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Preface

When wecontemplate every complex structure and instinct as

the summing up of many contrivances each useful to the pos-

sessor, nearly in the same way as when welook at any great

invention ... how far more interesting will the study of natural

history become!—Darwin, On the Origin of Species

This book analyzes feeding behavior in the way an engineer might study

a new piece of machinery. An engineer might ask, amongother questions,
about the machine’s purpose:is it for measuring time, wind speed,or in-
come tax? This is a worthwhile question for the engineer because machines
are built with a purpose in mind, and any description of a machine should

refer to its purpose. Asking what the machineis for helps the engineer
understand how it works. To give a trivial example, we wouldfind it easier

to work out how slide rule operates if we knew it was meant for doing

calculations and not for digging holes.

Biologists also ask questions about purpose, about what things are
for. For example, Lewontin (1984) says: “It is no accident that fish have

fins, aquatic mammals havealtered their appendages to form finlike flip-
pers,...and even seasnakes, lacking fins, are flattened in cross-section.

It is obvious that these traits are adaptations for aquatic locomotion”
(emphasis ours). In contrast to the engineer, the biologist thinks of design

or purpose as the product of natural selection, rather than as the product

of a conscious creator. Natural selection choosestraits that are useful in
the struggle for survival and reproduction. A lion seems well designed for

killing gazelles because traits that make lions good gazelle-killers were
useful to the lion’s ancestors: they allowed the lion’s ancestors to produce

more offspring than were produced by lions with othertraits.

Design or adaptation is related to fitness (survival and reproductive
success) but analyzing design is not the same as measuringfitness. If one

attempted to study adaptation simply by measuring survival and repro-

ductive success, one would reach the vacuous conclusion that those that

survive and reproduce are those that survive and reproduce (Scriven 1959,

Beatty 1980). Even showing that fitness varies between individuals with

different traits is not enough to infer adaptation; one must know how the

traits influence fitness. In other words, the central question in the study

of adaptation is not just whether individuals survive, but how design is
related to expected survival and reproduction (Mills and Beatty 1979).
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Williams (1966) makes this point when he says that measuring reproduc-
tive success

focuses attention upon the rathertrivial problem of the degree to which an or-
ganism actually achieves reproductive survival. The central biological problem is

not survival as such, but design for survival. (p. 159)

The study of adaptation, therefore, is an integral part of evolutionary

biology, and models of design such as optimality models are not merely

shortcut versions of genetic models, as Lewontin (1979) has suggested,

nor are they simply a staging post toward the measurementoffitness. They

are part of a separate and necessary enterprise: biologists must study the

usefulness of traits if the theory of natural selection is to explain adapta-

tion (Beatty 1980).

Optimality modeling, the theme of this book, is one methodthatraises

the study of design from clever “story telling” (Gould and Lewontin 1979)

to a position in which “explicit, quantitative and uncompromising” hypo-

theses allow biologists to “recognize logical implications or to demandthat
there be a precise congruence between theory and observation” (Williams

1966, p. 273). Other approaches include comparisons between or within

species (e.g. Ridley 1984) or between different experimental treatments

(Tinbergen et al. 1967). The arguments in favor of and against optimality

models are discussed in Chapters 1 and 10 respectively, and we will not
repeat them here. Instead, we will briefly sketch a few discoveries that
have, in our view, come directly from optimal foraging theory.

First, some examples of phenomenathat were already well known, but

whosesignificance was obscured becausethey lacked a cogent theoretical

interpretation. Psychologists knew that animals were sensitive to variance

as well as mean reward for at least 20 years before Caraco et al. (1980b)

used a foraging modelto explain it (Chapter 6). This explanation provided

a way of organizing existing evidence, and it made bold and unexpected

predictions about which factors should influence animal sensitivity to

variance (see below). “Wasteful killing” or “partial consumption of prey”

wasalso well knownbystudents of behavior before foraging theory came

to light. But now, instead of viewing it as an oddity or maladaptive

peccadillo, behavioral ecologists can make use of economic considerations
to account for its occurrence, and they can successfully predict just how
wasteful the forager should be (e.g. Cook & Cockrell 1978).

What about phenomena that foraging theory has revealed or high-

lighted? It is of course impossible to claim that a single approach was

the stimulus for any particular discovery, but there seemslittle doubt that

foraging theory played a majorrole in enabling biologists to discover how

pollinator foraging behavioraffects the design of plants (Pyke 1978a, Best
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and Bierzychudek 1982), and that what are essentially foraging models

were importantin the discovery of individual variation in mating strategies

(Parker 1978).

Furthermore, foraging models have predicted effects and phenomena

whose occurrence was not predicted by other theories. The prediction that

an animal’s energy budget influences its sensitivity to variance in reward
is one striking example (Chapter6), as is the prediction of environmental

conditions under which a foraging animal should and should not show
exploratory or sampling behavior (Chapter 4). More specifically, optimal
foraging models can generate predictions that run counter to currently

accepted psychological theory (and that are borne out by observation)
about the conditions under which an animal’s choice should not minimize

the delay until the next reinforcement (Houston 1986). These examples

show that foraging theory is more than an elegant technique, that it has

provided and will continue to provide insight into why animals behave
the way they do.

Lastly, a few words about the contents of this book. Chapter 1 explains

the basic rationale of optimality models. We follow this explanation with

three chapters on models that maximize the long-term rate of energy

intake. Chapter 2 deals with the classical prey and patch models, and

Chapter 3 examines modifications of these models: what happens if the

forager encounters more than one prey item at a time, for example. In
Chapter 4 we consider information, viewing learning from the perspective
of gaining and using information economically. This approach differs

greatly from the way psychologists usually analyze learning.

In Chapter 5 we examine currencies other than energy gain; economic

models of complementary resources offer a potential way to analyze -

“mixed currencies,” but they have seldom been applied in behavioral

ecology. Behavioral ecologists might use these models to analyze herbivore

diets, although we conclude that for this purpose simpler modeling ap-
proaches may be adequate. Chapter 6 discusses the major alternative

currency to rate-maximizing in foraging models: minimizingthe likelihood

of energetic shortfall. Chapter 7 briefly discusses dynamic optimization

as a way to model complex extensions of foraging such as daily time

budgets andlife history tactics. The final three chapters are not directly

concerned with theory. In Chapter 8 we introduce the idea that animals

may use “rules of thumb”to solve foraging problems. Chapter 9 presents

a detailed review of the evidence for and against the basic prey and patch
models. The available evidence teaches the empiricist a salutary lesson:

one should makesure that the assumptions of the model being tested are
actually met. We return to generalities in Chapter 10, in which wetry to
answer some of the criticisms of the optimality approach. We conclude
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that one must compare observed design to an optimality model to find

out whether phylogeny, genetics, and ontogeny constrain the design of

organisms. So, these criticisms, rather than serving as arguments against

the optimality approach, highlight one ofits uses.
Our coverage of topics is necessarily uneven. For some topics weat-

tempt a synthesis, for others we simply review the literature. Although

we believe this unevennessreflects the state of the art as much asit reflects

our own biases, we hope that the reader will be stimulated to develop
those parts of the subject that we analyze superficially.



Acknowledgments

This book is distinguished, if by nothing else, by its long and geographi-

cally broad gestation and birth. It was conceived in Oxford in late 1982.

The detailed outline andinitial writing were accomplished in spring 1983,

during a visit by JRK to the Smithsonian Environmental Research Center,

where DWSwasa Smithsonian Visiting Scientist. The embryonic manu-

script was then carried north of the border to Vancouver, where DWS

held a NATO postdoctoral position at the University of British Columbia.

At the same time, JRK was an International Scientific Exchange Visitor
at the University of Toronto, and a considerable part of the text was

written during a visit by DWSto Toronto in spring 1984. By now the
manuscript was substantial, but it had to make two moretrips before the

first draft was complete. DWStook it to Salt Lake City, where he is an

NSF postdoctoral fellow, and the finishing touches were added during
a short session at the University of California at Davis, where JRK was

visiting as Storer Lecturer. We are grateful to all these institutions that
have wittingly or unwittingly acted as our hosts.

Weare also grateful to the following people who helped andtolerated

us during ourfits of writing: Jim Lynch and Gene Morton of the Smith-

sonian Institution; Lee Gass of the University of British Columbia; Ron

Ydenberg and Larry Dill of Simon Fraser University; Jerry Hogan, Sara

Shettleworth, and David Sherry of the University of Toronto; Ric Charnov
of the University of Utah; and Judy Stampsof the University of California

at Davis.

Manypeople contributed to the manuscript by commenting ondrafts,

sharing ideas, or showing us unpublished work. Weare especially grateful

to Dawn Bazely, Tom Caraco, Ric Charnov, Innes Cuthill, Tom Getty,

Jim Gilliam, Alasdair Houston, Alex Kacelnik, Steve Lima, Jim McNair,

NaomiPierce, Sara Shettleworth, Anne Sorensen, and Ron Ydenberg. We

thank Clare Matterson for drawing the figures.

We acknowledge a special debt to Ric Charnov and Gordon Orians.
Ric Charnov introduced us both at different times to foraging theory.
Gordon Orians’s encouragement helped to convince us that this project
was worthwhile. Charnov and Orians’s unpublished book on foraging

theory provided the foundation for ourefforts.

DWSthanks Kathy Krebsfor her kindness during his visit to Toronto.
DWSalso thanks Anne Sorensen for putting up with three years of book
writing.



xiv * ACKNOWLEDGMENTS

In addition, we thank the following publishers for permission to repro-

duce figures from their publications: Bailliere Tindall for permission to

reproduce Figures 1.1, 6.5, B6.2, 7.1, and 9.1, all of which originally ap-

peared in Animal Behaviour; University of Chicago Press for permission to
reproduce Figures 3.7 and B5.1, which appeared in The American Natural-
ist; and Cambridge University Press for permission to reproduce Figures

5.4 and 5.5, which appeared in Behavioral and Brain Sciences, and Figure
8.2, which appeared in Adaptive Behavior and Learning by J. E. R. Staddon.

Wealso thank the following authors for permission to reproduce fig-

ures from their work: J. B. Wallace for permission to reproduce Figure

1.1, which originally appeared in Wallace and Sherberger (1975); E. L.

Charnov for permission to reproduce Figure 3.5, which originally ap-

peared in Charnov and Orians (1973); T. Getty for permission to re-

produce Figure 3.7, which originally appeared in Getty (1985); H. Rachlin

for permission to reproduce Figures 5.4 and 5.5 from figures which orig-

inally appeared in Rachlin et al. (1981); B. Winterhalder for permission

to reproduce Figure B5.1 from figures which originally appeared in

Winterhalder (1983); T. Caraco for permission to reproduce Figure 6.5

from figures which originally appeared in Caraco et al. (1980b); J. H.

Kagel for permission to reproduce Figure B6.2 from figures which orig-

inally appeared in Kagel et al. (1986); R.C. Ydenberg for permission to

reproduce Figure 7.1 from figures which originally appeared in Ydenberg

and Houston (1986); J. F. Gilliam for permission to reproduce Figures7.2,

7.3, and 7.4 from figures which originally appeared in Gilliam (1982);

J. E.R. Staddon for permission to reproduce Figure 8.2 from a figure

which originally appeared in Staddon (1983); and A. Kacelnik for permis-

sion to reproduce Figure 9.1 from a figure which originally appeared in

Kacelnik and Houston (1984).

Salt Lake City, USA

Oxford, England

August 1985



Foraging Theory



Foraging Economics: The

Logic of Formal Modeling

1.1 Introduction

Some caddisfly larvae spin silken catch-nets. These nets capture small

plants, animals, and organic particles that are swept into them by the

streams in which the larvae live. The larvae’s nets (and often their bodies)

are fixed to some immobile object in the stream such as a rock or sub-

merged tree trunk. The nets are not sticky or electrostatically charged:

they simply stop particles that are too big to pass through the mesh

(Georgian and Wallace 1981). The net-spinning caddisflies have capitalized

on their moving medium in an elegant and apparently straightforward

way. They have built foraging sieves.

Caddisfly nets are astonishingly diverse. They vary in size, shape, and

location in the stream, and, spectacularly, in the structures built to support

the net. Wallace and Sherberger (1975) have appropriately described the

net and accompanying structure of Macronema transversum larvae (Fig.

1.1) as “possibly one of the most complicated feeding structures con-

structed by non-social insects.” Students of caddisflies (see Wallace and

Sherberger 1975) believe that this structure takes advantage of subtle

hydrodynamic principles (the law of continuity will slow down the flow

across the net in comparison with the flow in the entrance and exit ports,

the Bernoulli effect—of water moving across the exit port—will drive

water through the structure). Among the simpler net designsare the large-

meshed, round, trampoline-shaped nets of most hydropsychid larvae and

the long windsock-shaped nets with fine meshes built by philopotamids.

Non-adaptive variation might explain the variety and detail of caddisfly

nets, but consider for the moment that net structure reflects the action

of natural selection. How then can weinterpret the element of its design,

for example, its mesh size and shape?
A first step is to find out whether there are systematic trends linking

mesh size and shape with environmental factors. A comparative survey

shows two trends. First, larger meshes are associated with faster water.

Second, size is correlated with shape. Small meshes are usually long and

rectangular, and larger ones are roughly square. Both trends can be inter-

preted in terms of costs and benefits (Wallace et al. 1977). One hypothesis
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Figure 1.1 Catch-net and feeding structure of Macronema transversum. (A) Entrance
hole (facing upstream) for in-flowing water. (B) Sand andsilk entrance tube. (C) and
(C’) Anterior and posterior portions of chamber. (D) Capture net. (E) Exit hole for out-
flowing water. (F) Anterior opening of larval retreat with larva in place. (G) Exit hole
from larval retreat (for faeces and water flowing overgills). (H) Substrate. Arrows repre-
sent direction of water flow. Broken lines between (F) and (G) signify approximate
position of larval retreat.

is that large meshes can withstand swifter currents because they present
less resistance to the flow. A second possibility is that smaller nets are
better in slow water because slow streamscarry smaller particles. Further-
more, in slow streams fewerliters of water per minute pass through the
nets, so the larvae may need to capture a larger proportion ofparticles
to meet their food requirements. Another hypothesis is that the size and
shape of the mesh are correlated because of the cost of silk. Caddisfly
larvae must use a muchgreater length ofsilk to fill a given area with
meshes if the meshes are small, but the extra cost can be reduced by
making the meshes long andnarrow,cutting the cost of cross pieces. This
saving may notbe possible with larger meshes becausethe silk stretches
whena large particle collides with the net, turning the rectangular mesh
into a distorted and ineffective hexagon.

These ideas sound reasonable, but they might becriticized for being
no more than plausible stories. They certainly do not meet Williams’s
(1966) criterion of an “explicit, quantitative, uncompromising” design
hypothesis. Formal models mayhelp biologists to evaluate design hy-
potheses by helping to analyze the problem and by making testable
predictions.
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To analyze a design problem is to breakit into parts and to determine

the relationship amongtheparts. A formal analysis clarifies what the parts

of the problem are, andit reveals their full implications and interactions.

Whatrelationship between water velocity and mesh size would be expected

from the “resistance to breakage” hypothesis? Could the argument about

the silk-stretching effects of particle collisions really account for the rela-

tionship between size and shape of meshes? Does the “particle size” hy-

pothesis make any predictionsthat distinguish it from the “resistance to

breakage” hypothesis? Formal analysis may help resolve these kinds of

questions.

The next step in interpreting design, then, is using models to test the

hypotheses. Since both the “resistance” and “particle size” hypotheses

might explain the relationship between water velocity and mesh size, a

more subtle analysis is needed to distinguish between the following four

possibilities: (1) only the “resistance” hypothesis applies, (2) only the “par-

ticle size” hypothesis applies, (3) both hypotheses apply, and (4) neither

hypothesis applies. A formal analysis might, by generating quantitative

predictions from each hypothesis, allow us to distinguish between them.

If a model based purely on the “resistance to breakage” hypothesis—

incorporating information aboutsilk strength and hydrodynamic forces—

accountedfor the relationship between current velocity and meshsize, we

might tentatively conclude that the essence of the design problem had

been captured by these factors alone. We would then have to develop

models of the alternative hypotheses to see if they could also account

for the data. If more than one model accounted for the data, even in

quantitative detail, then even formal modeling would lead to an ambig-

uousresult.

1.2 The Elements of Foraging Models

The foraging models we describe in this book, and optimality models in

general, are made up of three components.

1. Decision Assumptions. Which of the forager’s problems(or choices) are

to be analyzed?

2. Currency Assumptions. How are various choices to be evaluated?

3. Constraint Assumptions. What limits the animal’s feasible choices, and

whatlimits the pay-off (currency) that may be obtained?

These components may not always represent mutually independentparts

of the problem; for example, constraint assumptionsclearly depend on

whatis being constrained. Some authors have broken foraging modelsinto
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different components (Schoener 1971, Chevertonetal. 1985, Kacelnik and
Cuthill 1986).

Chapter 2 discusses the so-called “conventional models” of foraging
theory, and the following chapters discuss changes in the conventional
constraint, currency, and decision assumptionsin turn (constraints, Chap-
ters 3 and 4; currencies, Chapter 5 and 6; decisions, Chapter 7). The
remainderof this chapter presents some general comments about each of
these three elements.

1.3 Decision Assumptions

All optimality models consider the “best” way to make a particular deci-
sion. How should bones be constructed? What meshsize should a net-
spinning caddisfly choose? Decision here refers to the type of choice (mesh
size or mesh shape?) the animalis assumed to make(or that natural selec-
tion has madeforit), rather than a specific choice(i.e. deciding that mesh
size is to be 10.0 microns by 11.5 microns).

In a formal model the decision studied must be expressed as an algebraic
variable (or variables). Mesh size and shape can be represented by a pair
of numbers, length and width. Length and width are the decision variables.
It will not always be possible or reasonable to express the decision as one
or two simple variables. A complicated vector (or list) of many decision
variables may be more appropriate; for example, in a modelof bonestruc-
ture the decision vector mightinclude variables representing bone length,
cross-sectional area, alignment of bonefibers, and the locations of muscle
attachments.

For some problemseven a hugelist of decision variables may notsuf-
fice. Suppose that a caddisfly larva’s bodysize affects the structure of its
net, and, because net structure partially determines the amount of food
captured today,that the structure of today’s net in turn affects the caddisfly
larva’s body size tomorrow. A problem like this one is dynamic, because
today’s decision (net structure) affects tomorrow’s state (body size), which
may in turn affect tomorrow’s decision. Dynamic models solve for the
optimal path or sequence of decisions. When the decision can be repre-
sented by a simple, non-sequential list of decisions, the modelis a static
model. Most of the models we will examinearestatic, but dynamic models
are discussed in Chapter7.

Foraging models have studied two basic problems: which prey items
to consume and when to leave a patch. Modelers have represented the
decision variables within each category in different ways. For example,
with regard to the first problem, some models of diet have studied the
proportions of food of a given type ingested, and others have studied the
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probability of pursuing a given prey type upon encounter. These diet

models, which make different decision assumptions, are studying different

aspects of the problem.

Most models of diet choice solve for the optimal probability that the

forager will pursue a given prey type after encountering it. Two essential

ideas are implicit in this assumption: encountering and recognizing prey

types. The notion of “prey type” shows how the three components of a

model can be interrelated, because the forager’s ability to categorize its

prey into types (a constraint assumption) is implied by this decision

assumption.

In most models of patch exploitation the decision variable is time spent

in a particular patch type or, more simply patch residence time. This deci-

sion variable combines mathematical convenience (time is a convenient

and continuous variable) and generality. In most examples of animals

exploiting patches, whether the patches are clumps of grass, seeds on a

tree, or schools of fish, the forager’s decision can be framed in terms of

time spent in the patch. However, this assumption can be misleading when

there is no strong link between patch residence time and the amount of

food acquired from the patch (Chapter4).

1.4 Currency Assumptions

A model’s currency is the criterion used to comparealternative values of

the decision variable. A modeler might comparealternative designs of cad-

disfly nets using a model that assumes maximization of the number of

particles filtered per minute. In general, the modeler supposes thattrait

X will exist instead of other traits if X satisfies some existence criterion.
Existence criteria have two parts: a currency and a choice principle. For

caddisfly nets the currency is the “numberofparticles filtered per minute”

and the choice principle is “maximization.”

Currencies are as diverse as the adaptations they are used to study, but

there are only three commonchoice principles: maximization, minimi-

zation, andstability. Stability is the most general of these, but its generality
is not always necessary. If the pay-off (currency) gained by implementing

decision X depends on the decisions made by otherindividuals, then sta-

bility is the correct choice principle (Maynard Smith 1982). The models

in this book all use maximization or minimization, and so they require

that a decision’s value is independentof its frequency. (We usually refer

only to maximization when speaking in general terms, because any mini-

mization problem can be restated as a maximization problem by maximiz-

ing negative currency.) Once the currency and decision variables have

been chosen, the modeler must specify the relationship between them.
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For example, a modeler might deduce the relationship between the num-
ber of particles captured per minute (the currency) and the dimensions
of a mesh (the decision variables). This currency function must translate
the list of decision variables into a single value (in mathematical jargon
it must be a real-valued function), because the currency function must
rank all possible decisions. (Chapters 5 and 6 discuss ranking alternatives
in more detail.)

In most biological optimization problems the modeler chooses a cur-
rency a priori, largely on the basis of intuition; for instance, a modeler
may argue that maximizing the numberof particles trapped per minute
will make the “fittest” caddisfly, because food limits larval growth. A priori
currencies usually have physical interpretations: they can be expressed as
rates or amounts, for example. Economists and psychologists, on the other

hand, often use the observed behavior of a “decision-maker” to specify

the currency a posteriori. A modeler might suppose that a currency for

caddisfly nets has the general form maximize af? + bw?, where ¢ and w

are the decision variables mesh length and width. An advocate of a pos-

teriori modeling would fit the constants a and b so that observed net

structure maximized this function. A posteriori currencies do not usually

have any physical interpretation: they are simply “that which is maxi-

mized.” Houston et al. (1982) refer to the distinction between a priori

and a posteriori modeling as the distinction between normative and de-

scriptive optimization modeling, and Maynard Smith (1978) refers to the

second approach as “reverse” (or “inverse’—-McFarland and Houston

1981) optimization. Most of the models we discuss supposea priori cur-

rencies, but Chapters 5 and 6 discuss a posteriori currencies.

Conventional foraging models maximize the net rate of energy gain

while foraging. More energy is assumed to be better, because a forager

with more energy will be more likely to meet its metabolic requirements,

and it will be able to spend spare energy on important non-feeding activ-

ities such as fighting, fleeing, and reproducing. Energy can be measured

both as a cost (the energy expended in performing a particular behavior)

and as a benefit (the energy gained by performing a particular behavior).

Thusit is possible to talk about the net energy gained from performing

a particular foraging behavior. Timeis critical because animals may be

pressed to meet their daily feeding requirements, and because animals are

assumed to fight, flee, and reproduce less well if they are simultaneously
foraging.

Schoener (1971) pointed out that there are two simple ways to resolve

the dilemmaofhow to acquire more food while spendingless time foraging.

The time minimizer minimizes the time required to gain a fixed ration of

energy. The energy maximizer maximizes the amountof energy gained in

a fixed time. Both alternatives are plausible currencies, but for many pur-
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poses both currencies are equivalent to rate maximization (Pyke etal.
1977). These currencies can differ from each other when food comesin

lumps. Suppose youcaneat from one of two boxesof food: box A contains
many itemsthat yield 8 calories and take 3 secondsto eat; box B contains

many items that yield 9 calories and take 4 seconds to eat. Whether the

currencies agree or disagree depends on what happensif you do not have

time to eat a whole item. If the proportion of total calories you take in

is the same as the proportion of the required time you spendeating(e.g.

you take in one-half the calories if you spend one-half the time), then all

three currencies make the same prediction: choose box A because § > 3.
However, if you do not take in any calories unless you spend all the re-
quired time (e.g. you cannot eat until you crack the nut) the currencies

are different. Specifically, if you maximize energy gains in 4 seconds, then

box B is the better choice—9 calories instead of 8—butif you minimize

the time to take in 5 calories, then box A is better—3 secondsto take in

8 calories is better than 4 seconds to take in 9 calories because any amount

above 5 calories is sufficient.
In a stochastic world (a world with random variation) foraging theorists

must use averages (or expectations) to characterize rates. However, the

value of an average rate calculated over 10 seconds maybe different from

an average rate calculated over 20 seconds: which average is best? Con-

ventional theory has favored generality and mathematical convenience by

maximizing the long-term average rate of energy intake (see Box 2.1).

There arestill those (e.g. Tinbergen 1981) who confuse maximizing net

rate with maximizing the ratio of benefit to cost, often called “efficiency.”

Although there are conditions under which maximizing efficiency makes

sense (for example, allocating resources from a fixed total budget—

Schmid-Hempelet al. 1985), for most of the foraging problems wediscuss

it does not. It ignores the time required to harvest resources, and it fails
to distinguish between tiny gains made at a small cost and larger gains

madeat a larger cost: for example, 0.01 calories gained at a cost of 0.001

gives the same benefit/cost ratio as a gain of 10 calories costing 1. The 10-

calorie alternative, however, yields 1000 times the net profit of the 0.01

alternative.

1.5 Constraint Assumptions

By constraints, we mean all those factors that limit and define the rela-

tionship between the currency and the decision variable(s). This is a broad

definition that encompasses both the mathematician’s formal use of con-

straint and the everyday use.
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A mathematician might define constraints in a purely formal way. Sup-
pose that a currency function relates the numberofparticles a caddisfly
net intercepts per minute (P) to the decision variables length (7) and width
(w) and to the stream velocity (v). A modeler might write the function as

P(¢, w, v), and might specify a formal constraint, for example, that the

mesh area “w mustbeless than 10 square microns. In the mathematician’s

purely formal sense the inequality “w < 10 square microns would be the

only constraint in the problem. However, in the everyday sense we would

say that the stream velocity constrains the caddisfly’s economy.

In the everydayuse of “constraint” we imagine somekindoflimitation.

Limitations are of two biologically different types: those that are intrinsic

to the animal and those that are extrinsic. Intrinsic constraints can be

further divided into the following categories: (1) limitations in the abilities

of animals: honeybees cannot distinguish red from grey, and pigeons

cannot distinguish 0.2 milliseconds from 0.5 milliseconds; (2) limitations

in the tolerances within which animals mustlive: the forager must acquire

20 milligrams of vitamin A, or it can only tolerate 2 hours of food depri-

vation. Some biologists have limitations on abilities in mind whenthey
discuss constraints (Janetos and Cole 1981), but others are imaginingtol-
erances (Pulliam 1975).

Extrinsic constraints are placed on the animalby the environment. For

example, the stream velocity limits the numberof particles that a caddisfly

net can filter per hour, and a forager cannot eat more prey than it can

find or spend more than 24 hourseating each day.Intrinsic and extrinsic

constraints are not mutually exclusive categories. Animal abilities interact

with the environment; for instance, both ambient temperature and muscle

physiology limit a lizard’s running speed. In Chapter 8 we will return to

the subject of intrinsic constraints, discussing rules that animals with

limited abilities might use to solve their foraging problems.

Conventional foraging models have assumed few constraints on for-

agers abilities, and in some important cases they have assumed “no

constraints.” In our terms even the assumption of “no constraints” is a

constraint assumption:it is an assumption about the nature of the limita-
tions on the forager. The advantage of making few constraint assumptions

stems from the fact that the limitations on animal abilities vary greatly

from species to species: snails and ospreys are not limited in the same
ways. Foraging theorists have tried to find general design principles that

apply regardless of the mechanisms used to implement them. For example,

the elementary principles of a device for getting traffic across a river—
that is, a bridge—apply regardless of whether the bridge in question 1s

built of rope, wood, concrete, or steel.

Conventional foraging models make three constraint assumptions: (1)
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exclusivity of search and exploitation: the predator cannotexploit (handle)

items such as prey or patches while searching for new ones;(2) sequential

Poisson encounters: items are encountered one at a time, and the prob-

ability of encountering each prey or patch type in a short time period is

constant; and (3) complete information: the forager knows, or behaves as

if it knows, the rules of the model. The rules of the model will usually

include information about the environment(density of prey) and limita-

tions on the forager’s ability. We call this complete information rather

than perfect information because it does not imply that the forageris

omniscient. A completely informed forager is like a gambler who knows

the odds but cannot predict exactly what number will come up on the

next spin of the wheel. The assumption of complete informationis justi-

fiable for predators in steady-state conditions. Foraging theory has not

ignored the question of information gain (see Chapter 4), but the simpler

steady-state models are an easier and more useful starting point (Staddon

1983).

1.6 Lost Opportunity

Perhaps the two most important assumptionsof the conventional foraging

models are long-term average-rate maximization (or “rate maximization”

for brevity) and the exclusivity of searching and exploiting. Combining

these two assumptions leads to what might be called the principle of lost

opportunity. In general terms decisions about exploiting items can be as-

sessed by comparing potential gains from exploitation with the potential

loss of opportunity to do better. For example, if an item is of the best

possible type, then no opportunity can belost by eatingit, since the best

outcome that might result from “not eating” it is to happen immediately

upon another item of the best sort. By the reverse argument, a forager

loses some opportunity when it attacks an inferior item. Many of the

results of rate-maximizing theory can be viewed in this way. Gains are

assessed in terms of immediate achievementsof rate, but losses are assessed

in terms of missed opportunities to do better.

1.7 Summary

Formal models of design are valuable because they permit both rigorous

analysis and testing. Optimization models consist of three components—

decision assumptions, currency assumptions, and constraint assumptions.
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The decisions studied by conventional foraging models relate to prey

choice and patch exploitation; the currency in these models is long-term

average-rate maximization; and the constraints are exclusivity of search

and exploitation; sequential, random search; and the assumption of com-

plete information. Many of the results of conventional foraging models

are expressionsof the principle of lost opportunity.



Average-Rate Maximizing:

The Prey and Patch Models

MacArthur and Pianka (1966) distinguished exploiting prey from exploit-

ing patches. Following MacArthur and Pianka’s definitions, foraging

theorists usually think of prey as discrete items that a forager captures

and completely consumes, but they think of patches as clumps of food or

simply heterogeneities in the prey distribution. These two ideas stimulated

the parallel development of two average-rate maximizing models: the prey

and patch models. The basic prey and patch models have not only stimu-

lated a considerable amountof data collection, but they have also formed

the basis for a large family of average-rate-maximizing models (Chapters

3 and 4). This chapter introduces the prey and patch models. We discuss

the two basic models together on a general level, pointing out what they

have in common and howtheydiffer, before going on to deal with each

modelin detail.

2.1 Some General Comments

Encounters and decisions. Both models assumethat the forager encounters

prey items or patches one after the other (sequential encounter), and they

assume that foraging consists of many repetitions of the following se-

quence: search—encounter—decide. Search is somewhat of a misnomer

for non-encounter; it may be either waiting or active searching (but see

section 3.3). A forager “searches” as long as no prey item or patch is de-

tected while foraging. When a forager, using its senses, detects an item,

searching stops and an encounter occurs. Thus the sensory abilities of the

forager determine what constitutes an encounter, and the models predict

how items should be treated upon encounter. Ideally, an experimenter

should know enough about the forager’s sensory abilities to control or

independently assess encounters—it is not enough to measure abundance.

Both models use the ideas of search and encounter, but the form of the

decision taken upon encounteris different. They prey model asks whether

a forager should attack the item it has just encountered or pass it over.

The prey questionis, attack or continue searching? A prey item provides
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a fixed mean amount of energy, and a fixed mean amountoftimeis re-
quired to pursue, capture, and consumeit (taken together, these activities
constitute handling time). The patch model asks how long the forager

should hunt in the patch encountered. The patch question is, how long

to stay in a patch? The models presented in this chapter consider how

the forager can best makethe prey and patch decisions, with “best” mean-

ing that which maximizes the long-term average rate of energy intake.

The two models differ, principally because they analyze different deci-

sions: eat or search versus how long to stay. Viewed in this way, the

models provide surprising definitions of prey and patch. A prey yields a

fixed amount of energy and requires a fixed amount of time to handle:

the forager can control neither the energy gained from northe time spent

in attacking a prey item. However, the forager controls the time spentin,

and hence the energy gained from, a patch, because there is a well-defined

relationship between time spent and energy gained. Any predator that

sucksthe juices outof its prey might be thoughtof as preying upon patches

(Cook and Cockrell 1978, Sih 1980, Lucas 1985). If these definitions were

taken strictly, “true prey” would be rare in nature, since rarely is handling

time absolutely fixed. However, as we will show later (section 2.4), these

definitions do not have to be taken tooseriously. Although we call these

prey and patch models, these definitions should emphasize that the fun-
damental difference between the models is the decisions they analyze, not

the nature of the items encountered.

Holling’s disc equation. Both models use Holling’s disc equation (Holling

1959) to obtain the average rate of energy intake. Holling’s disc equation

assumesthat searching and handling are mutually exclusive activities, and

that the expected number of encountersis a linear function of time spent

searching. These assumptions make the algebra simple.
Let T, be all the time spent searching and T, beall the time spent

handling; thus T, + T, = T,, where T, is all the time spent foraging. Let

E, be the net amount of energy gained in T,. The rate (R) we wish to

maximize is

EsR= ,
T, + T,
 (2.1)

Now because encountersare linearly related to T,, we can express both

E, and T,, as linear functions of T,. If 4 is the rate of encounter with items

(A has units of prey/time or patches/time), then AT, is the numberof prey

items encountered.If s is the cost of search per unit time, then sT, is the

total cost of search. We represent the average energy gained per encounter

by @ (AT,é = E,) and the average time spent handling by h (AT,h = T,).
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By substituting these relationships into expression (2.1), the rate of energy

intake becomes

AT.é — sT
=eee (2.2)

T, + ATh

and T, is canceled out to give

— fers (2.3)
1+ Ah

which is Holling’s disc equation. This derivation follows Charnov and

Orians (1973).

Stochastic rates. In the section above we have followed the conventional

argumentfor the use of Holling’s disc equation in average-rate-maximizing

theory. However, these steps involved a shortcut from expression (2.1) to

(2.2) which requires somejustification. (The lack of this justification in the

literature has created some controversy; see Box 2.1, Templeton and

Lawlor 1981, Gilliam et al. 1982, Stephens and Charnov 1982, and Turelli

et al. 1982). In this section we want to show precisely how expression (2.1)

leads to expression (2.2).

Let G; be the random variable that describes the net gain from the ith

item encountered, and let g,; be a particular realization of G,;. Similarly,
let T; be the random variable that describes the amount of time spent

searching for and handling the ith item, andlet t; be a realization ofT,.

The gains (G,) and search-handling times (T;) for the ith encounter may

be correlated.

Equation (2.3) equals the expected energy gain per encounter [E(G)]

divided by the expected time spent(searching plus handling) per encounter

[E(T)];
E(G) de—s

E(T) 1+Ah’

However, is E(G)/E(T) = E,/T,, that is, does the quotient of the expec-

tations equal expression (2.1)? The answer is yes, but it is a conditional

yes. The equality holds when an infinite numberof items is encountered.

In symbols:

 (2.4)
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BOX 2.1 THE RATE CONTROVERSY

The controversy over the meaning of average rates centers on what

Templeton and Lawlor (1981) claim is an ambiguity in the early foraging
literature. There is some ambiguity. For example, Pulliam (1974) and Charnov

(1976a) sometimes seem to be considering a “rate of energy intake” without
making clear what time interval should be used to calculate the rate. How-

ever, the body of theory that grew out of the basic models (well before
Templeton and Lawlor’s complaint—e.g. Oaten 1977, McNair 1979, and

Green 1980) often explicitly used long-term average-rate maximization

[max E(G)/E(T), where G = gains per encounter and T = timeper encounter|

and explicitly claimed that such usage followed the basic models. In short,

little confusion resulted from earlier ambiguities, at least until Templeton and

Lawlor’s paper was published.
Templeton and Lawlorargue that early papers can be interpreted to suggest

maximization of the expected rate per encounter: max E(G/T). The important

question is not, “who said what?” or even, “does it make a difference?” The

important question is, what currency makes mostsense for foraging animals?
The most reasonable view is that there are arguments for and against both

currencies. Imagine that a forager can choose between (1) feeding in a patch

for 8 minutes and gaining 5 units of food or (2) feeding in an empty patch

for 3 minutes and then feeding in a secondpatch and gaining 6 units of food in
5 minutes. If, as Templeton and Lawlor suggest, the per patch rate E(G/T) 1s

maximized, choice (1) should beselected, since 2 > [(§) + (8)]/2 = 2. This in-
equality occurs because entering the empty patch lowers the per patch average.

However, the long-term rate E(G)/E(T) gives [(0 + 6)/2]/[(3 + 5)/2] =% > 3,
and a long-term average-rate maximizer would select choice (2). The dis-
tinction is that a per patch rate maximizer will not accept a low rate in the

present patch to achieve a higher rate later. This shortcoming suggests that

long-term average-rate maximization is morerealistic, because we usually will

want to evaluate the outcomeof a series of foraging decisions.

Infinite-rate maximization also has its problems. For example, an infinite-
rate-maximizer might go without food for months or years to obtain a suffi-
ciently large eventual gain; in other words, infinite-rate maximization ignores
the pattern of food acquisition (Chapter6).    

and the law of large numberssays that

12 tg
lim —- > g,=E(G) and lim \ t; = E(T). (2.6)
n>o Ni=1 nao j=1

Written on one line this logic is

E, E(G) d#e-s
cat = - aSn— ©.
T;  E(T) 1+ ah
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The equality is exact whenn is infinite, but it will be a good approximation

when is large (Turelli et al. 1982). Reassuringly, another approach also

justifies using Holling’s disc equation in the stochastic case. Using renew-

al theory, Stephens and Charnov (1982) have shown that mean energy

gains approach Holling’s disc equation asymptotically as foraging time

increases.

Recognition and decision. We have already introduced the idea that the

prey and patch models assume complete information (Chapter 1). They

also assume that a forager recognizes prey and patch types instanta-

neously, and that the forager’s behavior depends on which type it en-

counters and recognizes. The forager decides beforehand whatit will do

when it encounters a given prey type: if big, eat; if small, reject. We call

this an encounter-contingent policy.

2.2 The Prey Model: Search or Eat?

Our presentation of the prey model follows Charnov and Orians (1973).

Essentially the same model, or parts of it, has been presented indepen-

dently by Schoener 1971, Emlen 1973, Maynard Smith 1974, Pulliam 1974,

Werner and Hall 1974, Charnov 1976a, and others.

THE MODEL

Assume that searching (the time between encounters) costs s per time

unit. Let there be a set of n possible prey types. Four variables characterize

each prey type:

h, = the expected handling time spent with an individual prey item of typei, if it

is attacked upon encounter.

e; = the expected net energy gained from an individual prey item of typei, (if it
is attacked upon encounter) plus the cost of search for h; seconds (sh,). If é;
is the net gain from an item oftype i, then e; = é; + sh;. The modified energy
value e; is the difference in gain between eating a type i item (and gaining é;)

and ignoring a type i item (and “gaining” — sh,).
A; = the rate at which the forager encounters items of type i when searching.

p; = the probability that items of type i will be attacked upon encounter (the

decision variable).

These variables, together with the assumptions outlined in section 2.1 and

the additional assumptionsthat (1) the time taken to handle an item en-

countered but not attacked is zero and (2) the net energy gained from an

item encountered but not attacked is also zero, allow us to represent the
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rate of net energy intake as

aSs
1+ > pAjh;

i=

Because s is constant, we can maximize long-term rate by maximizing

R =—+___.. (2.7)
1+ > p,Ajh;

1=1

This expression shows the advantage of incorporating search costs into

e;: our derivation can now proceed following conventional derivations of

the prey model, as if there were no search costs.

With respect to a given p; we mayrewrite R as

_ pie t &k;
— fet 2.8
c+ ph; ee)

wherek; is the sum of all terms not involving p, in the numeratorof equa-

tion (2.7), and c; is the sum of all terms not involving p; in the denominator

of equation (2.7). Both k; and c; are constant with respect to p; (Constraint

C.3 of Box 2.2). To see how changesin p, affect R we differentiate

OR _ Aedc; + piAihi) — Ah{pA,e; + ki) |

Op, (c; + p,Ajh)?
 (2.9a)

carrying out the multiplications indicated in the numerator wefind that

OR _ LieiC; ~~ Ahk;

6p, (ce, + p;Ajh;)” |

Equation (2.9b) showsthat the sign of the derivative of R with respect to

p; is independent of the magnitude of p,;. The value of p; that maximizes

the average rate of energy intake must be either the largest feasible p,

(p; = 1) or the smallest (p; = 0). This demonstrates one of the three princi-

pal results of the prey model, the zero-one rule: a type is either always

attacked upon encounter or always ignored upon encounter (see below).

Many workers have misunderstood the empirical implications of the zero-

one rule (Box 2.3, Stephens 1985).

The next question is what determines whether p; = 1 or p; = 0. The

sign of the numerator in equation (2.9b) supplies the answer. The strategy

(2.9b)
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BOX 2.2 SUMMARY OF THE PREY MODEL

ASSUMPTIONS
Decision

The set of probabilities of attack upon encounter for each prey type, p,
for the ith prey type.

Feasible choices: For all prey types 0 < p, < 1.
Currency

Maximization of long-term average rate of energy intake.
Constraint

C.1 Searching and handling are mutually exclusive activities: prey are not

encountered during handling.

C.2 Encounter with prey is sequential and is a Poisson process.

C.3 The e;’s, h;’s and 4,’s (net energy gain, handling time, and encounter rate
for the ith prey type) are fixed and are not functions ofp,.

C.4 Encounter without attack takes no time and causes no changein energy
gains or losses.

C.5 “Complete information” is assumed. The forager knows the model’s
parameters and recognizes prey types, and it does not use informationit
may acquire while foraging.

IMPORTANT GENERAL POINTS

1. The model solves for an encounter-contingentpolicy.
2. Diet (e.g. as measured by stomach contents)is not strictly predicted.

3. Food preference (in dichotomous choice situations) is not strictly
predicted.

4. Strong tests must have independent measures of encounter.   
 

that maximizes average rate of energy intake is

LVa
set D; = 1 if eC; —_ hk; > 0 or e;/h; > k;/c;.

Because there are n prey types there must be n inequalities like those

above. To clarify, let us consider the case n = 2.

e Axe
—Q0 jt 722? 1

PA "hy 1+ Aghy (2-106)
Pp, = 1 otherwise.

e A1e
=0 if*<—t+- .P> i i, < + ah, (2.10c)

P2 = 1 otherwise.



20 = CHAPTER 2

 

 

BOX 2.3 TESTING THE ZERO-ONE RULE

The zero-onerule (a type should either always be taken or always ignored

upon encounter) is the primary result of the prey model, because the other

results follow from it. The zero-one rule’s implications for empirical tests of

the prey model are unclear. We give two examples.
Krebs et al. (1977) tested the prey model by presenting two types of prey

(bigs and smalls) to great tits (Parus major). The prey moved on a conveyor

belt in front of a waiting tit. Krebs et al. varied the encounter rate with the
most profitable prey (bigs). The zero-one rule clearly predicts that at some

sufficiently high encounter rate with bigs, smalls should always be ignored

when encountered. Similarly, at some sufficiently low encounterrate with bigs,

 

   

  

=
Ld
x
<
~_

>
ud
x
a.

0<s i

o B
uu. 445 1
=
°
=
a
o
a.
9
e
a.

0 +
f ENCOUNTER RATE

Figure B2.3. The difference between absolute and partial preferences. The en-

counter rate with the more profitable, large prey (4) is on the abscissa, and the

proportion of the less profitable, small prey attacked is on the ordinate. The prey

model's zero-one rule predicts that small prey should be attacked when the en-

counter rate with more profitable prey is less than some threshold value, 4, and

small prey should be ignored when the encounter rate with large prey is greater

than the threshold 2. (A) Many workers have interpreted this prediction to mean

that absolute preferences should be observed: less profitable prey should be at-

tacked every time they are encountered if 1 < 2 and ignored every time they are

encountered if 2 > 4. (B) However, if the threshold encounterrate, 4, has some

variance, then partial preferences (a smooth, sigmoid relationship) are expected.  
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BOX 2.3 (CONT.)

smalls should always be taken when encountered. The model predicts a thresh-
old switch in behavior: above some encounter rate with bigs, say /, smalls

ought never to be taken, and below /, smalls ought always to be taken. The

step function in Figure B2.3(A) showsthis prediction.

This step-function expectation gives the threshold a trait unheardofin bio-

logical measurement: no variance! If there is some variance in the threshold

(it fluctuates in a way that the experimenter can only partly control), then the
only reasonable expectation is something like the cumulative distribution

function of a normaldistribution shownin Figure B2.3(B), with mean /. Using

simple but rigorously justified techniques, the experimenter can estimate the
mean threshold and then perform statistical tests to discover whether this
mean is near the predicted threshold (Finney 1962, Stephens 1985). These
techniques skirt the issue of what causes the threshold’s variance (see Krebs

and McCleery 1984 for a list of possible sources of variation), but this kind

of issue-skirting is inherentin statistical tests. Recall that “statistical signifi-
cance” only measures error given that the underlying hypothesis is correct.

Pulliam (1980) studied seed selection by sparrows (Spizella passerina
arizonae). Using logic similar to the step-function expectation of Krebsetal.,
he argued that the least profitable item observed in the diet allowed him to
estimate the profitability threshold between acceptable and unacceptable
seeds. He therefore claimed that the zero-one rule predicts that all seed
“species that are eaten should occur roughly in the same proportions in the

diet as they do in the soil.” However, if the threshold seed profitability has
variance, then neither of these deductionsis correct. A “random threshold”

model, however, predicts that seeds of lower profitability should be taken less
frequently than their occurrence in the environment, because random fluctua-
tion in the threshold meansthata given species is sometimes in and sometimes
out of the “diet.” A type’s distance from the mean profitability threshold
affects how frequently it is in the diet.   
 

Consider the exclusion (p, = 0) of type 1. The condition above (2.10b)
yields (after a little algebra)

Pi =0 ife, <1,(e,h, — e,h,).

The variables h,, h,, and 4, must be positive by definition. The vari-
ables e, and e, are positive for any prey types worth considering: no prey
type that yields less than —s per unit handling time (e,; < 0 implies that
é;/h; < —s) should be considered because the forager can always achieve
a rate of —s by ignoring everything.
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Since all the terms in this expression are positive, the minimum require-
ments for the exclusion of a given type are:

(i) Type 1’s can only be excluded if e,/h, > e,/hy.

(ii) Type 2’s can only be excluded if e,/h, > e,/hy.

Either (i) or (ii) must be true (assuming e,/h, 4 e,/h,), so without losing

generality we can rank the prey types such that e,/h, > e,/h,. This means

that (i) cannot hold, and type 1’s cannot be excluded (we chooseto call

the type with higher e/h type 1). We need only ask the question, should

type 2’s be included? Inequality (2.10c) provides the answer. This logic

suggests an algorithm for finding the “diet” that maximizes the average

rate of energy intake:

Prey Algorithm: Rank the n prey types such that e,/h, > e2/h, >°°°

>e,/h,. Add the types to the “diet” in order of increasing rank until

j
» Ae :
oo > ae (2.11)

1+ ) Ah, 77?
i=1l

 

The highest j that satisfies expression (2.11) is the lowest ranking prey

type in the “diet.” If this inequality obtains for no j <n, then takeall

n items upon encounter.

The argument for the n = 2 case showsthat this algorithm applies in

the simplest non-trivial case. Assume that the algorithm is known to

produce the maximum averagerate of energy intake for anyset of k prey

types. Does this assumption imply that the algorithm can be applied to

a set of k + 1 types? Consider an arbitrary set of k + 1 types. Rank the

set such that e,/h, > e,/h, >-++* > &,/h, > ec +1/hy+1. Now consider the

ordered subset of this set that excludes only the k + Ist item. We know

that the algorithm can be applied to this subset of k types. There are two

cases. First, if the kth item is in the diet chosen from amongtheset of

items 1 through k, then, applying (2.10a), k + 1 should be excludedif

k

SY ei ;
— > ae (2.12)

1+) ah, **?
i=1

 

according to expression (2.10). This agrees with the algorithm.

In the second case the kth item is not in the average-rate maximizing

diet. Since the algorithm applies in the kth case, there is some m k,

where m is the lowest-ranked prey type in the diet. By definition of our
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ranking,

ei
6aee (2.13)
1+ y Ah; k k+1

i=1

Applying expression (2.10a) showsthat the k + 1st item cannot be in the

rate-maximizing “diet.” This inductive argument, together with the two-

prey-type case, proves the prey algorithm,since it showsthat the algorithm

must apply for a set of k + 1 prey types if it applies for a set of k prey types.

PREDICTIONS

Listed below are the three principal results of the prey model. Theal-

gorithm suggests both the second andthird results.

1. The Zero-One Rule. Types are either always taken upon encounter
(p; = 1) or never taken upon encounter (p; = 0).

2. Ranking by Prey Profitability. Types are ranked bytheratio of energy
per attack to the handling time per attack. This ratio is called the profit-
ability of a prey type. Types are addedto the diet in order of their ranks,
by the algorithm above (equation [2.11]).

3. Independence of Inclusion from Encounter Rate. The inclusion of a
prey type dependsonly on its profitability and on the characteristics of
types of higher rank (oneis the highest). The inclusion of a type does not
depend on its own encounter rate. Equation (2.11) predicts when a type
should be attacked.

The last prediction is often thought to be the most surprising of the
three. However,if we recall two aspects of the model, encounter-contingent
policy making and the principle of lost opportunity (section 1.6), then
this prediction is not surprising. The model asks whether a prey type
should be attacked after it has been encountered. No opportunity can be
lost by attacking an item of the highest possible rank, since the best alter-
native outcome is immediately to encounter another top-ranking item.
For a low-ranking item, the lost opportunity is the expected gain from
searching for and eating a higher-ranked item. Equation (2.10) states that
if the opportunity loss due to attacking a low-ranking type exceeds the
immediate gains from the attack, then it never pays to eat the low-ranking
item, regardless of how often it is encountered. The unimportance of a
type’s own encounter rate seems surprising because many people think
of “diet choice” as the problem of deciding what to search for, but this
model asks what should be ignored and what should be eaten, given a
fixed search method,place, and pattern. Chapter 9 summarizes the empir-
ical evidence bearing on the prey model’s predictions.
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DIET AND FOOD PREFERENCE NOT PREDICTED

The prey model is often called a “diet model,” and it is convenient to

call “setting the probability of attack equal to one” inclusion in the “diet.”

However, ecologists have traditionally considered diet to be the set ofall

food items taken by an animal. The model we have just presented consid-

ers diet choice within a homogeneous patch for a forager using a fixed

search strategy. If the forager moves to another patch the model should

be freshly applied. This means that the model cannot be tested simply by

looking, for instance, at stomach contents and taking overall averages to

estimate the parameters of the model(the /,’s, e;’s, and h,’s). For example,

a rate-maximizing forager might forage in a part of the environment where

low-ranking items are disproportionately common, because the abun-

dance of these items might compensate for their low food value. A forager

choosing such a patch would appearto take too many low-ranking types

and too few high-ranking types compared with an idealized forager for

which we calculate the model parametersasif it foraged in the whole en-

vironment. This apparent contradiction might occur even if the forager

maximizes its average rate of energy intake both in its choice of where to

feed and in the diet chosen there. Because of this problem, criticisms of

the prey model based on data such as stomach contents cannot be taken
at face value (see Schluter 1981).

The prey model is sometimes used to claim that if the profitability of

prey type X is greater than the profitability of prey type Y (ie. if

e,/h,, > e,/h,), then type X should be preferred to type Y. “Preference”

suggests that X and Yare alternatives. Type X is preferred to type if

X is chosen when X andY are offered simultaneously. In the prey model

X and are offered sequentially, and they are not alternatives. Strictly

speaking, the ranking of prey types is not a preference ranking. The model

does deal with preference in another way, however. If p; = 1 maximizes

the average rate of energy intake, then attacking a type i item is preferred

to searching further, or if p; = 0 maximizes the average rate of energy

intake, then searching further is preferred to attacking. We discussprefer-

ence in the strict sense, that is, when a forager encounters items simul-

taneously, in the next chapter.

2.3 The Patch Model: How Long to Stay?

The model presented here is that of Charnov (1976b: the so-called mar-

ginal-value theorem), but we will also discuss related results for cases not

explicitly treated by Charnov. To emphasize the similarity between the
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prey and patch models, our presentation of the marginal-value theorem
parallels our presentation of the prey model.

THE CHARACTERISTICS OF A PATCH

Assumethat there are n patch types, and that traveling between patches
costs s per time unit. Three quantities characterize each patch type:

4; = the encounter rate with patches oftype i.

t; = the time spent hunting in patches of type i. t; is called the patch residence
time, and t, is the decision variable.

gi(t,) = the gain function for patches oftype i. This function specifies the expected
net energy gain from a patch oftype

i

if t; units of time are spent hunting
in each type i patch entered.In statistical notation g(t, = E(Gain|T = t)).
(Following convention, we do not incorporate search costs, s, in the gain
function in the way that we incorporated them into e, in the prey model.)

NATURE OF THE GAIN FUNCTION

The gain function is assumed to be a well-defined, continuous, deter-
ministic, and negatively accelerated (curving down) function. However,
functions may be negatively accelerated in many ways. Figure 2.1 shows
six hypothetical shapes for gain functions. If we require that the gain
function be negatively acceleratedfor all residence times(zero to infinity),
then only types (A) and (B) are allowable gain functions. However, there
is no reason to invalidate sigmoid functions like example (C). We imagine
here that gain functions have the following characteristics.

1. The net energy gain whenzero timeis spentin a patch is zero [g(0) = O].
2. The function is at least initially increasing [g{(0) > 0].
3. The gain function is eventually negatively accelerated [there exists

some ft such thatg(t) < 0, for all t > 7].

Many workers consider the simple exponential gain function shown in
Figure 2.1(A) to be a general description of within-patch gains. However,
the humped gain function in Figure 2.1(B) is probably a more general
shape for net gains because as the patch becomes depleted more energy
will eventually be spent than gained. If gross intake follows the function
in Figure 2.1(A), then net intake will approximate Figure 2.1(B).

Depletion and depression. The patch model depends on the assumption
that the gain function eventually curves down (shows negative accelera-
tion). Foraging theorists have argued that this must be a general phenom-
enon because most patches contain finite resources, and thus foraging
must deplete them. However, a patch can deplete without having a nega-
tively accelerated gain function. If a forager searched patches system-
atically, and the prey items were randomly distributed in patches, the
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Figure 2.1 Six hypothetical gain functions. (A) A simple exponential gain functionthat

increases asymptotically to a maximum value. This is probably a good description of

gross gains for many patches. (B) A humped gain function is probably the most reason-

able general description of net foraging gains. (C) A sigmoid gain function might occur

in some patches, for example, mobile prey might be able to avoid the forageratfirst, but

the gain rate increases as clusters of prey are discovered. (D) A gain function for a patch

that depletes but does not show patch depression. This can occurif the forager searches

the patch systematically. (E) A pathological gain function that describes a patch where

gains show positive acceleration up to a maximum. (F) The prey gain function: prey

theory effectively supposes that prey items show a gain-to-time relationship like this;

up to a certain time no energy is gained, and after this time the maximum amount of

energy is acquired. Functions (A), (B), and (C) meet the criteria of the marginal-value

theorem. According to the combined prey and patch modelof section 2.4, functions

(D), (E), and (F) canall be treated as if they were “true prey.”
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gain function would look like Figure 2.1(D); there would be no negative

acceleration, even though the patch was being depleted as the forager

hunted in it. To distinguish patch depletion from negative acceleration

of the gain function, Charnovetal. (1976) coined the phrase patch depres-

sion to mean a decrease in the instantaneousrate of energy gain within a

patch (i.e. negative acceleration of the gain function). Charnov et al.

also discuss ways in which patch depression might arise (for example,

random searching in patches being depleted and the evasive behavior of

prey can cause depression) and its probable generality.

We assume for now that the decision about which patches should be

entered (which patches should be included in the “diet”: the prey question)

has already been made. This may not be reasonable, because the value

(i.e. the profitability) of the patches in question will change as we change
the t,’s (the decision variables).

The assumptions above (see Box 2.4 for a complete list) allow us to

specify the average rate of energy intake (R) as

» Aig{t,) — s
Rett (2.14)

We want to maximize R by choosingtheset of t,’s. [In technical jargon

we wish to choose the optimal vector (t,,t,,...,t,)]. We differentiate

with respect to a givent;:

Aigft;) + k;
R= 2.15

C; + At; ( )

OR _ Agit)LAti + ci.) — ALAgdti) + ki]

ot; (Ait; + ¢;)
 (2.16)

As in the prey model, k; is the sum ofall terms not involving t, in the

numerator, and c; is the sum ofall terms not involvingt; in the denominator.

It can be shown that R is maximized where R’(t;) = 0 (see Box 2.5):

g(t)At; + ¢.] — [Agdt) + k,| = 0 (2.17)

, Agidt;) + k;
gi(t;) ht, +e, (2.18)

Notice that the right side of this condition is the average rate of energy
intake and theleft side is the instantaneous rate of gain within a patch
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BOX 2.4 SUMMARY OF THE PATCH MODEL

ASSUMPTIONS

Decision

The set of residence times for each patch type, t; for patch typei.
Feasible choices: For all patch types 0 < t; < o.

Currency

Maximization of long-term average rate of energy intake.

Constraint

C.1 Searching for and hunting within patches are mutually exclusive acti-

vities.

C.2 Encounter with patches is sequential and is a Poisson process.

C.3 Encounter rates when searching are independent of the residence times
chosen.

C.4 Net expected energy gain in a patch is related to residence time by a

well-defined gain function [g,(t;)| with the following characteristics:

(i) Change in energy gain is zero when zero timeis spent in a patch.

(ii) The function is initially increasing and eventually negatively acceler-

ated.

C.5 Complete information is assumed. The forager knows the model’s param-

eters and recognizes patch types, and it does not acquire and use informa-
tion about patches while foraging in them.

IMPORTANT GENERAL POINTS

1. The model solves for an encounter-contingent policy.

2. Significant changes must be made to the model if the forager assesses
patch quality while hunting in patches.

3. The model applies only to patches with negatively accelerated gain func-
tions—patch depression. This should be confirmed by observation in

empirical tests of the model.
4. The marginal-value condition, equation (2.18), gives only an implicit

solution of the rate-maximizing patch residence time. It is incorrect to

treat the average rate of energy intake, the right side of equation (2.18),

as if it were independent of patch residence time.  
 

of type i, at time t;. Since we are solving for all n t;s, we have a set of n

equations in n unknowns:

g'(E,) = R(é,, t>, a) t,)

)(t,) = R(é,, t5,...,¢g'(t2) (f1 2 n (2.19)

g'(t,) = R(Ey, £2, ..-» ty).
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BOX 2.56 THE MARGINAL-VALUE THEOREM:

THE SECOND ORDER CONDITION FOR MAXIMIZATION

We consider only the simplest—one patch type, nil search costs—case.

Here, the derivative of the long-term average rate of energy intake with

respect to patch residence timeis

Ag'(t){1 + At] — A7g(t) — N(t)
(1 + At)? ~ D(t)’
 R(t) =

Let N(t) be the numeratorof this expression and D(t) be the denominator.

Wewish to prove that when N(f) = 0, R is at a maximum. To dothis, we

need to know thesign of the second derivative of R with respectto t.

.  NODO — DONO
0 DOP
 

but at ¢, N(f) = 0. So,

_ NDE) NG)
R(t) = = = x
= DOPE DE
 

and, substituting the definitions of N(t) and D(t) back into this expression,

Ag'(t)
R'(é) = Paar 

Therefore, R’(f) has the samesign as g”(f). Since we have assumedthat g(t)

is negative, R’(f) must be negative, and R(f) must be a maximum.Thereverse
is also true: if g’(£) is positive (positively accelerated), then the marginal-value

condition gives a local minimum.   
This set of equations gives a condition that the rate-maximizing set of
t;s must fulfill. The condition is Charnov’s marginal-value theorem: a

rate-maximizing forager will choose the residence time for each patch type

so that the marginal rate of gain at the time of leaving equals the long-

term average rate of energy intake in the habitat. The phrase “marginal

rate” comes from economics whereit translates as “derivative.”

The set of equations above gives two results. First, the marginal rate

at leaving must be the samein all patches visited. Second, if the habitat

becomes poorer(if the average rate of energy intake decreases) without

affecting the gain function of type i patches, then a rate-maximizingfor-

ager will stay longer in type i patches (equivalently, a rate-maximizerwill

leave patchesearlier if the average rate of gain increases). The habitat may
becomepoorer without affecting the gain function of a given patch type
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either because the encounter rates decrease (patches becomefarther apart,

so that the forager spends moretimetraveling between patches) or because

the set of patch types visited is reduced.

The marginal-value theorem is most easily understood whenall patches

have the same gain function and search costs are nil (s = 0). Figure 2.2

shows the well-known graphical solution of this case. In the one-patch-

type case the condition above, equation (2.18), becomes

Ag(t)
1+ At
 g(t) = R@) = (2.20)

Many people immediately think of a simple graph like Figure 2.2 (with

the tangent “rooted” at 1/A on the travel time axis) when they think of the

marginal-value theorem, and in this chapter and the next we usethis for-

mulation to analyze patch-use problems qualitatively. However, it is im-

portant to rememberthat this is a special case of the marginal-value
theorem that requires somerestrictive assumptions (one patch type, s = 0).

This graphical solution can also be used if the experimenter plots gross
energy gains on the ordinate (instead of net gains as we have assumed) and

if between- and within-patch energy expenditures are the same per time

unit (see section 9.4, Kacelnik and Houston 1984). Notice that the time

between encounters is usually called “travel time” in the patch model,

although it is often called “search time” in the prey model.
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Figure 2.2 The marginal-value theorem in the one-patch-type case. This graph is

unusual because weplot two quantities on the abscissa: travel time increases from the

origin to the viewer's left, and patch residence time increases from the origin to the

viewer's right. The optimal residence time can be found by constructing a line tangent

to the gain function that begins at the point 1/4 on the travel time axis. The slope of this

line is the long-term averagerate of energy intake, because 1/, is the average time required

to travel between patches. Whenthetravel timeis long (1/4,), then the rate-maximizing

residencetime (t,) is long. Whenthe travel time is short (1/A,), then the rate-maximizing

residence time (t,) is shorter.
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Implicit solutions. Patch residence time t appears on both sides of equa-

tions(2.18), (2.19), and (2.20). This means that the marginal-value theorem

only gives an implicit solution of the rate-maximizing residence time (or
times). If the gain function is complicated, we may haveto evaluate this ex-
pression numerically to find ¢. Some authors(e.g. Pyke 1978a) have treated
the average rate, the right side of equations (2.18), (2.19), and (2.20), as a
constant and measurable feature of the environment. According to this
view, the the rate-maximizing residence time can be determined bysetting
the marginal rate of gain equal to the “constant” rate and solving this
much simpler equation: g(t) = a constant. This is wrong, because patch
residence time affects both the marginal rate of gain and the average
rate of energy intake. To show that these numbersare similar only weakly
supports the marginal-value theorem, because this equality is a necessary
but not sufficient condition for rate maximization. Strong tests will have
to solve equation (2.18) for ¢. For example, a strong test might establish
the explicit relationship between the encounter rate (J) and the rate-
maximizing patch residence time (£), as Cowie (1977) and Giraldeau and
Kramer(1982) have done (see Chapter 9 for more examples).

Rules and rates. After their original development of this model, Charnov
and Orians (1973) made the following summary statement:

Whenthe intake rate in any patch drops to the average rate for the habitat, the
animal should move on to another patch. Thus, the choice is not really one of tis
it is the “moving-on threshold” in intake rate that is important.

This statement showsthe intuitive beauty of the marginal-value theorem,
but it also contains the seeds of two misunderstandings becauseit is im-
precise in two details. First, the phrase “intake rate” is meaningless unless
we specify the time over which the intake is measured. The theorem ex-
plicitly deals with the instantaneous(or marginal) intake rate. Second, the
mathematics we have used to develop the marginal-value theorem does
not justify the switch from solving for the optimal residence timeto solving
for a general “moving-on threshold.”It does hint at such a result, butit
cannotestablish it, because we have shownonly that the moving-on thresh-
old follows from the assumption that residence times are chosen by the
forager.
The idea of a moving-on threshold implies that the forager continually

measures or assesses the instantaneous rate of gain when foraging in a
patch and leaves when this “measured instantaneous rate” drops to the
long-term average rate of energy intake. Such a procedure violates the
assumption of encounter-contingent policy making (ie. the assumption
that the forager must choose the same meanresidence timeforall patches
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of type i, every time they are encountered). Oaten (1977), Green (1980),

and McNamara (1982) have shown that when conditions make encounter-

contingent policies unreasonable (specifically, when foragers use informa-

tion gained from hunting in a patch to change their tactics within that

patch), then a moving-on threshold using a measured marginal capture

rate fails to maximize the long-term rate of energy gain (Chapter 4).

2.4 Combining the Prey and Patch Models

The prey and patch models both assume that the decision analyzed by

the other has been made: the prey model assumes that handling times

and energy gains are outside the forager’s control; similarly, the patch

model assumesthat the set of patch types that will be attacked is out-

side the forager’s control. These assumptions can only bejustified if there

is a degree of independence between the models. Moreover, we need to

know how to combine the two models to build a general average-rate-

maximizing theory.

Wepresent a model that treats all items encountered as patches and

asks which patches should be entered and for how long. We associate

with each of the n patch types four things:

g{t,) = the gain function (we relax the assumption of eventual depression to the

assumption that the patch holds finite resources). For simplicity, we as-

sume that search costs are nil (s = 0).

4, = the encounterrate.

t; = the time spent handling, a decision variable.

p, = the probability of attack upon encounter, a decision variable.

Wewish to find the set of pairs [(t,, p1); (t2, D2); --- 3 (ta» Pn)| that maxi-

mizes the average rate of energyintake.It is easy to show (bydifferentiation)

that the zero-one rulestill applies, and that a patch should be included

in the “diet” if

gf{t,)/t; > k,/c;

(k, and c, are as defined in previous sections). However, the interpretation

of the quotient on theleft is not straightforward because it is a function

of the variable 1,. Consider the meaning of this inequality. If it is true,

then increasing p, (to 1) increases the average rate of energy intake.If, for

a given patch type, there exists any t, such that the inequality holds, then

the average rate of energy intake can beincreased by including that patch

type.If the inequality holds for any t;, it must holdforthet; that maximizes

g(t,)/t;. This argument justifies changing this inequality to:

Include type i if g,(t*)/t? = max{g((t;)/t:] > k;/c;.
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This inequality suggests that patches should be ranked accordingto their
maximum profitabilities. We know from the previous section that the

marginal-value theorem yields the maximum average rate of energy in-

take, given that the “diet” is already determined. The ranking we have

deduced (plus the zero-one rule) provides us with an orderly way to work

through the possible “diets”:

‘Patches as Prey’’ Algorithm. Rank the n patch types according to

their maximum profitabilities: g,(tf)/t* > g,(t3)/tt >--- > g,(t*).

Add typesto the diet in order of rank until

 

J

Aight; )
», ) > Gj+ i(t#, i) (2.21)

9
R=

J A t*®

1 + \ Ati; jtt

i=1

where ti; indicates the residence time for the ith patch type that

maximizes the average rate of energy intake when patch types one

through j are included in the “diet.” The marginal-value theorem

specifies the average rates of energy intake on the left side of in-
equality (2.21).

An inductive proof of this algorithm is straightforward and similar to the
proof of the prey algorithm (see section 2.2, section 3.2, Stephenset al.
1986).

The combined prey-patch model preserves the marginal-value theorem
because it is independently applied at each step in the algorithm. The
combined model also preserves the prey model’s three principal results
(zero-onerule, ranking byprey profitability, and independenceofinclusion
from encounter rate), and its shows that they can be applied to a large
class of ecological entities (see section 3.2).

This algorithm raises interesting questions about gain functions. Notice
that for any patch, ¢ must always be greater than or equal to t*, and t*
will be equal to ¢ for any patch in which gains increase linearly or faster
Lg’(t) = 0] to a finite limit. Notice also that f will be greater than t* for
any patch with negative acceleration [g’(t) <0]. This result ties up a
loose end in the marginal-value theorem.It guarantees that for any patch
(with a continuous gain function) that is entered [g’(t*) = g(t*)/t* > R],
there will exist a point such that the marginal-value condition holds
[g'(f) = average rate of energy intake] (see Box 2.5). Moreover, for an
average-rate-maximizing forager, there are only two plausible kinds of
patches: (1) those patches for which the maximum profitability of the
patch [g(t*)/t*] occurs at the same residence time as the maximum energy
gain, as represented in Figure 2.1(D), (E), and (F): these patches show no
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patch depression; (2) those patches for which the maximum profitability

occurs before (at a smaller t than) the maximum energy gain, as repre-

sented in Figure 2.1(A), (B), and (C): these patches show patch depression.

An average-rate maximizer (which does not use information, either

because it cannot or need not) should treat a patch without depression

exactly like a prey item. The maximumprofitability effectively characterizes

the gain function, and the patch should be handled(if it is handled atall)

for a fixed time regardless of the average rate of energy intake. We must

disallow the use of information because we know from Green’s (1980)

work that if patch sampling occurs, then patches with no depression

should be treated differently from prey items (see Chapters 4 and 8).

2.5 Limitations

Although the conventional prey and patch models are the most widely

known foraging models, they are only the starting points for further anal-

ysis. Here we discuss three of these models’ most important shortcomings,

each of which will be discussed in later chapters.

Beyond time and energy. Like all economic models, the prey and patch

models attempt to combine manyfactors into a single currency that can

be used to evaluate strategies. They do this by expressing the consequences

of alternative strategies in terms of the long-term rate of energy intake.
However, even the more ardent supporters of average-rate maximization
acknowledgethat other factors, such as wariness, dominance, andterritory

defense, often influence foraging behavior. There is no logical difficulty

about putting morefactors into optimality models when we know,or can

guess, how to combine them into commoncurrency. Chapters 5 and 7

address this problem.

Static versus dynamic. A second majorcriticism is that the basic models

are static (as defined in section 1.3). They do not take forager’s state into

account; for example, they ignore whether the forager is satiateed or

starving. This difficulty is addressed in Chapter 7.

Information. As we have explicitly assumed, the basic models do notallow

the forager to use(i.e. to change its behavior in response to) information
gained while foraging. Pyke et al. (1977) have stated that animals might

be viewed as statisticians who estimate the parameters of distributions.

This is only partly correct, because in most applications ofstatistics,
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statisticians do not worry aboutthe value of knowledge.In foraging theory

(and in almost any economic models of decision making) somepieces of

information havelittle or no value and are not worth the purchaseprice.

In average-rate-maximizing models the value of a piece of information

must be defined in terms of how it changes the average rate of energy

intake. Since the forager uses information in the future, assessing the value

of information can be a very complicated problem (Chapter 4). Informa-

tion is sometimes confused with the more general problem of stochasticity:

for example, Oaten’s (1977) important critique of the marginal-value

theorem, although partially entitled “a case for stochasticity,” is really

about the use of information.

2.6 More Decisions for the Average-Rate Maximizer

HABITAT SELECTION

The patch model supposesthat patchesare relatively small and quickly

depleted. When a forager’s behavior does not deplete the resources within

a patch, we maythink of the resourcesas being effectively infinite. We call

such an “infinite” patch a habitat: the forager’s behavior changes neither

the rate of gain from a habitat, nor the time for which this rate can be

maintained.

This definition means that a habitat is completely characterized by its

average rate of gain. How should a forager choose among habitats? When

it knowsthe rates of gain, and these rates are constant, it should simply

choose the habitat that has the highest average rate of energy intake.

Interesting modifications in this selection process occur under conditions

of varying rates, imperfect information, differential likelihoods of preda-

tion, proximity to the central place (which wediscuss in later chapters),

and social interactions (Fretwell 1972).

SEARCH METHOD

The prey and patch models assumethatcertain decisions about search

method have already been made, but many foragers have more than one

search method available to them:a trout mighteitherlie in wait for drifting

insects or patrol a large section of stream bed. Choices of search method

can be treated like habitat selection problems if each choice can be
characterized by its long-term average rate of energy intake. One qualita-

tive difference between selection of search method andselection of habitat

is that the cost of changing from one search method to another will

usually be lower than the cost of changing habitats. As a generalrule, the

increasing costs of switching between search modes or habitats mediate
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against change. Thus we expect that foragers will change their search

method more readily than their habitat.

Interestingly, if the gains from a search method decrease in marginal

value with time, then a model similar to the marginal-value theorem

could be used to determine how long a search method should be used.

TRAVEL: COSTS, SPEEDS, AND ROUTES

Costs and speed. The basic average-rate-maximizing models assume that

encounter rates and search costs are fixed constraints that the forager

must abide by. Although this assumption is not completely unreasonable,

many foragers will have some latitude in choosing how quickly and how

costly their searching will be (see Evans 1982). Search speed and search

costs may affect prey and patch decisions (DeBenedictis et al. 1978,

Schmid-Hempelet al. 1985). Ware (1975) argues that the most important

foraging decision for the pelagic fish Alburnus is the choice of an optimal

swimming speed. Ware’s model treats Alburnus as if it were a net being

pulled through the water. There is an optimal pulling (swimming) speed

because there is a nonlinear relationship between speed and energy ex-

penditure, and there is also a relationship between speed andrate of en-

ergy acquisition. Ware’s model complements the models presented here,

because he assumes that decisions about which items to select and how

to treat them have already been made,independentof the choice of swim-

ming speed. It may be unreasonable to treat foraging speed as a factor

that is independent of other foraging decisions, but it is not obvious where

this independence assumption will fail (see Pyke 1981a).

Routes. The choice of routes might also change the basic models. For

example, if the types of prey or patches already encountered affected the

forager’s search method(e.g. turn left after eating a caterpillar), then this

would violate the assumption that selection (p;) and patch exploitation

(t;) can be changed independent of encounter rates (Constraint C.3 of Box

2.2 and Constraint C.3 of Box 2.4). McNair (1979) has considered the

general theoretical implicationsofviolating this assumption; however,little

empirical work has addressed this important problem. Pyke (1983) has

reviewed the problemsof travel from an economicperspective.

2.7 Summary

This chapter presents the basic average-rate-maximizing models: the prey

and patch models. These models differ because they analyze different deci-

sions, not because one deals with prey and the other deals with patches.
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The prey model comprises three basic results: the zero-one rule, ranking

prey by profitability, and the independence of a type’s inclusion in the

“diet” from its own encounter rate. The patch model’s main result is the

marginal-value condition: set the patch residence time so that the instan-

taneousrate of gain at leaving equals the long-term average rate of gain

in the habitat.

Wealso present a combined prey and patch model, in which the

forager chooses both the probability of entering a given patch type upon
encounter and the patch residence time. This combined modelpreserves

the main features of the separate models.

We emphasize the limitations and difficulties of the basic models. Some

particularly important limitations are (1) the assumption of encounter-

contingent policy making; (2) the assumption of complete information;

(3) the limited sense in which the prey model predicts “diets”; (4) the in-

ability of the prey modelto predict preference; (5) the lack of implication,

in the patch model, of a rule by which the forager “measures” the instan-
taneousrate of gain in a patch; and (6) the provision by the patch model

of only an implicit solution of the rate-maximizing patch residence time.



Average-Rate Maximizing

Again: Changed Constraints

3.1 Introduction

This chapter considers long-term average-rate-maximizing foraging mod-

els with changed constraint assumptions. As we pointed out in Chapter

1, the basic prey and patch models include constraint assumptions that

are in effect “unconstraints,” such as unrestricted travel and complete

information. This chapter adds more realistic constraints to the basic

models of Chapter 2. Some of these changesrestrict the forager’s ability

to recognize items, to do without nutrients, and so on. Other changed

constraints reflect assumptions about the environment, for example,
whether the forager finds prey in clumps or randomly dispersed. Con-

straints can be changed in many ways, and we can only discuss a few pos-

sibilities. We chose those “changed constraint” models that either make

the basic models more realistic (they apply to many animals) or illus-

trate the assumptions and limitations of the basic models. We consider

in section 3.2 sequential versus simultaneous encounter; in section 3.3

exclusivity of search and handling and the question of lost opportunity;
in section 3.4 sequential dependence of encounters; in section 3.5 travel

restrictions and central-place foraging; in section 3.6 nutrient and toxin

constraints; and in section 3.7 recognition constraints. Chapter 4 deals

with the problem of incomplete information.

3.2 Sequential versus Simultaneous Encounter

In prey and patch models, the forager encounters one item (a prey item

or patch) after the other. Experiments can be devised to ensure that this

assumption is met(e.g. Krebs et al. 1977), and sometimes sequential en-

counteris biologically appropriate (e.g. a shore bird probing for small in-

vertebrates in the mud, Goss-Custard 1977a). However, many animals

must experience simultaneous encounters. A honeybee foraging in a field

of flowers maysee several flowers at once (Waddington and Holden 1979,
Stephenset al. 1986); a foraging bluegill sunfish may see more than one

Daphnia at a time (O’Brien et al. 1976).
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Many workers have proposed simultaneous encounter models (Wad-
dington and Holden 1979, Carlsson 1983, Engen and Stenseth 1984,

Stephenset al. 1986), and sometimes they have cometo different con-
clusions. Waddington and Holden (1979) developed an optimality model
to solve the problem illustrated in Figure 3.1. At the encounter point

the forager sees two prey items: although e,/m, > e,/m, (m, is the ma-

nipulation or “actual handling” time) the type 1 item is further away, so
e,/(m, + 11) < e,/(m, + 7,) (a; is the pursuit time.) In other words, at the

moment of choice, the effective profitability of item 2 is higher than the
effective profitability of item 1, because it is closer. Waddington and
Holden claim that the general rule “choose the prey of higher effective

profitability” is the rate-maximizing rule for simultaneous encounters.
However, Waddington and Holden’s rule only holds at high encounter

rates. When encounterrates are low, it is better to think of simultaneous

encountersas a problem involving sequential encounters withsets of prey.
Suppose that a raptor encounters flocks of small birds that contain two
prey species; because an attack flushes the birds, the raptor may choose
to attack an individual of species 1 or an individual of species 2, but not

(e) Flower 1

(©) Flower 2

 

encounter point

as
direction of travel   

Figure 3.1. A foraging honeybee may simultaneously encounter a pair of flowers—

Flower 2 whichis closer and to the right and Flower 1 whichIs further away and to the

left. According to Waddington and Holden’s (1979) simultaneous encounter model, the

more profitable flower should always be chosen. (Recall that profitability takes account

of the time required to travel from the encounter point to the flower.) Thus Flower 2 may

have a highereffective profitability simply becauseit is closer. (Redrawn from Stephens

et al. 1986.)
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both. Species 1 takes h, seconds to handle andyields e, calories, species
2 takes h, seconds andyields e, calories; e,/h, is greater than e,/h,. We
plot the two points(h,, e,) and (h,, e,) in Figure 3.2(A). The figure shows
how the rate-maximizing choice of simultaneously encountered items can
be found by constructing two lines, one from each of the points (h,, e,)

and (h,, e,) to (—1/A, 0) (1/A is the time between encounters with flocks).

The steepest line gives the rate-maximizing choice:if the steeper line passes
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Figure 3.2 The discrete marginal-value theorem predicts the rate-maximizing choice

between two simultaneously encountered and mutually exclusive choices. Each choice

is characterized by an (A,, e;) pair, where e,/h, > e,/h,, but e, > e,. (A) The timeinter-

cept of the broken line passing through (/,, e,) and (Aj, e,) defines a critical travel time
(1/4,). The solid lines show thattravel times less than 1//. yield a higher rate (the slope

of the line) if type 1 is chosen, and that travel times greater than 1/A, yield a higher rate
if type 2 is chosen. (B) A rate-maximizer cannotprefer a type that is both less profitable

and has smaller energy value. The line of highest slope passes through (/,, e,), regard-

less of the travel time. As the dotted line shows, the travel time would have to be

negative for the forager to prefer type 1!
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through (h,, e,), then item 1 is the rate-maximizing choice; if the steeper

line passes through (h,, e,), then item 2 is the rate-maximizing choice. If,
as in Figure 3.2(A), e, is larger than e,, even though type 1 is more profit-

able, then both the relative profitabilities of the two alternatives and the
encounter rate with patches determine the rate-maximizing choice. Even
though type 1 is more profitable, type 2 is the rate-maximizing choice

at low encounter rates (Box 3.1, Orians and Pearson 1979, Engen and

Stenseth 1984, Stephenset al. 1986).

Sequentially encountered sets of prey itemsare like patches, except that

they can only be used in a limited numberof ways. In the basic marginal-
value theorem a forager can stay for any length of time from zero to

infinity and obtain a continuous range of energy rewards, but our raptor

can “stay” for only h, or h, and get only e, or e,. In mathematical jargon,
the gain function is discontinuous.In the previous paragraph and 1n Figure
3.2 we used a version of the marginal-value theorem for discontinuous

gain functions to determine the rate-maximizing choice of prey items
within a patch (Stephenset al. 1986, Fig. 3.2[A]). Engen and Stenseth
(1984) have presented a general model that works for both continuous
and discontinuous gain functions (Box 3.1). Discontinuous gain functions

can arise for reasons other than simultaneous encounter with prey; they
come up again in our discussion of central-place foragers (section 3.5).

The marginal-value interpretation of simultaneous encounters predicts

different patterns of preference under different conditions (Box 3.1).

Waddington and Holden’s “take the most profitable rule” will work at

high encounter rates (with flocks), and it will work at any encounter rate

if the most profitable choice also yields the largest net energy gain (Fig.

3.2[B]). In these cases, a forager only needs to “consider” immediate gains

to maximize its long-term gains, but this is not always true (Box 3.1).
Simultaneous encounters can lead to an apparentviolation of the zero-

one rule, in the form of so-called partial preferences (Waddington 1982,

Krebs and McCleery 1984). For example, a foraging honeybee mayprefer

blue flowers when they are paired with poor yellow flowers but ignore

them when they are paired with rich purple flowers. Since the zero-one
rule deals with the probability of attack upon encounter, and the pair,
not the individual flower, is the encountered entity, the zero-one rulestill

holds: pairs of a given type are always attacked or always ignored. Partial

preferences might also occurif the same pair is approached from different

directions. If the pair in Figure 3.1 were approached from behind,it might
be treated differently because the pursuit times would be different. Here,

the zero-onerulestill holdsif we classify the “encountered entity” as “pairs

attacked from a particular direction.”

The preceding discussion has interesting implications for the most



42 » CHAPTER 3

 

 

BOX 3.1 THE DISCRETE MARGINAL-VALUE THEOREM

This box expands the model, discussed in the text, of a bird of prey attack-

ing a flock. Suppose that a raptor encounters flocks consisting of two prey
species (types): type 1 and type 2. Associated with each is a net energy value
and a handling time: e,, h,, €,, h,. Type 1 is smaller but more profitable than
type 2 (e, > e,, but e,/h, > e,/h,). Only one item can be attacked per encoun-
ter, because an attack flushes the flock: prey choices are mutually exclusive.

Figure 3.2 shows the rate-maximizing prey choice.

EFFECT OF TRAVEL TIME

The time-intercept of the line passing through (h,, e,) and (h,, e,) defines a
critical travel time (recall that travel time equals the reciprocal of encounter
rate):

1 e,h, — e,h,

he — > — ey

A rate-maximizer prefers the smaller, more profitable alternative when travel
time is shorter than 1/A,, and it prefers the larger, less profitable alternative
when travel time is longer than 1//,.

ORDER OF ATTACK

Suppose that a honeybee encounters a pair of flowers like that in Figure
3.1, except that here the distant flower is both more rewarding (bigger e) and
more profitable than the close flower. Since the bee can take both flowers,
the flock model cannot be directly applied. Instead, we consider the four
mutually exclusive alternatives: (A) take distant only; (B) take close only;
(C) take close, then distant; and (D) take distant, then close. In general, this

problem can be solved by plotting the pairs (e4, ha), (eg, hg), (@€c, hc), and
(p, hp), as in Figure B3.1. A rate-maximizer should not even consider options
(B) take close only and (D) take distant, then close, because the other options
offer more energy and are more profitable. Thus the honeybee’s choice be-
comeseither (A) take distant only or (C) take close, then distant. Figure B3.1

shows the rate-maximizing behavior: Take (A) distant, when travel times are

shorter than 1//,, and take (C)close, then distant, when travel times are longer
than 1/A,. Stephens et al. (1986) studied a honeybee flower choice problem
like this one empirically.

The order of attack is sometimes used as a measureofpreference:if an item
is attackedfirst, it is said to be preferred. The example above showsthat this
makes no sense for a long-term rate maximizer. A long-term rate-maximizer
may take the close, less profitable flower first, but it would never take the
close, less profitable flowerif the two flowers were mutually exclusive alterna-
tives (Fig. 3.2[B]).
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BOX 3.1 (CONT.)
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Figure B3.1 (A) Four (A;, e;) pairs are plotted for the four ways in whicha pair of

flowers (Figure 3.1) can be taken. Options B and D can neverbe the rate-maximiz-
ing choice. Option A is the rate-maximizing choice whentravel times are shorter

than 1/A,. (B) If the order of attack does not affect the time spent in the patch,
then the rate-maximizing behavior considers only which itemsto take. The slope of

the line between adjacent points equals the profitability of the type just added.

In some experiments (e.g. operant simulations of foraging) the order of
attack may notaffect the time spent in the patch. Suppose that such a patch
contains one item each of three different types: e,/h, > e,/h, > e3/h3. There
are nine feasible orders of attack, but only three unique(h;, e;) pairs. Thus
a rate-maximizer should consider only whether a type should be taken, and

not when. The three options are

Tactic h e

1 only h, ey

1,2, & 3 h, +h, +h, €, +e, +e;

Figure B3.1(B) shows how patch encounter rates determine the rate-maxi-
mizing behavior. The slope of the line segment between adjacent points equals
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BOX 3.1 (CONT.)

the profitability of the last item included. The order of attack does not matter
to a rate-maximizer; it sets a profitability threshold: take all types that are
more profitable than the long-term rate of energy intake.

ENGEN AND STENSETH’S CRITERION
Thus far we have only treated somespecial cases to illustrate how prey

should be chosen within patches. Specifically, we have relied on “rooted-
tangent” diagrams(section 2.3, Fig. 2.2), which are limited to the case in which
all patches are the same, and in which betweenpatch costs are nil.
Engen and Stenseth (1984) have proposed a general and elegantcriterion

for choosing the rate-maximizing patch-use tactic. Any possible patch-use
tactic can be represented by a pair of numbers(h,, e;), where h; is the handling

or patch residence time for the ith patch tactic and e; is the net energy gain
for the ith patch tactic. Engen and Stenseth show that a long-term rate-

maximizer will choose the pair (h;, e;) that maximizes

where R* is the optimal long-term rate of energy intake. This term is the
energy intercept of a line drawn through(h;, e;) with slope R*. Engen and

Stenseth’s technique neatly subsumes both the discrete and continuous ver-
sion of the marginal-value theorem, but it has the disadvantage of requiring

that R* be found (usually numerically) before it is of much use.   
commontype of laboratory experiment in the study of feeding behavior,

the dichotomouspreference test, because it predicts that preference some-
times depends on the schedule of presentation. If, for example, the

experimenter allows the forager to consume one memberof a pair and

then waits a fixed time to present the next pair, the results of Figure 3.2

will apply. In other words, observed preferences may vary according to

the inter-presentation interval. If, on the other hand, the experimenter
allows a fixed time between presentations, then the type with the highest

energy value should always be chosenas long as handling times are shorter

than the interval between presentations, because no opportunity is lost.

Heller (1980) used computer simulations to study a similar problem.

Heller’s forager does not see all the prey when it encounters the patch

(as we assume above); instead, it experiences strict sequential encounters

within each patch. Heller considers a large patch that contains two prey

types, and foraging in the patch depresses the within-patch encounterrates
because capturing a type 1 prey item reduces the encounter rate with type

l’s. Heller does not manipulate the encounter rate with patches; rather he
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considers changes in the relative abundance of the most profitable prey
type within patches. Heller gives his forager four options: (1) specialize

on the more profitable prey; (2) specialize on the less profitable prey; (3)
generalize; and(4) specialize on the moreprofitablepreyatfirst, but gener-
alize later. Heller finds that the fourth tactic (switch from specialist to gen-
eralist) often does well in his simulations. Presumably this is because of

depression in patch quality: the forager removes highly profitable prey

first, thereby reducing their encounterrates; this leads to the inclusion of
the lower-ranked prey. The interesting point here is that choosing prey

within patches sometimes contradicts the zero-onerule. (Although at any

one timeit still applies, a Heller animal might go through cycles of “arrive
patch 1: specialize-generalize,” “arrive patch 2: specialize-generalize,” and
so on). Heller’s simulation shows that this cyclical behavior can be the
“long-term rate-maximizing”prediction, but it only hints at when it should

occur.

3.3 Exclusivity of Search and Handling

Manyforagers do not totally consumeeach prey item (Hassell et al. 1976),

and some authors (Cook and Cockrell 1978, Giller 1980, Sih 1980) have

used the marginal-value theorem to explain this. Foragers such as

Notonecta and Myrmeleon, which suck the contents of their victims, can

be shown by interruption experiments to experience diminishing returns

with sucking time. This has led to the assumption that these predators

treat their prey like patches. However, McNair (1983) and Lucas and
Grafen (1985) have pointed out that these foragers differ from ordinary

patch users in that ambush predators can sometimes encounter new
patches (prey) while they handle an old one, and this violates the patch

model’s assumption that searching for and hunting within patches are
mutually exclusive activities.

McNair supposes that foragers encounter new patches(prey itemsfor a

typical ambushpredator) at rate 4 after they have left a patch, as in con-

ventional theory, but he also assumesthat they can encounter patchesat
rate 2 while they are exploiting a patch. When a Notonecta sucks the

juices from its prey, it may still be able to encounter new prey itemsat

the reduced rate of 4; in McNair’s terminology a second encounter can

overlap thefirst.

Box 3.2 presents McNair’s model of overlapping encounters. McNair’s

main conclusion is that the rate-maximizing forager should stay beyond

the point at which the marginal capture rate (derivative of the gain func-

tion) equals the long-term average rate of energy intake. In other words,
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BOX 3.2 OVERLAPPING ENCOUNTERS

McNair’s (1983) overlapping encounter model might be applied to a for-
ager like a web-building spider, which catchesits prey in a trap. Since a spider
eats by sucking the juices from its prey, and gains show diminishing returns
with sucking time, a modified patch model can be applied to solve for the
rate-maximizing prey-sucking time. Most spider webs work best when the
spider is minding the lines (they are not completely passive traps), but some
webs can capture prey even while the spider consumesa prey item, thereby
violating the patch model’s assumption that no new patches can be encoun-
tered during patch exploitation.

THE MODEL

Suppose, following the patch model, that the spider captures only one prey
type, t is the sucking time (the decision variable), g(t) is the gain function
that relates sucking time to net energy gains, 4 is the rate of prey capture

whenthe spideris minding thelines, and 1 is the reducedrateof prey capture

whenthe spider is busy consuming a prey item. McNair comparesthespider’s
capture process to humans queuing up in a fast-food restaurant: / is the rate
at which the first customer steps up to be served when the serving window

is unoccupied, and 1 is the rate at which customers join the queues behind
busy windows. McNair thinks of each initial encounter as the beginning of
an extended encounter. A result from the theory off queues(see McNair 1983)
states that the spider can expect to encounter Ati — At) additional prey
items during an extended encounter (this result requires that At < 1). Thus
every time an initial encounter occurs the forager expects to capture 1 +
[Ars — At)] prey items, or 1/(1 — At). The long-term rate of energy intakeis

 

Ag(t)
R= — _ Ag(t)

14 . 1+(-Ap)t

1—At

Solving for the first-order maximization condition,

dR
a 0, where g'(t) = IH)

 

1d +t

This expression suggests a simple change in the patch model’s usual graphical
solution. Figure B3.2 shows this solution (see section 2.3 for the limitations

of this type of diagram). Instead of drawing a tangent to g(t) from 1/A on
the travel time axis, the tangent is drawn from the “corrected travel time,”

1/(A — A). The corrected travel time is always longer than the true travel time,   
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BOX 3.2 (CONT.)
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Figure B3.2 The rate-maximizing patch residence time for a forager experiencing

overlapping patch encounters. The standard tangent solution is slightly modified

(compare with Fig. 2.2). The tangent is drawn from the corrected travel time,

1/(A — A), which is always longer than the actual travel time. Therefore, the forager
stays longer than it does in the conventional patch model.

so the model predicts that a rate-maximizer experiencing overlapping en-
counters should stay longer than one that does not. In the most extreme case,
when A= A, the forager should exploit the patch until the patch’s energy
reaches a peak [g’(t) = 0]. These predictions follow from the fact that a for-

ager experiencing overlapping encounters loses less opportunity by staying
in a patch even thoughreturns are diminished.    

a forager experiencing overlapping encounters should stay longer than

predicted for the conventional marginal-value forager: it tolerates more

patch depression.
This result seems to contradict the marginal-value theorem, because

adding overlapping encounters ought to increase the long-term rate of

energy intake, and an increased rate of energy intake ought to cause a

decrease in patch residence time. However, McNair’s result can be viewed

as an exception that proves the rule. The marginal-value theorem works

in the first place (i.e. a rate-maximizing forager leaves patches before they

are empty) because by staying longer a forager loses the opportunity to

find new patches. When a forager experiences overlapping encounters,it
loses less opportunity by staying in patches, precisely because more patches

can be encountered while the forager exploits a patch. Box 3.2 discusses

additional “overlapping encounter”results.

Unfortunately, McNair’s model assumes that the forager can capture
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new prey without losing its old prey. Lucas and Grafen (1985) have de-

veloped a model that assumes that the forager loses its present prey if

it attempts to capture another. Lucas and Grafen assume that a forager

will not switch to a new prey until it has exploited the old prey for some

“criterion time,” and they solve for the rate-maximizing criterion time.

Their results agree qualitatively with McNair’s: the rate-maximizing cri-

terion time increases as the frequency of overlapping encounters (A)

increases.

Lucas (1983) has analyzed another “less lost opportunity problem.”

Lucas imagines that a rate-maximizing forager feeds in short bouts, and

he points out that the fussiness of a rate-maximizer should depend on bout
length, because when there remains in a bout enough time only for one
item to be taken, then no opportunity can bylost by taking less profitable

prey. This point is especially important for foragers that take only one

item per bout, but Lucas showsthat it can be generalized to more complex

situations.

Pursuit and search. In Chapter 2 we included pursuit in our account of

handling time. The basic prey model requires this, because pursuit clearly

occurs only after the decision to attack has been made. However, pursuit

differs from “handling” proper, because new items can often be encountered

during pursuit. This difference might be important for animals that
“pursue” stationary prey: a honeybee flying toward a flowerit sees from

0.5 meters away may see a better flower before it reaches its intended

victim. As in McNair’s and Lucas’s models of lost opportunity, pursuit
involves less commitmentandless lost opportunity than does manipulation

or active chasing of a prey item. Although we know of no model that deals
specifically with this issue, we expect that the ability to encounter items

when pursuing others will tend to make rate-maximizing foragers less

fussy about the items they pursue.

3.4 Prey Choice with Sequential Dependence

The basic prey and patch models assume that searchingis like hunting

through a randomly mixed sand pile grain by grain: most of the grains

are undesirable (search), but occasionally the forager finds a desirable

grain (i.e. a prey item or patch). The desirable grains are further sub-

divided into different types (e.g. red and blue “grains”). This means that

prey (or patches) are well mixed in the habitat: the forager does not find

a given type in clumps. McNair(1979) studied this problem by imagining

that encounter rates might depend on the previous encounter. McNair
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imagines that the average times between (1) leaving a red and encountering

a blue, (2) leaving a red and encountering a red, (3) leaving a blue and

encountering a blue, and (4) leaving a blue and encountering a red may

all be different, while in the basic “sand pile encounter” models (1) and

(3) are always the same, as are (2) and (4), because encounterrates are

independent of previous encounters. The encounter-to-encounter depen-

dence assumed in McNair’s model may occur because of prey clumping
or over-dispersion. In Box 3.3 we present a two-prey-type version of

McNair’s more general model.

 

BOX 3.3 ENCOUNTER-TO-ENCOUNTER DEPENDENCIES

Weillustrate McNair’s (1979) general model by changing the prey model’s

usual Poisson encounter assumption and by a counter-example.

THE Two-PREY-TYPE CASE
Suppose that there are two prey types, type 1 and type 2; as usual, e,/h,

> e,/h,. Westill assume that a Poisson process controls encounters, but the
encounter rate with each type depends on the most recently encountered type:
leaving a type 1 item “starts the clock” for two independent Poisson encounter
processes. The time, after a type 1, until another type 1 is encountered is ex-

ponentially distributed with rate parameter 4,,, and the time, after a type 1,

until a type 2 is encountered is exponentially distributed with rate parameter
4,2. The notation 4,,; denotes the encounterrate for an i to j transition. This
two-prey system’s encounter process can be thoughtofas a matrix ofencounter

rates:

Encounter Rates(/;;)

To:

Type 1 Type 2

Type 1 Ais Ai2

From:

Type 2 Ar1 Ax?

Wewantto calculate the probability of each type of transition (the P;;’s). A
transition from 1 to 2 occurs only if a type 2 is encounteredafter a type 1 but
before the next type 1. If we let t;, be a realization of the randomly chosen (and
exponentially distributed) time from a type i encounter to a type j encounter,

then the transition probabilities are: P,, = P(t,, < t,2), P12 = P(ty2 < ty),  
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BOX 3.3 (CONT.)

P,, = P(t,, < t,,), and P,, = P(t,, < t,,). We calculate only one value for
illustration:

x —2? —,

Pig = Pltyg <1) = {, (L— eo *Ae°*dt,

—|]— Ay [oeGetto dt,,

A12

Ait + A12

The other four transition probabilities can be found in the same way:

Transition Probabilities (P;,)

To:

Type 1 Type 2

Ay Ay?
Type | —______ —
YP Ait + Ato Avy tia

From:

A AType 2 21 22

Any + Ad2 Any + A22

This matrix of transition probabilities represents a first-order Markov Pro-

cess. Well-known formulae give the stationary probabilities of a two-by-two

Markov process (Cox 1962). The stationary, or equilibrium, probability of

type I’s is the long-run relative frequency of type | encounters. Let z, and

m, be the respective stationary probabilities:

_ Po,
t=

Pin + Po,

Py»
t=.

Ping t+ Po

Finally, we must find the mean time from leaving an i until encountering j.
The logic hereis like that usedto find the P;,’s; for example, we wantto find the
distribution of t,,, given that t,, is shorter than t,,:

P(t, < ty, /t,2)P(t,>)
P(ty2|ti2 <t11) = “PG ul ~ =

12 <li
 

The denominator is simply the transition probability (P,,) that we found

above. We canalso find the numerator. The probability that t,, is greater than   
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BOX 3.3 (CONT.)

ty 1S

~Aiit — Ait1—(l-e 11712) — @ 1AF12.

and P(t,,) is just 2,,e7 7'2"2; thus

Aye” (A14 F Ar astra

P(tyo|ty2 <t,) = 7
‘12

A12 + Avi

— (12 + Aye4 + Ar2)ti2

This expression showsthat the search time of 1-to-2 encounters is exponen-
tially distributed with parameter (A,, + 4,,), and the mean search timeis
therefore 1/(A,, + 4,1):

Mean Search Times (S;;)

To:

Type | Type 2

1 I

OPN deh latha
From: | |

Type * Ay, + Ara Ag, + Aa

We now have enough information to specify the long-term rate of energy
intake. The average energy gain per encounteris 2,e, + 1,e,, and the average

time per encounteris

mi [Py (S41 + Ay) + Pyol(Si2 + h2)] + MolP2i(So1 + hy) + Po2(So2 + hy)].

Thus R 1s

TC, + 12e2

T[Py(Sy1 + h,) + P,(Si. + h,)| + T[Po1(So4 + hy) + P22(So2 + h)|

 

Substituting these expressions, and performing some algebraic masochism,

showsthat the long-term average rate of energy intakefor a diet ofboth typesis

R= PilAry + Ara)er + altar + Araer

1+ bir + Aya)hy + bahar + A22)h2
 

where

Ary Ay2-_“4 and = —“12_—.
1 T+ dn 2 =F thn   
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BOX 3.3 (CONT.)

But for a diet with only type i,

t+ Ayhy
 

McNaIR’S COUNTER-EXAMPLE

Suppose that the matrix of encounterratesis

Encounter Rates (A;;)

To:

Type 1 Type 2

Type 1 0.6 0.3

From:

Type 2 0.5 2.7

Notice that the rate of 2-to-2 transitions is more than four times faster than
the next highest rate. Suppose also that e, = 1,h, = 1,e, =1, and h, = 1.1.

The three possible diets give long-term rates of gain of

Diets:

1 only 2 only Both

R = 0.3750 0.6801 0.6114.
 

This example violates the “ranking by profitability” result, because the least

profitable type alone can be the rate-maximizing diet. It also violates the
“inclusion is independent of encounterrate” prediction, since type 2’s are in-
cluded here because of their own high 2-to-2 encounter rates.    
Box 3.3 shows two important conclusions. First, a type’s inclusion in

the diet generally depends on the encounterrates ofall types: it no longer

makes sense to talk about the encounter rate of a single prey type,

(although equilibrium encounterrates for a given type can bespecified),
because a type’s encounter rate depends on encounters with other types.

In other words, the independenceof inclusion from encounterrate (section
2.2) of the basic prey model fails in this model. Second, the ranking of

prey by profitability also fails. A counter-example demonstratesthis fail-
ure: the basic prey model says that a forager’s diet cannot include the less

profitable type 2 unless it also includes the more profitable type 1. In the

example in Box 3.3 encounters between two type 2’s (2 to 2 transitions)

are fast, but encounters between other pairs (1 to 2, 1 to 1, 2 to 1) are

slower. We can think of this in the following way: pairs of type 2’s become
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the most favored prey “items,” and the forager ignores profitable type 1
prey because takinga type | risks a missed opportunity to take a highly
profitable pair of type 2’s.

McNair’s analysis models the problem of an animalthatfeeds on loosely
defined clumps of prey rather than on the discrete and well-defined
patches of conventional theory. However, a crucial feature of this model
is that the encounter-to-encounter dependency is simply a statistical
phenomenon. Encountering a bluetells the forager the probability dis-
tributions of the times until the next encounter with a blue and with a
red. The model does not apply to clumpsin whichthe forager can recognize

all the members of the clump(the results of section 3.2 would apply). The
model may apply to a forager that only recognizes prey items when it

bumpsinto them, but even in this case the model sweeps someinteresting

biology under the rug. For example, suppose that prey always occurs in

pairs: after finding an item, the forager might search carefully for the

_ second memberof the pair, and this may influence the distribution of
search times.

The zero-onerule still holds in McNair’s model, because each encounter

with a blue gives the forager the same information about the expected
time to the next red and blue. This is because McNair’s model assumes

only first-order dependence. A more general nth order dependence model
would be complicated. Lucas (1983) has discussed some simple encounter

patterns that illustrate the possible effects of “many encounter” depen-

dencies. Consider the following string of encounters: red—1, red—2, red—3,

blue—1, blue—2, blue—3, blue—4, red—4, red—5, red—6, blue—S, blue—6,

blue—7, blue—8. The handling times are equal for reds and blues, but reds

provide higher net energy (reds are moreprofitable). Handling takes just

long enough so that at best only every other item can be taken. The

rate-maximizing policy here violates the zero-one rule: Take red—1 (red—2

is missed because red—1 is being handled), take red—3 (blue—1 is missed),

take blue—2 (blue—3 is missed), ignore blue—4 because taking it would

mean getting only one red from the next three. The point hereis that if

the forager has some special knowledge about the sequence of items,it

might use this knowledge to determine whether anything is to be lost

by taking a particular item (Lucas 1983).

3.5 Travel Restrictions and Central-Place Foraging

One interesting and general change in the basic models is related to the

problem of travel restrictions. A parent bird must return timeafter time

to its nest with food for its young; a waiting Anolis lizard may see prey

from its perch on a tree trunk, attack it, and return to its perch. In cases



54 *= CHAPTER 3

like these the two basic models can be extended to makespecific predic-

tions about how patches should be used and at what distances from the

central place items should be attacked. Rather than violating the basic

assumptions, these constraints extend the basic models to a new class of

problems. Three central-place models have been proposed. The first of

these is Schoener’s (1979) model of “encounterat a distance,” which might

be applied to the lizard example above. The second andthird are Orians

and Pearson’s (1979) two central-place foraging models that deal with two

different kinds of foragers, the single-prey loader and the multiple-prey

loader.

ENCOUNTER AT A DISTANCE
In the basic prey model prey types can be characterized by their prof-

itabilities (e/h). Consider a case in which prey can be recognized from

varying distances. A cricket of a certain size encountered from a distance

of 2 meters will have a different e/h than the same cricket seen from a

distance of 2 centimeters. Distance at encounter affects both net energy

gain (e) and handling time (h): pursuit from a greater distance will take

longer and cost more. Schoener’s model explores the implications of these

distance-related changes.

Schoenerinitially assumes that the rate-maximizing rule is of the form

“take all prey above somecritical e/h value” (recall that h explicitly in-

cludes all the time from encounter until searching resumes). His model

also assumes sequential encounters, and thus he excludesthe simultaneous

encounter problems considered in section 3.2. Suppose that a flycatcher

sallies for insects from a fixed perch. Prey types, each with a characteristic

length and encounter rate (prey can be categorized by their lengths, be-

cause length is closely related to energy value), are briefly accessible at

the central point of a conveyor belt located d meters away from the perch.

Schoener’s model considers the consequences of moving the conveyorbelt

both closer and further away.

Whencertain relationships exist between prey length and handling

time, between prey length and energy value, and between the relative

costs in energy of manipulating and pursuing (Schoener discusses these

relationships), then the relationship between prey length and e/h is uni-

modal, as Figure 3.3 shows. Both small and large preyare less profitable

than intermediate sizes. Figure 3.3 also shows how the relationship be-

tween prey length profitability changes with the distance (d) between the

flycatcher’s perch and the conveyorbelt: as the values of d increase, profit-

ability generally decreases (the “far” curve is everywhere below the “close”

curve), and the most profitable prey length becomeslarger as d increases.

The flycatcher example can be generalized by imagining that there are

two conveyorbelts at different distances (close and far) in front of thefly-
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Figure 3.3 Hypothetical relationships between prey length and prey profitability. This

relationship depends onthe distance at encounter: an item encountered from far away

is less profitable than the same item when close. C,in, Cmax ate the minimum and
maximum acceptable prey lengths for ‘close.’ F,,,, and F,,,, are the minimum and
maximum acceptable prey lengthsfor “‘far.’’ Any length acceptable from far awayis also

acceptable at a closer distance.

catcher. Applying the threshold profitability rule of the basic prey model,
we can use Figure 3.3 to find the acceptable prey lengths at each distance.

A line drawn parallel to the prey length axis represents this threshold.

The figure shows that the range of acceptable prey lengths is smaller at

greater distances, the sizes of prey taken at greater distances are in general

larger, and the range of acceptable lengths at a given distance is always

wholly within the range of acceptable sizes for a shorter distance. Any

item acceptable at 20 meters must be acceptable at 15 meters. Although
in nature flycatchers seldom feed from conveyorbelts, we use this example
to emphasize the cormparison between close and far prey. Schoener’s model

can easily be generalized to more natural situations.

Our discussion of Schoener’s model treats what we consider the most
general case, but there are other possibilities. For example, if pursuit costs

increase with prey length, then Schoener’s “size-distance” effect can be

reversed—the forager accepts smaller prey at greater distances—butit

still holds that any prey length acceptable at a great distance must be
acceptable at a closer distance (see Schoener 1979).

THE SINGLE-PREY LOADER AND SIMULTANEOUS ENCOUNTER
Many birds feed their nestlings by traveling from the nest to patches

of food and, after spending some time hunting in the patch, returning to

the nest with a single prey item. Orians and Pearson (1979) called such
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animals “single-prey loaders.” The single-prey loader’s problem can be

solved using the techniques we introduced to treat simultaneous encoun-

ters (section 3.2). Like a forager experiencing simultaneous encounters,

the single-prey loader exploits patches with discontinuous gain functions;

unlike a forager experiencing simultaneous encounters, the single-prey

loader must search within the patch for a single prey item.

The effect of within-patch search. Orians and Pearson’s single-prey loader

problem imagines that the forager travels to some distant patch, searches

there for prey items, and returns with a single item. In simultaneous en-
counter models the forager simply picks an item (in the simplest case)

without having to search for it. Being unselective with sedentary, simul-

taneously encountered prey is never the rate-maximizing policy (except

when / = /,; see Fig. 3.4[A]), because the average energy gain (€) and aver-

age handling time (h) for an unselective policy (such as take type 1 or

type 2 with equal probability) lie on the line in Figure 3.4(A). For the

single-prey loader, however, total within-patch time (h; for patch-use tactic

i) is the sum of two components, within-patch search time (1/f;) and prey

manipulation time (m,;). When the forager must search within the patch,

being unselective can reduce search time. For example,if the mean time to

the first encounter with a type 1 (1/f,) is 5 seconds and the mean time to

the first encounter with a type 2 (1/f,) is 10 seconds, then the expected

time to the first encounter regardless of type [1/(6, + B,)] is 3.3 seconds,
and not the average of these times (7.5 seconds). Thus (h, 2) lies above

the line between (h,, e,) and (h,, e,) (see Fig. 3.4).

This outcome meansthat the patch-usetactic “be unselective” will often
be the rate-maximizing choice. The single-prey loader may be unselective

when patches are close but select for large type 2’s when patchesare far

away (Krebs and Avery 1985). On the other hand, it may select for small,

profitable type 1’s when patches are close, be unselective when patches

are at intermediate distances, and select for large type 2’s when patches
are far away (Fig. 3.4[B]). This change from selectivity to unselectivity

and backto selectivity can only occur when the manipulation time for type
2’s (m,) is greater than the manipulation time for type 1’s (m,). (This

limitation arises because the tactic “attack only type 1’s” is both less

profitable and less rewarding than the tactic “be unselective” when m, <
m,: see section 3.2.) Despite the possibility of a change from selectivity

to unselectivity and back to selectivity (Fig. 3.4[B]), the average prey size
(energy value) taken generally increases with average distance from the

central place. We can still conclude, then, that size-selectivity increases

with distance.
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Figure 3.4 This diagram compares the “simultaneous encounter” and ‘single-prey

loader” problems. (A) Simultaneous encounter: the expected ‘‘within-patch” time (A)

and energy gain (é) [i.e. the pair (A, é)] lie on the line between (A,, e,) and (h,, e@,),

because the forager does not search within the patch. (B) Single-prey loader: when

there is within-patch search, being unselective reduces the expected patch time below

the mean within-patch time of the twoselective policies. This means that at intermediate

travel times unselective behavior can be predicted when m, > m, (m; = loading or mani-

pulation time for type /).

A simpler model for the single-prey loader has proven valuable for

those cases in which manipulation times are the samefor all prey types,

and in which a forager may choose prey from a continuous rangeof prey

sizes (Orians and Pearson 1979, Lessells and Stephens 1983). When ma-

nipulation timesare all the same, it is always better to take larger prey,

and since prey sizes are available from a continuous range, the model

solves for the rate-maximizing “minimum acceptable preysize.” Box 3.4
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BOX 3.4 THE SINGLE-PREY LOADER

Suppose that a single-prey loader travels to a patch and searches within

that patch for prey representing a broad range of energy values. For simplicity,

suppose that loading a prey item takes no time. (A modelsimilar to the one

presented in this box can be built as long as loading times are constant for

all prey sizes.) Thus searching occupies all the forager’s patch residence time.

The forager can use energy values to rank prey, and this ranking suggests a
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Figure B3.4_ (A) The solid curve showstherelationship between the minimum

acceptable energy value (C) and the mean patch residence time. The dashed curve

plots the mean patch residence time against the mean energy value. The mean

energy value is the mean of the prey energy value distribution truncated below C.

(B) The standard tangent solution. Notice that the tangent intercepts the energy

axis at C.
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BOX 3.4 (CONT.)

simple patch-leaving rule: “Search until an item containing C or morecalories
is captured.” The negligible-handling-time/single-prey loader model solves
for a rate-maximizing “minimum acceptable energy value” (C*).
The minimum acceptable energy value and the frequency distribution of

energy values determine both the mean energy gain from a patchvisit (@) and

the mean within-patch search time(7). The mean energy value (2) is the mean

of the prey energy value distribution truncated below C, and the minimum

acceptable energy value affects the within-patch search time (f) because it

determines the proportion of prey to ignore (the cumulative distribution func-

tion of the energy value distribution). A plot of (@ 2) pairs generally looks
like the dashed curve in Figure B3.4(A), and the solid curve gives the relation-

ship between the decision variable C and the mean patch residence timef.
Figure B3.4(A) also shows how the energy value distribution affects these

relationships.
Figure B3.4(B) shows the usual “tangent solution” to find the rate-

maximizing (t, @) pair. Once this pair has been found, the C-curve in Figure
B3.4(A) yields the rate-maximizing minimum acceptable energy value (C*).

However, C* can be found more easily, because the energy-intercept of the
tangent equals C* (see Lessells and Stephens 1983 for proof).

This graphical solution gives tworesults: (1) the minimum acceptable prey

size increases with travel time and (2) a rate-maximizing forager should be
unselective below somecritical travel time (T,,;, in Fig. B3.4[B]). See Lessells
and Stephens (1983) for a complete discussion of this solution.  
 

develops this model, showing that a rate-maximizing forager ought to

be unselective below somecritical travel time (T,,;,), and that the rate-

maximizing “minimum acceptable prey size” generally increases with

travel time.
Both travel restriction models discussed so far reach similar (but not

identical) conclusions. Orians and Pearson (1979) express a general prin-

ciple of rate-maximizing prey models: “For short travel times, superiority
of prey hinges on energy per unit (true) handling time. For long travel

times, superior prey are those of higher energy, regardless of handling

time.”

Encounter at a distance versus the single-prey loader. Orians and Pearson’s

single-prey loader model has been more widely tested than Schoener’s

encounterat a distance model. This is partly because the single-prey loader
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model applies directly to nesting birds. Although Schoener has suggested

that the two models might be treated as theoretical alternatives, they make

different decision assumptions. Schoener’s model asks whether items

should be attacked or ignored when encountered at varying pursuit dis-

tances; it is the prey decision made from a central place. The Orians and

Pearson model asks how patches, themselves at given distances from a

central place, ought to be exploited. For example, a forager might face an

“Orians and Pearson” decision nested within a “Schoener” decision. Imag-

ine that, in addition to a larger set of prey items, our flycatcher’s con-

veyor belt occasionally serves up some pairs of prey items. Schoener’s

model tells us whether the pair should be attacked or ignored. Orians

and Pearson’s modeltells us which memberof the pair should be taken.

THE MULTIPLE-PREY LOADER

Some parent birds, as well as other central-place foragers, can carry

many items at once: swallowscollect insect prey for their young in a large

bolus; starlings line many mealwormsup in their beaks; chipmunksstuff

sunflower seeds in their cheek pouchesto take back to their larders. These

animals are called multiple-prey loaders.
Orians and Pearson (1979) suggest that a loading curve characterizes

multiple-prey loading. The loading curve, like the patch model’s gain func-

tion, is assumed to be negatively accelerated, but for a different reason.

The marginal loading rate decreases becausethe loaditself hinders further

loading. For example, a beak loaded with prey reducesa starling’s ability
to find and collect soil invertebrates, because the bird cannot readily probe

(Zirkeln, Lorenz 1949), and this effect is cumulative with load size (Tin-

bergen 1981). For multiple-prey loaders, patch residence time determines

load size, and the marginal-value theorem can be applied (section 2.3).

The chief prediction is that increasing average distance from the central

place should be matched by increasing loadsize.

In central-place foraging models it is tempting to predict, for example,

that “foragers should stay longerin distant patches,” but this is notstrictly

true. Suppose that a multiple-prey loader alternates between trips to a

distant patch andtrips to a close patch, and that these patches have the

same loading curves. Should the forager take bigger loads from the distant

patch? The answer is no, because the leaving rule for a patch will be

based on the long-term average rate of energy intake, and this rate must

be the same for both patches(since it is defined for the habitat that con-

tains them). The predictions about the relationship between load size and

distance apply to the average patch distance in the habitat, and not to

individual trips (Lima 1982, personal communication).
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3.6 Nutrients and Toxins as Constraints

The rate-maximizing models measure benefit in units of energy, but re-

quirements for particular nutrients or the avoidance of toxins may also

affect a forager’s diet. One way to model this problem is to change the

currency to allow the value of foraging tactics to reflect factors other

than time and energy (Chapters 5 and 6). Anotheris to assume that nu-

trients simply limit the feasible diets that a rate-maximizer may choose.

Accordingto this view,if a particular prey type does not yield enough of

the limiting nutrient it is not considered a feasible alternative.
Pulliam (1975) presented a “nutrients as constraints” model, which is

shown in Box 3.5. Only one prediction differs from the basic prey model:

there may be a partial preference (a violation of the zero-one rule) for the
less profitable prey item if it is an important source of the limiting nu-

trient(s). The forager takes the more profitable item on every encounter,

but a nutrient requirement means that the forager must sometimes take

the less profitable type to compensate for the profitable type’s low nu-

tritional value. It is not surprising that nutrient requirements do notresult

in the more profitable but less nutritious types being taken on fewer than

100% of encounters: in the sequential encounter prey model the two types

are not mutually exclusive alternatives (although taking more type 2’s

 

BOX 3.5 NUTRIENT CONSTRAINTS

Chapter 2 proved the prey model’s zero-one rule by showing that the sign

of 0R/ép, (R = long-term rate of energy intake and p; = the probability of
attacking a type i upon encounter)is independentof the magnitudeofp;. This

meansthat either the maximum p, or the minimum p; should be chosen by

a rate-maximizer. The zero-one rule is a special case of a min-maxrule: if

nothing else restricts p;, then it should be set either to zero or to one.

NUTRIENTS

Pulliam (1975) argued that nutrient requirements often may restrict the

possible values of p;. Consider the two-prey-type case:

If e,/h, > e/h2, then pi = P1 max?

*\ Py max1€4 €>and (i) if2m"< 2. then p¥ = max:
0) 1 + Py max41My hy Pe Pa

fey P1 max41€14 €2
and 11 ———— >—, then += P2 min-OTE Pa mdash? PEP?    
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BOX 3.5 (CONT.)

Figure B3.5(A)illustrates the usual situation. The shaded square representsall

the feasible (p,, p,) choices. Here only the nature of probabilities (0 < p; < 1)

limits the p,s, and the min-max rule becomes the zero-onerule.
Now supposethat the forager needs at least N units of nutrient per unit

of search time: then p, and p, mustsatisfy

PyAqNy + P2Aanh, > N,

where n, is the amount of nutrient in type 1 items and n, is the amount of
nutrient in type 2 items. Figure B3.5(B)illustrates this situation. The shaded
area contains all those (p,, p) pairs satisfying the inequality above. Notice
that D1 max and p» max are not affected (they still equal 1). Thus the predictions
are changed only if p> min is the rate-maximizing choice [case (ii) above]. If
type 2 items are an important source of the required nutrient, then the con-
strained rate-maximizer should attack them,even if attacking them decreases

the rate of energy intake.

A.

Po 7 Figure B3.5 The shaded areas represent the
Y/; feasible choices of (p,, p,) pairs (p; is the prob-

ability of attacking type / upon encounter). Aster-

YY isks show the possible rate-maximizing solutions.

Z

 

   

 

   

 

   

* (A) The conventional prey model: O0<p, <1,

P, p* = 1, p¥ may be 1 or O. (B) Nutrient constraints:

“ the shaded area represents diets that provide

2. B. enough nutrient. The solution is p* = 1, but p%

2 Po 7, * may be 1 or Pj min» (C) Toxin constraints: the
‘Ss /) shaded area represents diets that keep the intake

8 Y * of toxin at or below a tolerable level. The solutions

8 ~. are pf =O and P}=P2 max Of PT =P max and
> pz = 0.

2 Ps
@

3
& C.

P2
‘. ‘ *

ok

Py
Probability of attacking

type 1  
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BOX 3.5 (CONT.)

TOXINS
Suppose that the forager can tolerate only N units of some toxin. Here we

reverse the direction of the constraint inequality. Figure B3.5(C) showsthe fea-
sible (p,, p2) pairs for the toxin tolerances: the feasible solutions now lie below
the constraint line. If pz min is the rate-maximizing choice [case (ii) above],
then the shaded triangle’s lower right-hand vertex is the solution. However,
if P2 max 18 the rate-maximizing choice [case(i) above], then the solutionis not
obvious because P max ANd Py max Cannot be chosen simultaneously:if Pi max
is chosen, then p, must be set to zero. Because of the toxin constraint, the
forager must reduce p, to increase p,. Is this worthwhile? The solution must
lie on the constraint boundary, because at a given p, the rate-maximizing D2
is the maximum feasible p,, and this always lies on the boundary line. We
substitute the equation of the constraint line into Holling’s disc equation,

and this expresses the long-term rate of gain in the single variable p,. Differ-

entiating with respect to p, showsthat the sign of 0R/ép, is independent of
the magnitudeofp,, 80 Py max ANd Py min, Marked byasterisks in Figure B3.5(C),
are the only possible solutions. Some algebra shows that p,,,,, should be
chosen if

N,€> — Nye, < N(e,h, — e,h,).

The right side of this expression is always positive (since e,/h, > e,/h,);
thus if type 1 items have more calories per unit of toxin than type 2 items
(e,/n, > e/n), then py max is the rate-maximizing solution. However, if type

2 items have more calories per unit of toxin, then type 2 can bethe rate-
maximizing choice to the exclusion of type 1. Along the constraint boundary,
neither encounter rate has any effect on which type is the rate-maximizing

choice, although the encounter rates determine the slope and intercepts of

the boundaryline.   
does mean taking fewer type 1’s), and this model ignores the temporal

pattern of nutrient acquisition. For example, the forager may need m units
of sodium per day, but it does matter whether the forager obtains this

sodium in one lumporin a smooth flow throughout the day.

In Pulliam’s model, nutrients differ from toxins only in that they con-

strain the forager from a different direction. A nutrient is a substance of

which an animal must haveatleast a fixed amount, but a toxin is a sub-

stance of which an animal can tolerate at most a fixed amount. The toxin

results differ from the nutrient results, because toxins can cause partial

preferences for both prey types (Box 3.5).
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3.7 Recognition Constraints

An important category of “changed constraint” models places limits on

prey recognition. These models bring foraging theory to bear on the phe-

nomenon of cryptic prey, and they relate foraging theory to the sensory

limitations of foragers. There are two groups of recognition constraint

models: (1) recognition time models (Charnov and Orians 1973, Elner and

Hughes 1978, Hughes 1979, Erichsenet al. 1980, Houstonet al. 1980) and

(2) imperfect resemblance models (Getty and Krebs 1985, Getty 1985).

NON-ZERO RECOGNITION TIME

Figure 3.5 shows the sequence of choices made by a forager attacking

a prey item (Charnov and Orians 1973). The basic prey model (Chapter2)

uses the first branching point in this hierarchy as its decision variable

(p; = the probability of initiating an attack), and it assumes that the ex-

pected “involvement time” (Hughes 1979) due to an encounter is p;h;

(h,;—the handling time—includes pursuit, attack, and consumption times).

This assumption requires that the recognition time (r) be zero. If recogni-

tion time is not zero, then the expected involvement time becomes r +

ph; Since r is not multiplied by p;, a non-zero recognition time limits

the forager’s control over the rate of energy gain: the forager pays the

cost of recognition time regardless of its decision.

Resume Searching
 

  
} Consumption

No Yes Time
 

Successful
ttack?

Pursuit &
Yes Killing Time No 

Attack?

Recognition

No Yes Time

Recognize?
  
Item Encountered

Figure 3.5 Asimple hierarchy of “‘attack.’’ The foragerfirst recog-

nizes an item as prey, then decides whetherto attack and pursue It,

and then, if the attack is successful, consumes it. The basic prey

model assumes that recognition is instantaneous.
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Many foragers must spend some time recognizing their prey. Shore
crabs (Carcinus maenus) can tell good mussels from bad mussels by lifting
them, because heavier mussels are moreprofitable, but this lifting takes
time (Elner and Hughes 1978). Erichsen et al. (1980) and Houstonetal.
(1980) manipulated recognition time experimentally by presenting great
tits (Parus major) with big or small pieces of mealworm hidden inside
either opaqueor clear drinking straws. The greattits had to pay the cost
of recognition time when they encountered opaquestraws.
A non-zero recognition time violates the prey model’s prediction that

“mclusion is independent of encounter rate.” To demonstrate this, we
follow Houston et al.’s (1980) development. A rate-maximizing forager
should specialize on type 1 if

Are1 S Aye, + Ae,
1+ A,r +h, +r 1+ A,r +h) +4, +h)
 
 (3.1)

We only consider the case in which recognizing a type 1 item takes the
same time as recognizing a type 2 item (see Houstonetal. 1980 for other

cases). Some algebra showsthat expression (3.1) can be rearranged as

A, > A+ Ard), (3.2a)

where

1
A= ; , (3.2b)

ie (h, +71)

 

 

2

The straight line specified by expression (3.2) divides those (A,, 1,) pairs

implying specialization (above the line) from the (A,, 1,) pairs implying

generalization (below the line; see Fig. 3.6). When recognition time is

nil (r = 0), this model becomes the basic prey model, and the “indepen-

dence of inclusion from encounter” prediction is preserved, because the

specialization-generalization boundaryis parallel to the 1, axis when r =

0. When recognition timeis not zero (r > 0), the encounter rate with type
2 items (/,) affects whether type 2’s are attacked. Figure 3.6(B) showsthis

effect: at a fixed value of 4, (say, 4,), type 2’s will be attacked at high

encounter rates (A, > A>) and ignored at low encounterrates (1, < /,).

This happens because the time cost of rejecting a type 2 is too large to

makerejection worthwhile. Moreover, the forageris unlikely to specialize

at high recognition times, because specialization requires higher type 1

encounter rates when recognition times are high.
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Figure 3.6 The lines divide the pairs of encounter rates (/,, 1,) that predict special-

ization (above the line) from the pairs that predict generalization (below theline).

(A) When recognition is instantaneous, the encounter rate with type 2 items (/,) does

not affect the inclusion of type 2, since the line is parallel to the 4, axis. When there

is a positive recognition time, the diet depends on the encounter rates with both types.

(B) The lower panel shows howthe encounterrate with type 2 items can affect their

inclusion in the diet. When the encounter rate with type 2 items exceeds 1, and the

encounter rate with type 1 items equals 4,, type 2’s are attacked when encountered.

IMPERFECT RESEMBLANCE
The anthropologist J. Martin (1983) criticized the prey model because

he thoughtit predicted that a foraging Eskimo must ignore a beached

whale if swimming whales are not in the rate-maximizing diet. According

to the basic models (Chapter 2), the forager’s sensory abilities define types,

and Martin, in effect, assumes that Eskimos cannottell the difference
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between a beached and a swimming whale: prey types must be categorized
by the forager’s sensory capabilities. Types need not be biological species.
Although Martin’s mistake is obvious, there are subtle and interesting
questions about how types should be defined (Getty and Krebs 1985, Getty
1985).

Getty argues that we might define types in one of two ways: a type can

be defined by its appearance (or other sensory information), as we have

done (Chapter 2), or by its profitability—for example, all potential prey

with a profitability of 2.34 calories/second would be the sametypere-
gardless of what they lookedlike (Bell et al. 1984). Appearance types might

be related to profitability types in three ways (Fig. 3.7). First, there may
be a simple one-to-onerelationship between appearance and profitability:

everything that has appearance al has profitability pl, and everything

that has appearance a2 hasprofitability p2 (perfect resemblance). Second,

appearance may notbe informative: prey are equally likely to have profit-

ability pl or p2 regardless of their appearance (Getty calls this “perfect

A. PERFECT RESEMBLANCE
APPEARANCE
al a2

Figure 3.7 Hypothetical relationships between

appearance types and profitability types. The

shaded area represents (for example) the propor-

tion of appearance types a1 that are of profitability

type p1. (A) Perfect resemblance: all a1 appear-

ance types have profitability p1. (B) Perfect

mimicry: appearance gives no information about

profitability. (C) Imperfect resemblance: an ai may B. PERFECT MIMICRY

have profitability 91 or p2, and the probability of APPEARANCE

profitability 91, given appearance a1, is generally a a2
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mimicry”); students of mimicry obviously prefer to think of profitability

types. Third, appearance maygive partial information aboutprofitability:

of the items with appearance al, 70% have profitability p! and 30% have

profitability p2; of the items with appearance a2, 10% have profitability

pl and 90% haveprofitability p2 (imperfect resemblance). Should we use

appearance or profitability types? Getty shows that, although we may
often be interested in profitability types for other reasons, only appearance

(or sensory) types preserve the zero-one rule of the basic prey model.

Suppose that a forager eats green caterpillars, but some green cater-

pillars are profitable and others are unprofitable. Caterpillar greenness

ranges from pale green to dark green, but, although pale green caterpillars

are usually more profitable, greenness gives imperfect information about

profitability because the correlation is sloppy. Figure 3.8(A) shows two

hypothetical overlapping “greenness” distributions, one corresponding to

profitable types and the other corresponding to unprofitable types. Now

suppose that the forager sets a greenness threshold: it eats caterpillars
that are paler than the threshold and ignores caterpillars that are darker

than the threshold. The threshold’s position affects two crucial variables,

the probability of correctly attacking a good item when encountered

[which Getty calls P(Hit) following the terminology of signal detection

theory—Egan 1975] and the probability of incorrectly attacking a bad

item when encountered [called P(False Alarm)|.
Following signal detection theory, the relationship between P(False

Alarm) and P(Hit) characterizes a given discrimination problem. Figure

3.8(B)—(E) shows howthis relationship follows from the greenness thresh-

old discussed above. Signal detection theorists (Egan 1975) call the curve

that relates P(False Alarm) to P(Hit) the “receiver operating characteristic,”

or ROC curve. A power law, P(Hit) = [P(False Alarm)]*, represents this
relationship in a simple and convenient way, with k measuring the “dis-

criminability” of the system. When k equals 1, hits and false alarms are

equally likely (perfect mimicry—the ROC curveis a straight line with a

slope of 1 that passes through the origin). When k equals 0, P(Hit) is

always 1 regardless of the frequency of false alarms (perfect resemblance).

However, when k is between 0 and 1, the discrimination is partial (imper-

fect resemblance). The more bowed-out the ROC curve, the more dis-

criminable the prey.

To summarize the green caterpillar example, there are two distinct prof-

itability types that overlap in appearance, the forager has a rule (the

greenness threshold) that allows partial discrimination of the profitability

types, a particular greenness threshold specifies a point on the ROC curve,

and changesin the greenness threshold trace out the ROC curve. In turn,

the ROC curve says something about the discriminability of the system.
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Figure 3.8 The derivation of a receiver operating characteristic (ROC) curve. (A) Two

overlapping greenness distributions. Light green caterpillars (the distribution labeled

‘‘good’’) are more profitable than dark green caterpillars (the distribution labeled “bad”).

(B and C) The forager discriminates by setting a greenness threshold: caterpillars paler

than the threshold are eaten. (B) showstherelationship between the greennessthres-

hold and the probability of eating a ‘‘good” upon encounter, P(Hit). Curve B is the

cumulative distribution function of the ‘good’ distribution in (A). (C) shows how

the greenness threshold affects the probability of eating a “bad” upon encounter,

P(False Alarm). (D and E) show howa given greennessthreshold determines a point

on the ROC curve. The dashed lines from (B) to (D) show how threshold of 1.5

determines P(Hit). The dashed lines from (C) to (E) and then to (D) show how the

threshold determines P(False Alarm). (E) is a reflection line that translates P(False

Alarm) from the ordinate to the abscissa of (D).

How should a rate-maximizer set the greenness threshold? Finding the

rate-maximizing threshold is equivalent to finding the rate-maximizing

P(False Alarm), because the rate-maximizing P(False Alarm) can be used

to find both P(Hit) and the rate-maximizing greenness threshold. The

rate-maximizing P(False Alarm) can be found using an extension of the

marginal-value theorem. A given value of P(False Alarm) sets both the
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BOX 3.6 RATE-MAXIMIZING DISCRIMINATION STRATEGIES

This box considers the rate-maximizing “greenness threshold,” discussed in

the text. Figure 3.8(B) shows that a greenness threshold specifies both P(Hit)

and P(False Alarm), and that the reverseis also true: a given value of P(False

Alarm) specifies a corresponding greenness threshold. Thus this box solves

for the rate-maximizing P(False Alarm). To simplify the notation, let @ =
P(False Alarm). Then P(Hit) = ¢*, where k (0 < k < 1) determines the curva-

ture of the ROC curve.

Weare interested in how changes in P(False Alarm) affect the relation-

ship between @, the mean energy gain per encounter with green caterpillars,
and h, the mean handling time per encounter with green caterpillars:

€é= 9,6" + bo

h= gn" + bid,

  

 

where

Ag d h= e, an =Je t+ Ay Sn tay

A
b,=— and b,=—"— hy.tye th

To study the relationship between é and h, we use differentiation

ce
a k k-1
dg Je Q + b,

07e
ag? = —gk(1 — k)p*’,

and westudy the relationship between ¢ and h with implicit differentiation

_; OP op1=a.k k-1 74 b, —=:
h Q oh + h oh ’

0 1
thus oe

Differentiating again, we find that

6b 860°

ah” he

Op _ 1 OP)’thus = g,k(1 — k)b (=) ;

0 = —gyk(1 — k)p* (g,kp** + by);

oh?
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BOX 3.6 (CONT.)

By the chain rule

de g,kob*"1 +b, _ Lacahako

+b,

> 0, @ always increases with h.

are .-2 O@ |? _ . ataR? Ie k(1 — k)p ah < 0, @ shows negative acceleration with h,

and the rate we want to maximize (R)is

R= e

ot +h’

where t is the expected time between encounters. Thus the marginal-value
theorem can be usedto find the rate-maximizing P(False Alarm), or ¢*. Fig-
ure B3.6 showsthis solution: when t is long (t,), a higher P(False Alarm)

(pj) 1s acceptable; when t is short (t), a lower P(False Alarm)(#*) should
be chosen.
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Figure B3.6 Solution for the rate-maximizing P(False Alarm). The relationship
between é and A is shownin the upper panel, and the optimal pair (A*, @*) can
be found by the usual tangent argument. The lower panel shows how A*is related

to the rate-maximizing P(False Alarm). The rate-maximizing P(False Alarm) Is

higher whentravel time is longer.  
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mean net energy gained per encounter with the “system” and the mean

involvement time with the system:

  

 

4 ’,
é= i, + i, e,[P(False Alarm)|* + ith e,P(False Alarm)

h= to h,[P(False Alarm)]* + Ay h,P(False Alarm)
Ag tay Agtay °

where e, and e, are the respective energy values for good and bad prof-

itability types, h, and h, are the handling times, and /, and 4, are the
encounter rates. Implicit differentiation shows that the relationship be-
tween @ and h is negatively accelerated; thus the marginal-value theorem

can be used to find the rate-maximizing (h, 2) pair, and this result in turn

specifies the rate-maximizing P(False Alarm) (see Box 3.6). As the time

between encounters increases, the forager should chooselarger values of

P(False Alarm), specifying larger mean energy gains at the expense of

longer mean handling times—at low encounter rates a rate-maximizeris

less bothered about avoiding false alarms!

Up to this point, our discussion of recognition constraints has assumed

only that certain inabilities to distinguish one thing from another con-

strain the forager. In Chapter 4 we discuss incomplete information prob-

lems that differ from the recognition constraint problems discussed here,

because they suppose that the forager decides whatprice to payfor infor-

mation. Chapter 4 asks more direct questions about information: how

much is information worth, and should the forager go out of its way to

get more information.

3.8 Conclusion

This chapter considers some simple changesin the basic formulations of

foraging theory. These changes showthelimitations and strengths of the

basic models. Would-be testers might check that the constraints of their

“forager’ match those in the theory; if they do not, then the “changed

constraint” models discussed here maytell the testers what differences to

expect. In general, modifications of the constraints of the basic models

have followed our “one change at a time” approach. An important prob-

lem for future theoreticians to study will be the possible interactions be-

tween these changes. The next chapter considers the most interesting and

difficult constraint assumption: complete information.
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3.9 Summary

This chapter considers six changes in the constraints of the basic prey
and patch models:(1) simultaneous encounters, (2) the ability to encounter
new items while handling old ones, (3) loosely clumped prey items, (4)
travel restrictions and central-place foraging, (5) nutrient and toxin con-
straints, and (6) recognition constraints. Table 3.1 summarizes the results
of each change.

Table 3.1

Summary of changed constraint models

 

 

 

Changed Which model is

constraints changed: prey or patch? Results Authorities

3.2 Simultaneous Patch: prey choice (1) A less rewarding Engen and Stenseth

encounters allowed within patches. The (smaller e) and less (1984); Stephens

model treats a clump profitable tactic should et al. (1986)

of simultaneously never be preferred.

encountered prey like (2) At short travel times

a patch with a (between clumps),

discontinuous gain more profitable tactics

function. The modeler should be preferred.

lists all possible (3) At long travel times,

tactics for using the less profitable but more

clump suchthat the rewarding (higher e)

forager can choose tactics should be

only onetactic per preferred.

clump.

3.3 Search and Patch The forager should stay McNair (1983);

handling are not longer than the patch Lucas and Grafen

mutually exclusive model predicts. Time (1985)

(overlapping spent in patches

encounters) increases with the

rate of overlapping

encounters.

3.4 Sequential Prey (1) Prey ranking by McNair (1979);

encounter profitability fails. Lucas (1983)

dependencies (2) All encounter rates

affect prey

choice.

3.5 Travel

restrictions

Encounter at a Prey (1) Smaller prey are Schoener (1979)

distance acceptable when close.

(2) Any prey acceptable

from far away must be

acceptable whenclose.
 

(Continued)
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Table 3.1 (Continued)

 

 

 

Changed Which modelis

constraints changed:prey or patch? Results Authorities

Single-prey Patch: prey choice Similar to simultaneous Orians and Pearson

loader within patches encounter model. (1979); Lessells

Size-selectivity and Stephens

increases with distance (1983)

from the central place.

Multiple- prey Patch The basic patch model Orians and Pearson

loader is extended to solve for (1979)

the rate-maximizing

load-size. Load size

increases with distance

from the central place.

3.6 Nutrient and Prey Nutrient constraints Pulliam (1975);

toxin constraints predict partial Belovsky (1978)

preferencesfor

unprofitable prey items.

Toxin constraints can

producepartial

preferences forall prey.

3.7 Recognition

constraints

Non-zero Prey Encounter rates with Charnov and Orians

recognition time unprofitable types can (1973); Elner and

affect their inclusion. Hughes (1978);
Erichsenetal.

(1980); Houston

et al. (1980)

Imperfect Prey The forager controls the Getty and Krebs

resemblance extent of discrimination (1985); Getty

between two types by (1985)

setting the probability

of a false alarm. The

rate-maximizing

P(False Alarm) is high

when habitat rates of

intake are low.
 



Incomplete |nformation

4.1 Introduction

Perhaps the most commoncriticism of the early foraging models was that

they assumed “complete information.” The models of Chapters 2 and 3 as-

sume that foragers behave as if they know encounterrates, profitabilities,

and gain functions. In this chapter we ask, what is the rate-maximizing be-

havior when an animal must both acquire information and forage. Many

authors view incomplete information as an unsolved problem in foraging

theory (e.g. Pyke et al. 1977, Werner and Mittelbach 1981), but it is not un-

solved because of a lack of effort. A surprising number of authors have
studied incomplete information problems (Estabrook and Jespersen 1974,

Bobisud and Potratz 1976, Oaten 1977, Arnold 1978, Krebs et al. 1978,

Green 1980, 1984, McNamara and Houston 1980, Ollason 1980, Pulliam

and Dunford 1980, Harley 1981, Iwasa et al. 1981, Killeen 1981, Orians

1981, Pulliam 1981, Houston et al. 1982, McNamara 1982, Lima 1983,

1985a, Stewart-Oaten 1983, Clark and Mangel 1984, Lester 1984, Regel-

mann 1984, Kacelnik and Krebs 1985). Why then, has so much workleft

the problem unsolved? The simple answer is that information is more

than one problem (the more complex answeris left until the end of the

chapter).

This chapter only discusses information in the basic prey and patch

models of Chapter 2. These models represent only a few of the foraging

problems animals face, but we focus our attention on these few because
they have played a majorrole in the development of information models.

Information and ambiguity. Information problems usually follow the same

pattern. Recall that the basic models assume repetitive cycle of search-

encounter-decide. In Chapters 2 and 3 (except in section 3.7), we assumed

that foragers encountered types (of prey items or patches) that they rec-

ognized instantly. Following this use of the word “type,” we propose two

definitions. A forager recognizes types upon encounter, but a type may

only represent a class of things (prey items or patches). A forager cannot

recognize sub-types upon encounter. For an insectivorous bird, cones of
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conifer trees may be a recognizable type, and the indistinguishable sub-

types might be fir cones versus pine cones, or cones with no insects in

them versus cones with ten insects in them.

The basic models assumethat types are unambiguous,thatis, types are

composedof only one sub-type. A simple information problem exists when

types are ambiguous, meaning that they are composed of more than one

sub-type. How should a long-term rate maximizer treat recognizable types

when it knowsthat they are divided into indistinguishable sub-types? We

divide this broad question into three categories: the value of prior rec-

ognition (section 4.2), tracking a changing environment(section 4.3), and

patch sampling (section 4.4).

The mathematical apparatus required to solve information problems is

called statistical decision theory. The principal concepts underlyingstatis-

tical decision theory are (1) Bayes’ Theorem and (2) conjugate distributions.

Box 4.1 reviews these ideas.

4.2 The Value of Recognition

In section 3.7 we saw how a rate-maximizer might work within recognition

constraints. Here we ask a slightly different question: How muchis recogni-

tion worth? Gould (1974) has studied this question in the context of human

decision makers. We outline his analysis here because it helps to make
several points about information in general, and aboutprior recognition

in particular.

Imagine that some typeis divided into k indistinguishable sub-types rep-

resented by s,,5,,...,5,. The forager may make some decision about

exploiting the type upon encounter, designated by the decision variable Y.

The forager’s pay-off [H(s,;, Y)] depends on its decision Y, and on the sub-

type that occurs s;. A prior probability distribution [p,, p2,..., p,, where

p; = P(s;), X p; = 1] summarizes the forager’s knowledge.If the forager has

no further knowledge, then it should choose the Y that maximizes the

average pay-off (Y*), where

k k

y p}H(s;, Y*) = max \ p,H(s;, Y). (4.1)
i=1 Y i=1

However,if the forager can recognize sub-types, then it should use this rec-

ognition to choose a different Y value for each sub-type (Y* for s,). In

symbols,

H(s;, Y*) = max H(s,, Y). (4.2)
Y
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BOX 4.1 BAYES’ THEOREM AND STATISTICAL

DECISION THEORY

Statistical decision theory is an area of active research in mathematics,
economics, andstatistics, and it contains many unsolved technical problems.
McNamara and Houston (1980) have written an excellent introduction to sta-
tistical decision theory as applied to animal behavior; outside animal behavior
Raiffa (1968) provides a readable introduction. DeGroot’s (1970) bookis defin-
itive, but difficult reading.

BAYESIAN STATISTICS

The forager’s knowledgeofthe relative likelihood of the occurrence of each

possible sub-type can be summarized by a prior probability distribution. A
forager may know that half of all patches are full and half are empty. Upon

encounter with a particular patch, the forager’s “prior” distribution would be
P(prey) = P(no prey) = 5. Prior probabilities are sometimes called subjec-
tive probabilities, because they are based on preconceptions about the whole
class of patches rather than on information abouta particular patch.

Supposethat after entering a patch and searching there for a while the for-

ager observes a rustle in the grass. This observation changes the forager’s

assessment of the likelihood that the patch contains prey. Bayes’ theorem

provides a method of updating prior information in the light of such an
experience.

Bayes’ Theorem:

P(rustling| prey) P(Prey) (B4.1.1a) P(prey |rustling) = P(rustling)

P(rustling/no prey) P(no prey) py 1 15) P(no prey |rustling) = P(rustling

P(rustling) in the denominators equals the sum P(rustling|prey)P(prey)

+ P (rustling|(no prey)P(no prey), or the total probability of grass rustling.

The boldfaced termsare the prior or subjective probabilities of full and empty,

and the conditional probabilities on the left side of the equations are the

posterior probabilities. This process can be repeated using the posterior prob-

abilities as new prior probabilities, should new information come to light.

Bayes’ theorem provides a powerful description of information gain. The

models presented in this chapter rely heavily on Bayes’ theorem.

CONJUGATE DISTRIBUTIONS

We chose a simple example to illustrate Bayes’ theorem. There may be
many possible sub-types (even an infinite number). The calculation of the   
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BOX 4.1 (CONT.)

posterior probability distribution can be messy. Happily, mathematicians

have already worked out the implications of particular types of experience
in many important cases. As an example, suppose that a decision-making great

tit begins to feed on winter moth larvae. The great tit’s “decision” about
whether to continue feeding on patches of these larvae depends on the mean

larva size. Further, imagine that the great tit samples from a normaldistribu-
tion of larval size with an unknown mean and a knownvariance, o”, and

that the great tit’s prior knowledge of the mean is summarized by another
normaldistribution with mean p and variance s”. After the great tit makes

n measurements (it may measure by comparing the n larvae eaten so far to
its bill length) and finding that their average is X, the posterior distribution
of the mean is a normaldistribution with mean

2 2

(B4.1.2a)

u nx

ao

n
2s oO

and variance

s?' =i (B4.1.2b)
1 n

s* r o

Thegreattit’s posterior estimate of the unknown meanis expression (B4.1.2a).
There are three probability distributions in this scenario. The unknown fea-
ture of the world is a parameter of a stochastic process, that is, the mean of
the normal distribution of larva size, the first distribution involved. The two

remaining distributions are the prior and posterior distributions of the

unknown mean. Results like these are called conjugate families of distribu-

tions, because the prior and the posterior distributions are from the same
family—here normal prior, normal posterior. 
 

These two expressions, (4.1) and (4.2), can be used to calculate how much

the forager should be willing to pay for perfect prior recognition. The

value of recognition is the difference

k k

y piH(s;, Yi) — \ piH(s;, Y*). (4.3)
i=1 i=1

The left-hand term is the average pay-off given that the forager makes a

different decision (Y*) for each sub-type it encounters, and the right-hand

term is the average pay-off when the forager must make the same decision
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regardless of which sub-type it encounters (Y*). Gould (1974) uses this
definition to make several important and counter-intuitive points.
How does the prior distribution affect the value of prior recognition?

Obviously,if all the p;'s but one are zero, then the value ofprior recogni-
tion is nil. Why should the forager pay anythingto find out whatit already
knows? Gould’s secondresult is more surprising. The value of prior rec-
ognition is maximized when there are only two possible sub-types!

This outcomeis not as puzzling as it may seem. Imagine that a patch
may be any of three possible sub-types: 0 prey per patch, 5 prey per patch,
and 100 prey per patch. Suppose that each of seven habitats has a differ-
ent permutation of patch types (three with only one sub-type, three with

two sub-types, and onewith all three sub-types). The forager knows which

habitat has which permutation of sub-types. Gould’s result says that rec-

ognition is worth most in one of the three habitats where only a pair of

sub-types exists, probably the habitat with the two sub-types 0 prey per

patch and 100 prey per patch. Similar results come up in our discussion
of patch sampling.

Gould defines the value of prior recognition in terms of the decision

problem at hand, the pay-offfunction H,the prior distribution of sub-types,

and so on. Other measures of the information value (e.g. DeGroot 1970,

Shannon and Weaver 1949)treat all decreases in environmental ambiguity

equally. The Shannon-Weaver index, for example, commits what might

be called the academic fallacy: it assumes that certainty is intrinsically

valuable. However, in foraging theory (and similarstatistical decision prob-

lems) certainty is only valuable if it increases the forager’s rate of energy

intake. The value of information is generally finite, and partial reductions

in ambiguity often may be good enough.

THE MARKET VALUE OF PREY RECOGNITION

To illustrate Gould’s ideas, we consider a simple model of diet choice.

Suppose that a forager encounters a single prey type, and that this type

consists of two sub-types which have net energies e, and e,, handling

times h, and h,, and encounter rates 1, and 4,. These assumptions follow

the conventional two-prey problem (see Chapter 2), except that we suppose

that the forager cannottell the sub-types apart unless it pays a discrimina-

tion cost ofr, calories and r, seconds. We assumethatifdiscrimination were

free (r, = r, = 0), then the forager would ignore sub-type 2. To simplify the

discussion we use the notation

Aye

NTah,’
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the rate achieved if discrimination is free, and

Aye, + A€2

L+A,h, + Ah,’
 

Ry, 2) =

the rate achieved if prey are eaten indiscriminately. How much should

the forager pay for recognition? This question can be answered algebrai-

cally by finding the set of (r,, r,) pairs that satisfies

A1e1 — (A, + Aye A1e1 + Axe>

1+ Ah, +A, + Aa, V4 Ayhy + Aghd
 

 (4.4a)

Rearranging, we find the equivalent expression

Ay
+b) [Aeh, —e(1+ 4,h,)] > rl + Arh, + Ash) + r(A.e, + 42e2).

1 2

(4.4b)

To show the relationship between r, and r, more clearly, we can rewrite

this as

k>ar, + pr, (4.4c)

with k setting an upper limit on the price of discrimination. The forager

will pay a lot for discrimination when e,/h, is much smaller than R,,,,

and the forager will not pay much for discrimination when e,/h, ap-

proaches R,,).

This model also showshow the energycosts of discrimination are traded

off against the time costs of discrimination. At indifference (when ex-

pression 4.4 is an equality) a one-calorie increase in energy costs must be

matched bya decreasein time costs of «/B or 1/R,,, 2, seconds, and a one-

second increase in time costs must be matched by a decrease in energy

costs of R,, 5, calories. This result foreshadows a technical point that

comes up in Chapter 5. The rate of gain when there is no discrimination,

or Rj, >, is also the “marginal rate of substitution” of time for energy

costs of discrimination (see Chapter 5 for discussion of marginal rates of
substitution).

The fundamental information problem is, how do foragers value in-

formation? We presented the example above becausethere are good pros-

pects for using discrimination cost models to study this question empiri-

cally. Experiments can be designed that give foragers the following options:

find out at price x, or remain ignorant for free. Some empirical work

(Elner and Hughes 1978, Erichsen et al. 1980, Houstonet al. 1980, Getty

and Krebs 1985) suggests simple ways in which recognition costs might

be controlled experimentally. The question of the value of information
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may yield mosteasily to discrimination cost experiments and models (see
also section 3.7).

4.3 Tracking a Changing Environment

This section analyzes a common foraging problem: how should a forager
track a changing environment. Prey or patch types may changein quality
with time. A prey or patch type thatis not worth exploiting now may sud-
denly and unpredictably improvein quality. If factors such as season, time
of day, or temperature do not give the forager “cues” to these changes,
then the forager must sample; thatis, it must periodically check its options
to see if they have changed. A forager encountering a system of Batesian

mimics may have to sample to determine whetherit is traveling through

a patch of models (bad prey) or mimics (good prey).

In this section wefirst analyze the “optimal tracking” policy, assuming

that the forager can easily discriminate between good and baditems once

it has sampled them, and then we present a model in which the difference

between good and bad is more difficult to detect. In effect we separate
the problem of tracking a change from the problem of detecting a change.

A RUN OF BAD LUCK WITH INSTANT RECOGNITION

This model focuses on how frequently a forager should check an un-

acceptable prey or patch type (for simplicity, we refer only to prey types

from now on). There are four principal features of the model.

1. A Varying Prey Type. Called type X, this varying prey type consists

of two sub-types, “bad” and “good.” They might, for example, be a model

and its Batesian mimic (Estabrook and Jespersen 1974). The notationsv,

and v, denote the value of good and bad sub-types, respectively. The for-

ager can easily distinguish one sub-type from the other after sampling

them:it can tell immediately after consuming an item whetherthe item was

good or bad.

2. The Alternative. When the forager encounters an X, the forager may

ignore it and take anotheroption,called the “alternative,” which has value

vg. The alternative’s value is intermediate, v, > v, > v,.

3. Time per Encounter. Time is measured in encounters with X. Maxi-

mizing the expected gain per encounter maximizes the long-term rate of

energy intake, because the expected time per encounteris the same regard-
less of whether the forager attacks good, bad, or alternative prey types.

4. Relationship between Present and Future Sub-Types. The present sub-

type is related to future sub-types in the following way. The probability

that the sub-type will stay the same from one encounter to the next is a
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constant. Symbolically,

P(Good at i + 1|Good ati) = P(Bad at j + 1|Bad at j) = q,

where q is the probability of a repeat, and 1 — q is the probability of a

change. The notation g characterizes the stability of the varying system.

The average length of a run of a given type (i.e. good or bad)is an increas-

ing function of q, E(run length) = q/(1 — q).

THE FORM OF THE SAMPLING RULE

A first order Markov chain controls the transitions between good

and bad. In a first order Markov chain the prior (or subjective) dis-

tribution of states at time j dependssolely on the state at j — 1 (in a second

order process it would depend on bothstates j — 1 and j — 2). This means

that observing two “bads” in a row provides the forager with no more

information than observing one. Every bad observedtells the forager the

same thing. Therefore the tracking rule is simple: Take X’s as long as

“goods” are observed; after any bad is observed ignore X’s (and take the

mediocre alternatives) for N encounters, and sample at the N + Ist en-

counter (Bobisud and Potratz 1976 and Stephens 1982 present more

detailed justifications of this rule). Here N is called the sampling period,

becauseits inverse is the sampling frequency. The sampling period (N)is

the model’s decision variable.

A GRAPHICAL ARGUMENT

Figure 4.1 shows a run of bad luck and the behavior of two hypothet-

ical foragers, one adopting a sampling period (N) of four and the other

adopting a sampling period of twelve. Consider the behavior of an omni-

scient forager that beginsto eat alternatives just before observingthefirst

bad, and switches back to goods immediately when the run of bad luck

ends. In comparison to this omniscient behavior the constrained foragers
make two kinds of errors. First, they make sampling errors (marked S

in Fig. 4.1); they take a bad when they could have taken a better “alter-

native” prey. Second, they make overrun errors (marked O in Fig. 4.1);

they accept the mediocre alternatives even though the varying system has

changed back to good. The frequent sampler (N = 4) makes many sam-

pling errors but few overrunerrors; the infrequent sampler (N = 12) makes

few sampling errors but many overrunerrors.

An optimal sampler must balance the costs of sampling too frequently,

and taking too many bads, against the potential loss of opportunity in

missing the change back to good. Where the rate-maximizerstrikes this

balance depends on the relative costs of sampling and overrunerrors. In

this model a single sampling error costs v, — v,, and a single overrun
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Figure 4.1 A sequence of good and bad sub-types of the varying type X is shown.
The effects of two sampling periods (NV = 4 and N = 12) are shown.There are two types
of errors, sampling errors marked S and overrun errors marked O. When the sampling
period is short, there are many sampling errors but few overrun errors. When the sam-
pling period is long, there are many overrun errors but few sampling errors.

error costs v, — v,. The ratio of the costs of these twoerrors,

V,— Uv, cost of a sampling error
e= =  

Vv, —0v, cost of an overrun error

(< is called the error ratio), and the varying prey type’s probability of a

repeat (q) together determine the rate-maximizing sampling period.

Before discussing the optimal tracking policy, let us consider a forager

that always takes the varying prey type or always take the alternative

prey type, whicheveris the best “on average.” Obviously the average value

of the alternative is v,. What is the average value of the varying prey type

X? In the long run a forager that always attacked the varying prey type

would receive equal numbers of bads and goods, because the process that

describes the change is symmetric [i. P(Good at i+ 1|Goodati) =

P(Bad at j + 1|Badat j)]. In the jargon of stochastic processes, one says

that the equilibrium probability of a good (equals the equilibrium prob-

ability of a bad) equals one-half. The average yield from the varying prey

type is (v, + v,)/2. The alternative is better on average than the varying

type if v, > (v, + v,)/2. A little algebra shows that this is equivalent to
é > 1 (Fig. 4.2[A]). The average yield from the varying prey type is in-



84 = CHAPTER 4

dependent of g, so the non-tracking forager should always choose the

varying option when ¢ < 1 and the alternative when ¢ > 1 (Fig. 4.2[A}).

Nowweturn to the conditions in which sampling pays. By using results

from the theory of stochastic processes, we can find more complicated

equilibrium probabilities. The notation p,(N, q) is the equilibrium proba-

bility that a forager, adopting a sampling period of N when the prob-

ability of a repeat equals q, will eat a good; p,(N, q) is the corresponding

probability of eating a bad, and 1 — p,(N, q) — p,(N, q) is the equilibrium

probability of eating an alternative. [Estabrook and Jespersen 1974 ele-

A.
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Figure 4.2. (A) showsthe behavior of a forager who always attacks whichever prey

type is best ‘on average.’ Such a forager’s behavior is independent of the probability

of a repeat, g. (B) shows the sets of g and ¢ where particular sampling periods are

optimal. Notice the two non-tracking regions NV* equals zero (always take the varying

prey type) and N* equals infinity (always take the alternative). The regions marked

N*¥ are regions where there is a range of optimal intermediate sampling periods, NZ >

N% > N¥ > N*. Each N# represents a range, not a single value.
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gantly derived expressions for p,(N, q) and pJAN, q)|. The expected gain
per encounteris

UPN, q) + vgp(N, q) + val — p(N, 9) — p,(N, @)], (4.5a)

or

(v, ~ valPAN, q) _ Ep(N, q)| + Ug. (4.5b)

Because (v, — v,) is a positive constant maximizing

DAN, q) _— ep,(N, q) (4.5c)

also maximizes the expected gain per encounter. This expressionis only
a function of N, qg, and é, as we argued that it would be.
The techniques for finding the rate-maximizing sampling period (N*)

are not important here (see Stephens 1982, 1987). A graphical solution is

found by turning the problem onits head and asking, for example, given

that N* = 10 what must ¢ and q be? Figure 4.2(B) showsthe sets of ¢ and

q that give various values of N*. Over a wide range of ¢ and q values, N*

equals either zero (no tracking, attack the varying prey type regardless of

experience) or infinity (no tracking, attack the alternative regardless of

experience). Where q = 5, observations have no information value, and

the best tactic is to stick with the option that has the highest average pay-

off as described above. The conditions, between N* equals zero and N*

equals infinity, where tracking is an economically soundpolicy are narrow.

(However,if the figure plotted ¢ against expected run length—a nonlinear

relative of g—this narrowness would not be so striking.) Figure 4.3(A)

shows a graph of the optimal sampling period N* versusthe error ratio

(a slice of Fig. 4.2[B] at constant q). One might intuitively expect this

increasing trend, because as sampling errors become relatively more

expensive the sampling frequency (1/N*) decreases.

Figure 4.3(B) shows a moresurprising result: the probability of a repeat

(q) plotted against the optimal sampling period N*(a slice of Fig. 4.2[B]

at constant €). One might expect that as the average run length gets longer

(large q) the sampling period should increase to match the average run

length. However, Figure 4.3(B) shows that when ¢> 1 long sampling

periods occur at both high and low probabilities of repetition, with the

shortest sampling period occurring at intermediate values of g. At high

probabilities of repetition (long average run lengths) the optimal sampling

period is long simply to match the long runs in the habitat, but at low

probabilities of repetition (short average run lengths) conscientious

tracking would require short sampling periods. However, frequent sam-

pling does not pay at low probabilities of repetition, because knowing
that a short-lived run is “on” is not a valuable piece of information. This
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Figure 4.3. (A) showsa slice of Figure 4.2(B) parallel to the e-axis. The graph gives

the optimal sampling period as a function of the error ratio ¢, at a constant probability

of repetition (q = 0.95). (B) showsa slice of Figure 4.2(B) parallel to the g-axis. The

graph gives the optimal sampling period as a function of the probability of a repeat at a

constanterror ratio (¢ = 2).

is counter-intuitive. Tracking is a problem in thefirst place because habitats

change, yet tracking is less valuable when habitats change frequently.

SUMMARY FOR TRACKING WHEN DISCRIMINATION IS EASY

There are three important conclusions.

1. The Error Ratio Result. There is a trade-off between the costs of

sampling and the costs of opportunity loss from an overrun. A forager
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that samples more will avoid overruns at the cost of excessive sampling;
a forager that samplesless will avoid costly sampling but will risk costly
overruns.

2. Tracking Is Not Always a Good Policy. There is a wide range of con-
ditions of low habitat “stability” (low qg) and extreme values ofthe error
ratio in which no tracking should occur even though the forager’s experi-
ence still provides some information aboutthe state of the environment.

3. Habitat Stability Affects the Value ofInformation. The need to sample
frequently to “keep track” of a frequently changing habitat is counter-
balanced by the reduced value of information about changes that are
boundto beshort-lived.

A more complicated model might capture moreof the real world’s details,
but it would probably not change any of the qualitative results above.
Moreover, because of its simplicity this model suggests experimental
studies. Arranging experiments in which the somewhatrestrictive assump-
tions of this model apply should be straightforward. Shettleworth etal.
(in preparation) have carried out a laboratory experiment in which the
varying and alternative prey types are represented by key in a Skinner
box. They have altered the error ratio by manipulating the value of the
alternative (v,) and the value of the good sub-type (v,). Their results
qualitatively agree with the model.

DETECTING A CHANGE: A DISCRIMINATION PROBLEM

Two of the previous model’s assumptions(a first order Markovtransi-

tion rule and the forager’s ability to immediately distinguish the varying

prey type’s sub-type) increase the information value of sampling. When

either assumption is relaxed, a single sampling event cannot establish

whether the varying prey type is good or bad. Instead, each sampling

event will only affect the forager’s “estimate” of the likelihoods of good

or bad sub-types. This section focuses on the problem of recognizing a

change.

To show theeffects of violating the assumption of “immediate recogni-

tion,” we consider one of McNamara and Houston’s (1980) models. Sup-

pose that the forager attacks a varying prey type like the one discussed

above, except that the good sub-type is a mixture of desirable and un-

desirable items, and that the proportion of desirable items is p. More-

Over, suppose that the bad sub-type is composed of 100% undesirable

items. The model assumes that desirable and undesirable items can be

immediately distinguished after being eaten, but because the good sub-type

contains some undesirable items the sub-type of the varying system cannot

be perfectly distinguished. Finally, assumethat the varying preytype starts
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out in the good sub-type and switches permanently to the bad sub-type,

according to the same Markovtransition rule used above.

If the forager observes a desirable item, then it knowsthat the sub-type

must be good because no desirable items occur in the bad sub-type. Thus

the forager needs to know only the numberof undesirable items observed

since the last desirable item (McNamara and Houston 1980). What does

a run of 10 undesirable items in a row mean? How many “undesirables”

must be observed before the forager is convinced that the varying prey

type has turned for the worse? Bayes’ theorem (Box 4.1) can be used to

reach some qualitative conclusions about the meaning of a run of bad

luck, P(No Switch|x undesirables) =

P(x undesirables | No Switch)P(No Switch)

P(x undesirables| No Switch)P(No Switch) + P(x undesirables | Switch)P(Switch)
 

The prior probability that the sub-type has not changed after x unde-

sirables is g**+ (the sub-type must stay good on each of its x + 1 op-
portunities to change). If the sub-type is good, then the probability of

observing x undesirables in a row is (1 — p)*; therefore P(x undesirables| No

Switch)P(No Switch) = (1 — p)*q***. The term P(x undesirables| Switch)

P(Switch) is a little more complicated. To find this term, we break the

event “Switch” into the x + 1 points before the xth undesirable was ob-

served at which the change to bad might have occurred. The probability

that the good to bad transition occurs at the ith opportunity is (1 — q)q'

(the geometric distribution). The probability that the forager observes x

undesirablesif the switch occursatj (j < x) is (1 — p)’, since j undesirables

must occur while the sub-typeis still good. Therefore

P(x undesirables | Switch)P(Switch) = (1 — qg)>. (1 — p)'q’.
6

By substitution, we find that the probability that the sub-typeis still good

after x undesirable items have been observed 1s

(1 __ p)*qr** |

(1 — p)*g**' + (1 — 4) » (1 — p)'q’

 (4.6)

Figure 4.4 showsthe posterior probabilities that the varying typeisstill

goodafter the forager observes a given numberof undesirable items. When

the probability of a repeat is low, the forager’s “confidence” is more easily

shaken by a run of undesirables. The probability of a desirable item when

the sub-type is good (p) shows a more interesting result: if the p is low,
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Figure 4.4 Both panels show the probability that the switch to bad has not occurred
as a function of the number of undesirable items observed so far. The shaded bars
are calculated on the assumption that p, the probability of a desirable item when the
sub-type is still good, is 0.5. The open bars assume that p =0.99. The upper panel
assumes that the probability of a repeat is 0.900. The lower panel assumes that the
probability of a repeat is 0.975. (Calculations following McNamara and Houston 1980.)

then it takes longer to convince the forager that a run of bad luck is more
than a random fluctuation. When p is low, good and bad are morealike.
This general “comparison effect” is intuitively appealing; similarities be-
tween the two sub-types make discrimination more time--consuming and
difficult. McNamara and Houston (1980) used this model to explain a fre-
quently described effect from the animal learning literature, the partial
reinforcement extinction effect (PREE). A pigeon maybetrained to peck
a key for a reward on 100p% of its pecks, and after a long period of
training the rewards are abruptly stopped by the experimenter.If p is low,
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then it takes longer for the pigeon to stop responding (behavioral extinc-

tion); if p is high, then extinction is fast. This is true even though pigeons

pecking for 10° rewardscan be trained to peck at the same rate as pigeons

pecking for 90% rewards. This effect has presented difficulties for some

simpler theories of feeding behavior(e.g. linear operator models of learn-

ing, Kacelnik and Krebs 1985), but it fits qualitatively into an incomplete

information model. In contrast to the models psychologists develop to ac-

count for the PREE (e.g. Capaldi 1966), this model is not derived as a

description of the data but from a priori considerations. Although it

predicts the trend qualitatively, preliminary observations suggest that

animals may be morepersistent than information groundsalonelead us

to expect (Kacelnik and Krebs 1985).

This model is incomplete. Although it makes statements about what

the forager knows after X undesirable items, it says nothing about how

this knowledge can be put to use. A complete solution would find an op-

timal stopping rule, and such a model must take explicit account of the

value of the forager’s alternatives. A solution will not be attempted here,

but the reader might compare this problem with the detection problem

studied by Krebset al. (1978).
Imagine the difficulties of adding this type of detection problem to the

problem of finding an optimal sampling period. We suspect that making

discrimination more difficult would tend to make conditions for tracking

even narrower, because it would make each sampling event less informa-

tive. Another probable effect would be a changein the pattern of sampling.

The forager might persist for a long time when the varying prey typefirst

goes bad, but make short and cursory samples after it is “convinced” of

a turn for the worse. The assumptions that make up any modelrepresent

a trade-off between those which make the model a simple guide and those

which may makeit realistic but clumsy. We have argued that tracking

can be logically separated from detection. It is important to have models

that combine these elements, but this should not hinder the reasonable

experimental task of studying these elements independently.

4.4 Patch Sampling

ANOTHER REASON TO MOVE ON

The deterministic marginal-value theorem views patch depression (the

“marginal” decrease of the within-patch rate of gain) as the principle

reason for moving on to another patch. Patch depression may occur for

many reasons (Charnovet al. 1976), but one of the most important of
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these is that as the forager spends more time in a patch, it also spends
more time revisiting previously searched ground. Some foragers, such as
woodpeckers moving along tree trunks, may experiencelittle or no patch
depression because they can search systematically, and according to the
deterministic marginal-value theorem,these foragers should either always
ignore a patch of a given type or alwayssearchit exhaustively (see also
section 9.5). If there is no depression, then there is no reason to give up
before emptying the patch.

However, a forager mayleavea partially full patch for another reason:
patch sampling or assessment. A forager may leave before completing an
exhaustive search, because its foraging in the patchtells it that the patch
is an “inferior” sub-type (Lima 1983, 1985a, Kacelnik and Cuthill in press).

A SIMPLE MODEL

In a pioneering study of patch sampling Lima(1983) drilled 24 shallow
holes in each of 60 short lengths of tree trunk (patches). Each hole may
or may not have contained at least one piece of sunflower seed, and an
opaque piece of masking tape covered each hole so that no visual cues
could be used to tell patches containing many seeds from patches con-
taining no seeds. Lima hung these artificial patches in a wood lot and
trained downy woodpeckers (Picoides pubescens) to feed from them. The
woodpeckers learned to pierce the masking tape to examine the contents
of a hole, and they searched nearly systematically.

In Lima’s experiments there was only one type of patch(since patches
were externally identical), but there were always two sub-types. The two
patch sub-types were (1) EMPTY sub-type: in one-half of the patches
there were no seeds, and (2) p-FULL sub-type: in one-half of the patches
a proportion p of the holes contained seeds. Lima’s experimental treat-
ments were p = 1, p= 4, and p =4. The forager’s problem hereis for-
mally similar to the problem of “detecting a change” discussed above.
Once the forager finds a single seed, it “knows” (or should know) that the
patch is full. Lima, therefore, argues that a sensible leaving rule has the
form: “Leave a patchif no seeds are found by the nth hole opened; search
the patch exhaustively if at least one seed is found by the time the nth
hole is opened.” The modeler’s problem is to find the value of n (n*) that
maximizes the long-term rate of energy gain.
The problem analyzed here is simpler than Lima’s because welet the

p that characterizes the p-FULL sub-type be the probability that a hole
is full in a p-FULL patch. In Lima’s experimentsif p was one-half, then
there were 12 full holes in every p-FULL patch; in our version 12 holes
is only the expected numberoffull holes per p-FULL patch. As usual, we
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want to choose the n that maximizes the long-term rate of energy gain:

R= _EG|n) (4.7)
t+ E(T\n)

where t is the travel time between patches. E(G|n) is the expected number

of prey gained per patch given that n is the giving-up rule, and E(T|n) is

the expected time spent per patch given that n is the giving-up rule. The

two possible actions (give up after n or search exhaustively) and the two

patch sub-types (EMPTY or p-FULL; see Table 4.1) determine four possible

Table 4.1

Expected gains and times from possible tactics

 

 

Patch sub-type
 

Empty Full
 

Leaveafter n E(G) =0 E(G) =0

E(T) =n E(T) =n

(Error!)

Search exhaustively E(G) =0 E(G) >0

E(T) = 24 E(T) = 24

(Error!)

Action 

 

outcomes. A forager may “conclude” (by leaving before searching the

patch exhaustively) that a patch is EMPTY. If it reaches this conclusion

when the sub-typeis really p-FULL, then it commits an error. Alternatively,

if it concludes that the patch is p-FULL (by searching it exhaustively) when

the patch is really EMPTY, then it commits the complementaryerror.

Table 4.1 shows the expected gain [E(G)] and the expected time [E(T)]
that result from each of the four possibilities. The expected energy gain

is zero in every case except “search exhaustively when the patch is p-FULL.”

The expected gain here is higher than 24p becauseit is the gain given that

at least one item is found on or before n. This value can be found from

the relationship

E(G|something by n)P(something by n)

+ E(G|nothing by n)P(nothing by n) = 24p,

and by using a little algebra we find that

24p — (24 — n)p(1 — p)"
1 — (1 — p)"

The calculation above is performed assumingthat the patch is of sub-type

p-FULL. The time in a patch can only be n or 24. The expected time per

E(G|something by n) = (4.8)
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patch is just the weighted mean

n 24
E(T|n) = 5 [1 + (1 —p)"] +> [1-1 — py") (4.9)

By substitution, we find the long-term rate of gain as a function of the
giving-up rule n:

____ 24p — (24 — n)p( — p)"
2t + (n + 24) + (n — 24)(1 — p)”

Since n can only take the discrete values 1, 2, 3,..., tabulating the values

of R(n) shows the rate-maximizing n. Table 4.2 showsthe results of such

 (4.10)

Table 4.2

Optimal number of holes to check

before giving up (subjective probability

that the patch is Emptyat leaving)

 

 

 

 

 

 

 

Travel time

Pp in p-FULL patches 1 time unit 100 time units

025 These
oo Sm Tha
078 (098) (0.996)
1.00 (1.00) (1.00)
 

a tabulation. Notice the following two results: (1) in general, more holes

Should be openedfor lower p values (analogousto the “comparisoneffect”
in the previous section) and (2) even without patch depression our hypo-

thetical woodpecker should be more tenacious when the between-patch
travel time increases (Kacelnik and Cuthill 1986; see also Chapter 9).

In general, the forager should be at least as tenacious for longer travel

times or increased travel costs as it is for shorter travel times (McNamara
1982).

A strident advocate of the marginal-value theorem might claim that

even if there is no physical patch depression, there is depression of sub-

jective patch value. When the assessing forager finds that the next patch

is more difficult to reach,it should be willing to tolerate a smaller likelihood

that the present patch is good before leaving. As Table 4.2 shows, when
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p equals 0.25, our hypothetical forager’s assessment of patch value(like-

lihoods of EMPTY and p-FULL after 10 empty holes have been examinedis

the same regardless of whether the between-patch travel time (t) is 1 time

unit or 100 time units; yet when 1 is 100, the forager must see 4 more

empty holes before leaving. This post hoc—ism explains the phenomenon

intuitively, but it does not detract from the important point that physical

patch depression and patch assessment should share the limelight in
economic analyses of patch-leaving decisions, and that most empirical

studies to date have nottried to separate these factors.
For systematic searchers, assessment is probably the principal reason

for patch leaving, but it is also important for another type of forager.

Manyforagers not only experiencelittle patch depression, but they also

never exhaust their patches. Such creatures would be sedentary—or

partially sedentary—trap-builders, filter-feeders, and sit-and-wait foragers:

barnacles, ant lions, net-building caddisfly larvae, web-building spiders.
If a web-building spider findsitself in a site with a healthy procession of

insect prey, then the spider’s own activities may not reduce thearrival
rate of prey significantly. If this is true, then there is no “marginal-value”

reason to move on. The site-leaving behavior of partially sedentary for-

agers probably involves two components: (1) initial searching for an ac-

ceptable site (statistical decision theorists have studied such “optimal

stopping” or “search” problems extensively; see DeGroot 1970) and (2)

leaving after external and unpredictable conditions have made a previously
acceptable site unacceptable. Although some authors (e.g. Townsend and

Hildrew 1980) have applied the marginal-value theorem to site-leaving by

sedentary hunters, an assessment model is more appropriate; the marginal-

value theorem can applyonly if site quality is continuously and predictably

reduced as more time 1s spent onthesite.

THE ““FAILURE’’ OF THE MARGINAL-VALUE THEOREM

Muchof the literature on patch assessment has compared it to the
marginal-value theorem. Without exception this literature concludesthat

the marginal-value theorem fails (does not maximize rate) when patch

assessment is important (Oaten 1977, Green 1980 and 1984, McNamara

1982). This is true only in a limited sense. These papers compare optimal

patch assessment policies to those of a hypothetical animal that decides
whento leave a patch using the following marginal-value rule:

Step 1. Measure the instantaneousrate of gain when foraging in a patch.

Step 2. Compare this rate with the optimal rate achievable in the

habitat.
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Step 3. Leave when the measured instantaneousrate dropsto thelevel

of the habitat rate of gain.

It can be unequivocally shown that when the forager’s assessment of patch

value changes as a result of experience in the patch, then this marginal-

value rule does not result in long-term rate maximization.

This observation requires a retreat by the more ardent proponents of

the marginal-value theorem. For example, it has occasionally been sug-

gested that animals “should” somehowestimate the instantaneousrate of

gain to determine their leaving policy (e.g. Pyke et al. 1977). Such a

marginal-value rule may work when within-patch foraging has no infor-
mation value, but it does not work when patch assessmentis important.
However, even when patch assessment is unimportant, this marginal-value

rule still presents many unnecessary difficulties: how does the forager
measure the instantaneous rate when prey comein discrete lumps?

The marginal-value theorem survives not as a rule for foragers to

implement, but as a technique that finds the rate-maximizing rule from a

knownset of rules. For example, in Chapter 3 we used the logic of the

marginal-value theorem (constructing tangents, etc.) to find which of two

mutually exclusive prey items should be chosen. The resulting optimal

rule has the form: choose the big prey item when 4 < k, and choose the

small prey item when / > k (where k is a constant; see Box 3.1). It would

be a vain exercise to try to use a marginal-value rule to predict this simple

patch-use behavior. However, the inapplicability of the marginal-value

rule does not detract from the marginal-value theorem’s central role in the

solution, since we used the marginal-value theorem to find k. The mar-

ginal-value theorem is not a patch-leaving rule (we discuss patch-leaving
rules in Chapter 8). It is a method for finding the best (long-term rate-

maximizing) rule from a known set of possible rules. In this sense the

marginal-value theorem works regardless of whether there is patch assess-
ment. It can be used to solve all the examples McNamara(1982) presents

to disprove the marginal-value rule. Green (personal communication) has

recently shown that this is also true of his patch assessment model.

WHAT Is WRONG WITH THE MARGINAL-VALUE RULE?

Is there a general patch-leaving rule? McNamara (1982) has proposed
such a rule, together with an enlightening analysis of how and whythe
marginal-valuerule fails. Without giving the mathematical details, we pre-
sent the highlights of McNamara’s analysis.

The potential function. Our discussion of McNamara’s results requires
some formaldefinitions. The notation used here differs from McNamara’s,
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because his notation differs from the notation we use elsewhere. Let t be

the time spent so far in a patch. Let X, be a vector that summarizes the

forager’s experience in the patch upto timef; X, is called the state at time

t. It might contain information about whether the grass has rustled and,

presumably, about how many prey have been captured by time t. The

experiences that contribute to X, will be at least partially random, so X,

is a random variable. We can find a future expectation for any function

of state and for any time u greater than the present time t. Symbolically,

E[f(X,)|X, = x|.

(We follow the convention of using capital letters to represent random

variables and the corresponding small letters to indicate specific realiza-
tions of the random variables.) Let G(x) be the function of the forager’s

“state” that translates it into energy gain. Any patch-leaving rule that the

forager adopts will specify a patch residence time T. A particular decision

rule defines the residence time T as a random variable. R* is the maximum
long-term rate of energy intake in the habitat.

For a given patch-leaving rule, and its associated residence time T, the

expected gain from now(t, with X, = x) until leaving is

a(x) = E[G(X1)|X, = x] — G(x), (4.11)
and the expected timeleft on the patch 1s

b,(x) = E(T|X, = x) -t. (4.12)

The difference,

a7(x) — R*b,(x), (4.13)

is the expected future gain on a patch minus the expected loss dueto lost

time. McNamaracalls the maximum ofthis difference the potential func-

tion, h(x):

h(x) = max[a;(x) — R*b7(x)]. (4.14)
T

The patch residence time T* at which this difference is maximizedis the
rate-maximizing patch residence time given that the state is X, = x. This

functionis a list of states (x) and the corresponding potential of each state.

The rule McNamaraproposesis: Stay, if the potential is positive; leave,

if the potential drops to zero. This may seem circular, since one would

often have to find T*, the optimal patch residence time, to specify the

potential. However, McNamara’s modelfinds a general patch-leavingrule,

not the optimal residence time; thus his rule is not circular. It seems

plausible that a forager may be able to associate states with potential
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values. The potential will not change smoothly with changes in expe-

rience. Figure 4.5 shows how typical potential function might change
with experience (state). In the figure the potential jumps upward every

time the forager captures a prey item, because a capture changes the

forager’s assessment of patch value for the better. (Note the similarity

between the potential function and variousrules of thumbfor patch leaving
discussed in Chapter8).

The potential function bears a strong resemblance to the marginal-value
rule, and it is possible to pick the potential function apart to show the

relationship between the two. McNamara comparesthe potential function

with the marginal-value rule in the special case in which the forager only

gains information when it captures prey (“information by rewards”).

Figure 4.5 An illustration of how a
typical potential function might behave.

When a capture occurs, the potential

jumps to a higher value. In the interval

between captures the potential steadily

declines.
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McNamara rewrites the potential function rule, for this special case, as

follows. Leave the patch when

r(t*) + p(t*)A(t*) = R*,

wherer(t) is a stochastic instantaneousrate of gain. It is an expected gain

calculated using posterior likelihoods, measured over an infinitesimally
small time interval, and divided by the same small timeinterval. It is
defined independentof the forager’s patch-leaving rule. In this expression,
p(t) is the probability of finding a prey item in the next instant, A(t) is the
increment the potential would jumpif a prey item were found in the next
instant, and R is the optimal long-term rate of gain in the habitat. If the
term p(t*)A(t*) were zero, then this leaving policy would be a stochastic
version of the marginal-valuerule. If the forager knew everything about
patch quality, then p(t*)A(t*) would be zero because no experience could
change the potential. However, when patch qualities are incompletely
known, then p(t*)A(¢*) will be positive, and the marginal-value rule will
not work. Thesize of p(t*)A(t*) is a measure of how far off the marginal-
value rule is. The instantaneous rate of gain at leaving, if the optimal
leaving rule is followed, will be less than the habitat rate of gain (R*)
because, even when the instantaneous rate of gain has fallen to R*, “by
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staying a further short time something could happen to makeit optimal

to stay” (McNamara 1982).

The spread result. McNamara’s elegant comparisonillustrates that when

the spread (or variance) of the prior distribution of patch sub-types

increases, a forager using the marginal-value rule does increasingly poorly

compared with a forager following the optimal assessment policy. Con-
sider a problem in which there are three patch sub-types, 0 prey per patch,

5 prey per patch, and 10 prey per patch. Comparethe increase in potential

resulting from capturingthe first prey item in two cases. In the low-spread

case we suppose that the three sub-types are equally likely. Here thefirst

prey capture means that the patch may contain either 4 or 9 moreprey.

If the spread is increased by eliminating the mediocre patch sub-type (5

prey per patch) and making the 0 and 10 prey per patch sub-types equally

likely, then the first prey capture provides a much more valuable piece of

information. There are 9 prey left. By applying this logic to McNamara’s

formulation, we can see that when there is more spread, the jump in
potential caused by a capture will be greater. The spreadresult is a close
relative of Gould’s (1974) two sub-type result (section 4.2), because when

the distribution of sub-types is discrete, then the highest variance occurs

when there are just two sub-types.

Oaten (1977) has shown that, by increasing the spread of sub-types, the

marginal-value rule can be made to doarbitrarily poorly in comparison
with the optimal assessment rule. This result points out an interesting

problem in the patch assessmentliterature. Most assessment models have
assumed that there are no external features that the forager might use to

categorize patches into types before foraging in them. In nature, however,

one might expect extreme spreads in patch quality to be reflected ex-

ternally. A pinecone holding 10,000 pupae will not look like a pinecone

holding 10. (A pinecone holding 10,000 pupae may seem ridiculous, but

this is the kind of extreme that “arbitrary increases” in spread would re-

quire.) The interaction between external recognition and within-patch

sampling may often be important in nature. Pyke (1981b) found that the

flowers of monkshoodcontained the samedistribution of nectar regardless

of the numberof flowers per inflorescence. Nevertheless, he found that

bumblebees were more tenacious on large inflorescences than they were

on small inflorescences. The value of finding a goodbig inflorescence(big

is an externally recognized feature) is clearly greater than the value of

finding a good small inflorescence. The difference in tenacity results from

the interaction between external recognition and within-patch assessment.

Neither Oaten’s nor Green’s (Oaten 1977, Green 1980, 1984) assessment

models can accountfor this effect of inflorescence size.
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Spread versus comparison. The spread result and the comparisoneffect are

strange bedfellows. The spread result says that when sub-types are very

different, it is important to tell them apart. The comparison effect says

that when sub-types are very different, it is easy to tell them apart. The

spread result and the comparison effect complement one another. When

the cost of information is high, it is less valuable. When the cost of in-

formation is low, it is more valuable. This suggests that simple rules of

thumb may work well as assessment strategies. When the spreadis high,

a simple rule (a single taste, a single peek) will often be enough to determine

the sub-type. When the spread is low, a simple rule maylead to incorrect

conclusions, but these misjudgments will not be too harmful. Elaborate

and expensive sampling rules will be most useful at intermediate levels of

sub-type spread.

4.5 How Are These Problems Related?

Recognition, tracking, and patch sampling make up an eclectic group of

problems. In this section we propose a simple schemeto illustrate the re-

lationships among them and amongall incomplete information problems

in Poisson-encounter foraging models. These three problemsdiffer because

they answerthe following three questionsdifferently: What is ambiguous?

How is it ambiguous? How can the forager gain information to reduce

the ambiguity? At a general level each of these questions can be answered

in at least two ways.

What is ambiguous? Conventional theory takes as its starting point the
moment of encounter with a patch or prey item and asks whetheror in

what way this item should be exploited. The decision depends on infor-
mation about two things: the value of the patch or prey item at hand and

the value of the alternatives, and it is assumed that the forager has com-
plete information about both. In reality there may be ambiguity in either.

A model that treats ambiguity in the item at hand asks the question,
how should a forager modify its treatment of the types it encounters when

it knows that they are ambiguous? Sections 4.2 (recognition costs) and

4.4 (patch sampling) treat problems of ambiguity in the item at hand.

Questions aboutalternatives are really questions about the environment.

Models that deal with ambiguity in the alternatives ask the question, how

should a forager modify its exploitation of a given item (or items) to gain

information that may be useful in deciding how to exploit the items that

have yet to be encountered? Ourdiscussion of environmental tracking in
section 4.3 shows that a forager may include types in its diet that are
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not normally included to assess whether they should now be included.
Ambiguity in the item at hand and ambiguity in the alternatives are not
always separable issues. For example, a forager should sometimes modify
how it exploits a patch to gain information both about the patch it is in
and aboutthe patches it may encounterin the future. The extent to which
items at hand and alternatives can be considered separately depends on
the answer to the next question.

Howis it ambiguous? When a forager encounters a recognized type,it is
assumed to knowtheprior distribution of sub-types. If the forager knows
the sub-type at the ith encounter of a foraging bout, then this may give
it information about future sub-types, as it does in our model ofenviron-
ment tracking. On the other hand,the prior distribution of sub-types may
be the same from one encounter to the next, as was the case in ourdis-
cussionsof recognitioncosts(section 4.2) and patch sampling (section 4.4).

Wecall these two qualitatively different types of ambiguity sequentially
dependent and sequentially independent ambiguity, respectively. If the prior
distribution is sequentially independent, then the ambiguities of items at
hand and alternatives can be readily separated: because the item at hand
can give the forager information only aboutitself, not about future en-
counters. When there are sequential dependencies, the problemsof items
at hand and alternatives cannot be so easily separated. The degree to
which they can be separated depends on the problem of interest; for
example, it may depend on whether a patch or a prey modelis being
considered.

How can the forager gain information to reduce the ambiguity? A forager
may gain information in two ways. First, it might be able to distinguish
sub-types without making any decision about whether or how to exploit
the patch or prey item at hand. In other words, the forager may be able
to use cues(possibly at somecost) to recognize sub-types in the way that
the shore crabs (Carcinus maenus) studied by Elner and Hughes (1978)
distinguished profitable from unprofitable sub-types of mussels by lifting
them. This is the situation modeled in section 4.2 (recognition costs).
Second, a forager may gain information about sub-types when exploiting
them; the forager may sample, as we assumed in sections 4.3 (environ-
mental tracking) and 4.4 (patch sampling). Sampling differs from prior
recognition. When a forager uses prior recognition, it pays the price of
recognition before exploiting the item. When a forager uses samplingit
pays the price of recognition while exploiting the item. If the forager pays
the price of recognition before the item (patch or prey) is exploited, then
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we can logically separate the recognition costs from foraging gains. Sam-

pling, however, links the recognition costs to the way the item is ex-

ploited. This linkage occurs in two ways: (1) sampling depletes (although

sometimes insignificantly) the value of the patch or prey item sampled

and (2) the cost of sampling and the degree of recognition sampling pro-

vides both depend onthe nature ofthe sub-types and the prior distribution

of sub-types.

For example, imaginethat a particular patch type consists of three sub-

types. Each sub-type has at most | prey per patch, and the sub-types

differ only in the rate (A) at which the prey can be found: 4=0, 1, or 2

prey per minute, according to an exponential distribution of encounter

times. The three sub-types are equally abundant.If the forager hunts for

0.93 minutes without finding a prey, then it will be 90% certain that the

patch is not sub-type 4 = 2 prey per minute. It will have to search an-

other one and one-quarter minutes to be 90% certain that there are no

prey in the patch. The sampling forager must pay different prices (mea-

sured here in searching time) for the same amountofcertainty about each

alternative.

Figure 4.6 presents a classification of information problems showing

that there are eight possible ways to answer the three questions posed

above. This scheme is not complete, and its elements are not independent

parts of the problem. The diagram simply illustrates the relationships be-

tween incomplete information problems, and it suggests new problems

for study.

Branch 2 of Figure 4.6 (patch sampling) is by far the best-studied in-

formation problem in foraging theory, even thoughit is only oneofeight

information problems. This underscores the need for more theoretical and

empirical work. For example, the figure showsthat the patch samplinglit-

erature has concentrated on problemsof sequentially independent ambi-

guity. These models tacitly suppose that foragers gain information only

about the present patch, not about future patches.

Tracking models fit on branches 4 and 8, because items at hand and

“alternatives” are both ambiguous.Whenthe forager exploits the varying

prey type (section 4.3), the item at hand is ambiguous (branch 4), but

whenthe forager exploits the unambiguous mediocre prey types, the alter-

native is ambiguous(branch 8). Whenalternatives have sequentially inde-

pendent ambiguity (branches 5 and 6), then conventional “deterministic”

models apply despite the presence of ambiguities (as they did in the q = 4

case in the tracking model of section 4.3). Here, the alternatives can be

adequately characterized by their means, since the sub-types do not change

predictably with time.
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What is Howis it How is
ambiguous? ambiguous? information

gained ?

Prior (1) 4.2

Sequentially Recognition
Independent

Sampling (2)4 4 
item~at~hand
 

Prior - (3)

   

Sequentially

Dependent 
  

Prior

Recognition (5)
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Figure 4.6 A classification of information problems. The numbers
in parentheses at the end of each branch are used to distinguish
one problem from another. The numbers not in parentheses are the
sections of Chapter 4 that review each problem.

4.6 Summary

Following the terminology of the basic foraging models, we define a type
to be a recognizable class of prey items or patches, but types may be com-
posed of manyindistinguishable sub-types. A forager’s knowledge of the
likelihoods of various sub-types can be represented by a prior distribu-
tion. Bayes’ theorem incorporates experience and the prior distribution
to yield a posterior distribution. Simple recognition cost models present
opportunities to study the value of information experimentally.

Tractable models of environmental tracking can be constructed when
sub-types can be readily distinguished. These models lead to three con-
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clusions: (1) the optimal amount of tracking should represent a trade-off

between the costs of sampling and the potential loss of opportunity from

not tracking carefully enough;(2) tracking is generally not the best policy

when the environmentis unstable or when the varying prey type andits

mediocre alternatives are very different in average value; and (3) although
the instability of environments makes tracking necessaryin the first place,

information gained about unstable attributes of the environment is not

as valuable as information gained about stable attributes of the environ-

ment. If the forager cannot readily distinguish sub-types, then a “com-

parison effect” must be added to this list. Sub-types are difficult to tell
apart when they overlap, and samplingis less informative.

The marginal-value theorem overlooks the importance of patch sam-

pling as a reason for leaving patches. Patch sampling can produce non-

trivial leaving policies even if there is no physical patch depression.

Nevertheless, the qualitative relationship between increasing travel time

and increasing patch residence timeis still expected under patch sampling

models. A forager using a marginal-valuerule (assessing the instantaneous

rate of gain while hunting in a patch, and leaving when this rate drops
to the average habitat rate of gain) may do poorly when compared with

a forager adopting the optimal assessment strategy. The difference be-

tween these two policies becomesgreater as the spread of patch sub-types

is increased.

Incomplete information represents an eclectic set of problems. A scheme

to illustrate the relationships between information problems is based on

three questions: (1) what is ambiguous; (2) how is it ambiguous, and (3)

how can the forager gain information to reduce the ambiguity?



The Economics of Choice:

Trade-offs and Herbivory

5.1 Introduction

Chapters 2, 3, and 4 surveyed models with varying constraint assumptions,
but all using the same currency: long-term average rate-maximizing. An
obviouslimitation of these models is that animals frequently face not only
the problem of harvesting energy but also conflicting demands. The best
feeding site may be the most dangerous, the worst place to find a mate,
or the least suitable for building a nest. For a herbivore, finding plants
that make up a balanced diet or ones that are not poisonous may be
more important than finding enough energy. How can we use optimiza-
tion models to analyze how animals might solve such trade-offs? This
chapter considers this question. Here we outline an approach based on
microeconomic theory and compare it with rate-maximizing; in Chapter
7 we tackle the same problem with a different theoretical tool, dynamic
optimization models.

Both biologists (e.g. Covich 1971, 1972, Rapport 1971, 1980, 1981,
Rapport and Turner 1977, McFarland and Houston 1981, Dawkins 1984)
and psychologists (e.g. Lea 1978, 1983, Rachlin et al. 1981, Allison 1983,
Staddon 1983) have recognized that the theory of economicallocation of
a limited budget can be used to study animal choices. To begin, webriefly
outline the relevant economic theory and review how psychologists have
applied these principles before we consider how the same approach can
be applied to foraging trade-offs.

5.2 Economics of Consumer Choice

Microeconomic theory uses three components to predict a consumer’s

choice between alternative packages of goods: utility, income, and price

(Henderson and Quandt 1971, Mansfield 1979). Choices are assumed to

maximize utility subject to income and price constraints. Utility is the

“level of satisfaction” that the consumerderives from a particular package
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of goods. Atfirst sight, this definition may seem vague and unrevealing

to the student of foraging behavior, but the application of utility will

become apparentshortly. There are several important points to note about

economists’ use of the term. First, economists use utility as a descriptive

tool: they measure utility by observing what people choose, not by inde-

pendentcriteria. In Chapter 1 we drew attention to the distinction between

this purely descriptive (a posteriori) approach andthea priori specification
of utilities (or currencies) used in this book up to now. Second, economists

usually only measure utility on an ordinal scale (A is better than B, not

A is 2.1 times better than B). Third, economists define commodities so

that the consumer prefers more to less. If the consumer prefers less of

substance A, then economists consider “the commodity”to be the negative
of A. Finally, economists assume that the utility derived from an addi-

tional quantum of a commodity decreases with the amount of the com-
modity already obtained, producing the utility function shown in Figure

5.1(A). This law of diminishing marginalutility, as it is called, has intuitive
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appeal for commodities as diverse as computers and caviar, but we will
say more about utility functions in Chapter6.

If two commodities, for example, fish and chips (North American readers
may substitute hamburgers andfries), have utility functions like the one
in Figure 5.1(A), how will the utility-maximizing consumer choose between
them? Figure 5.1(B) shows that many combinationsof fish and chips give
the same total utility (e.g. three pieces of fish and two packets of chips is

equivalent in utility to two piecesoffish and three packets of chips). The

consumer should be equally likely to choose either one when presented

with two alternatives of the sameutility; in other words the packageslie

on the sameindifference curve (Fig. 5.1[C]). A package on a higher curve
will, however, always (because moreis preferred to less) be preferred to
one on a lowercurve.

If one could build indifference curves, for example, by offering people

choices between different packages and measuring preferences, one would

predict that in a new choicetest the individual consumer would choose

a package on a high curve in preference to one on a low curve but would

not discriminate between packages on the same curve. But we must also

consider the constraints on choice. In economic theory income and price
constrain choice. Suppose, for example, that you have only 5 dollars, and

that fish costs 1 dollar a piece and chips are 50 cents a packet: you would

be constrained to choose a package containing not more than 5 pieces of

fish and no chips or 10 packets of chips and nofish, or any combination

lying on a line such as ABin Figure 5.1(C) that joins these points together.

We can now specify consumerchoice: if the consumer maximizesutility
subject to budget constraints, then the preferred package will be the one

on the highest indifference curve that intersects the budget constraint line
(Fig. 5.1[C]).
We can make many deductions about the effects of changes in income

or price from this theory of choice. For our purposesthe effects of changing

price are most interesting, since the price of a commodity is analogous

to the search costs or search time for a particular prey type (Box 5.1).

Changesin a commodity’s price affect the budgetline’s slope (Fig. 5.1[D]).

If the price of chips goes up, fewer chips can be bought within the income

constraint, so the budget line becomes steeper and, since the point of

intersection of the budget line with the highest indifference contour has

moved, the predicted fish and chips mixture changes. Figure 5.1(D) shows

the effect of several different price changes, and the solid dots indicate the
optimal mixture of fish and chips for the consumerat eachprice; the line

joining the dots is the price-consumption curve.

This can be replotted in a different way, by graphing the quantity of

chips consumed as a function of their price: economists call this the de-
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BOX 5.1 FORAGING TIME AND THE PREY AND

PATCH MODELS

This box shows, following Winterhalder (1983), how the indifference curve
analysis of section 5.2 can be related to the rate-maximizing models of Chap-
ters 2, 3, and 4. Winterhalder argues that during some time T the energy an

animal acquires from foraging (E,) must equal the energy expended(E,), and

obviously the time spent foraging (T,) plus the time spent not foraging (T,,,)
must equal T. The ordered pair (T,,, E,) specifies the other two variables

(T, = T —T,, and E, = E,).
Winterhaldertreats choices of E, and T,,, in the way that we have discussed

choices of fish and chips. (Notice that Winterhalder studies energy acquired

and non-foraging time because these are both commodities of which moreis
better.) Figure B5.1 shows hypothetical indifference curves for various com-

binations of energy acquired and non-foraging time. The curves labeled f;

yield a higher utility than the curves labeled f,, and so on.
Whenthe indifference curves are nearly horizontal, as in Figure B5.1(A),

then only a small increase in energy gain is required to compensate for a
large reduction in non-foraging time: the forager is energy-limited. When the
indifference curves are nearly vertical, as in Figure B5.1(B), then a large
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Figure B5.1_ ‘The solid lines are indifference curves that relate various combina-
tions of energy gain (£) to non-foraging time (7,,,). A forager would prefer any

T,,;—-E combination on a higher curve to a combination on a lowercurve:the curve
marked f,; is preferred to the curve marked f,, and so on. The broken lines are
budget lines. They show how muchenergya forager can actually gain if it spends

a given amount of time not foraging (that is, total time minus foraging time). The

budgetline marked A would occurin a habitat with a lower rate of energy gain than

the budget line marked B. The optimum energy gain, marked with an asterisk,

occurs at the point at which the highest possible indifference curve is tangent to

the budgetline. (A) showsindifference curves for an energy-limited forager, and
(B) showsindifference curves for a time-limited forager.  
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BOX 5.1 (CONT.)

increase in energy is required to compensate for a small reduction in non-
foraging time: the forager is time-limited.
The models in Chapters 2, 3, and 4 specify rates of energy intake: a given

patch residence timespecifies a given rate of energy intake during actual for-
aging. A rate plus the time spent foraging (T,) specifies the relationship be-
tween energy acquired (E,) and non-foraging time (T,,,): E, = R(T — T,fr)
This equation has slope — R. Its energy intercept equals RT, andits time in-
tercept equals T, as Figure B5.1 shows. Since a higher rate can mean both
more energy and more non-foraging time, rate-maximizing is preserved in
Winterhalder’s utility-maximizing model. However, Winterhalder’s model
predicts something that standard rate-maximizing cannot: how long should
the forager forage? The solution is arrived at by finding the point at which
the highest indifference isocline is tangent to the highest possible rate line
(marked by asterisks in the figure). Notice that an energy-limited forager
should forage longer, but a time-limited forager should dispense withits for-
aging chores more quickly. The main difficulty with Winterhalder’s modelis
that the indifference curves are entirely hypothetical, and measuring these
curves seemspractically impossible. However, the model does show how,in
principle, one mightpredict the allocation of time to foraging. Hawkesetal.
(1985) have proposed a similar model.   

mand curve (Fig. 5.2[A]). Demand curves make tworelevant points: price

elasticity and substitutability. These two related notionstell us how indis-

pensable a commodity is, and howeasily it can be replaced by analter-

native. The elasticity of demandis the percent change in demandarising

from a percent changein price (note, incidentally, that because elasticity

is a relative measure it is not simply the slope of the demand curve). A

commodity with inelastic demand is one for which the percent change in

consumption is less than the percent change in price. Such commodities

are likely to be ones that are essential for survival; if an animal needs a

certain amountof food per day and food gets scarcer (price goes up), the

animal might be expected to spend more time looking for food instead

of decreasing its hunting time and doing something else (see Box 5.1). In

contrast, commodities with elastic demand are those for which demand

goes down proportionately faster than the increase in price. A possible

animal example is sexual display (Hogan et al. 1970; see McFarland and

Houston 1981).
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Figure 5.2 (A) Ademand curve. (B) Demand A.

for one commodity as a function of the price

of another. Two cases are shown: substitutable

and complementary resources.
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The elasticity of demand for a commodity may vary accordingto cir-

cumstancessuchastotal income, preference, and the availability of alterna-

tives. If income and preference remain constant, then available alternatives

determineelasticity: for example, if you think that chips are an adequate

alternative to fish, when the price of fish goes up you would belikely to

spend less on fish (possibly even nothing) and buy chips instead. Fish

would show elasticity of demand andfish and chips would besaid to be

substitutes for one another. Figure 5.2(B) shows this point graphically by
indicating that as the price of fish goes up, the quantity of chips consumed

increases. The samegraphalso plots the opposite case, in which resources

or commodities are complementary: an increase in the price of one causes

a decrease in consumption of the other. Croquet mallets and balls are an
example. Since these two commodities are used in a set, an increase in

the price of croquet balls will cause people to buy fewer croquetsets and
therefore will cause a decrease in the demand for mallets. (Note, however,

that when used for other purposes, for example as missiles to be hurled

at the neighbor’s dog, mallets and balls could becomesubstitutes.)

A final point to note about substitutability is that substitutable com-

modities have indifference curves that are nearly (depending on how sub-

stitutable they are) linear, but complementary items have strongly curved

indifference contours. This fact crops up in the discussion below.

Howis this economic theorizing relevant to foraging trade-offs? In prin-

ciple one could design an experimentto find out which combinationsof

commodities foraging animals find equally valuable (e.g. mixtures of two
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types of food, mixtures of food and safety from predators) and then use
the economic approach we haveoutlined to predict choice under known
time-budget constraints. Similarly, the substitutability of different food
types or activities could be inferred by observing how changes in the
availability of one commodity affect demand for the other. In addition to
these descriptive uses, a priori principles can be used to specify the shape
of the utility function and hence the indifference contours; the conceptsof
elasticity and substitutability can be used regardless of how the indiffer-
ence contours are found (see Box 5.1 and Chapter 6 for examples).

5.3. Economic Choice and Animal Psychology

This section discusses how these ideas have been used in animal psychol-
ogy. Our commentaryis highly selective, and more extensive reviews can
be found in Lea (1978, 1983), Rachlin et al. (1981), Allison (1983), and
Staddon (1983). Criticisms of the economic approachasit is applied in
psychology maybe foundin the discussion following Rachlinet al.’s paper
and in Vaughan and Herrnstein (1986).

Psychologists have used economic theory both as a model for animal
choice and to model human economic systems, such as the labor market,
using animals. In both cases psychologists usually present animals with
food or some other consumable commodity in an operant experiment in

which the animal must work to obtain the commodity, and in which both

the amount obtained and the budgetary constraints can be precisely con-

trolled. Psychologists use this approach to account for general behavior

allocation patterns(e.g. percentage of choices allocated to eachalternative),

rather than the moment-to-momentdecision rules used by the animal in

making its choices (see Chapter8).

Rachlin et al.’s (1976) classic study of the substitutability of two com-

modities provides a goodillustration of how the economics of choice can

be studied. These experiments also show how one mightstudy the diet

choice of animals with suspected or known complementary dietary com-

ponents. Rachlin et al. trained rats to press two levers: the rats got root

beer from one lever and Tom Collins mix from the other. A ratio schedule

(in a ratio schedule a fixed numberof responses on the appropriate lever

is required for each commodity) determined the delivery of fixed small
amounts of liquid. Rachlin et al. limited the total number of responses

per experimental session (an income constraint) and the numberof re-

sponses (prices) required to obtain each commodity. This gave the ex-
perimenters precise control of the budget line. They first determined the
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allocation of responses to the root beer and Tom Collins levers when

prices were equal. They then increased the price of one, say root beer.

What should the rats do? If the two items are substitutable, the rats

should spend moreof their presses on the cheaper alternative and decrease
expenditure on the expensive one, but if the resources are not substitutes,

there should belittle change in the relative amounts consumed.Figure 5.3

explains this behavior graphically. Figure 5.4 shows the outcome of both

the soft drinks experiment and another one involving the choice between

food and water. The two liquids turned out to be nearly substitutable

(note that if they were perfect substitutes and if the rats were maximizing

utility, then the rats would have chosen only the cheaper alternative, as
they do when the two alternatives are identical—Herrnstein and Loveland

1975). In contrast, when the two substances are food and water, changing

the price haslittle effect on the relative amounts consumed;as an ecologist

would expect, food and waterare not substitutes. The general point here

is that one can draw inferences about substitutability and the shape of

the indifference curves by changing the commodity prices (availabilities)

in simple choice experiments.

A second illustration of the use of economic principles in animal psy-

chology concerns howrats trade off work and leisure (Rachlin et al. 1981,

Figure 5.3. (A) When tworesources are near-

perfect substitutes, the indifference curves are

fairly shallow, and an increase in the relative

price of one of them—anincrease in A’s price

is indicated by the steeper slope of line (2) —

causes a big change in the mixture consumed

(from x to y). (B) When the commodities are

complements, the indifference curveis nearly a

right angle, and a changein the slope of the

budget line produces only a small change in

the mixture consumed (x to y).
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Figure 5.4 (A) When Rachlin et al. changed therela- _A,

tive price of two kinds of soft drinks (changing the

budget line from AB to CD), their rats shifted their

preferences by amount X. (B) For food and water,

however, the preferred package only changed by

amount Y. Soft drinks were more substitutable than

food and water.
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Allison 1983). The concept of leisure may seem artificial to the behavioral

ecologist, but it could be replaced with any other activity for purposes of

analyzing a trade-off problem (see Box 5.1). The experimenters placed rats

(or pigeons) in a Skinner box for a fixed time each day, and they trained

the animals to work for food on a ratio schedule. The experimenters varied

the ratio of responses required to obtain rewards, and they measured the

rate at which the rats worked during each session. Figure 5.5(A) shows

the result: as the ratio gets smaller (reward rate increases), the animals at

first increase their work rate, but at high reward rates they slow down

again: the maximum workrate occurs at intermediate reward rates. Micro-

economic analyses of the effect of wages on labor supply predict just this

relationship. Figure 5.5(B) summarizes this argument(see Allison 1983 for

an alternative interpretation).

In these examples, psychologists inferred the shape of the indifference
contours from the animal’s choices. Maynard Smith (1978) calls this the

“reverse optimality” approach, and hecriticizes it for doing nothing more

than describing the data. However, a description of the indifference con-

tours resulting from one set of observations can be used predictively in

anothersituation. If the model survives this test of “trans-situationality,”

then it may represent some general properties of the animal’s preferences.

Although the approach seemssuitable for the study of trade-offs between
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Figure 5.5 (A) The lines Ai to A6 represent different constraint (or budget) lines set

by the number of key pecks required to get a single reward. For example, on line Ai a

rate of 200 pecks per minute will yield about 17 rewards per minute (ratio = 22°), but on

line A6, 200 pecks per minute will yield only 1 reward (222). When allowed to work

for a fixed time each day, on different ratios, pigeons chose how muchto work and eat

(the rates shownbythesolid dots). Work rate was higherat intermediate ratios. (B) The

positions of the solid dots in (A) could be described by assuming that the animals maxi-

mize utility subject to varying constraints (the different ratio schedules). In (B) hypo-

thetical indifference curves of combinations of feeding rate (/) and leisure (L, negative

of work rate) are shown. On eachratio schedule the animal choosesthe highest indiffer-

ence curveit can obtain: the points of intersection of the curves and the constraintlines

trace out the pattern shown bythe animals.

activities such as foraging and vigilance, or foraging and territorial de-

fense, it has not been widely used in behavioral ecology, an exception

being the study of Kacelnik et al. (1981) on the trade-off between foraging

and territorial defense in great tits. In the next section we discuss how

behavioral ecologists have studied foraging trade-offs.
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5.4 Studies of Trade-offs: Birds Are Tame in Winter

There is a danger that qualitative studies of trade-offs may not progress

beyond conclusions such as the one in the heading of this section. We
might view the boldness of normally shy birds that come to feeders in

cold winters as evidence of a trade-off between feeding and predator avoid-

ance, but this conclusion is a bit limp. Apart from the descriptive utility
approach described in sections 5.2 and 5.3, behavioral ecologists have

tackled the trade-off problem quantitatively in two ways: maximizing en-

ergy gains subject to time-budget constraints imposed by competing ac-
tivities and using survival as a common currency. Both of these are a

priori approaches.

Time budgets. The analysis of wagtail territorial defenses by Davies and

Houston (1981) provides an excellent example of this quantitative ap-

proach. The pied wagtail (Motacilla alba) generally excludes all other

wagtails from its winter feeding territory, but occasionally it shares its

territory with another wagtail (a “satellite”). Davies and Houston consider

the economics of tolerance versus exclusion in terms of time. Excluding

the satellite increases defense time (because the satellite helps to keep

others outof the territory), but tolerating the satellite decreases the owner’s

feeding rate (because it competes with the satellite for food). Thus both

defense and feeding costs can be expressed as losses or gains in time and

incorporated into the animal’s feeding rate. Davies and Houston used

field estimates of cost to calculate whether there would be a net increase
or decrease in feeding rate as a result of tolerating a satellite for each of

several days. The hypothesis that the ownertolerates a satellite only when

this increases its feeding rate accounted for the behavior on 35 outof 41

days. Davies and Houston reduced the trade-off problem to maximizing

feeding rate subject to various time-budget constraints associated with

territorial defense. This approach implicitly assumes that there are no

costs other than lost feeding time associated with different activities; for

example, the risk of injury when chasing a rival must be the same as the

risk during feeding.

Survival rate. Caraco et al. (1980a) used the currency of over-winter sur-

vival to study the effects of group size on the allocation of time to different

activities: feeding, scanning for predators, and fighting. They were not,

however, able to determine directly the effects on survival of variation in

time allocation, so their model was based on guesswork and could not

be used to make more than qualitative arguments. Chapter 6 discusses in
somedetail the use of survival as a currency. Box 5.2 presents a qualitative



 

 

BOX 5.2 RATE-MAXIMIZING VERSUS

PREDATOR AVOIDANCE

Limaet al. (1985) have studied a simple situation in which rate-maximizing

conflicts with predator avoidance. Squirrels may haveto leave the safety of
cover to reach food patches, and when patches consist of many prey items
squirrels must “decide” whether to eat the prey out 1n the open or carry them
back to cover, where they can be eaten in relative safety.

Suppose that patches contain N items. The forager decides how manyitems
to carry back to cover (N,), and the travel trme from cover to the patch1s Tt.

Assuming that the last item is always carried back to cover(ie. 1 < N, < N),
there are N. roundtrips from cover to the patch, and total exploitation time
1S

2tN, + Nh,

where h is handling time. Thus the rate of energy gain is

Ne

2tN,+ Nh’

where e is the mean energy value per prey item. Obviously, increases in N,
always decrease the rate of intake, so if the forager based its decision solely

on rate-maximizing it would only carry the last prey item back to cover. How-
ever, Lima et al. suppose that being “in cover”is safe, but that there is a con-
stant probability of predation («) when the forager is exposed. The forageris

out in the open for

2tN.+(N—N.)h

time units. Thus the probability of surviving a patch exploitation boutis

nN) = @7 2tNetN Neh]¢ ,

To study how N.affects the probability of survival, consider the case in which
the difference 7(N.. + 1) — m(N,.) is greater than zero. A little algebra showsthat

the probability of survival increases with the numberof itemscarried if the
handling time is greater than the roundtrip time (h > 2r); the probability of

survival decreases with the numberof itemscarried if the roundtrip time is

greater than the handling time: rate-maximizing and predator avoidance are

not in conflict here. Predator avoidance only conflicts with rate-maximizing
when the handling time is greater than the round trip time.

If the forager’s behavior represents a compromise between these two goals,
then we would expect that (1) more items should be carried back to cover

whenthe distance to cover is short and(2) if there is an increasing relationship
between prey size and handling time, then more items should be carried back

when prey sizes are large. In an empirical test with grey squirrels (Sciurus
carolinensis) Limaet al. (1985) found that squirrel behavior was consistent
with these qualitative predictions (see also Lima 1985b).
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example that considers the conflict between feeding rate and exposure to

predators.

5.5 Nutrients and Diet Choice by Herbivores

Many ecologists would agree that herbivore diets, especially generalist

herbivore diets, are much more complex than the diets of other consumers:

rate-maximizing might (it is argued) explain carnivore diets, which are

made up of prey with approximately the right balance of nutrients, but

herbivores often feed on abundant low-quality prey and face the problem

of selecting a balanced diet and not just maximizing the rate of energy

gain (Crawley 1983). Furthermore, many plants contain toxic substances,

adding to the herbivore’s dietary woes. This view of complex qualitative

effects is, in part, a justified reaction to the older view that herbivores

cannot be food-limited because the world is green (Hairston et al. 1960);

nevertheless, we will argue in this section that simple rate-maximizing

models maystill be valuable in interpreting herbivory, and that this em-

phasis on food quality for herbivores has stymied attempts to find out

just how complex herbivore diet selection is. Because we cannot review

the vast literature on (both insect and vertebrate) herbivory, we refer

the reader to Barker et al. (1977), Harborne (1978, 1982), Rosenthal and

Janzen (1979), Morley (1981), Ahmad (1983), Crawley (1983) and Denno

and McClure (1983). What we present here is a view of herbivory from

the perspective of foraging theory.

SOME SPECIAL FEATURES OF HERBIVORES

Given the great diversity of herbivorelife styles, it may seem foolhardy

to attempt generalizations, but on the whole herbivorestend to differ from

the “typical predators” represented in the models of Chapter 2 and 3 in

the following ways:(1) they spendlittle time searching for food and much

time ingesting and digesting, so their time budgets differ from those of

predators that consume animal matter; (2) a herbivore’s food seldom occurs

as neatly packaged prey items, so the concept of “encounters” may be

difficult to apply; and (3) some small herbivores consume only one food

item (plant) during their lifetime (or during their larval “lifetime”): for

these animals, foraging decisions mustbe restricted to problems such as

the choice of different places to feed within a plant rather than the choice

of plants. These differences may mean that the decisions studied in models

of herbivore foraging cannot be the sameas those for “typical predators.”

For example, “prey choice” may be formulated as a decision about diet
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composition (Belovsky 1978, 1981, 1984) rather than about acceptance or

rejection upon encounter (Chapters 1 and 2).

It follows from the third point above that small (usually insect) and

large (usually vertebrate) herbivores may face different decisions. In the

following discussion we primarily address the problemsoflarge, generalist

herbivores, but we also comment on the problems of smaller, specialist

herbivores suchas insect larvae.

THE DIETS OF LARGE HERBIVORES: THREE VIEWS

A survey of the literature reveals three main views about the nature of

decision, constraint, and currency for herbivore diets: rate-maximizing

subject to nutrient constraints, selecting complementary nutrients, and

avoiding toxins.

RATE- OR AMOUNT-MAXIMIZING SUBJECT TO CONSTRAINTS. According

to this view, herbivores select food items that maximize the rate of energy

intake (or energy gains over a fixed time—Belovsky 1978) or nitrogen

(Owen-Smith and Novellie 1982), or that maximize digestion rate (Westoby

1974, Sorensen 1984) if digestion is slower than ingestion. This view also

recognizes that requirements for one or a small numberof essential nutri-

ents such as sodium (Belovsky 1978) or avoidance of poisons may con-

strain rate-maximizing. The following general observations about large

herbivores and their food lend credence to the rate-maximizing view.

1. Detailed studies of plant chemistry often show that the concentra-

tions and availabilities of different nutrients in plants species or parts are

correlated: parts with high digestibility also tend to be high in protein

(Arnold 1981). For example, Glander (1981) found that howler monkeys

(Allouatta palliata) ate leaves with relatively high concentrations ofall

amino acids, and that young leaves were richer in all amino acids than

older leaves, probably a general pattern for most plants. Thus selection

of plant parts to maximize intake of one nutrient may frequently maximize

intake of manyorall nutrients at once.

2. Herbivores do not seem to be able to detect specific nutrients, apart

from sodium and water,in different dietary components(see below). This

makes complicated models, in which diet choice interacts with nutrient
limitations, less plausible.

3. Many herbivores, including ruminants and aphids, can synthesize

most amino acids and manyotheressential nutrients (Owen Smith and

Novellie 1982, Crawley 1983) and may not require a complex diet to meet
their requirements.
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Theeffects of factors such asfiber, silica, and tannins, which reduce the

digestibility of plant material (Harborne 1982), can be readily incorpo-

rated into a rate-maximizing model by including the constraints of stom-

ach capacity, passage rate, or both. Morespecific chemical poisons such

as alkaloids can be thought ofas anti-nutrients that limit the total intake

of any one dietary component.

In section 3.6 we introduced a method, mathematical programming,for

calculating the rate-maximizing diet subject to nutrient or toxin con-

straints. To recap briefly, suppose there are two nutrients x and y and

the animal’s hypothesized goal is to maximize intake of x subject to the

constraint of meeting a fixed requirementofy per unit time (or per stomach

load if digestion is the rate-limiting step). If the proportions of x and y

are known for different prey types such as P and Q, equations can be

written that specify the amounts of x and y obtained as a function of the

proportions of P and Q in the diet. We can use linear programming to

find the proportions of P and Q that maximize the intake of x andsatisfy

the constraint in y. Section 3.6 and Box 3.5 provide further details and

limitations.

Belovsky (1978) used this approach in his work on the diet of moose

(Alces alces; see Box 5.3). He identified sodium asa likely nutrient con-

straint. Sodium is a good general “constraint” candidate for three reasons.

First, vertebrates require large amounts of sodium,since they must replace

the sodium lost each day in urine. Second, sodium is also the only nutrient

other than water for which a “specific hunger” has been demonstrated

(see below). Third, sodium is often scarce in plant food. Belovsky also

hypothesized that the moose maximizes daily energy intake subject to a

sodium constraint. The moose can choose any mixture of high-sodium,

low-energy aquatic plants and low-sodium, high-energy terrestrial plants.

Belovsky estimated the daily sodium and energy requirements of the moose

and the constraint imposed by rumensize, and he showedthat the propor-

tion of aquatic plants in the diet was remarkably close to that predicted

by the energy-maximizing linear programming model. Although this

simple approach worked well in accounting for the use of broad classes

of vegetation (i.e. aquatic versus terrestrial plants), linear programming

failed to predict the moose’s choice of individual species within the ter-

restrial habitat (Belovsky 1981), possibly because of the role played by

toxins. Recently, Belovsky has extended this analysis to the diets of three

generalist herbivores (Belovsky 1984, Box 5.3).

SELECTING COMPLEMENTARY NUTRIENTS. Although much work onher-

bivory implicitly assumes that herbivores consume plants that contain

complementary nutrients, only Covich (1972) and Rapport (1980, 1981)
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BOX 5.3 WHAT SHOULD A HERBIVORE EAT?

A herbivore’s diet may be constrained by one or more of the following:

toxin intake, nutrient intake, digestion rates, ingestion rates, and limits on

daily feeding time. Trying to predict a herbivore’s diet while simultaneously

taking all these factors into account may seem a hopelessly difficult task.
However, in some circumstances the solution is not so difficult.

Specifically, the mathematical techniques called linear programming maxi-

mize a currency subject to many constraints, but both the currency and the
constraints must be linear functions of the decision variables. Belovsky (1978,
1981, 1984) has used linear programmingto find the energy-maximizing diets

of several vertebrate herbivores. We present a modified version of Belovsky’s

well-known model of moose (Alces alces) diets.
Wepointed out in the text that sodium is a nutrient thatis likely to affect

diet choice: animals need a lot of it, and they can probably tell when they

do not have enough(a specific hunger for sodium has been demonstrated in
some vertebrates). However, the moose’s sodium woes are even more severe

than usual. Aquatic plants are the only significant source of sodium in moose

habitats (e.g. Isle Royale, Michigan), and aquatic plants are not available in
the winter because they are under ice. The moose musttherefore get a whole
year’s supply of sodium during the summer. Yet another complication is that
aquatic plants are bulkier (they take up more room in the gut) and supply

less energy than terrestrial plants.

How much of the moose’s summer diet should be sodium-rich aquatic

plants, and how much should be energy-rich terrestrial plants? Linear pro-
gramming can answer this question. Let A and T be decision variables:

A = grams(dry weight) of aquatic plants eaten per day, and T = grams(dry

weight) of terrestrial plants eaten per day. The currency (energy maximization)
is maximize

3.8A + 4.25T,

because aquatic plants give 3.8 kilocalories per gram dry weight, and terres-
trial plants give 4.25 kilocalories per gram dry weight.

CONSTRAINTS

Maintenance Requirement

14,000 < 3.84 + 4.25T;

an average moose must have 14,000 kilocalories per day simply to survive.

Digestive Limitaton

32,900 => 20A + 4.04T;   
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BOX 5.3 (CONT.)

an average moose can processonly 32,900 gramsof wet food per day. Aquatic

plants have 20 grams of wet weight for every dry gram, andterrestrial plants

have 4.04 grams of wet weight for every dry gram.

Sodium Requirement

2.57 < 0.003A;

an average moose needs 2.57 grams of sodium per summer day to make up

its yearly requirement. Aquatic plants contain 0.003 grams of sodium per

gram dry weight; terrestrial plants contain insignificant amounts of sodium.

Condensing all these expressions, we can state the problem in this way:

Maximize 3.8A + 4.25T,

subject to 14,000 < 3.8A + 4.25T

32,900 > 20A + 4.04T

2.57 < 0.003A.

Wesolve the three constraint equations for A and plot the resulting lines as

shown in Figure B5.3. The triangular hatched region in this figure contains

all the (T, A) points that satisfy the constraints.
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Figure B5.3. The hatched region showsall (7,A) points that satisfy the con-

straints on moose diet selection, where 7 is the dry weight of terrestrial plants
consumed per day and A is the dry weight of aquatic plants consumed per day.

Because the currency and the constraints are linear functions of 7 and A,the opti-

mum diet composition must lie at one of the vertices marked (1), (2), and (3).

Here, the energy-maximizing choice is at vertex (3).  
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BOX 5.3 (CONT.)

There are still many possible (T, A) pairs within the hatched region,so it
may seem that we have not gotten too far. However, when the currency and

the constraints are linear functions of the decision variables, the maximum

currency occursat one ofthe feasible region’s vertices—labeled (1), (2), and (3)

in Figure B5.3. Each vertex can be found by solving two simultaneous equa-

tions; here, vertex (1) is (2223 grams/day, 1198 grams/day), vertex (2) 1s (2527

grams/day, 857 grams/day), and vertex (3) is (3920 grams/day, 857 grams/

day)—andthese vertices can simply be plugged into the currency function

to find which one gives the most energy per day. Vertices (1) and (2) both

give 14,000 kilocalories/day, since they lie on the line specified by the main-

tenance requirement, but vertex (3) gives much more, 19,918 kilocalories/day.

Vertex (3) is the energy-maximizing choice.

Wecould also use the techniques discussed in section 5.2 to solve for the
energy-maximizing diet. The indifference curves between aquatic and terres-

trial plants are parallel straight lines with the same slope as the maintenance
constraint line in Figure B5S.3. Obviously, the highest indifference line passes

through vertex (3).

Belovsky’s model predicts that an average moose’s summerdiet should be

about 18° aquatic plants [0.18 = 857/(857 + 3920)]. Astonishingly, obser-
vations show that, on average, moose choose diets containing about 18%
aquatic plants. Belovksy has found similarly staggering agreements with

linear programming in the choice between grasses and forbs of the Microtus
pennsylvanicus and in the choice between herbs and shrubs of the kudu
(Tragelaphusstrepsiceros).

Despite these instances of close agreement, linear programming has serious

limitations. One problem is that neither linear programmingitself nor its

advocates in foraging theory can give a priori rules for classifying plant foods.

For example, although linear programming predicts the mix of aquatic and

terrestrial plants in the moose’s diet, it failed to predict the moose’s choice of
plant species within the terrestrial habitat (Belovsky 1981). It is also important
to rememberthat linear programmingis not a modelof diet choice, but rather
a huge family of models of diet choice: there are many ways to specify the
constraints on diet choice even when studying a given species of forager.

Attempts to compare the diets predicted by linear programming and the
“diets” predicted by the basic prey model outlined in Chapter 2 have run afoul

of these limitations (Belovsky 1984). The basic prey model cannot predict the
proportion of aquatic and terrestrial plants in a moose’s diet, because apply-

ing the prey model assumes that the moose searchesfor all prey types simul-
taneously: only a dimwitted moose would search for terrestrial plants in a

pond.  
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have analyzed diets using the concept of complementarity as defined in

section 5.2. According to Rapport’s view, herbivores are best seen not

as maximizing the rate of intake subject to constraints but as choosing

between packagesconsisting of complementary mixtures of dietary com-

ponents. The complements could be nutrients or inhibitory poisons

(Levander and Morris 1970, Freeland and Janzen 1974).

To grasp more readily the difference between the “constraints” and

“complements” views of nutrients, consider the case of two nutrients. The
constraints view implies that the utility function for one nutrient is a step

function (above the step the requirementis met, below it is not), although
for the other nutrient it is a monotonic function like that in Figure 5.1(A).

The resulting indifference contours are straight lines (or nearly straight

lines; see Fig. 5.3[A]), since the two resources are substitutable, and the
constraint sets a lower boundary on the contours (Fig. 5.5). In contrast,

the indifference contours for complementary resources will be like that
shown in Figure 5.3(B): the contours for perfect complements would be

right angles, but assuming somesubstitutability, they will be curves.

The effect of changes in prey abundance on diet composition according
to the two models can be seen by superimposing budgetlines of different

slopes on the indifference contours, as explained in Figure 5.3. When the

resources are imperfect complements, a change in the abundanceofeither

one will alter the diet composition (an increase in abundance of A or B

will lead to an increase in its representation in the diet). The constraints

model makes a different prediction, more akin to that of conventional

diet models. Suppose for example, as in Belovsky’s study, that there is a

more profitable prey type anda less profitable type, and theless profitable

type contains an essential nutrient: changes in abundanceoftheless profit-

able type should not influenceits inclusion in the diet, but the more prof-
itable type should be taken in proportion to its availability (see Box 3.5).

Whatis the evidencethat diet selection in herbivores should be viewed
as selection for complementary nutrients rather than as rate- or amount-

maximizing subject to constraints? Rapport (1981) supports the “comple-

mentarity view” by showing that protozoa (and,it turns out, many other

animals, including insectivorous birds—-Krebs and Avery 1984) grow

better on mixed diets of natural prey than on purediets. But this observa-

tion could equally well be interpreted as the effect of nutrient constraints.

Twostudies have moredirectly applied economic notions of complemen-

tarity to diet choice.

In a pioneering study Covich (1972) studied Peromyscus seed pref-

erences in the same way that Rachlin et al. (1976) studied rats choosing
between soft drinks. Covich established the proportion of Cucurbita and

Helianthus seeds consumed by Peromyscus under ad libitum conditions
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and then altered the availability of each seed type in turn. The results

suggested that the two seed types were partially substitutable (as in the

“root beer-Tom Collins” experiment), but the results were ambiguous

because Covich hadonly limited control over the budget line, and because

training effects may have affected long-term food preferences (Partridge

1981). Importantly, Covich’s work shows how economic theory can be

applied to the study of diets. The only other published study to date that

used indifference-curve analysis is Rapport’s (1981) study of the proto-

zoan Stentor feeding on pairwise mixtures of Euglena, Tetrahymena, and

Chlamydomonas. Rapport demonstrated three main points: (1) Stentor

always consumed a mixed diet when more than one prey was available;

(2) the preference for a particular prey species increased as a function of

its abundance, as might be expected if the indifference curves were of the
form shown in Figure 5.3(B) for complementary resources; and (3) there

was someindication that Stentor reproduced faster on mixturesof algal
and non-algal prey than on pure diets, although the results were variable.

These results do not distinguish between the constraints model and the

complementarity model.

AVOIDING TOXINS. Freeland and Janzen (1974), Rosenthal and Janzen

(1979), and Harborne (1982) support the view that plant toxins determine

herbivore diet choice. Feeny (1975) and Rhoades and Cates (1976) were

the first to distinguish two types of chemical defense: some, such as

tannins, lower the digestibility of plant proteins for all herbivores when

defensive chemicals are sufficiently concentrated; other, more poisonous ©

toxins, such as cyanogens and cardenoides, work at low doses and are

often overcome by specialist herbivores. As we have already mentioned,

the “tannin-like” toxins can be treated within conventional rate- or

amount-maximizing models by considering assimilated rather than gross

intake (which is what should be done in any case). The more poisonous

toxins may limit the range of prey types available to a herbivore (this is

the thrust of much of the insect herbivory literature), just as an insect’s

defenses may exclude it from an insectivore’s diet. The more poisonous

toxins do not usually affect specialist insect herbivores when they feed on

their usual host plant (Blau et al. 1978), even though these specialists may

be unable to tolerate low doses of toxins from other plant species; thus
the limiting effect of the second class of toxins on diet breadth may be

severe. For large, generalist herbivores the picture is less clear: some

authors think that the more poisonoustoxins strongly influence diet choice

(e.g. Bryant and Kuropat 1980), and in other studies nutrient quality and

presence of tannins seems to be more important (e.g. Arnold 1981,

Glander 1981).
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NUTRITIONAL WISDOM IN LARGE HERBIVORES

The extent to which foragers can fine-tune their nutrient intake may

depend on the existence of “nutritional wisdom,” an idea Richter (1943)

developed in his classic studies of rats. When presented with a variety

of mineral sources, yeast, casein, dextrose, olive oil, and so on, rats man-

aged to select a balanced diet. Further, when deprived of oneessential nu-

trient, they could compensate by adding a new item to the diet (e.g. when

yeast was removed,the rats started to eat their own feces, an alternative

source of vitamins of the B complex).
Richter tried to explain this behavior by proposing “specific hungers”

for each of the different essential nutrients, but later work has shown,at

least for rats, that this is not the mechanism of nutritional wisdom. Salt

and water (and possibly sugar) are the only dietary components for which

rats can both detect a deficiency in their body tissue and select new diets

to compensate for the deficiency. Thiamine-deficient rats, for example,
can learn to avoid diets that do not contain thiamine, but they do not

specifically select thiamine-rich diets from an array of novel options: they
find the right onebytrial and error. Animals compensate for deficiencies

of other essential nutrients by learning to avoid diets with adverse conse-

quences (including those arising from nutrient deficiency) rather than

through specific appetites for the missing nutrient (Rozin 1976, 1977 for

reviews). For a rat, an essential part of this process is its habit of eating

moreorless discrete meals consisting of only onedietary item at a time—

this allows the rat to experience the consequences of each food type. If

other vertebrates have the same mechanism of nutritional wisdom, then

we can ask how generalist herbivores might fare in balancing their diet by

seeking out particular nutrients.

Zahorik and Houpt (1977, 1981) point out that there are many theoret-

ical difficulties inherent in applying avoidance learning to herbivores.

First, meals are notdiscrete entities, especially for herbivores with multiple

stomachs. Second, meals rarely contain a single food type. Third, adverse

consequences of eating often develop over a long period, and the effects

of many hours or days of eating might be confounded. Finally, many

plants have some adverse consequences(e.g. they contain tannins) but are

an essential componentof a herbivore’s diet. Experimental evidence sup-
ports the view that vertebrate generalist herbivores are limited in their

ability to select food using avoidance learning: sheep and donkeys cannot

avoid food that has adverse consequencesif the delayis long orif they eat

a mixed meal (Zahorik and Houpt 1981). This suggests that herbivores

are unlikely to possess sophisticated nutritional wisdom (Arnold 1981).

Zahorik and Houpt (1977) propose that a rule such as “eat young grow-

ing shoots” may provide herbivores with a perfectly adequate diet: digest-

ible and rich in protein and calories. These limited mechanisms of food
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selection make the rate- or amount-maximizing view of herbivory more

plausible than the complementary nutrients view.

MAINLY ABOUT INSECTS: NITROGEN, TRADE-OFFS, PATCHES,

AND OVIPOSITION

So far we have commented only on large generalist herbivores. In this

section we discuss briefly insect specialists.

NITROGEN. Herbivorous insect larvae, which need materials for growth,

may differ in their diet selection from generalist herbivores, which may be

more likely to select energy-rich foods. Many authors have suggested

(notably Scriber and Slansky 1981) that nitrogen is more important to

these larval herbivores than energy is. Building and testing alternative

nitrogen and energy-maximizing models would not be difficult, but there

has been little work in this direction. Although nitrogen concentration

(McNeill and Southwood 1978) and toxins (McKey 1979) influence the

selection of plant parts by insect herbivores, avoidance of predators also

plays an important role (Thompson 1982).

TRADE-OFFS. Insects may adopt costly behaviors such as migrating

from daytimeresting sites to remote feeding places at night and then back

again at dawn (e.g. Heinrich 1979). Presumably this migration allows the

insect to rest in a safe refuge away from thetelltale signs of leaf damage at

its feeding site which might attract predators. As such,it is similar to the

trade-offs discussed in section 5.4. The insect can be thoughtof as trading

off patch quality and predation risk (Schultz 1983). The same theoretical

approaches outlined in section 5.4 could be applied, but they do not ap-

pear to have been to date.

PATCHES. Insect (and other) herbivores do not encounterandeatdiscrete

prey items of the kind that the basic prey model imagines: instead of eating

all-or-nothing when encountering a leaf, a herbivore is morelikely to eat

part of a leaf. But this does not mean that foraging theory cannot be

applied to herbivore diet choice. It simply means that patch-use models

are more appropriate than the basic prey model (Chapter2). For example,

a patch-use model might predict that lower-quality plant parts should be

acceptable whentheinter-plant travel time is longer. Despite the explosion

of empirical work on how travel times effect the patch-use behavior of

non-herbivores (Chapter 9), there has been little interest in this problem

among students of herbivory. One exception is Parker’s (1984) work,

which shows that grasshoppers(like non-herbivores) are more persistent

in patches when the inter-patch travel time is long. One difficulty is that

plants can be patchy in subtle ways:leaf quality often varies within a
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single plant (e.g. Schultz 1983, who argues that even within a tree leaves
vary in nutritional quality, physical exposure, and danger from predators)
and between plants within a species (e.g. Denno 1983). Insect herbivores
are known to respond to this kind of patchiness in their prey (Stanton
1982, Denno 1983).

OVIPOSITION. Several authors have compared the oviposition decisions
of female insects with phytophagous offspring to foraging decisions
(Jaenike 1978, Mitchell 1981, Stanton 1982, Rausher 1983a, 1983b). Egg-
laying butterflies appear to make “accept or reject” decisions upon en-
counter with individual host plants, and at least some studies have found
that these butterflies lay eggs preferentially on species or individual plants
within a species that are better than average for larval growth and survival
(Rausher and Papaj 1983). Furthermore, the probability that a female will
lay eggs on a given plant sometimesdecreasesas the density of host plants
increases (Rausher 1983b), and this effect has been comparedto the basic
prey model’s prediction that selectivity should increase with increases in
the abundance(encounterrate) of highly ranked prey. However, the com-
parison has not been fully worked out. To do so will require specifying
an appropriate currency(rate of egg-laying, rate of larval survival, lifetime
reproductive success?) and constraints (what is the analogue of handling
time?). Jaenike’s (1978) model of oviposition is superficially similar to the
diet model and predicts that selectivity should increase with increased
host-plant abundance, but the prediction does notarise from the principle
of lost opportunity as it does in the prey model (Chapter 2). Instead,
Jaenike assumes that the female has limited egg-carrying capacity and
therefore must lay eggs to make room for new ones. Jaenike hypothesizes

that the female maximizes survival per egg laid, subject to the constraint

that the eggs must be laid within a certain time. As this time approaches,

the female may dumpher remaining eggsonless suitable host plants, and

this means that egg-dumping is more likely when preferred hosts are

scarce. It is not clear whether Jaenike’s model uses an appropriate cur-

rency; at least it would be valuable to compare his model with models

that use alternative currencies, such as maximizing lifetime reproductive
SUCCESS.

5.6 Summary

This chapter considers analyses of the trade-offs between foraging and

other activities, such as scanning for predators. Economic models based

on maximizing utility subject to budget constraints might be used to
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analyze trade-offs. Psychologists have successfully applied this approach

(using a posteriori optimization), but few behavioral ecologists have used

it. Alternative, a priori approaches to the problem of trade-offs include

treating the trade-offs as time constraints and using energy maximization

as the currency, and converting the consequences of each behavior to

probabilities of survival. Chapter 6 discusses survival models in more
detail.

Although many features distinguish vertebrate herbivores from other

predators, we suggest that diet selection in generalist herbivores may be

profitably studied by assuming rate- or amount-maximizing subject to

suitable constraints. The literature on nutritional wisdom does notreveal

sophisticated mechanisms for selecting a balanced diet. The idea that

herbivores (or other predators) select a diet of complementary nutrients

is frequently implied but seldom tested. The economic concept of com-
plementarity shows how such rigorous tests might be performed. For

insect herbivores foraging may best be viewed as a patch-use problem.

Oviposition decisions of adults with herbivorous larvae are only super-

ficially similar to foraging decisions.



Risk-Sensitive Foraging

6.1 Introduction

When wereferred in Chapter 5 to “making a choice” (choosing a package

of goods), we also assumedthat if a forager chooses a habitat with 100

prey per square meter, then this is exactly what the forager gets: choices

yield completely certain and predictable results. However, foraging behav-

ior probably cannotspecify “a package” without error; a more reasonable

claim is that the forager chooses between probability distributions. The

study of risk deals with this kind of choice. For example, the forager may

choose a habitat in which it sometimes gets 100 prey per square meter

but sometimes gets 20 prey per square meter. This chapter asks howfor-

agers can choose between probability distributions to maximize pay-off,

and how these choices can be described. But first we make a brief comment

on terminology: we use the wordrisk only to mean probabilistic variation.

This definition is distinct from the alternative meaning, “risk of predation,”

commonly used in the foraging literature. To avoid confusion, wecall this

second kind of risk danger.

6.2 Risk and Utility

Chapter 5 introduced the economist’s concept of utility and showed how

it can describe choice even when utility can be measured only on an or-

dinal scale (e.g. A is preferred to B is preferred to C). Utility theory can also

describe choice between risky options, but ordinal rankings are not enough

to do the job: the cardinal value of utility must be specified. The follow-

ing example illustrates this point. Suppose that a wealthy relative offers

you a choice between three sums of money, 0, X, and 100 dollars, and

you know that X is between 0 and 100 dollars. Which sum would you

choose? If you hada riskless choice, you would choose100 dollars, regard-

less of X’s value; in other words, ordinal utility is enough to determine

your choice. Suppose, now,that you had the choice between twolotteries.

Ticket A gives you 0, X, and 100 with equal probabilities, and ticket B
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give you 0 and 100 with equal probabilities. Which ticket would you

choose if X equals 0.01? Which if X equals 99.99? You show a remarkable

lack of avarice if your choice does not depend on the value of X. In risky

choices the value of X matters!

THE EXPECTED-UTILITY HYPOTHESIS

Wepointed out in Chapter 1 that a currency of optimization can be use-

ful only if it allows us to rank all the decision-maker’s options. How can

a lottery ticket (or, more generally, a probability distribution), which only

represents the probabilities of various outcomes, be ranked? Intuitively,it

may seem that the mean (or expected) rewards from lottery tickets might
be used to rank them. In the second example discussed in the previous

paragraph,if X = 80, then ticket A would be ranked aboveticket B [since

(0 + 80 + 100)/3 = 60 is greater than (0 + 100)/2 = 50]. Unfortunately,

human (and animal) decision-makers do not always pick the option with

the highest mean reward. Does this not destroy the idea of using means

to rank lottery tickets? Not according to utility theory: if you prefer ticket

B to ticket A (even if A has a greater mean), it is because you do not assign

80 units of extra value (or utility) to 80 additional dollars. Thereis, a utility

theorist would argue, a utility function U(r) (see section 5.2) that relates

your perceptions of value to monetary rewards(r), and your preferences

indicate that the expected utility you would derive from lottery B is greater

than the expected utility you would derive from lottery A:

U(0) + U(80)+ U(100) _ UO) + U(L00)
3 2
 

Or

U(0) + U(100)
U(80) < 5 

Accordingto utility theory, the utility function describes your preferences.

The expected-utility hypothesis (the basic premise of utility theory) is the

claim that, regardless of how complicated your preferencesare, there exists

a utility function, the expectation of which ranksall probability distribu-

tions (or lottery tickets). The expected-utility hypothesis may not hold if

your choices are inconsistent or irrational (e.g. if you prefer A to B and

B to C, but you prefer C to A, then you are inconsistent, and no utility

function will describe your behavior; see Raiffa 1968, DeGroot 1970).

In short, when we apply utility theory to foraging behavior we suppose

that foragers make consistent and rational decisions, and so we can use

utility functions to describe the preferences of foragers. In risky situations



130 = CHAPTER 6

the fundamental currency of optimization becomes “maximize expected

utility” (instead of “maximize utility,” as it was in Chapter 5).

UTILITY, RISK PRONENESS, AND RISK AVERSION

A risk-prone forager prefers a probability distribution of rewards to the

distribution’s mean value with certainty. (The term risk-prone is confusing

because it meansthat a forager prefers risk, not that a forager is susceptible

to risk. However, we use the phrase becauseofits wide acceptance.) A risk-

averse forager prefers the mean amountwith certainty to the probability

distribution. These definitions of risk proneness and risk aversion are re-

strictive, because they deal with a hypothetical choice between a certain

pay-off and a gamble with the same meanvalue.If the decision-makerfaces

a more complicated choice, for example, if the alternatives vary in both

mean and variance, then it may choose the more variable alternative even

if the forager is technically risk-averse.

Different types of utility functions are associated with risk proneness

and risk aversion. Weillustrate with three examples the importance of the

utility function’s shape.

1. A Straight Line. In a straight line (or linear) utility function utility in-

creases with reward at the samerate, irrespective of the amountofre-

ward already obtained: every additional unit of reward adds the same

amountof utility (Fig. 6.1[A]).

A. Linear Figure 6.1 Three utility functions with dif-

ferent concavities. (A) A linear utility func-

tion. (B) A concave-downutility function.

(C) A concave-up utility function.
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Figure 6.2 Anillustration of why concave-down and Risk Averse Case: Concave-Down
concave-up utility functions ‘act’ differently under

risky conditions. In both cases the forager is offered

a fair lottery in which the same number of units of

reward may be lost as may be won. Winning and

losing have equal probability (4). In the concave-

downcase the forager might lose more “utility’’ than

it might win, so a forager with a concave-downutility

function would prefer not to gamble. In the concave-

up case the forager might win morethan it mightlose,

so it prefers to take the gamble.
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2. A Concave-Down Curve. In a concave-down (negatively accelerated)

utility function each unit of reward is valued less than the last (Fig.

6.1[B]). A forager with such a utility function wants less as its own
needs are increasingly satisfied. This is the “law of diminishing returns.”

3. A Concave-Up Curve. In a concave-up (positively accelerated) utility

function each additional unit of reward is more valuable than the last
(Fig. 6.1[C]). This is the mirror image of the previous case.

Each ofthese three utility functions correspondsto a different type of risk

sensitivity: a linear utility function predicts risk indifference, a concave-

downutility function predicts risk aversion, and a concave-uputility func-

tion predicts risk-proneness. Figure 6.2 gives a graphical derivation of

these claims in a simple case. When the utility function is linear, we can

safely ignore risk sensitivity, because mean-reward maximizing is equiva-

lent to expected-utility maximizingfor linear utility functions. On the other
hand, when the utility function is not linear, we must know the shape of

the utility function to predict preference in risky situations.

How GENERALIs THE LAW OF DIMINISHING RETURNS?

In Chapter 5 we referred only to the concave-downutility function, and

we argued, as have most economists, that additional rewards must event-

ually addless value. It is not, however, difficult to imagine a utility func-

tion with increasing returns. Suppose that an animal needsto travel 20

meters to get to a water hole. Stopping at 18 meters does as muchto slake

the animal’s thirst as stopping at 19 meters (that is, neither reward helps

at all), but the last meter from 19 to 20 changes things a lot. The claim
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that utility functions always show diminishingreturnsis unjustified;at least
part of a utility function may be positively accelerated.
The law of diminishing returns, and its incorrect extension to the claim

that utility is always negatively accelerated, has had a hypnotizing effect
on someutility theorists (see Friedman and Savage 1948). Initially, econo-
mists rejected expected-utility theory’s description of human choice be-
havior, because they knew that utility functions were always negatively
accelerated, and that humanswillingly gamble. They claimed that utility
theory failed because it could only explain risk avoidance. In an important
paper Friedman and Savage(1948) pointed out that the law of diminishing
returns need not apply to the entire utility function. Most of the utility
function may be concave-down,and risk aversion may be more common
than risk proneness, but commonnessis not the sameas generality.

MORE AND LESs RISK SENSITIVITY

Suppose that a risk-averse forager has a utility function (defined over

food reward) that is concave down at every point. Is the simple fact that

this beast is risk-averse an adequate description of its behavior? The an-

swer is generally no, because some foragers are morerisk-averse than

others. Consider the curves shownin Figure 6.3(A) and (B). Both curves

go throughthe points [0, U(0)| and [20, U(20)], because U,(0) = U,(0) and
U(20) = U,(20), but the curve in panel A (or simply curve A) is straighter

than the curve in panel B (curve B). Suppose that the ownersofeach utility

function face a gamble in which 0 and 20 are equally likely. Because both
utility functions are concave down, both individuals would rather have 10

units (the mean of the gamble) with certainty. However, these individuals

do have different preferences: they have different certainty equivalents. The

certainty equivalent is the smallest certain amount the forager would trade

for the gamble (Fig. 6.3). It measures (in mean reward) the amountthat a

risk-averse individual would be willing to give up to have certainty. Curve

A has a higher certainty equivalent (8) than curve B (4). The owner of

curve B will give up more for certainty than the ownerof the straighter

curve A. In other words, the owner of curve A is less risk-averse than the

ownerof curve B. The difference between the certainty equivalent and the

mean of the probability distribution is a measure of risk aversion called

the risk premium. For example, in the simple 0-20 gamble [P(0) = P(20) =

4| above, if the forager was indifferent between the gamble and 4 units,

then it would have a risk premium of 6 units (see Fig. 6.3[B]). However,

the forager with the less bowed utility function (Fig. 6.3[A]) might have a

risk premium of only 2 units. The risk premium represents the amount

the risk-averse forager will pay for certainty. From the analyst’s point of

view, the risk premium has the disadvantage of depending on the gamble

being considered.
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Figure 6.3 A comparison of more (B) and less (A) risk-averse utility functions. The

expected utility of the gamble [P(0) = P(20) = 4] can be found by connecting the

points [0, U(0)] and [20, U(20)] with a line. The expected utility is the point (UV) on

this line corresponding to the mean reward (10 units). The certainty equivalent can be

found by constructing a horizontal line of height U. The reward that specifies the point

(r*) of intersection of this horizontal line with the utility function [U = U(r*)] is the

certainty equivalent. (A) The certainty equivalent is 8 reward units (the risk premium

[RP] is 2 units) in the less risk-averse case. (B) The certainty equivalent is 4 reward

units (the risk premium is 6 units) in the more risk-averse case.

The relative straightness of Figure 6.3’s two curves suggests an alter-

native measure ofrisk aversion. The degree of departure from linearity (as

measured by the second derivative) can be used as a measureofrisk sen-

sitivity. The Arrow-Pratt measure of absolute risk aversion is the second
derivative of the utility function divided by the negative of the first deriv-

ative: R, = —U"(r)/U(r). The Arrow-Pratt measure of risk aversion is a

local measure; it tells us about the response to risk at a particular point

along the utility function. There is an irony here, because by definition

risk sensitivity treats problems in which knowledge of a particular point

is not enough to predict preference (probability distributions spreadlikeli-

hood over many possible amounts of reward).
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What happensto the forager’s risk sensitivity if we leave all features of
the gamble the same but moveit generally upward by shifting the mean
reward? There are two importantcases. First, if R,(r) decreases with r,a
forager is said to practice decreasing risk aversion. A forager practicing
decreasing risk aversion might paya lot for a reduction in variance when
It 1s just scraping by (low r), but it might be almost indifferent to variance
whenthe reward onoffer is large (high r). Second,if Ralr) 18S constantre-
gardless of r, a forager is said to practice constant risk aversion. For exam-
ple, a forager practicing constant risk aversion will pay the same sum to
reduce the variance by one unit regardless of the mean reward’ssize.

RISK AND VARIANCE?

It is tempting to caricature the problem of risk as a trade-off between
mean and variance; according to this view you might reread the previous
section substituting “variance” for “risk.” Variance has a special meaning;
it is one of two parameters that characterize the normal distribution. All
probability distributions have variance, but in most probability distribu-
tions, except the normal, mean and varianceare closely related. The view
that risk equals variance is intimately linked to thestatistician’s article of
faith that given enough summingup(the central-limit theorem) the world
is normally distributed. The principal models of risk taking in foraging
theory assume underlying normaldistributions. One problem with equat-
ing risk and variance is that the world may not be normal. Undaunted,
we will deal mainly with variance in the remainderof this chapter. Econo-
mists have tried to arrive at more generaldefinitions ofriskiness. (See Hey
1979 for an elementary discussion of this and other risky matters. The
generalliterature of measuresof riskiness begins with a well-known paper
by Rothschild and Stiglitz 1970).

THE BAstc MODELS AND RISK

In section 2.1 and Box 2.1 we pointed out that the prey and patch mod-
els assume long-term average-rate maximization.If total foraging timeis
fixed, then long-term average-rate maximization is equivalent to maximiz-
ing mean energy gain; in utility jargon, this means that the basic models
assume risk indifference (linear utility functions) over energy gains.

6.3. Risk-Sensitive Feeding Behavior

Are foragers risk-indifferent, as the basic models assume? The answeris a
convincing no: foraging preferences depend on random variation in food

reward as well as on the mean food reward. Several workers have shown
this (Table 6.1), but the work of Caraco and his colleagues (Caracoetal.
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Table 6.1

Partial summary of empirical results on risk

 

 

 

Study Species Varied quantity Results

Leventhal etal. Rats No. of food Risk-prone, but tendency

1959 pellets decreased as mean amount was

increased

Pubols 1962 Rats Delay before Risk-prone, but tendency

reward decreased as mean delay was

decreased

Herrnstein 1964 Pigeons Delay before Risk-prone

reward

Davison 1969 Pigeons Delay before Risk-prone

Caracoetal.

1980b

Caraco 1981

Real 1981 and

Real et al. 1982

Waddingtonetal.

1981

Caraco 1983

Barnard and Brown

1985

Battalio et al. 1985

Wunderle and

O’Brien 1986

Yellow-eyed

juncos

Dark-eyed

juncos

Bumblebees and

wasps

Bumblebees

White-crowned

sparrows

Common shrews

Rats

Bananaquits

reward

No. of millet

seeds

No. of millet

seeds

Nectar reward

in artificial

flowers

Nectar reward

in artificial

flowers

No. of millet

seeds

Mealworms

No. of food

pellets

Nectar reward

in artificial

flowers

Risk-averse when energy budgets

were positive, risk-prone when

energy budgets were negative

As above

Risk-averse

Risk-averse

As Caracoet al. 1980b

As Caraco et al. 1980b

Unable to repeat Caraco’s result,

but used highly skewed reward

distributions

Risk-averse

 

1980b) on yellow-eyed juncos (Junco phaenotus) is a justly celebrated

example. Caraco et al. presented two trays of seeds, each with an opaque

paper cover, to a junco. The experimental bird chose a tray by hopping

downto it and knocking off the paper cover with its beak. Once a choice

had been made, the observer withdrew the tray that was not chosen to

make sure that choices were mutually exclusive. One tray wasrisky, pro-

viding for example, 0 or 10 millet seeds with equallikelihoods, but the alter-

native tray always provided a fixed number of seeds. The numberofseeds

provided onthis “certain tray” equaled the mean numberofseeds provided

on the “risky tray,” (5 seeds). A junco that consistently chooses the risky
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STANDARD RISK SENSITIVITY EXPERIMENT Figure 6.4 This illustration shows the

Prob. mean standard design ofrisk sensitivity experi-

A. 17 a ments. The forager is offered a choice
Kettainie : between (A) a certain alternative and

5+ (B) a probabilistically determined alter-

native with the same mean.    

Prob.

B. 1
Variable
Alternative,

12. 45678
its of food

tray is risk-prone, and a junco that choosesthe certain tray is risk-averse.

This is the standard form of risk sensitivity experiments (Fig. 6.4).

Caraco et al. (1980b) measuredthe utility functions of their juncos, and

the measured utility functions told them something about their juncos’

risk sensitivity (Fig. 6.1). Measuring a utility function is a straightforward

but time-consuming procedure. Suppose that an experiment aims to mea-

sure the utility function in the range 0 to 10 seeds, and assume that more

seeds are better. Since utility functions can be transformed linearly without

affecting their description of choice behavior, the end points can be arbi-

trarily assigned values, for example, U(0) = 0 and U(10) = 1. By offering

many certain choices paired with the risky choice [P(0) = P(10) = 4], the

experimenter can “titrate” to find the certainty equivalent of this risky

choice. Suppose these experiments show indifference between 4 seeds with

certainty and the risky choice; by definition, then, the expected utility of

the risky choice [which is known: 4 = U(0)/2 + U(10)/2] must be equal
to the utility of 4 seeds. This gives the first measured point on the utility

function (4, 4). This process can now berepeated to find the number of

seeds that have a utility of, for example, 0.25, by determining the certainty

equivalent of the lottery P(4) = P(0) = 4. Figure 6.5 shows two utility

functions that Caraco et al. measured for the sameindividual junco.

Caraco et al.’s most important finding was that juncos with positive

energy budgets(i.e. those given enough food to allow them to meet their

daily energy requirements) were risk-averse (they had concave-downutility

functions), while juncos with negative energy budgets were risk-prone.

The expected-energy-budget rule summarizes this result: If your expected

(daily) energy budgetis positive, then be risk-averse;if your expected (daily)

energy budget is negative, then be risk-prone. (We put the word daily in
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Figure 6.5 Estimated utility functions of an individ- A.__Positive Energy Budget _
ual yellow-eyed junco (Junco phaenotus). Reward is

the numberof millet seeds offered per choice. (A) The >

estimated utility function when the junco’s expected = 10
energy budget waspositive. The negative acceleration °

of this function indicates risk aversion. (B) The esti- so

mated utility function when the junco’s expected 9 2 4 6 8 10 12 14
energy budget was negative. The positive acceleration No. of seeds (S

of this function indicates risk proneness.
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parentheses to indicate that Caraco and most workers following him have
considered daily—as opposed to, say, hourly or weekly—energy budgets.)

This remarkable result has now been repeated using two other species of

small granivorous birds (Caraco 1981, 1983), starlings (Lima, personal

communication), and shrews (Barnard and Brown 1985). Some authors

have not measured utility functions, but they have all shown the switch

from risk aversion to risk proneness associated with a change in energy
budget. However, one study (Battalio et al. 1985) using rats and highly

skewed reward distributions was unable to repeat this effect.

6.4 Shortfall Models of Risk Taking: The Z-Score Model

One way to model Caraco’s energy budgetresult, and other aspects of risk

taking, is to minimize the probability of an energetic shortfall (Caraco

1980, Stephens 1981, Houston and McNamara 1982, McNamara and

Houston 1982, Pulliam and Millikan 1982, Rubenstein 1982, Stephens

and Charnov 1982, Caraco and Lima in press). The argumentis simple:

if a forager must meet a certain fixed requirement for survival, then the

forager’s response to risk affects its chances of meeting its requirement.
For example, suppose that a forager must choose between twoalternatives;

one choice yields 7 calories with certainty and the other(a risky choice)

yields 3 calories half the time and 9 calories half the time. A mean-

maximizer would take the certain alternative, because it has the higher
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mean.If the forager neededatleast 8 calories to survive, which alternative

should it choose? The risky choice gives a + probability of survival, but

the certain choice is certain death!

Stephens (1981) and Stephens and Charnov (1982) have formulated the

so-called z-score model. This model maximizes a small bird’s probability

of surviving the night. The bird gets its food in small bits throughout the

day. The pay-offs from each bit are randomly and independently distrib-

uted, so the sum of these pay-offs (in calories) will be normally distributed.

The z-score model claims that the bird’s energy supply at dusk (S,) is nor-

mally distributed, and that the bird has some behavioral control over the

mean and variance of this distribution. This control might be exercised

by choosing whereto feed.

The mean ofthe daily reward distribution is and the variance is o7.

The remaining component of the model is a fixed daily requirement R.

The model seeks to maximize

P(S) > R) = P(surviving the night).

Since S, is normally distributed with mean wu and variance o7, the likeli-

hood of survival can be found by converting R to a standard normal devi-

ate, or z-score [Z = (R — p)/c].

P(S) > R) = 1 — @(Z),

where ® is the cumulative distribution of the normal. Most elementary

booksonstatistics tabulate the value of ®(Z). Fortunately, the details of

® are not crucial. In fact, ® always increases with Z: large Z’s mean small

probabilities of survival. Minimizing Z maximizes the probability of

survival.

Now imagine a special case in which the bird must choose the shortfall

minimizing variance at a fixed mean. What o would a Z minimizerprefer?

The effects of og on Z can be summarizedasfollows:

dZ —(R-w) uw-R
 — = 6.1

do og? og (6.1a)

50 ifu—-R>Ooru>R, (6.1b)
O

“<0 fu—-R<Ooru<R. (6.1c)
O

A Z minimizer’s risk sensitivity (risk equals variance) depends only on

the relative sizes of its expected supply () and its requirement (R). If ex-

pected supply exceeds the requirement, variance should be reduced (be-

cause increasing o increases Z [expression 6.1b]). If expected supply is
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less than the requirement, variance should be increased (because increasing

o decreases Z [expression 6.1c]). This result is consistent with Caraco’s
expected-energy-budgetrule.

The z-score result is more specific than the expected-energy-budgetrule,

because it predicts that the smallest variance possible should be chosen
when p exceeds R, and that the largest variance possible should be chosen

when R exceeds p. Wecall this the extreme-variance rule to distinguish

it from the expected-energy-budget rule. This result is important because
it shows that both risk proneness andrisk aversion follow from a simple

hypothesis of shortfall avoidance. We do not need to concoct a different

explanation for each (as some economists, e.g. Hirshleifer 1966, have

proposed).

This extreme-variance rule is a property of normal distributions. It will

only be as general as normal distributions. There are important reasons

that lead us to think that normal distributions of food supply might be

common in nature. First, the central-limit theorem suggests that total

supply will be normal when it is the sum of many independently dis-

tributed “acquisition events.” Second, Stephens and Charnov (1982) have

presented more rigorous arguments to show that the net gains from “a

standard foraging process” (as envisioned in Chapter 2) will often be

normal. However, even if normality is common, it is not general. Short-

fall-minimizing tactics can be calculated for non-normal distributions (see

McNamara and Houston 1982, Caraco and Chasin 1984).

COMPLICATED FEASIBLE SETS

Up to now we have considered only cases in which the forager chooses

from a range of variancesat a fixed mean. Manyofthe behavioral“choices”

available to a forager will change both the mean and the variance. The

z-score model can be extended to treat this problem. A particular value

of Z, for example Z*, defines many combinations of mean and standard

deviation (uw and oc) that give the same probability of a shortfall. Borrow-

ing terminology from Chapter 5, the line

u= R—Z*o, for Z* fixed (6.2)

defines an indifference curve over u-o combinations. Equation 6.2 is the

slope-intercept form of a line on a p-o plot (Fig. 6.6). The requirement

is the u-intercept and the slope is — Z*. Since small Z* means large — Z*,

a Z minimizer(survival maximizer) would prefer to have a (a, y) pair lying

on a line radiating from R with a higher slope.

Wecan represent the forager’s feasible choices as a set in (¢, ju) space.

The “best” (minimum likelihood of shortfall) (o, 4) pair in this set can be

found by constructing the line of highest slope that intercepts the p axis at
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Figure 6.6 The (o, 2) pair that mini-

mizes the probability of an energetic

shortfall is found by constructing the

line of highest slope originating from

R (the requirement) on the yw axis and

passing throughthefeasible set (F).
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R and passes through the feasible set. The point(s) of intersection of this

line with the feasible set is/are the shortfall-minimizing(o, 1) pair(s). Fig-

ure 6.6 illustrates this graphical solution. The extreme-variance rule (dis-

cussed above)fits neatly into this framework (Fig. 6.7).

RISK SENSITIVITY AND PATCH RESIDENCE TIME

Stephens and Charnov (1982) have worked out a simple example of how

the z-score model might be applied to patch-leaving decisions. Thefirst

step is to calculate how the patch residence time affects the mean and

standard deviation. Figure 6.8 presents the feasible set (of means and stan-

dard deviations) that a forager can choose by deciding how longto stay

in a patch. The patch residence behavior of a shortfall-avoiding forager

can be worked out using this feasible set. For example, a forager with a

large requirement should leave the patch before a mean maximizer would,

and a forager with a small requirement should stay longer. Becauseof the

unusual shape of the feasible set, the behavior of a shortfall avoider will

often be similar to the behavior of a mean maximizer.

The z-score model serves as a good starting point for a discussion of

shortfall-avoiding models. In the remainderof this section we deal with

objections and extensions to this model.

Figure 6.7. The graphical solution of the extreme-

variance rule. The figure shows twohorizontal lines

that represent ranges of standard deviation from

whichthe forager can choose at a constant mean. The

higher line is above R, and minimum standard devia-

tion gives the line of highest slope. The line below A

showsthat the maximum standard deviation gives the

highest slope.
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Figure 6.8 Patch residence time and the risk of A.

starvation. (A) The curve shownis the feasible set

of mean-standard deviation pairs that a forager can

choose by choosing a patch residence time. The

t's are the patch residence times (¢,;s marked on

the graph show howincreasing residence times

change the meanand standard deviation, t;, , > ¢;),

and ¢* is the patch residence time at which the

mean energy gain is maximized. (B) This graph

showsthe optimal patch residencetimefor a short-

fall avoider. If the forager’s requirement is large,

it should not stay as long as a mean maximizer

would, but if the forager’s requirement is small, it

should stay longer. Notice that because of the

ellipse-like shape of the feasible set, shortfall-

avoiding patch residencetimeswill usually be near

the mean-maximizing patch residence time.
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THE Lazy-L

The bird’s energy supply can be comparedto the position of a randomly

moving particle. At intervals the bird’s energy supply moves up or down

depending on the random results of its foraging. The particle’s path can

be represented as a point (n, S), where n is the numberofintervals left in

the day and S is the energy supply at time n. In the z-score model any

path is acceptable if the supply exceeds the requirement at dusk. However,

the particle’s path may drop below somecritical level before dusk: the

bird might die in the afternoon. Compared with a particle’s “random

walk,” death in the afternoonis like encountering an absorbing boundary:

death is a boundary that cannot be recrossed. Instead of viewing starva-
tion as a hurdle that must be surmounted at the end of the day, this model

views it as an absorbing boundary shaped like a reclining L (Fig. 6.9).

Stephens (1982) has studied this problem and found twointeresting

results (McNamara and Houston 1982 analyze somedifferent aspects of

      

 

Death/Absorbing

Figure 6.9 The lazy-L model of death Boundaries
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Requirement P
AA
AZa
a
“
a
A
é
A
A
as
rd
a“
A
A
A
ad
#
A
A
A
od

g
A

  

E
n
e
r
g
y

R
e
s
e
r
v
e
s

 

R
e
s
e
r
v
e
s
a
t

ni
gh
tf
al
l

zqnzzx92TzjQZ2ZZ_

+— Time left in the day



142 » CHAPTER 6

this problem). First, both the amount oftimeleft in the day and the pres-
ent energy supply determine whether the presence of the lower absorbing
boundaryaffects the z-score model. As might be expected, when the pres-
ent supply is large the lower absorbing boundaryis less important. The
lazy-L is most important when duskis far off and becomesless important
as dusk (i.e. the time by which the forager must have R) approaches.
Thiseffect is analogousto paying bills. Keeping a healthy balance in your
checking account(avoiding the lower absorbing boundary) is more impor-

tant than paying a bill when it first arrives, but as the due date gets closer

the impetus for paying the bill increases. The mathematical reasonforthis

effect is that the lazy-L can only affect the forager’s behaviorif there are

paths that lead both to overnight survival and to death in the afternoon.

There are few such paths just before dusk, but many when duskisstill a
long time off.

Second, the lazy-L has an obvious but importanteffect on the extreme-

variance rule. Suppose that the forager cannot expect to survive the night.

The extremevariance rule predicts that it should gamble and choose high

variance. Shouldit do this evenif it is very close to death in the afternoon?

The answeris no. Here, neither the highest nor the lowest possible vari-
ance is usually the best. The lazy-L suggests that animals might prefer

an intermediate level of risk as a result of the competing goals of imme-

diate survival and eventual need. This is an interesting result because it

parallels the theory of investments(i.e. portfolio theory; see Coombs 1969,

Caraco 1982), which suggests that humaninvestors should prefer an inter-
mediate level of risk.

ENERGETIC CARRY-OVER

In the z-score model survival is survival. It does not matter whether

the forager survives the night by a hair’s breadth or by a generous margin.

Supposethat an insect larva requires a fixed amount of energy and nutri-

ents to survive pupation. A surplus of energy or nutrients may be “carried-

over” by the insect larva into adulthood. Energy carried over may be

beneficial, because it allows earlier emergence, or greater gamete produc-

tion.
The z-score model’s zero carry-over assumption is equivalent to as-

suming that the forager’s utility function is a simple step function. How-

ever, if energy carried over benefits the forager, then the utility function

might increase sharply at the survival requirement but continue to in-

crease smoothly after that. A carry-over function is the increasing part

of the utility function for amounts of energy greater than the require-

ment for survival. A simple linear utility function shows the qualitative

effects of carry-over.
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In the “no carry-over” z-score model a forager whose expected reward

equals its requirement should be indifferent to variance: the probability

of survival is one-half regardless of variance, because the normaldistribu-

tion is symmetric about its mean. When there is positive carry-over, a

forager whose expected reward equals its requirement will always prefer

high variance. It is still true that variance does not affect the likelihood

of survival, but increasing variance increases the expected utility achieved,

given that the forager survives. This is because increasing variance gives

greater weight to larger energy values; increasing variance also gives

greater weight to low energy values, but this does not matter becauseall

waysoffalling below the requirement are equivalent. Wecall this tendency

for the truncated mean to be increased by variance, and its consequences

for forager risk taking, the “achieved mean effect” (following Stephens

1982).
Supposethat the forager expects to be just above its requirements. Fig-

ure 6.10 shows how variance affects expected utility in the special case

of a linear carry-over function. Theresults are intuitively appealing, given

the achieved mean effect. When the forager is offered a range of small

variances (between 0 and o* in Fig. 6.10), it prefers the smallest one.

Whenthe forager is offered only large variances(all its choices are larger

than o*), it prefers the largest possible variance. When the variancesof-

fered are neither all less than o* orall greater than o* either the largest

or smallest variance can be the best choice, depending on exactly what

range 1s offered. When the variances offered are all small, the increase
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Figure 6.10 The achieved meaneffectis illustrated. These are plots of expected utility

as a function of standard deviation for the case in which the mean rewardis greater

than the requirement. The variable a is the slope of the linear carry-over function. The

a =O case is the same as the basic z-score, and expected utility decreases with in-

creasing standard deviation, as it should. However, in the « = 10 case expectedutility

decreasesatfirst (achieving a minimum at o*) but then begins to increase. The implica-

tions of this are discussed in the text.
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in achieved meanthat could be had byincreasing variance is small com-

pared with the increased likelihood of death that would result. On the

other hand, when the variances offered are all so large that the forager

suffers a significant likelihood of death in any case, the increases in

achieved mean from increasing variance may outweigh the increases in the

likelihood of death. The linear carry-over case makes the achieved mean

effect more powerful than it really is. In most natural situations we sus-

pect there would be eventual negative acceleration. This would reduce the

significance of the achieved mean effect. McNamara and Houston (1982)

have studied an instance of energetic carry-over in which the achieved

mean effect is not important.

THE VALUE OF VACILLATION

The z-score model has a worrisome implication.It predicts that anyfor-

ager pressed enoughto takea risk-pronealternative has a low probability

of survival (lower than 4, since the z-score must be positive to predict

risk proneness, and 1 — ®(z) is less than 4 for all positive z’s). This pre-

diction arises because the z-score model allows the forager to make only

one decision: being risk-prone in the morning requires being risk-prone

in the afternoon. If we consider a sequenceofdecisions, then risk proneness

is not so dangerous (Houston and McNamara 1982, McNamara 1983,

1984). We discuss “sequential risk-taking” in the next chapter.

6.5 A Descriptive Model of Risk Taking

Oster and Wilson (1978), Caraco (1980), and Real (1980a, 1980b) have pre-

sented a descriptive model of feeding preferences. They propose that a

crude but robust model for combining mean and variance is to maximize

u— ko?, (6.3)

where pt is mean, o7 is variance, and k is a constant measuring the un-

desirability of variance. Real (1980a) has called this the variance discount-

ing model, because it maximizes the mean discounted by a certain amount

for variance. Real, the main proponent of this model, offers no guidelines

about what quantities u and o* are the mean andvarianceof: they could

equally well be energy or egg number. This modelis a biological transla-

tion of what economists call the Markowitz-Tobin model of risk aversion.

Economists use this model mostly for its analytical convenience, rather

than for its general explanatory powers. Box 6.1 outlines the logic of this

model.
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BOX 6.1 DERIVATION OF VARIANCE DISCOUNTING

There are two ways to derive the variance discounting model ofrisk sen-
sitivity: an exact and an approximatederivation.

EXACT DERIVATION

Our exact derivation follows Caraco (1980). Suppose that the forager’s util-
ity function is always concave-down and showsrisk aversion. The utility
function —e' (t > 0) satisfies these requirements (a negative utility may
seem strange, but linear transforms of utility, like adding one, make no dif-

ference to the results). The variable X is a random variable representing food
reward. The expected utility is — E[e‘|f(x)], where f(x) is the probability

distribution function of X. Those familiar with theoretical statistics will rec-
ognize E[e‘*|f(x)] as the moment generating function of f(x). This is ex-
tremely handy, becausestatisticians have tabulated the momentgenerating
functions for many probability distributions. If f(x) is a normal distribution,
then the expected utility is

—e~tu (t0?)/2)

which always increases with increasing

u—Zto’;

or, equivalently, we can maximize

uu — ko*, where k = t/2.

Thus variance discounting follows from a utility function with constant risk

aversion and underlying normal distributions.

APPROXIMATE DERIVATION

Suppose,following Real (1980a), that we do not know the shapeoftheutility
function, U,(X). We canstill use a Taylor’s series to approximate U,(X) by

expanding around a known point. The most convenient x value to expand
aroundis yu. But before going on, we transform the utility function by adding
pe — U,(u): U(X) = U(X) + wp — U,(w). This yields the handy property that

U(u) = wu. Taking a Taylor’s series about p gives

U"(u)
U(X) = w+ U(W(X — W) +>— (X —p)*t+...;

now wetake the expectation of both sides,

a4,
U"

E[U(X)] =uU+a O   
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BOX 6.1 (CONT.)

Since E(X — yw) = O and E[(X — )*] = 0’, if we dropall higher order terms,
then this becomes variance discounting, where k = U"(y)/2, and k will be

negative if U is concave-down.

Since a Taylor’s series can be used to approximate any differentiable func-
tion, it is tempting to conclude, as Stephens and Charnov (1982) have, that
this derivation lifts the restrictions of underlying normality and constant risk
aversion, which are required in the exact derivation. This 1s a rash conclusion,
because utility functions with changing curvature (e.g. the z-score) and asym-

metric probability distributions can make this a poor approximation.
One problem with this approximate derivation 1s that the Taylor’s series

works best in the neighborhood of the mean. Since probability distributions
spread likelihood over many points, by definition, many possible realizations
of reward may not be in the mean’s neighborhood. In somesituations the
greater the spread, or variance, the worse the Taylor’s series approximation.
Figure B6.1 showsthis effect. A constantly risk-averse, U(X) = —e*, forager
faces gamma distributed rewards. We plotted the difference between exact

expected utility and the Taylor’s series approximation of the utility function
when the mean wasconstant and the variance wasincreased. As the variance

increases, the variance discounting formulation becomes a worse approxima-
tion (Fig. B6.1). We must therefore use variance discounting carefully: the safe
alternative is to stick to conditions in which the exact derivation is reasonable.
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Figure B6.1_ The figure showsthe difference between the expectedutility and the

Taylor's series approximation of the utility function. The case shownis a utility

function with constant risk aversion [U(X) = —e~*] and gammadistributed re-

wards with mean equalto 2. The difference between the exact expected utility and

the Taylor's series approximation is plotted for increasing levels of variance. The

approximation gets worse as variance increases.  
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Variance discounting versus the z-score. Variance discounting differs from

the z-score model in two ways. First, variance discounting predicts con-

stant risk aversion, while the z-score predicts decreasing risk aversion (see

section 6.2 and Stephens and Paton 1986). Second, variance discounting

is an a posteriori optimization model: risk-taking behavior must be
observedto fit the constant of risk aversion. In contrast, the z-score model

(like other shortfall-avoiding models) is an a priori optimization model,

because the experimenter can estimate the forager’s energy requirements,

independentof observed risk taking. However,if there is exponential ener-

getic carry-over (section 6.4), then the resulting model has the z-score and

variance discounting as special cases (here, variance discounting’s k mea-

sures the value of energy carried over). Thus the two models sometimes

may be complementary.

6.6 Impulsiveness, Hunger, and Time Discounting

The major limitation of long-term rate maximizing is that it ignores the

temporal pattern of energy intake: infinite energy gains tomorrowareirre-

levant to an animal that will starve unlessit finds another prey item before

dusk. The z-score model begins to consider the importance of “acquisition

pattern” by arguing that energy acquired before somecritical “day of

reckoning” is, sometimes, more important than longer-term gain. How-

ever, some evidence suggests that even shorter-term gains may be impor-

tant. Many psychologists have studied whether animals prefer large,

delayed rewards or small, immediate rewards (see Staddon 1983 for a

review). These operant experiments suggest that animals sometimes sac-

rifice long-term rate maximizing for immediate gains (Box 6.2). Is this a

response to risk?

Psychologists generally explain this “impulsiveness” without explicit

reference to “risk.” They argue that rewards now are fundamentally more

valuable than rewards in the future, just as a human investor values 5

dollars today more than 5 dollars tomorrow. Kagel et al. (1986) argue

that a delayed reward has a lower present value than a future reward,

because something—apredator, a mate, an aggressive conspecific—might

interrupt the forager during the delay: the longer the delay,the less likely

that the reward really will be obtained at the end. In principle, this “dis-

counting by interruptions” explanation only requires mean maximizing,

because Kagelet al.’s “present value” is the same as the expected reward
(Box 6.2).

However, Snyderman (1983b) has shownthat hungrier animals are more

impulsive (hungry animals are less selective in many situations; see
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BOX 6.2 PRESENT VALUE AND CHOICE

Green et al. (1981) have studied the choice problem shownin Figure B6.2.
Their pigeons were presented with a mutually exclusive choice every t seconds.
Onechoice led to a small reward (m, seconds; they controlled reward size by

controlling the seconds of access to food) after a delay of 6,, followed by a
post-feeding delay of A. The other choice led to a larger reward (m, seconds)
after a longer delay of 6,. The time required to take a small (6, + m, + A) was
always equalto the time required to take a large (6, + m,). A rate-maximizing
model predicts (see section 3.2) that the large choice should alwaysbe preferred.
Green et al. showed that the delay to small (6,) affects choice (Fig. B6.2[B]):
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Figure B6.2 (A) A schematic representation of Green et al.'s (1981) “self-

control’ experiment: 1 is the fixed time between choices, 6, is the delay before a
small reward, 6, is the delay before a large reward,A is the post-feeding delay after

a small reward, and m, and m, are the small and large rewards, respectively, mea-

sured as secondsofaccessto food. (B) Typical data from Greenetal.’s experiment.
As 6, increases, the preference for the larger delayed reward increases.
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BOX 6.2 (CONT.)

when small rewards occurred immediately after the “choice” point, they were
preferred over large, delayed rewards. Greenet al.’s pigeons flouted the first
five chapters of this book!
Kagel et al. (1986) have tried to explain this “impulsive” behavior using

standard economic arguments. Delayed reward has, they argue, a lower present

value than immediate reward. Kagel et al. argue that the present value of a
reward [PV(m, 6)] is (1) an increasing function ofreward size (m) and (2) a
decreasing function of delay (6). When there is no delay, present value equals
reward size [PV(m, 0) = m].

If (6) is the instantaneous decrease in value at delay 6, then

PV(m, 5) = me~5042,

According to standard economic arguments z(0) is a constant (z); thus

PV(m, 6) = me~™.

However, if 2 were constant, only changes in the difference in delays (6, — 6,)
could change preference, but Kagel et al. point out that the evidence shows
that absolute delay affects preference even when the difference is constant.
Thus z(6) must be a decreasing function ofdelay.

WHAT CAUSES TIME DISCOUNTING?
A human investor values 5 dollars today more than 5 dollars tomorrow

for two reasons: (1) an interruption, some “act of God,” may prevent the in-
vestor from collecting tomorrow’s fiver and (2) 5 dollars today can be put to

immediate use: it can earn a day’s worth ofinterest before tomorrow’s 5 dollars
can be collected. Kagel et al. show that the interruptions model (in which

rewards are weighted simply by the probability that they will still be there
after delay) produces the decreasing (6) function that is required. However,
Greenet al.’s pigeons experienced no interruptions. Another potential explana-
tion is that food gain “reduces” the cost of a deficit (see McFarland and
Houston 1981). If cost per unit time depends on the forager’s present food

supply, then, by reducing the cost sooner, a small, immediate reward may
reduce the cost of the deficit more than a larger, delayed reward would.   

Schoener 1971), which hints at a risk-sensitive component to time dis-
counting. If foragers collect fewer delayed rewards (as Kagel et al. sug-

gest), then delays will affect both the mean reward per choice and the

variance in rewardsper choice: immediate rewards will be almost certain,

and delayed rewardswill be risky. In any model with decreasing risk aver-

sion (section 6.2) we might expect that hungrier, but not starving, for-
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agers will have stronger preferences for the low-variance immediate

rewards, as Snydermanreports.

Time discounting might explain the apparent disagreement between the

psychological and ecological results shown in Table 6.1. Although be-

havioral ecologists have offered a choice of variable and fixed amounts to

their experimental subjects, psychologists have offered variable and fixed
delays. According to the theory of time discounting, the utility of a reward

decreases with delay in a concave-up fashion; hence, risk-proneness over

delay is expected (Houston and McNamara,in preparation).
Although hunger has long been knownto influence foraging behavior

(see Schoener 1971), conventional foraging theory has not dealt directly

with hunger. Some authors have argued that foragers use their hunger to

estimate the “habitat rate of intake” (Charnov 1976a). However, in Snyder-

man’s foraging experiments hungry pigeons were less selective (more im-

pulsive), even though both hungry and less hungry birds had plenty of

experience with the experimental encounter rates. The z-score modelgives

foraging theory a new view of hunger: it might be represented as increased

requirements, or as decreased expected gain. The z-score formalizes the

appealing idea that hungerrepresents a “threat of shortfall,” and changes

in the behavior of hungry foragers can be viewed as reactions to this

threat. The z-score modelitself probably cannot accountfor all the docu-
mented effects of hunger, but it points to the direction foraging theory

might take in its effort to explain them.

6.7 Summary

A forager faces a problem of risk when it must choose between known

probability distributions of reward, as opposed to choosing betweencer-

tain, or riskless, options. Predicting preferencesin risky situations requires

cardinal measuresofutility.

Foraging animals are notindifferent to risk, as mean-maximizing models

require. Foragers show both risk aversion (preference for certainty) and

risk proneness (preference for variability). Some foragers are risk-averse
when they have positive energy budgets but risk-prone when they have

negative energy budgets. The z-score model proposes that this switch in

risk sensitivity occurs because it minimizes the probability of an energetic

shortfall. The z-score model has someserious limitations. Many authors

have tried to explain risk-sensitive preferences using a linear combination

of mean and variance. |
Shortfall-avoiding models show how the temporal pattern of energy

gain might be important, and they show how hunger can be added to
foraging theory.



Dynamic Optimization: The

Logic of Multi-Stage

Decision Making

7.1 Introduction

The prey model of Chapter 2 solved for the best value of p,;, the prob-

ability of attacking prey type i upon encounter. The model assumesthat

the optimal probability of attack (p,) is constant: it does not change as a
function of the forager’s hunger or experience. Models in which the deci-

sion variable is constantare called “static optimization” models. In dynamic

models a forager can changeits decision from time to time: it might apply

one probability of attack on the first encounter and another on the

second. Dynamic optimization allows the decision variables to depend on
such factors as experience, hunger, and bodysize, and these variables

may in turn depend onprevious decisions. Dynamic optimization allows

for the possibility that a decision made today may affect tomorrow’s

decision:it finds optimal paths or trajectories, as opposed to the optimal

points found by static models.

REVISITING THE Z-SCORE

The z-score model (presented in the previous chapter) specifies the
levels of energy reserve at which it is optimal to choose high and low

variance options (minimizes the probability of an energy shortfall). The

z-score finds these energy reserve conditions using conventional static

optimization, but energy reserves may change from time to time. They

may even be changed by previous variance choices. Can the z-score be

interpreted as giving a dynamicrule: At any time (t) choose the minimum
variance (Onin) if the expected gains from now until dusk [y(t)] exceed
the expected requirements from now until dusk [R(t)]? The static tech-
niques we usedto find the z-score rule assumed that a constant variance
was to be chosen: i.e. if the forager chose high variance in the morning,
then it must choose high variance in the afternoon. Thus,strictly speaking,
z-score cannot be extended in this way (Houston and McNamara 1982).
The interaction between risk taking and energy reserves should really

be represented by a dynamic or multi-stage decision process. The forager’s
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variance choices might be represented by the list 01, 0, 03,..., O,-1,

c,, 0, is the standard deviation chosen at the ith interval. If the prob-
ability of a shortfall could be expressed as a function of the members

of this list [e.g. p(o1, 02, 03,.--,On-15 %)|, then in principle static tech-
niques could be used to find the list of optimal o/s. This could be done
by solving the n simultaneous equations 0p/éc; = 0, but this conventional

approach throws away a helpful piece of information. The decision
represented bya,, is taken after all the other o,;'s have been chosen. Thelist

01,05, 03,--+,O0,-—4, 0, is more than a garden variety vector of decision

variables; it is a sequence ofdecisions.
Without knowing how thefirst n — 1 o;’s were chosen, suppose that the

forager has reached the last decision with energy reserves S,. What o,

should be chosen? Since only one decision is now in question, static

optimization is appropriate, and the conventional z-score results apply:

choose 6, =Omn %R—-S,< i (7.1a)

choose o,=On,, IfR-—S,>h (7.1b)

where R is the gross daily requirement and yp is the expected gain per

interval. Furthermore, the conventional z-score specifies the probability of

a shortfall as a function ofS,;:

*(S _ ‘oun ~ Si _ L)/Omin|> if R — S,, <UL
, 7.2

mM ®[(R _ Sn _ L)/Omax], if R — Sn > Ul \

It is generally true that the solution from the static, one-decision caseis

the “last step” solution for dynamic optimization. The function p7(S,)

and the conditions (7.1) yield the optimal pay-off and optimal decision

implications for all possible values of S, (the energy reserves before the

last decision is taken). This function can be used to find the optimal

variance when there are two decisionsleft. The energy supply before the

nth decision (S,) is related to the energy supply before the n — 1th (S,_,)

by the equation S, = S,-, + Y, where Y indicates a random variable

drawn from a normal distribution with mean p and standard deviation

¢, 1. The probability of a shortfall can now be expressed as a function

of S,-, and o,_;:

P(Sy-15 On-1) = i Pr(Sp-1 + yo(y|u 6,1) 4y, (7.3)

where $(y|H,¢,—;) is a normal probability density function with pa-

rameters p and o,_,. The optimal value of o,-, and the minimum

probability of a shortfall, given two decisions remaining, for any value of

S,_, can now be found by applying ordinary single-decision static tech-

niques to the problem of minimizing expression (7.3). Unfortunately,
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expression (7.3) is difficult to minimize, but static optimization technique
is not important here. It is more important to recognize the way that a
dynamic optimization problem can be solved by working backwards
from the last step and performing static optimization at each step.
McNamara (1983, 1984) has shown,using a different argument, that the

conventional z-score rule can be applied at the next-to-last step, giving
the following:

choose o,_, =o ifR—S,_,<2y; (7.4a)

choose 6,-; =GOmax, if R —S, 1, > 2u; (7.4b)

and

P2(Sn-1, Omin)» if R — Sn-1 < 2u

; 7.
P2(Sn-1 Omax)s if R — Sn-1 > 2u ( 5)p3(S,- 1) =

Although the extreme-variance rule is still optimal at the next-to-last
step, the probability of a shortfall when two decisions remain is different
from the probability of a shortfall when only one decision remains.
Table 7.1 shows a comparison between p%(S,) and p*(S,_,). The table
shows that choosing g,,,, iS less dangerous when there are two decisions
left to make. In the static problem if the forager chooses high variance
at dawn, it must choose high variance until dusk, since only one decision
is being considered. The dynamic model allows the forager to become
conservative (switch to low variance)if its gambles pay off, and theflexi-
bility increases the forager’s probability of avoiding a shortfall.

Table 7.1

Probabilities of death when a risk-prone

decision is optimal?

 

 

Difference? of requirement Probabilities of death
 

 

and expected gains 1 step left 2 stepsleft

0.00 0.500 0.338

0.25 0.550 0.377

0.50 0.599 0.416

0.75 0.650 0.456

1.00 0.691 0.496

2.00 0.841 0.648

2.75 0.915 0.744
 

* Theseare the results of numerically integrating equa-

tions (7.2) and (7.5), assuming a mean of one, a maxi-

mum standard deviation of two, and a minimum standard

deviation of one.

> The requirement is always greater than the expecta-

tion when risk proneness is predicted. The difference

is expressed as a proportion of the maximum standard

deviation.
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BOX 7.1 DYNAMIC PROGRAMMING

This box derives the fundamental equations of dynamic programming. The
general problem is to find a sequence of decision variables u,,u,,...,U,,

where each u, is a decision made at time i. The state at time i is called
x,;. Energy supply was the state variable in the sequential z-score. A “next-

state function” (McFarland and Houston 1981) defines the changesin state as
a function of the previous state and the previous decision. The “next-state

function,”

Xi+1 = G(X;, uj), (B7.1a)

is said to represent the system’s dynamics, because it describes how thestate

and the decision influence the next state. The currency of maximization is

assumed to have the convenient form
M
sC=

t

H(x;, u;). (B.7.1b)
1

In this deterministic case (stochastic elements can be added to equation

[B7.1a] in at least three ways; see Jacobs 1974) the initial state (x,) and the
list of decisions (u,, u5,..., u,) specify the value of C, since all other x;’s can

be found using the next-state function. This is shown by writing C as a
function of only the initial state and the sequenceof u,’s, C(X1, Uy, Uz, .-- 5 Un).

Here, f,(x) is the best possible pay-off given the initial state x (x, = x):

fi(x)= max [C(x,u,,u5,...,uU,)]- (B7.1c)
U1, U2,-6..5 Un

The maximization indicated can be performed in arbitrary order, so we choose

to maximize with respect to u, last:

uy U2, - + 6 Un

fx) = max max [C(x,u,,U2,..., ull (B7.1d)

Thefirst term of C, referring back to equation (B7.1b), is independentoflater

decisions (u5,..., U,), SO

max [C(x, U;,U2,.--, u,)|
U2, - - 6 y Un

= H(x,u,)+ max (A[G(x, u,), vu] + H{G[G(x, uy), u],u3} +.. ).

By analogy to f(x), the maximized term in square brackets is called

f,-1[G(x, u,)]. It has the same interpretation as f,(x), and it is the best pos-

sible pay-off from a sequence of n — 1 steps beginning with state x, = G(x, u;).

Substitution showsthat f,_ ,[G(x, u,)] is related to f,(x) in the following way:

f(x) = max{H(x, u,) + fr-1LG(x, u,)]}- (B7.1e)
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BOX 7.1 (CONT.)

This expression relates every pair of consecutive decisions, since it was devel-
oped for arbitrary n. It relates f, to f, as well as it relates f,; to f,,. The

last-step solution,

f(x) = max[H(x, u,)], (B7.1f)

and equation (B7.1e) are the only equations necessary (in principle) to solve a
dynamic optimization problem. Equations (B7.1le) and (B7.1f) are sometimes
called the fundamental equations of dynamic programming. Expression

(B7.1e) shows how dynamic programmingevaluates a decision in termsofits
immediate effect [H(x, u,)| and its effect on the value of future decisions

(fn—1LG(x, u;)]}.
A solution reached by dynamic programming consists of finding the func-

tions f,(x) in steps of increasing i (i.e. working backwards in time) and using
the function fx) to find the optimal decision variable u*, ,. In static optimiza-

tion workers are often content to find the u#,,. In dynamic programming

the u*, , cannot be found until f,(x) is known, because f,(x) specifies the future
effects of any choice ofu;, ,.   
 

THE PRINCIPLE OF OPTIMALITY AND DYNAMIC PROGRAMMING

In principle expression (7.5) could now be used to solve the three-step

case (find the optimal o,,_,), but this two-step case is enoughtoillustrate

the basic approach to multi-stage decision making. It illustrates all the

general features of dynamic optimization problems and their solutions.

The most important thing to notice is the way the problem is approached

by moving backwards in time. We must know the optimal behaviorat

the last step to figure out the optimal behavior at the next-to-last step;

because the optimal behavior at the last step tells us how the results of

the next-to-last step should be evaluated. This backwards approachre-

flects Bellman’s (1957) principle of optimality: “An optimal policy has the

property that, whatever the initial state and initial decision are, the

remaining decisions must constitute an optimal policy with regard to

the state resulting from the first decision.” The principle of optimality

is the most fundamental and general idea in dynamic optimization. Our

reanalysis of the z-score applied this principle.

Mathematicians call the “brute force” application of the principle of

optimality, which our reanalysis of the z-score modelillustrates, dynamic

programming. Box 7.1 derives the so-called fundamental equations of dy-

namic programming. These equations show how,in a dynamic problem,a
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decision is evaluated in termsof its immediate effect and its effects on the

value of future decisions, Dynamic programming1s usually difficult, andit

seldom leads to an analytical solution. There are simpler techniques for

solving dynamic problems, but none is as general as dynamic program-

ming.If all else fails, dynamic programming and a computer will usually

produceresults.

7.2 Solving for Decision Functions: The PMP

So far we have discussed the problem of finding an optimal sequence of

discrete decisions, u*, u3,...,u*. A continuous dynamic optimization

problem attempts to find a function of time u*(t) that describes the best

decision path or trajectory. The optimal decision trajectory, u*(t), can be

found by dynamic programming. The fundamental equations of dynamic
programming, expressions(B7.1e) and (B7.1f), can be modified for the con-

tinuous case (Jacobs 1974 presents discrete and continuouscases side by

side).
Dynamic programmingis difficult in both discrete and continuouscases,

but in the continuous case there is an important mathematical technique

that can make dynamic solutions easier to find. This technique 1s called
Pontryagin’s Maximum Principle (PMP). PMPfinds u*(t) by combining

static optimization with the solutions of ordinary differential equations.

Many texts prove PMP (Dixit 1976 presents a clear development), but
it is necessaryto at least state it here, because the results in the remainderof

this chapter require a rudimentary knowledge of PMP.

PMP: PMP maximizes the currency integral

\. F[x(t), u(t), t] de. (7.6)

In this expression x(t) is a state variable expressed as an unknownfunction

of time, u(t) is the decision function (for which a solution is sought), and t

is time. Here x and u are scalars, but they could just as well be vectors.

There will usually be a required condition x(0) = by, where by is some

constant. To find the optimal decision function u*(t), we must know how

the state (x) changes with time as a function ofthe state itself (x), time (0),

and the decision variable (u); that is, we require an equation of the form

dx
Te 7 GLO HO, I: (7.7)

This function is a continuous version of Box 7.1’s next-state function. The

function g represents the “dynamics” of the system, and it is sometimes
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called the plant equation. This is a comparisonto industrial control pro-
cesses, in which the dynamicsgive the relationships between changes in

state and the design of the “plant.” The equation

A[x(2), u(t), B(.), t] = FLx(2), u(t), t] + Bglx(.), u(t), t] (7.8)

is called the Hamiltonian. In this expression f(t) is only a function of time

and it is an introduced and unknownfunction (which acts like a Lagrange

multiplier). It may be called the co-state variable, the auxiliary variable,
or the multiplier. PMP states that the u(t) that maximizes the currency

integral can be found by a static maximization of the Hamiltonian, plus
the following two ordinary differential equations:

dp oH*, ,
aOx x*(t), B(t), t], (7.9)

dx*  @GH*, ,
a op x*(t), B(0), t]. (7.10)

The asterisks (*) above indicate that the partial derivatives are evaluated

at the optimum u*(t).

An additional condition for maximizing the currency integral, often left

out of biological descriptions of PMP,1s the transversality condition. The

transversality condition states that the co-state function f(T) equals zero

at the time horizon T. This condition holds when is fixed and finite
and x(T) is not fixed. If T is not fixed and finite, or if x(T) is fixed, then

more complicated statements can still be made about the value of f(T)
[see Takayama 1974; T will not be fixed in time minimization problems,

and some problemswill have a fixed target state x(T)].

The plan for finding u*(t) by PMPis outlined below:

(1) Find the value u*(t) that maximizes the Hamiltonian. This can be done

by calculus or other static means. The result will give u*(t) as a func-
tion of x*(t), P(t), and t. Substituting u*(t) back into H gives H*[x*(t),

P(t), t], which is no longer a function of u*(t).
(ii) The result of the first step is used in equations (7.9) and (7.10). The

two resulting ordinary differential equations can (in principle) be

solved for f(t) and x*(t) as explicit functions oftime.

(iii) Since u*(t) was found as a function of x*(t) and f(t) in the first step,

the explicit functions of time found in the second step can be substi-

tuted to find u*(t) as an explicit function of time.

Formally, PMP finds u*(t) as a function of time alone (Box 7.2). The func-

tion u*(t) may notbe biologically interesting, because it hides information

about how the decision is related to the state. For example, a typical state



158 = CHAPTER 7

 

 

BOX 7.2 THE PMP: SOME SIMPLIFICATIONS

AND AN EXAMPLE

Two USEFUL RESULTS
A solution using PMP can sometimes be simplified, because it can be ar-

gued that the Hamiltonianis constant along the optimal path. The Hamilton-
ian is constant along the optimal path when time enters the Hamiltonian only

through other variables, that is H[x(t), u(t), P(t), t] = H[x(t), u(t), b(t)]. The
chain rule showsthis result:

dH* cCH*dx <¢dH* dp <oH*

di wxd + bd. a
    (B7.2a)
 

Substituting equations (7.9) and (7.10) shows that the underlined part of this
equation is zero. If 0H/¢t is also zero, then the Hamiltonian is constant along
the optimal path.
The decision variable may be the rate of change of state variable

u = dx/dt = x. For example, foraging behavior may be thought ofas control-

ling the rate of change of energy supply. Here the Hamiltonian 1s

F[x(t), x(t), t] + B(t)x(2)

(F is the integrand of the currency integral). Differentiating with respect to

the decision variable,

 

— = — plo,
and

OH* CF

6x 6x”

These equations can be substituted into expression (7.9) to yield

“ ee [x*(t), X(t), at = ~ [x*(t), x*(0), t]. (B7.2b)

This is called the Euler-Lagrange equation. The Euler-Lagrange equation was

used to solve dynamic optimization problems before the PMP was known.
Generally, equation (B7.2b) leads to a second orderdifferential equation, and

this can usually be solved. However, if any of the three arguments

[x*(t), x*(t), t] does not affect F, then the solution is even simpler. If x does
not affect F, then the right side of equation (B7.2b) is zero, and the equation

can be integrated to give the solution

PF ,
~ [x*(t), x*(t), t] = a constant of integration. (B7.2c)
x  
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Dixit (1976) discusses the other two cases. Foraging theorists often studyrates,

so the Euler-Lagrange equation maybe especially helpful.

AN EXAMPLE: THE SHORTEST PATH BETWEEN TWO POINTS

Biological applications of dynamic optimization seldom complete the solu-
tion by finding the control variable as a function oft (t is usually time). How-

ever, a completely worked example.is the best way to show howa solution by
PMPis supposed to work.

We have taken an example from Dixit (1976) that has no particular rele-

vance to foraging, but as Dixit says“it has the great merit” that everyone knows
the answer. Imagine a cartesian coordinate system with t (the equivalent of

time in this example) on the abscissa andy (the state variable) on the ordinate.
Wewantto find the function y(t) that has the shortest path between (0, 0) and

(1, 1). These points give initial condition y(0) = 0 and terminal condition

yd) = 1.
A result from elementary calculus says that the path length of any function

V(t) is

' dy\? |!

i i + (2) dt. (B7.2d)

Thus, we want to maximize the negative of this expression. Now let the con-
trol variable be u = dy/dt. The Hamiltonianis

H= —-(1+u7)'? + Bu;

maximizing by setting dH/du = 0, wefind that

u* = ant (B7.2e)

and substituting this back into the Hamiltonian, wefind

H* = —(1 — B?)!”, (B7.2f)

Now applying expression (7.9),

pe oH
dt Oy

Since 8 is a constant, u* and H* must also be constants (from equations
[B7.2e] and [B7.2f]). We could have concluded that H* was constant by ob-
serving that t does not enter H explicitly. Applying expression (7.10) shows
that

dy* _0H* B

de opTB   
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BOX 7.2 (CONT.)

Integrating this expression and applying the initial and terminal conditions

shows that

This can be solved more easily using the Euler-Lagrange equation, since the

control variable is the rate of change of the state variable. The integrand in

expression (B7.2d) does not involve y, so we can use equation (B7.2c): y = dy/dt,

SO

ay=a constant of integration = c(1+)? ° :
Solving this for gives

c
aoe = anotherconstant, say, k.y=

Solving this differential equation, we find

where c, is another constant of integration. Applying the initial conditions,

we find that

y*(t)=t

as expected.  
 

variable may be hunger, and a typical decision variable maybe patch res-

idence time. A biologist may be more interested in the relationship be-

tween hunger and patch residence time than in eliminating hunger from

the relationship (by substituting in the relationship between hunger and

time). Many biological PMP users have stoppedat step(i), because they

are interested in the relationship between decision andstate variables. This

may leave them with the awkward problem offinding a biological inter-

pretation for the introduced function f(t). [Like its cousin the Lagrange

multiplier, B(t) can be interpreted as the shadow price of a constraint; see

Dixit 1976]. Although biological applications of PMP seldom complete

the solution by finding u*(t) as a function of time, Box 7.2 presents a

worked example, which does find u*(t), to help the reader understand the

principle. Box 7.2 also discusses some situations in which PMP can be

simplified.
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7.3. Trade-offs and Dynamic Optimization

Dynamic foraging models usually focus on trade-offs (see Chapter 5 for a

static approachto trade-offs). For example, the following dynamic trade-

off problems have been studied: conflicts between feeding and predation

(Milinski and Heller 1978, Heller and Milinski 1979, Gilliam 1982,in prep-

aration); conflicts between feeding and territorial behavior (Ydenberg

1982 Ydenberg and Houston 1986); conflicts between feeding and drinking

(Sibly and McFarland 1976); and even conflicts between production and

reproduction in the social insects (Macevicz and Oster 1976).

Dynamic optimization is used to study trade-offs for two reasons.First,

it seems natural to formulate trade-off decisions as functions of internal
(or state) variables. The trade-off between feeding and drinking is con-

veniently formulated in terms of the internal deficits hunger and thirst.

The modeler would like to know which combinations of hungerandthirst

lead to feeding behavior and which combinationlead to drinking behavior.

The second reason for studying trade-offs using dynamic optimization

is that the time course of conflicting behaviors is often the phenomenon

of interest. For example, ornithologists have observed that male greattits
do muchoftheir territorial defense in the morning, but they are also likely
to be hungriest in the morning (Kacelnik and Krebs 1983). A modelbuilt
to study the trade-off between feeding andterritorial defense might try to
predict the time course of feeding and defense.

GREAT TITS: TERRITORIAL DEFENSE AND FORAGING
In the spring male great tits, living in deciduous forests in Southern

England, defend their territories by singing and patrolling in the tree tops.
However, they do much oftheir feeding on the ground,so there is a con-
flict: when the male feeds it cannot payfull attention to territorial defense
and advertising, but when it defendsits territory it cannot readily feed.
Ydenberg (1982) and Ydenberg and Houston (1986) studied this con-

flict by training captive male great tits (individually housed in large
aviaries) to collect food rewards from a feeder. This feeder delivered re-
wards when the bird hopped on a nearbyperch;the pattern offood delivery
was set as B*/* rewards obtained, on average, after B hops. This function
mimics patch depression (section 2.3). At any point the bird could fly to
a “reset” perch at the opposite end of the aviary. Landing on this perch re-
set the reward schedule in the feeding site (B wasreset to 0). In this set-up
an energy-maximizing great tit should forage in the patch andfly to the
perch according to the pattern predicted by the marginal-value theorem
(Chapter 2). However, Ydenberg and Houston (1986) placed an intruder
(another male great tit in a cage) near the reset perch. The experimental
male could see the intruder when it traveled to the reset perch, butit
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could not see the intruder when it foraged in the patch. This condition

simulates the conflict that male great tits experience in the field: they

can monitor and chase intruders when they travel between feedingsites,

but not when they are on the groundin a feedingsite.

Ydenberg and Houston argue that hunger might affect how a great

tit balances feeding against defense: a well-fed great tit will be freer to al-

locate time to territorial defense. Moreover, this factor makes it a dynamic

problem. Should a great tit feed now and defendlater, or defend now and

feed later? Suppose that x(t) is a state variable that representsthe greattit’s

hunger(or food deficit) at time t. In Ydenberg and Houston’s experiment

the food deficit is reduced at rate

dx Bi?
—=— , 711
dt B+t ( )
 

where B is the patch residence time, t is travel time, and B*/* is the ex-

perimentally determined gain function (time is scaled so that one hop

takes one time unit). A conventional way to handle this problem would be

to argue that external factors, such as the numberof intruders per hour,

set the value of t. If this were true, then changes in t could be viewed as

a simple constraint, and any given value of t would set the optimal patch

residence time according to the marginal-value theorem. Here, the rate-

maximizing B equals t, and the optimalrate of intake is Ryax(t) = (t7 */”)/2.

Ydenberg and Houston argue, however, that both B and 7 are decision

variables. The costs of territorial defense increase with time spent feeding

(B) and decrease with time spent traveling between patches (t). Thus they

argue that total costs per unit time are

k
k,B + — + C(x),

T

where k, and k, are constants, and C(x) is a function that specifies the

cost per time unit of a food deficit of size x. Costs increase with hunger

[C’(x) > 0], but C(x) does not depend on B ort. Ydenberg and Houston

seek to minimize total cost, so they maximize the currency integral

[i | kaw ++ cs)fa (7.12)

This minimizes total costs from time 0 to final time T, and it leads to the

Hamiltonian

 
1/2

Ho(Fa)~ ka2 C00 (7.13)
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Calculus can be usedto find the first order conditions for maximizing the

Hamiltonian(i.e. set 0H/0B = 0 and GH/ét = 0). This calculation shows

that optimal B* and t* values are related by

‘ T* |
B* = kc) 41 (7.14)

where k = k,/k,. In principle this result could now be used to find t* as

a function of k,, k,, and f(t), and equations (7.9) and (7.10) could be solved

to find f(t) as a function of time. Equation (7.14) could then be used to

find B* as a function oftime. This solution is difficult to find, and Ydenberg

and Houston are more interested in the relationship (7.14) between the

two decision variables B* and t* (Fig. 7.1[A]). In contrast to the marginal-

value theorem, this model does not predict that patch residence time (B)

always increaseswith travel time (rt); instead, this modelpredicts that patch

residence time will reach a maximum at an intermediate value of travel

time. The rate of energy intake in this model is always less than the rate

the marginal-value theorem would predict if t were regarded as a simple

constraint. This reduction reflects the compromise between maximizing

the rate of intake and controlling the costs of territorial defense.

The variable k (= kg/k,) measures the degree of “intrusion risk.”If k,

increases or k, decreases, the cost of “not defending” increases. Thus k

should go up when moreintruders threaten the territory. A higher k pre-

dicts a flatter relationship between B* and t* (Fig. 7.1[A]).

This model does not determine how greattit should allocate its efforts

to feeding and defense during the interval 0 to T. We have not answered

whethera greattit should delay feeding to shore upits territorial defense

or delay defense to feed, because we have not found t* as a function of

time. However, Ydenberg and Houston make the intuitively appealing

argument that travel times should always increase as hunger decreases.

Ydenberg and Houstontested their predictions using the experimental

set-up discussed above, and they found that travel times did increase as a

great tit reducedits food deficit. They also found that patch residence time

(B) reached a peak at an intermediate value of travel time (t), and that

the relationship between B and t was generally lower when they experi-

mentally increased intrusion risk (Fig. 7.1[B]).

SUNFISH: HABITAT CHOICE AND PREDATION

Gilliam (1982, in preparation; see also Werner and Gilliam 1984) has

presented one of the more thorough and thoughtful analyses of a dynamic

foraging problem. Gilliam analyzed how bluegill sunfish of different sizes

should choose feeding habitats. A bluegill living in the open water is more

likely to be preyed upon thana bluegill living in the weeds along the shore.
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Figure 7.1. (A) The solid curves showthe relationship between patch residence time

and travel time predicted by Ydenberg and Houston's model. Increasing the threat to

territorial intrusion (increasing the variable k) flattens the curve. The dashed,straight
line showstherelationship predicted by the marginal-value theorem, which simply adds

territorial defense time to travel time. At first Ydenberg and Houston's optima closely

follow the rate-maximizing marginal-value prediction, but as travel times get larger,

rate maximizing is sacrificed for territorial defense. (B) The results of Ydenberg and

Houston's experiment. The open circles show a treatment without an intruder, and the

black circles show a treatment with an intruder. Travel times increased as time in experi-

mental conditions elapsed. Thus Ydenberg and Houston divided experimental time into

quintiles. The circles marked 1 represent the mean patch residence time andtravel time

from the first quintile, and so on. The vertical bars are standard errors.
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The open water is always more dangerous than the weeds, but large fish

are less vulnerable in both weeds and open water. Figure 7.2 showsa hy-

pothetical relationship between bodysize and mortality rate (m) in both

weeds and open water. Staying in the weeds would always be a goodplan,

except that a bluegill can sometimes gain weight more quickly by feeding

on plankton in the open water. Gilliam represents the quality of food in

the two habitats by showing the hypothetical growthrate (g) that a fish of

a given size achieves by feeding in each of the two habitats (see Fig. 7.2).

If the real mortality versus-size and growth-versus-size functions were

like those in Figure 7.2, then it is obvious that staying in the weeds would

be a good idea for any fish smaller than S. But since the fish cannot stay

smaller than § forever, what should it do once it becomes bigger than $?

Near $ the growth rates are about the same. Why notstay in the weeds

and experience the smaller mortality rate? If the fish doesthis, then it will

be smaller next year and therefore will suffer more mortality then, because

bigger fish are always less vulnerable to predators. In short, picking a

growth rate today may determine tomorrow’s mortality rate. The best

solution can be found only by considering a lifetime trajectory of growth

rates.
Gilliam supposes that the bluegill chooses the proportion of time spent

in each habitat. If on a given day the bluegill chooses to spend 100p% of

its time in the weeds and 100(1 — p)% in the open water, then this choice,
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Figure 7.2 Hypothetical relationships for Gilliam’s study of bluegill habitat choice. The

figure shows relationships between growth rate and body size and between mortality

rate and bodysize in two habitats (weeds and open water). The mortality rate decreases

with body size in both habitats, and it is always lower in the weeds. The growth rate

at first increases with bodysize, but it declines after reaching a maximum.At small body

sizes the weeds both are safer and provide a higher growth rate. After body size $

there is a conflict between the safest habitat and the habitat that provides the highest

growthrate.
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Figure 7.3 The feasible combinations of

growth rate and mortality rate that a blue-

gill sunfish might choose at a given body

size.
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growth rate (g)

together with the functions shown in Figure 7.2, determines the mortality
and growth rates it achieves on that day. From a mathematician’s point
of view, one can think of the bluegill’s choosing a growth rate at each
instant, because at a fixed size a growth rate uniquely specifies p, which in

turn specifies a mortality rate. Figure 7.3 shows a hypothetical relation-

ship between growth rate and mortality rate. Since growth rate and size
determine mortality, the mortality rate can be expressed as a function of
growth rate (g, the decision variable) and size (s), or m(g,s).

Gilliam argues that (for a stable density dependent population) the op-

timal growth rate trajectory should maximize the following currency
integral:

Ro = {o {(t)b(t) dt.

In this equation, Ro is the net reproductive rate, /(t) is the survivorship

to age t, and H(t) is the fecundity at age t. The reader may recognize this

as a Standard expression from population biology. Here, T is a very large

finite time horizon, and T must be chosen so that surviving beyond age T

is impossible, “(T) = 0. Let s(t) be the size at age t. The growth rate also

will be a function of age. Thus the mortality rate can be written as a func-

tion of age alone, m(t) = m[s(t), g(t)]. The survivorship to age t will be

f(t) = e~ So mvdy = p~ DW, (7.15)

The twostate variables are s(t) and D(t), and the corresponding dynamic
equations are

aD _ [Jo mly)dy]
dt dt = mt) = m[s(2), g(t)], (7.16a)
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ds
a g(t). (7.16b)

This leads to the Hamiltonian

e~PBLs(t)] + Bp(t)m[s(t), g(t)] + BOg(). (7.17)

The maximum with respect to the decision variable (g) can be found by

differentiation

oF = Bolt)+ Bl) = 0 (7.18a)
Og Og

or

omwn = —BLOB (7.18b)g
Since the Hamiltonian is not an explicit function of time, it must be

constant along the optimal growthrate trajectory (see Box 7.2). Moreover,

since the Hamiltonian has the same value at any point in time between

QO and T, its value can be calculated at any convenient age. The upper

bound T is a convenient age, because here the co-state variables are both

equal to zero [f(T) = 6>(T) = 0, by the transversality condition men-

tioned in section 7.2]. The upper bound was chosen so that ¢(T) = 0.

Thus H must be equal to zero everywhere along the optimal growthrate

trajectory. Setting the Hamiltonian (7.17) equal to zero and substituting

the first order condition (7.18) leads to

dm _ ms, g) +e?b(s)/Bp
Og 7 g .

(Note that in this equation and the next one we no longer show variables

as explicit functions of time t.) The choice of g mustsatisfy this expression

at every point along the optimal growthrate trajectory. The juvenile case

gives an especially elegant result. Since juveniles do not reproduce (by

definition), b[s(t) ] = 0. Juveniles should choose growth rates so that

 (7.19)

om(s, g) _ ms, 9)
og g

This leads to a graphical interpretation similar to the familiar graphsof the

marginal-value theorem. Figure 7.4 showsthis graphical interpretation.

The comparison with the marginal-value theorem suggests anotherinter-

pretation. The growthrate at size s that satisfies equation (7.20) minimizes

the ratio m(s, g)/g. The choice of habitats under this minimization rule

 (7.20)
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Figure 7.4 At a given body size the

bluegill should pick that ‘‘growth rate-

mortality rate’” combination that mini-

mizes the ratio of mortality rate to

growth rate. A tangent drawn from the

Origin to the feasible ‘‘growth rate-

mortality rate’ curve intersects the curve

at the point that minimizes this ratio.
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growth rate (g)

can be a simple problem.If a juvenile bluegill must pick only one habitat

whenthe “open water” growthrate is twice the “weeds” growth rate, then

the open water should be preferred unless the “open water” mortality rate

is more than twice as great as the “weeds” mortality rate. The model pre-

dicts that juveniles should trade off growth rates in proportion to mor-

tality rates. In symbols the condition “choose habitat 1 if m,/g, < m,/g,”

is equivalent to the condition “choose habitat 1 if g,/g, < _m,/m,.” For

our purposesthe “juvenile result” is a good stopping point. Gilliam (1982)

discusses the conditions for mixed-habitat use by juveniles, the optimal

growth rate trajectories for adults, and how his results are changedif the

population is expanding or contracting.

7.4 Conclusions

Dynamic optimization is a powerful and general tool. We expect thatit

will become increasingly common in foraging theory. Unfortunately, few

biologists understand dynamic optimization well, and this diminishesits

value as a medium of communication. Moreover, many dynamic optimi-

zation problemsaredifficult to solve, and the approach to such problems

often has been to force the biology into a soluble framework, instead of

fitting the mathematics to the biology. Biologists have frequently used

quadratic currency integrals and linear dynamics, because these (LQP)

problems can be readily solved (see McFarland and Houston 1981, Jacobs

1974). If stochastic elements are added, dynamic optimization becomes

even more difficult, leading to a body of stochastic foraging theory that

relies almost solely on static optimization, and to a body of dynamic for-

aging theory that supposes a deterministic world. An important thrust of
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future work may be to bring these elements together (see Mangel and

Clark 1986).

Despite this reservation, there are important cases for which nothingelse

will do. Dynamic models have made important points about trade-offs

and their mediation by state variables (e.g. hunger, thirst, body size).

Ydenberg and Houston’s model shows how assumingthat (between-patch)

travel time is used for territorial defense changes the basic patch model.

Gilliam’s model puts foraging choicesin a life history framework, and he

finds a surprisingly simple result. McNamara’s dynamic z-score model ex-

plains why more foragers survive risk taking than is predicted bythestatic

z-score. McFarland and Houston (1981) review other applications of dy-

namic optimization to behavior.

7.5 Summary

Dynamic optimization is the study of multi-stage or sequential decision

making; in the continuous case this meansthe study of decision paths or

trajectories. A dynamic approach is called for when the “decision now”

affects the “best decision” later. This situation usually occurs because the

“decision now”affects the forager’s future state, which in turn affects the

economics of choice. The most general principle of dynamic optimization

is Bellman’s (1957) principle of optimality: “An optimal policy has the

property that, whatever the initial state and initial decision are, the re-
maining decisions must constitute an optimal policy with regard to the

state resulting from thefirst decision.”

Dynamic optimization problems can sometimes be solved by there-

peated application of the principle of optimality, beginning with the last

decision and working backwards in time. This method is called dynamic

programming. Dynamic programmingis difficult and often requires a nu-

merical solution.

In the continuous case a method called Pontryagin’s Maximum Prin-

ciple (PMP) can sometimes be used. PMP maylead to elegant solutions

where dynamic programming only leads to a muddle, but not often. Dy-

namic foraging optimization has focused on trade-off problems with satis-

fying results. We present a case in which the marginal-value theorem fails

because territorial defense conflicts with hunting within patches. Wepre-

sent a second model which considers the life history implications of for-

aging decisions. This model finds the optimal growth rate trajectory in

cases in which achieving a high growthrate conflicts with predator avoid-
ance, because the richest habitats may also be the most dangerous. The

case of non-breeding individuals gives an elegant result.



More on Constraints: Rules

of Thumb and Satisficing

8.1 Introduction

The wordconstraintis rapidly following in the footstepsofstrategy,fitness,

drive, and other catchwords whose popularity and vaguenessspell their

own demise. In the 1970s “the foraging ecology of the wren” became

“foraging strategies of the wren,” and in the 1980s the sameresearch might

be labeled “constraints on foraging in the wren.” In Chapter 1 (section 1.5)

we argued that constraints are all of those things that relate the decision

variable to the currency. Constraints, of one form or another, have always

been an important part of foraging theory. However, foraging theorists

have ignored,for generality’s sake, many constraints: how do beesperceive

flowers, how do pigeons “choose” between alternatives? Foraging theory

has eschewed these constraints as species-specific and mechanistic. The

resurgenceof interest in constraints is a reaction to this view. Constraint

advocates argue that foraging theory’s “generality” may evaporate into

vagueness, unless it begins to deal with “species-specific and mechanistic”

constraints. In this chapter we illustrate with some examples the main
themes of constraint research.

In addition to the formal mathematical meaning of constraint (section

1.5), students of behavior use the term in at least four ways. In this book

we distinguish between the following types of constraints: phylogenetic,

developmental, behavioral, and time-budget constraints. Dawkins (1982)

and Mayr (1982, 1983) discuss these and other uses of constraint in some

detail. In Chapter 1 (section 1.5) we discussed constraints in broad terms,

and we emphasized behavioral and time-budget constraints; these con-

straints limit the forager’s behavioral repertoire. Now we turn to the two

kinds of constraints which, rather than acting on the animal’s present
repertoire, limit the potential of the repertoire to change.

Phylogenetic constraints. Statements such as “given the pentaradial

symmetry of echinoderms, it would be difficult for them to evolve into
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active pursuit predators” or “given their compoundeye, insect predators

could not evolve high visual acuity” refer to a class of phylogenetic

constraints that Gould and Lewontin (1979) call “Bauplan constraints.”

As we point out in section 10.2, behavioral models of foraging deal with

a finer level of analysis than that involving Bauplan constraints.
The same applies to a second kind ofhistorical constraint, one arising

from the principle of “least resistance”: natural selection proceeds in small
steps along the path ofleast resistance from existing material, and it does

not plan ahead. This leads to some extraordinary contraptions: animals

that breathe through their anus, nerves that take circuitous routes from

the periphery to the central nervous system. Dawkins(1982) mentionsthe

recurrent laryngeal nerve of a giraffe, which goes from the larynx to the

brain via the base of the neck—hardly the solution that would be reached

by a designer starting from scratch! Gould (1980) makes a similar point

with his example of the panda’s thumb. Although these examples provide

excellent records of evolutionary history, they may appear to undermine

the notion of optimal design. If the products of selection are jury-rigged

contraptions, why talk of a priori models of good design? There are two

related replies to this. First, optimality is not perfection. The “path of least

resistance” argument that explains these imperfect contraptionsis itself

an optimality principle. Optimality principles can lead to contraptions.

Second, the models we discuss do not ask why the panda’s thumb is an
enlargement of the radial seismoid; rather, they ask whether, given the

thumbit has, the panda is an efficient forager, with the model explicitly

defining “efficient.” Of course the danger of reducing the level of analysis

like this is that we might be studying only trivial minutiae.

Developmental constraints. The process of development can be viewed as

a filter through which the range of possible phenotypes specified by the

genome must pass (Alberch 1982, Maderson 1982). Oster and Alberch

(1982) present a detailed theoretical analysis of this issue. They show how

morphogenesis may be predisposed to move along certain routes simply

because of the local forces arising from the physicochemical properties of

cytoplasm. Their analysis shows that bifurcation is a general develop-
mental principle: developmenttranslates a continuum of possible pheno-

types into an “either/or” outcome. The cytoplasmic properties influencing

development are themselves subject to selection, so Oster and Alberch’s

bifurcation surface cannot be viewed as an immutable constraint. As

Maderson (1982) suggests, the only ultimate constraints may be the

physicochemical properties of organic molecules.
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8.2 Behavioral Constraints: Rules of Thumb

Shrews apparently do not have the sensory equipment to discriminate

between prey of varying profitability (e/h). Instead, they discriminate by

prey size, a cue that is usually, but not always, correlated with profit-

ability (Barnard and Brown 1981).

Does this mean that shrews are suboptimal? Since all animals must

solve their foraging problems using some mechanism (or rule of thumb),

this question is generally important. There are two contrasting views.

On the one hand, Janetos and Cole (1981) and Myers (1983) think that

animals are equipped with “less than perfect” rules of thumb such as

“take the largest,” which, althoughefficient, are not as good as the optima

described by simple foraging models. They argue for more work on sub-

optimal rules of thumb instead of on simple optimality models. On the
other hand, Krebs et al. (1983) and Cheverton et al. (1985) see rules of

thumb asrefinements of the classical foraging models, into which more

realistic (but probably more parochial) constraint assumptions are in-

corporated. In this view the animal using the rule “take the largest”

may be optimizing within a larger number of constraints (e.g. sensory

limitations for shrews) than the one using the rule “take the most profit-

able” (see also Dennett 1983). Chevertonet al. (1985) extend this argument

and suggest that eventually design models based on optimality consider-

ations and mechanistic models based on physiological bases of behavior

could become unified as constrained optimization models. Although
this research program has not proceeded far, there is a growing body of

literature that tries to find “good but simple” rules of thumb.

8.3 The Performance of Rules of Thumb

Even if a forager’s behavioral and physiological equipment limits its

capacity to assess its environment, other rules of thumb may be compatible

with the animal’s equipment. This raises the question of whether some

rules might do better than others.

The most extensive theoretical analyses of performance of rules of

thumb deals with patch-leaving decisions, and as these rules have also

been investigated experimentally, we take them as a case study (see also

section 4.4). Iwasa et al. (1981), McNair (1982), and Green (1984) have

analyzed slightly different aspects of the performance of patch-leaving

rules. They all consider one or more of the following possible rules (Cowie

and Krebs 1979): (1) a number rule “leave after catching n prey” (Gibb



RULES OF THUMB AND SATISFICING * 173

1958); (2) a time rule “leave after t seconds” (Krebs 1973a); (3) a giving-up

time rule “leave after g seconds of unsuccessful search” (Krebset al. 1974);

and (4) a rate rule “leave when instantaneous intake rate drops to a

critical value r”(see section 4.4). It turns out that different rules do best in

different conditions; a discussion of the three main conditions follows.

A single patch type. McNair (1982) compares the performance of num-

ber, time, and giving-up time rules for animals foraging in an environment

characterized by a single patch type and stochastic encounters with prey

within the patch. He showsthat the nature of the gain function (Fig. 2.1)

has an important influence on which rule does best. If the function rises
steeply and then sharply flattens off, a number rule doesbest, since both

of the other rules may involve staying in the patch duringtheless profit-

able part of the gain function. If, on the other hand, there is gradual

resource depression, a giving-up time rule doesbest.

More than one patch type. McNair (1982) also considers the case in

which there are two patch types that the forager can recognize beforeit

enters them. If one patch type’s gain function 1s always above the other,

then the forager should have a longer giving-up time in the better type

patch. In other words, if the forager recognizes patch quality before

entering the patch, then it should be morepersistent in a good patch, in
the face of a run of bad luck, then it should in a poorpatch.

Patch sampling. Green (1984) and Iwasaet al. (1981) analyze the more

complicated problem in which patches vary in quality and cannot be

recognized beforehand. Iwasaet al. studied the performanceof three rules

(number, time, and giving-up time) whenthe forageris faced with different

distributions of the number of prey per patch. Intuitively, the best rule

depends on the distribution of patch qualities (prior distribution of patch

sub-types, Box 4.1). If all patches contain exactly two prey, for example,

the best rule is “take two and leave.” However,if half the patches contain

four prey and the other half contain none, then a forager using the “take

two and leave” rule will soon die of starvation. Here, a giving-up time
rule is probably the best of the three. Generalizing from this simple

example, Iwasa et al. show that (1) when each patch contains the same

number of prey (but encounters with prey are stochastic), a numberrule

does best; (2) when the numberof prey per patch has a high variance, a

giving-up time rules does best; and (3) when the numberofprey per patch

follows a Poisson distribution, a time rule does best. These differences

arise because the information value of a prey capture depends on the

distribution of patch qualities. With a fixed number of prey per patch,

each capturetells the forager that the patch is getting worse; with a high-

variance distribution, a capturetells the forager that it may have hit the
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jackpot and it should stick around; and with a Poisson distribution, a

capture gives no information aboutrelative patch quality.

Green’s approach is slightly different: he looks for the best possible

patch-leaving rule and compares its performance with two of Iwasaet.

al.’s rules—the fixed time and giving-up time rules. His model is not
directly comparable to Iwasaet al.’s, since he assumes no patch depression.

Green’s best rule has the form “leave if less than p prey are found after n

looks.” Green assumesthat prey occurin discrete slots, so hunting is just

a series of “looks” in slots. Green’s rule does better than a simple giving-

up time rule, because it reduces the chance of leaving too early as a

result of a run of bad luck (see also section 8.4), and becauseit allows a

more accurate assessmentofdifferences in patch quality.(It is also worth

adding, parenthetically, that the giving-up time rule gets 90% of the best

rule’s pay-off in the cases Green examined.)

Figure 8.1 summarizes some of these points graphically. A giving-up

time rule does best when there is a single patch type, when patch sub-

types can be easily recognized, or when the distribution of prey per patch

is clumped. Figure 8.1 shows a general representation of patch-leaving

rules as suggested by McNamara (1982; see section 4.4). A variable v,

the potential, declines from its starting value during unsuccessful search

within a patch. When the forager encounters a prey, the variable jumps a

certain amount. Thesize of the jump depends on the preceding duration

of unsuccessful search, rising to a maximum asthe time between captures

increases. Thus the incremental effects are like resetting a timer to its

starting value, with the amountof reset depending on how longthe timer

has been running. McNair’s analysis of two discriminable patch types can

be thought of as showingthat the size of the incrementis related to prey
size, so that the predator stays longer in those patches containing larger

prey (Figure 8.1[B]). When Green’s rate-maximizing assessment rule is
expressed in the same form,the key difference between it and a giving-up

time rule is that the jump dueto finding, say, the third prey item is the

same, regardless of how much unsuccessful search has preceded the en-

counter(Fig. 8.1[C]). In other words, the increments are additive, so that

a rapid burst of captures early in a patch visit will have a cumulative

effect in increasing residence time. The two remaining rules can berepre-

sented in similar graphical terms: for the fixed time rule, the potential

decays with time, independent of encounters, and for the fixed number

rule, it decreases a certain amount with each capture (Figs. 8.1[D] and
[E], Iwasa et al. 1981).

Increment-decay models such as the giving-up time and assessment

rules have a long tradition as ethological models of behavior. In addition
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Figure 8.1. Graphical summary of various patch-leaving rules. (A) A simple giving-up

time rule. The variable v declines with unsuccessful search, and it is reset to maximum

value at each encounter. (B) The sameas (A), but the size of the increment due to prey

capture depends on prey size, with a different maximum for small and large prey.

(C) Green's assessment rule. The increments are additive so that the rule responds to

average, and notlocal, rate. (D) A fixed time rule in which encounters have no effect

on the decay of v. (E) A fixed number rule in which the variable v declines a fixed

amount after each encounter. (F) Waage’s threshold rate model.

to their appeal as efficient rules of thumb (McNamara 1982) they bear

an obvious resemblance to well-established neural mechanisms such as

habituation and excitation and, as weshall see in the next section, they

describe patch leaving in real animals.
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8.4 Rules of Thumb: Experimental Evidence

Waage (1979) observed the parasitoid wasp Nemeritis canescens hunting

for patches of Plodia interpuntella in a substrate of middlings. Waage
found that the wasp followed an increment-decay model like Green’s

assessment model. Waage showed that two factors influence Nemeritis’s

patch residence time: (1) chemical stimuli from the hosts, which causes

the wasp to probe with its ovipositor and engage in area-restricted

search, and (2) successful oviposition, which causes the wasp to stay

longer; it may increase the wasp’s sensitivity to the host attractant chem-

ical. Waage hypothesized that an interaction between decay in responsive-

ness and increments in responsiveness caused by oviposition determine
patch residence time. These increments were not additive (as Green’s

rule predicts), but the giving-up time model (Fig. 8.1[A]) described the
wasp’s behavior best. (Waage allowed the wasps to encountereither 5

hosts in a burst at the beginningof a patchvisit or 5 at 3-minuteintervals.

The wasps in the “burst” treatment left earlier than the wasps in the

spread out treatment, so encounters do not have the cumulative effect

that Green expects.) However, Waage’s wasps did not use a simple giving-

up time rule, because the last-capture-to-leave interval was often shorter

than some of the earlier inter-capture intervals in the same patch visit.

The additional factor proposed by Waage to “smooth out” stochastic

variation in encounterrates early in the patchvisit is the effect of chemicals

produced by hosts: these set the variable v to a level above threshold, and

only after this initial effect has worn off does the model behavelike a sim-

ple giving-up time rule (Fig. 8.1[F]). This modified giving-up time rule
produces patch residence times more like those expected from Green’s

rate model than like those predicted by an ordinary giving-up timerule.

It seems possible that increment-decay models, which are essentially

elaborations of the giving-up time idea, can generally describe patch-

leaving decisions. Roitberg and Prokopy (1984) and Ydenberg (1984) have

used an approach similar to Waage’s.

8.5 Rules for Switching on Concurrent Schedules

HILL-CLIMBING

Animals in Skinner boxes choose between two keys orlevers offering

different pay-offs (schedules of reinforcement), and often these choices

are analogous to foraging decisions (Chapter 5, Staddon 1980, 1983,

Kamil and Yoerg 1982, Lea 1982, Kamil 1983). In this section we discuss
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one aspect of the psychological literature on choice between alternative

schedules of reinforcement: the moment-to-momentdecision rule used by

the animals. Staddon (1983) presents an extensive discussion of this

problem, as well as other parallels between animal psychology and for-

aging theory.

Psychologists frequently study the choice between two so-called vari-

able interval schedules (concurrent VI-VI, in the argot of the Skinner

box aficionado). These VI schedules “set up” rewards at random time

intervals, and rewards usually remain “set up” until the animal pecks the

correct key. Obviously, the longer it has been since the last response to

a key, the more likely it is that a reward will be received when the key

is pecked. The achieved reward rate is independent of the response rate

if the animal respondsat any rate greater than one responseperinterval.

Although it was not chosen because it bears a resemblance to natural

foraging problems, the VI behaves like rapidly depleting food sources

that are replenished in the forager’s absence, for example, floral nectar

(Kamil 1978) or insects washed up on a stream bank (Davies and Houston

1981). If rewards are set up with probability p during each time interval

and the last response occurred n intervals ago, the probability of obtaining

food, given a response,1s

P(food|response) = 1 — (1 — p)’,

which, if time intervals are small, can be approximated by

P(food|response) = 1 — e~*,

where f is the rate at which rewards are “set up” and ¢ is the time since
the last response (Staddon 1983).

Hinson and Staddon (1983) present evidence that the choice rule for a

pigeon in a concurrent VI-VI experimentis “pick the alternative with the
higher probability of pay-off,” a rule they call hill-climbing or momentary

maximizing. The rule can be formalized as follows: Choose alternative A

if P(food|t,) > P(food|t,), where t, and tg, are times since the last re-
sponse on A and respectively. If the two reinforcement schedules have

identical set-up rates, then the rule reduces to “choose A if t, > tg.” In
general, the rule is: Choose A if

ty > tp(B4/Bp). (8.1)

This rule was tested by plotting the responses of pigeons on a graph

whose axes are t, and tp, (Fig. 8.2). Expression (8.1) gives the switching

line in this graph: above the line a momentary maximizer should choose
A, below the line it should choose B. Note that the rule and the data
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Figure 8.2. A graphical representation of hill-

climbing in a concurrent VI-VI experiment.
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refer to steady-state behavior. Chapter 4 deals with the problem of

acquisition, or how animals might find out about schedules of rein-

forcement.
Herrnstein and Vaughan (1980) and Vaughan and Herrnstein (1986)

also have suggested that the rule for choice on concurrent schedules 1n-

volves a form of hill-climbing, one that they call melioration. Melioration

is less precisely defined than momentary maximizing, butit is similar. The

verbal definition is as follows: “If the value of a (per unit time) exceeds that

of b, relatively more time will come to be distributed to a” (Vaughan and

Herrnstein 1986). Note that this definition does not specify the interval over

which “value” is measured (Hinson and Staddon’s hill-climbingrefers to

instantaneousprobabilities), and that the form of response allocation is also

not stated exactly (“more”as opposedto “all” in momentary maximizing).

Despite these differences, melioration—like momentary maximizing—
emphasizes local rates of reinforcement as the determinants of choice.

Several studies have shown that local rates are important (Mazur 1981,
Vaughan 1981, Vaughan et al. 1982). The animal must work on key A to

set up rewards at key B, an arrangement which meansthat the highest

overall reward rate could be obtained by working mainly at A andjust

hopping across to B to pick up the rewards. But since rewards are mainly

obtained at B, an animal whose choice is guided by local as opposed to

global rates of reinforcement will work mainly at B, and this is what

psychologists find. However, this experiment is somewhatartificial (the

only natural analogue that comes to mind is a fox tapping its paw at one

entrance to a burrow and rushing roundto collect the rabbit as it tries

to escape from the other end—a problem that pigeons probably do not

face in nature). While the contrived nature of the experiment may help
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us find the forager’s choice mechanisms, just as bringing a bird into

breeding season in midwinter with artificially long days reveals something

about how breeding is controlled, it may limit the ability of the experiment

to reveal why the rule is used. This brings us to the topic of matching

versus overall maximizing.

MATCHING AND MAXIMIZING AS CONSEQUENCES OF HILL-CLIMBING
The matching law (Herrnstein 1970) describes overall (or molar) choice

behavior in a general way:

T4/T = w(ra/Ts),

where T; is the time allocated to alternative i, r; is the reward rate obtained
from i, and w is a weighting factor ( = 1 for perfect matching). Thus the

matching lawstates that relative time allocation matchesrelative rewards

obtained. Althoughthere is no doubtthat the matching law describes many

data, it is not clear whetherits importance goes beyond this. It mayreflect

a moment-to-moment choice rule or a design feature favored by natural

selection. We discuss these two possibilities in turn. First, it is intuitively

obvious that momentary maximizing leads to an overall outcome similar

to matching. Figure 8.2 showsthat as the switching line rotates clockwise,

the relative value of B increases, and so doesthe relative time allocated

to B. Staddon (1983) reports that simulations of momentary maximizing

show that it generally leads to slight undermatching:if the ratio of rewards

obtained is 3:1, the time allocation will be a little less than 3:1. Herrnstein

and Vaughan (1980) also suggest that their version of hill-climbing, melio-

ration, leads to overall matching.

Second, there is considerable controversy about the relationship be-

tween matching and overall maximizing (Houston and McNamara 1981,

Heyman and Luce 1979, Houston 1983). Without going into details, it is

fair to say that matching and maximizing are exactly or nearly equivalent
in some situations (the animal that matches also maximizes overall pay-

off), but they are not equivalent for other schedules. In these cases animals

approximate matching rather than overall maximizing. Whatis therele-

vance of this result to foraging theory? Suppose that hill-climbing is the

basic rule of thumb. According to foraging theory, animals use this rule

because it usually does well. If “doing well” means overall maximizing of

pay-off, then the rule is used because of this consequence and not because

of matching. The two outcomesare frequently similar, so the rule usually

produces both. However, experiments can be designed so that the rule

produces matching and not maximizing; according to foraging theory, the

experimenter has tricked the animal into doing the wrongthing.
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8.6 Satisficing and Constraints

“Instead of shoring up the idea of optimal design with more and more

constraints, should we not simply abandon the idea that animals are op-

timal, and accept the idea that they are efficient but not optimal?”

Some authors extend this point by drawing a parallel between the con-

cept of satisficing in decision theory and the notion that animals “do well,

but they do not optimize” (Myers 1983, Krebs and McCleery 1984). This

parallel is probably misleading. Decision theory uses satisficing (Simon

1956) and optimization as purely descriptive tools (a posteriori optimiza-

tion): rational decision making can be described as utility maximization

or, as Simon showed,asa Satisficing process in which the decision-maker
is satisfied after meeting some minimal requirement. As we pointed out in

Chapter 1, foraging theory relies on a priori optimality arguments. There-

fore, to justify talking about satisficing foraging theory instead of optimal

foraging theory we would have to consider whether an argument from

natural selection can be madeforsatisficing, just as we have argued for

optimization. Such an argument can be summarized graphically by plot-

ting fitness (say, reproductive success) as a function of performance accord-

ing to some design criterion (say, rate of food intake). The argumentfor

optimization is that fitness increases continually as a function of perfor-

mance, at least to the maximum attainable value. The equivalent case for

satisficing would bethat fitness varies with performance according to a

step function, so that above the threshold (Fig. 8.3) there is no relation be-

tween, say, food intake and reproductive success (Krebs and McCleery

1984). The threshold condition seems most unlikely to occur in nature,

especially if one thinks aboutthe effect of stochasticity. Suppose that there

is a fixed requirement of food for survival, but the exact amountis un-

predictable; the further the animal gets above the threshold,theless likely

it is to fall within the stochastic range of the step change in fitness (see

Myers 1983, Krebs and McCleery 1984 for other views of satisfaction).

However, let us accept for a moment the argumentthat there is a case

for predicting that animals will be satisficers. How does this view fare as

a recipe for research? We believe that it soon leads to a dead end because

it too readily fits the facts. Take Krebset al.’s (1977) observation that

great tits, while they select more profitable prey, do not do so in the ex-

clusive way predicted by simple diet models. Oneinterpretation of this be-

havior would bethat great tits are not optimizers, they are just efficient.

This answeris confirmed by data, so no further investigation is necessary.

A proponentof optimization, on the other hand, might consider whether
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the original optimization model madeincorrect assumptions about con-

straints. This line of argument would lead to a search for what the con-

straints mightbe. In the case underdiscussion, Rechtenetal. (1983) showed

that great tits make discrimination errors, and that this constraint is a

componentofthe variation that leadsto partial preferences (Stephens 1985,

Box 2.3). Thus the “optimization with more constraints” approach has

led to new experiments, and eventually to a deeper understanding of how

prey selection works.

8.7 Concluding Remarks: Constraint versus Design

We conclude with two unresolved problems. Thefirst, to which we have

no simple solution, is that “one person’s constraint may be another’s de-

sign problem.” The behavioral ecologist accepts the forager’s sensory limi-

tations as constraints, but neurophysiologists may well ask whythe sensory

system is designed the way it is. This difference reflects the hierarchical

organization ofliving things. It is worth being aware of the problem, but

it does not undermine the study of design at any particular level.

The second point seems to be a simple practical question. We have

seen in previous chapters that there are two main ways to change foraging
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models: change the constraints or change the currency. How doesthe re-

searcher know which to do? One obvioustactic is: if the interest is in

evaluating alternative currency models, study systems with well-identified

constraints; if the interest is in constraints, choose systems in which there

is little doubt about the currency (or in which many currencies give the

samepredictions). With further thought, it becomes evident that constraint

and currency are only partially separable issues: “constraint” is meaning-

less without something to constrain. The confounding of constraint and

currency mayreflect an important feature of nature: animals are a mess

of competing goals and complex limitations. This chapter shows how cur-

rencies help us evaluate mechanisms: for example, we ask which of a set

of simple patch-leaving rules does best. Optimality techniques may be

powerful tools for studying nature precisely because they allow us to

combine constraint and currency.

8.8 Summary

Foraging theory is beginning to pay moreattention to the limitations on

and mechanismsof foraging behavior. Some workers ask about rules of

thumb: are there simple rules that do well despite their simplicity? Patch-

leaving rules have been studied extensively in this context. Waage’s work

with ovipositing parasitoids is an elegant example of how deductions can

be made aboutrules of thumb.

Some psychologists have taken a similar approach to explaining choice

behavior. Hill-climbing and melioration are two rules of thumb that

sometimes describe choice behavior. These rules may lead to so-called

“matching.”

Some workers argue that “satisficing” explains foraging behavior as

well as “optimality” does. However, there is no reason to suppose that

animals satisfice, and satisficing does not lead to further questions about

behavior, because any “less than perfect” result can be written off as

satisficing.



Testing Foraging Models

Only the behavior and ecology of real animals can determine the ultimate

value of foraging models. Can the models explain existing observations?

Do they predict new phenomena? Can they make quantitative and general

predictions? Although we have discussed some empirical evidence in pre-

ceding chapters, here we consider these questions in more detail. First we

consider what kind of account of the data foraging theory might provide,

together with the related question of how one might “test” a foraging

model. Second, we summarize the available evidence, thereby showing the

degree of success that the prey and patch models have enjoyed in studies

that have tested them. This summaryalso helps to answer ourthird ques-

tion: what are some commonpitfalls that testers of foraging models meet?

Finally, we suggest some guidelines for those planning to use the models

in interpreting their data; some of the points we raise may seem trivially

obvious, but the frequency of errors in the literature indicates the need

to spell them out.

9.1 Foraging Models and Data

WHAT ARE FORAGING MODELS SUPPOSED To Do?

Different people have used foraging models (and optimality models

generally) for different purposes. We distinguish six ways to use foraging

models, although we do not contend that ourlist is exhaustive.

1. To Ask How Good Organisms Are at Doing Their Jobs. In other

words, how well adapted are they? McFarland (1977) outlined this re-

search program, in which one comparesthe animal’s actual decision rules
with a range of alternatives. If the actual rules maximize fitness, then

McFarland would claim that the animal is well adapted. This program

has yet to be carried out.

2. To Ask What Animals Are “‘Designed”’ To Do. This use of foraging

models emphasizes currencies; it asks which currency gives the best ac-

count of behavior, given that the constraints are well understood. This

kind of research might eventually show how differences in currency are
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correlated with differences in ecology (e.g. maximizing net energy gain

may explain the behavior of small animals with high metabolic rates, but

maximizing efficiency may explain the behavior of animals that operate

within a fixed energy budget). Caraco’s analysis (Caraco et al. 1980b,

Chapter6) of risk-sensitive choice shows, for example, how differences in

currency might be related to ecological conditions.

3. To Analyze Behavioral Mechanisms.If the currency is assumed to be

well understood, foraging models could be used to determine which con-

straint assumptions best account for behavior. Since constraints reflect

the mechanisms controlling behavior, this approach might increase our

understanding of mechanisms. For example, Chevertonet al. (1985) anal-

yzed bumblebee movements using this approach; assuming that the bees
maximize the rate of gain, Chevertonet al. used bees’ “errors” in perfor-

mance to make deductions about the mechanismsthat control movement
between flowers.

4. To Simultaneously Analyze What Animals Are Designed To Do and

How They Do It. When using foraging models in this way, workers ac-

knowledge uncertainty about both constraints and currency. The problem

inherent in this approach is that there are two “unknowns”(constraints

and currencies) to play with (Chapter 8), and usually one must assume

that either constraints or currencies are understood (Chevertonet al. 1985).

5. To Serve as a General Background Against Which To Organize Ob-

servations about Individual Behavior. Manyfield studies, although not ex-

plicitly aiming to “test” foraging models, use the general ideas of foraging

to organize data and ideas. A typical example might be using the prey

model to account for seasonal changes in diet breadth (Schluter 1981).

This approach is probably used more often than the others.
6. To Serve as a Tool for Understanding the Organization of Commu-

nities or Populations. This enterprise has received little emphasis in this

book, although it was the aim of the original papers in foraging theory

(i.e. Emlen 1966, MacArthur and Pianka 1966). We believe it may be best

to establish how well the theory accounts for individual behavior in well-

defined situations, and then proceed to more complex problems.

POSSIBLE OUTCOMES OF TESTS OF FORAGING THEORY

Even the most skeptical workers would admit that current foraging

models can qualitatively account for what some foragers do some of the

time. At the other extreme, even the most zealous advocates of current

models would admit that they do not account for all foraging behavior

in quantitative detail. It is surely uncontroversial to conclude thatreality

lies somewhere between these two extremes! Obviously, the advocates of
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foraging theory would prefer to find that foraging theory gives quantita-

tive and general accounts of foraging behavior, since an imprecise and

parochial modelis less desirable than one that makes precise and general

statements about the things it purports to explain.

There is, however, a trade-off: the greater the precision, the less the

generality, and vice versa (Holling 1966); foraging models aim for gener-

ality rather than for complete precision. The most precise models in biology

are usually purely descriptive: they are based on observedrelationships or

processes, but foraging models are (to someextent) predictive and explan-

atory because they are derived (at least in part) from a priori considera-

tions. For example, a purely descriptive model might be based onfield

estimates of the population processes of mortality, fecundity, dispersal,

and so on. Such a model emphasizes accurate descriptionsof a particular

population, and the descriptive model used to manage a duck population

may not work for an anchovy population. In contrast the marginal-value

theorem might apply equally well to fish, birds, and insects.

The basic foraging models do not predict between- and within-individual

variability in behavior, and this limits the accuracy of their predictions

(an exception is the “ideal free” model of Fretwell 1972 that can account

for variability in habitat choice on a population level; see also Parker

1978, Milinski 1979, Harper 1982, Godin and Keenleyside 1984). This is

not to say that foraging theory cannot explain variability: one approach

models variability as information acquisition (Chapter 4—-subjecting vari-

ability itself to an optimality analysis); another approachtreats variability

as a constraint (Houston and McNamara 1985).

9.2 Testing Foraging Models

Muchofthe literature on foraging theory in the last ten years has tried

to test the basic foraging models’ predictions. Ideally, a test should ensure
that the model’s assumptions are met, and the observer should directly

measure the predicted quantities (such as patch residence time, propor-

tion of different prey types attacked upon encounter, or size of items

brought to the nest). How closely should the predictions agree with the

results? The discussion in the previous paragraph indicates that we should

not expect exact correspondence, so determining how muchdisparity is

“acceptable” becomes a matter of judgment. Standard statistical tech-

niques, of course, provide one yardstick by which the agreement between

predicted and observed outcomes maybe judged (see Box 2.3 onthesta-

tistical treatment of prediction of “all or nothing” choices).
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Predictions versus assumptions. In principle any model can be investigated
by examining its assumptions, its predictions, or both. Foraging models

make two types of assumptions. Some assumptionsare part of the general

background (e.g. the assumptions that net rate of energy gain is related

to fitness, and that natural selection optimizes design), but other assump-

tions are specific to the model being considered (e.g. the incompatibility

of search and handling, within-patch resource depression, or sequential

encounters). Assumptionsthat constitute the general background usually

are not tested directly, and indeed they may notbe directly testable. In-

stead, they gain or lose credibility with the successes or failures of models

based on them: when the predictions of a foraging model agree with the

data, the model’s assumptions—including those wecall “general back-

ground assumptions”—are vindicated.

“Model-specific” assumptions can usually be tested directly, by obser-

vation or by appropriate experimental procedures. In many foraging stud-

ies the observer does not know which assumptions, if any, are met (see

Table 9.1); how should these tests be assessed? A quantitative agreement

between predicted and observed outcomes may partially justify the

(untested) assumptions (although caution is necessary—see section 9.5).

However, since the fit is rarely exact, one must know whetherspecific

assumptions are met to determine what may have caused the discrepancy

between predicted and observed outcomes. In manyofthe studies in Table

9.1 results that apparently run counter to the foraging models’ predictions

may have done so because the model’s assumptions were not met. Thus

they are not the strong refutations needed to guide further research.

Alternative hypotheses. Most studies that have tested foraging models have

considered only one explicit alternative hypothesis, namely, a null hypoth-

esis of random choice. For example, a study of how patch residence time

is related to travel time may conclude that the twoare positively related,

and that the relationship between them is not random. A quantitative

test of the relationship between patch residence time and travel time

(e.g. Cowie 1977), in which a particular form of the relationship is predic-
ted, implicitly tests alternative hypotheses such as linear and hyperbolic

relationships.

Most people think of alternative hypotheses as different models incor-

porating different constraints or currencies, and notasdifferent statistical
relationships between variables. Somestudies explicitly set out to compare

currencies (e.g. Caraco et al. 1980b, Kacelnik 1984, Schmid-Hempel etal.

1985, Stephens et al. 1986), and this approach should be more widely

adopted.



Table 9.1

Summary of tests of classical foraging models and their derivatives

 
 

Codes
 

Prey models

Where?

How?

Predictions tested

Assumptions

Results

L = Laboratory F = Field

E = Experiment O = Observation

A = Preference for more profitable prey

B = Increasedselectivity at higher encounter rates

C = Selectivity independent of abundance of low-ranking prey

D = Quantitative estimation of threshold for dropping items from diet

Exc. = Exclusivity of search and handling

Seq. = Sequential or simultaneous encounters

Ran. = Random encounters

Inv. = Involvement time (handling and recognition)

(In each case VW indicates that assumption is probably correct for model used, ? indicates it is not known whether assumption is correct, and xX indicates

assumption Is incorrect.)

1 = Quantitative agreement with model

2 = Quantitative agreement but partial preferences

3 = Partially or qualitatively consistent with model

4 = Inconsistent with model

Patch (marginal-value) models and Central-place foraging models (multiple-prey loaders)

Codes as for prey models except:

Predictions tested

Assumptions

A = Morepersistent in each patch when environment as a whole poor or whentravel time longer

B = Patchesall reduced to similar marginal value

C = More resources extracted from better patches

D = Quantitative tests

| = Patch quality recognizable

G = Gain function known

Central-place foraging models (single-prey loaders)

Codes as for prey models except:

Predictions tested

Assumptions

A = Bigger prey brought from greater distances

B = Quantitative estimation of distance for dropping prey size classes from diet

V = Availability of sizes similar at all sites
 



Table 9.1 (Continued)

 

 

Prey models

 

 

 

What? Predictions tested Assumptions

Where? How?

Reference L/F E/O Forager Prey A B CC  D_ Exc. Seq. Ran. Inv. Results Comments

Allen 1983 L E Asterias bivalves vw Ww w~ ? ae 3

Anderson 1984 L E Micropterus guppies, vw Y ? wv 3 Fish more selective when apparent

damselflies prey density higher (less cover in

tank)

Barnard and Brown 1981 L E Sorex Tenebrio Y YY YY VY YY vo 3-4 Preference based onsize, not e/h

Barnard and Stephens 1981 F O Vanellus Lumbricus ~ YY ~ Y Y 3

Bell et al. 1984 F O Hymenoptera Impatiens Y ~ wv ? Y 3 Prefer more profitable flowers

Belovsky 1978 F O Alces vegetation ~ NA NA NA NA 1 Nutrient constraint model agrees
with observed diet

Belovsky 1981 F O Alces vegetation ~~ NA NA NA NA 3-4 Choice of some species within
habitat not as predicted; others

taken if above nutrient threshold

Davidson 1978 F O Pogonomyrmex barleyseeds WY WW Y VS Ae ? 3 Increasing selectivity at high

density

Davies 1977a F O Motacilla insects vw YY VY Y ? ? ? 3 Increasing selectivity at high

density. No effect of

Davies 1977b F O Muscicapa insects vw Vv VY Y ? ? ? 3 abundance of low-ranking prey

Draulans 1982 F E/O Aythya Dreissena vw ~ ? ? ? 3-4 Consistent with model onlyif
. assumedive timeis limited

Ebersole and Wilson 1980 L E Peromyscus seeds ~ ? ? ? ? ? e/h not measured: results therefore

inconclusive

ElIner and Hughes 1978 L E Carcinus Mytilus YY Vv VY Y YC SY VY 3 Consistent with model including
recognition time

Emlen and Emlen 1975 L E Mus seeds ~Y Y Vv VY ? ? ? 3

Erichsenetal. 1980 L E Parus Tenebrio Y VY VY VY VY XY YY MYM 2 See Rechtenetal. (1981)

Erlinge 1981 L/F O Mustela (£7) voles vy WY Y ~ ? ? 3-4 J prefers more profitable species; ?
does not. Prey distribution not

known

Furnass 1979 L E Perca Crustacea Y Y ? ? ? ? e/h not measured: results therefore

inconclusive

Gardner 1981 L E Lepomis Daphnia wv vy VY ~ Y Y 3 Rejection of small prey not due to
apparentsize, but see Butler and

Bence (1984), Wetterer and

Bishop (1985)
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Consistent with signal detection

model of optimal prey choice

See Wetterer and Bishop (1985)

No increase in selectivity at higher

prey densities, but prey model

may be inappropriate (see Cook

and Cockrell 1978, Sih 1980)

Corophium preferred to Nereis

even though e//A lower;

availability a possible

confounding variable

Handling time not measured:

significance not clear

e/h not measured

See Rechtenet al. (1981). Ad hoc

modification of model for one

bird (n = 5)

Do not prefer most profitable size

Prefer smallest prey; size a possible

confounding variable

Prefer large prey; size a possible

confounding variable. Preference

increases with encounterrate;

someeffect of encounterrate

with low-ranked prey

Prefer large prey only if experienced

Prefer husked seeds

See Rechtenet al. (1981)

e/h not measured: relevance not

clear

Main discrepancy: prefer small

reward with short delay over big

reward with long delay even if

former has lower e/h

Hickory seeds preferred even

though others had higher e/h

Exception: one toxic species

avoided
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Table 9.1 (Continued)

 

 

 

 

 

Prey models

What? Predictions tested Assumptions

Where? How?

Reference L/F E/O Forager Prey A B CC  D_ Exc. Seq. Ran. Inv. Results Comments

Marden and Waddington 1981 F E Apis artificial Y Y~ VW ? Y 3

flowers

Meire and Ervynck 1985 F O Ostralegus molluscs Y oY ~Y Y SY VY 3

Milton 1979 F O Howler monkey leaves Y ~ SY ? ? 3-? Prefer leaves with high protein/

fiber. Time variables not measured

Mittelbach 1981 L/F E/O Lepomis Daphnia YY vw YY vw ? oY Y 2 Apparentsize a confounding

variable; encounter could be

simultaneous (see Wetterer and

Bishop 1985)

Moermond and Denslow 1983 L E Frugivorous Fruit ~ Y x x Y ? Choice tests: large, ripe or

birds accessible fruit preferred

Montgomerieetal. 1984 L E Hummingbirds artificial vv Y ~ vy VY 2 Choice maximizes net energy/

flowers volume, not net rate of intake

Ohguchiand Aoki 1983 F E Apis food/water Y~ Vw YY VY ? ? Y 2-4 Maximize energy gain when water

not in short supply

Palmer 1979 L E Thais invertebrates VW VY VY YW VY ? vY Ww 2-3

Pastorok 1980 L E Chaoborus Diaptomus YY SY Y Y ? ? 3 More selective when less hungry

Daphnia and at higher encounter rates

Pulliam 1980 F O Spizella seeds vv vw Y w ? ? 3-4 Someexceptions to preference

based on profitability. Spatial

distribution not known

Rapport 1980 L E Stentor Protists NA NA NA NA NA NA NA 3 Results consistent with

complementary resources model

Rechtenetal. 1983 L E Parus Tenebrio ww vy YY VY YY VY 3 Partial preference explained by

discrimination errors. Allowing

for this, birds too choosey

Reichman 1977 F O desert rodents seeds Y ? ? ? ? ? No measuresof e/h, spatial

distribution of seeds,etc.

Richards 1983 L E Thinopinus amphipods NA NA NA NA ? ? ? ? 3 Less selection near satiation,

consistent with prey model

Ringler 1979 L E Salmo invertebrates WY WW Y ? ~ ? 3 Prefer more profitable prey when

experienced; increasedselectivity

at high density
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Amphipodsprefer the algal species

that give the highest growth

and reproduction

Quantitative agreement except for

short delay (handling) preferred

to long (see Lea 1979)

Prefer profitable sizes on one

substrate but not on another

Choose genera of snails with

highest e/h, but e/h does not

account for within-species

choice of size classes

Cerapteryx has lower e/h butis

preferred

Select profitable sizes allowing for

effects of kleptoparasitism

Percent of small insects brought to

young correlates with relative

abundance

Prefer species with highest

assimilation efficiency. No

direct test of prey model

Inappropriate application of prey

modelto choicetests

Consistent with simultaneous

encounter model. Individual

variability

Do not choose profitable prey, but

e/h not measured

Encounters may not be sequential;

apparent size a confounding

variable (see Wetterer and

Bishop 1985)

Fish choose Daphnia on apparent

size, not as predicted by optimal

foraging theory

More selective at higher density

Experiment 3 in this paperis the

one that is relevant to the prey

model
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Patch (marginal-value) models
 

 

 

What? Predictions tested Assumptions
Where? How?

Reference L/F E/O Forager Prey A B C OD Exc. Seq. Ran | G_ Results Comments

Alphen and Galis 1982 L E Asobara Drosophila Y ae ? ? Y ? ? Only onepatchat a time presented;

results not clear

Best and 1982 F O Bombus Digitalis Y Vv Y >? YY SY 1-3 Discrepancyis that bees sometimes

Bierzychudek skip flowers

Bond 1980 L E Chrysopa Acryrthosiphon we ? ? ? ? ? 3 More persistent area-restricted

search when hungry; relevance

to patch model!not clear

Cook and Cockrell 1978 L E Adalia \arvae Acryrthosiphon wv YY VS YY ? w 3 Prey treated as a patch (Notonecta

results in same paper: see Chap.

4)
Corbetetal. 1981 F O Vespa/Bombus Scrophularia/ Y wv ? 7 oY 4 Exploit patches independentof

Linaria resource depression

Cowie 1977 L E Parus Tenebrio larvae ~ Y SY Y ? 1 Averageddata fit the model

Formanowicz 1984 L E Dytiscus tadpoles Y Y x ? > Y ? 3? See Chap.4 for problem of

overlapping encounters

Giller 1980 L E Notonecta Aedes vv x x > Vv vw 3? Possible problem of overlapping

encounters (see Chap. 4)

Griffith 1982 L E Macroleon ants Y x x > vw 3? See comments on Giller (1980)

Hartling and 1979 L E Bombus nectar YY YY wv > Vv ? 3? More persistence with longer

Plowright travel time, but gain function not

measured

Hassell 1980 F O Cyzenis Operophtera Y ~ YY + YY 3

Haynes and Mesler 1984 F O Bombus Lupinus YY 7 Vw 4 See comments on Waddington and

pollen Heinrich (1979)

Heads and Lawton 1983 F O Chrysocharis Phytomyza ~~ Y ~ w~ > vw ? 3

Hodges 1984 F E Bombus Delphinium ~ YY Vvvwv wv 3 More flowers visited per

inflorescence whentravel time

long

Hodges and Wolf 1981 F O Bombus Delphinium Y YY VY XY SX ? YW 1-3 More nectar left behind in rich sites

Hubbard and Cook 1978 L E Nemeritis Ephestia YVVNSY YY vw > ~~ ? 1-3 Too manyprey taken from poor

patches

Krebsetal. 1974 L E Parus Tenebrio larvae vv YY VS Y~ 2? ? 3-? See McNair (1982)

Larkin 1981 L E Barbary dove grain Y Y Y SY SY YH 1 Progressive interval schedule to

simulate depression
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Not clear that there is resource

depression

Patches left when marginal capture

rate equals habitat average.

Better patches not exploited for

longer

Plants gradually depleted.

Movement to new plant

dependsoninter-plant distance

Copula duration as predicted

Exploit flowers on inflorescence in

order of decreasing marginal

value

More persistent in better patches

Search eachtree longer whentravel

time longer, but observed patch

time greater than predicted

Observations close to prediction of

efficiency maximizing

See comments on Giller (1980)

Gain function not known

Giving-up time equal in different

“habitats: significance not clear

More resource extracted from better

patches; persistence not related

to habitat abundance

Not sensitive to vertical pattern of

resource depression

Progressive ratio to simulate

resource depression; tendency

to switch early

See comments on Wasserman

(in prep.)

Progressive ratio to simulate

resource depression

Slight increase in patch persistence

as travel time increases, but gain

curve not known
 

(Continued)



Table 9.1 (Continued)

 

 

Central-place foraging models (multiple-prey loaders)
 

 

 

 

 

 
 

 

What? Predictions tested Assumptions

Where? How?

Reference L/F E/O Forager Prey A B C D Exc. Seq. Ran. I! G_ Results Comments

Brooke 1981 F O Oenanthe insects Y ~ Y 2 ? 3 Load-size distance effect

Bryant and Turner 1982 F O Delichon insects Y Y SY wv ? > Ww 3 Load-size distance effect

quantitatively not in agreement,

but see Kaceinik and Houston

(1984)
Carlsson and Moreno 1981 F E Oenanthe Tenebrio larvae wY Y wv Y VY 3 Load-size distance effect

Giraldeau and Kramer 1982 F E Tamias Helianthus Y vw Y Y VY v 3 Patch times too short; qualitative

seeds agreement

Kacelnik 1984 F E Sturnus Tenebrio \arvae Y Y VY vw YY VW 1 Energy costs included

Kasuya 1982 L E Polistes water Y Y SY SY SKY HY YW 1-3

Killeen et al. 1981 L E Rattus pellets Y ~ ~ Y 2? Vv ? 3? Load-size distance effect; gain
function ambiguous

Central-place foraging models (single-prey loaders)

Predictions

What? tested Assumptions

Where? How?

Reference L/F E/O Forager Prey A B Exc. Seq. Ran. Inv. V Results Comments

Carlsson 1983 F E Lanius Tenebrio ~ wv w~ Y ~ wv Y 2-4 Model supported at close and distant

sites, not intermediate ones

Davidson 1978 F E Pogonomyrmex barley seeds SY ~ ? ? ? Y 3 Larger seeds and narrowerrange of

seeds from greater distances

Hartwick 1976 F O Ostralegus intertidal oY Y Y ? ? Y 3 Difference in parental and off-

invertebrates spring diet. Parents’ items

smaller than those of young

Hegner 1982 F O Merops insects Y Y wY Y ~ ww x 2-3 Moreselective at greater distances

Jenkins 1980 F O Castor trees oY Aa ? ? wY ? 3 Moreselective at greater distances

Krebs and 1984 F O Merops insects Y wv Y WA Y oY oY 2-3 Moreselective at greater distances

Avery

Lind 1965 F O Ostralegus molluscs Y wy Y ? ? ~ 3 See comments on Hartwick (1976)

McGinley 1985 L E Neotoma sticks ~ ~ Y Y vy vw 3 Moreselective at greater distances

Royama 1970 F O Parus insects Y wY Y ? ? ? 3 See comments on Hartwick (1976)
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Quantitative versus qualitative tests. In section 9.1 we suggested that

foraging models should not be judged by their quantitative predictions

alone, although these are clearly more powerful than qualitative predic-

tions in two senses. First, they provide the most informative test of the

explanatory abilities of the models, and of the potential validity of their

assumptions; because many models may predict the same qualitative
trends, so quantitative details can usually eliminate more alternative hy-

potheses than qualitative trends can. Second, quantitative predictions

provide a more complete description of the forager’s behavior (whichis,

after all, the model’s aim). However, when quantitative predictions fail or

when they cannot be made (as in most current trade-off models), but

observed qualitative trends agree with the model under test, what should

the investigator conclude? It is probably reasonable to conclude that the

model has captured the essence of the situations it attempts to explain,

although the danger that alternative hypotheses may explain the same

trends is greater than for quantitative predictions. However, even quali-

tative results can be decisive: they can sometimes distinguish between two

widely held views, in the way that demonstrations of risk sensitivity con-

tradict average-rate maximizing.

9.3 How Well Does Foraging Theory Do?

Four recent papers have assessed the relationship between predictions

and observations in foraging theory (Krebs et al. 1983, Pyke 1984, Gray

1986, Schoener 1986). Schoener, extending Pyke,lists five attitudes toward

foraging theory that are found in the ecologicalliterature: (1) it is trivial

or tautological and “unscientific” because post hoc rationalization can ex-

plain any discrepancy between theory and prediction (e.g. Ghiselin 1983;

see Chapter 10 for further comments); (2) it is too simple to work in the
field, although it may work in laboratory experiments (Zach and Smith

1981); (3) it is so well established that no further tests are needed;(4) it

is still too early to judge how well it accounts for the data; and (5) it has

often been verified, and this lays the groundwork for many future devel-

opments. To these attitudes, Gray adds the view that foraging theory

is largely at odds with the published data. Table 9.1 presents a modified

and updatedversion of the table in Krebset al., summarizing the evidence

related to some of the basic models.

Table 9.2 summarizes the main conclusions that can be extracted from

Table 9.1. First, most of the evidence in the literature (64°) tests qualitative

rather than quantitative predictions. Second, 71°% of papers report either
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Table 9.2

Summary of predictions and assumptions of models in tests listed in Table 9.1°
 

 

Types of predictions tested
 
Prey Patch CPFSPL? Totals
 

Qualitative 51 24 6 81

Quantitative 20 21 3 44
 

Assumptions met
 

  

 

 

 

 

 

Prey Patch CPFSPL 7
Overall x

? 4 (>) Y ? x (AV) Y ? x (AV) MY

Exc. 58 10 0 (86) 40 0 5 (89) 9 0 0 (100) 88

Sea. 33 31 4 (49) 39 3 3 (87) 7 2 0 (78) 65

Ran. 30 34 4 (44) 24 21 0 (51) 4 5 0 (44) 47

Inv. 40 26 2 (59) 27 18 0 (57) 6 3 0 (66) 59

G — 29 16 1 (62) — 62

V — — 6 2 1 (66) 66

% x = 59.5 x = 69.0 x= 71.0

Results

Prey Patch CPFSPL Totals

Outcome ns % n % n % n %

1 1.5 9.5 hepe4

2 8.0 770.0 0.0 70.0 Fotoa 0 9.5

3 40.0 22.0 7.0 69.0 55.2

4 12.5 3.5 0.5 16.5 13.2

? 9.0 10.0 19.0 15.2

Total 71.0 45.0 9.0 125.0
 

* In this and subsequent tables, results in Table 9.1 that have two

entries (e.g. 3-4) are scored $ to each outcome. Patch category in-

cludes multiple-prey loaders.

> CPFSPL = Central-place foraging (single-prey loaders).

“n= Numberof studies with a given outcome.

qualitative or quantitative support for the models, and of the remain-
der only 13% clearly contradict the predictions. Third, the prey and patch

models are about equally supported, with the exception that the zero-one

rule is never completely supported. As we have discussed in Chapter 2

(Box 2.3, Stephens 1985), this may not be a serious problem. Fourth, there

is considerable variation in the extent to which specific assumptions of

each model are known to be met. The exclusivity assumption is nearly

always knownto be met(in 88% of papers), but randomness of encounters

in prey and patch models and the gain function in the patch model are



TESTING FORAGING MODELS = 197

Table 9.3

Status of assumptionsin studies in which modelis strongly
supported? or strongly rejected”*

 

 

Supported Rejected

~ ? x (%v) vY ? x (%V)
  

 

Prey 37 7 0 (84) 30 25 1 (54)

Patch 64 6 0 (91) 5 0 5 (75)

CPFSPL? 15 0 1 (94)

Total 116 13 1 (89) 45 25 6 (59)
 

* In Table 9.1: categories 1, 2, 1-3, 1-4, 2-3, 2-4 (11 studies).

> in Table 9.1: categories 3-4, 4 (14 studies).
° All studies in Table 9.1 in which the outcomeis 3 are excluded

from this table.

¢ CPFSPL = Central-place foraging (single-prey loaders).

seldom verified. This is an important point, because failing to verify the
assumptions renders manyof the supposed tests ambiguous. Indeed, some

supposed falsifications of foraging models may be attributable to failure

to meet the assumptions. Table 9.3 shows that in studies that strongly
support the models (results 1 and 2) 89% of the specific assumptions have
been verified, but in studies that show weakersupport(result 4), only 59%
of the assumptions have been met. Why do manystudiesfail to meet the

assumptionsof the model? The most commonreasonis that many workers
have not set out to test the models; instead, they have applied the models
post hoc to data such as stomach contents. Another factor is that some

workers simply do not know which assumptionsare involved.
Table 9.4 divides the results into field and laboratory tests. Contrary

to the claim of attitude (2) listed by Schoener (1986) and discussed above,

field tests are just as likely to support the models as laboratorytests (see
also Gray 1986). Table 9.5 summarizes the outcomes of tests that have

tried to examine quantitative predictions and of those that have looked
only at qualitative predictions. Strong disagreement is, if anything, less

likely in quantitative tests (10%) than in qualitative tests (19%). This may

Table 9.4

Relative success of foraging models in field and
laboratory tests
 

 

 

 

Outcome

1 2 3 4 ? N

Field 6.0 3.5 39 9.0 5.5

Laboratory 5.0 6.0 30 7.5 13.5 62
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Table 9.5

Outcomeof tests of prey, patch, and CPFSPL? models that
examine qualitative predictions and quantitative predictions?
 

 

 

Qualitative tests Quantitative tests

Strong disagreement (4) 12.0 4.5

Other (excluding ambiguous) (1-3) 51.0 38.5

% disagreement 19.0 10.5
 

“ CPFSPL = Central-place foraging (single-prey loaders).

> Outcomes indicated by a ? in Table 9.1 are omitted here.

be because quantitative tests are generally those in which the models’
assumptions are most carefully checked.

Based on these summaries of the evidence (Table 9.1 will undoubtedly

be out of date by the time this book is published), we agree with Schoener’s

(1986) view that attitude (3)—success should lead to abandoning the

approach—is a little perverse; attitude (4)—it is too early to judge—is

unnecessarily cautious; and attitude (5)—foraging theory lays the ground-

workfor future developments—is the most appropriate. The basic models

have accounted for the data well, and they offer the promise of future
developments. Our conclusion seems at odds with Gray’s (1986) claim

that the data do not support the models well. Among the main reasons

for this discrepancy in opinion are: (1) Gray considers the failure to ob-
serve absolute preferences (as the prey model’s zero-one rule apparently
predicts) as evidence against the prey model, while we take the view that

a Statistically estimated threshold (which predicts partial preferences) is
consistent with the prey model; (2) Gray considers the prey model to be

the basic model, and he counts results that are consistent with modifica-

tions of the prey model (such as Elner and Hughes’s 1978 study of how

non-zero recognition times change the prey model’s predictions) as not
supporting the theory; and (3) Gray does not consider whether a study
meets the assumptions of the model it applies. As Table 9.3 shows,this

is an important factor in assessing the literature. Obviously, there is am-

biguity in interpreting some studies, and we refer the skeptical reader to

the original papers.

FUTURE EMPIRICAL WORK

Table 9.1 shows that, when they have been properly tested, the prey,

patch, and central-place models are on the whole qualitatively supported.

Foraging theory can qualitatively account for foraging decisions. Given

the evidence in Table 9.1, then, what kinds of experimental work might
be valuable in the future?
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The first important point is that Table 9.1 includes only a few models
(patch, prey, and central-place) because most empirical studies have
examined these models. Data gatherers have paidlittle attention to certain

models, in particular those dealing with information (Chapter 4) and risk
(Chapter 6). Incomplete information models present an opportunity to

strengthen the link between foraging and learning theories, which hasjust

begun to develop (e.g. Lester 1984, Regelmann 1984, Shettleworth 1984).

Dynamic models of the life history aspects of foraging (Chapter 7) are

also little explored. In addition, totally new theoretical issues will probably
arise; witness the burgeoning interest in risk-sensitive foraging—an inter-
est that was practically nonexistent before the publication of Caraco’s
work six years ago.

Second, we suggest it is worth doing moretests of the basic models and

their modifications. As more evidence accumulates, foraging theory can

begin to concentrate on situations in which the models fail. This pattern

of failure versus success may suggest new insights on the limitations and

applicability of the models. Clearly, the present evidence leaves many

taxonomic lacunae: most of the work to date has been done on insecti-
vorous birds, fish, and insects, and on a few mammals. There is notably

little work on herbivores of any taxon. If we look at foraging theory in
the long term, we can speculate on the kinds of questions that might evolve

from current theory. The studies that have tested predictions of the basic

models (Table 9.1) can be viewed as attempts to validate foraging theory’s

approach. It would be disappointing if this was still the major focus ten

years from now. Instead, we expect that the results of foraging theory

should be increasingly applied to community and population ecology
(their original context) and to behavioral mechanisms(e.g. of learning and

perception).

9.4 Pitfalls in Testing Foraging Models

We can easily find misunderstandings of foraging theory in the literature.
A commonly held view is that there is a single foraging model; the hypo-

thetical comment, “Optimal foraging theory predicts that animals maxi-

mize their rate of energy gain, but for herbivores protein is more important

than energy; therefore the theory is wrong,” typifies this view. We hope

that by now even the least observant reader will have noted that there is

no such thing as “the optimal way to forage.” Foraging theory is a point

of view, comprising a large and continuously changing set of models.It

happens that many of the basic models adopt the premise of average-

rate maximizing, but this is no more an essential part of foraging theory

than simple Mendelian ratios are an essential part of genetic analysis.
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Beyond these general misunderstandings we can also find many exam-

ples of the wrong model being applied to a particular data set, or of

models being applied without having their assumptionsverified. The com-
monest mistakes include failure to directly observe decisions made upon
encounterin tests of the prey model and failure to show patch depression

(i.e. negative acceleration of the gain function) in tests of the marginal-

value theorem (Table 9.2). Two “gain function” mistakes are especially

common.Thefirst mistake is to assume patch depression whenthe biology

of the situation indicates that there should be none(e.g. suspension feeders
catching stream drift—Townsend and Hildrew 1980). The second mistake

is to measure the gain function without experimental control of the time

spent feeding in patches (Formanowicz 1984): Whenever possible, gain

functions should be measured independent of the forager’s patch-leaving

decision. Without independent control patches may appear to “depress,”

because “more difficult” patches may bevisited longer, even if there is no

within-patch depression.

ENERGY Costs: AN EXAMPLE
Rather than work through all possible analytical errors, we illustrate

the point with one example, energy costs. As discussed in Chapter 2, the

conventional foraging models use net rate of energy gain as the currency

to be maximized. Some tests have simply ignored costs and tested pre-

dictions based on maximization of gross energy intake (e.g. Krebsetal.

1977). Other studies have estimated the energy costs of travel, pursuit,

search, and handling and subtracted them from gross energy intake(e.g.

Cowie 1977, Bryant and Turner 1982, Kacelnik 1984). Figure 9.1 shows

the effect of including energy costs in the marginal-value model. There

are two importantpoints. First, the effect of energy cost on the predicted
residence time (or load size) depends on the difference in energy costs of
travel and search, and not on their absolute values. If search within a

patch (including pursuit and handling) costs the same astravel (e.g. the

predator walks both when traveling and when searching), then incor-

porating energy costs does not alter the marginal-value theorem’s patch-

residence-time predictions (Fig. 9.1[A]). If travel costs more than search,
then including costs increases the predicted patch residence time (Fig.

9.1[B], Cowie 1977). If travel costs less than search, as might be the case
when travel involves gliding flight and search involves flapping flight
(Bryant and Westerterp 1980), then including costs reduces the predicted

patch residence time.
The house martin (Delichon urbica) is a multiple-prey loader, and Bryant

and Turner (1982) used the marginal-value model (Orians and Pearson’s

1979 version) to predict how the distance between the nest and the feeding
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Figure 9.1 The effect of energy costs in the marginal-value model. (A) Energy costs

of travel and search are the same. Gross intake is maximized by fitting a tangent from

X to intersect the gross intake curve (marked A). Costs are represented by rotating the

abscissa: this meansthat travel costs are in effect subtracted from net gain in the patch

by taking the tangent from X’ instead of from X. Net intake in the patch is calculated

by subtracting in-patch costs from the gross intake curve. Note that the optimal patch

time is not altered when within-patch and between-patch energy costs (per time unit)

are the same. (B) Whentravel costs more than search (represented by the steeper slope

of the travel cost line), predicted load size and residence time are greater than they are
whencosts are equal.
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site should affect the load size brought back to the nestlings. They found

that although load size increased with distance in qualitative agreement

with the model, gross energy maximization predicted loads 20 to 39%
smaller than those observed. However, as Kacelnik and Houston (1984)

point out, Bryant and Turnerincorrectly conclude that when net energy
costs are considered, the deviation from predictions is even greater than
it is for the gross energy maximization model. This is because Bryant and

Turner only subtract the costs of within-patch foraging from gross intake,

leading them to conclude that the “net energy” model predicts a smaller

load size than the gross energy model, that is, a load size even further
from the observed size. Bryant and Turnerhaveeffectively assumed, since

they do not correct for travel costs, that travel costs less than search;if,

however, travel costs as much or morethan search,the effect of correcting

for energy costs would be to bring the prediction closer to the observed

load size.
Bryant and Turner’s paperalso illustrates a second kind of confusion

about energy costs. These authors calculate the predicted load size from

the net gain curve in Figure 9.1(A), but the correct procedureis to calculate

(using tangent X’B) the optimal residence time from the net gain curve,

and to use this value to predict load size from the gross intake curve (see

Fig. 9.1[B]). Bryant and Turner compound twoerrors by taking a tangent

from X (instead of from X’) to the net gain curve to predict optimalgross

intake. Kacelnik and Houston (1984) discuss these points in moredetail.

9.5 Sufficient Tests?

An often-cited example of a convincing test is the relationship between
patch residence time (or load size for multiple-prey loading central-place
foragers) and travel time (Krebs and McCleery 1984, Krebs et al. 1983).

However, this evidence maynot be as convincing as it seems. The marginal-

value theorem predicts this relationship when the gain function is nega-

tively accelerated. If the gain function is linear up to some maximum,then

the marginal-value theorem predicts that travel time should not affect

patch residence time or load size (Fig. 9.2[A]). However, Kacelnik and

Cuthill (1986) have shown that central-place-foraging starlings (Sturnus

vulgaris) take larger loads from more distant patches even when the gain

function is linear (Fig. 9.2[B]).
Howshould this evidence be interpreted? First, it shows that the “load

size-distance” effect is not necessarily related to resource depression and

should not be regarded assufficient support for the marginal-value model.

Of course the better the fit, the more likely it is that the marginal-value
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Figure 9.2 (A) With a linear loading curve there is no predicted effect of travel time

on loadsize or patch residence time. (B) Data for starlings bringing mealwormsto the

nest when food wasdelivered at a feeding site according to a fixed interval schedule

(a linear loading curve). Contrary to prediction, there is a load size-distanceeffect. (Data

from Kacelnik and Cuthill 1986.)

theorem explains the observations. Second, the absence of environmental

resource depression does not necessarily mean that the animal’s gain
functionis linear. Suppose that costs accumulate as a function of residence

time or load size; in this case a linear gross intake function might be

translated into a decelerating net gain function (and see Staddon 1983).

An obvious candidate for accumulating cost in a central-place forager is

energy expenditure: the cost of carrying the load increases as a function

of load size, so that even though grossintakeis linear, the net gain curve

has a diminishing slope. Third, as we pointed out in section 4.4 (see also

Green 1980, Kacelnik and Cuthill 1986), patch assessment models predict

increasing load size with distance even whenthere is no patch depression.
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Finally, the starlings may be unable to recognize that the gain function

is linear: they might “assume” resource depression. However, this possi-

bility seems unlikely, since under other experimental conditions the birds

can respond to non-depressing patches (Cuthill 1985). The general point

is that careful experimental analyses maybeessential for distinguishing

between alternative interpretations. What may appearto be an adequate

test of foraging theory at first glance may be less convincing when ana-

lyzed in more detail. There is, in fact, no infallible recipe for testing for-

aging models, any more than there is for doing research in general.

However, we suggest that the following questions should be asked before

testing a given foraging model.

1. Are the Foragers Playing the Same Game as the Model? If the model

assumes successive encounters, patches with resource depression, incom-

patible search and handling, and so on, make sure that these conditions

apply to the foragers used to test the model. This is a special danger with

“off-the-shelf” models: the game assumed in the model maydiffer in some
essential way from the gamethe foragers of interest play.

2. Are the Assumptions of the Model Met? This question extends the

first one. Given that the animals are playing the right game, there may

be critical assumptions that must be checked. To take a simple example,

when testing Orians and Pearson’s (1979) central-place foraging model,

you must show that prey density does not vary systematically with dis-

tance from the central place. Table 3.1, Box 2.2, and Box 2.4 should be

helpful in enabling a check of the assumptions of the classical prey and
patch models and in suggesting alternative models if the assumptions are

not met.

3. Are the Right Variables Being Measured? If the model predicts how

energy, handling time, and encounter rate should affect prey choice, or

how the shape of the gain curve should affect patch residence time, then

establish that these variables can be measured for the system understudy.

If there are big measurement errors in any of them, then a sensitivity

analysis can be used to determine how these errors affect the model’s
predictions. These points may seem obvious until one reads papers in

which the prey model is “tested” without any measurements of handling
time (e.g. Ebersole and Wilson 1980, Wells and Wells 1983).

4. Is the Test Merely Consistent with the Model or Does It Rule Out

Alternative Possibilities? This is a difficult question to answer since, as

with the “load size-distance” effect discussed earlier, an apparently con-

vincing test may become less convincing when new evidence emerges.

There are, however, some obviously inconclusive observations. The prey

modelpredicts under certain conditions that there should be noselectivity
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of prey. Although an observation of noselectivity (e.g. Gill and Wolf 1975)

is consistent with the prey model, it is also consistent with a null hypothesis
of random choice (see also Aronson and Givinish 1983 for a discussion

of a similar point). Tests of bumblebee patch leaving provide a more subtle
example. Pyke (1978a) and Hodges(1981) assume that a rate-maximizing

nectar feeder should leave the current inflorescence when the expected
gain from the next flower is lower than the expected gain from moving

to a new inflorescence. Although this behavior is consistent with rate

maximizing, it does not exclude the possibility that leaving before this

point would give a higherrate of intake.

9.6 Summary

Ultimately, foraging theory must account for observed foraging behavior.

Foraging theory seeks general explanations, rather than precise but

parochial descriptions. To ensure strong inferences, the observer should
check as many of the model’s assumptionsas possible, and the observer

should consider plausible and explicit alternative hypotheses. Quantita-

tive tests eliminate more alternative explanations than qualitative tests
do.

A summaryof empirical evidence to date showsthat the current models
do well. We argue that moretests of current models are needed to evaluate

the pattern of failure; this pattern might suggest new approaches. More-

over, major aspects of foraging theory, for example, information andrisk,

have been the subject of little empirical work to date. Manytesters of

foraging models have madeserious mistakes; we discuss the example of
including energy costs in the models, and we point out common mistakes

that can easily be avoided.

The need to weigh alternative interpretations carefully is illustrated by

the persistence of the relationship between patch residence time and inter-

patch search time, which sometimes occurs even when it should not! We

outline four important questions that should be asked before undertaking

a test of a foraging model.



Optimization Models

in Behavioral Ecology:

The Spandrel Meets

Its Arch-Rival

Ecologists have developed a powerful quantitative theory, called

optimal foraging strategy, for studying patterns of exploitation in

nature.—Gould, The Mismeasure of Man

It is simply factually incorrect to describe evolution as always

being an adaptive or optimizing process; ... this view... ignores

the body of knowledge built up by evolutionary genetics.—

Lewontin, “Elementary Errors about Evolution”

10.1 Introduction

A distinguished colleague of ours once remarked, “If I give a seminar on

“Foraging Theory,” I get the usual mixture ofcritical interest and enthu-
siasm, but if I give the same talk and call it “Optimal Foraging Theory,”

I am much morelikely to get a negative response.” Optimization theory

is controversial. A recent exchange in The Behavioral and Brain Sciences

(Vol. 6, No. 3, 1983) is more reminiscent of a nineteenth-century polemic

of the Bishop Wilberforce variety than of late twentieth-century science,

with epithets such as “rhetorical flummery” and “puritanical disapproval”

flying back and forth. Some see optimization models as powerful tools

in evolutionary biology and behavior(e.g. McFarland and Houston 1981,
Alexander 1982, Charnov 1982, Staddon 1983); others regard them as

naive, vacuous, tautological, or just plain wrong (e.g. Lewontin 1978, 1979,

1983, Gould and Lewontin 1979, Ghiselin 1983, Myers 1983).

The reader trying to work out what is going on in the literature is

thrown into further confusion by finding apparently contradictory views

within the writings of the same individual. S. J. Gould, for example,is ap-

parently in sympathy with optimization models when,referring to D’Arcy

Thompson’s demonstration that simple mathematical models can describe
various morphological features, he writes (1980), “I can identify the ab-
stract Thompsonian forms as optimal adaptations.” Similarly, Gould’s

(1978) view that “certain morphological, physiological and behavioral

traits should be superior a priori as designs for living in new environ-

ments. These traits confer fitness by an engineer’s criterion of good design”
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seems to support optimization. Yet in Gould and Lewontin’s (1979) well-
known “spandrels” paper, the optimization approach is scathingly paro-

died as being “truly Panglossian,” referring to Voltaire’s fictional Dr.

Pangloss who viewed even the worst calamity, such as the Lisbon earth-
quake, as being ultimately a good thing.

Whyis optimization in biology so controversial? We do not aspire to
resolve all the problems of optimization modeling here, but we hope to

identify the key issues in the debate.

10.2 What Is Wrong with Optimization Models?

Criticisms of optimality modeling tend to be bound up withcriticisms of

the “adaptationist program”in general. Since we contend that optimiza-

tion models help to circumvent some of the problems facing students of

adaptation, we will concentrate on the criticisms that are most relevant

to optimization models. For a forceful and telling response to general

criticisms of the adaptationist program, see Mayr (1982, 1983).

Testability. This criticism arises because optimality modelers adopt the

following procedure. A design-constraint hypothesis is erected and com-

pared with observations;if the observations do not support the hypothesis,

either the constraint or currency (or both) assumptions are modified in a

new optimality model. “Surely,” the critic says, “it is unscientific to keep

shoring up the cracked facade of optimality with a scaffolding of ad hoc

modifications; instead, one should entertain alternatives, such as thetrait

under study being of neutral selective value and therefore not being de-

signed for anything.”

Leaving aside the philosophical question of whether Popperian refut-

ability is the only standard that a method inquiry should meet, we suggest

that there are three ways to answer the hypothetical critic’s comment.

First, optimality is not the hypothesis under test; instead, it is the tech-

nique used to work outthe testable implicationsof the specific hypotheses

about design and constraint. Second, ad hoc—ism is by no meanslimited

to, or necessitated by, optimality models. It is a vice that can be found

lurking in most subjects; this complaint should therefore be directed at

the “scruples” of some experimentalists, and not at optimality models

themselves. Third, many critics confuse ad hoc—ism with the refinement
of hypotheses. The rules of the scientific method require that a hypothesis

be abandoned whenit is disproved, butit trivializes the scientific method

to claim that all the elements used to arrive at the hypothesis must also
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be abandoned. Supposethat in order to predict a stone’s terminal velocity

we combinedthe inverse square law of gravity with some claim about the

way resistance should impede the movementofa falling stone. According

to the most extreme opponents of ad hoc arguments, if our prediction

failed, then we could never again call upon the inverse square law of grav-

ity to formulate a new hypothesis. Unfortunately, nature has not arranged

a tidy one-to-one relationship between explanatory ideas and phenomena.

Optimality models probably attract the “refutability” criticism because

they are more overt and specific in formulating testable hypotheses than
are most other methods in evolutionary biology. Even if we accepted the

critic’s proposal of giving up the optimality premise in favorof, say, se-

lective neutrality, would we be better off? No, because if anything is un-

testable it is the hypothesis that a trait has absolutely no selective value

(Dawkins 1983, Mayr 1983).

Choosing a strategy set. The “testability” criticism does raise a more pro-

found problem. Optimality models are composite hypotheses: they are
composed of assumptions about decision, constraint, and currency (see
Chapter 1). Thus when an optimality model fails, the experimenter does

not always know which elements of the model are wrong. Students of

adaptation may be most interested in making inferences about the use-
fulness (or currency) of the trait under study, but the strength of inferences

about currency depends on the experimenter’s confidence in the assump-

tions about constraints. Can the constraints on design be identified, inde-

pendentof showing that a certain set of constraint assumptions adequately

describes the observed trait? We try to answer this question in the next

paragraphs.

Oster and Wilson (1978) summarize the problem in this way: “The es-

sentially innovative nature of the evolutionary process precludes an ex-

haustive list of strategies.” This view appears to be incompatible with the

requirements of optimality models, since the strategy set cannot be specified

a priori, but the behavioral ecologist’s plight is not as bleak as Oster and

Wilson imply. The constraints on behavior depend on the animal’s mor-
phological and behavioral equipment—whether it can hold more than
one piece of food at a time in its jaws, and so on (Chapters 1 and 8). A

thorough knowledge of the mechanismscontrolling behavior may provide

an a priori way of specifying the constraints on performance.

This view suggests a distinction between the problems facing a behav-
ioral ecologist and those facing a morphologist or physiologist using opti-

mality models. The behavioral ecologist takes the animal’s morphological

and physiological equipment as constraints—for example, if bird X has

a bill length of 5 centimeters, it cannot eat a particular size class of fish
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in less than 10 seconds—andstudies the design of behavior within these

limitations. The morphologist or physiologist has the more difficult task

of evaluating the design of traits that the behavioral ecologist treats as

constraints. The constraints on beak length are much more difficult to

identify than the consequences of beak length for behavior. It might be
said that the behavioral ecologist is simply begging the question bytreating

the difficult bits as constraints; if one’s aim is to understand morphological
and physiological evolution, then this commentisjustified, but, given their

more modest aim, behavioral ecologists may often be able to identify

Strategy sets a priori.

Independence of design features. Optimization models usually concern

themselves with one or, at most, a small number of design features at a

time. For example, the foraging models we described in Chapter 2 analyze

the rules for maximizing rate offood intake, but they ignore other potential

design criteria, such as finding mates, keeping dry, and getting enough to

drink. In neglecting other design features, the models implicitly assume

that different aspects of design are effectively independent, that maximizing

rate of intake, for example, does not interfere with finding a mate. This
assumption is often wrong, and in Chapter 5 we presented techniques for

studying the problem of trade-offs between two or moreactivities (e.g.
predation risk and feeding). Trade-off models push the independenceas-

sumption backa little, but they are at best a partial remedy, because they

deal with only part of the animal’s behavioral repertoire. Even if it were
possible to build an optimality model that encompassedall aspects of de-

sign, we would, as Lewontin (1978) putsit, “be left in the hopeless position
of seeing the whole organism as being adapted to the whole environment.”
The studentof design is in a bind. On the one handthereis the feasible

pieecemeal approach that makes the unrealistic assumption of indepen-
dence of design, and on the other hand there is the immensely difficult

holistic approach which, even if completed, may yield only a trivial con-

clusion. There does not seem to us to be a wayof resolving this dilemma

by abstract discussion. The piecemeal approach, in spite of its inherent

flaw, offers a way to start and after all does not seem to do too poorly
in practice: some of the time the assumption of independenceis a close

enough approximation to provide a working base (Lewontin 1984).

Ignoring genetic mechanisms. Althoughit is not the job of optimization

models to explain the genetic mechanism of evolutionary change, the de-

sign features we evaluate with the models are the products of evolutionary

change. Does this mean that we can only do optimality modeling if we

include some genetics? The implication of Lewontin’s (1978) comment,
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“Optimality arguments dispense with the tedious necessity of knowing

anything concrete aboutthe genetic basis of evolution,” is clear: he thinks

optimization modelers should learn some genetics. What is so special

about genetics? Lewontin forgets that population geneticists frequently

dispense with the tedious necessity of knowing anything about the use-

fulness of traits or, for that matter, about development. Noneof the sub-
disciplines of evolutionary biology can pretend that it completely solves

the problemsofthe science. Students of adaptation sometimesfind it use-
ful to smooth overthe problemsof genetics, just as students of population

genetics find it useful to suppose that the cause of a selection coefficient

is a problem for a functional morphologist (see the Preface). We can gain

insight into the operation of one aspect of living organisms without know-

ing aboutall the other aspects. The optimization modeleris in the position
of a person comparing design and performance of two makes of camera

without knowing everything about the laws of optics or the chemistry of

film processing. Perfectly valid judgments can be made abouttherelative

performance of each design without a knowledge of exactly how cameras

or films are made. No one would deny that more knowledge would allow

a more subtle analysis, but complete knowledge is not essential to make
a start.

Ignoring historical origins and the question of by-products. A problem in

the study of design is that the traits we see today may havearisen for one

purpose andcurrently serve another (Gould and Vrba 1982). For example,

the feathers of birds might have originated as an insulation mechanism

but currently are part of the flight mechanism; the unfused sutures of
the skull of the human neonate appear to be a beautiful adaptation for

squeezing through the birth canal, but this cannot have been the evo-

lutionary origin of the feature, since it is also found in egg-laying birds

and reptiles. It should be apparent that problems such asthese, although

importantfor the person trying to trace the historical origin of adaptations,

are less of a problem for the student of the current utility of traits, which

we have argued is the domain of optimization modeling.

There is a closely related issue: traits can have multiple consequences,

some of which are genuine functions (meaning that variation in the con-

sequences are subject to natural selection) and others of which are inciden-

tal by-products. Even the most ardent adaptationist would not propose

an adaptive explanation for the color of a plant’s roots and underground

storage organs. Carrots are orange because of the compoundstheystore,

not because orange-ness is inherently advantageous.

The function-versus-incidental-consequence debate reached its zenith

before optimization modeling emerged as a tool in behavioral ecology
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(Curio 1973, Krebs 1973b, Hinde 1975). Behavioral ecologists once asked,

“Is the function of territorial defense to secure food or to space out against

predators?” Optimization models allow contemporary behavioral ecolo-

gists to ask, “Are the observed details of territoriality consistent with a

hypothesis of maximizing food returns, a hypothesis of minimizing pre-

dation risk, a compromise between the two, or noneof these?” Optimiza-

tion models help to free behavioral ecologists from the simple-minded

approach of deciding between functions.

Frequency dependence. It would notbe necessary to includethis brief sec-

tion wereit not for the mistaken view that optimization models have been

superseded, or shown to be wrong, by the development of game theory

(Luria et al. 1981, Vaughan and Herrnstein 1986). This cannot be true

since game theoretic models are optimization models (Vagner 1974). When

the benefit obtained by the animalfor adopting a particular strategy(say,

“take the large prey only”) is frequency-dependent (because it depends on
what others in the population are doing), then the optimal solution is

found using game theoretic techniques (Maynard Smith 1982). As Chap-

ter 1 pointed out, game theoretic solutions contain the three elements of

optimization models: decision, constraints, and currency. They differ from

the models in this book only in the choice principle they use: game theory

uses stability where we have used maximization or minimization.

In the foraging problems we have discussed, pay-offs are not frequency-

dependent, so we use simple maximization or minimization techniques.

In gametheoretic optimization models the optimal solution is sometimes

not a single strategy but a stable equilibrium mixture, so the occurrence

of multiple equilibria is by no means incompatible with the notion of
optimality.

Another point to note is that the evolutionarily stable state in a game

theoretic model may be one in which the averagefitness of individualsis
lower than it would be in some other state. For example, in Maynard
Smith’s (1972) “hawk-dove” game, meanfitness would be higher in a popu-
lation of pure doves than in the stable mixture of hawks and doves. This
observation is not incompatible with the statement that evolutionarily
stable states are optima—they are optima in the sense of being the best
of the available strategies under the conditions of the model.

Asking the wrong question: extreme atomism. The most famous recent
critique of optimality and of “adaptationism” in general is Gould and
Lewontin’s “spandrels” paper (1979). Many of their criticisms are more
directly applicable to adaptive interpretations by paleontologists than to
the more experimental approach adopted by behavioral ecologists, but
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the most general message of their paper 1s that adaptationists are as ca-

pable as anyoneelse of asking the wrong question.

The spandrels example makes the point clearly. Gould and Lewontin

claim that an adaptationist would look at a series of arches and ask,
“What is the function, or adaptive significance, of the spandrels?”(the tri-

angular space between two arches and the structure the arches support),

and even, “What is the adaptive significance of the decorations on the

spandrels?” Their point is that the spandrels as such have no function—

they are simply a consequence of the “Bauplan”of a structure supported

by arches. The conclusion of this parable is not that adaptationism is in-

herently flawed, but that the question posed by Gould and Lewontin’s

adaptationist is wrong. If instead the question had been, “Why use arches

to support a structure?” there would have been a sensible engineering

answer. Mayr (1982) characterizes this problem as “sailing a perilous

course between pseudo-explanatory reductionist atomism andstultifying

non-explanatory holism.”

Ironically, the story of the spandrels makes a case for the importance
of adaptive arguments. Gould and Lewontin know that the spandrelis a

by-product only because they have good engineering reasons to believe

that the arch is the principal design element of the structure. Biological

spandrels—including by-products and phylogenetic, ontogenetic, and

genetic constraints—are much moredifficult to recognize than architec-

tural spandrels. Even if they serve no other purpose, well-formulated design

models are needed to identify constraints: without a design hypothesis
there would be no basis for postulating any kind of constraint!

10.3 Optimization and Newton’s Second Coming

Manyevolutionary biologists want their subject to be morelike classical

physics: they long for its precision, its lawfulness, its internal consistency,
its generality, and its parallel powers of explanation and prediction. Phi-

losophers(e.g. Scriven 1959) poke fun at this wishful thinking by calling

it the “myth of Newton’s second coming.” An increasing numberofphi-

losophers see evolutionary biology as a subject that is not, and cannot

be, like classical physics (Scriven 1959, Beatty 1980), and their arguments

in support of this view bear directly on the controversy surrounding opti-

mization and adaptation.

Beatty (1980) argues that criticisms of optimization take two forms.

First, critics point out that many of the same mistakes that beset other

disciplines occur in optimality modeling, but these mistakes are the fault

of the practitioner, not of the approach. The second form ofcriticism
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amounts to the argument that optimality models are not the “general,

empirical laws of nature” that the “physics” view of science requires.

Optimality models fail the “physics test” because they do not specify the

range of their own validity. The models of Chapters 2 and 3 say what
rate-maximizing foraging should be like, but they do not say that all ani-

mals meeting criteria X, Y, and Z will be rate maximizers, as a physical

theory would. Optimality models specify types of systems, and as such

they are yardsticks against which to compare nature; they are not claims

about what nature must belike.
For example, flattened appendages might be “for” swimming, “for”

digging, or “for” nothing. Models of ideal swimming and digging systems

could be used to distinguish between these possibilities, because these

models would make different predictions about how an appendage “de-

signed for” swimming would differ, in form and use, from an appendage

“designed for” digging. Moreover, formal models can treat the more sub-

tle question of whether the appendage is a compromise between swimming

and digging functions.

Scriven (1959) makes a related point: evolutionary biology is the “type

specimen”of a science that can often explain but seldom predict. In the

“classical physics” view of science this is a contradiction, because explana-

tion is just the reverse of prediction: explanation relates present conditions

to past conditions, and prediction relates present conditionsto future con-

ditions. Scriven believes that the parallel between explanation and predic-

tion in classical physics is a lucky accident, and not a logical necessity.

He gives the example of a fisherman who “comesin to a clinic, his face
and handsblack from years of ultraviolet exposure, and a growth on the

back of one handis diagnosed as a small carcinoma.” The attending phy-

sician is in a strong position to explain that the “cause was excessive ex-

posure to the sun,” even though the physician would have been in a weak

position to predict that this fisherman would develop skin cancer. In

principle the physician might have predicted the fisherman’s ailmentif he

or she had known aboutother factors, such as environmental and genetic

predispositions, but Scriven’s point is that the absence of this knowledge

does not diminish the place of the sun as a causal factor. “The search for

a really complete account is never-ending, but the search for causes is

often entirely successful” (Scriven 1959).

Manycriticisms of optimality modeling are aimed atits use as a pre-

dictive tool. The critic charges that “natural selection does not always

lead to optimization,” but neither does a given dose of ultraviolet radia-

tion always lead to skin cancer. Optimality models can have explanatory

and inferential power, even if they cannot always predict. Evolutionary

biologists may have to reconcile themselves to a science that does not fit

together in the tidy way they suppose physics does.
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10.4 Alternatives to Optimization?

Are there alternatives to optimization modeling as ways of studying de-

sign? To simply describe the complexity and beauty of design in nature

is not enough. Thescientist’s job is not to report that things are hard to

understand, but rather to explain what is going on. Explanation inevitably

involves abstraction and simplification. It involves extracting a few prin-

ciples while ignoring the surrounding mess. We believe that optimiza-

tion models are a fruitful way to start on this enterprise. It is true that

the models we have described are mere caricatures of nature, but this is

what models are meant to be. They should “convey the essence of nature

with great economy of detail” (Horn 1979).

In section 8.6 we pointed out that the alternative starting point that

animals are “efficient but not optimal” is too loosely defined. The state-

ment “flies are abundant” accounts for many data, but it is not specific

enough to be of much use. The same applies to the statement “animals

are efficient.” Optimization models, by sticking their necks out, are more

readily testable and therefore more likely to lead to progress.

Finally, what of the alternative of abandoning design considerations

altogether and concentrating on the study of mechanisms? There are two

counter-argumentsto this alternative. First, as we argued in the Preface,

biologists must consider the usefulness of traits if the explanation of

adaptation by natural selection is to be more than a hollow tautology.

Second, even the most mechanistic biologists frequently and almost un-

consciously appeal to “design” arguments. The experiments of Otto Korner

(cited in Sparks 1982) in the early 1900s provide an entertaining example.

Korner believed that fish could not hear. To test his hypothesis, he en-

gaged a well-known operasinger to perform before his aquaria. He watched

his fish for the signs of enthusiasm andelation that the music would surely

stir in their piscine hearts. Korner deduced that fish could not hear.

Korner’s arguments about design were dreadfully wrong. It remained for

Von Frisch to show thatif fish were “given a reason”to respond to sounds,

by associating sounds with food, then they could learn to respond to

sounds easily. As ludicrous as Korner’s experiment seems, it illustrates

howsilly ideas about “design” can lead to silly inferences about mecha-

nisms and specifically about limitations on mechanisms.

10.5 Summary

Optimization models are a way of studying the products of selection,

namely, the design features of organisms. By formulating design hypotheses
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in a quantitative and rigorous way, they help to circumvent manyof the

criticisms leveled at the adaptationist approach. There are manycriticisms

of optimization modeling, including its lack of holism andits lack ofat-
tention to phylogenetic constraints. These criticisms amount to reasons

why optimization models might be wrong but not why they are bound

to be wrong. Design hypotheses are essential features of most biological

research, and optimization models seem to be the most explicit and pow-

erful approach to the study of adaptation currently available.
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Inverse optimization, 8
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Korner, Otto, 214
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Lawsof nature, 213
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discrimination costs, 80

Marginal-value rule, contrasted with

marginal-value theorem, 94
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Mathematical programming, 118
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maximization, 7; compared to

maximization and stability, 7; of the

likelihood of a shortfall, 137-144

Minimum acceptable prey value, in

single-prey loader, 59

Min-maxrule, as general version of

zero-one rule, 61

Mixed diets, 122

Models, formal. See Formal models

Momentary maximizing, 177-178

Moose, 118

Morphogenesis, 171
Morphological constraints, 208
Mortality rate, 165; relationship with

growth rate, 166

Motacilla alba, 114

Multiple-prey loader, 60, 200; limitations

on modelof, 60

Multiplier. See Co-state variable

Multi-stage decision making. See Dynamic
optimization

Myrmeleon, 45

Natural selection, 3; products of, ix; and

satisficing, 180

Nemeritis canescens, 176

Net rate-maximization. See

Rate-maximizing

Newton, second coming of, 212—213

Next-state function, 154, 156

Nitrogen: importance for insect herbivores,

125; as an important nutrient for
herbivores, 117

Non-constraints, 11

Non-tracking policy, 85

Normaldistribution, 78; cumulative

distribution, function of, 138

Normative optimization, 8
Notonecta, 45

Numberrule, 172—173

Nutrients, 122, 123; compared with toxins,

63; complementary, 118; as constraints,

61-63; effect on diet choice by

herbivores, 116—126; essential,

124; viewed as complementsor

constraints in herbivore diets, 122-123

Nutritional wisdom by large herbivores,

124-125

Opportunity: loss of in overlapping
encounter model, 47; principle of lost, 11

Optimal stopping rules, 90
Optimality: principle of, 155; reverse, 112
Optimality modeling, 210; alternatives to,

214; criticisms of, xi-xi1; specifying types
of systems, 213; as a way to combine

design and constraint, 182
Optimization theory, 206
Order of attack, as predicted by discrete

marginal-value theorem, 42



Ordinal utility, 105, 128

Overlapping encounters, 45—48
Overrun errors, 82—83

Oviposition: compared to foraging, 126;
by a parasitoid, 176

Paleontology, 211

Pangloss, 207

Partial consumption of prey, x, 45—48

Partial preferences: caused by nutrients or
toxins, 61-63; caused by simultaneous

encounter, 41; statistics of, 20—21

Partial reinforcement extinction effect

(PREE), 89

Parus major, 20, 65

Patch: as clumps of food, 13; contrasted

with prey, 13; diet, 27 (maximum

profitability in), 32; leaving, rules for,

174; pedantic definition of, 14; question,

14; recognition, as it interacts with

patch sampling, 98; two plausible kinds,

33; -use by herbivores, 125-126

Patch assessment: as violation of

encounter-contingent policy making, 31;
forbidden in patch model, 28; rule, 174.

See also Patch sampling
Patch depression: failure to demonstrate,

200; necessary assumption of patch
model, 28

Patch model: energy costs in, 200-202;

general discussion of, 24—32; implicit

solutions in, 31; misunderstandingsof,

31; predicting increased patch tenacity in
poorer habitats, 29; rooted tangent

diagrams in, 30; second-order
maximization condition, 29; summary of,

28

Patch residence time, 25, 162—163, 202;

decision variable in patch model, 7; in

patch model, 28; and risk sensitivity,

140; and travel time in patch sampling
models, 93

Patch sampling, 90-99, 100, 173-174;

importance of prior distributions, 173;

as it interacts with patch recognition, 98

Patchesas prey algorithm, 33

Peromyscus, 122

Phylogenetic constraints, 170-171
Physics, compared with evolutionary

biology, 212-213
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Physiological constraints, 208

Picoides pubescens, 91

Pied wagtail, 114

Pigeons, 148

Pitfalls in testing foraging models, 183
Plant equation, 157
Plant parts, correlations between qualities

of, 117

Plodia interpuntella, 176
Poisons:effect on herbivore diets, 117;

inhibitory, 122
Poisson encounter, 11

Pollinator behavior, x

Pontryagin’s Maximum Principle (PMP),

156-160; simplifications of, 158-160; a

worked example of, 159-160
Population and community ecology, 184,

199

Population genetics, 210
Posterior distribution, 77

Posterior estimate, 78

Potential function(s): as affected by

experiences, 97; compared to marginal-

value rule, 97—98; as general

patch-leaving rule, 95-97; as general

representation of patch-leaving rules,
174; increments in, 97

Precision in models, as a trade-off with

generality, 185

Predator avoidance: by herbivores, 125;

traded-off against rate-maximizing, 115

Prediction, compared with explanation,
212-213

Predictions vs. assumptions, in testing

foraging models, 185

Preference, 24; dichotomoustests of, 44;

not predicted by prey model, 19, 24

Present value: definition of, 147; as a

model of choice, 148-149

Prey: contrasted with patches, 13; as

discrete items, 13; and patch models

combined, 32-34; as patches, 45;

pedantic definition of, 14; question,

13-14; recognition, value of, 79-81;

types, as defined by forager’s sensory
abilities, 67

Prey algorithm, proof of, 22
Prey and patch models: assume

risk-indifference, 134; evidence

pertaining to, 196; limitations of, 34
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Prey choice, 6; as affected by forager’s

knowledge of prey sequence, 53; effect
of within-patch search on prey choice
within patches, 56; with sequential
dependence, general discussion of, 48—53

Prey model, 17—24, 151; incorporation of

search costs in, 17-18; predictions of,

23; summary of, 19

Price, 104; as an analog of search costs,

106; as a constraint on choice, 106;

-consumption curve, 106; elasticity, 108

Principle of lost opportunity, 11

Prior distribution, 77, 100, 173; effect on

the value of recognition, 79

Probability distributions, 128
Probability of attack upon encounter, 7,

19
Profit analysis, 21
Profitability: definition of, 23; effective, 39;

in imperfect resemblance models, 67;

ranking of prey by, 23
Programming,linear, 118

Purposein evolutionary biology,1x
Pursuit and search contrasted, 48

Qualitative vs. quantitative tests, 195

Questions for would-be testers, 204—205

Ranking by profitability: counter-example
to, 53; in prey model, 23

Ranking of options, 129
Rate controversy, 16

Rate of gain: long-term, 16; per encounter,
16; stochastic, instantaneous, 97

Rate-maximizing, 38, 104; in conventional

models, 8; discrimination strategies,

70-71; ignores temporal pattern of
acquisition, 147; by large herbivores, 117;

in patch model, 28; preserved by
Winterhalder’s utility-maximizing model,

108; in prey and patch models, 14; in

prey model, 19; traded off against
predator avoidance, 115

Rates of reinforcement, importance oflocal

rates, 178

Ratio schedule, 110

Receiver operating characteristic. See ROC
curve

Recognition: as a constraint, 64—72; costs,

99, 101; of prey, 7; of sub-types, 100; of

types in the prey and patch models, 17;
value of, 76-81

Recognition time: models of, 64—65; nil in

prey model, 17; non-zero, 64

Reproduction: measurementof, ix; rate of,

166

Reverse optimality, 112

Rewardrates, effect on work rates, 112

Risk: compared with variance, 134; and
conventional models, 134; definition of,

128; premium, 132; and utility, 128

Risk aversion, 136; definition of, 130

Risk proneness, 136; definition of, 130

Risk sensitivity, x, 128-150; degrees of,

132-134; a descriptive model of, 144;

evidence for, 134-137; and patch

residence time, 140; standard form of

experiment, 136

ROC curve, 68, 70

Routes, 36

Rules of thumb, 97; as behavioral

constraints, 172—176; definition of,

172; experimental evidence, 176; for

herbivores, 124; hill-climbing as, 179; for

patch leaving, 172-176

Runs of bad luck, in tracking model, 81

Sampling, 81; behavior, xi; effect on

recognition costs, 101; errors, 82;

frequency, 82; period, 82; rule in tracking

model, 82

Satisficing, 180-182; as a recipe for

research, 180

Schedules: concurrent, 176-179; variable

interval, 177

Sciurus carolinensis, 115

Search, 13; costs in patch model, 25, 27;

costs in prey model, 17—18; method,

35-36; and pursuit contrasted, 48; times

in McNair’s prey model, 51

Sedentary foragers, site assessment for, 94

Sensorylimitations, 172
Sequential encounter, 11; of sets of prey, 41
Sequential risk taking, 144

Shannon-Weaver index, 79

Shortfall models of risk taking, 137-144
Shortfall, threat of, 150

Shrews, 172



Silica, importance to herbivores, 118
Simultaneous encounter, 24; general

discussion of, 38-45; partial preferences

causedby, 41

Single-prey loader, 58; contrasted with
encounter at a distance model, 59-60;

definition of, 56; effect of within-patch

search on, 56; model of central-place

foraging, 55—60; simplified model of, 57;

unselectivity by, 56
Size-distance effect, 55

Size-selectivity, effect of distance on, 56

Skinner boxes, 177-179

Sodium: importance to herbivores, 118;

requirement of moose, 120

Spandrels, 211-212

Specific hungers, 124
Spiders, 94
Spizella passerina arizonae, 21
Spread result, 98, 103; compared with

comparisoneffect, 99; compared with

Gould’s two sub-type result, 98
Squirrels, 115

Stability, compared to maximization and

minimization, 7

Starlings, 203-204
Static optimization, 151; contrasted with

dynamic, 6, 34; as the last step in a

dynamic process, 152

Statistical decision theory, 77—78

Steady-state behavior, 177

Stentor, 122

Stimuli, chemical, 176

Stochastic modeling, 9

Stochastic rates, in prey and patch models,
15-17

Stomach contents, 24

Story telling by adaptationists, x
Strategy, 170, 208

Sturnus vulgaris, 202

Suboptimality, 172

Substitutes and substitutability: definition
of, 109; drawing inferences about, 111; as

studied by psychologists, 110

Sub-types, 102; compared to types, 75;

defined, 75

Sufficient tests, 202—205

Sunfish, 163-168
Survival, 166; as a currency, 114;

measurement of, 1x
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Switching on concurrent schedules,

176-179
Synthesis of amino acids, by herbivores,

117
Systematic search, 91, 94

Tangent diagrams in patch model:

limitations of, 30; in single-prey loader
model, 59

Tannins, importance to herbivores, 118

Terrestrial plants, as part of moose diet,

119

Territory, 34; defense, 161-163; intruders,

161

Testability, of optimization models, 207

Testing foraging models, 72, 183-205;
pitfalls of, 199-202; questions to ask

before, 204

Tests, sufficient. See Sufficient tests

Tetrahymena, 122
Thiamine deficiency, 124

Thompson, D’Arcy, 206

Threshold behavior, 21

Time allocation, 107

Time budgets, 107; constraints on, 114, 170;

of herbivores, 116

Time discounting, 147, 149; predicted by

interruptions, 149

Time horizon, 166

Time minimizer, 8; contrasted with energy

maximizer, 8—9

Tolerances as constraints, 10

Toxins, 125; avoidance by herbivores, 122;

compared with nutrients, 63; as

constraints, 61-63; different types, 122

Tracking a changing environment, 81-90,
100; compared to detection, 90; effect

of habitat stability on, 85-87;

narrowness of conditions for, 85, 87

Trade-offs, 104-127; between mean and

variance, 134; and dynamic optimization,

161-168; habitat choice vs. predation,
165—168; in prey and patch models, 34;

qualitative studies, 114; as studied by
behavioralecologists, 114; territorial

defense vs. foraging, 161-163; of work

andleisure, 112

Tragelaphus strepsiceros, 121

Transition probabilities, in McNair’s prey
model, 50
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Trans-situationality, test of, 112

Transversality condition, 167; in PMP,

157

Trap-building foragers, 94

Travel: costs, 36; restrictions, 53—60;

speeds, 36

Travel time, 162, 163, 202; effect on prey

choice within patches, 42; in patch
model, 30; and patch residence time in

patch sampling models, 93; similarity
with search time, 30

Types, 102; compared to sub-types, 175;
defined, 75

Unselectivity, in single-prey loader model,

56

Utility, 104; cardinal, 128; definition of,

104-105; as a descriptive tool, 105;

expected utility hypothesis, 129;

maximization of, 104, 108; ordinal,

105, 128; and risk, 128; and risk

sensitivity, 130
Utility function: definition of, 129; effect

of shape onrisk sensitivity, 130-131

Utility of traits, optimization as a way

to study, 210

Vacillation, the value of, 144, 153

Value of information, 79

Variable interval (VI) schedules, 177

Variance: compared with risk, 134;

limited meaning of, 134; sensitivity of

animals to, x

Variance discounting model, 144-147;
as a posteriori optimization, 147;

approximate derivation of, 145-146;
compared to the z-score model, 147;

derivation of, 145-146; exact derivation

of, 145; limitations of, 146

Variance-mean trade-off, 134

Vitamins, 124

Von Frisch, 214

Wariness, 34

Woodpeckers, 91

Work and leisure, trade-off of, 112

Young shoots, preference for, 124

Zero-one rule, 23; derivation of, 18;

empirical meaning of, 20-21; as special

case of min-max rule, 61

Z-score model of risk sensitivity, 136-144;

compared with the variance discounting

model, 147; complicated feasible sets

in, 139-140; prediction of energy

budget rule by, 138-139; predicts

extreme-variance rule, 139; as static risk

taking, 144, 151; zero carry-over

assumption in, 142-144


