Bibliography (42):

  1. https://openai.com/blog/chatgpt/

  2. Eureka: Human-Level Reward Design via Coding Large Language Models

  3. https://www.safe.ai/work/statement-on-ai-risk

  4. https://www.acquired.fm/

  5. https://www.youtube.com/watch?v=y6NfxiemvHg

  6. https://www.phys.ntu.edu.tw/enphysics/twchiu.html

  7. https://www.crunchbase.com/person/james-c-gaither

  8. https://www.cs.utoronto.ca/~gdahl/papers/dbnPhoneRec.pdf

  9. Building high-level features using large scale unsupervised learning

  10. ImageNet: A Large-Scale Hierarchical Image Database

  11. ImageNet Classification with Deep Convolutional Neural Networks

  12. https://scholar.google.com/scholar?cites=2071317309766942398&as_sdt=20000005&sciodt=0,21

  13. ImageNet Large Scale Visual Recognition Challenge

  14. Wikipedia Bibliography:

    1. Nvidia

    2. https://en.wikipedia.org/wiki/Nasdaq  :

    3. Jensen Huang

    4. https://en.wikipedia.org/wiki/Walmart  :

    5. https://en.wikipedia.org/wiki/ExxonMobil  :

    6. https://en.wikipedia.org/wiki/Samuel_Brannan  :

    7. Deep learning

    8. https://en.wikipedia.org/wiki/Denny%27s  :

    9. https://en.wikipedia.org/wiki/RIVA_128  :

    10. CUDA

    11. https://en.wikipedia.org/wiki/National_Taiwan_University  :

    12. https://en.wikipedia.org/wiki/General_Mills  :

    13. Geoffrey Hinton

    14. Alex Krizhevsky  :

    15. Ilya Sutskever

    16. Cat

    17. AlexNet

    18. https://en.wikipedia.org/wiki/Wright_Flyer  :

    19. https://en.wikipedia.org/wiki/Edison_light_bulb  :

    20. Support vector machine

    21. https://en.wikipedia.org/wiki/Kevin_Costner  :

    22. https://en.wikipedia.org/wiki/Field_of_Dreams  :

    23. https://en.wikipedia.org/wiki/Struggle_session  :

    24. https://en.wikipedia.org/wiki/Lisa_Su  :

    25. AMD

    26. Intel

    27. Hopper (microarchitecture)

    28. https://en.wikipedia.org/wiki/Gross_margin  :

    29. Cerebras