs that never occur, or the result is an approximation which is however indistinguishable from an exact answer for all intents & purposes or is less likely to be wrong than one’s computer or brain to be hit by a cosmic ray or stroke while thinking it through. And so on. A relevant example of this phenomenon comes up in discussing AI risk: one type of argument that AIs cannot ever be dangerous and AI risk is not real relies on an argument from worst-case algorithmic complexity, observing that many important problems like 3SAT are NP-hard, where the required computation quickly increases to infeasible levels, so humans and AIs must be equivalently intelligent, therefor AIs cannot be dangerous (see above); unfortunately, every premise is vulnerable—worst-case is often irrelevant, the ignored constant factors can be critical, small differences in intelligence/
When is it valid to argue from a conjunctive perspective?
Sometimes, it is possible to come up with a universal proof like one based on laws of physics; if a goal turns out to be thermodynamically or information-theoretically impossible, that’s a good hint that no one is going to achieve it. So for the much-debated possibility of cryonics, a valid disproof would be to demonstrate that all the relevant information in the human brain is lost or destroyed within minutes/
Other times a technology may be inherently bottlenecked at a step all of which possible implementations are very difficult and it becomes quasi-conjunctive, versus a competing paradigm which is disjunctive. An example there is iterated embryo selection (IES) vs genome synthesis for creating ultra-highly-optimized human genomes: iterated embryo selection requires close control over converting stem cells to gametes and back in order to exert selection pressure over many ‘generations’ to optimize for particular traits, and given the trickiness of coaxing cells into regressing to stem cells and developing into particular cell types, there is probably only one effective procedure and no real alternatives; but ‘genome synthesis’ is simply the idea of synthesizing an entire human genome from scratch to a pre-specified optimally-designed genome, and, like the many competing techniques in genome sequencing, there are many different methods of combining nucleotides to build up a custom genome, which contribute to the (yes, exponential) fall in genome synthesis costs, and many further methods proposed (like specialized yeast) to reduce costs even further to the point where human genomes can be synthesized for a few million dollars each (and then reused arbitrarily often). IES is strongly conjunctive: if the stem cell steps can’t be solved, the entire cycle falls apart; genome synthesis is disjunctive: any of several methods can be used to synthesize nucleotides, and many more can be tried. Which one can we expect first? IES has a considerable headstart but genome synthesis progresses like a metronome because if it gets blocked on one track, it can hop to another; so my money is on genome synthesis at the moment.
Forecasting Questions
So in forecasting something like GWASes, Bitcoin, or VR, here are some useful questions to ask:
Are there any hard constraints from powerful theories like thermodynamics, evolution, or economics bounding the system as a whole?
Breaking down by functionality, how many different ways are there to implement each logical component? Is any step a serious bottleneck with no apparent way to circumvent, redefine, or solve with brute force?
Do its past improvements describe any linear or exponential trend? What happens if you extrapolate it 20 years (in the grand scheme of things, a minor error of timing)? If the trend is exponential, is it a set of stacked sigmoids indicating considerable flexibility in choice of technology/
method? What experience curves could this benefit from in each of its components and as a whole? If the cost decreases 5% for every doubling of cumulative production, what happens and how much demand do the price drops induce? Are any of the inputs cumulative, like dataset size (eg. number of genomes sequenced to date)?
Does it benefit from various forms of Moore’s laws for CPUs, RAM, HDD, or GPU FLOPs? Can fixed-cost hardware or humans be replaced by software, Internet, or statistics? Is any part parallelizable?
What caliber of intellect has been applied to optimization? What amount of ‘constant factor’ slack is left in the system to be micro-optimized away?
External Links
-
As quoted by Dōgen in “Who is Arguing about the Cat? Moral Action and Enlightenment according to Dōgen”, 1997.
-
Spoken to Sir Roger Keyes; recorded pg296 of The Naval Memoirs 1910–51915110ya, 1934.
-
For some reason, a lot of people are absolutely convinced that the Halting Theorem or Gödelian incompleteness do things like prove that creating any artificial intelligence is impossible in principle. (They do no such thing, any more than they prove the impossibility of, say, typecheckers, or supersized machines, or their own existence.)