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PREFACE

This text is written primarily for those students of sociology, both

advanced undergraduates and graduate students, who actually intend to

engage in social research. Since the vast majority of students in the

social sciences lack a background in college mathematics, this text has

been written so as to avoid mathematical derivationsin so far as possible.

A quick review of certain algebraic principles listed in Appendix 1 should

therefore be sufficient preparation for the average student. But al-

though it is not necessary in a first course in statistics to stress mathe-

matical derivations, the authoris convinced that certain basic and funda-

mental ideas underlying the principles of statistical inference must be

thoroughly understood if one is to obtain more than a mere “‘cookbook”’

knowledge of statistics. For this reason, you will find a relatively heavy

emphasis on the underlyinglogic of statistical inference, including a chap-

ter on probability, with relatively less attention being given to someof the

moreor less routine topics ordinarily discussed in elementary texts.

One of the most difficult problems encountered in the teaching of

applied statistics is that of motivating students, both in enabling them to

overcometheir fears of mathematics andin learning to apply statistics to

their own field of interest. It is for the latter reason that the author

has not attempted to cover a wide range of applications but has selected

examples of primary interest to sociologists. ‘To some extent, examples

have also been chosen from disciplines which border on sociology: fields

such as social psychology, social work, and political behavior. In most

instances each new topic has been illustrated by a single example, under

the assumption that most students will lose track of the basic line of

thought if too many examples are used to illustrate the same point.

Additional examplesare therefore given in the form of exercises at the end

of each chapter. In general, the author has tried to strike a reasonable

compromise between the desirability of stating basic principles as clearly

and concisely as possible and the necessity of repeating some of the more
vil
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difficult ideas each time a new topic is discussed. In so far as possible,

new ideas have been introduced gradually and, equally important, an

effort has been made to relate each new topic to those which have pre-

ceded it. In so doing, the major goal has been to give an appreciation of

the basic similarities underlying many of the most commonly used tests

and measures.

Since this text is not primarily intended for the average undergraduate
who does not actually expect to use statistics in his own research, the

author has not covered descriptive statistics in exhaustive detail but has

placed a muchgreater emphasis on inductivestatistics. It is also assumed

that most students using this text will already have been exposed to at

least one course in research methods. Therefore, no attempt has been

made to discuss such topics as the construction of interview schedules,

reliability and validity, experimental design, coding and tabulating, or

various types of scaling techniques or index construction. Most of

these topics are far too complex to be discussed at all adequately in a

general text on statistics. Nor is the present text intended as a general
reference work treating all of the statistical techniques currently in use in

the social sciences. Instead, an effort has been made to cover certain of

the most important and basic statistical techniques with sufficient thor-

oughness that, once these have been understood, the student will be able

to consult more specialized sources with some degree of confidence and

understanding.

The book is divided into three parts. Part I is intended as an intro-

duction which will enable the student to place statistics in a larger per-

spective and which mayserve to point out a few of the major problems

encountered in relating theory, measurement, and statistics. Someof the

descriptive measures and computing routines which will be needed in

later work are taken up in Part IJ. The normal curveis also discussed

in this section. Part III deals with some of the basic concepts of induc-

tive statistics: the nature of statistical inference, probability, signifi-

cance tests, confidence intervals, types I and II errors, and power func-

tions. The problem of controlling for relevant variables is discussed

first in Chap. 15 and again in Chaps. 16, 19, and 20. The impor-

tance of measures of association, as contrasted with significancetests,

is stressed in Chap. 15 as well as later chapters, and attention is

given to the basic problem of making causal inferences from correlational

data (Chap. 19). A number of nonparametric procedures are treated in

Chap. 14 and subsequent chapters, and in Chaps. 19 to 21 are discussed

various multivariate techniques. A major emphasis running throughout

the text is upon the limitations and possible misuses of statistics as well

as its various applications.

Included in the text are a numberof sections, paragraphs, and exercises
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which are either conceptually difficult or which presuppose that the
student is reasonably familiar with topics ordinarily covered in courses
on research methods. These portions of the text have been marked with
an asterisk (*) and may be skimmedon first reading or omitted entirely.
Instructors using the text for a one-semester course may wish to indicate
that students should omit these materials.
A number of persons have contributed, either directly or indirectly,

to the writing of this text. I would especially like to thank those students
and colleagues at the University of Michigan who haveread and suggested
improvements in various earlier drafts of the book. To Richard T.
LaPiere, Sanford Dornbusch, Robert Elis, Santo Camilleri, and Theo-
dore Anderson my appreciation for reading and criticizing the entire
manuscript. For proofing, typing, and checking computations I would
like to thank Ann Blalock, Diane Ktzel, Ann Laux, and Doris Slesinger.
My thanks also to Daniel O. Price who deserves the major credit for
stimulating my interest in statistics.

I am indebted to Professor Sir Ronald A. Fisher, Cambridge, to Dr.
Frank Yates, Rothamsted, and to Messrs. Oliver and Boyd Ltd., Edin-
burgh, for permission to reprint Tables No. III, IV, and V from their
book Statistical Tables for Biological, Agricultural and Medical Research.
I am equally grateful to those other publishers and authors, acknowledged
in the appropriate places, who have kindly given their permission to
make use of various tables and computing forms.

Hubert M. Blalock, Jr.



CONTENTS

Preface

PART I. INTRODUCTION

1. Introduction: Purposes and Limitations of Statistics .

1.1. Functions of Statistics

1.2. The Place of Statistics in the Research Process .

1.3. A Word of Advice

2. Theory, Measurement, and Mathematics

2.1. Theory and Hypotheses: Operational Definitions

2.2. Level of Measurement: Nominal, Ordinal, and Interval Scales.

2.3. Measurements and Statistics

PART II. DESCRIPTIVE STATISTICS

3. Nominal Scales: Proportions, Percentages, and Ratios

3.1. Proportions

3.2. Percentages
3.3. Ratios .

4. Interval Scales: Frequency Distributions and Graphic Presentation

4.1. Frequency Distributions: Grouping the Data
4.2. Cumulative Frequency Distributions .

4.3. Graphic Presentation: Histograms, Frequency Polygons, and Ozives.

5. Interval Scales: Measures of Central Tendency

5.1. The Arithmetic Mean

5.2. The Median ,
5.3. Computation of Mean and Median from Grouped Data

5.4. Comparison of Mean and Median .
5.5. Other Measures of Central Tendency.
5.6. Deciles, Quartiles, and Percentiles .

xi

vil

o
o
I
D

Pp
W
w

ft
fe

e
o
>
=

C
O

25

25
27

30

33

33

40

45

46
49
50
ov
60

62



xii

6. Interval Scales: Measures of Dispersion .

6.1. The Range ,
6.2. The Quartile Deviation ,
6.3. The Mean Deviation.

6.4. The Standard Deviation.
6.5. The Coefficient of Variability

6.6. Other Summarizing Measures

7. The Normal Distribution

7.1. Finite versus Infinite Frequency Distributions
7.2. General Form of the Normal Curve

7.3. Areas under the Normal Curve.

7.4. Further Illustrations of the Use of the Normal Table

PART III. INDUCTIVE STATISTICS

8. Introduction to Inductive Statistics

8.1. Statistics and Parameters
8.2. Steps in Testing an Hypothesis.
8.3. The Fallacy of Affirming the Consequent.

8.4. The Form of Statistical Hypotheses

9. Probability

9.1. A Priori Probabilities ,
9.2. Mathematical Properties of Probabilities .,

9.3. Independence and Random Sampling .

10. Testing Hypotheses: The Binomial Distribution

10.1. The Binomial Sampling Distribution .

10.2. Steps in Statistical Tests
10.3. Applications of the Binomial

11. Single-sample Tests Involving Means and Proportions

11.1. The Central-limit Theorem and the Law of Large Numbers
11.2. Test for Population Mean, « Known
11.8. Student’s ¢ Distribution .
11.4. Tests Involving Proportions

12. Point and Interval Estimation .

12.1. Point Estimation .
12.2. Interval Estimation .

12.3. Confidence Intervals for Other Types of Problems
12.4. Determining the Sample Size

13. Two-sample Tests: Difference of Means and Proportions

13.1. Difference-of-Means Test
13.2. Difference of Proportions
13.3. Confidence Intervals.
13.4. Dependent Samples: Matched Pairs .

13.5. Comments on Experimental Designs . . . . .

CONTENTS

64

64

65

66
67
73
74

716

76
78
81
84

89

89
90
92
94

97

98
102

108

. 115

115
119
130

. 135

135
141
144
149

. 154

155
158
163
165

169

170
176
179
179

181



CONTENTS

14. Ordinal Scales: Two-sample Nonparametric Tests

14.1. Power and Power Efficiency
14.2. The Wald-Wolfowitz Runs Test ;
14.3. The Mann-Whitney or Wilcoxon Test.
14.4. The Kolmogorov-Smirnov Test. . .
14.5. The Wilcoxon Matched-pairs Signed-ranks Test .
14.6. Summary .

15. Nominal Scales: Contingency Problems

15.1. The Chi-square Test .

15.2. Fisher’s Exact Test . ,

15.3. Measures of Strength of Relationship .
15.4. Controlling for Other Variables.

16. Analysis of Variance

16.1. Simple Analysis of Variance
16.2. Two-way Analysis of Variance . ,
16.3. Nonparametric Alternatives to Analysis of Variance
16.4. Measures of Association: Intraclass Correlation .
16.5. Additional Remarks.

17. Correlation and Regression

17.1. Linear Regression and Least Squares .
17.2. Correlation

18. Correlation and Regression (Continued)

18.1. Significance Tests and Confidence Intervals .
18.2. Nonlinear Correlation and Regression .
18.3. Ordinal Scales: Rank Order Correlation

19. Multiple and Partial Correlation .

19.1. Multiple Regression and Least Squares
19.2. Partial Correlation

19.3. Partial Correlation and Causal Interpretations
19.4. Multiple Least Squares and the Beta Coefficients
19.5. Multiple Correlation . ,
19.6. Multiple Regression and Nonlinearity .

19.7. Significance Tests and Confidence Intervals .

20. Analysis of Covariance.

20.1. Relating Two Interval Scales, Controlling for Nominal Scale .
20.2. Relating Interval and Nominal Scales, Controlling for Interval Scale.
20.3. Extensions to Four or More Variables.

20.4. Other Analysis of Covariance Techniques.

21. Factor Analysis and Other Multivariate Techniques.

21.1. Multiple Factor Analysis
21.2. Other Multivariate Techniques.

xii

. 187

188
193
197
203
206
209

. 212

212
221
225
234

. 242

242
293
264

266
269

. 273

274
285

. 302

302
dll
317

326

326
329
337
343
346
351

354

. 359

360
379
381

381

. 383

383
389



XIV CONTENTS

99. Sampling. . . ©... ee ee es B92

22.1. Simple Random Sampling . . . .. .. .. . wee eee 8398
22.2. Systematic Sampling. . . ©. . . . eee ee 888

22.3. Stratified Sampling . . . . . . . eee 899

22.4. Cluster Sampling. . . . . . . 2. eee ee 405

22.5. Nonprobability Sampling .. Ce ee ee eee 410

22.6. Nonsampling Errors and Sample Size Co ee ee ee AI

23. Conclusions . . oe 413

Appendix 1. Review of Algebraic Operation: Coe ee ee we AND

9. Tables ....... 2. ee ee eee. 494

Index. 2.0. ee ee ew 459



Part |

INTRODUCTION



Chapter !

INTRODUCTION: PURPOSES AND LIMITATIONS

OF STATISTICS

Thefield of statistics has widespread applications as indicated by the

fact that statistics courses are offered in such dissimilar subjects as
dentistry and sociology, business administration and zoology, and public

health and education. In spite of this fact, there are many misconcep-

tions concerning the nature of this rapidly developing discipline. The

layman’s conception of statistics is apt to be very different from that of

the professional statistician. A statistician is sometimes thought of as a

person who manipulates numbers in order to prove his point. On the

other hand, some students of sociology or other social sciences have

tended to worship the statistician as someone who, with the aid of his

magical computing machine, can make almost any study ‘‘scientific.”’

Possibly because of the awe many persons havefor anything with a hint

of mathematics, students often find it difficult to approach a course in

statistics with other than mixed feelings. Although they may be

terrified at the prospect of working with numbers, they may also come to

expect too much of a discipline which appears so formidable. Before

jumping into the subject too quickly and thereby losing perspective, let

us first ask ourselves just what statistics is and what it can and cannot do.

It is perhaps easiest to begin by stating what statistics is not. Sta-

tistics first of all is not a method by which one can prove almost anything

he wants to prove. In fact, we shall find statisticians very carefully
laying down rules of the game to ensure that interpretations do not go
beyond the limits of the data. There is nothing inherent in statistical
methods to prevent the careless or intellectually dishonest individual
from drawing his own conclusions in spite of the data, however, and one
of the most important functions of an introductory course in statistics
is to place the student on guard against possible misuses of this tool.

Statistics is not simply a collection of facts. If it were, there would
3 !



4 INTRODUCTION

hardly be much point in studying the subject. Noris statistics a sub-

stitute for abstract theoretical thinking or for careful examination of

exceptional cases. In some of the older textbooks on research methods

one used to find lengthy discussions on the relative merits of the case

study methodversusthe statistical method. It is now clearly recognized

that statistical methods are in no sense “opposed” to the qualitative

analysis of case studies but that the two approaches are complementary.

It is not even true that statistics is applicable only whenthere are a large

numberofcases or that it cannot be used in exploratory studies. Finally,

statistics is not a substitute for measurementor the careful construction

of an interview schedule or other instrument of data collection. This

last point will receive further attention toward the end of this chapter and

in Chap.2.
Having indicated whatstatistics is not, can we say definitely whatit is?

Unfortunately, persons whocall themselvesstatisticians seem to disagree

somewhat as to exactly what is covered under the general heading of

statistics. Taking a pragmatic approach to the problem, we shall say

that statistics has two very broad functions and that anything not fulfill-

ing these functions is not part of statistics. The first of these functions

is description, the summarizing of information in such a manner as to

make it more usable. The second functionis induction, or the making of

generalizations about some population on the basis of a sample drawn

from this population. Each of these functions will be discussed in turn.

1.1. Functions of Statistics

Descriptive Statistics. Quite frequently in social research a person will
find himself in the position of having so much data that he cannot ade-

quately absorb all of his information. He may have collected 200 ques-

tionnaires and be in the embarrassing position of having to ask, “What
do I do with it all?’’? With so much information it would be exceedingly
difficult for any but the most photographic minds to grasp intuitively

what is in the data. The information must somehowor other be boiled

down to a point at which the researcher can see what is in it; it must be

summarized. By computing measures such as percentages, means,

standard deviations, and correlation coefficients it may be possible to

reduce the data to manageable proportions. In summarizing data by

substituting a very few measures for many numbers, certain information

is inevitably lost, and, more serious, it is very possible to obtain results

which are misleading unless cautiously interpreted. Therefore, the

limitations of each summarizing measure mustbe clearly indicated.

Inductive Statistics. Statistics would be a fairly simple subject if atten-

tion were confined to descriptive measures. Perhaps a far more impor-



INTRODUCTION: PURPOSES AND LIMITATIONS OF STATISTICS 5

tant function of statistics, and certainly the one which will occupy most
of our attention in this text, is that of induction or inferring properties
of a population on the basis of known sample results. Statistical infer-
ence, as the processis called, involves much more complex reasoning than
does descriptive statistics, but when properly used and understood
becomes a very important tool in the development of a scientific dis-
cipline. Inductive statistics is based directly on probability theory, a
branch of mathematics. We thus have a purely deductive discipline
providing a rational basis for inductive reasoning. To the writer’s
knowledge there is no other rational basis for induction. This general
point will be discussed in more detail in Chap.8.

There are several practical reasons whyit is often necessary to attempt
to generalize on the basis of limited information. The most obviousis
the time-cost factor. It would be wholly impractical, if not prohibitively
costly, to ask every voter how he intended to vote in order to predict a
national election. Nor can the ordinary researcher afford to tap every
resident of a large city in order to study prejudice, social mobility, or any
other phenomenon. Hefirst decides upon the exact nature of the group
about which he wishes to generalize (the population). For example, he
may select all citizens of voting age or all white males over eighteen
residing within the city limits of Detroit. He then usually draws a
sample consisting of a relatively small proportion of these people, being
primarily interested, however, not in this particular sample but in the
larger population from which the sample was drawn. For example, he
may find that within his particular sample of 200 white males there is a
negative relationship between education and prejudice. Recognizing
that had another set of 200 individuals been sampled the results might
have been quite different, he would nevertheless like to make certain
inferences as to the nature of the relationship had the entire population of
adult white males in Detroit been studied.
Another reason for generalizing on the basis of limited information is

that it may be impossible to make use of the entire population simply
because the population is infinite or not easily defined. In replicating
an experiment in the natural or social sciences the goal always seems to
be some kindof generalization whichit is hoped will apply “under similar
circumstances.”’ Or a social scientist may have collected data on all of
the cases available to him. For example, he may have usedall 50 states
as his units of analysis in studying internal migration. Nevertheless, he
may want to generalize about migration under “similar’’ conditions. In
each of these instances the situation calls for inductive statistics.
At this point you may ask a question of the following sort: “If sta-

tistics is so important, whyis it that sciences such as physics and chemis-
try have been able to get along so well without the extensive use of
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statistical techniques? Is there anything different about these sciences?”’

Quite obviously there is. Some of the natural sciences have developed

for centuries without the use of inductive statistics. But this seems to

be primarily a matter of good fortuneor, to give these scientists credit for

their ownefforts, a relatively satisfactory control over disturbing elements

in the environment. As will become apparent in later chapters, to the

degree that carefully controlled laboratory conditions prevail there is less

practical need for statistical techniques. In this sense statistics is a poor

man’s substitute for contrived laboratory experiments in which all

important relevant variables have been controlled. It should be empha-

sized, however, that many of the same statistical principles apply to

laboratory experiments in physics, to somewhat less precise agricultural

experiments, and to social surveys. For example, if an experiment in

physics has been replicated 37 times with similar results, it is nevertheless

conceivable that subsequent trials will yield different outcomes. The

scientist must therefore generalize on the basis of a limited number of

experiments, and the inferences he makes are essentially statistical in

nature. Also, the problem of measurement error can be conceived in

statistical terms. No matter how precise the measuring instrument, the

scientist never obtains exactly the same results with each replication.

He may attribute these differences either to measurement error or to

disturbing effects of uncontrolled variables. Statistics becomesespecially

necessary whenever there is so much variation from onereplication to the

next that differences cannot be ignored or attributed to measurement

error. Basically, then, statistical inference underliesall scientific general-

izations, although the needforstatistical training and the use of sophisti-

cated statistical techniques vary considerably from onefield to another.

1.2. The Place ofStatistics in the Research Process

The importance of statistics in the research process is sometimes

exaggerated by the emphasis given to it in graduate curricula. Statistics

proper does not include measurement problems such as the construction

of indices or the scoring of items on a questionnaire. Rather, statistics

involves a manipulation of numbers under the assumption that certain

requirements have been met in the measurement procedure. Actually,

statistical considerations enter only into the analysis stage of the research

process, after all data have been collected, and near the beginning when

initial plans for analysis are made and when a sample is to be drawn.

While the above statement to the effect that statistics enters only into

the analysis and sampling stages of the research process may be tech-

nically correct, it is very likely to be misleading unless qualified. It

certainly does not mean that a social scientist can plan and carry out his
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entire research without any knowledgeof statistics and then dump the
whole project into the lap of a statistician saying, “Now I’ve done my
job. You analyze it.”” If he did this the results would probably be
disappointing if not completely useless. Quite obviously, problems that
will be encounteredin analysis haveto be anticipated in every stage of the
research process, and in this sense statistical considerations may be
involved throughout. A highly sophisticated statistical analysis can
rarely if ever compensate for a poorly conceived project or a poorly con-
structed data-collection instrument, however. This last point deserves
special note. It means that statistics may be an aid to, but never a
substitute for, good sound thinking. From the standpoint of the social
scientist it is merely a tool.

1.3. A Word of Advice

Some students experience a degree of fear ranging from mild appre-
hension to an extreme mental block whenever they see a number or
mathematical equation. If you happento belong to this category, you
should especially try to set aside any notion you may haveto theeffect
that “statistics is something I know I’ll never be able to understand.”’
The level of mathematics required in this text is such that several years
of high school algebra plus a quick review of a few elementary algebraic
operations given in Appendix 1 should be ample preparation. It must be
remembered, however, that mathematics and statistics texts cannot be
expected to read like novels. Material is usually presented in a highly
condensed form. Therefore careful rereading and an active rather than
passive orientation to the material presented will be required. For this
reason, there is no substitute for daily preparation and the working of
practice problems found at the end of each chapter.

REFERENCES

1. Hagood, M. J., and D. O. Price: Statistics for Sociologists, Henry Holt and
Company, Inc., New York, 1952, chaps. 1 and 2.
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3. Walker, H. M.: Mathematics Essential for Elementary Statistics, Henry Holt and

Company, Inc., New York, 1951.
4, Wallis, W. A., and H. V. Roberts: Statistics: A New Approach, Free Press,

Glencoe, IIl., 1956, chaps. 1-3.



Chapter 2

THEORY, MEASUREMENT, AND MATHEMATICS

The purpose of this chapter is to outline the relationships among

theoretical propositions, empirical hypotheses, measurement, and mathe-

matical models. Many of the problems dealt with in this chapter are not

usually discussed in connection with courses in statistics, partly because

of the regrettable tendency to compartmentalize courses under the

headings of ‘‘theory,” ‘‘research methods,’ and ‘‘statistics.”’ This often

means that the nature of the interrelations among these areas becomes

obscured. In orderto place statistics in its proper perspective it will be

helpful to give at least some attention to the relationships between

theoretical propositions and research hypothesesand also to those between

research hypotheses and mathematical models.

One commonly hears statements to the effect that it is the purpose of

research to test hypotheses developed theoretically and that statistical

methods enable us to make such tests. It must be realized, however, that

the processes involved in getting from theory to actual research hypotheses

and from these hypotheses to probability statements of the kind used in

statistical inference are by no means direct. In both cases certain

decisions have to be made, decisions which may lead to considerable

controversy. Let us first examine the nature of those decisions required

in developing testable hypotheses from theoretical propositions.

*9.1. Theory and Hypotheses: Operational Definitions

The momentwebegin to design a research project the aim of whichis to

test a proposition of the sort which may appear in a theoretical work,it

becomes very evident that a number of things must be done before the

* An asterisk preceding a section, paragraph, or exercise indicates that the material

involved either is conceptually difficult or deals with subjects which are likely to be
unfamiliar to students with limited backgrounds in research methodology. These

materials can safely be omitted or skimmed by the beginning student. An asterisk
preceding a section heading indicates that the entire section may be omitted if desired.
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test can be made. As a concrete example let us take the proposition

“The higher a person’s social status the lower his prejudice toward

Negroes.’’ Suppose ‘‘social status’? has been defined as one’s position

relative to others in the status hierarchy and ‘“‘prejudice”’ as an under-

lying tendency to discriminate against a minority or as a negative attitude

based on prejudgment. Although you may prefer to substitute other

definitions of these two concepts, you will undoubtedly discover that no

matter what definitions you choose it will not be possible to use them

directly to enable you to decide exactly what Jones’s status or prejudice

level may be.

The reason for this is that most ordinary definitions are theoretical

rather than operational definitions. In a theoretical definition a concept

is defined in terms of other concepts which supposedly are already under-

stood. In the ideal model of the completely deductive system, certain

concepts would be taken as undefined (primitive), and all other concepts

would be defined in terms of these. In Euclidian geometry, for example,

the concepts point and line may be taken as undefined. The notions of

angle, triangle, or rectangle can then be defined in termsof these primitive

concepts. Although the choice of undefined concepts is to a certain

extent arbitrary, the fact that there must always be some primitive con-

cepts is a reflection of the necessity of defining theoretical concepts in

terms of each other.

Operational definitions, on the other hand, are definitions which

actually spell out the procedures used in measurement([6], pp. 58 to 65).

An operational definition of “length’’ would indicate exactly how the

length of a body is to be measured. An example of an operational

definition of prejudice would include a test such as the Bogardussocial-

distance scale or, perhaps, a 24-item list of anti-Negro stereotypes,

together with detailed instructions for collecting the data, scoring the

items, and so forth. Warner’s index of status characteristics (ISC) and

the Chapin living room scale are examples of procedures used in develop-

ing operational definitions of social status. Since all measurement

involves classification as a minimal requirement, an operational definition

can be considered to be a detailed set of instructions enabling one to

classify individuals unambiguously. The notion of reliability is thus

built into this conception of the operational definition. The definition

should be sufficiently precise that all persons using the procedure will

achieve the same results. The theoretical definitions of prejudice and

social status given above would not directly permit this to be done.

Weare thus arguing that two different kinds of definitions are used in

any science. Several alternative ways of viewing the relationship

between theory and research lead to essentially the same conclusion.

Northrop refers to what we have called theoretical definitions as ‘‘con-
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cepts by postulation” and to operational definitions as “concepts by

intuition” [7]. We have used a terminology which seems to imply that

there are two distinct ways of defining the ‘‘same”’ concept, whereas

Northrop chooses to refer to two different kinds of concepts. Others

prefer to think in terms of indices rather than operational definitions.

The concept index usually implies that the procedure used gives only an

imperfect indicator of some underlying variable which is not directly

measurable. According to this perspective, then, there is both an under-

lying variable and an indicator of this variable. Regardless of the per-

spective one prefers, it is necessary to understand the nature of the link-

age between the two kindsof definitions, concepts, or variables. Wemay

ask whether or not there is any purely logical method of associating the

two kinds of definitions. An alternative way of phrasing the question

would be to ask if there is any logical way of determining whether a given

operational definition (or index) “‘really’’ measures the theoretically

defined concept or variable. The answer to both questions seems to be

in the negative.

Northrop essentially argues that there is no method of associating the

two kinds of concepts or definitions except by convention or common

agreement. Persons simply agree that a given operational definition

should be used as a measure of a certain concept if the operations seem

reasonable on the basis of the theoretical definition. Presumably, if

several operational definitions are possible, those operations will be

selected which seem most appropriate and at the same time mostreliable.

‘‘ Appropriateness’? must inevitably be judged on the basis of one’s

understanding of the theoretical definition. The term face validity is

sometimes used to refer to the appropriateness of the index or operational

definition ({9], p. 165). Ideally, as Bridgman points out, operations and

theoretical definitions should be associated on a one-to-one basis ([2],

pp. 23 ff.). In other words, if we change the operation we should use a

new concept. Such an ideal is perhaps an unrealistic one for the social

sciences in their present stage of development, however. Its application

would undoubtedly lead either to a rigidity capable of stifling further

methodological advances or to a proliferation of theoretical concepts [1].

What can be done then? We can admit the possibility of having a

numberof different operations or indices associated with each theoretical

concept. But then we may run into a common difficulty: these pro-

cedures may yield different results. One procedure for measuring

prejudice may lead to results which indicate that our “hypothesis” has

been confirmed. In another case a different procedure may lead to the

opposite conclusion. In a sense this is the way progress is made, pro-

vided it does not lead to endless bickering about which of the procedures

is “‘really’’ measuring prejudice (the essence of which is presumed under-

stood.) In order to avoid confusion it is important to realize that the
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actual test 1s made in terms of the concepts as operationally defined. Prop-
ositions involving concepts defined theoretically are therefore not directly
testable. ‘Thus, if there are two distinct operational definitions of preju-
dice there will be two distinct hypotheses being tested. |

It has been admitted that it may be desirable to have more than one
operation associated with any given theoretical concept, and it has been
pointed out that such operations may lead to different results. We are
now in a position to give a working, pragmatic criterion for an empirically
satisfactory theoretical definition of a concept. Let us imagine that we
have a concept defined theoretically and several operational definitions
which might possibly be associated with this theoretical definition. On
the basis of this latter definition, most scientists in the field will probably
agree that certain of the operations should be eliminated as not tapping
what is implied in the theoretical definition. For example, they may
decide that items referring to delinquent tendencies or musical tastes
should not be used to measure prejudice. But there may be several
operations which have moreor less equal status in the opinion of these
judges. In other words, on the basis of the theoretical definition, experts
may not be able to agree that one operational procedure should be
selected in preference to the others. We may then say that to the extent
that these several procedures yield different results (under similar circum-
stances), the theoretical definition is unsatisfactory in the sense that it is
probably in need of revision or clarification. For example, the concept
prejudice may have been defined in such a manner that it is too vague.
Perhaps it will be found necessary to distinguish between several kinds or
dimensions of prejudice and to associate different operations with each.
In a manner such as this—whetherit is explicitly recognized or not—the
research process may be used to help clarify theoretical concepts.

There thus seem to be two distinct languages linked by a kind of
dictionary, arrived at by consensus, which enables one to associate con-
cepts in the one language with those in the other. Scientists think in the
theoretical language and make tests in the operational language. It is
not necessary to associate operations with all concepts in the theoretical
language. It is importantto realize, however, that concepts which have
not been operationally defined should not ordinarily be permitted to
appear in statements purporting to be testable hypotheses. If this
occurs, the questions raised by the “hypotheses”’ will usually be opera-
tionally meaningless and may lead to endless debate.

2.2. Level of Measurement: Nominal, Ordinal, and Interval Scales

Wehavejust seen that the process of going from theoretically defined
concepts to operationally defined concepts is by no means direct. Cer-
tain decisions have to be madein associating one type of concept with the
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other. Likewise, the process of selecting the appropriate mathematical

or statistical model to be used with a given research technique or opera-

tional procedure also involves a numberof important decisions. It might

be thought that once a phenomenon had been measured the choice of a

mathematical system would be a routine one. This all depends on what

one means by the word measure. If we use the term to refer only to those

types of measurement ordinarily used in a science such as physics (e.g.,

the measurement of length, time, or mass), there is little or no problem

in the choice of a mathematical system. But if we broaden the concept

of measurement to include certain less precise procedures ordinarily used

in the social sciences, as will be done in this text, the whole problem

becomes more complex. Wecan then distinguish between several levels

of measurement, and weshallfind different statistical models appropriate

to each.!

Nominal Scales. The basic and most simple operation in any science is

that of classification. In classifying we attempt to sort elements with

respect to a certain characteristic, making decisions about which elements

are most similar and which most different. Our aim is to sort them into

categories which are as homogeneous as possible as compared with

differences between categories. If the classification is a useful one, the

categories will also be found to be homogeneous with respect to other

variables [8]. For example, we sort persons according to religion

(Methodists, Presbyterians, Catholics, etc.) and then see if religion is

related to prejudice or political conservatism. We might find that

Presbyterians tend to be more conservative than Catholics, the Presby-

terians having uniformly high scores as compared with the Catholics.

Had individuals been sorted as to hair color, a perfectly proper criterion

for classification, probably no significant differences would have been

found among hair-color classes with respect to other variables studied.

In other words, differences among hair-color classes would have been

slight as compared with differences within each category. Thus, classi-

fication is fundamental to any science. All other levels of measure-

ment, no matter how precise, basically involve classification as a minimal

operation.

Wetherefore can considerclassification to be the lowest level of meas-

urement as the term is used in its broadest sense. Wearbitrarily give

names to the categories as convenient tags, with no assumptions about

relationships between categories. For example, we place Presbyterians

and Catholics in distinct categories, but we do not imply that oneis

“oreater than” or “better than” the other. As long as the categories

are exhaustive (include all cases) and nonoverlapping or mutually

1 For further discussions of these different levels of measurement see [4], [5], [10],

and [11].
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exclusive (no case in more than one category), we have the minimal
conditions necessary for the application of statistical procedures. The
term nominal scale has been usedtorefer to this simplest level of measure-
ment. Formally, nominal scales possess the propertiesof symmetry and
transitivity. By symmetry we mean that a relation holding between A
and B also holds between B and A. Bytransitivity we mean that if
A = Band B=C, then A = C. Put together, this simply means that
if A is in the same (different) class as B, B is in the same (different) class
as A and that if A and B are in the sameclass and B and

C

in the same
class, then A and C must be in the sameclass.

It should be pointed out that numbers may bearbitrarily associated
with each category, but this fact in no way justifies the use of the usual
arithmetic operations on these numbers. The function of numbers in
this case is exactly the same as that of names,i.e., the labeling of cate-
gories. It would obviously make absolutely no sense to add social
security numbers or room numbers in a hotel. Although we would never
be tempted to carry out such a ridiculous operation, there are other
instances in social science research where the absurdity is by no meansas
obvious. Thus although numerical values mayarbitrarily be assigned
to various categories, the use of certain of the more common mathe-
matical operations (addition, subtraction, multiplication, and division)
requires also that certain methodological operations be carried out in the
classification procedure. Weshall have occasion shortly to see what the
nature of these operations must be.

Ordinal Scales. It is frequently possible to order categories with
respect to the degree to which they possess a certain characteristic, and
yet we may not beable to say exactly how much they possess. We thus
imagine a single continuum along which individuals may be ordered.
Perhaps we can rank individuals so precisely that no two are located at
the same point on the continuum. Usually, however, there will be a
numberof ties. In such instances, we are unable to distinguish between
certain of the individuals and we have lumped them togetherinto a single
category. Weare able to say, however, that these individuals all have
higher scores than certain other individuals. Thus we may classify
families according to socioeconomic status: “upper,” “upper-middle,”
“lower-middle,” and “lower.” We might even have only twocategories,
“upper” and “‘lower.’’

The kind of measurement weare discussing is obviously at a somewhat
higher level than that used in obtaining a nominalscale since we are able
not only to group individuals into separate categories, but to order
the categories as well. We refer to this level of measurement as an
“ordinal scale.”” In addition to having the symmetrical properties of the
nominal scale, an ordinal scale is asymmetrical in the sense that certain
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special relationships may hold between A and B which do not hold for B

and A. For example, the relationship “greater than” (>) is asymmetric

in that if A > B it cannot be true that B > A. Transitivity still holds:

A> BandB> CthenA >C._ Itis these properties, of course, which

enable us to place A, B, C, . . . along a single continuum.

It is important to recognize that an ordinal level of measurement does

not supply any information about the magnitude of the differences between

elements. We know only that A is greater than B but cannot say how

much greater. Nor can we say that the difference between A and B is

less than that between C and D.? We therefore cannot add or subtract

distances except in a very restricted sense. Jor example, if we had the

following relationships

! { ! f
J T T 1

D C B A

we can say that the distance

AD = AB + BC +CD

but we cannot attempt to compare the distances AB and CD. In other

words, when wetranslate order relations into mathematical operations,

we cannot, in general, use the usual operations of addition, subtraction,

multiplication, and division. We can, however, use the operations

‘“oreater than’’ and “less than” if these prove useful.

Interval and Ratio Scales. In the narrow sense of the word, the term

measurement may be used to refer to instances in which we are able not

only to rank objects with respect to the degree to which they possess a

certain characteristic but also to indicate the exact distances between

them. If this is possible we can obtain whatis referred to as an interval

scale. It should be readily apparent that an interval-scale level of

measurement requires the establishment of somesort of a physical unit of

measurement which can be agreed upon as a commonstandard and which

is replicable, ie., can be applied over and over again with the same

results. Length is measured in terms of feet or meters, time in seconds,

temperature in degrees Fahrenheit or centigrade, weight in pounds or

grams, and incomein dollars. On the other hand,there are no such units

of intelligence, authoritarianism, or prestige which can be agreed upon by

all social scientists and which can be assumed to be constant from one

situation to the next. Given a unit of measurement,it is possible to say

that the difference between twoscores is twenty units or that one differ-

ence is twice as large as a second. This means that it is possible to add

or subtract scores in an analogous mannerto the way we can add weights

2 The term ordered-metric has been used to refer to scales in which it is possible to

rank the size of differences between elements. See [5].
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on a balance or subtract 6 inches from a board by sawing it in two ((3],
pages 296 to 298). Similarly, we can add the incomes of husband and
wife whereas it makes no sense to add their IQ scores.

If it is also possible to locate an absolute or nonarbitrary zero point
on the scale, we have a somewhat higher level of measurement referred
to as a ratio scale. In this case we are able to compare scores by taking
their ratios. For example, we can say that one score is twice as high as
another. Had the zero point been arbitrary, such as in the case of the
centigrade or Fahrenheit scales, this would not have been legitimate.
Thus we do not say that 70°F is twice as hot as 35°F although we can say
that the difference between these temperatures is the same as that between
105°F and 70°F. In practically all instances known to the writer this
distinction betweeninterval andratio scalesis purely academic, however,
as it is extremely difficult to find a legitimate interval scale which is not
also a ratio scale. This is due to the fact that if the size of the unit is
establishedit is practically always possible to conceive of zero units, even
though we may neverbe able to find a body with no length or mass orto
obtain a temperature of absolute zero. Thus in practically all instances
where a unit is available it will be legitimate to use all of the ordinary
operations of arithmetic, including square roots, powers, and logarithms.

*Certain important questions arise concerning the legitimacy of using
interval scales in the case of a numberof sociological and social psycho-
logical variables. Unfortunately, it will be impossible to discuss these
questions in detail in a general text such as this although some can be
mentioned briefly. It is sometimes argued that a variable such as
income, if measured in dollars, is not really an interval scale since a
difference of $1,000 will have different psychological meanings depending
on whether the difference is between incomes of $2,000 and $3,000 or
between incomes of $30,000 and $31,000. This argument, it Seems, con-
fuses the issue. What is actually being said here is that income as
measured in dollars and “psychological income” (assuming this could be
measured in terms of some unit) are not related in a straight-line or linear
fashion. This is a question of fact which is irrelevant to the question of
whetheror not there is a legitimate unit of measurement.

*Another question can be raised as to whether or not it is possible to
attain an interval scale in the area of attitude measurement. Several
attempts have been made to approximate this goal. In the Thurstone
method of equal-appearing intervals, judges are asked to sort items into
a numberofpiles which are equally far apart along the attitude continuum
([9], pages 359 to 365). It is reasoned essentially that if there is a high
degree of consensus among the judges an interval scale can legitimately
be used. This process, it is argued, is similar in essence to that used in
other disciplines to obtain interval scales. The argument seems to be a
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legitimate one provided there actually is a high degree of consensus among

judges and provided judges are given a large number of piles into which

they can sort the items. For example, if they were forced to place items

into one of three or four piles we would expect a high degree of consensus

simply due to the crudity of the measuring instrument. ‘There would be

such a wide range of variability within each pile that one could hardly

claim that the items in the various piles were equal distances apart.

Even assuming perfect agreement and maximal freedom in sorting the

items into piles, Thurstone’s method still presents difficulties in con-

ceptualizing the unit concerned. It becomes necessary to postulate that

it is the existence of such a unit which makes agreement among judges

possible. It seems safe to say that at this point in the development of

attitude measurement most techniques yield very poor approximations

to interval scales. Many probably should not even be considered to give

legitimate ordinal scales. The implications of this for statistical analysis

will become apparent as we proceed.

9.3. Measurement and Statistics

Wehave seen that there are several distinct levels of measurement,

each with its own properties. It should be noted that these variouslevels

of measurement themselves form a cumulative scale. An ordinal scale

possesses all the properties of a nominal scale plus ordinality. An

interval scale has all the qualities of both nominal and ordinal scales plus

a unit of measurement, and a ratio scale represents the highest level since

it has not only a unit of measurement but an absolute zero as well. The

cumulative nature of these scales means that it is always legitimate to

drop back one or morelevels of measurement in analyzing our data. If

we have an interval scale we also have an ordinal scale and can makeuse of

this fact in our statistical analysis. Sometimes this will be necessary

when statistical techniques are either unavailable or otherwise unsatis-

factory in handling the variable as an interval scale. Welose information

in doing so, however. Thus if we know that Jones has an income of

$11,000 and Smith an income of $6,000 and if we make use only of the

fact that Jones has the higher of the two incomes, we in effect throw

away the information that the difference in incomes is $5,000. Therefore

in general we shall find it to our advantage to make use of the highest

level of measurement that can legitimately be assumed.

What can besaid of the reverse process of going up the scale of measure-

ment from, say, an ordinal to an interval scale? We are often tempted

to do so since we would then be able to make use of more powerful

statistical techniques. It is even quite possible that we may do so

without being at all aware of exactly what has occurred. It is important
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to realize that there is nothing in the statistical or mathematical pro-
cedures we ultimately use which will enable us to check uponthelegiti-

macy of our research methods. The use of a particular mathematical
model presupposes that a certain level of measurement has been attained.
The responsibility rests squarely on the shoulders of the researcher to
determine whether or not his operational procedures permit the use of

certain mathematical operations. He must first make a decision as to
the appropriate level of measurement, and this in turn will determine the
appropriate mathematical system. In other words, a particular mathe-

matical model can be associated with a certain level of measurement
according to the considerations discussed in the previous section. The

common arithmetic operations, for example, can ordinarily be used only
with interval and ratio scales.

*Again, we are faced with a problem of translating from the one
language to the other. The operational language involves certain
physical operations such as the use of a unit of measurement. The
mathematical language involves a completely abstract set of symbols and
mathematical operations and is useful not only because it is precise and
highly developed, but also because its abstract nature permits its applica-
tion to a variety of empirical problems. Mathematics makes use of
deductive reasoning in which one goes from a set of definitions, assump-
tions, and rules of operation to a set of conclusions by meansof purely
logical reasoning. Mathematicsperse tells us nothing new aboutreality
since all of the conclusionsare built into the original definitions, assump-
tions, and rules and are not determined empirically. These mathematical
conclusions then have to be translated back into the operational and
theoretical languages if they are to be useful to the scientist [4].

Weare arguing, then, that it is not legitimate to make use of a mathe-
matical system involving the operations of addition or subtraction when
this is not warranted by the method of measurement. Although the
meaning of this fact will not become fully apparent until we actually
begin using the various scales of measurement, we are in effect saying
that we cannotlegitimately travel up the measurement hierarchy unless
the measurement process itself has been improved. No mathematical
manipulations can make this possible. How do we decide what level of
measurement is legitimate, then? Unfortunately the problem is not
quite so simple as might be assumed. A few brief examples should be
sufficient to warn you of the complexity of the problem.

*To illustrate one such problem,it is necessary to distinguish ordinal
and interval scales from the partially ordered scale resulting from the
combination of two or more ordinal (or interval) scales into a single
index. It is frequently the case in sociology and other social sciences
that what first appears to be a simple ordinal (interval) scale is in reality
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a combination of several ordinal (interval) scales, the result being that

one cannot obtain an unambiguous ranking of individuals unless he is

willing to make some further decisions. Let us take the example of

socioeconomic status. Usually, we determine a person’s status by

examining a number of distinct criteria such as income, occupation,

education, family background, or area of residence. If A has a higher

rank than B on each of these criteria, then clearly A can be rated higher

as to general status. But what if A has the higher income but B the

more prominent family name? Which has the higher general status?

We haveseveral alternatives. The first is to drop the notion of general

status and to think in terms of separate dimensions of status, each of

which may admit of an ordinal level of measurement. We then end up

with not one but a numberof ordinal scales, and it becomes an empirical

question as to how highly intercorrelated the different dimensions maybe.

Of course if there is a perfect relationship among all dimensions, the

question becomes an academic one since A will be higher than B on all
dimensions if he is higher on any one dimension. In practice, of course,

this never happens.

*Our second alternative is to try to ‘‘force’’ an ordinal scale on the

data by making some decisions about the relative weightings of each

dimension and the equivalences involved. For example, if we can assume

that a year’s extra education is equivalent to $1,338.49 in extra income,
we can then translate educational units into income units andarrive at a

unidimensional scale. Obviously, the problem of translating family

backgroundor area of residence into income is even more complicated.

The method of measurement we are discussing here involves a type of

index construction. Suffice it to say that such index construction usually

involves arbitrary decisions about relative weighting. If the weighting

system can be justified, an ordinal scale can be used; if it cannot, then one

is in real doubt about whether or not individuals can legitimately be

rank-ordered.

*One commonly used method of obtaining an ordinal scale is to make

use of one or more judges to rank-order individuals according to some

criterion such as power or prestige. Let us assume for simplicity that

there is only one judge and that he has been forced to rank-order indi-

viduals according to their “social standing” in the community. Assum-

ing the person cooperates, the method used assures us of obtaining an

ordinal scale regardless of how individuals actually compare in the eyes

of the judge. It is quite possible that had some other method been used,

an ordinal scale would not have been obtained. Had a paired-compari-

sons technique been used in which judgments were made between every

pair combination, the judge might have rated Smith higher than Brown,

Brown over Jones, but Jones over Smith, thus violating the transitivity

property of ordinal scales. The researcher is now faced with a choice.
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He can reach the conclusion that there is a partially ordered scale of some
kind. Or he may consider the judge to be inconsistent or “in error.”
As Coombspoints out, this problem of what to call measurement erroris a
basic dilemmafaced by the social scientist (([5], pages 485 to 488). Gener-
ally speaking, he may assumea high level of measurement and conceive
of deviations of the above sort as measurement errors or he may drop
down to a lower level of measurement.

*The same dilemma may beillustrated in the case of Guttman scaling.
In the perfect Guttman scale, items have a cumulative property which
justifies the assumption of an ordinal scale [12]. Items maybe arranged
from least to most extreme so that the exact response pattern of an indi-
vidual can be reproducedfrom his total score. For example,if there are
five arithmetic problems ranging from least to most difficult, a person who
solves the most difficult problem correctly will also be able to solve the
others. If he gets three correct, he will solve the three easiest ones and
miss the last two. In a perfect social-distance scale, prejudice items may
be arranged according to the degree of intimacy of contact with the
minority. A white person willing to marry a Negro will obviously be
willing to live on the same street with one; if he will accept him as a
neighbor, he will be willing to ride on a bus next to one. Thus we can
say in the case of the perfect Guttman scale that a person endorsing four
items will have endorsed exactly the same items as a person with a score
of three, plus one more. If the scale were only partially ordered, it would
be possible to say that A is in some respects more prejudiced than B but
in other respects less so since the two individuals have endorsed different
sets of items.

*Seldom if ever do we attain a perfect Guttman scale in practice,
however. There are always certain persons whose response patterns
deviate from the ideal. The question then arises as to whether or not
to call these persons in error. Are they actually inconsistent because
they may accept a Negro as a neighbor but refuse to ride on a bus next
tohim? Perhaps. But then again, perhaps not. Unless the researcher
is willing to assume that he has a legitimate ordinal scale he cannot claim
the individual to be in error. If the number of “errors”is quite large
we begin to suspect our scale. On the other hand, weare usually willing
to tolerate a relatively small numberof errors. It is this principle which
is behind the decision to accept the Guttman scale as an ordinalscale if
the numberof errors, as measured bythe coefficient of reproducibility, is
quite small. One should be well aware of the fact that his decision is
somewhat arbitrary, however, and that ultimately he will be faced with
the problem of what to call error.

*These examples should be sufficient to indicate that it is often not a
simple matter to decide what type of scale can legitimately be used.
Ideally, one should makeuseof a data-gathering technique which permits
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the lowest levels of measurement,if these are all the data will yield, rather

than using techniques which force a scale on the data. ‘Thus, the method

of paired comparisons will produce an ordinal scale only if the judge is in

fact actually able to rank the individuals. On the other hand, if he is

required to place them in a definite rank order, he will have to do so

whether he believes this can be achieved legitimately or not. Having

used this latter method of data collection and being unable to demonstrate

empirically that individuals can be ordered without doing an injustice to

data, one then has to assume a single continuum.

In order to emphasize that any given statistical technique presupposes

a specific level of measurement, we shall develop the habit of always

indicating the level of measurement required for each procedure. It

used to be the practice to go ahead with statistical techniques requiring

high levels of measurement, commonly interval scales, under the assump-

tion that no major violence was being done to the data. The present

practice tends in the other direction and for very good reasons. Mathe-

matical statisticians have been well aware of the requirements of the

various statistical models, but social scientists in their efforts to be

“sotentifie” and to use the most powerful mathematical techniques

available have often failed to recognize the assumptions required of their

measurement techniques. One of the dangers of ‘‘cookbook”’ statistics

is precisely this tendency to makeuse of statistical techniques that have

been improperly understood. It is impossible to overemphasize the

important point that in using any statistical technique one must be aware

of the underlying assumptions that must be made. It is for this reason that

one of the first questions one needs to ask of his data concernsthe level

of measurement he can legitimately assume.

At this point, our discussion of the different levels of measurement may

not be too meaningful. A quick glance through the remainder of the

text should be helpful in indicating that the distinction between nominal,

ordinal, and interval scales will be extremely useful. After you have had

occasion to become familiar with someof the various statistical procedures

available, it will be helpful to reread this chapter. In fact, a numberof

periodic reviews will probably be necessary before the picture becomes

really clear.

GLOSSARY

You should develop the habit of explaining in your own words the meanings of

important concepts. New concepts introduced in this chapter are:

Interval scale
Nominal scale

*Operational definition
Ordinal scale

Ratio scale
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Chapter 3

NOMINAL SCALES: PROPORTIONS,

PERCENTAGES, AND RATIOS

It is a much simpler matter to summarize data involving nominalscales

than is the case when interval scales are used. The basic arithmetic

operation is that of counting the numberof cases within each category

and then noting their relative sizes. A given group may consist of 36

males and 24 females, or 25 Protestants, 20 Catholics, and 15 Jews. In

order to make comparisons with other groups, however, it is necessary to

take the number of cases in the two groups into consideration. The

measures to be discussed in the present chapter permit comparisons

among several groups by essentially standardizing for size. At least two

of these measures, proportions and percentages, are undoubtedly already
familiar.

3.1. Proportions

In order to make use of proportions we must assume that the method

of classification has been such that categories are mutually exclusive and

exhaustive. In other words, any given individual has been placed in one

and only one category. For sake of simplicity, let us take a nominal

scale consisting of four categories with Ni, N2, N3, and N4 cases respec-

tively. Let the total number of cases be N. The proportion of cases in

any given category is defined as the numberin the category divided by

the total number of cases. Therefore the proportion of individuals in

the first category is given by the quantity Ni/N, and the proportions in

the remaining categories are N2/N, N3/N, and N4/N respectively.
Obviously, the value of a proportion cannot be greater than unity. Since

Nit Ne+N3+Ns1 = N
we have

Ny Ne N3

NIN TW
25

Ne N_
ty Na!
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Thus if we add the proportions of cases in all (mutually exclusive)

categories, the result is unity. This is an important property of propor-

tions and can easily be generalized to any numberof categories.

Let usillustrate the use of proportions with the data given in Table 3.1.

Table 3.1. Numbers of Delinquents and Nondelinquents in Two

Hypothetical Communities
 

 

   

Subjects Community 1 |Community 2

Delinquents

First offenders 58 68

Repeaters 43 137

Nondelinquents 481 1081

Total 582 1286

 

It is rather difficult to tell which community has the larger relative

number of delinquents because of their different sizes. Expressing the

data in terms of proportions enables us to make a direct comparison,

however. The proportion of first offenders in community 1 is ° 8é 89 or

.100; the comparable figure for the second community is 68/1,286 or .053.

Other proportions can be computed in a similar fashion and theresults

summarized in tabular form (Table 3.2). From this table we see that

the relative numbers of delinquents are quite similar for the two com-

munities but that the second community contains a substantially lower

proportion of first offenders and a higher proportion of repeaters.

Table 3.2. Proportions of Delinquents and Nondelinquents in Two

Hypothetical Communities
 

 

 

Subjects Community 1 |Community 2

Delinquents

First offenders . 100 .053
Repeaters .074 .107

Nondelinquents .826 | 841

Total 1.000 1.001  
 

The sum of the proportions in community 2 is not exactly unity because

of rounding errors. Sometimesit is desirable to present the data in such a

manner that the sums are exactly equal to 1.000. This may require

adjustment of some of the category proportions, and by convention we

usually modify the figures for those categories having the largest propor-

tions of cases.! The argumentin favor of this procedureis that a change

in the last decimal place in a larger proportionis relatively less significant

1 Exactly the same procedure can be used in the case of percentages.
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than the same changein a smaller figure. Thus the proportion of non-
delinquents in community 2 could be changed to .840 so that the resulting
sum is unity.

Table 3.2 involves proportions of the total number of cases in each
community. Suppose, however, that interest was mainly centered on
the delinquents and we wanted to know the proportion of repeaters
among the delinquents. The total number of delinquents in the two
communities are 101 and 205 respectively. Therefore, among the delin-
quents the proportions of repeaters are 43491 or .426 and 1374o5 or .668.
At first glance these figures may give a slightly different impression from
the first set of proportions. We would especially want to be on guard
against concluding that the second sampleis “‘more delinquent”’ than the
first. This last set of proportions, of course, tells us absolutely nothing
about the relative numbers of nondelinquents in the two samples.
Obviously there is no substitute for a careful reading of the tables. It is
a good idea to develop the habit of always determining the categories
which are being includedin the total numberof cases used in the denomi-
nator of the proportion. You should always ask, “Of what is this a
proportion?”’ ‘The answer should be clear from the context.

3.2. Percentages

Percentages can be obtained from proportions by simply multiplying
by 100. The word per cent means per hundred. Therefore in using
percentages we are standardizing for size by calculating the numberof
individuals that would bein a given category if the total numberof cases
were 100 and if the proportion in each category remained unchanged.
Since proportions must add to unity it is obvious that percentages will
sum to 100 unless the categories are not mutually exclusive or exhaustive.

Percentages are much more frequently used in reporting results than
are proportions. The figures in Table 3.2 could just as well have been
expressed in terms of percentages. Rather than make use of these same
data let us take another table which can be used to illustrate several new
points. Supposethere are three family service agencies havinga distribu-
tion of cases as indicated in Table 3.3.
As is customary, percentages have been given to the nearest decimal

and adjustments madein thelast digits so that totals are exactly 100.0.
Here there are a sufficient numberof cases for each agency to justify the
computation of percentages. It would have been misleading to give
percentages had the number of cases been much smaller, however.
Suppose agency C had handled only 25 cases in all. If there had been
four unwed mothers and seven engaged couples, the percentages in these
categories would have been 16 per cent and 28 per cent respectively.
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Since many persons are accustomed to looking only at percentages and

not at the actual number of cases involved, the impression that there

were many more engaged couples than unwed mothers could easily be

conveyed. As will be seen when we cometo inductive statistics, a dif-

ference between four and seven cases could very possibly be due to the

operation of chance factors. The use of percentages and proportions

usually implies considerably more stability of numbers. For this reason

two rules of thumb are important: (1) always report the number of cases

along with percentages or proportions, and (2) never compute a percentage

Table 3.3. Numbers and Percentage Distributions of Cases Handled by Three

Hypothetical Family Service Agencies
 

  

 

 

Agency A Agency B Agency C Total

Type of case
No. % No. % No. % No. %

Married couples 63 47.3 88 45.5 41 36.6

|

192 43.8

Divorced persons 19 14.3

|

37 19.2

|

26] 238.2); 82 18.7

Engaged couples 27 20.3 20 10.4 15 13.4 62 14.2

Unwed mothers 13 9.8 32 16.6 21 18.8 66 15.1

Other 11 8.3 16 8.3 9 8.0

|

36 8.2

Total 133

|

100.0

|

193

|

100.0

|

112

|

100.0

|

4388

|

100.0        
 

unless the number of cases on which the percentageis basedis in the neighbor-

hood of 50 or more. If the number of cases is very small it would be

preferable to give the actual number in each category rather than per-

centages. For example, we would simply state that agency C handled

four unwed mothers and seven engaged couples.

Nowlook at the total column which gives the breakdownof percentages

for all three agencies. These figures were obtained by adding the number

of cases of each type and also the total number of cases handled by the

three agencies. An N of 438 was then used as a base in computing total

percentages. Suppose, however, that the number of cases had not been

given to us in the bodyof the table but had been presented as in Table 3.4.

There might be some temptation to obtain the total percentages by taking

a straightforward arithmetic mean of the three percentages in each row.

Such a procedure would not take into consideration the fact that the

agencies handled different numbersof cases; it would be justified only if

the numbersof cases were in fact identical. The correct procedure would

be to weight each percentage by the proper numberof cases. One way

to do this would be to work backwards to obtain the actual numberof

cases in each cell. This could be accomplished by multiplying the total

number of cases handled by the agency by the proportion in a given

category. For example, (133)(.473) = 63.
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Notice that the percentages as given in Tables 3.3 and 3.4 are designed
to answer certain questions but not others. They enable us to examine
each agency separately and see the breakdownof cases handled. They
also permit comparison of agencies with respect to type of cases handled.
For example, agencies B and C handled relatively more unwed mothers

Table 3.4. Percentage Distributions of Cases Handled by Three Hypothetical Family
Service Agencies, with Percentages Computed Downthe Table
 

  

 

Agency A Agency B Agency C
Type of case (N = 133), (N = 198), (N = 112),

% Zo %

Married couples 47.3 45.5 36.6
Divorced persons 14.3 19.2 23.2
Engaged couples 20.3 10.4 13.4
Unwed mothers 9.8 16.6 18.8
Other 8.3 8.3 8.0

Total 100.0 100.0 100.0   
 

and divorced persons than did agency A. Suppose, however, that we
had been primarily interested in cases of a given type andin the relative
numbers handled by each agency. For example, we might wish to know
the percentage of all married couples who went to agency B. It would
be more helpful in this instance to compute percentages across the table.
Wecould take the total number of married couples and determine what
percentages of this category were handled by agencies A, B, and C
respectively. Percentages would then add to 100 across the table, but
not down, and the results would be summarized as in Table 3.5.

Table 3.5. Percentage Distributions of Cases Handled by Three Hypothetical
Family Service Agencies, with Percentages Computed Across the Table
 

 

     

Agency A |Agency B Agency C Total
Type of case (N = 133),| (N = 193),

|

(N = 112),

|

(N = 488),

% % % %

Married couples (N = 192) 32.8 45.8 21.4 100.0
Divorced persons (N = 82) 23.2 45.1 31.7 100.0
Engaged couples (N = 62) 43.5 32.3 24.2 100.0
Unwed mothers (N = 66) 19.7 48.5 31.8 100.0
Other (NV = 36) —* —* —* —*

* Percentages not computed where base is less than 50.

Percentages can thus be computed in either direction. A table should
therefore always be examinedcarefully in order to determine exactly how
the percentages have been computed.
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3.3. Ratios

The ratio of one numberA to another numberB is defined as A divided

by B. Here the key term is the word ‘to.’ Whatever quantity precedes

this word is placed in the numerator while the quantity following it

becomes the denominator. Suppose that there are 365 Republicans,

420 Democrats, and 130 Independents registered as voters in a local

election. Then the ratio of Republicans to Democrats is 39490; the

ratio of Republicans and Democrats to Independents1s (865 + 420)/130.

Notice that unlike a proportion, a ratio can take on a value greater than

unity. Wealso see that the expression preceding or following the word

‘46? ean consist of several separate quantities (e.g., Republicans and

Democrats). Usually a ratio is reduced to its simplest form by canceling

common factors in the numerator and denominator. Thusthe ratio of

Democrats to Independents would be written as 4243 or equivalently as

42:13. Sometimes it is desirable to express a ratio in terms of a denomi-

nator of unity. For example, the ratio of Democrats to Independents

might be written as 3.23 to 1.

Proportions obviously represent a special type of ratio in which the

denominator is the total number of cases and the numerator a certain

fraction of this number. Ordinarily the term ratio is used to refer to

instances in which the A and B represent separate and distinct categories,

however. We might obtain the ratio of delinquents to nondelinquents

or of married couples to engaged couples. It is evident that with four or

five categories, the numberof possible ratios which could be computed is

quite large. Therefore, unless interest is centered primarily on one or

several pairs of categories it will usually be more economical and less

confusing to the reader to make use of percentages or proportions.

Notice that if there are only two categories it will be possible to compute

a proportion directly from a ratio or vice versa. For example, if we know

that the ratio of males to females is 3:2, then out of every five persons

there must be an average of three males and two females. Therefore the

proportion of males is 34 or .6.

Ratios can be expressed in terms of any base which happens to be

convenient. The base of a ratio is indicated by the magnitude of the

denominator. For instance sex ratios are conventionally given in terms

of the numberof males per 100 females. A sex ratio of 94 would therefore

indicate slightly fewer males than females, whereas a sex ratio of 108

would mean a preponderance of males. Bases involving large numbers

such as 1,000 or 100,000 are often used in computingrates, another type

of ratio, whenever the use of proportions or percentages might result in

small decimal values, Birth rates, for example, are usually given in
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terms of the numberof live births per 1,000 females of childbearing age.
Murderrates may be given in termsof the numberof murders per 100,000
population.

Rates of increase are another common typeof ratio. In computing
such a rate we take the actual increase during the period divided by the
size at the beginning of the period. Thus if the population of a city
increases from 50,000 to 65,000 between 1940 and 1950, the rate of
increase for the decade would be

65,000 — 50,000 _ a,
50,000 ~
 

or 80 percent. In the case of rates of increase, percentages may obviously
go well over 100 per cent and will be negative if the city has actually
decreased in size.

GLOSSARY

Percentage
Proportion
Rate
Ratio

EXERCISES

1. Suppose you are given the following table showing the relationship between
church attendance andclass standing at a certain university:

 

Class standing

Church attendance Total

Freshmen |Sophomores |Juniors |Seniors

 

 
 

       
Regular attenders 83 71 82 59 295
Irregular attenders 31 44 61 78 214

Total 114 115 143 137 509

a. Whatis the percentage of regular attenders in the total sample?
6. What is the ratio of freshmen to seniors?
c. Among the regular attenders, what is the ratio of underclassmen (freshmen

and sophomores) to upperclassmen?
d. What is the proportion of irregular attenders who are seniors? The propor-

tion of seniors who are irregular attenders?
e. Are there relatively more irregular attenders among freshmen and sophomores

than among juniors and seniors? Express results in terms of percentages.
f. Summarize the data in several sentences.
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2. A social psychologist studying the relationship between industrial productivity

and type of group leadership obtains the following data indicating the productivity

levels of individuals within each of three types of leadership groups:

 

Group-leadership type

Productivity Total

Democratic

|

Laissez-faire

|

Authoritarian

 

 

 

 

High 37 36 13 86

Medium 26 12 71 109

Low 24 20 29 73

Total 87 68 113 268    
 

a. In which direction would you prefer to compute percentages? Why?

. Compute these percentages and summarize the data briefly.

c. What is the ratio of high to low producers in each of the three groups? For

these particular data, would these three ratios adequately summarize the

data? Explain.

o
O

8. If the ratio of whites to nonwhites in a particular community is 84, what is the

proportion of nonwhites? Suppose the ratio of whites to Negroes were 86. Could

you obtain the proportion of Negroes in the same manner? Whyor why not?

4, Ifa city had a population of 153,468 in 1940 and of 176,118 in 1950, what was the

rate of growth (expressed as a percentage) between 1940 and 1950?

5. If there are 12,160 males and 11,913 females in a certain county, what is the

sex ratio (expressed in terms of the number of males per 100 females) ?
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Chapter 4

INTERVAL SCALES: FREQUENCY

DISTRIBUTIONS AND GRAPHIC PRESENTATION

In the present chapter our concern will be with methods of sum-

marizing data which are very similar to those discussed in the previous

chapter. We shall group the interval-scale data into categories, order

these categories, and then make useof these groupings to give an over-all

picture of the distribution of cases. In so doing, we can boil down infor-

mation about a very large number of cases into a simple form which

will enable a reader to picture the way the casesare distributed. Later

we shall find that by grouping our data we can also simplify considerably

certain computations. In the following two chapters we shall be con-

cerned with methods of summarizing data in a more compact manner so

that they may be described by several numbers representing measures of

typicality and degree of homogeneity.

4.1. Frequency Distributions: Grouping the Data

In the previous chapter we encountered few if any major decisions in

summarizing our data. This was due to the fact that, presumably, the

classes were already determined andall that was necessary was to count

the numberof cases in each class and then standardize for the numberof

cases in the total sample by computing a proportion, percentage, or ratio.

If interval-scale data are to be summarized in a similar manner, however,

an initial decision must be made as to the categories that will be used.

Since the data will ordinarily be distributed in a continuousfashion, with

few or no large gaps between adjacentscores, the classification scheme may

be quite arbitrary. It will be necessary to decide how many categories

to use and whereto establish the cutting points. Unfortunately, there

are no simple rules for accomplishing this since the decision will depend

on the purposes served by the classification. Let us take up a specific

33
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example in order to illustrate the nature of the problem. Suppose the

numbers given below represent the percentage of eligible voters voting in

a school board election for 93 census tracts within a particular city.

39.2% 11.6% 36.3% 26.3% 37.1% 15.3% 27.3% 23.5% 13.38%

28.1 26.3 27.1 30.1 23.0 26.1 31.0 36.3 27.3

22.8 33.4 25.6 21.6 46.8 7.1 16.8 26.9 46.6

44.3 58.1 33.1 13.4 27.8 33.4 22.1 42.7 33.0

36.3 20.7 9.3 26.3 29.9 39.4 5.3 24.3 17.8

18.2 37.1 21.6 17.5 12.3 23.6 37.2 37.1 25.1

27.1 28.8 27.8 33.6 26.5 28.3 26.9 24.8 41.0

33 .6 19.3 43.7 28.2 19.9 83.6 47.1 4.8 9.7

39.5 32.3 22.4 15.1 26.3 26.1 29.2 14.3 14.6

21.6 37.9 37.1 24.9 10.0 20.7 11.8 22.9 36.0

46.1 21.5 13.3

Raw data presented in this manner are almost useless in giving the

reader a clear picture of what is taking place. This will be especially true

if the numberof cases is very large. Suppose we wanted to compare this

community and another with respect to voting turnout. A quick glance

at the data indicates that most tracts had between 20 and 40 per cent

turnout, but that there was one with an extremely high record. But

it is indeed difficult to get a clear mental picture of the total distribution.

Number and Size of Intervals. In order to visualize this total distribu-

tion we shall find it helpful to classify similar scores within the same

category. We are immediately confronted with a problem, however.

How manyintervals should be used in grouping these data? How big

should they be? Obviously, there is no point in using intervals with

peculiar widths or limits. ‘Thus we would probably select intervals of

width 5, 10, or 20 rather than those of width 4.16. Also our end points,

or class limits as they are usually called, would ordinarily involve round

numberssuch as 5.0 or 10.0. If we are in doubt about the intervals ulti-

mately to be used,it is a good idea to tally the scores using a large number

of rather narrow intervals. The reason is obvious; having used narrow

intervals we can always later combine cases into wider intervals. But if

we have started with a small number of more crude categories we cannot

subdivide unless we go through the counting operation all over again.

Therefore, we might decide to classify the data into intervals of width

5 per cent as in Table 4.1.

Examining the frequencies in each category we see that the picture

presented is a rather jagged or uneven one. Probably we can account for

the variations between adjacent categories in terms of chancefluctuations.

Had there been more cases we would have expected a smoother distri-

bution. The reasoning behind this intuitive judgment will become more

apparent in later chapters. Suffice it to say that empirically it always
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Table 4.1. Frequency Distribution, with Data Groupedinto Intervals of 5 Per Cent

Interval Frequency,f Interval Frequency,f

0.0- 4.9 1 45 .0-49 .9 4
5.0- 9.9 4 50.0-54.9 0
10.0-14.9 9 55.0-59.9 1
15.0-19.9 8 60 .0-64.9 )
20 .0-24.9 16 65 .0-69.9 0
25 .0-29.9 23 70.0-74.9 0
30.0-34.9 8 75 .0-79.9 0
39 .0-39.9 14 80.0-84.9 1
40 .0-44.9 4 3

seems to happen this way. Given ourparticular N of 93 tracts, however,
the best we can do to obtain a smoother-looking distribution is to make
use of a smaller number of wider intervals. Using intervals of width 10
we obtain Table 4.2.

Table 4.2. Frequency Distribution, with Data

Groupedinto Intervals of 10 Per Cent

Interval Frequency, f

0.0- 9.9 5
10.0-19.9 17
20 .0—-29 .9 39
30.0-39.9 22
40 .0-49 .9 8
50 .0-59 .9 1
60 .0-69 .9 0
70 .0—79 .9 0
80 .0-89.9 1

93

If we had usedstill wider intervals, say of width 20, the picture would
have been as shown in Table 4.3. Here, we are beginning to obscure

Table 4.3. Frequency Distribution, with Data
Groupedinto Intervals of 20 Per Cent

Interval Frequency, f

0.0-19.9 22
20.0-39.9 61
40 .0-59.9 9
60.0-79 .9 0
80.0-99 .9 1

93

most of our original information. We know only that about two-thirds
of the cases lie between 20.0 and 39.9, but by looking at the data in this
last form we cannot say much about where the bulk of the cases are within
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this very large interval. Clearly, we have to compromise between using

so many intervals that the picture remains too detailed or irregular and

using so few categories that too much information is lost. Incidentally,

we see that in summarizing interval-scale data some important information

is practically always lost. On the other hand, to report all the information

is to present so muchdetail as to confuse rather than enlighten.

Although mathematical formulas have been given which mayserve as

guides to the numberof intervals to use, such formulas often give the

impression of exactness where the best decision is usually that based on

common sense and a knowledge of the use to which the frequency table

will be put. Regardless of the number of cases or smoothness of the

frequency distribution, it is wise to follow the rule of thumb that an

interval should be no wider than the amountof difference between values

that can safely be ignored. A $5 difference between house prices 1s

insignificant, but not so for the prices of shirts. Therefore, an interval

should contain cases whose actual values can for practical purposes be

consideredalike.

Another problem presents itself with the above data. What about the

single tract with 83.6 per cent turnout? Using intervals of width 10

leaves several empty classes with this single tract off to itself, so to speak.

Of course this is essentially what must be done if the data are to be sum-

marized accurately. This tract 7s unique. On the other hand it may be

desirable under some circumstances to shorten the table. If percentages

could go well above 100 and if there were several extremes strung out

over 10 or more intervals, we should be posed with a more difficult deci-

sion. Several alternatives present themselves. First, we may use

intervals of different widths, permitting the extreme intervals to be much

wider than the others. Thus we might use a single interval 50.0 to 89.9

which would include the largest two scores. In so doing, we of course

lose information since we now have muchless precise an indication of the

scores of the two extreme cases.

Secondly, we might use an open interval to take care of the extreme

cases. The last category might then read, ‘50 per cent or more.”’ Here,

we retain even less information about the data although in this particular

example we happen to know that percentages cannot run over 100. Had

the data involved income and hadthelast interval been ‘$20,000 and

over,” the reader would have had absolutely no way of guessing from the

table alone what the highest incomes might have been. It should be

noted, however, that under some circumstances it may not be at all

important what these highest incomes happen to be. In this case the

simplifications introduced by using open intervals may outweigh the dis-

advantages. With distributions having a small numberof very extreme

scores there may be no satisfactory alternative. If one wishes to indicate
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the incomes of the most wealthy citizens without distorting his table he
may find it easier to do so in his textual presentation. As we shall see
in the following chapters, open intervals should not be used if the primary

purpose of grouping data is to simplify computations rather than to

display the data in a meaningful way.

True Limits. You may have noticed that in indicating the intervals,

the class limits have been stated in such a way that there is no overlap

between classes. In fact, there is a slight gap between them. Limits

are usually stated in this manner in order to avoid ambiguity for the
reader. Had they been stated as 10 to 20, 20 to 30, etc., the question
would have arisen as to what we do with a score that is exactly 20.0.
Actually there will always be ambiguities no matter how the intervals are

stated, as can be seen if we ask what would be done with a case that is
between 19.9 and 20.0. We of course notice that there are no such cases,

but a little thought will convince us that this is due to the fact that the

data have been rounded to the nearest tenth of a per cent. We therefore

have to ask the following question: “Which cases actually belong in a
particular interval, given the fact that data have been rounded?”’ We

see immediately that the true class limits are not the same as the stated

limits. If we had followed conventional rounding rules, a tract with a

percentage turnout slightly over 19.95 would have been rounded up to

20.0 and placed in the interval 20.0 to 29.9. Had the percentage been

ever so slightly below 19.95 we would have rounded the score down to

19.9 and placed the tract in the next lower category. ‘Therefore the

true limits actually used run as follows:

0.0 — 9.95

9.95-19.95

19.95—29.95

etc.

Ignoring thefirst interval, we see that by using the true limits each

interval is exactly of width 10.0 (rather than 9.9) and that the upper

limit of one interval exactly coincides with the lowerlimit of the following

interval.!. Had a score been exactly 9.95000 we would have followed

the conventional procedure and rounded upsince the digit immediately

preceding the last five is odd.2 We can therefore assign every case

1 Where the lowest interval involves zero and where values cannot be negative
(as with percentages), we still consider all intervals to be of equal width, imagining
that the lower limit of the first interval is actually —.05 and that scores have been
rounded up to 0.00.

2 Notice that in the case of the intervals we have been using there would be a very

slight bias since cases exactly between intervals would always be placed in the higher
category. For most practical purposes such a bias can be ignored.
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unambiguously to the proper interval. Notice that if rounding has been

to the nearest figure, as is usually the case, the true limits will always

involve splitting the difference between the stated limits of adjacent

intervals. For example, if we split the difference between 19.9 and 20.0

we get 19.95. The conventionis to report figures in such a manneras to

indicate the degree of accuracy in measurement, e.g., 10.45 indicates

accuracy to two decimal places, 10.450 to three, and 10.4 to one. Meas-

urement accuracy should therefore be reported in the stated intervals so

that the reader can ascertain the true limits if he wishes to make use of

these limits in his computations. For example, if limits are stated to be

10.00 to 19.99 we know that measurement is accurate to two decimal

places, that rounding has been to the nearest 1499 of 1 per cent, and that

therefore the true limits run from 9.995 to 19.995. Hadlimits been given

as 10 to 19, true limits would of course have been 9.5 to 19.9.

In a few instances, such as age last birthday, data may not have been

roundedin the conventional way. If we ask ourselves which interval any

given case really belongs in, however, the answer should always be

apparent. Since a person who will be aged 20 tomorrow lists his age as

19 today,it is clear that an interval stated as 15 to 19 has as its true limits

the values 15 and 20. Although we may appearto besplitting hairs in

distinguishing true limits from stated limits, we shall see in the following

chapters that true limits must be used in computations even though they

are not usually explicitly given when data are presented in the form of a

frequency distribution.

Discrete and Continuous Data. ‘The data we have been using are continu-

ous in the sense that any value might theoretically have been obtained for

a percentage provided that measurement accuracy were sufficiently precise

and that tracts were very large. Thus, the value 17.4531 per cent is as

possible as 17.0000 per cent. Certain other kinds of data are discrete in

that not all values are possible. A woman may haveexactly 0, 1, 2, or

even 17 children, but she cannot have 2.31 children. Income andcity

size are theoretically discrete variables in that it is impossible to earn

$3,219.5618 or for a city to have a population of 43,635.7 people. Because

of the limitations of any measuring instrument and the consequent

necessity of rounding at some point, empirical data always come in

discrete form, but in many cases we are at least able to imagine a con-

tinuous distribution which could be obtained by the perfect measuring

instrument. As we shall see in the chapter on the normal curve, mathe-

maticians often have to develop theoretical distributions which assumea

continuous variable.

In some cases, such as incomeorcity size, it is not too difficult to

imagine that data are continuous even though actually there are very

small units (pennies, persons) which cannot be subdivided. But what
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about the numberof children in a family? Here we would seem to be
doing grave injustice to the data to assume continuity. In presenting
data in a frequency distribution we would obviously not be so foolish as
to use intervals running from 0.5 to 2.4 or 2.5 to 4.4 children. We would
simply list intervals as 0 to 2, 3 to 4, etc., and there would be no ambiguity
concerning the gaps between intervals. For some computations, how-
ever, it will be necessary, for pragmatic reasons, to treat the data as
continuous and to spread discrete scores over small intervals. As
peculiar as it may seem, we may haveto consider mothers with one child
as ranging in numberof children from 0.5 to 1.5. For most purposes we
shall get essentially the same results as would be obtained by keeping the
data in discrete form. A compromise with reality in this and other
instances may be necessary in order to fit the models set up by the
mathematician. Provided we realize what we are doing, little or no
confusion will result.

4.2. Cumulative Frequency Distributions

For somepurposesit is desirable to present data in a somewhat different
form. Instead of giving the number of cases in each interval we may
indicate the number of scores which are less than (or greater than) a

Table 4.4, Cumulative-frequency Distributions
 

 

 

Cumulating up Cumulating down

Numberof Cumulative Numberof Cumulative
Per cent Per cent

cases below frequency, F cases above| frequency, F

0.0 0 0.0 0.0 93 100.0
9.95 5 5.4 9.95 88 94.6
19.95 22 23.7 19.95 71 76.3
29.95 61 65.6 29.95 32 34.4
39.95 83 89.2 39.95 10 10.8
49.95 91 97.8 49.95 2 2.2
59.95 92 98.9 59.95 1 1.1
69.95 92 98.9 69.95 1 1.1
79.95 92 98.9 79.95 1 1.1
89.95 93 100.0 89.95 0 0.0     
 

given value. In the case of the data we have been using there are
obviously no tracts having less than zero turnout, there are five with less
than 9.95 per cent, 22 with less than 19.95 per cent, and all 93 haveless
than 89.95 per cent turnout. We can thus represent the data in a
cumulative fashion as indicated in Table 4.4. Notice that we can
cumulate downward as well as upward by asking how manycases are
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above a certain value. Cumulative frequencies are usually indicated by

using a capital F rather than the lower caseletter. If we wish, we can

convert actual frequencies into percentages. Weshall have occasion to

make use of cumulative distributions in Chap. 5 when computing medians

and again in Chap.14.

4.3. Graphic Presentation: Histograms, Frequency Polygons, and Ogives

There are always some persons who hesitate to read tables and who

obtain a better understanding of materials if these are presented in

graphic or visual form. One of the simplest and most useful ways of
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Fig. 4.1. Histogram with equal intervals.

 

presenting data so that differences among frequencies readily stand out is

to make use of figures which have areas or heights proportional to the

frequencies ineach category. For example, a bar can be used to represent

each category, the height of the bar indicating its relative size. If the

scale is nominal, the actual ordering of bars will be irrelevant. For

ordinal and interval scales, the bars can be arrangedin their properorder,

giving a good visual indication of the frequency distribution. The

resulting figure is referred to as a histogram. Either the absolute fre-

quencies or the proportion of cases in each interval maybe indicated along

the ordinate as in Fig. 4.1.

It should be noted that if heights of bars are taken to be proportional

to frequencies in each class interval, the visual picture can be very mis-

leading unless all intervals are closed and of equal width. Suppose, for

example, that one of the middle intervals had been of width 20 instead of

10. We would therefore find a larger number of cases in the interval

and the result would be as in Fig. 4.2. Obviously, if we wish to obtain a

histogram which represents the data more faithfully, we should make the

bar only half as high since we have doubled the width and have on the
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average included twice as many cases in the wider interval as would be in
either of the two intervals of regular size. This would give us a histogram
(see Fig. 4.3) much moresimilar to the one originally obtained. A little
thought will convince you that if we were to think in termsof areas rather
than heights we could more readily handle data involving unequal
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Fig. 4.2. Histogram with unequal intervals and heights proportional to frequencies.
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Fig. 4.3. Histogram with unequal intervals and areas proportional to frequencies.

 

intervals. In other words, we let the areas of the rectangles be propor-
tional to the number of cases. In the important special case where all
intervals are of equal width, the heights will of course also be proportional
to the frequencies. If the width of each rectangle is taken to be one unit
and if heights are represented as proportions, the total area under the
histogram will be unity. Thus

1(593) + 1(1793) + 1(8%3) + ++ + +1063) =1
Whenwetake up the normalcurvein Chap. 7 we shall find it necessary to
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deal with areas rather than heights, and it will be convenient to take the

total area under the histogram to be unity.

Another very similar way of presenting a frequency distribution

graphically is by meansof the frequency polygon. To obtain a frequency

polygon we simply connect the mid-points of the tops of each rectangle

with straight lines and then blot out the rectangles as in Fig. 4.4. Note

that the end points of the frequency polygon have been placed on the base

line (horizontal axis) at the mid-points of the intervals on either side of

the two extreme intervals. Ordinarily we would not make use of both
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Fig. 4.4. Frequency polygon.
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types of figures, but by superimposing the frequency polygon on the

histogram we see that the area under the two figures must be identical.

This is true because for every small triangle which lies within the fre-

quency polygon but outside the histogram there is an identical triangle

beneath the histogram but above the frequency polygon. ‘Thus we can

also take the area under a frequency polygon to be unity. Notice, how-

ever, that we have merely connected a number of points with straight

lines. The points themselves may represent the numberof cases in each

interval, but we should be careful not to infer that there are a given

number of cases at any other single point along the continuum. For

example, we should not infer that there are approximately 28 cases with

secres of exactly 20.

Frequency polygonscanalso be used to represent cumulative frequency

distributions. The resulting figure is referred to as an ogive. Along the

ordinate or Y axis we can indicate frequencies or percentages. Weplace

scores of the interval-scale variable along the X axis (abscissa) as before,

with the understanding that the frequencies represented indicate the

numberof cases which are less than the value on the X axis. For example,

in Fig. 4.5 we see that approximately 75 per cent of the scores are less

than 34. Ogives can therefore be used as a graphic method of determin-

ing the numberof cases below or above a certain value. Obviously, the
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form of the ogive must be such thatit is either always increasing or always
decreasing depending on whether oneis cumulating up or down. The
curve will be horizontal in those intervals which are empty. If the
frequency distribution is of the type given by our data, with the largest
numberof cases in those intervals near the center of the distribution, the

F 1%
93.00}100

69.75+-75—-~—--———

46.50+50

23.2525 |     QO, | ! I I I ! t I l I
O. 10 20 30 40 50 60 70 80 90 100

Fig. 4.5. Ogive representing cumulative frequency distribution.

 

ogive will be S-shaped, with the steepest slope in the vicinity of those
intervals containing the largest numberof cases.

GLOSSARY

Continuous and discrete data
Cumulative distribution
Frequency distribution
Frequency polygon

Histogram
Ogive
True limits

EXERCISES

1. Suppose the following represent the annual incomesof a sample of community
residents:

$ 2,760 $3 , 850 $ 3,340 $ 3,890 $ 2,860
4,340 4,360 4,350 11,740 4,350
5,210 2,140 2,610 3,560 7,310
3,410 3,330 8,190 2,740 3,550
4,570 7,810 4,250 7,110 4,210
9,300 5,340 3,460 10,300 5,490
3,320 2,970 19,310 4,440 2,110
1,790 4,140 2,670 3,370 23 , 400
4,560 3,000 3,100 5,170 3,760
3,800 1,610 5,130 3,160 4,170
13 , 460 4,570 1,710 2,800 6,170

5,210 1,940 4,320 3,180 2,350
2,690 2,780 9,830 4,240 8,340



44 DESCRIPTIVE STATISTICS

a. Construct a frequency distribution and cumulative distribution.

b. What are the true limits?

c. Draw a histogram, frequency polygon, and ogive.

2. In a survey of visiting patterns amongclose friends andrelatives, 81 respondents

are asked to indicate the number of such friends andrelatives with whom they ordi-

narily visit at least once every month. The results are as follows (figures indicating

actual number of persons usually visited):

3 5 2 3 3 4 1 8 4

2 4 2 o 3 3 3 0 3

5 6 4 3 2 2 6 3 3D

4 14 3 5 6 3 4 2 4

9 4 1 4 2 4 3 5 0

4 3 5 7 3 o 6 2 2

5 4 2 3 6 1 3 16 5

3 11 4 5 19 4 3 2 2

4 3 14 5 2 1 4 3 4

a. Construct a frequency distribution and cumulative distribution.

b. Justify as well as you can yourchoice of intervals.

c. Draw a histogram, frequency polygon, and ogive.

8. Indicate the true limits in each of the following:

a. 1,000-1,900 c. 1.000-1.999
2,000-2,900 2.000-2.999

b. 1,000-1,999 d. .010-.019
2,000-2,999 .020-.029

What have you assumed about the method of rounding in each of the above?
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Chapter 5

INTERVAL SCALES: MEASURES OF

CENTRAL TENDENCY

Wehaveseen that nominal scales can easily be summarized in termsof

percentages, proportions, or ratios and that these summarizing measures

are essentially interchangeable. In other words, a single kind of measure

is sufficient to describe the data. In the case of interval scales, we have

seen that the data may be described by meansof a frequency distribution.

We can also make use of several distinct types of measures, the most

important of which are measures of typicality or ‘‘central tendency”’ and
measures of heterogeneity or dispersion. In each case weshall find that

there are a number of distinct measures from which to choose, each

measure having somewhat different properties, advantages, and dis-

advantages. Summarizing interval scales is therefore somewhat less

straightforward than was the case with nominal scales. The present

chapter is concerned with measures of typicality; in the following chapter

we shall discuss measures of dispersion. ‘Taken together, these two types

of measures will ordinarily be adequate for describing interval-scale data.

The layman’s conception of the term averageis likely to be rather vague

or ambiguous. In fact, he may not realize that there are several distinct

measures of typicality and that under some circumstances these measures

may yield very different results. The fact that it is possible to obtain

such different measures of central tendency meansthat it is necessary to

understand the advantages and disadvantages of each measure. It is

also important to learn the circumstances under which each is appropriate.

Why does the Census Bureau report median incomes rather than mean

incomes? Would it make sense to tell the layman that the “average’’

family has 2.3 children and lives in a 4.8 room house? Under what

circumstanceswill it makelittle difference which measure is used? These

are some of the numerous questions that can be raised about the kindof

average we should compute.
45
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5.1. The Arithmetic Mean

There are two important measures of central tendency used in socio-

logical research, the arithmetic mean (hereafter referred to simply as the

mean) and the median. The mean is by far the more common of the

two andis defined as the sum of the scores divided by the total number of

cases involved. The symbol X is conventionally used to indicate the

mean, although occasionally the letter M may beused. The formula for

the arithmetic mean is therefore

 

 

N

Sx= AXAitXet-:: +Xw _ i=
X= NT = — (5.1)

where X, represents the score of the first individual, X. that of the

second, and X; that of the general individual. If there are no ambi-

guities we may drop the subscripts and write simply

> 0X
x=

where it is understood that all quantities are being summed.

The mean has the algebraic property that the sum of the deviations of

each score from the mean will always be zero. Symbolically, this

property can be expressed by the equation

N

Y (Xi — X) <0
t=1

This fact should not be at all surprising when werealize how the mean

has been defined. The proof issimple. Since we have a sum of numbers

each of which is actually a difference, we can break the above expression

into the difference of two sums. Thus

N N N

Ya@-H=Yu-)x
1=1 t=1 i=1

But since X is a constant we have

N

N Xj N

Y x-we =n= Dx

and we see immediately that the difference is zero.

1 For a discussion of the summation notation see Appendix 1.
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The above property can be used to simplify the computation of the
mean. For example, suppose we wish to compute a mean from the
numbers 72, 81, 86, 69, and 57. Adding and dividing by five we get an
X of 73.0. Subtracting this mean from each of the figures and then
adding, we verify that the resulting sum is zero.

 

 

 

xX |X — 73|X — 70

72 —1 2

81 8 11

86 13 16
69 —4 —1
57 —16 —13

0 15  
 

Suppose, however, that we had guessed a mean of 70 and then had
subtracted this guessed mean from each of the figures. The resulting
sum is not zero, but we notice that each of the new differences is three
units larger (in the positive direction) than the original differences. We
thus see that we guessed a mean whichis three too small. If we now add
a correction factor of three to our guessed mean we obtain the correct
mean. In actual practice we would not compare the two sets of dif-
ferences in this manner. We notice, however, that the sum of the
second setof differences is +15. Since there are five scores, this indicates
that on the average we were below the true mean by 154 or 3.0 units.
As can easily be verified, had we guessed a value which was too high, the
resulting sum of the differences would have been negative and we would
have had to subtract from the guessed mean in order to obtain the correct
figure. If X’ represents the guessed mean, we may write a formula for
the meanin terms of the guessed mean and a correction factor

N

>), & - £9
X= xX4 N (5.2)

or, in words,

sum of deviations from guessed mean

number of cases
 True mean = guessed mean -++
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In order to verify the correctness of this formula, we expand theright-

handside, getting

N N N

(X; — X’) X; xX’
xX’ + 20° %)= X’+ 2* _ 2,*

N N N
N

Xi
— Xx! + 2 _ ve

N

X;
1, _¥

Although we seem to have goneto a lot of trouble computing X ina

roundabout manner,it is sometimes possible by this method to save con-

siderable work when desk calculators are not available. Making use of a

guessed mean ordinarily reduces the size of the numbers to be added.

Thecloser the guessed meanto the correct value, the smaller in magnitude

will be the resulting differences. This principle will be especially useful

when we take up the computation of means from grouped data.

A second property of the mean can be stated as follows: The sum of

the squared deviations of each score from the meanisless than the sum

of the squared deviations about any other number. In other words

N

(X, — X)? = minimum
t=1

The proof of this property requirescalculus, but a few numerical examples

will demonstrate its validity. For the numbers given above, the squared

deviations from the mean of 73 are 1, 64, 169, 16, and 256 respectively.

The resulting sum is therefore 506. If squared deviations had been

computed about 70 instead, the result, would have been

4+ 121 + 256 + 1+ 169 = 5ol

N

The quantity », (X, — X)? will appear in much of our later work as a

i=1
measure of the total variation or heterogeneity. This second “least-

squares’”’ property of the meanis of greater theoretical significance than

the first and will be considered again in subsequent chapters.
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5.2. The Median

We sometimes want to locate the position of the middle case when data
have been ranked from high to low. Or we may divide a group of
students into percentiles by locating the individuals who have exactly 10
per cent of the class below them, exactly 32 per cent below them, etc.
Measures of this sort are often referred to as positional measures since
they locate the position of some typical (or atypical) case relative to those
of other individuals. The median is perhaps the most important of such
positional measures. We define the median as a number which has the
property of having the same numberof scores with smaller values as there
are with larger values. Ordinarily, the median thus divides the scores in
half. If the numberof cases is odd, the median will simply be the score
of the middle case. If N is even there will be no middle case and,in fact,
any number between the valuesof the two middle cases will have the prop-
erty of dividing the scores into two equal groups. Thus the median is am-
biguously defined if Niseven. By convention wetake as the unique value
of the median the arithmetic mean of the two middle cases. If we had
the numbers 72, 81, 86, 69, and 57 the median would be 72 (as compared
with a mean of 73). Had there been a sixth score, say 55, the two middle
scores would be 69 and 72 and we would take as the median (69 + 72)/2
or 70.5. If the two middle cases happen to have the samescore, the
median will of course be that score itself. Notice that if N is odd the
middle case will be the (V + 1)/2nd case. When the numberof casesis
even the median will be halfway between the N/2nd and the (NV/2 + 1)st
case. Thus if N = 251 the median will be the score of the 126th case; if
N = 106 wetake a value halfway between thescores of thefifty-third and
fifty-fourth cases. These formulas will ordinarily be helpful when N is
fairly large.

We haveseen that the mean has the properties

N

>» (X,- ¥%=0

N

and > (X; — X)? = minimum
t=1

The reason that the first property holdsis essentially that when the mean
is subtracted from each score the values of the resulting differences are
such that the negative scores exactly balance the positive ones. But
suppose we hadignored thesigns altogether and consideredall differences
as positive? It can be shown that had the median been subtracted from
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each score, the sign of the difference ignored, and theresults summed, we

would have obtained a sum which would be less than the comparable

figure for any other measure of central tendency. In symbols

N

|X; — Md] = minimum
t=]

where Md stands for the median and the bars around the expression

(X; — Md) indicate that the positive (or “absolute’’) value of each dif-

ference is to be used. Although this property of the median is perhaps

of some interest, it does not seem to have any direct applications of

sociological significance.

5.3. Computation of Mean and Median from Grouped Data

Long Method for Computing Mean. When the numberof cases becomes

large the computation of the mean or median may become quite tedious

unless certain modifications are made in our procedures. The task of

ranking several hundred scores would be especially troublesome since

desk calculators would be of no real help. Whenever the numberof cases

becomes large, therefore, it will usually be much more efficient to group

the data into categories and to compute the mean or median from the

resulting frequency distribution. Sometimes, of course, we find data

already given us in grouped form, and it will be either impossible or

impractical to go back to the original data for purposes of computation.

Census data are usually given in grouped form, for example. We would

know only that there are a certain numberof persons aged 0 to 4 or 5 to 9,

but the exact age of each individual would be unknown.

As we shall see below, the use of data in grouped form may simplify

one’s work considerably. On the other hand, we inevitably lose informa-

tion when grouping data into categories. We may know only that there

are 17 persons having incomes between $2,000 and $2,900, but we do not

knowexactly how they are distributed within this interval. In order to

compute either a mean or a median from such grouped data we have to

make some simplifying assumptions about the location of individuals

within each category. In the case of the mean weshall treat all cases as

though they were concentrated at the mid-points of their respective

intervals. In computing the median we imagine cases to be spread at

equal distances within each interval. These simplifications will of

course lead to certain inaccuracies. We would not expect to get exactly

the sameresults as those obtained from the raw data. On the other hand,

if the numberof casesis large the distortions introduced will usually be

very minor and well worth the saving of time. Obviously, the narrower
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the intervals the less information we have lost and the greater the
accuracy. For example, if we know that there are 17 cases between
$2,000 and $2,900 and 26 cases between $3,000 and $3,900, we can obtain
more accurate results by imagining the 17 cases to be at the mid-point of
the first interval and the 26 persons to be at the mid-point of the second
than if we wereto placeall 43 scores at the mid-point of the larger interval,
$2,000 to $3,900. These simplifications are most likely to lead to errors
in the case of extreme intervals since the scores in these intervals may be
skewed toward the center of the total distribution. Thus if there are 17
cases in the lowest interval, most of these scores may be in the upperhalf
of the interval. However, if the numberof individuals in these intervals
is quite small, as is usually the case, the distortion introduced is likely to
be insignificant.

In computing the mean from grouped data wetherefore treat all cases
as though they were located at the mid-points of their respective intervals.
If we preferred, we could take them as spread at equal distances through-
out the interval, but, as can easily be verified, this would lead to the same
results since the mean score within each interval would be exactly at the
mid-point of the interval. Since all cases within each interval are treated
as having the same value, we can multiply the numberof cases in the
interval by their common value instead of adding the scores separately.
For example, if we have placed 26 cases at the value 3,450, the product
26 X 3,450 will be equal to the sum of 26 separate scores of 3,450. If
we do this for all intervals, sum the products, and divide by the total
number of cases we obtain the arithmetic mean. The formula for the
mean then becomes

k

> fim:

7 (5.3)X=! 

where f; = numberof cases in 7th category

m, = mid-point of 7th category

k = numberof categories

The example worked in Table 5.1 should make the processclear.
In Table 5.1 all intervals are of equal width. This is not essential as

long as the correct mid-points are used. It is necessary, however, to
make use of closed intervals. Suppose the last interval had been $7,000
and above. What would we use as the mid-point? We have absolutely
no basis on which to judge unless we can go back to the original data.
Sometimesit is feasible to do this since extreme categories often contain
relatively few cases. In such instances it usually makes more sense to
use the actual meanof the cases in the extreme category rather than the
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mid-point of some wider interval. In instances where it is impossible to

go back to the original data it will be necessary to make an enlightened

guess as to a reasonable value for the mid-point. It is therefore clearly

to our advantage to use closed intervals whenever a mean is to be com-

puted. As weshall see in the next chapter, this is also true in computing

the standard deviation, the most commonly used measure of dispersion.

Table 5.1. Computation of Mean from Grouped Data, Using Long Method
 

 
 

     
 

 

.. Mid-poi
Stated limits True limits “oo fi fim:

$2 , 000-2 , 900 $1 , 950-2 , 950 $2,450 17 $ 41,650

3, 000-3 , 900 2, 950-3 , 950 3,450 26 89,700

4 ,000—4 , 900 3, 950-4, 950 4,450 38 169,100

5 ,000—-5 , 900 4 ,950—5 , 950 5,450 51 277,900

6 , 000-6 , 900 5, 950-6 , 950 6 , 450 36 232,200

7, 000-7 , 900 6 , 950-7 , 950 7,450 21 156 , 450

Totals 189 $967 , 050

k

» fim:
> _i=l _ 967,050 _

 

Short Method for Computing Mean. The above method will usually

involve the multiplication of fairly large numbers(e.g., 2,450 * 17) unless

the mid-points turn out to be simple numbers. With a modern desk

calculator such products can easily be computed and accumulated. But

if computations must be made by handthere is a much simpler method

of computing the mean from grouped data. This so-called ‘ short

method” seems, at first glance, to involve more work than the “longer”

one, but once it has been mastered it will prove much the simpler of the

two. Basically, the short method involves guessing a mean and thereby

making use of smaller numbers in the multiplication process. A correc-

tion factor is then added to the guessed mean asbefore.

In order to simplify our computationslet us take as our guessed mean

a mid-point of one of the intervals. In the above example we can see by

inspection that the mean will be somewhatless than $5,450, the mid-point

of the fourth interval. The advantageof using a mid-point as our guessed

mean is obvious. All of the other scores will then be a certain numberof

intervals away from the guessed mean since each score is taken to be at

one or another of the mid-points. If we now subtract the guessed mean

from each score we will obtain differences of exactly $1,000, $2,000, or

$3,000 in either direction. We then multiply these differences by the
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appropriate frequencies to obtain the correction factor to be added to the
guessed mean. In other words, there will be 17 cases which have scores
which are exactly $3,000 less than the guessed mean; there will be 26 cases
with a difference of $2,000, etc. If we makeuse of a column d, represent-
ing the difference between actual scores and the guessed mean we can
modify (5.2) and write the formula for the mean as

k

> fd:
vy . wr t=1X = X’ + _N_NW (5.4)

where d; = X; — X’

and we can set up our computationsin a table such as Table 5.2. Again,
the correction factor involves taking the total deviation from the guessed
mean (here — 63,000) and then dividing by the numberof cases to obtain
the average amount the guessed mean deviates from the true mean.

Table 5.2. Computation of Mean from Grouped Data, Using Short Method
 

 

    
 

 

 

True limits Mid-points fi d; Sid;

$1, 950-2 , 950 $2 , 450 17 $—3,000 $—51,000
2, 950-3 , 950 3,450 26 —2,000 —52,000
3, 950-4, 950 4,450 38 —1,000 —38,000
4950-5 , 950 5,450 51 0 0
5 , 950-6 , 950 6,450 36 1,000 36,000
6 , 950-7 , 950 7,450 21 2,000 42,000

Totals 189 $ —63 ,000

k

> fids

3 o, t=1
X = X’+ V

— 63,000 _ _
= 5,450 + 139 = 5,450 —333

= $5,117
 

In this example the correction factor turned out to be negative, indicat-
ing that the guessed mean was too high. It should be noted that had we
guessed any other value for the mean we would have obtained the same
result. Selecting the mid-point of the third interval ($4,450) as the
guessed mean yields a correction factor of $667 which, when added to
$4,450, gives the correct result. Incidentally, this serves as a useful
check on our work. Notice that had we selected the mid-point of any
other interval, we would have made more work for ourselves since the
numbers to be added in the f:d; column would have been numerically
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larger. Had wefailed to use a mid-point, deviations from the guessed

mean would have involved muchless simple numbers, and we would not

have saved ourselves any work. Once the process becomes clearly

understood, it will be possible to omit the mid-points column from the

computing table.

You have undoubtedly already noticed that each of the deviations

from the guessed mean in the above exampleis an exact multiple of 1,000,

the size of the interval used. This will always be the case provided all

intervals are exactly the same width. We can therefore factor out the

width of the interval in each of the products f.di, and then multiply by

the interval width when we have finished summing. In other words, we

could have obtained the sum — 63,000 as follows:

— 63,000 = 1,000(—51 — 52 — 388 + 0 + 36 + 42)

In what amounts to the same thing, we could have expressed the original

deviations in terms of the numberof intervals (or ‘‘step deviations’’)

from the guessed mean. We then determine how many intervals the

guessed mean is from the true mean and,finally, we translate the amount

of error back into the original units by multiplying this correction factor

by the size of the interval. Referring to the deviation in interval widths

as d’, we can revise our table as in Table 5.3.

Table 5.3. Computation of Mean from Grouped Data, Using Short Method and

Step Deviations
 

 

 

True limits Mid-points fi d; fid,

$1 , 950-2 , 950 $2,450 17 —3 —51

2, 950-3 , 950 3,450 26 —2 —52

3 , 950-4, 950 4,450 38 —1 —38
4,950-5 , 950 5,450 51 0 0
5 , 950-6 , 950 6,450 36 1 36
6 , 950-7 , 950 7,450 21 2 42

Totals 189 —63    
 

The modified formula for the mean now becomes

k

>, fiat
vv ww 1=1 .
xX = X'’+ ar? (5.5)

where 7 is the interval width. Therefore

- —63X = 5,450 + +e 1,000 = 5,117
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If unequal intervals have been used it will be necessary to modify this
second form of the short method. Somepersons may find it easier to go
back to the earlier method, using d; instead of d;, and writing in the actual
differences in the original units. Alternatively, if only one or two
intervals differ from the rest in width we may take as the interval width 7
the width of the majority of class intervals. The deviations of the mid-
points of the remaining intervals from the guessed mean can then be
expressed in terms of fractions of whole intervals. For example, had the
last interval been $6,950 to $8,950 instead of $6,950 to $7,950, the mid-
point would have been $7,950 instead of $7,450. The deviation from the
guessed mean would therefore be $2,500 or 2.5 interval widths. Had the
interval run to $9,950 the d; value would have been 3.0 as can easily be
verified.

Computation of Median. In computing the median from grouped data
we shall treat all cases within a given interval as though they were dis-
tributed at equal distances throughout the interval. We first locate the
interval containing the middle case, and we then interpolate to find the
exact position of the median. In determiningthe interval containing the
median it is usually desirable to obtain the cumulative-frequency dis-
tribution. Although not absolutely necessary, it is preferable to develop
the habit of writing down the entire cumulative distribution as well as
indicating in a separate column the meaning of each of the figures in the
cumulative column (F). The cumulative distribution for the above data
is given in Table 5.4. As a check on our adding, we note that all 189
cases must beless than $7,950.

Table 5.4. Computation of Median from Grouped Data
 

  

 

. No. of casesTrue limits f F less than

$1, 950-2 , 950 17 17 $2 , 950
2, 950-3 , 950 26 43 3,950
3, 950-4, 950 38 81 \ 13 , 950
4,950—5 , 950 51 132 5,950
9, 950-6 , 950 36 168 6,950
6, 950-7 , 950 21 189 7,950

Total 189     
Next, we locate the interval containing the middle or N/2nd case.

Here 1894 = 94.5, so that we are looking for the interval containing the
ninety-fourth and ninety-fifth cases. Note that had data been ungrouped
we would havelocated the (NV + 1)/2nd or ninety-fifth case. The reason
for this apparent inconsistency will be discussed below. Since there are
81 cases less than $4,950 and 132 less than $0,950, the median must lie
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somewhere in the interval $4,950 to $5,950. It is a good idea to indicate

this interval with brackets since there is sometimes a tendency to look

across from the figure 81, obtaining the incorrect interval $3,950 to

$4,950.

Let us now look more closely at the interval containing the median.

There are 51 cases within this interval, and therefore we shall divide the

entire interval into 51 subintervals, each of width $1,000/51 or $19.61.

We locate each of the 51 cases at the mid-point of its proper subinterval.

The eighty-first case will be located in the last subinterval of the interval

$3,950 to $4,950, and the 132nd case will be just slightly less than the

upperlimit of the interval containing the median. We now simply count

subintervals until we have come to the median. Had the data been

ungrouped, we should have located the score of the (N + 1)/2nd or

ninety-fifth case. According to our convention, the ninety-fifth case

would be located at the mid-point of the fourteenth subinterval or

Bt 94.5 132
eHPetL, el|
4,950 5,950

exactly 13.5 subintervals from the lower limit of the interval. Notice

that this same value of 13.5 could have been obtained by subtracting 81

from 94.5 or N/2. It is because we are dealing with mid-points of small

intervals that we count exactly N/2 intervals in order to locate the

position of the (NV + 1)/2ndcase.

The value of the median can now be obtained by simply multiplying

the number of subintervals covered by the size of each subinterval,

adding the result to the lower limit of the interval. The whole process

can be summarized by the formula

/2—F .Ma =14+ , (5.6)

where F = cumulative frequency corresponding to lower limit

f = numberof cases in interval containing median

1 = lowerlimit of interval containing median

4 = width of interval containing median

The quantity 7/f represents the size of each subinterval, and N/2 —F

gives the distance (in subintervals) between the lowerlimit of the interval

and the median. In our problem weget

Md = 4,990 +wo 1,000 = 4,950 + 13.5251
4,950 + 265 = $5,215I
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There is an alternative but equivalent way of visualizing the process
of obtaining the median. Instead of finding the width of each subinterval
and then multiplying by the numberof these subintervals, we can reason
that since there are 51 cases in the entire interval and since we need to £0
13.5 of these smaller intervals in order to get to the median, we must
travel 13.5/51 of the entire interval. Therefore, if we multiply the width
of the interval (1,000) by the fraction of the total distance we must £0, we
obtain the desired result. When using the formula, it is, of course,
irrelevant which explanation we find most satisfactory. Lest one become
too dependent on formulas, it is best to reason out the process each time,
using the formula as a check, until it is thoroughly understood. As
another check it should be noted that the median could have been
computed by subtracting a certain quantity from the upper limit u. As
can easily be shown, the formula then becomes

F-WN/2,
f

where F now represents the cumulative frequency corresponding to the
upper limit of the interval. Numerically

132 — 94.5

ol

Md = u — (5.7)

Md = 5,950 — 1,000 = $5,215

5.4. Comparison of Mean and Median

Having discussed the computational procedures used in obtaining the
mean and median from both grouped and ungrouped data, we now need
to compare their properties. Several differences between the two
measures are immediately apparent. First, the mean uses more informa-
tion than the medianin the sense thatall of the exact scores are used in
computing the mean whereas the medianreally only involves the score
of the middle case. Returning to the scores 72, 81, 86, 69, and 57 we see
that had the highest score been 126 instead of 86 the median would have
been unaffected but the mean would have been increased substantially.
Likewise, had the lowest score been zero the mean would have been
lowered but the median would again be unchanged. We therefore may
state a very important difference between the two measures: the mean 7s
affected by changes in extreme values whereas the median will be unaffected
unless the value of the middle case is also changed. In our example, as long
as 72 remains the third case when data have been reranked, the median
will be unchanged.

This important difference between the two measures enables us to
decide in most instances which will be the more appropriate. Ordinarily,



58 DESCRIPTIVE STATISTICS

we desire our measure to make use of all information available. We

somehow have more intuitive faith in such a measure. Although at this

point it is impossible to bolster such a faith with a sound statistical

argument, some justification for the preference for the mean under

ordinary circumstances can be given. It turns out that the mean is

generally a more stable measure than the median in the sense that it

varies less from sample to sample. When we turn our attention to

inductive statistics we shall see that the researcher is ordinarily much

more interested in generalizing about a population than he is in his

particular sample. Heis well aware of the fact that had another sample

been taken the results would not have been quite the same. Had a very

large number of samples of the samesize been drawn he would be able to

see just how much the sample means differed among themselves. What

we are saying, here,is that the sample medianswill differ from one sample

to the next more than will the means. Since, in actuality, we usually

draw only one sample it is important to know that the measure we use

will give reliable results in that there will be minimalvariability from one

sample to the next. We can therefore state the following rule of thumb:

when in doubt, use the mean in preference to the median.

Because of the fact that it uses all the data, whereas the median does

not depend upon extreme values, the mean may give very misleading

results under some circumstances. We must keep in mind that in

making use of a measure of central tendency we are attempting to obtain

a simple description of what is “typical” of our scores. Suppose, to

take an extremecase, that the highest score in theseries of five numbers

had been 962. The median would remain at 72, but the mean would

become 1,241/5 or 248.2. Is this value in any sense “typical” of the

scores? Certainly not. It is nowhere near the score of any of the five

cases. It is true, of course, that in such an extreme example no single

measure could be used to describe adequately the typical case, but since

four out of the five scores are around 72, the use of the median would

obviously be less misleading. We may say, then, that whenever a

distribution is highly skewed, i.e., whenever there are considerably more

extreme cases in one direction than the other, the median will generally be

more appropriate than the mean.

The relationship between skewness and the relative positions of the

mean and medianis indicated in Fig. 5.1. Since the mean can be very

muchaffected by a few extreme values, the mean will be “pulled” in the

direction of skewness,i.e., toward the tail. If the distribution is perfectly

symmetrical, the mean and median will coincide. We know that income

distributions are usually skewed toward the higher incomes, with a very

few extremely high incomes. It might therefore be misleading to report

mean incomes within a corporation or small community. For this
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reason income data are usually reported using the median rather than the
mean. If a distribution is highly skewed, of course, this fact should
be mentioned in reporting the data. In such instances it might be of
some value to report both the mean and the median, although this is
seldom done in practice.

Symmetrical

 
 

Md
x

Negatively skewed Positively skewed

/ N

     
X Md Md X

Fig. 5.1. Relationship between skewness and the relative positions of the mean and
median.

The mean has a second property not possessed by the median: it is
more easily manipulated algebraically. For example, it is sometimes
necessary to obtain a weighted average from several sets of data. Sup-
pose that we have the following mean incomes for three communities,
A, B, and C:
 

 

 

Community Size Mean

A 10,000 $3 , 518
B 5,000 4,760
C 8,000 4,122  

If the sizes of all three communities were exactly the same we could take
the mean of these three scores as the over-all mean. But community A is
twice as large as community B. In other words, the figure $3,518 repre-
sents twice as many cases as does $4,760. Hadall 23,000 persons been
thrown together and the over-all mean computed, the resulting figure
would havereflected this fact. To obtain the correct mean we must
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weight each separate mean by the proper numberof cases and then sum,

dividing finally by the total number of cases (23,000). We thus get

k

> N:X;
> i=lxX =— (5.8)

where N; and X; represent the numberof cases and the meanfor the 7th

category, and k indicates the number of categories. Therefore

10,000(3,518) + 5,000(4,760) + 8,000(4,122)
23,000

= $3,998.09

X=

_ 91,956,000
~ 93000

 

We caneasily justify this weighting procedure by noting that the mean

of the ith category was actually obtained by adding scores and dividing

by N;. Therefore the product NV,X; represents the swm of all scores in

this category. Adding products and dividing by the total N thus gives

us the sameresult as would have been obtained had categories been com-

pletely ignored. This kind of algebraic manipulation of the mean is

sometimes quite useful. It should be readily apparent that the over-all

median for the combined data cannot be obtained in such a manner. If

we knew the values of the middle cases of each of the separate categories,

we would still not know the value of the middle case for the combined

data.

A final important difference between the mean and the median should

be noted. The computation of the mean requires an interval scale.

Without an interval scale it would be meaningless, of course, to talk about

summing scores. It is obviously necessary to assume, for example, that

the sum of the numbers 30 and 45 is equivalent to the sum of 20 and 55

since both pairs possess the same mean. The median, on the other hand,

can be used for ordinal as well as interval scales. The actual numerical

score of the median will be meaningless unless we have an intervalscale,

but it will certainly be possible to locate the middle score. This means

that, among other things, we can separate the cases into one of two

categories according to whether they are above or below the median.

Positional measures can therefore be used with ordinal scales, a fact

which is very useful in developing tests which do not require interval

scales.

5.5. Other Measures of Central Tendency

There are several additional measures of central tendency, none of

which are very commonly used in sociological research. One such
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measure is the mode which is simply the most frequent score or scores. If
we take the following series of numbers

(1) 71, 75, 83, 75, 61, 68
(2) 71, 75, 83, 74, 61, 68
(3) 71, 75, 83, 75, 83, 68

we may say that the first has a modeof 75 since there are two individuals
with this score and no other score appears twice. There is no mode in
the second series of numbers, but there are two modesin the third (75 and

   
Fig. 5.2. A bimodaldistribution.

83). The mode is perhaps more useful when there are a larger number
of cases and when data have been grouped. We then sometimes speak
of a modal category, taking the mid-point of this category as the mode.
In the grouped data we have been using, the modal category would be
$9,000 to $5,900. In a frequency distribution the modewill be indicated
by the highest point on the curve. In a symmetrical distribution with a
single mode at the center, the mean, median, and modewill of course all
be identical. We also can distinguish between “unimodal” and
“bimodal” distributions, the latter taking a form as in Fig. 5.2. In
referring to bimodal distributions we usually do not assume that both
peaks are of exactly the same height, as would be implied by the definition.
It should be noted that since the moderefers to the category with the
largest number of cases, we can make use of this concept in describing
nominal as well as ordinal and interval scales.
Two other measures of central tendency which are practically never

seen in the sociological literature are the harmonic mean and the geometric
mean. ‘They are defined by the formulas

 

 

Harmonic mean = a

1yx
i=l

Geometric mean = 4/(X1)(X2) + + + (Xn)

In the latter formula, the N over the radical indicates that we are taking
the Nth root of the product of the N scores.
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5.6. Deciles, Quartiles, and Percentiles

In discussing the median, we pointed out that there are certain other

positional measures such as percentiles which can be used to locate the

position of scores which are larger than a given proportion of cases.

These measures, although not necessarily measures of typicality or central

tendency, are directly analogous to the median. Thus instead of finding

a number which hashalf of the scores above or below it, we may wish to

determinethe valueof the first quartile, which has the property that one-

fourth of the scores are of lesser magnitude. Similarly, the third quartile

represents the score having three-quarters of the cases below it in magni-

tude. If one prefers, he may divide the distribution into 10 deciles by

locating scores that have one-tenth, two-tenths, or nine-tenths of the

cases with lower values. You are perhaps more familiar with percentiles

which divide the distribution into 100 portions of equal size. Thus a

student falling at the ninety-first percentile on an examination knowsthat

91 per cent of the other students had lower scores than himself.

The computation of deciles, quartiles, and percentiles is directly

analogous to the computation of the median. Im the case of grouped

data, we would first determine the interval within which the desired

positional measure falls. Using the data of Table 5.4, we would obtain

the first quartile by locating the position of the N/4th or the AZ.25th

case. From our cumulative-frequency column we see that the first

quartile must lie somewhere within the interval $3,950 to $4,950. Since

there are 38 cases within this interval, we must go (47.25 — 43)/38 of

this distance. Thus, the valueof the first quartile Q; would be

47.25 — 43
Q1 = 3,950 + 38 1,000 = 3,950 + 112 = $4,062

Other positional measures can be computed in a similar manner. Notice,

incidentally, that the median is by definition equivalent to the second

quartile, the fifth decile, and the fiftieth percentile. Although deciles,

quartiles, and percentiles are seldom used in sociological research, their

meanings should at least be familiar.

GLOSSARY

Decile
Mean

Median

Mode

Percentile

Quartile
Skewed distribution
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EXERCISES

1. Give the mean, median, and modeof the following numbers: 26, 37, 43, 21, 58,
26, 33, and 45.

2. Compute a mean and median for the data you grouped in Exercise 1, Chap.4.
Do the same for Exercise 2, Chap. 4.

3. Compute the third quartile, the fourth decile, and the seventy-first percentile
for the data of Exercise 1, Chap. 4.

4. The following (hypothetical) data show the distribution of the percentage of
farm families in 60 counties. Compute the mean and median.

Interval, % Frequency

10-19 7
20—29 16
30-39 21
40—49 12
50-59 4

60

5. Using the data for the previous example, indicate how the mean and median
would be affected (raised, lowered, or remain the same) if

a. The last interval were widened to read 50 to 69, with frequencies remaining
the same;

6. Ten per cent were added to each interval (making intervals 20 to 29, 30 to
39, etc.), with frequencies remaining the same;

c. Intervals remained unchanged, but two cases in the 20 to 29 category were
put in the 30 to 39 category (making frequencies 7, 14, 23, 12, and 4);

d. Intervals remained unchanged, but each frequency were doubled.

6. A group of 10 boys and 7 girls take an algebra quiz. Suppose the mean score
for the boys is 84, their median being 74. Both the mean and the median for the
girls turn out to be 79. The teacher concludes that on this test the boys did better
than the girls. Is her conclusion justified? Why or why not? How might you
account for the large difference between the mean and median scores for the boys?

7. Suppose one finds the mean age of the 50 governors to be 51.6, the mean age
of 100 senators to be 62.3, and the mean age of 435 representatives to be 44.7. What
is the mean age of all of these politicians? Suppose the above figures represented
median ages. Could you obtain the over-all median in the same manner? Whyor
why not?
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Chapter 6

INTERVAL SCALES: MEASURES OF DISPERSION

In many instances in sociological research the focus of attention is on

measures of central tendency. For example, we may wish to compare

several religious denominations with respect to average attendance or

income level. We may also wish to obtain measures of homogeneity,

however. Perhaps we have hypothesized that one of the denominations

will be more likely than the others to attract its membership from a single

social stratum. But even if we are primarily interested in comparing

measures of central tendency westill may need to know something about

the dispersion in each group. Werealize intuitively that if each denomi-

nation were extremely heterogeneous with respect to income background

or church attendance, then a given difference between their means (say

$2,000) would not be as important or indicative as would be the case if

each group were quite homogeneous. When we come to inductive

statistics we shall be in a position to justify this intuition and to see why

measures of dispersion are so important. In the present chapter we must

concentrate on mechanics. In the following chapter will be given an

interpretation for the most important measureof dispersion, the standard

deviation.

6.1. The Range

Of the several measures of dispersion to be discussed in this chapter,

the range is by far the simplest. The rangeis defined as the difference

between the highest and lowest scores. Thus, for the data given in the

previous chapter (72, 81, 86, 69, and 57) the range would bethe difference

between 86 and 57, or 29. We usually indicate the range either by the

actual difference (29) or by giving the two extremescores, €.g., 57 and 86.

If data have been grouped we take as the range the difference between

the mid-points of the extreme categories. Thus, if the mid-point of the

lowest intervalis 2,450 and that of the highest is 7,450, the range will be

5,000.
64
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The extreme simplicity of the range as a measure of dispersion is both

an advantage and a disadvantage. The range may prove useful if it

is desirable to obtain some very quick calculations which can give a rough

indication of dispersion or if computations must be made by persons

unacquainted with statistics. If data are to be presented to a relatively

unsophisticated audience, the range may be the only measure of dispersion

which will be readily interpreted. The level of sophistication of social

scientists is rapidly reaching the point, however, where we can assume

that more satisfactory measures will be understood. The disadvantage

of the range is obvious: it is based on only two cases, the two extreme

cases at that. Since extremes are likely to be the rare or unusual cases

in most empirical problems, we recognize that it is usually a matter of

chance if we happen to get one or two in our sample. Suppose, for

example, that there is one millionnaire in the community sampled. If we

choose 10 persons at random he will probably not be included. But sup-

pose he is. The range in incomes will then be extremely large and very

misleading as a measure of dispersion. If we use the range as our meas-

ure, we know nothing about the variability of scores between the two

extreme values except that the scores lie somewhere within this range.

And, as implied in the above example, the range will vary considerably

from one sample to the next. Furthermore, the range will ordinarily be

greater for large samples than small ones simply becausein large samples

we have a better chance of including the most extreme individuals. For

these reasons, the range is not ordinarily used in sociology except at the

most exploratory levels.

6.2. The Quartile Deviation

Another measure which is sometimes used in the fields of psychology
and education but which seldom appearsin the sociological literature is

the quartile deviation or semi-interquartile range. The quartile devia-
tion Q is a type of range, but instead of representing the difference
between extreme values it is arbitrarily defined as half the distance
between the first and third quartiles. Symbolically,

gq = ao (6.1)
where Q; and Q; represent the first and third quartiles respectively.
Notice that the quartile deviation measures the range covered by the
middle half of the cases. Since Q; and Q; will vary less from sample to
sample than the most extremecases, the quartile deviation is a far more
stable measure than the range. On the other hand, it does not take
advantage of all the information. We are not measuring the variability



66 DESCRIPTIVE STATISTICS

among the middle cases nor are we taking into consideration what is

happening at the extremes of the distribution. We shall therefore turn

our attention to two measures which do have this desirable property.

6.3. The Mean Deviation

If we wish to make use of all scores, common sense would suggest that

we take the deviations of each score from some measure of central

tendency and then compute some kind of average of these deviations in

order to control for the number of cases involved. It would be possible

to use the median or mode as our measure of central tendency, but we

ordinarily take the meansince this is the most satisfactory single measure

under most circumstances. Suppose we were simply to sum the actual

deviations from the mean. Unfortunately, as we know,the result would

always be zero since the positive and negative differences would cancel

each other. This suggests that in order to obtain a measure of dispersion

about the mean we must somehowor other get rid of the negative signs.

Two methods immediately occur to us: (1) ignore signs, taking the abso-

lute value of the differences, or (2) square the differences. These two

methods lead to the two remaining measuresof dispersion to be discussed

in this chapter, the mean deviation and the standard deviation.

The mean deviation is defined as the arithmetic mean of the absolute

differences of each score from the mean. In symbols

Mean deviation = ‘~—__——— (6.2)

The mean of the numbers72, 81, 86, 69, and 57 is 73.0. Subtracting 73.0

from each of these numbers, ignoring the sign, and then adding the

results and dividing by 5 we get

N

> |X: — X|
jn —14+84184+4416_ 42

N 5 5 7 84
 

We maytherefore say that on the average the scores differ from the mean

by 8.4.

Although the mean deviation has a more direct intuitive interpretation

than the standard deviation it has several serious disadvantages. First,

absolute values are not easily manipulated algebraically. Second, and

more important, the mean deviation is not as easily interpreted theo-

retically nor does it lead to as simple mathematical results. Tor purely
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descriptive purposes, the mean deviation may be adequate although, as

we shall see, the standard deviation can be interpreted more readily in

terms of the normal curve. When we come to inductive statistics we

shall see that the standard deviation is used almost exclusively because

of its theoretical superiority. For this reason, we seldom see references

to the mean deviation in sociologicalliterature.

6.4. The Standard Deviation

Having moreor less eliminated several other measures of dispersion,

we can turn our attention to the most useful and frequently used measure,

the standard deviation. The standard deviation is defined as the square
root of the arithmetic mean of the squared deviations from the mean.
In symbols

N

», & — X)
s= t=1 6.3W (6.3)

where s is used to represent the standard deviation.!_ In words, we take
the deviation of each score from the mean, square each difference, sum
the results, divide by the numberof cases, and then take the square root.
If we are to get the correct answer, it is essential that the operations be
carried out in exactly this order. In our numerical example the standard
deviation could be obtained asfollows:

 

 

 

 

 

Xi (X; — X) (X; — X)?

72 —I] 1

81 8 64

86 13 169

69 —4 16

57 —16 256

X = 73.0 0 506   
s = 1/506 = 4/101.2 = 10.06
 

The intuitive meaning of a standard deviation of 10.06 will not be
apparent until later when we make use of s to give us areas under the
normal curve. For the present, we simply accept it as an abstract
number. Several properties of the standard deviation are readily
apparent, however. Wenotice that the greater the spread about the

1 Some texts define s with N — 1 in the denominator rather than N. The reason
for this will not be apparent until Chap. 11.
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mean, the larger the standard deviation. Hadall five values been the

same, the deviations about the mean would all have been zero and s

would also be zero. Furthermore, we see that extreme deviations from

the mean have byfar the greatest weight in determining the value of the

standard deviation. The values 169 and 256 dominate the other three

squared deviations. In squaring the deviations, even though welater

take a square root, we are in effect giving even more relative weight to

extreme values than was the case in computing the mean. This suggests

that we must qualify our initial enthusiasm about the standard deviation

as the single ‘‘best’? measure of dispersion. Certainly if there are

several extreme cases we want our measure to indicate this fact. But if

the distribution has a few very extremecases, the standard deviation can

give misleading results in that it may be unusually large. In such

instances we would probably use the median as our measure of central

tendency and, perhaps, the quartile deviation as a measure of dispersion.

For most data the standard deviation will be appropriate, however.

It is reasonable to ask, ‘‘Why bother to take the square root in com-

puting a measure of dispersion?’’ One easy but unsatisfactory answer

would be that this is the way the standard deviation is defined. It would

be possible to justify taking the square root by pointing out that since we

have squared each deviation we are essentially compensating for this

earlier step. It makes more sense, however, to justify taking a square

root in terms of its practicality. Since we shall make considerable use

of the normal curvelater on, the standard deviation, as defined, turns out

to be a very useful measure. For other purposes we shall make use of

the square of the standard deviation or variance whichis defined as

N

» (X; — X)?
t=1 Variance = s? =

N

Mathematicians have found the concept of variance of more theoretical

value than the standard deviation. Beginning with Chap. 16 weshall

makeincreasing use of the variance, but for the present we can confine our

attention to the standard deviation. The two concepts are so easily

interchangeable that we can pass readily from the one to the other.

Whetherone defines the variance as the square of the standard deviation

or the standard deviation as the square root of the variance is unimportant.

Computation of Standard Deviation from Ungrouped Data. Although the

standard deviation can always be computed from the basic formula given

above,it is often simpler to make use of computing formulas which do not

require the subtraction of the mean from each separate score. Not only

will the mean not ordinarily be a whole number, but roundingerrors will
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usually be madeif the above formula is used. In order to see how we can

simplify the eomputations, let us expand the expression underthe radical.

Weget

N - N N N

— 2 2 > V2 2_9¥ V22 (xX; X) - 2» (X2 2x.X + X) ; 2 X2 2%2 X,+NX

N N N
  

Notice that since X is a constant we were able to take it in front of the

summation sign in the second term of the numerator. In the third term,

we have made use of the fact that for any constant k

N

>) b= Nk
i=1

N

But since X = X;/N, the middle term reduces to —2X? and we may
i=]

  

 

 

  

 

write
N N N

> (X; — &) > X? > X2
i=1 _ i=l _ 9¥2 V2 — t=l — X2WV W 2X?+ X W xX

Therefore (6.4)

Some alternative computing formulas are as follows:

TN N 2

> X? > xX,
i=1 i=1

s= Ni N (6.5)
; y

x (0%)
» xX2—a

=4/ = (6.6)? 

 
N N

1 5 2ayeYa-(Sxy ar
*The derivation of equations (6.6) and (6.7) from equation (6.5) is left as an

exercise.
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Although any of the above forms may be used as computing formulas,

equation (6.7) will involve the fewest rounding errors and is therefore

recommended.

Let us make use of one of these computing formulas (Eq. 6.7) in the

above problem where N = 5.

xX, xX?

72 5,184
81 6,561
86 7,396
69 4,761
57 3,249

365 27,151

In addition to the total number of cases, the two quantities needed are
N N

> X,; and > X;?.. Both sums can be accumulated simultaneously on
i=l i=l
modern desk calculators. We now compute s from (6.7).

  
s = lé v/5(27,151) — (365)? = 16 V/135,755 — 133,225 = 10.06

We have made use of this very simple problem in orderto illustrate that

the computing formula gives the same numerical result as the basic

formula (Eq. 6.3). Since X turned out to be a whole number, the com-

puting formula actually involved more work than did the original formula.

Usually, of course, this will not be the case.

Computation of Standard Deviation from Grouped Data. When data have
been grouped, we may simplify our work considerably by treating each

case as though it were at the mid-point of an interval and by making use

of aguessed mean. Of course, we thereby introduce certain inaccuracies,

but the saving in time will be substantial. Following a common con-

vention, suppose welet x; = X; — X. The small z’s therefore represent

deviations from the mean, and the basic formula for the standard

deviation becomes
 
N

x,"

t=]

N
 Ss =

Wecan now modify the formula to take into consideration the fact that

there will be a large numberof casesall treated as having the same value,

i.e., one of the mid-points. If we multiply the numberof cases in each

class by the proper mid-point and then sum these products, we can save

ourselves the work of adding up all N cases. The formula for the
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standard deviation then becomes

 

n
e

k

s= 4)> (6.8) 

where f; is the numberof cases in the 7th interval and k is the numberof

intervals.

Now suppose we were to guess a mean and to take deviations from the

guessed mean instead of the true mean. We have shownin the previous

chapter that the sum of the squared deviations from the mean will be less

than the sum of the squared deviations from any other value. In par-

ticular, the sum of the squared deviations from the guessed mean will be

larger than the figure obtained using the true meanunless, of course, the

guessed mean actually equals the true mean. It can also be shown that

the closer the guessed meanis to the true mean, the smaller the sum of the

squared deviations from the guessed mean. In other words, if we use a

guessed mean we expect to find a sum of squares which is too large. We

can, as before, make use of a correction factor which we then subtract

from the value obtained using the guessed mean. The formula for the

standard deviation then becomes

 

$= i=l _ i=1 (6.9)  

where the d; represent the differences between each score and the guessed
mean andare directly analogous to the x; in equation (6.8).

Before taking up a numerical example, let us examine the above formula
more carefully. The second term undertheradical represents the correc-
tion factor to be subtracted from the mean of the squared deviations from
the guessed mean. Recalling the formula for the mean expressed in terms
of the guessed mean,i.e.,

 

 

tid;
- wr 1=1X= X’H+ NW
; |

» fd
i=l _ > wy

we see that N= X—X

k 2

> fd
and therefore t= = (X — X’)? 
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Thus the correction factor turns out to be the square of the difference

between the true and guessed means. We see immediately that had we

guessed the mean exactly, the correction factor would have been zero.

Also, the greater the difference between the true and guessed means, the

larger the correction factor. A poor guess will always lead to the correct

result but will involve larger numerical scores for both terms in the

formula.

The formula can be modified still further if we prefer to think in terms

of step deviations d;. Asin Chap. 5, we factor out the width of the inter-

val from each d;, multiplying the final result by ¢ when we havefinished

the process. The formula then becomes

  

 

 

 

_ 2 fid?? ; d fid; _ |72 > fd? ; ‘y fid;,

N N N N

y fid;? y fd;

Therefore s=1 a — aT (6.10)

 

> fide — “A
=ia) = (6.11)’ N

k k 5

4 12 nt .N |N fa (21@) (6.12)

Notice that in effect we have merely taken the interval width 7 outside

the radical.

When computing the standard deviation from grouped data, we can

now extend the procedure used for the mean by adding the column f.dj?.

Although we could actually obtain the squared deviations d,;? and then

multiply by f:, it will be much simpler to multiply the last two columns

used in obtaining the mean (i.e., d; X f,d;). Having in effect multiplied

d’. by itself, we see that all negative numbers now becomepositive. Let

us now compute the standard deviation for the grouped data used in the

previous chapter. Forillustrative purposes weshall use equation (6.10),

although equation (6.12) will ordinarily involve fewer rounding errors.

We thus have obtained a mean of $5,117 and a standard deviation of

$1,444. These two numbers can nowbe used to summarize the data or

to compare them with data from another sample. As will be seenlater,
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Table 6.1. Computation of Standard Deviation, Using Grouped Data
 

 

       
  

 

True limits Mid-points fi d, fid, fid,?

$1 , 950-2 , 950 $2,450 17 —3 —51 153

2, 950-3 , 950 3,450 26 —2 —52 104

3, 950-4, 950 4,450 38 —] —38 38

4, 950-5 , 950 5,450 51 0 0 0

5 , 950-6 , 950 6,450 36 1 36 36

6 , 950-7 , 950 7,450 21 2 42 84

Totals 189 —63 415

k k 2

y, ade [YD et

N N

415 —63\2= 1,000 4/=-2 — (2?) = /2.196 — .111189 ( 139 1,000 96

= 1,444
 

they can also be used to test hypotheses or to estimate population

measures.

6.5. The Coefficient of Variability

It is sometimes desirable to compare several groups with respect to

their relative homogeneity in instances where the groups have very dif-

ferent means. It therefore might be somewhat misleading to compare

the absolute magnitudes of the standard deviations. One might expect

that with a very large mean he would find at least a fairly large standard

deviation. He might therefore be primarily interested in the size of

the standard deviation relative to that of the mean. This suggests that we

can obtain a measure of the relative variability by dividing the standard

deviation by the mean. The result has been termed the coefficient of

variability, denoted by V. Thus

SV =
XxX

To illustrate the advantages of the coefficient of variability over the

standard deviation, suppose a social psychologist is attempting to show

that for all practical purposes two groups are equally homogeneous with

respect to age. In the one group the mean age is 26 with a standard

deviation of 3. In the other, the mean age is 38 with a standard devia-

tion of 5. The coefficients of variability for the two groups are therefore

396 = .115 and 54g = .132, a much smaller difference than that between
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the two standard deviations. In view of the fact that exact age usually

becomes less important in determining interests, abilities, and social

status as the average age of group membersis increased, a comparison of

the two coefficients of variability in this instance might very well be much

less misleading than if the standard deviations were used.

It is also possible to make use of a relative variance if one so desires.

Unfortunately, these relative measures of dispersion are rather infre-

quently reported in the sociological literature. More commonly, one

finds the means and standard deviations listed in adjacent columns.

6.6. Other Summarizing Measures

Wehave discussed only two types of summarizing measures, measures

of central tendency and measures of dispersion. Other kinds of measures

are possible, although they are seldom used in sociological research.

Of course we often find the entire frequency distribution given, but this

is not a single summarizing measure. It is sometimes desirable to

indicate the degree of skewness in a distribution. One measure of

skewness takes advantage of the fact that the greater the skewness the

larger the difference between the mean and the median. This measureis

given by the formula

3(X — Md)
Ss

Skewness =

If the distribution is skewed to the right (large positive scores), the

mean will be greater than the median and the result will be a positive

number. Adistribution skewed to the left will produce a negative result.

Very infrequently in sociology we also find references to the general

peakedness of a distribution. The term kurtosis is used to refer to this

type of measure which will be discussed very briefly after we have taken

up the normal curve. Statistics texts written primarily for students of

economics usually go more deeply into both skewness and kurtosis.

Perhaps as we begin to attain greater precision in describing the exact

forms of distributions of sociological variables we may find more use for

these other descriptive measures.

GLOSSARY

Coefficient of variability

Mean deviation
Quartile deviation
Range

Standard deviation

Variance
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EXERCISES

1. Compute the mean deviation and standard deviation for the data given in

Exercise 1, Chap. 5.
2. Compute the standard deviation and the quartile deviation for the data grouped

in Exercise 1, Chap. 4. Do the same for Exercise 2, Chap. 4.

3. Compute the standard deviation for the data given in Exercise 4, Chap. 5.
Check your computations by selecting a different guessed mean and a different
computing formula.

4. Indicate how the standard deviation would be affected by each of the changes
indicated in Exercise 5, Chap.5.
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Chapter 7

THE NORMAL DISTRIBUTION

The notion of a frequency distribution is already a familiar one. The

present chapter is concerned with a very important kind of frequency

distribution, the normal curve. This distribution is useful not only

because a large number of empirical distributions are found to be approxi-

mately normal but also because of its theoretical significance in inductive

statistics. At this point you should not be concerned about applications

in which the normal curve is used. The purpose of this chapter is to

indicate the properties of the normal curve and to enable you to gain

facility in using tables based on the normal curve. This distribution is

discussed under descriptive rather than inductive statistics for two

principal reasons. First, the normal curve can be used to provide an

interpretation for the standard deviation. Second, you will find it

helpful to become familiar with the normal distribution several chapters

before you are exposed to statistical tests which require facility with it.

Therefore, the better your understanding of the materials in the present

chapter the less difficulty you will experience later on.

7.1. Finite Versus Infinite Frequency Distributions

Frequency distributions discussed up to this point have involved a

finite number of cases. Actually, of course, all empirical distributions

necessarily involvea finite although perhaps very large numberof cases.

Mathematicians frequently find it useful to think in terms of distributions

based on an indefinitely large number of cases, however. Rather than

dealing with empirical distributions having a jagged appearance, as

exemplified by a histogram or frequency polygon,it is possible to conceive

of smooth curves which are based on an indefinitely large numberof cases

and which can be expressed in terms of relatively simple mathematical

equations. The normal distribution is one such curve. Before studying

this specific distribution it will be necessary to examine the nature of the

process by which such a smooth curveis developed.

16
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Let us start with a histogram involving five intervals (Fig. 7.la). For

simplicity we shall assume the frequency distribution to be symmetrical.

Wehavealready seen that if the numberof intervals is increased without

changing N, the form of the histogram is likely to become irregular.

Suppose, however, that the number of cases is also increased. Then, as

 
—
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Fig. 7.1. Comparisons of smooth curves with histograms having different interval
widths.

in Fig. 7.16, it will be possible to make use of a larger number of narrower

intervals, each of which has a sufficiently large number of cases to main-

tain regularity. If the number of cases is further increased, still more

rectangles can be used while retaining the regular pattern (Fig. 7.1c).

Smooth curves have been drawn through the mid-points of the top of

each rectangle. It is clear that the rectangles form better and better

approximations to the smooth curve as the numberof rectangles increases,

1.e., aS the width of each interval decreases. We now imagine an ever-

increasing number of cases and correspondingly narrower intervals until

the rectangles approximate the smooth curve so closely that we can no
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longer see any difference. We refer to the smooth curve approximated

by the ever-narrowing rectangles as the limiting frequency distribution.?

Although we cannot possibly imagine an infinite numberof cases, we can

conceive of such a large number that the rectangles approximate the

smooth curve to within any desired degree of accuracy.

It will be remembered that the area of each rectangle can be used to

represent the proportion of cases within the interval. As indicated in

Chap. 4, it is customary to set the

reounder total area of all rectangles equal to

Area inSY inrectongle unity. Thus if the proportion of
 

rectongle cases in the first interval is .10, then

ror under this same numberrepresents the ac-
tual area of the first rectangle. We

nownotice that the area under the

smooth curve within any given in-

terval can be approximated by the

area of the corresponding rectangle.

This is indicated in Fig. 7.2. As

the number of rectangles is in-

creased, the total area of the rec-

tangles becomes a better and better approximation to the area under the

smooth curve. This can be seen by noting that the shaded areas become

relatively smaller and smaller. In the limit, then, the area under the

smooth curve can be obtained by summing the areas of an indefinitely

large number of rectangles. Since the area under the rectangles is

unity, the area under the smooth curve will also be unity. The process

we have just described is exactly the kind of process underlying that

branch of mathematics referred to as the calculus.

   
rig. 7.2. Comparison of areas under
smooth curve and under rectangle.

7.2. General Form of the Normal Curve

The normal curve is a special type of symmetrical smooth curve.

Since the normal curve is smooth, perfectly symmetrical, and based on an

indefinitely large number of cases, it can only be approximated by fre-

quency distributions involving actual data. It is bell-shaped in form

and has a number of remarkable mathematical properties, some of which

will be indicated shortly. Since it is symmetrical and unimodal, its

mean, median, and modeall coincide. The general form of the normal

distribution is indicated in Fig. 7.3.

*The mathematical equation for the normal curveis relatively simple

by mathematicians’ standards. Although you will never have to use this

formula for computations since tables have been constructed for this

1 The notion of a limit is also discussed in Sec. 9.1.
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purpose,it will be instructive to use it to point out and verify someof the

properties of this theoretical distribution. The formula is as follows:

1_ e—(X—X) 2/282

 g \V/On
 

where is the height of the curve for any given value of X. Since both

az and e are constants (equal to 3.14 and 2.72, respectively) , the formula

involves only two summarizing measures, the mean X and the standard

 

Fig. 7.3. General form of the normal curve.

deviation s.2 Therefore, the exact form of the normal curve will be

knownif we are given the values of both the mean and standard deviation.

In other words, there are many different normal curves, one for every

combination of mean and standard deviation.

“Recalling that a quantity with a negative exponent can be written

as the reciprocal of that quantity raised to a positive power, we may

rewrite the formula as follows:

 1 1Y = —_ -
8 /Qe \2.72.%-¥2/282

where the constant e has been replaced by its numerical value. Let us

assume that s has a fixed value and find the value of X for which Y will

beamaximum. Clearly, Y will be at its maximum when the denominator

within the parentheses is a minimum. But this denominator consists

of a positive number greater than unity raised to a power which cannot

be negative since a squared real number can never be less than zero.

The denominator will therefore take on its minimum value when the

exponent is zero. This will occur when X takes on the value X since we

will then have X — X = 0. This shows that the mode (and therefore

the mean and median)is actually X, a fact that has already been pointed

out but not demonstrated. Also, we can see that the equation yields a

curve which is symmetrical about X. Since the quantity X — X is

squared and therefore cannot be negative, deviations from X in either

direction will produce identical values of Y.

2 Other notation for the mean and standard deviation will be introduced when we
come to inductive statistics. The formula for the normal curve is usually written
in terms of a mean of » (mu) and a standard deviation of c.
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The specific equation for any particular normal curve can be obtained

by using the proper values of X and s. Normal curves having the same

standard deviations but different means are drawn in Fig. 7.4. On the

other hand, curves having different standard deviations will vary in

x x2 X3

   

  

 

Fig. 7.4. Comparison of normal curves with the same standard deviations but different

means.

 
 

 

Fig. 7.5. Comparison of two normal curves with the same means butdifferent standard

deviations.

  
——

Fig. 7.6. Comparison of normal curve with curves having the same standard deviation

but which differ with respect to peakedness.

peakedness as indicated in Fig. 7.5. The smaller the standard deviation

the more peaked the curve.

It should be pointed out that all symmetrical bell-shaped curves are

not normal. Although the curves in Fig. 7.5 differ with respect to

peakedness, this is due only to differences in their standard deviations.
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They are all normal in form. In general, unimodal symmetrical curves

may be either more peaked or more flat than the normal curve even

though their standard deviations are all the same. Several such curves

are drawn in Fig. 7.6. Curves which are more peaked than the normal

curve are referred to as leptokurtic and those which are flatter than

normal as platykurtic. Unlike the normal curve, the equations of

leptokurtic and platykurtic curves are likely to involve summarizing

measures in addition to the mean and standard deviation.

7.3. Areas under the Normal Curve

It is frequently necessary to determine the proportion of cases falling

within a given interval. Fortunately, the normal curve has an important

95.46 % |>|

| 68.26% | |

| | | |
| | |
| |
| | 
 

X-2s K-s X X+s KX+2s

Fig. 7.7. Areas under the normalcurve.

property which makes this task a relatively simple one. It turns out

that regardless of the particular mean or standard deviation a normal

curve may have, there will be a constant area (or proportion of cases)

between the mean and an ordinate which is a given distance from the mean in

terms of standard deviation units. Fig. 7.7 helps to illustrate the meaning

of the above statement.

Thus if we go one standard deviation to the right of the mean weshall

alwaysfind .3413 of the area included between the mean and an ordinate

drawn at this point. Therefore twice this area, or .6826, will be included

between the two ordinates which are located one standard deviation on

either side of the mean. In other words, slightly over two-thirds of the

cases will always be within one standard deviation of the mean. Simi-

larly, the area between the mean and an ordinate two standard deviations

away will always be .4773, and therefore slightly over 95 per cent of the

area will be included between the pair of ordinates which are two standard

deviations on either side of the mean. Practically all the cases will be

within three standard deviations of the mean even though the normal

curve theoretically extends infinitely far in either direction. Distances
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from the mean need not always be exact multiples of the standard devia-

tion, of course. By means of a procedure to be described shortlyit is

possible to determine the areas between any two ordinates. For example,

if we go out 1.96 standard deviations on either side of the mean weshall

include almost exactly 95 per cent of the area; 99 per cent of the area will

be included between ordinates which are 2.58 standard deviations from

the mean.

This property of the normal curve affords an interpretation for the

standard deviation and a method of visualizing the meaning of this

measure of dispersion. A number of empirical frequency distributions

are sufficiently similar to the normal distribution that these relationships

between areas and the standard deviation will hold up reasonably well.

Even in the case of income distributions which are likely to be skewed

in the direction of high incomes, we usually find approximately two-thirds

of the cases within one standard deviation of the mean. It should be

kept in mind that although the normal curve provides an interpretation

for the standard deviation, this property cannot be used to define what

is meant by a standard deviation. The definition is in terms of its

formula. The above property holds only in the case of normal or

approximately normal distributions.

It is possible to take any particular normal curve and to transform

numerical values for this curve into such a form that a single table can

be used to evaluate the proportion of cases within any desired interval.

We can illustrate the process with a numerical example. Suppose we

have a normal curve with mean 50 and standard deviation 10. Let us

find the proportion of cases within the interval 50 to 65. We first

determine how many standard deviations 65 is from the mean 50. In

order to do this, we take the difference between these two values, 1.e., 15,

and divide by thesize of the standard deviation. In this case the result

is 1.5. Generally, we can make use of the formula

_xX-X
—  g
65 — 50 _=> =

Z

 

1.5

where X is the value of the ordinate and where Z represents the deviation

from the meanin standard-deviation units.

*Before discussing how the numerical value of Z can be used to deter-_

mine the proportion of cases between the mean andthe ordinate corre-

sponding to Z, let us give an alternative interpretation of Z. We can

think in terms of an actual transformation from the X variable to a new

variable Z. Whereas the distribution of the X variable is normal with
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a mean X and standard deviation s, the new variable is normal with a

mean of zero and a standard deviation of one. A normal distribution

with mean zero and standard deviation oneis referred to as the standard

form and the Z is often called a standard score. The transformation of

variables is illustrated in Fig. 7.8. From every X we subtract the

constant X. In subtracting this constant value (here, 50) from each X

we haveshifted every original score 50 units to the left and have therefore

in effect moved the original normal curve to a position directly over the

origin. This takes care of the numerator in the expression for Z. We

S#1

      
X X

Fig. 7.8. Comparison of standard and general forms of the normalcurve.

nowdivide each difference X — X by thesize of the standard deviation.
In so doing we either squeeze the original curve or spread it out depending
on whether or not its standard deviation is greater or less than unity.
We can thus think of having first shifted the position of the original
normal curve and then having changed thesize of the standard deviation
So as to superimpose it on the standard form. In dividing by the standard
deviation of 10 we have essentially changed units along the horizontal
axis so that a distance of 10 along the X axis correspondsto a distance of
1 along the Z axis.

Regardless of which interpretation is given, a value of Z = 1.5 indicates
that the ordinate is 1.5 standard deviations from the mean. In the case
of the standard form this of course meansthat the ordinate itself falls at
the value 1.5 on the Z scale. Tables showing exact areas have been con-
structed for the standard form of the normal curve. Table C in Appendix

--21s one such table. The values of Z are given downtheleft-hand margin
and across the top. The first two digits of Z are obtained by reading
down and the third by reading across. Figures within the body of the
table indicate the proportion of the area between the mean (.e., 0) and
the ordinate corresponding to Z. In the above example, we see that
4332 of the area is within these limits. Had Z turned out to be 1.52 the
corresponding area would have been .4357.

* The verification of this fact is left as an exercise. (See Exercise 3.)
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7.4. Further Illustrations of the Use of the Normal Table

Suppose we wish to find the shaded area in the normal curve indicated

by Fig. 7.9. The value of Z in this case is

_ 143 — 168 ~ —25
Z 19 = 49 = —2.08 

The fact that Z is negative simply indicates that the shaded area is to

the left of the mean. The sign of Z can be ignored when using the

 

 
 

143 168

Fig. 7.9. Normal curve, with shaded portion representing the area in a single tail.

normal table since the curve is perfectly symmetrical. From the table

we see that the area between the mean and a Z of 2.08 is .4812. Since

the total area is unity, the area to the left of the mean must be .5 (by

symmetry). ‘The shaded area therefore can be obtained by subtracting

the area between the mean and the ordinate from the total area to the

left of the mean. Thus,

(Proportion of cases < 143) = .5000 — .4812 = .0188

Therefore, fewer than 2 per cent of the cases havescores less than or equal

to 143.4 The type of problem illustrated in this example is a very com-

mon one because of the fact that tests of hypotheses practically always

involve the tails of a frequency distribution. We therefore are often

interested in the areas of one or both of these tails. Had we wanted to

obtain the total area outside of the region defined by 168 + 25 (as

indicated by the shaded areas in Fig. 7.10), we would simply have

4In a continuous distribution the proportion of cases which are exactly 143.0 will
be zero. This can be seen if we imagine two ordinates extremely close together.
The proportion of cases between these ordinates will also be very small. Now if we
allow these ordinates to move closer and closer together, the proportion of cases will
becomeinfinitely small. A mathematical line, it will be remembered, has no width.

In practice there may be some eases with scores of 143.0 owing to measurement
inaccuracies. Since we are dealing with a theoretical distribution, however, it makes

no difference whetheror notthe ordinate itself is included within the interval. Hence-
forth, we shall simply refer to the area between (but not including) two ordinates

or the area less than a given value.
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doubled the aboveresult since the two shaded areas are exactly equal in
S1Ze.

To take another example, suppose we need to obtain the shaded area

indicated in Fig. 7.11. This area is calculated by first finding the

proportion of cases between the mean and ordinate B and subtracting
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Fig. 7.10. Normal curve, with shaded portions representing areas in bothtails.

 

 
 

0.36 0.42 046

Fig. 7.11. Normal curve, with shaded portion representing the area between two
ordinates.

from this numberthe proportion of cases between the mean and ordinate

A. The Z’s corresponding to B and A are 2.0 and 1.2 respectively.

Thus we have

Proportion between B and mean A773

Proportion between A and mean 3849

Proportion between A and B 0924

Therefore slightly over 9 per cent of the cases fall between .42 and .46.

Notice that had we desired the area between two ordinates on opposite

sides of the mean, the result could have been obtained by addition rather

than subtraction.

GLOSSARY

Leptokurtic
Limiting-frequency distribution
Normal curve
Platykurtic
Standard score
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EXERCISES

1. You have already computed the mean and standard deviation for the data
given in Exercise 1, Chap. 4. What proportion of the 65 cases were within one

standard deviation of the mean? Two standard deviations? Three standard devi-
ations? How well do these figures approximate those we would expect if the distribu-
tion were exactly normal? Answer these same questions for Exercise 2, Chap. 4.
Contrast and account for any differences between the results for the two sets of data.

2. If the mean of a normal distribution is 80 and its standard deviation 12:

. What proportion of the cases is between 80 and 93?

. What proportion of the cases is between 90 and 105? 70 and 105?

. What proportion of the cases is less than 68?
. How manystandard deviations on either side of the mean would you need
to go in order to obtain two tails each containing 2 per cent of the total area?
Ten per cent of the total area?

e. What score has 4 per cent of the cases above it? (In other words, locate the
ninety-sixth percentile.)

Q
,
0

f
e
a

*3. Verify that the standard form of the normal curve has a mean of zero and a

standard deviation of unity. [Hint: Rewrite the formula for the normal curve in
terms of Z, using the fact that Z = (X — X)/s.]

4, Raw scores on various aptitude and attitudinal tests are often treated as interval

scales by psychologists. These raw scores are then often converted to standard
scores with convenient means and standard deviations. Suppose the mean raw score
on a college entrance examination is 117 with a standard deviation of 28.5. Assume

that these raw scores are distributed normally.

a. What is the proportion of raw scores above 131? Below 79?
b. What are the raw scores corresponding to the first, second, and third

quartiles?

*c, On College Board exams, raw scores are standardized so that the mean of
the normal distribution is exactly 500 and the standard deviation 100.

Specifically, how would one go about standardizing the above set of scores

to obtain a mean of 500 and a standard deviation of 100? (Hint: How would

you standardize to get a mean of zero and a standard deviation of unity?)
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Chapter 8

INTRODUCTION TO INDUCTIVE STATISTICS

The purpose of this brief chapter is to give a general overview of

inductive statistics and in particular the logic underlying the testing of

statistical hypotheses. It is very easy to become so overwhelmed with

the details of each particular test encountered that one is unable to see

the similarities underlying all tests. The learning of statistics can then

become a mere ‘‘cookbook”’ exercise in memorizing formulas and proce-

dures. Therefore this chapter is a very important one and should be

reread carefully after you have been exposed to two or three specific

tests.!

8.1. Statistics and Parameters

The purpose of statistical generalizations is to say something about

various characteristics of the population studied on the basis of known

facts about a sample drawn from that population or universe. We shall

refer to the characteristics of the population as parameters as contrasted

with characteristics of a sample which are called statistics. You are

already familiar with a number of parameters and statistics: means,

medians, proportions, standard deviations, etc. At this point you should

learn to make a careful distinction between those characteristics which

refer to the population and those which refer to a sample. Greek letters

are usually used to refer to population characteristics; Roman letters

indicate sample characteristics. Thus, the population mean will hence-

forth be designated by » and the sample mean by X, the population

standard deviation by o and the sample standard deviation bys.

An important distinction between parameters and statistics can be

1 A good point for review would be after Chap. 11.
2The terms population and universe are generally used interchangeably in the

statistical literature.

§ Unfortunately, there are a number of exceptionsto this rule.

89
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made. Parameters are fixed values referring to the population and are

generally unknown.* For example, at any given time the mean age or

grade-point average of all students at Harvard University may be

unknown but presumably would be found to be the same value byall

observers. Statistics, on the other hand, vary from one sample to the

next. If 10 different samplesof college students were selected at random,

we would not expect them all to have exactly the same mean ages. In

fact, we would be very suspiciousif they did. In contrast to parameters,

the values of statistics for a particular sample are known or can be

computed. We do not know, however, how representative the sample

actually is of the population or how closely the statistic obtained approxi-

mates the comparable unknown parameter.

It is the population, rather than any particular sample, in which we are

really interested. We have selected a sample as a matter of convenience,
and our goal is practically always to make inferences about various

population parameters on the basis of known, but intrinsically unimpor-

tant, sample statistics. In tests of hypotheses, we make assumptions

about the unknown parameters and then ask how likely our sample

statistics would be if these assumptions were actually true. In so doing,

we attempt to make a rational decision as to whether or not the assumed

values of these parameters are reasonablein view of the evidence at hand.

Hypothesis testing can thus be viewedas a special type of decision-making

process. Since the basic logic underlying the testing of hypotheses is

rather complex, it will be helpful at this point to discuss this logic briefly.

In later chapters you will see how it is applied to specific tests.

8.2. Steps in Testing an Hypothesis

In the social sciences the term hypothesis is used in a numberof dif-

ferent senses. Sometimes it is used to refer to a theoretical proposition

which has some remote possibility of being tested indirectly. At other

times it is used to refer to the kind of statement which can actually be

tested statistically. In order to minimize confusion it will therefore be

necessary to specify how the term will be used in this text. Thecriteria

used in defining what we shall mean by a test of an hypothesis are rather

strict and would rule out many of the so-called tests made in the current

social science literature. They are, however, consistent with the rather

4 Parameters will always be treated as fixed even though they may actually vary
over time. Thus the median age of a population will change from one moment to
the next. For this reason, you should conceptualize the notion of repeated sampling
in terms of a large number of samples drawn simultaneously rather than in temporal
sequence.
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rigid requirements laid down bythestatistician. As such, they represent

an ideal against which the adequacyof any actual test can be compared.

An hypothesis is a statement about a future event, or an event the

outcome of which is unknown at the time of the prediction, set forth

in such a way that it can be rejected. In more precise language, let us

say that we have tested an hypothesis if the following steps have been

taken:

1. All possible outcomes of the experiment or observation were

anticipated zn advance of the test.®

2. Agreement was reached prior to the test on the operations or

procedures used in determining which of the outcomes actually occurred.

3. It was decided in advance which of the outcomes, should they occur,

would result in the rejection of the hypothesis and which inits nonrejec-

tion. As implied above, rejection must have been a possible result.

4. The experiment was performed, or the event observed, the outcomes

noted, and a decision made whetheror not to reject the hypothesis.

The steps outlined above are very general ones. Statistical inference

is primarily concerned with steps 3 and 4 since the statistician must
assume that the first two steps have already been accomplished. We
shall have occasion to see how the last two steps become more specific
in a statistical test. Perhaps the most important general implication
in the abovelist is that all decisions must be madeprior to the test. All
possible outcomes are divided into twoclasses: those which will result in
rejection and those which will not. If this is not done prior to the test
it becomes possible to retain an hypothesis by simply changing the rules
as one goes along. This is directly analogous to the child flipping a coin
to decide whether or not to go to the movies. He decides, ‘‘Heads I go,
tails I don’t.” If the coin turns up heads he goes. If it comes uptails
he decides on the best two out of three and continues to flip. In this way
he always ends up going to the movies unless he loses the coin (an unan-
ticipated outcome).

“It was mentioned in Chap.2 that a test can only be made on a proposi-
tion which has been stated in terms of concepts which have been opera-
tionally defined. Step 2 indicates that operational definitions must be
agreed upon in advance of the test. Unless this has been done, it is
always possible to retain an “hypothesis” regardless of the outcome of
the experiment by rejecting the methods used. Suppose one states as
his “hypothesis” that “the higher one’s social class position, the less
likely that he will be highly ethnocentric.” If the results do not seem to

*The term experiment is used in a very broad sense by the statistician, For
example, an experiment might consist of interviewing a housewife and recording a
“yes’’ or ‘‘no”’ to a specific question.
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confirm this proposition, he may claim that the measureof ‘‘social class”’

or ‘“‘ethnocentrism’’ was not really measuring what he intended it to

measure and that some other index (which happensto confirm his theory)

is a better one. It thus seems desirable to reserve the term hypothesis

to refer to statements which are on the operational level and are clearly

rejectable. If agreement cannot be reached beforehand on the pro-

cedures to be used, then agreement on the outcomes can hardly be

expected. As indicated in Chap. 2, this point of view does not deny the

importance of theory nor does it imply that operational definitions are

the only definitions necessary for the development of a science.

The third step is a crucial one since the decision made will usually

involve certain risks of error. In some instances the problem is rela-

tively simple. Not all tests of hypotheses involve induction. An

hypothesis may be formulated concerning the outcomeof a specific event

such as a football game. We maypredict, for example, that team A will

beat team B. As long as there are criteria for determining whether or

not the procedures agreed upon have been adequately carried out, there

is little chance of error in deciding whether or not to reject this kind of

hypothesis. When information is based on a sample of events taken

from a larger population there is a greater risk of error, however. We

reject or fail to reject the hypothesis realizing that since our judgmentis

based only on a sample we always have to admit the possibility of error

due to the lack of representativeness of the sample. It is probability

theory which enables us to evaluate the risks of error and to take these

risks into consideration in deciding upon the criteria to be used in rejecting

the hypothesis. In the next sections, two kinds of possible errors will

be discussed. We can then return to the question of the role played by

statistics in tests of inductive hypotheses.

8.3. The Fallacy of Affirming the Consequent

There is often no direct way of checking up on our most important

propositions or theories. Instead, we derive from these a number of

consequences which should occur if the original proposition or theory

were true, andit is the validity of these consequences which can be deter-

mined by empirical methods. Thus, evidence for the original theory is

indirect. The theory A implies certain consequences B or, written

symbolically, A — B. It should be emphasized that purely logical or

deductive reasoning rather than empirical evidence is used in going from

AtoB. Therefore, if A is true, B must also be true provided our reason-

ing in deducing B from A is valid. We then look to see whether or not B

° Strictly speaking, this statement is not quite accurate since a purely deductive

theory does not lead directly to testable hypotheses. See [3].
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has occurred; if B has not occurred (B false), then we know that theory A

must also be false.

But what if B turns out to be true? Can we conclude that A must be

true? We cannot. If we do, we shall be committing the fallacy of

affirming the consequent, as logicians refer to it. If B is true, we can say

that A may be true, but there could be any numberof alternative theories

which also predict B. We cannot be assured that A is necessarily true

unless we can also show that there is no valid alternative theory C for

which (C— B. Unfortunately, it is practically never possible to do this,

and therefore we have to proceed by eliminating of theories rather than by

definitely establishing them. A good theory is one which successfully

resists elimination—provided, of course, that it is stated in such a way

that it can be eliminated.’ In other words, it must lead to hypotheses

which themselves can be eliminated. If we fail to reject A when B is

true, we run the risk of making an error since A may actually befalse.

In statistics this type of error, the error of failing to reject an hypothesis

when it ts actually false, is referred to as a type II or 8 error.

Perhaps a simple example will make the above argument seem less

abstract. Suppose we have a theory A consisting of the following three

propositions: (1) All persons will conform to all norms of their society;

(2) it is a norm of society X not to steal; and (3) Jones is a memberof

society X. If all portions of the theory are correct, we may conclude B,

that Jones will not steal. Suppose that for some reason we are unable

to verify the truth or falsity of A directly, but we are able to ascertain
Jones’s behavior. Clearly, if Jones does steal, the theory must be at
least in part incorrect. Therefore, if B is false we reject A. But, cer-
tainly, if we learn that Jones does not steal, we would not want to con-
clude that theory A is correct. Perhaps Jones is simply more honest
than others. Or he may not even be a memberofsociety X. In this case
if we were to accept the theory as true we would be running a considerable
risk of error. We would probably conclude that, although this particular
individual may be honest, it would be best to withhold judgment.
The absurdity of the above example should not be allowed to obscure

the main point that whenever weare in the position of having a theory
which implies certain consequences, and these consequences but not the
theory are subject to verification, we are in the logical position of being
able to reject the theory, whereas we cannot accept it without running
the risk of making an error.

7The role of the crucial experiment is to enable the scientist to choose among
several alternative theories, each of which has previously resisted elimination. For
example, theories A and A’ mayboth predict events B1, Bo, .. . , By, all of which
occur. But A may predict that Bz: will be true whereas A’ predicts it will be false.
If Bz41 actually is false, then A may be eliminated and A’ retained for the time being.
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8.4 The Form ofStatistical Hypotheses

In the social sciences we do not find propositions of the surt used in the

above example for the simple reason that theories about the real world do

not imply certainty. Instead of holding that if A is true, B must follow,

we claim only that if A is true, B will probably also be true. We thus have

to admit the possibility that B may be false even when A is true. If we

follow the rule of rejecting A whenever B is false we also run the risk of

making another kind of error, that of rejecting a true hypothesis. We refer

to this kind of error as a type I or a error. Using the above example our

propositions would be modified to read, ‘‘ Most members will conform to

societal norms,” and ‘‘ Jones will probably not steal.” If Jones does steal

we reject the revised theory with somerisk of error since 1t may actually

be true, Jones being one of the few dishonest members.

There are thus two kinds of error which must be taken into considera-

tion. The first type discussed (type II) stems from the purely logical

fallacy of affirming the consequent. When we introduce probability

statements into our theory we admit of an additional type of error (type

I). Although we have as yet said nothing about inductive as contrasted

with deductive reasoning, it is because of the necessity of generalizing

beyond the limits of one’s data that we are required to make use of such

probability statements.

What specific forms do statistical hypotheses take? What do the A

and B look like? Actually the theory A consists of a number of assump-

tions about the nature of the population and the sampling procedures

used, together with the mathematical reasoning necessary to make

probability statements concerning the likelihood of particular sample

results if the assumptions made are in fact true. By means of these

probability statements we decide ahead of time which results are so

likely that we would reject the assumptions A should these outcomes B

not occur. Weare reasoning, in effect, that if the assumptionsare cor-

rect, then most of the time our sample results will fall within a specified

range of outcomes. Of course we draw only one sample, but if our par-

ticular result happensto fall outside of this range into whatis called the

critical region, we shall reject the assumptions, running the risk of making

atypelerror. The B, then, is represented by a certain range of sample

results. If the results are outside this range, then B is false and the

hypothesis rejected. In deciding on howbig a range to include under B

we must(ideally) take into consideration the risks of errors of types I and

II.

To illustrate the process, suppose we wish to compare samples of white-

collar and blue-collar workers with respect to the percentage desiring a

college education for their children. If we actually wish to show that
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there is a difference between these two groups, we proceed by trying to

eliminate the alternative hypothesis that there is no difference. This

seemslike an extremely devious way of proceeding, but we must remem-

ber that we shall not be in a position to establish directly that there is a

difference. To avoid the fallacy of affirming the consequent, we must

proceed by the elimination of false hypotheses. In this case there are

logically only two possibilities, there either is or is not a difference. If the

latter possibility can be eliminated, we can then conclude that some

difference in fact exists.

Wetherefore hypothesize that the percentage desiring college education

is the same for both populations. We might then show mathematically

that for 99 per cent of all possible pairs of such samples, the differences

between the two sample percentages would be less than 10 per cent if the

assumptions were in fact true. In other words, B consists of sample

differences which are less than 10 per cent. If there are actually no

differences between the two populations, it is highly likely that the per-

centages for the two samples will be within 10 per cent of each other. It

can therefore be decided that if the difference between sample percentages

turns out to be 10 per cent or more the assumptions A will be rejected.

This is done with the knowledge that 1 per cent of the time a difference of

this magnitude could occur even though A were true. In other words,

the risk of making a type I error (rejecting a true hypothesis) would be

one chance in a hundred.

Let us return to the original list of steps necessary in the testing of

hypotheses. It has been pointed out that statistical inference is basically

concerned with steps 3 and 4 in the process. The researcheris antici-

pating all possible sample results and is dividing these into two classes:

those for which he can reject and those for which he cannot reject his

hypothesis. Actually, all that statistics does is to provide thecriteria to

be used in dividing the outcomesinto the two classes. Outcomes are put

in one or the other of the two classes according to the risks oneis willing

to take of making types I and II errors. The major advantage of

statistical procedures over intuitive methods is in the knowledge they

provide about these risks of error.

Explained this way statistics hardly seems to be worth the trouble.

But step 3 is by no meansan easy one to accomplish by any other method.

Imagine, for example, an experiment consisting of 25 tosses of a coin, the

honesty of which is called into question. Suppose we try to decide upon

the outcomes which,if they should occur, would result in our challenging

the person doing the flipping. Would we reject the hypothesis that the

coin is honest if 15 or more heads turned up? More than 18? Only if all

tosses resulted in heads? If there were 10 heads in a row regardless of the

results on other tosses? Probability theory enables us to evaluate the
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probabilities of getting any particular set of results if the coin were

actually an honest one. We could then select those outcomes which

would be quite unlikely under this assumption.

It is not expected that a student exposedforthefirst time to statistical

inference will understand on first reading everything that has been said

about the logic of testing hypotheses. The process is admittedly an

involved one, and one which seemsto give students more difficulty than

any other part of statistics. The student should therefore make a special

effort to understand this logic by looking for the basic similarities among

all statistical tests. Once the underlying logic is thoroughly understood

the learning of statistics is greatly simplified.

GLOSSARY

Hypothesis
Parameter
Population

Statistic
Types I and II errors
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Chapter 9

PROBABILITY

Weall undoubtedly have someintuitive notion of what is meant by the
concept probability even though we may not be able to give the term a

precise definition. There are a number of words and phrases used almost

interchangeably with the concept probability in ordinary language:

words suchas lzkelthood, chance, odds, etc. These concepts are frequently

used in a number of very different senses. <A few illustrations are suffi-

cient to indicate some of these diverse usages. We ask, ‘‘ What is the

probability that it will rain today?” referring to a single event (raining

today) which may or may nor occur in the future. The statement

‘Jones probably did not murder his mother-in-law” is similar to the

above example but refers to an event that has already occurred but about

which we lack sufficient information to make a statement of certainty.

Or we can refer to what may happen in the long run: “If you gamble you

will probably lose yourshirt.”’ Here, the reference is presumably not to

losing one’s shirt in a single throw of the dice but to what will happen if

the experiment is repeated a large number of times. ‘‘A male baby born

in the United States of native-white parentage will probably live at least

65 years.”’ Such a statement seems to refer to the kind of generalized

baby which exists in actuarial tables rather than to a concrete Jimmy

Brown.

Obviously, if we are to talk intelligently about probability and espe-

cially if the mathematician is to be brought into the picture, the concept

must be defined with sufficient precision that we can all use it in the same

sense. Unfortunately, however, it is no simple matter to obtain a defini-

tion which at the same time satisfies the mathematician and also our

intuitive notion of what we ordinarily mean by the term. As we shall see,

the mathematician finds it necessary to think in terms of a priori proba-

bilities which cannot actually be obtained empirically. In the next

sections the concept probability will be defined in mathematical language

and some of its important mathematical properties discussed. At the

97
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same time, there will be an attempt to make this definition and these

mathematical properties seem reasonable in the light of everyday usage

and experience.

9.1. A Priori Probabilities

In statistics we are concerned with generalizing to a population ordi-

narily made up of a large numberof individuals. Such a population may

be a finite existing one whichis clearly delimitable—such as the popula-

tion of the United States or native-white males over 65. In such a case

we would ordinarily take somesort of a sample from the population, and

interest would be primarily in the population itself (or some subpopula-

tion) rather than in those individuals who happen to appear in one

particular sample. The population may also be a hypothetical one

involving, say, an unlimited number of experiments performed ‘‘under

similar conditions.”’ The statistician is therefore not interested in the

single event or individual except in so far as this event or individual may

help him obtain information about the population. Sincethis is a text in

statistics, we shall use the term probability to refer not to single events

(raining today, Jones a murderer, etc.) but to a large numberof events or

to what happens in the long run.!

How can we approach probability from the point of view of repeated

events? First, it is necessary to think in termsof an idealized experiment

which can be carried out a large number of times ‘“‘under similar condi-

tions.”’ Of course in reality conditions change, but it should at least be

possible to imagine that they don’t. All outcomes must be anticipated

in each of these perfect experiments. Thus we must learn to think in

terms of an ideal coin being flipped a very large number of times under

identical circumstances and with only two outcomes (H or T) possible on

each flip. We ignore the fact that a real coin might become worn

unevenly in the process of being flipped or that occasionally it might

stand onend. Welearn to conceiveof a perfectly shuffled deck of cards,

none of which tendto stick together, even though such a deck could never

be found in reallife.

Let us call any outcomeorset of outcomes of an experiment an “event.”’

An event can be simple (nondecomposable) or compound (a combination

of simple events). Thus, event A may be a 6 on a single toss of a die;

event B (compound) mayconsist of the outcomes 2, 4, or 6 on a single

toss of a die; event C (also compound) maybethe obtaining of a 7 in two

1Tt is possible to approach probabilities from the standpoint of the single event

and still make use of the same mathematical properties as discussed in the next

section (see [3]). This latter approach presents at least as many conceptual difh-

culties as the one used in this text, however.
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tosses. It is conventional to use the term success whenever the event

under consideration occurs and failure when it does not occur.2. The

experiment can then be performed a very large number of times and the

proportion of times any particular event occurs can be obtained.

Weare not yet quite ready to give a formal definition of probability.

First it is necessary to appeal to your knowledge of what happens empiri-

cally when an experiment such as the flipping of a coin is repeated a large

number of times. Let us suppose that we begin to flip, and with every
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Fig. 9.1. Oscillation of the proportion of successes, approaching a limit of .50.

tenth flip we record the ratio of successes (say, heads) to total numberof
trials. The results obtained are likely to be similar to those indicated
in Fig. 9.1.

On the first 10 flips we would usually not expect to get exactly 5 heads,
even with an honest coin. Perhaps there will be 7 heads. The next set
of trials may contain a long sequenceoftails so that at the end of 20 trials
the proportion of heads may be .45. The next sequence may also result
in more tails than heads, the next slightly more heads than tails, and so
forth. After we have made 100 trials with an honest coin we would
expect the proportion of successes to be in the neighborhood of .O; after
1,000 trials it should be even closer to this figure. Thus we would expect

2 This technical use of the terms success and failure need not conform to general
usage. Thus success may indicate the contraction of polio or the election of a
demagogue.
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the ratio of successes to total numberof trials to settle down in the sense
that it ceases to fluctuate very much from one sequence of 10 flips to

another. After 10,000 trials, even if we were to get 20 successive tails

(an extremely unlikely event), the effect on this ratio would be negligible.’
Had this happened on the third and fourth sequences the effect would

have been pronounced. Therefore, the larger the number of trials the

closer and closer the ratio approachesa given value which mathematicians

eall a “limit.’’ If we can imagine the experiment being carried on

indefinitely, we can probably also imagine the ratio becoming exactly this

limiting value, say .5. Since we are becoming involved with the notion

of infinity, and since mathematicians have found this to be a notoriously

ambiguous concept, it may be preferable to think in terms of an extremely

large number oftrials.

*The notion of a limit can be defined somewhat more precisely. We

say that the ratio approaches a limit if, having previously decided how

close an approximation we want, we can flip the coin a finite numberof

times until we can bevirtually sure that the obtained ratio approximates

the limit within the desired degree of accuracy. In other words, wefirst

choose a very small number e representing the degree of approximation

desired. Suppose we set « = .0001. If a limit exists, there is a finite

large number of flips N such that we can be almost positive that the

obtained proportion of successes will be within +.0001 of the true proba-

bility.4 Furthermore, no matter how small an e we select we can always

find a finite numberof flips for which this is true. If a limit does not

exist, then this will not in general be possible.

It is by no meansa logical necessity that the ratios obtained in this

mannersettle down to a limiting value. Indeed,it is at least conceivable

that such ratios continue to fluctuate indefinitely. If this were actually

the case we could not speak of a single probability of heads associated

with the coin. When such a limit does exist, however, we can define a

probability as a limit of the ratio of successes to total number of trials. Put

more crudely, a probability is the proportion of successes ‘in the long

run.”’

It will be convenient in later discussions to speak as though we were

3 Notice that it is not being claimed that the absolute numbers of heads and tails

will be nearly equal or that if there is initially an excess of heads that the tails will

eventually catch up. There may continue to be an excess of heads indefinitely, but

the ratio will approach .5 even when this is the case. Thus, if we had 35 heads and

15 tails on the tirst 50 trials the proportion of heads would be .7. An excess of

20 heads in 100 trials (i.c., 60 heads) gives a proportion of .6; the same excess in

200 flips (i.e., 110 heads) gives a value of .55.

4The discussion of confidence intervals (Chap. 12) should help to indicate why

we can never be absolutely certain that the true probability is within the intervai

obtained.
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thinking in terms of the probabilities of single events. Thus we may

ask, ‘‘What is the probability of getting a 6 on a single toss of a die or of

getting a red ace in a single drawing from a deck of cards?’’ Actually, in

using the phrase “‘a single toss of a die,” we are merely attempting to

avoid the use of clumsy phrasing. What we really mean is, ‘‘ What pro-

portion of times in the long run would we expect to get a 6 if a single die

were tossed repeatedly?’’ As a convenience, then, we shall refer to a

single toss when we actually mean an indefinitely large numberof single

tosses of the samedie.

Several points need to be made before we proceed with a discussion of

the mathematical properties of probabilities. Real-life experiments,

when repeated, actually seem to follow the general pattern discussed

above and diagramedin Fig. 9.1. That is, a limit is actually approached

and can be estimated. This leads us to speak of “‘the law of averages”’

and to expect that most coins will come up heads about half the time or

that good bridge hands will be mixed with poor ones. A word of caution

is necessary regarding this law of averages, however. Some persons have

interpreted such a law to mean that if a coin comes up heads 10 times in a

row, then the next time it is more likely to come uptails “‘ because of the

law of averages.”? Such an interpretation involves a prediction about a

single event (i.e., the result of the eleventh flip). As will be discussed

below, we usually assume that what has happened on previousflips is

absolutely irrelevant to what follows.5 A coin is possessed of neither a

memory nor a conscience. Asa matter of intelligent strategy, if a player

were to witness 10 successive headsin 10 trials he would do well to predict

heads on the eleventh under the assumption that the coin is dishonest.

It should be perfectly clear that a priori probabilities, as defined in

this section, cannot be obtained exactly by empirical methods although

they may be estimated. This is not only because we have had to imagine

idealized experiments but also because no experiment can be repeated

indefinitely. With a sufficient numberof trials, however, a probability

can be estimated to any degree of accuracy. The mathematical rules

given in the next section and all the mathematical reasoning underlying

statistical inference are concerned with a priori probabilities rather than

the kinds of probabilities that can actually be obtained by the researcher.®

In applying statistical reasoning to any science dealing with the real

world we are thus going to find ourselves in the logical position described

in Chap. 8. We have to assume somea priori probability in order to

6 This cannot be assumed in the case of human beings, a fact which must be kept
in mind whenever repeated measurements are taken on humans or other animals.
See Sec. 9.4.

6 Strictly speaking, the researcher can only obtain proportions since the numberof
trials or cases will alwaysbefinite.
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apply mathematical reasoning. We can then say that 7f this is the
correct a priori probability then certain empirical results are likely (or
unlikely). Thus A is the mathematical theory, B the predicted empirical
results, and there is no way of testing the theory directly. If B turns out
to be false we can reject A, but if B is true some other theory C, involving
different a priori probabilities, may also account for the results. If we
wish to avoid the fallacy of affirming the consequent, it will be necessary
to assume probabilities which we really suspect are false and to proceed
by elimination. In the next chapter we shall take up specific examples
where this will be done.

9.2. Mathematical Properties of Probabilities

Although you may never again have to calculate probabilities, it is
important to realize that underlying every table you will use to make
tests of hypotheses there are a number of fairly simple properties of
probabilities. It is not possible in a text such as this to go very deeply
into probability theory. The purpose of the discussion which followsis
merely to give some insight into the way mathematicians operate with

probabilities in laying the foundationsfor statistical inference. We can

begin by identifying three mathematical propertiesof a priori probabilities.

The first property hardly requires much comment. Since we can

obtain no fewer than zero successes and no more than N successes in N

trials, it follows that for any event A the probability of A occurring

[written P(A)] must be greater than or equal to 0 and less than or equal

to 1. Thus

0 < P(A) <1

where the symbol < should be read as “less than or equal to.” If

P(A) = 1, the event A is certain to occur; if P(A) = 0, then A cannot

possibly occur.

The Addition Rule. The second property of probabilities is a somewhat

more interesting one. Because of its simplicity, we shall first take up a

special case of the addition rule which can bestated as follows: If events

A and B are mutually exclusive, the probability of getting either A or B

[written P(A or B)] ts equal to the probability of A plus the probability of

B, ie.,

P(A or B) = P(A) + P(B) Gf A and B are mutually exclusive) (9.1)

By mutually exclusive, we mean that A and B cannot possibly occur

simultaneously in the same experiment. Thusit is impossible to get both

an ace and a king in a single draw from an ordinary deck of cards. There-
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fore, applying the addition rule to a hypothetical perfect deck we have

P(A or K) = P(A) + P(K) = 13 + His =

Of course, we could have obtained this same result by noting that there

are eight aces and kings in a deck, and with equal probability of selection

the probability of getting one of these cards would be 89 or 243. Simi-
larly, the probability of getting either a 5 or 6 in a single throwof a die

would be 144 + % or 4.

The addition rule can be extended to cover more than two events.

Thus, if A, B,C, ... , K are all mutually exclusive, then

P(AorBorC : ++ orK) = P(A) + P(B) + P(C)+-:+++P(K) (9.2)

If we have a population composed of 100 upper-, 200 upper-middle-, 400

lower-middle-, and 300 lower-class persons, for example, the probability

of getting an upper-class, or an upper-middle-class, or a lower-middle-class

person in a single draw would be

100 200 400 700

1,000 * 1,000 * 1,000 ~ 1,000 ~ *"
 

if every person had an equal chance of being selected.
Since probabilities are essentially proportionsit follows that if we have

all possible simple events, each being mutually exclusive of the others, the
sum of these events must be unity. Thus, if we add the probabilities of
getting a spadeor a heart or a club or a diamond, we must obtain a sum
of 1. The probability of event A not occurring is equal to the sum of the
probabilities of all the remaining (mutually exclusive) events. If we
subtract P(A) from unity, we thus have the probability of not getting
A since

if I= P(A) + P(B) + P(C) +--+ + P(K)
then 1 — P(A) = P(B) + P(C) + +++ + P(K)

The probability of not getting a queen, for example, is 1 — 143, or 1243.
So far we have been concerned only with mutually exclusive events.

A more general form of the addition rule can be stated as follows: Jf
A and B are any events (not necessarily mutually exclusive)

P(A or B) = P(A) + P(B) — P(A & B) (9.3)
where P(A & B)represents the probability of getting both A and B.7 In
the general case, the probability of getting either A or B canbe obtained
by first adding the probability of A to the probability of getting B and
then subtracting out the probability of getting both A and B simul-

’ The word or as used by the mathematician includes the possibility that both A
and Bhold. Therefore, the expression “A or B”’ means “A and/or B,”
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taneously. The reason for subtracting out P(A & B) is that the proba-

bility of this joint occurrence has beenfigured in twice, once in P(A) and

again in P(B). Figure 9.2 mayhelp to indicate whythis is the case.

In Fig. 9.2 the probabilities of A and B have been represented by

certain areas which are proportional to their numerical values, the area

of the rectangle being taken as unity. In the general case there will
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Fig. 9.2. Geometric representation of probabilities, with areas proportional to P(A),

P(B), and P(A & B).

ordinarily be some overlap, i.e., A and B will not be mutually exclusive.

The probability of obtaining either A or B (or both) is represented by

the total cross-hatched area. Since the smaller shaded area will have

been addedin twice, once in A and again in B, we see whyit is necessary

to subtract out P(A & B) in order to obtain the total cross hatched area.*®

Let us take a numerical example. Suppose A is the event that one

obtains a queen in a single draw, and let B be the event that the card is a

spade. Then A and B are not mutually exclusive since it is possible to

draw both simultaneously (i.e., the queen of spades). Therefore,

P(A or B) = P(A) + P(B) — P(A & B)

= 460 + 1369 — Méo = 1862 = 43

This result can be verified intuitively by noting that either A or B could

be obtained by drawing any spade or one of the three remaining queens,

i.e., any one of 16 cards. Had we simply added P(A) and P(B), the

queen of spades would have been considered twice. In the next section

we shall take up a general rule for computing P(A & B) since it will not

always be so simple to obtain this quantity. Notice that if the two

events are mutually exclusive there will be no overlap and P(A & B) = 0.

8 You should convince yourself that in order to obtain the probability of A or B

but not both we would subtract 2P(A & B) from P(A) + P(B). You should also

attempt to extend the general form of the addition rule by drawing a similar diagram

for events A, B, and C. (See Exercise 40.)
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Therefore, the general rule reduces to the special case of the addition

rule discussed above.

The Multiplication Rule. A third property of probabilities enables us

to obtain the probability of two (or more) events occurring jointly.

Wecan state this property as follows: If A and B are any two events, the

probability of getting both A and B ts the product of the probability of getting

one of these events times the conditional probability of getting the other gwen

that the first event has occurred. In symbols,

P(A & B) = P(A)P(B\A) = P(B)P(A|B) (9.4)

The symbols P(A|B) and P(B|A) represent what are called conditional

probabilities. P(A|B) should be read “the probability of A given that
B has occurred.”” The term conditional probability means that we

recognize that the probability of A may be dependent on whetheror not

B occurs. In other words, the probability of A given B may differ from

the probability of A given that B has not occurred. Thus, if B is the

event that a man drives recklessly and A the event that he is in a traffic

accident, then we would expect P(A|B) to be greater than P(A) since
reckless driving is a cause of accidents.

Before illustrating the use of the multiplication rule, let us introduce a

new and important concept. Two events A and B are said to be inde-

pendent if and only if P(A|B) = P(A) and P(B|A) = P(B). Thus,if the

probability of A occurring remains the same regardless of whether or not

B has occurred, and if the same holds true for B, the two events are

independent of each other. Practically speaking, this means that knowl-

edge that one of the events has occurred does not help one predict the

other. For example, the probability of getting an ace, given that the

card is red, is 244.6 since there are two red aces and a total of 26 red cards.

This is numerically the same as the unconditional probability of getting

an ace (469). Therefore color and face value are independent. Knowl-

edge that a card is red does not help one predict whether or not it is an

ace. Likewise, knowing the card to be an ace does not help one predict

its color. Notice, incidentally, that mutually exclusive events are not

independent. If A and B are mutually exclusive, we must always have

P(A|B) = P(B\|A) = 0. Why?

In the case where A and B are actually independent, we have

P(B|A) = P(B) and the multiplication rule takes on the simple form

P(A & B) = P(A)P(B) Gf A and B are independent)

Weshall in general find this special case of the multiplication rule much

easier to use than the more general rule.

Weshall first illustrate the multiplication rule in the special case where

A and B are independent. Ordinarily we think of replications of an

experiment as being independent of each other. Thus, if we flip a coin
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once we expect that the result will have no effect on what happens on the

next flip; the probability of heads remains constant from one flip to the

next. Knowing that we get a head does not help us predict the outcome

of the second toss. Using the multiplication rule we can therefore

calculate the probability of getting successive heads on two flips by

multiplying the probabilities of getting a head on anygiven trial. For an

honest coin the probability of two successive heads would be (14) (24) or

14. Similarly, if A is the event that we get a red card and B the event

that we get an ace, the probability of getting a red ace [P(A & B)]

would be

P(A & B) = P(A)P(B) = % 43 = 326

Let us take up two examples in which mndependenee does not hold.

The first of these involves a situation in which two variables are related

so that knowledge of one helps us predict the other. Suppose we have

the following purely hypothetical data:

 

 

 

Trait Brunettes Blondes Redheads Total

Aggressive 300 600 300 1,200
Nonaggressive 600 100 100 800

Total 900 700 400 2,000    
 

If a girl is drawn at random” from this population as a blind date, what

is the probability that she will be an aggressive redhead? Since there

are 300 aggressive redheads out of 2,000 girls, the probability of getting

one of this select group is clearly 300/2,000 or .15. This same probability

will now be obtained using the multiplication rule.

Let A be the event that we get a redhead and B be the event that the

date is aggressive. Since there are 400 redheadsin all, P(A) = 400/2,000

or .2. Among the 1,200 aggressive girls, however, there are 300 redheads.

9 We are assuming that the true probability is known and that our task is to predict

the outcomeof any specific trial. It is of course true that without this knowledge,

the probability might be est¢mated by using results of previous trials and this estimate

then used to predict future results. This is not what we mean when we say that in

the case of independence, knowledge of one event does not help us predict another.

Thus, knowledge of 20 successive heads would lead us to predict a biased coin, 1.e.,

that the true probability of getting a head is some value greater than .5. This in

turn would lead to a prediction of a head on the twenty-first trial. The assumption

is, however, that such a bias if it exists 1s already known. Therefore, if it is known

that p actually is .8, knowledge of 20 successive heads will not improve our ability

to predict the next outcome.

10 A random sample will be defined later in this chapter. Ina random sampleall

individuals, and all combinations of individuals, have an equal chance of being

selected.
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Therefore, if we are given knowledge that the date is aggressive, the
probability of her being a redhead is 300/1,200 or .25. Similarly the
probability of getting an aggressive girl is 1,200/2,000 or .6, but if it is
known that the date is a redhead the probability of her being aggressive
is 390499 or .75. We thus have

P(A) =.2

—

P(A|B) = .25
P(B) =.6  P(BJA) =.75

Using the multiplication rule we obtain the following probability of
getting an aggressive redhead:

P(A & B) = P(A)P(BIA) = (.2)(.75) = .15
= P(B)P(A|B) = (.6)(.25) = .15

For the second example, let us suppose we want to calculate the proba-
bility of getting two aces in two draws from an ordinary deck of cards.
Let A be the event that we get an ace on the first draw and B the event
that an ace turns up on the second draw. Are A and B independent?
This depends on whether or not we replace the first card and reshuffle
before drawing the second. If we sample with replacement our two draws
will be independent since the probability of getting an ace remains constant
from one drawto the next and the result of the first cannot possibly affect
the second. In this case P(A & B) = P(A)P(B) = (43) (243) = Meo.
Now suppose we sample without replacement, i.e., we do not put the

first card back in the deck. If we should happen to get an ace on the
first draw, the probability of getting a second ace would then be 341 since
there would be only three aces in the remaining 51 cards. On the other
hand,if we did not get an ace on thefirst draw the probability of getting
one on the second draw would be 46. Therefore, we do not have
independencein this case and would haveto use conditional probabilities
to compute P(A & B). Thus,

P(A & B) = P(A)P(BIA) = 462 341 = May
It should be mentioned that the multiplication rule we have been

discussing can also be extended to cover more than two events. For
example, 7f A, B, and C are all independent of each other

P(A & B&C) = P(A)P(B)P(C)

Although the rule for conditional probabilities becomes rather compli-
cated in form, the principles can readily be applied to certain simple
examples. If, for instance, we were to drawfour cards without replace-
ment, we could calculate the probabilityof obtaining fouraces as follows:

4321 1
P(A aces) = 55 57 59 59 > 270,725
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The Order of Events. Before completing this brief discussion of the

mathematical properties of probabilities, it is necessary to introduce a

further complication. So far we have taken up very simple problems,

ones that could easily have been solved almost intuitively. Needless to

say, most problems in probability are far more complex than those

discussed up to this point. In order to handle problems of somewhat

greater complexity we shall find it necessary to take into consideration

the order in which the events may occur. For example, suppose we wish

to find the probability of getting an ace, king, and queen in three draws

with replacement. We can obtain the probability of getting an ace on

the first draw, a king on the second, and a queen on the third. This

probability would be (143)*%. But this represents the probability of

getting an ace followed by a king followed by a queen. There are other

ways of getting an ace, king, and queen in three draws if we are not

concerned about the order in which they are drawn. As a matter of fact

there are six ways they could be obtained: AKQ, AQK, KAQ, KQA,

QAK, and QKA. Each of these possibilities can be seen to have the

same probability. Therefore, if we are interested in the probability of

getting these cards in any order we can add their separate probabilities

(since they are mutually exclusive), obtaining 6(173)?.

Thus, in using the multiplication rule we havelet event A refer to the

outcome of the first draw, B to that of the second, and so forth. In

other words, we have taken order into consideration, whereas usually we

are more interested in the probabilities of obtaining a certain set of

outcomes. We may want to know the probability of four aces 1n a

bridge handor the probability of getting a certain percentage of Negroes

in a sample, regardless of the order in which they were drawn. In

computing such probabilities 2 will usually be simplest first to determine

the probability of any given ordering of outcomes, andif all other orderings

are equally likely we can simply multiply the numberof orderings by the

probability of any one of them occurring. In so doing,it will be noticed,

we are employing both the multiplication and the addition rules. There

are definite formulas which can be used to enable one to count exactly

how many orderings there will be in a given problem. One of these

formulas will be presented in the next chapter when we take up the

binomial.

9.3. Independence and Random Sampling

All the statistical tests to be discussed in this text make use of the

assumption that there is independence between events and that therefore

conditional probabilities do not have to be used when multiplying
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probabilities.! In other words, it is assumed that there is independence

of selection within a sample—the choice of one individual having no

bearing on the choice of another individual to be included in the sample.

There are many instances in which this important assumption is likely

to be violated, however. One should therefore develop the habit of

always asking himself whether or not the independence assumption is

actually justified in any given problem. It will be helpful at this point

to indicate a few examplesof situations in which this assumptionis likely

to be overlooked.

Statisticians often obtain what is called a random sample (or simple

random sample) in order to meet the required assumption of independence

as well as to give every individual in the population an equal chanceof

appearing in the sample. By using a table of random numbers or some

equivalent device, one can obtain a sample in essentially the same way

that one would draw cards from a well-shuffled deck or numbers in a

bingo game. A random sample has the property not only of giving each

indwidual an equal chance of being selected but also of giving each combina-

tion of individuals an equal chance of selection.}2

Strictly speaking, since we practically always sample without replace-

ment, the assumption of independenceis not quite met. Whenever the

population is large relative to the size of the sample, however, one can

safely neglect the resulting minor distortion because no individual is
given a chance to be drawn a second time. For example, if 500 persons
are selected out of a population of 100,000, the chancesare veryslight of
any one person being selected again if his name were replaced. Like-
wise, it makes relatively little practical difference if we replace when
drawing only three cards from a deck, but if we were to draw 35 cardsit
would make considerable difference. If the sampleis relatively large as
compared with the population, a correction factor can sometimes be
applied to compensate for lack of replacement. 13

“Although the problems introduced by failure to replace are not
serious ones, the failure to give every combination of individuals an equal
chance of appearing in the sample mayresult in a serious violation of the
independence assumption. Suppose, for example, that one were to sort
ordinary playing cards into four piles, one for clubs, one for spades, etc.
Then suppose he were to select one of these piles randomly. Clearly,
every card in the deck would have an equal chance (1 in 4) of being

11 This will be seen in the case of the binomial discussed in the next chapter. In
the case of other tests, however, you will simply have to accept the truth of this
statement.

In Chap. 22, random sampling will be distinguished from other commonly used
types of sampling such as systematic, stratified, and cluster sampling.

13 See Sec. 22.1.
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selected, but certainly all combinations would not be possible, let alone

equally probable. Knowing that the top card is a spadetells us immedi-

ately that all others in the sample are also spades.

*Area or cluster samples commonlyused in social surveys do not meet

the assumption of independence for this same reason. If 100 blocks ina

city are selected at random and then every third household in these 100

blocks is included in the sample, it is quite clear that all combinations of

households do not have an equal chance of appearing in the sample. for

example, two houses in the same block have a much better chance of

appearing in the same sample than do two housesin different blocks.

Since city blocks are usually relatively homogeneous with respect to

characteristics such as the income and education of the head of the

household, the result of this type of sampling is to yield less accuracy

than a random sample of the same size. This can be seen intuitively if

we imagine a situation in which all blocks are completely homogeneous

(as was true for the piles of cards). In this case we would need to obtain

information about only one household in each block, and the numberof

‘eases’? would in effect be the number of blocks selected, i.e., a much

smaller N. As will be seen later, it is possible to get some extremely

misleading results if, having obtained such a cluster sample, a researcher

then makes use of statistical tests which assume a random sample.

*An analogous problem is likely to be encountered whenever one is

interested in behavioral acts of individuals. For example, suppose a

social psychologist runs an experiment in which he uses 30 subjects, each

of whom makes 50 separate judgments. There would then be 1,500

judgments, and one might be tempted to make use of such anartificially

inflated N in a statistical test, assuming in effect that the 1,500 judgments

constituted a random sample of judgments from somesort of a population.

But, obviously, it would be absurd in most instances to assume that

the judgments of a single individual are independent of each other.

His first 30 judgments are very likely to affect the remaining onessince,

unlike a coin, a person does have a memory.

*Suppose a social scientist is primarily interested in pairs of persons

rather than in the single individual as a unit. He may have a group of

20 persons, each of whom is in interaction with all of the others. He

would therefore have (20) (19) /2 or 190 pairs of persons but would not be

in a position to consider each pair as being independent of the others.

Obviously, knowledge about the Smith-Brown pair is likely to yield

some information about the Smith-Jones or Brown-Jonespairs since the

same persons appearin several pairs.

*Ecologists, anthropologists, and other social scientists interested in

generalizing about communities, societies, or other spatially defined units

also need to be concerned about lack of independence in muchof their



PROBABILITY 111

work. Here the problem seems to stem from the fact that units selected

are often not clearly distinct. The boundaries of a society or community

may be difficult to define, and one such unit may shade into another

with the division points being more or less arbitrary.!4 For example,if

census tracts within a city or counties within a state are used as units, it

is often possible to predict from one unit to a contiguous one. If the

delinquency rate is high in one tract it is also likely to be high in an

adjacent one since it is even possible that the same gangs of delinquents

will be drawn from both tracts. That ‘something is wrong” in relation

to the assumption of independence can be seen intuitively by realizing

that whenever units are not clearly distinct it would be possible to inflate

the numberof “‘units”’ to any desired size by simply slicing the cake into

many small pieces. Thus, if there are not enough societies in the world

to obtain statistical significance, one might subdivide each society into

10 subregions and obtain 10 times as many ‘‘cases.”’

In a text such asthis it is not possible to discuss solutions to problems

involving violations of the independence assumption. To the writer’s

knowledge, many of these problems have not been satisfactorily resolved.

It is often rather difficult to assess the seriousness of errors introduced

when required assumptions, such as that of independence, are not met.

Weare on safe ground whenever we can be assured that assumptions

required for any test are met; if they are not metit is seldom possible to

determine just how much we are departing from these assumptions.

To be on the safe side, you should develop the habit of examining every

assumption carefully. If you have reason to question the validity of a

particular assumption, you should consider seriously the possibility of

making use of another procedure which does not involve such an assump-

tion. For example, you might decide to make use of a different unit of

analysis—the person rather than behavioral acts or pairs of persons, or

individual delinquents rather than delinquency rates for a census tract.

Although social scientists and others who use applied statistics have

sometimes tended to ignore assumptions, thereby reaching unwarranted

conclusions, it is also possible to be overly perfectionistic. Since we

never deal with situations as simple as coin flipping or drawing cards from

a perfect deck, it is always possible to question every procedureas falling

short of the ideal. One can be so muchafraid of violating assumptions

that he refuses to use any statistical technique at all. Especially in a

discipline characterized by exploratory studies and relatively imprecise

scientific techniques, it is necessary to make compromises with reality.

14 This situation would be somewhat analogous to a deck of cards each of which
gradually shades into the others so that it is difficult to determine where one card

ends and another begins. Also, each card would be capable of influencing the face
values of its nearest neighbors!



112 INDUCTIVE STATISTICS

The most sensible procedure would seem to be to make as few com-

promises as possible within the limits of practicality.

GLOSSARY

Event

Independent events
Limit
Mutually exclusive events
Probability

Random sample

EXERCISES

1. In a single toss of an honest die what is the probability of:

a.
b.
C.

Getting a 6?
Not getting a 6?
Getting a 1 or a 6?

d. Getting a 1 and a 6?

é. Getting either an odd numberor a 6?

2. What is the probability of getting each of the following in three draws from a

well-shuffled deck of cards:

a.
. Three jacks, without replacement?
. A spade, heart, and diamond (in any order), with replacement?

. Exactly two aces, with replacement?

. At least one ace, with replacement? (Hint: What is the alternative to ateo
Q
a

o
m

Three jacks, with replacement?

least one ace?)

. At least one ace and at least one king, with replacement? (Hint: In (f) and
in certain of the exercises that follow, it will be helpful to divide the problem
into three steps: (1) determine the various combinations of cards which will

yield at least one ace and at least one king (e.g., one ace, one king, and one
other card; two aces and one king, etc.); (2) determine the probability of

getting these cards in any particular order; and (8) for each of these combi-

nations determine the numberof possible orderings.

3. Suppose 1,000 freshmen are asked about their musical tastes. It is found that

400 of these students are lovers of classical music; the remainder are not. Of these

lovers of classical music, only 100 like ‘‘rock and roll.”’” There are 400 persons who

do not like either type of music and the remainderlike “rock and roll” only.

a.

*d.

If a student is selected at random from this population, and if A is the event

that he likes classical music and B the event that he likes ‘‘rock androll,”’

what are P(A), P(B), P(A|B) and, P(B\A)?

. Verify numerically that

P(A & B) = P(A)P(B\A) = P(B)P(A|B)

. What is the probability of getting a person who likes one of the two types

of music but not both?

Noting that a person can have one of four kinds of tastes (likes both, likes

neither, etc.), what is the probability that three persons selected at random

_as roommates will all have the same set of tastes? (Assume replacement.)
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*e. Whatis the probability that there will be at least two “rock androll” fans in

a corridor of eight persons? (Assume random sampling, with replacement.)

*4. In the data given below,let A be the event of getting a male, B be the event

of getting a college-educated person, and C be the event of getting a person with
high prejudice.

 

 

 

College-educated Less than college-educated
Degree of

prejudice Male Female Male Female

High 100 50 200 250
Low 150 100 150 200   
 

a. Find P(A & B & C) on single draw without using a formula. Now extend
the formula used to determine P(A & B) by writing a general formula for

obtaining P(A & B&C). Verify that your formula holds for the numericai
data of this exercise.

6. Do the same for P(A or B or C).

c. What is the probability of getting exactly one college-educated male, exactly
one female with a college education, and exactly one person with high preju-
dice in a random sample of three persons? (Assume replacement.)

*d. Students enrolled in introductory sociology at the University of Michigan
were classified as to occupational aspirations for self or spouse, depending on the sex
of the respondent. The following data were obtained:

 

 

 

Sex High Low Total
aspirations aspirations

Male 43 10 53

Female 71 93 164

Total 114 103 217    
Suppose you were to draw individuals randomly from this population of 217 students.

a. Whatis the probability of getting a student with high aspirations? Whatis
the probability of getting a student with high aspirations, given that the
student isa male? A female?

6. Suppose you wereto select individuals at random (without replacement) from
this population, each time guessing whether the individual had high or low
aspirations. How often would you guess he had high aspirations? Low
aspirations? Why? In 217 trials, how many errors would you expect to
make?

c. Suppose the sex of the student were known. Given that the individualis a
male, how manyerrors would you expect to make in assigning the 53 males
to either the high- or low-aspirations category? How many expected errors
for females?
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d. How might you construct an index showing the proportional reduction of

errors if the respondent’s sex is known as compared with errors expected if
sex is unknown? Aswill be seen in Chap. 15, such an index can be used to

measure the strength or degree of relationship between the respondent’s sex

and his occupational aspirations.
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Chapter 10

TESTING HYPOTHESES:

THE BINOMIAL DISTRIBUTION

In the social sciences we frequently encounter simple dichotomies
such as whether or not an individual possesses a certain attribute or
whether an experiment has been a success or failure. Whenever it is
possible to hypothesize a certain probability of success in such instances,
whenevertrials are independent of each other, and whenever the number
of trials is relatively small, it is possible to make use of statistical tests
involving what is known as the binomial distribution. Although there
are numerous statistical tests which are more practical than those which
make use of the binomial, it is advisable to devote considerable time to
this distribution primarily because of itssimplicity. In using the binomial
distribution, you can follow relatively easily all of the steps involved
and can thereby gain insight into the general procedures used in all
statistical tests.

You will probably find this chapter an unusually difficult one because
of the fact that a number of new ideas are presented in fairly compact
fashion. Manyof these sameideas are again taken up in Chap. 11, and
you may prefer to treat these two chapters as a single unit, reading
Chap. 11 before really mastering materials in the present chapter. In
particular, you may wish to postpone reading Sec. 10.3 dealing with
various applications of the binomial.

10.1. The Binomial Sampling Distribution

Before discussing each of the steps involvedin statistical tests, it will
be necessary to examine how binomial distributions are obtained. For
the time being, it will simplify matters if we confine our attention to the
flipping of coins. In this type of problem the numberof flips constitutes
the sample size, and our interest centers on the number of heads (suc-
cesses) obtained in Ntrials.

115
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Assuming that the N trials (coin flips) are independent of one another,

we can immediately evaluate the probability of getting r heads and N — r

tails in some particular order. For example, we can obtain the probability

of getting r successive heads followed by N — r tails. Let p be the

probability of obtaining a head; the probability of getting a tail, denoted

by gq, will then be 1 — p. Sincethetrials are independent, we can simply

multiply the unconditional probabilities. The probability of getting

exactly r heads in the order described above will then be

ppp::-'paggq:''gq=py"
ee

rterms N —rterms

Clearly, under the assumptions of independence and a constant proba-

bility of success(e.g., the coin doesn’t wear thin unevenly), the probability

of getting any other particular ordering of r heads and N — r tails will

also be p’g’~". Therefore, in order to obtain the probability of getting

exactly r heads in any order it is only necessary to count the number of

distinct ways we can get r heads and N — rtails. If Nis even moderately

large this task becomes very tedious, however. Fortunately there 1s

available a mathematical formula which makes such a counting operation

unnecessary. The numberof possible ways we can order r successes and

; , ; N , ,
N — r failures, written symbolically as ( ’) or sometimes as CY, is

N N!}

where N! (read factorial N) = N(N — 1)(N — 2) -- > @)@)(Q) and

similarly for r! and (NV — r)!?

Formula (10.1) may be simplified for computational purposes by

noting that some of the terms in the numerator and denominator cancel

each other out. Sincer < N, we can write N! as a product of two terms

as follows:

N!= (NIN - DW -2)-°- Wart DIN —2) °°: MAA!
= [N(N — 1)(N —2) °° (N-r+)IN —-7)}

and we see immediately that (NV — r)! can be taken out of both numerator

and denominator. Weare then left with

(¥) = MW = nw =a Wart)
 , -, (10.2)

1 The symbol (7) is not to be confused with N/r or N divided byr.
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Thus if we want to find the numberof ways of getting four heads in
ten flips we have

N-r+1=10-—-4+1=7

(‘°) _ (10)9)(8)(7) _ 19
4) (4)(3)(2)(1).

and therefore

Notice that in using equation (10.2) there are the same numberof factors
in both numerator and denominator. This will always be the case. This
second form is computationally simpler than the first. If r > N/2 we
begin to get certain terms appearing in both numerator and denominator
and therefore canceling each other. For example, if r = 6 we have

10\ _ (10)(9)(8)(7)

[

(6)(5)] _(3) ~ MOQG@ oe| 20
 

, ; ; , ; 10which gives us the same result as obtained in computing ( i) In

general it can be shown that

") _ ( N
@ AN = .)

so that either r or N — r may be used, depending on whicheveris the
smaller.

If we now wish to obtain the probability of getting exactly 7 successes
in N trials and are not interested in the order in which they occur, we can
multiply the probability of getting any particular sequence by the number

of possible orders 9) Denoting the desired probability by P(r), we

have

Npa = (*) pgs
or Probability of no. of ways probability of (10.3)

exactly r = of getting X any given
successes r successes sequence

If the coin were an honest one, i.e., if p = q = l4, the probability of
getting exactly four heads in ten trials would be

_ (10\ (1\4 /1\8 1\o 210
Pe) =) (2) (@) = 22)" = rs = 25
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Similarly. we can obtain the probabilities of getting exactly 0, 1,

2,. , 10 heads in 10 trials.

No. of heads Probabilities (with p = 14)

0 1/1,024 = .001
1 10/1,024 = .010
2 45/1,024 = .044

3 120/1,024 = .117
4 210/1,024 = .205

5 252/1,024 = .246
6 210/1,024 = .205
7 120/1,024 = .117
8 45/1,024 = .044
9 10/1,024 = .010
10 1/1,024 = .001

1.000

Notice that wheneverr is zero the quantity (*) is undefined and the for-

mula breaks down. Wesee, however,that there can be only one possible

order when r = 0 (all tails). In this example, the distribution of proba-

bilities is perfectly symmetrical. Using the fact that (*) = (7 )

you should satisfy yourself that (*) will always be symmetrical but that

the factor p’g¥~" will be exactly symmetrical only when p = q = .

In the above example, probabilities have been associated with each of

the 11 possible outcomes of the experiment. In this simple example there

were only a small numberof conceivable outcomes, given the assumption

that only two outcomes were possible on each flip. In other experiments

the numberof possible outcomes maybeverylarge or even infinite, and it

may be necessary to group certain outcomes together and to associate a

probability with the entire set of outcomes. Thus,if the coin had been

flipped 1,000 times we might have obtained the probabilities of getting

400 to 449, 450 to 499, or 500 to 549 heads.

Whenever we associate probabilities with each possible outcome of an

experiment, or with sets of outcomes, we refer to the resulting probability

distribution as a sampling distribution. Remembering that we are using

the concept probability to refer to the limit of the ratio of successes to

total numberof trials, we see that a sampling distribution refers to the

relative number of times we would expect to get certain outcomes in a very

large number of experiments.

In the numerical example under consideration, each experiment consists

of flipping a coin ten times and noting the number of heads. Our

computationstell us that if we were to perform the experiment 1,024,000
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times, we could expect to get approximately (but not exactly) 1,000
occurrences of no heads, 10,000 occurrences of exactly one head, 45,000
of two heads, ete. Furthermore, we would expect that the larger the
number of times the experiment is performed the closer the empirical
proportions will be to these theoretical probabilities.

The researcher never actually obtains a sampling distribution by empirical
means since he usually only performs an experiment or draws a sample
once or at most a very few times. It is important to realize that sampling
distributions are hypothetical, theoretical distributions which would be
obtained only if one were to repeat an experiment an extremely large
number of times. A sampling distribution is obtained by applying
mathematical or deductive reasoning as was donein the previous example.

Since sampling distributions are not the kind of distributions a
researcheractually sees from his data, persons whoare not mathematically
inclined are likely to have difficulty understanding the role of these
hypothetical distributions in statistical inference. Yet, unless the notion
of sampling distribution is clearly grasped you will find it almost impos-
sible to obtain anything more than a “cookbook” understanding of
statistics. For this reason, it will be helpful at this point to discuss more
systematically the steps madein testing a statistical hypothesis and to
see exactly how these sampling distributions are used.

10.2. Steps in Statistical Tests

There are a numberof specific steps involved in all statistical tests.
It should again be emphasized that each of these steps should be carried
out prior to the inspection of one’s data. They can be listed as follows:

1. Making assumptions

2. Obtaining the sampling distribution
3. Selecting a significance level andcritical region
4. Computing the test statistic

9. Making a decision

Each of these steps will be discussed in some detail in this chapter and
again in Chap. 11 so that you may become familiar with the general
processes involved in all statistical tests.

1. Making Assumptions. In order to make use of probability theory
in obtaining a sampling distribution the researcher must make certain
assumptions about both the population to which heis generalizing and the
sampling procedures used. The assumptions made about the population
and sampling procedure usually fall into one of two categories: (1) those
of which the researcher is relatively certain or which he is willing to
accept, and (2) assumptions which seem most dubious and in which he is
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therefore most interested. Assumptions in the first category can be

lumped together into what we shall call the model. The assumptions in

the second category are the ones which the researcher wants to test and

are called hypotheses.

Usually, at least in the simpler tests taken up in the next several

chapters, there will be only one hypothesis. It is important to realize

that from the standpoint of the statisticaltest itself all assumptions have the

same logical status. If the results of the test warrant rejection of the

assumptions, all that one can say on the basis of the test itself is that at

least one (and possibly all) of the assumptions is probably false. Since

the test itself can supply no information as to which of the assumptions

is erroneous,it is essential if results are to be meaningful that only one of

the assumptionsbe really in doubt. It will then be possible to reject this

assumption (the hypothesis) as the faulty one.

Students often ask the following type of question: “On what basis

does one choose a particular statistical test in preference to another ?’”’

One criterion that can be given at this point is an appropriate model. In

other words, the researcher should select a test which involves only a

single dubious assumption (his hypothesis). If a certain test requires two

or more assumptions which are in doubt it will be difficult, if not impos-

sible, to decide which should be rejected. In such an instance one should

attempt to find an alternative test which does not require aS many

doubtful assumptions.

To illustrate with our coin example, the binomial test requires the

assumption that the 10 flips constitute a random sample of all possible

flips with the same coin and that the flips are independent of each other.

Weare also assuming that the coin is an honest one. The latter assump-

tion would ordinarily be our hypothesis and the former our model since

interest would probably center on whether or not the coin were honest.

Conceivably, however, we might be suspicious of the person doing the

flipping. If we were relatively sure of the coin, having previously deter-

mined that it usually produced about half heads, we could turn the

problem around andtest an hypothesis concerning the method of flipping

(the method of sampling). Suppose we were unwilling to accept as our

model the honesty of the coin or the honesty of the flipper. If 50 heads

came up in succession we would decide that at least one of our assump-

tions was undoubtedly wrong, but we would be unable to choose between

them. Usually, of course, we pay careful attention to our sampling

methods in order to be reasonably assured that assumptions regarding

sampling are actually justified.

Taking a sociological example to illustrate the same point, let us

suppose that we are required to make only two assumptions in a particular

statistical test: (1) that in the population sampled the proportions of
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middle- and lower-class persons with high mobility aspirations are the

same, and (2) that a random sample of all persons has been obtained.

Suppose also that these assumptions lead to certain conclusions which

cannot be supported by the data. Perhaps the sample data show a much
higher percentage of middle-class persons with high aspirations. We
conclude that one or the other of the assumptions is probably erroneous.
But which of the two should be rejected? We might like to conclude that
the first is wrong, but perhaps we have used biased sampling methods.
We must have additional knowledge beyond what can be learned from
the test itself.

In this particular example, if we have gone to great lengths to assure
the selection of a random sample, we can take assumption (2) as our
model and conclude that (1) is probably false. Here, our willingness to
accept (2) is based on knowledge about the sampling methods used,i.e.,
our research methodology. In other instances we may accept certain
assumptions on the basis of previous research findings. The important
point is that the test itself cannot be used to enable one to locate the faulty
assumption or assumptions. It is in this sense that the assumptionsall
have the same logical status. To emphasize this fact and to call your
attention to the assumptions in the model, we treat the hypothesis
actually being tested as merely one among a numberof assumptions
required by thetest.

As previously mentioned, a researcher is usually interested in setting
up an hypothesis which he really would like to reject. The hypothesis
whichis actually tested is often referred to as a null hypothesis (symbolized
as Ho) as contrasted with the research hypothesis (H1) which is set up as an
alternative to Ho. Usually, although not always, the null hypothesis
states that there is no difference between several groups or no relationship
between variables, whereas the research hypothesis may predicteither a
positive or negative relationship. The researcher may actually expect
that the null hypothesis is faulty and should be rejected in favor of the
alternative H;. Nevertheless, in order to compute a sampling distribu-
tion he must for the time being proceed as though H,is actually correct.
He would assumethat the coin is an honest one, for example.

Notice that the assumption of an honest coin provides a way of com-
puting exact probabilities using the binomial formula. If one were to
hypothesize that the coin is “dishonest,” he would find that he could not
obtain a sampling distribution until he made his hypothesis morespecific.
He would have to commit himself on a specific value for p, say .75.
Seldom will he be in a position to do this. Likewise, the research
hypothesis that there is a larger proportion of persons with high mobility
aspirations among the middle class is not as specific as the null hypothesis
that there is absolutely no difference between the two classes.



122 INDUCTIVE STATISTICS

2. Obtaining the Sampling Distribution. UHaving made the necessary

assumptions, we are in a position to make use of mathematical reasoning

to obtain the sampling distribution in which we associate probabilities

with outcomes. Such a distribution of probabilities will tell us just how

likely each of the possible outcomesis zf the assumptions made are actually

correct. If the above assumptions about the coin and the flips were

actually true, we have seen that in the long run only one timein 1,024

would we expect to get all heads, only ten times in 1,024 would we get

nine heads, ete.
Knowledge of the likelihood of any particular outcome occurring by

chance if the assumptions were really true can now be used to make a

rational decision about the conditions under which wecould risk rejecting

these assumptions. Suppose, for example, that we were to get all 10

heads. There are twopossibilities: (1) either the assumptionsare correct

and this is one of those occasions on which a very rare event occurred, or

(2) at least one of the assumptions (presumably the null hypothesis) is

false. Unfortunately, we can never be positive which alternative is the

correct one. If we could, we would have known ahead of time about the

assumptions and there would have been no point in performing the

experiment. But we can say that the first alternative is very unlikely.

Let us establish the rule that every time we get 10 headsin 10 trials we

automatically conclude that at least one of the assumptionsis false and

should be rejected. In the long run, we shall occasionally make erroneous

decisions in adhering to this rigid rule since we know that even with an

honest coin we can expect to get all 10 heads one timein 1,024 simply by

chance. Such a rule will not help us determine the correctness of our

decision for any particular experiment, but the laws of probability tell us

exactly what proportion of the time we can expect to make correct

decisions in the long run. In asense, our faith is in the procedure weare

following rather than in the decision we make on any particular occasion.

This procedure will yield correct decisions most of the time even though

we cannot be absolutely certain of being correct on any specific decision.

3. Selecting a Significance Level and Critical Region. Ideally, the

researcher’s decisions should be madeprior to the actual experiment or

analysis of data. From his knowledge of the sampling distribution he

selects a set of alternatives which, should they occur, would require him

to reject his assumptions. These unlikely outcomesare referred to as the

critical region. Thus, he divides the possible outcomes into two cate-

gories: (1) those for which hewill reject (the critical region), and (2) those

whose occurrence would not permit him to reject. In order to make a

choice of critical region he must make two decisions in addition to his

choice of model and hypothesis. First, he must determine the risks he is

willing to take of making types I and IIerrors. Second, he must decide
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whether or not he wants his critical region to include both tails of the

sampling distribution.

Asindicated in Chap. 8, one must take into consideration two types of

possible errors. The first type of error consists of rejecting a set of

assumptions when they are in fact true. <A type II error, on the other

hand, involves a failure to reject assumptions when they are actually

false. From the sampling distribution one can determine the exact

probabilities that certain outcomes will occur if the assumptions are

actually true. If the researcher decides that he will reject whenever a

specified set of unlikely outcomes (say either zero or ten heads) occurs,

then if the assumptionsare true he will make a type I error whenever he

obtains any of these outcomes.

The probability of making a type error is the sum of the probabilities

of each of the outcomes within the critical region. For example, if the

critical region consists of zero or ten heads, the probability of a type I

error would be 2/1,024 or .002. If a larger critical region were selected

the risk of this type of error would be greater. Suppose it were decided

to reject the assumptions if zero, one, nine, or ten heads were obtained.
Then the probability of a type I error would be (1 + 1 + 10 + 10)/1,024
or .022. The probability of making a type I error is referred to as the
significance level of the test and can be set at any desired level.

Before discussing possible criteria for deciding upon thesignificance
level to be used, something should be said about type II errors. In view
of our earlier discussion of the fallacy of affirming the consequent, it is
clearly incorrect to conclude that if certain assumptions cannot be rejected
they therefore must be true. Another set of assumptions might also
have led to a sampling distribution for which similar conclusions would
have been reached. For example, if the true probability of heads were
.O1 rather than .50, the correct sampling distribution would be almost
identical to the one we calculated. Therefore, exactly the samecritical
region would probably have beenselected, and the decision as to whether
or not to reject might have been identical. Yet, strictly speaking, the
hypothesis that p = .5 would be false and should be rejected. If we
were unable to reject it, we would not want to accept it outright as the
single correct hypothesis since there are a large number of additional
hypotheses which also could not be rejected. We simply decide that we
should ‘‘not reject’”’ our hypothesis.

Even if we conservatively refuse to accept an hypothesis, we would
still like to be able to eliminate as many false hypotheses as possible.
In this sense we are making an error whenever wefail to reject a false
hypothesis. What can be said about the probability of making a type II
error? Unfortunately, it is no simple matter to compute type II errors
as was the case with type I errors. We shall have to defer our dis-
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cussion of type II errors until Chap. 14. One important fact should be

noted, however. For any given test the probabilities of types I and II

errors are inversely related. In other words, the smaller the risk of a type I

error, the greater the probability of a type II error. ‘This can be seen in our

coin flipping example. You should convince yourself that if one selects

a small critical region (say, zero and ten heads) he will be less likely to

reject any assumptions thanif he were to use a more inclusive region (say,

zero, ohe, nine, and ten heads). In the former case, while he is less

likely to reject true assumptions he is also less likely to reject false

assumptions. Therefore he is more likely to make a type II error.

It is thus impossible to minimize the risks of both types of errors sitmul-

taneously unless one redesigns his study andselects additional cases or a

different statistical test. In practice, we set the probability of a type I

error at a fixed level (say .05) and then try to select the statistical test

which minimizesthe risk of a type II error. In choosing amongalterna-

tive tests, we select that test which has an appropriate model and whichis

most powerful in the sense of minimizing the risk of a type II error.’

The decision as to the significance level selected depends on the relative

costs of making the oneor the other typeof error and should be evaluated

accordingly. Sometimes a practical decision must be made according to

the outcome of the experiment. A manufacturer may decide to install

expensive equipment, a researcher may decide to draw another sample

and replicate his study, or public health authorities may have to decide

whether or not to attempt mass innoculations of polio serum. In other

instances there is no practical decision required. A sociologist may

simply report the results of his study in a journal article and may not

have to take the consequences of one or the other type of error.

It is in situations in which a practical decision has to be made that the

choice of a significance level is especially difficult. In the coin flipping

example suppose that the decision involved refusing to continue gambling

with a coin the honesty of which were in doubt. If our hypothetical

gambler were faced with the prospects of a nagging wife should he return

home with empty pockets, he would do well to quit the gameif there were

even a reasonable doubt about the coin. In such a case he wouldselect

a large critical region since the penalty for making a type II error (Le.,

staying in the game whenthe coin is actually dishonest) would be quite

large. On the other hand,if he were to run therisk of insulting his boss

if he claimed that the coin was dishonest, he would want to be very sure

of this fact before he made his decision. In the latter case he should select

a very small critical region, thereby minimizing the risk of a type I error.

Similarly, if the cost of mass polio innoculations were considerable or if

the serum were potentially harmful, one would want to be quite sureofits

2 For further discussion of this point, see Sec. 14.1.
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effectiveness before putting it touse. He would want to makeit quite dif-
ficult to reject the null hypothesis that the serum has no beneficial effect.

If there is no practical decision to be made other than whether or not
to publish the results of a study, anotherrule of thumb should befollowed.
The researcher should lean over backwards to prove himself wrong or to
obtain results that he actually does not want to obtain. Usually, but not
always, one sets up a null hypothesis that he really wants to reject. Since
he would like to be able to reject, he should makeit very difficult to
achieve the desired result by using a very small critical region.
There are occasions—and you should be alerted to their existence—in

which one actually does not wish to reject the null hypothesis. For
example, the null hypothesis may take the form of a prediction that there
will be no class orreligious differences with respect to fertility rates. If
one really wishes to establish such differences he should select a very small
critical region, making it difficult for him to reject the null hypothesis.
But suppose he actually wishes to show that there are no such differences.
Perhaps he is attempting to demonstrate that certain commonly held
theories about fertility differentials are incorrect or inadequate. Or he
may be hoping that these differences do not exist so that he will not have
to control for class orreligion in relating fertility rates to other variables.

In the above instances the researcher is in one sense on the wrong end
of the hypothesis and should be primarily interested in minimizing the
risk of atype II error. In other words, he should be especially concerned
that he not retain the null hypothesis of no differences whenit is actually
false. Oneis therefore not always being conservative by selecting a small
critical region, thus makingit difficult to reject a null hypothesis which
he may really want to retain. Significance levels commonly used in
statistical research are the .05, .01, and .001 levels. It should be realized
in view of the above discussion that there is nothing sacred or absolute
about these levels. Although a person would usually be conservative in
using suchlevels, if he actually did not want to reject the null hypothesis
he would be on safer ground using perhaps the .10, .20, or even .30 level,
thereby reducing his risk of a type II error.
*A word of caution is necessary in interpreting the results of significance

tests since it is possible to obtain rather misleading results even when the
-001 level is used and when rejection is desired. Significance tests tell
us how likely a given set of results would be if certain assumptions were
true. ‘There are several factors which determine the likelihood that we
shall be able to reject these assumptions. The first is how inadequate
these assumptions really are. If, for example, the true probability of
headsis .9 it is quite likely that we shall be able to reject the hypothesis
that p is .5 because weare actually apt to get a sufficiently high propor-
tion of heads to end upin the critical region. On the other hand, if the
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true probability is .53 we are less likely to get the extreme results neces-

sary for rejection. .

*The number of cases is another important factor in determining how

extreme the results must be before rejection is possible. With only 10

flips or cases it has been seen that very extreme results are required in

order to reject. But if N is large the proportion of successes need differ

from the hypothesized p by only a small amount in order to reject. If

the coin were flipped 10,000 times instead of 10, we would beable to reject

the hypothesis if, say, we were to get over 5,200 heads. In other words,

under the assumption that p is exactly one-half, 5,200 or more heads in

10,000 trials would be just as unlikely as 10 heads in 10 trials even

though the results would not be nearly as extreme. This 1s, of course,

consistent with our greater intuitive faith in large samples and with the

realization that in the case of very small samples extreme results could

occur quite frequently by chance. Similarly, with a sample of 10,000

persons we could obtain very small differences in the fertility rates

between middle- and lower-class women andstill be able to reject the null

hypothesis that there are no differences whatsoever in the population.

*With a very large number of cases it is practically always possible to

reject any false hypothesis we might set up, regardless of how far our

hypothesized value may differ from the true one. This means that if

we have 10,000 cases we should not be very surprised if we are able to

reject at the .001 level, and we should be on guard against reporting our

finding as though it were a highly important one. Statistical significance

should not be confused with practical significance. Statistical signifi-

cance cantell us only that certain sample differences would not occur very

frequently by chance if there were no differences whatsoever in the

population. It tells us nothing directly about the magnitude or impor-

tance of these differences. A factor which is large enough to produce

differences which are statistically significant in a small sample is therefore

much more worthy of one’s attention than a factor which produces small

differences which can only be shownto bestatistically significant with a

very large sample. If the study involves a large numberof cases, we are

usually more interested in other kinds of problems than tests of signifi-

cance. This question will be discussed more thoroughly in Chap. 15

when we take up measuresof degree of relationship. for the presentit is

sufficient to point out that statistical significance does not necessarily

imply striking differences or ones which are important to the social

scientist. |

Another kind of decision must be made before thecritical region can be

determined. There are a number of outcomesor sets of outcomes the

probability of which may be less than the significance level selected.

For example, the probability of getting exactly eight headsis 45/1,024 or
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044. Therefore it would be possible, although not very sensible, to

decide to reject the null hypothesis if exactly eight heads were to occur

but otherwise not to reject. The probability of a type I error would then

be .044. The choice of such a critical region would seldom make sense

theoretically, however, since one would ordinarily be even morehesitant

about accepting the null hypothesis if nine or ten heads were to turn up,

and yet these alternatives would not belong to the critical region. We

are practically always interested in using at least an entire tail of the

distribution. Weare not interested in the probability of getting exactly

eight heads but in the probability of getting eight or more heads, i.e.,

the probability of getting eight heads or something even more unusual.

But why notalso include zero, one, and two headsin thecritical region

since these alternatives are just as unlikely as eight, nine, and ten heads?

Often we are not in a position to predict ahead of time the direction in

which the unusual results may occur. In this example we may merely
suspect that the coin is dishonest but may have no hint as to whetherit is
biased in favor of heads or tails. Furthermore, we may not care. In
such a case we would want to play safe and makeuse of both tails of the
sampling distribution. For if we were to make use of a critical region
consisting only of eight, nine, and ten heads, then were we to obtain exactly
one head we would be in the unfortunate position of not being able to
reject the null hypothesis even though it might be incorrect.

There are a number of occasions, however, either when we are able to
predict the direction of deviance or when weare primarily interested in
deviations in one direction only. For example, previous information
may haveled us to predict that the coin is biased in favor of heads. Or
we may bebetting on tails each time so that if the coin happens to be
biased in favor of tails we need have no fear of continuing in the game.
In morerealistic examples it is often possible to predict direction on the
basis of theory or previous studies. It may have been predicted that
Catholics will have larger families than Protestants, for instance. If
one is interested in showing his theory to be correct, he will make signifi-
cance tests only when results occur in the predicted direction. If they
occur in the opposite direction he need make no test since the data
obviously do not support the theory anyway.

Wheneverdirection has been predicted, one-tailed tests will be prefera-
ble to two-tailed tests at the same significance level since it will be
possible to obtain a larger tail by concentrating the entire critical region
at the proper end of the sampling distribution. This advantage of a one-
tailed test is illustrated in Fig. 10.1 in the case of a smooth sampling
distribution having the form of a normal curve. In this figure the
probabilities of making a type I error are the same in both instances
since the twocritical regions are of the same size (as measured in terms
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of areas). But if the results actually occur in the predicted direction,

the researcher will be more likely to reject the hypothesis using a one-

tailed test since there is a greater probability of falling into the larger

critical region in this direction. The risk of making a type II error if the

true probability is in the predicted direction is less than the risk when

using a two-tailed test.

At this point you should not really expect to understand intuitively

the relationship between type II errors and one- and two-tailed tests.
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Fig. 10.1. Comparison of critical regions for one- and two-tailed tests, using .05

significance level.

Manyof these rather difficult notions will becomeclear only after several

practical examples have been discussed. A more detailed treatment of

type II errors must be postponed until Chap. 14.

To be specific in this example, let us select the .05 level and make use

of a two-tailed test. The critical region will consist of the alternatives

zero, one, nine, and ten since including additional alternatives would

increase the probability of a type I error beyond the .05 level. In this

example thesignificancelevel actually used will be (1 + 1 + 10 + 10) /1,024

or .022. In other instances in which the sampling distribution is con-

tinuous rather than discrete, it will be possible to use the exact level

desired (e.g., .05, .01, or .001).

4. Computing the Test Statistic. It is always necessary to compute

what is referred to as a test statistic, the sampling distribution of which

is to be used in the test. Up to now we have dealt only with statistics

such as sample proportions, means, and standard deviations which are

directly comparable to the same quantities in the population and which

may be used as measures for summarizing the data. A test statistic is a

statistic which usually is of no inherent interest descriptively but which

is used in testing hypotheses. It is this statistic which has the sampling

distribution which is directly used in the test. In other words, we

compute a quantity from sample data which varies in a known way

according to probability theory. We then compare its value with the

sampling distribution and make a decision by evaluating the probability

of its occurrence. Of course there are numerous quantities which can be
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computed from sample data, but only a relatively small number have

known sampling distributions which can be used for purposes of testing

hypotheses.

In this example of the binomial test the test statistic is so simple that

it seems hardly worthwhile calling it to your attention. It is merely the

numberof successes in NV trials and does not require any further computa-

tions. In other problems, however, the test statistic will have to be

computed. In the case of the binomial test, we have let the numberof suc-

cesses r take on all possible values from zero to N, and we haveassociated

probabilities with each value. Let us suppose in this particular problem

involving 10 flips that the number of successes (heads) actually turns out

to be eight. We now haveall the information necessary in order to make

our decision.

5. Making a Decision. After having selected his critical region and

computedthetest statistic, the researcher will either reject or fail to reject

the assumptions depending upon the outcomeof the experiment. If the

outcome falls within the critical region he will reject with a known

probability of atypelerror. If it does not fall within thecritical region,

he will not reject the assumptions and will take the risk of making a type

II error. In this example, since the outcomeof eight heads does notfall

within the critical region, he should not reject the null hypothesis that

the coin is an honest one.

Ideally, all decisions prior to steps 4 and 5 should be made before the

tabulation of results. Often in exploratory work a person will first

examine his data and then maketests of significance. Although this is

sometimes necessary, it should be noted that whenever this occurs one

is not completely living up to the rules of the game. In such instances

it would be better not to put forth the claim that hypotheses were actually
being tested. Results could be presented as suggestive, however, and

anyone doing a follow-up study would then be in a position to make

legitimate statistical tests.

The above comments may sound overrigid and perfectionistic in view
of the exploratory nature of much social science research. The writer
takes the position, however, that it is preferable to establish a strict
“statistical conscience”rather than to leave the impression that anything
goes. Unless one makeshis decisions prior to the analysis of data he
cannot legitimately make use of probability theory since his analysis is
essentially ex post facto. The trouble with ex post facto analyses is that
the experiment can be set up so that the researcher can’t possibly lose.
Suppose, for example, that he has tentatively decided to use the .05 level
of significance. If he findshis results to be significant at the .07 level he
may then decide to reject his hypothesis anyway. But suppose they had
been significant at the .09 or .13 or .18 level? Where does one stop?
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Another way of cheating is to wait until after the experiment to decide

whether or not to use a one-tailed test. Then if the results show more

heads than tails one simply decides that he should have used a one-tailed

test since he was subconsciously predicting a bias in favor of heads.

This way, no matter what the direction of deviance, he can obtain a larger

critical region than with a two-tailed test.

*10.3. Applications of the Binomial

The Sign Test. Suppose a social scientist is making use of a simple
‘‘before-after’’ or ‘‘after-only’’ experimental design in which there are a

small number of cases and in which he is only able to determine for each

case whether or not his experiment has been successful. For example,

he may want to find out whether or not an experience in an interracial

camp is successful in reducing stereotypes toward Negroes. He gives

a, stereotype test to his subjects both before and after the experiment and

is able to determine whether or not this type of prejudice has been

reduced. Let us indicate by a + (‘‘success”’) each instance in which

prejudice is reduced and by a — (“‘failure’’) the cases for which prejudice

is increased. If there are any persons showing absolutely no change

these persons will be excluded from the analysis. Unless measurement

has been extremely crude there should be relatively few of these persons.

The binomial requires the assumption of independenceof trials. The

social scientist will therefore want to assume that his experimental group

constitutes a random sample drawn from some population about which he

wishes to generalize and that there has been little or no mutual influence

among participants with respect to prejudice scores. Let us suppose that

he wishes to establish that the camping experienceis actually effective in

reducing prejudice. Since this cannot be done directly, he can set up

the null hypothesis that the experiment has noeffect. If it actually has

no effect, then if the entire population from which the sample has been

drawn were to undergo similar experiences, we would expect to find the

same number of persons whose prejudice was reduced as persons having

increased prejudice. In other words, there would be equal proportions

of pluses and minuses.

Since each memberof the population has an equal chance of appearing

in a random sample, the probability of getting a + in any given drawwill

be .5 under the null hypothesis. An assumption about the proportion of

pluses in the population, when combined with the assumption of random-

ness, thus permits us to say something about the probability of success in

any given trial. Randomness also assures independence of trials. Let

us emphasize again that it 7s necessary to make assumptions about both the

3 For a discussion of these and other types of experimental designs, see [3].
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population and the method of sampling. In this example, interest is
centered on the effectiveness of the experiment, i.e., the proportion of
successes in the population. Therefore, the social scientist will want to
make sure that he uses correct procedures for obtaining a random sample.

If there are eight persons in the sample, the sampling distribution of
successes would be as follows:

No. of successes Probability

0 lose = .004
1 8656 = .031
2 28656 = .109
3 56656 = .219

4 7056 = .274
5 56656 = .219

6 28656 = .109

7 8656 = .031

8 lose = .004

1.000

Let us suppose that the social scientist wishes to use the .05 level of
significance. Since direction has been predicted, a one-tailed test can
be used. The critical region can be determined by cumulating proba-
bilities starting with eight successes, then seven, etc., until the sum
becomes greater than the significance level. It will ordinarily not be
necessary to obtain the entire sampling distribution since only the tails
are actually used in determining the size of the critical region. In this
case, the probability of eight successes is .004; the probability of seven or
eight successesis .035; and the probability of six, seven, or eight successes
is .144. Since the sum of the probabilities of outcomes within the critical
region must be less than or equal to the significance level selected, we see
that the critical region can consist only of seven or eight successes.

Supposethe social scientist carries out the experiment and finds that in
six cases prejudice has been reduced while in the remaining two it has
been increased. He therefore will not reject the hypothesis that the
experiment has noeffect since the probability of getting such a result, or
one even more unusual, is greater than .05.

Testing for Nonrandomness. In the above example randomness was
assumed and interest was centered on the proportion of successes in the
population. In other types of problems there may be information about
the proportion of persons in a population having a certain characteristic,
but there may be a question about selectivity. For example, one may
test to see whether or not professionals are overrepresented on boards or
Negroes underrepresented on jury panels. Suppose a mayor appoints
nine persons to a commission, claiming that these persons are representa-
tive in the sense that all types of adults have an equal chance of being
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selected. If it is known that 35 per cent of the labor force is white-collar
and yet six out of nine members of the commission are white-collar, a

binomial test can be used in order to determine howlikely such an occupa-

tional distribution would be under the assumption of random sampling.

In this particular problem the probability of success under the null

hypothesis would be .35, and the sampling distribution would not be

symmetrical. We would look upon each of the nine positions on the

commission as a “trial.” The probability of getting a white-collar

worker as the first commissioner would be .35, and similarly for each of

the eight remaining positions.

Other Uses of the Binomial. The binomial can be used in a numberof
other typesof problems in addition to those mentioned above. Positional

measures, such as the median or quartiles, can sometimes be used to

enable one to test whether a small subsample of personsis significantly

different from what we would expect by chance. From a large surveyit

may be possible to obtain a very good estimate of the incomedistribution

for a particular city. If data have been obtainedfor only seven Armenians

and if six of these persons are in the lowest quartile, we may test to see

howlikely this would be, provided, of course, that decisions have been

made prior to the test.4 Since by definition one-fourth of a population

will be in the lowest quartile, the binomial distribution gives the proba-

bility of getting a certain proportion of a subsample below the population

quartile, under the assumption that such a subsample essentially con-

stitutes a random sample from the larger population.

For example, since the probability of any given person being in the

bottom quartile is .25, the probability of getting exactly six Armenians

in the lowest quartile would be

P00) = (6)(q)(4)= rose
As om = (5)(4) Gs)= ros
Since we need to obtain the probability of getting six or more successes,

we add these probabilities getting

21+ 1Tose ~ 0013P(6) + P(7) =

Another use of the binomial might involve testing the adequacy of a

4 We must have a very large numberof cases in order to obtain an accurate esti-

mate of the positional measure (e.g., Q1). Otherwise there will be sufficient sampling

error in this estimate to require the use of a two-sample test. The reason for this

should become clearer after two-sample tests have been presented in Chap. 13.
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theory which correctly predicted the direction of certain differences in,
say, 11 out of 15 independent trials. In order for such trials to be
independent, they would haveto involve different samples. For example,
one sample might consist of young Protestant males, another of young
Protestant females, a third of older Catholic males, etc. Each sub-
sample might be too small to yield statistical significance separately, but
if the subsamples were independently selected a binomial could legiti-
mately be used to test whether or not a sufficient number of subsamples
gave results in the predicted direction. Each subsample would consti-
tute a trial, and the probability of the result being in the predicted
direction on any given trial would be .5 under the null hypothesis that the
theory has absolutely no predictive value, 1e., that it predicts direction
wrongly as often as it does so correctly. Notice that such a test could
not be used if 15 observations were taken on the same sample of persons.

GLOSSARY

Binomial distribution
Critical region

Model versus hypothesis

One- and two-tailed tests
Sampling distribution
Significance level

EXERCISES

1. In 11 flips of an honest coin, what is the probability of getting exactly four
heads? Exactly seven heads? Less than three heads?

2. Suppose the coin in Exercise 1 is dishonest and that the probability of getting
a head is actually .6. Without doing the computations, indicate how this would
affect each of the probabilities obtained above (1.e., raise, lower, or leave them
unchanged).

3. Suppose you wish to test the null hypothesis that the coin is honest by flipping
it 11 times. Indicate the critical region you would use:

. For a two-tailed test at the .05 level

. For a two-tailed test at the .10 level
For a two-tailed test at the .01 level
For a one-tailed test at the .05 level, predicting that P(head) > .5

. For a one-tailed test at the .10 level, predicting that P(head) < .5eo
A
a
8

*4. In a particular community 10 per cent of the population is Jewish. A study
of the boardsof directors of various service agencies indicates that of a total of seven
chairmen of the boards, four are Jewish. How likely is it that this could happen by
chance? In this and other exercises involving tests of hypotheses, indicate your
reasoning andlist the assumptions being made.

*5. A social psychologist takes 12 groups which he matches, pair by pair, according
to size. He thus hassix pairs of groups, with one group in each pair constituting an
experimental group and the other the control group. The experiment involves an
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attempt to increase the cohesiveness of the groups, and the experimenter is able to

evaluate whether or not the experimental group is more cohesive than the control

group with which it has been paired. Howcan he makeuseof the binomialto test

the null hypothesis that the experiment has no effect? In this problem you should

indicate all assumptions required, compute the sampling distribution, and make a

choice of critical region.

*6, Suppose you are studying a small group of 12 persons and wish to test the

hypothesis that the higher the degree of conformity to group norms, the higher one’s

status in the group. For both variables (conformity and status) you are simply able

to evaluate whether the individual is above or below the median. How would you

use the binomial to test the null hypothesis that there is no relationship between these

two variables? Be sure to indicate your reasoning.
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Chapter 11

SINGLE-SAMPLE TESTS INVOLVING

MEANS AND PROPORTIONS

In this chapter we shall be concerned with tests of hypotheses about

population means and proportions. A sample mean or proportion,

obtained from a single sample, will be compared with the hypothesized

parameter and a decision made as to whether or not to reject the

hypothesis. You will soon discover that tests of the form discussed in

this chapter have muchless practical utility than tests involving several

samples. At this point, however, it is more important to obtain a good

understanding of fundamental ideas than to be overly concerned with

practical applications. Unfortunately, the simplest tests are not always

the most useful ones.

You will recall that statistical tests involving the binomial made use
of the multiplication rule in order to obtain a sampling distribution.
We were thus able to see exactly how probability theory was used in
obtaining the sampling distribution. From here on, mathematical
considerations become far more complex, so much so that in spite of the
fact that it would be desirable to understand what is behind every argu-
ment, you will have to begin taking more and more statements on faith.
Mathematical proofs are available, of course, but most involve calculus
or even considerably more mathematical background.

11.1. The Central-limit Theorem and the Law of Large Numbers

A rather remarkable theorem, which can be stated in a number of ways
and which has beenreferred to as the central-limit theorem, is based on the
same principles and rules of probabilities as is the binomial but cannot be
proved in a text such as this. This theorem can be stated as follows:
If repeated random samples of size N are drawn from a normal population,
with mean uw and variance o”, the sampling distribution of sample means will

135
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be normal, with mean pw and variance a?/N. Let us now takea careful look

at what the central-limit theorem says.

Wefirst start with a normal population, recognizing, of course, that in

real life there is no such thing as a perfectly normal population. We then

imagine ourselves drawing a very large number of random samples of

size Nfrom this population.!. For each of these samples we obtain a

mean X. These sample meanswill naturally vary somewhat from sample

to sample, but we would expect them to cluster aroundthe true population

mean p. This is what the central-limit theorem tells us. It says that

 

 

  

Fig. 11.1. Comparison of normal sampling distributions for different-sized samples.

if we plot the distribution of these sample means the result will be a

normal curve. Furthermore, the standard deviation of this normal

distribution of sample means will be o/1/N. Therefore, the larger the

sample size selected, the smaller the standard deviation in the sampling

distribution, i.e., the more the clustering of sample means(see Fig. 11.1).

If we consider the sample meansas estimates of the population mean, we

can say that there is a certain amount of error in our estimation process

owing to sampling fluctuations. Therefore, we refer to the standard

deviation of a sampling distribution as the standard error. In this case

the standard error of the mean, indicated symbolically as cx, is o/\/N.

You should keep clearly in mind that there are three distinct distribu-

tions involved, two of which happen to be exactly normal. First, there

is the population which is assumed to be normal with a mean of uw and

a variance of o% [hereafter written in abbreviated form as Nor(p,o7)].

Second, there is a distribution of scores within each sample. If N is large,

this distribution will probably be reasonably representativeof the popula-

tion and may therefore be approximately normal. Notice that this is

the only distribution that one actually obtains empirically.2 Third, there

1 Be careful not to confuse the number of samples (which is infinite) with the size (NV)

of each sample.

2Since this is the distribution which the researcher actually sees, there is likely

to be a tendency to confuse this second kind of distribution with the sampling

distribution.
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is the sampling distribution of a statistic (here, the mean). We have

just seen that the sampling distribution for the mean will also be normal

but will have a smaller standard deviation than the population (unless

the sample size N is one).

The relationship between the population and the sampling distribution

is diagramed in Fig. 11.2. The larger the sample size N, the more peaked

will be the sampling distribution, as was shown in Fig. 11.1. It should

  

     

Sampling distribution

Nor | 2, 72/N)

Population

Nor (po?)

 
Fig. 11.2. Comparison between population and sampling distribution.

be kept clearly in mind that although their standard deviations are

directly related to each other, they are completely distinct distributions.

All of the “‘cases”’ in the sampling distribution are means of separate

samples. As was true in the case of the binomial and as will be true in

all other statistical tests, it is the sampling distribution rather than the

parent population which is used directly in significance tests. Assump-

tions about the population may appear in the model. It is through

probability theory and the central-limit theorem that statements about

the population and about the sampling methods becometranslated into

statements about a sampling distribution.

In summary, the means and standard deviations of the three kinds of

distributions are as follows:
 

Mean Standard deviation
 

Population
Sample
Sampling distribution

o

s

a/1/N

The central-limit theorem is consistent with the common-sense intui-

tion that, assuming biases have been avoided, one can have morefaith

in estimating the mean from a large sample than a small one.* In effect

  m
I
E

 

3 Notice that we have more faith in estimates which are based on large samples,
but in rejecting a null hypothesis at the .05 level we take the same risk of a type I
error regardless of the size of N. As we shall presently see, the size of the critical
region used in the test takes the sample size into consideration, thus accounting for

the apparent inconsistency. | oe oe
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it says that sample means will vary less from sample to sample if N is

large. But it is a considerable refinement of common sense in that it
gives an indication of how much more faith we should have if N is

increased by a given amount. For example, we can see that in order to

cut the standard error in half we need to quadruple NV. It also tells us

that the more homogeneous the population is to begin with, i.e., the

smaller the value of c, the smaller the standard error ¢/1/N and the
greater the clustering of sample means about the population mean.

The Law of Large Numbers. A law of large numbers, closely related to
the central-limit theorem, can be stated as follows: Jf repeated random

samples of size N are drawn from any population (of whatever form) having

a mean p and a variance o, then as N becomes large the sampling distribution

of sample means approaches normality, with mean pw and variance o?/N.

This theorem is even more remarkable than the central-limit theorem.

It says that no matter how unusual a distribution we start with, provided

N is sufficiently large, we can count on a sampling distribution whichis

approximately normal. Sinceit is the sampling distribution, and not the

population, which will be used in significance tests, this means that

whenever N is large we can completely relax the assumption about the

normality of the population andstill make use of the normal curve in our

tests.
You should require convincing that the law of large numbers makes

sense empirically. The best way to obtain a good grasp of what the

central-limit theorem means, and at the same time to convince yourself

that the standard erroris really o/+/N, is to draw a number of samples

from a population with known meanandstandard deviation, compute the

sample means, find the standard deviation of these means, and compare

the result obtained with ¢/+/N.t But the law of large numbers requires

further intuitive justification. Why should the sampling distribution

become normal if the parent distribution is not normal? Let us take a

look at a population which is far from normal and see what happensas

we take larger and larger samples.

*Imagine weare rolling some mathematically ideal dice for which the

probabilities of getting each of the six faces are exactly 144. The proba-

bility distribution for the toss of a single die is then rectangular,1.e., all

numbers (from 1 to 6) have an equal chance of occurring. This type of

distribution is in marked contrast to a normal distribution in which

extreme values are less likely than those closer to the mean. Such a

rectangular distribution can be represented as in Fig. 11.3. Strictly

speaking, of course, the distribution would be discrete and not continuous

as is implied in the diagram.
*Considering such a distribution as our population of all possible dice

4See Exercise 1 at the end of the chapter.
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throws, let us calculate the sampling distribution of the means of samples

of size 2. This means that we shall toss two dice, sum of the face values,

and divide by 2. As experienced ‘‘craps’’ players are well aware, these

sums range from 2 to 12, with 7 being the most likely value. In obtaining

P

 4
6

   ! ! ! L
O 1 2 3 4 5 6

Fig. 11.3. Population distribution of probabilities of getting face values of 1, 2, 3, 4, 5,
or 6 with a perfect die.
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Fig. 11.4. Sampling distribution of means of faces, for perfect dice and samples of
size 2.

the probabilities of occurrence of each of these sums, we first note that

there are (6)(6) or 36 possible outcomesif the two dice are distinguished.

Thusthe first die can come up with any oneof six faces showing, and so

can the second. To obtain the probability of getting a sum of scores of

7, and hence a meanof 3.5, we need only count the numberof ways such

a result can occur. Clearly, there are six pairs which will yield a score of

7: (1,6), (2,5), (3,4), (4,3), (5,2), and (6,1). A sum of 6 can be obtained

in only five ways: (1,5), (2,4), (3,3), (4,2), and (5,1). Likewise, there is

only one way we can get a sum of 12 (6,6) or a sum of 2 (1,1). The
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probability distribution of means can therefore be represented as follows:

 

Mean Probability Mean Probability

1.0 166 4.0 36
1.5 2486 4.5 446
2.0 346 5.0 346
2.5 44.6 5.5 2286

3.0 546 6.0 166
3.5 626 3646

When plotted, this sampling distribution takes the form of a triangle

(Fig. 11.4).
*If three dice are tossed, the faces summed, and means obtained, the

sampling distribution of means will be as follows:

Mean Probability Mean Probability

1.00 1616 3.67 27616

1.67 8416 4.33 21616

2.33 15616 5.00 10616

3.00 25416 5.67 3416

219216

This distribution, as can readily be seen in Fig. 11.5, is beginning to

approximate the form of a normal curve even though the samplesize is

only 3. After a careful examination of the above figures, you should be
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Fig. 11.5. Sampling distribution of means of faces, for perfect dice and samples ot

size 3.
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able to grasp intuitively what is happening and whyit is that a bell-

shaped curve is being approximated as the sample size N becomeslarger

and larger. Even though on a single toss a 6 is as likely as a 3 or 4, and

as a matter of fact two 6’s are as likely as two 3’s, there is only one way

of getting two 6’s whereas there are a numberof different ways of getting

an average of 3.0 on 2 or more tosses. In common language we say that

large numbersare likely to be counterbalanced by small ones, especially

if N is large.

11.2. Test for Population Mean, « Known

Let us now see how the central-limit theorem and the law of large

numbers can be used in statistical tests. To begin with, we shall take

up the simplest possible model for illustrative purposes. Since some of

the assumptions required in this model are impractical they will be

relaxed later on. Each of the five steps discussed in Chap. 10 will again

be treated in some detail in order to help you gain greater familiarity

with the process of developing statistical tests.

Problem. Suppose a researcheris interested in checking on the
adequacy of the sampling procedures used in a local survey. The

survey has been taken by inexperienced interviewers, and the

researcher suspects that middle- and upper-income families may

have been oversampled,i.e., given a greater probability of appearing

in the sample than lower-income families. Census data, involving

a complete enumeration, are available which show the mean family

income of the community to be $4,500 and standard deviation

$1,500. ‘The smaller survey involves 100 families, supposedly ran-

domly selected, and the mean family income of this sample is found

to be $4,900. Does the researcher have reason to suspect a biased
sample?

1. Making Assumptions. In order to make use of the law of large
numbers certain assumptions must be made. As previously indicated,
there must always be an assumption about the method of sampling. In
this case we assume the sample to be random. It is actually this assump-
tion that we are interested in testing since we are skeptical of the inter-
viewers’ ability to give all families an equal chance of being selected.
Presumably, we are willing to accept certain assumptions about the
population, i.e., that the census data are accurate. If we cannot accept
the census figures, there will be at least two assumptions in doubt, and
interpretation of the results will be exceedingly difficult. Random sam-
pling, then, will be our hypothesis; the remaining assumptions about the
population will constitute the model.
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A normal population is required if N is not too large. Here the

question arises, ‘‘How large does N have to be before we can relax the

normality assumption and make use of the law of large numbers rather

than the more restrictive central-limit theorem?”’ There is no simple

answer to such a question since an answer depends, among otherthings,

on (1) how precise an estimate of the probability of a type I erroris

desired, and (2) how good an approximation to a normal population we

have. Although you should be wary of simple rules of thumb, it may be

suggested that whenever NV > 100 the normality assumption can practi-

cally always be relaxed. If N > 50 and if there is empirical evidence to

the effect that departure from normality is not serious, then tests of the

type discussed in the present section may also be used with a degree of

assurance. If N < 30, however, one should definitely be on guard

against the use of such tests unless the approximation to normality is

known to be good. Whenever very small samples are used, one usually

lacks such information since there are not enough cases in the sample to

indicate the form of the population distribution. Therefore, other kinds

of tests should ordinarily be used for small samples. Let us suppose in

this problem that we can legitimately make use of the law of large

numbers. As we know, income distributions are usually somewhat

skewed. On the other hand, we have a reasonably large sample.

In addition to the above assumptions, if we are to use the law of large

numbers,it is also necessary to accept the censusfigures for » and o and to

assume an interval scale. Therefore we have the following assumptions:

Level of Measurement: Interval scale

Model: Normal population (can be relaxed)

p = $4,500
o = $1,500

Hypothesis (null): Random sampling

2. Obtaining the Sampling Distribution. Fortunately, the task of

getting the sampling distribution has already been done for us. Since

we knowthat the sampling distribution of the sample means is normal or

approximately normal, we can go directly to the normal table. From

now on, sampling distributions will always be given in the form of tables

in Appendix 2. It is important to realize, however, that these tables

have been computed using probability theory. It is very easy to get so

lost in computational details that one forgets that whenever he is making

use of a table in his statistical tests he is actually making use of a sampling

distribution.

3. Choosing a Significance Level and Critical Region. The choice of

the proper significance level depends, of course, on the relative costs

involved in making types I and II errors. If the researcher fails to
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reject the hypothesis of random sampling when in fact the sample is

biased, he runs the risk of reporting misleading findings. On the other

hand, if he rejects when the hypothesis is actually true, he may have to

repeat the survey at considerable cost. Ideally, he should make a

rational decision based on the relative costs of these two kindsof error.
Actually, he will probably have a difficult time doing this. Let us assume
that he decides on the .05 level. Next, he should decide to use a one-tailed

test since the direction of bias is predicted. If the sample mean were to

 
 

Fig. 11.6. Normal sampling distribution, with shaded area representing a one-tailed

critical region at the .05 significancelevel.

turn out to be less than $4,500, he would hardly suspect his interviewers

of oversampling the middle- and upper-income groups.’ Given the

choice of the .05 level and a one-tailed test, the critical region is deter-

mined from the normal table. Since only 5 per cent of the area of the

normal curve is to the right of an ordinate 1.65 standard deviations

larger than the mean, we know that if the result is more than 1.65

standard deviations larger than » the hypothesis should be rejected (see

Fig. 11.6).

4. Computing the Test Statistic. We know that if all assumptions are

correct, the sampling distribution of X’s will be Nor(u,o2/N). In terms

of our example,

hw = $4,500

sea = 1,500 _
>el

VN -+/100

In order to make use of the normal table it is necessary to convert to

standardscores, or in other words to obtain a statistic Z which is Nor(0,1).
Previously we used the formula

$150

X—-X
S

Z = 

5 In this problem, the data for the sample have actually been given and we know
the direction of the result. You should imagine, however, that this decision is being
made prior to one’s knowledge of the outcome.
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This formula holds for a sample which is Nor(X,s2) but not for the sam-

pling distribution. Let us recall each of the steps in our procedure. We
have madea series of assumptions in order to obtain a sampling distribu-
tion. This latter distribution tells us how likely a given X would beif the

assumptions were actually true. The social scientist has obtained a

single X from his sample and then will use the theoretical sampling

distribution to help him evaluate the likelihood of getting a result as

unusual or more unusual than his particular X. It is the sampling

distribution he is dealing with when he uses the normal table. Each

“case” in this distribution is an X, the mean is pn, and the standard

deviation isa/1/N. Therefore, X replaces X, » replaces X, and o/+/N
replaces s in the above formula for Z. Hence

_*X =
o//N

_ 4,900 — 4,500 _
7 150 7

 

2.67 

In other words, the sample mean is 2.67 standard errors larger than the

population mean.

5. Making a Decision. Since X deviates from the assumed yp in the

predicted direction by more than 1.65 standard deviations, the hypothesis

should be rejected at the .05 level. In fact, having computed Z exactly,

we can say more than this. The probability of getting a Z this large or

larger is .0038, using a one-tailed test. In practice it is usually advisable

to compute the exact significance level whenever possible. In so doing

we indicate that the result has fallen within an even smallercritical region

than the one originally established. Since the reader may prefer to use a

different level of significance than does an author, it is ordinarily helpful

to supply exact or more nearly exact probabilities so that the reader may

draw his own conclusions about whether or not to accept the findings.

In this example, the social scientist would reject the null hypothesis that

the sampling wasrandom. He would then want to decide whetheror not

to draw another sample.

11.3. Student’s ¢ Distribution

In most instances it is completely unrealistic to treat o as known.

Usually one goes to considerable trouble to assure randomnesssinceheis

primarily interested in testing assumptions about the population being

studied. In tests of the sort being discussed in this chapter, heis likely

to want to test an hypothesis concerning uw. But if this were the case,

would he everbe in a position to know the value of ¢? Practically never.
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For if he possessed knowledge of ¢ he would undoubtedly also be in a

position to know yw unless, of course, someone such as his statistics

instructor were deliberately withholding information. Usually he would

not know the values of either » oro. What can he do in such situation?

Since the law of large numbers involves c, he cannot completely ignore its

value. One solution would seem to be to replace o with s, the sample

standard deviation. As a matter of fact, this was commonly done prior

to the development of modernstatistics. In the formula for Z, ¢/~/N
was simply replaced by s/+/N, and since s could be computed directly

from the sample data there were no unknownsleft in the formula. As it

turns out, this procedure yields reasonably good results when is large.

As weshall see presently, however, probabilities obtained in this manner

can be quite misleading wheneverN isrelatively small. Let us see why

this is the case.

We can construct an alternative test statistic

_~ ATH
s/VN —1

This statistic was introduced by W. 8. Gossett, writing under the name

of ‘Student,’ and has a sampling distribution known as Student’s ¢

distribution. Comparing? with Z, we notice that whereas the numerators

are identical, the denominators differ in two respects: (1) there is an

N — 1 under the radical, and (2) o has been replaced by s. In order to

understand these modifications let us examine each in turn. In so doing

we shall have to introduce several new ideas.

The sample standard deviation s can be used as an estimate of o.

Although the problem of estimation will be treated in the next chapter,

it is sufficient at this point to mention that we often want an estimate to

possess certain properties. One of the properties of a “good”estimate is

that it be unbiased. Contrary to what one might expect, it turns out

that s is not quite an unbiased estimate of c. Another quantity, which

we can designate as ¢ and which is obtained by the formula

t

 
TN

>) & — X)
A t=1 Q |

N-1

can be shown mathematically to be an unbiased estimate of o.6 The only

6 Strictly speaking, é is not an unbiased estimate of o, but 6? is an unbiased estimate

of o%. This subtle distinction need not bother us. In this text we shall commonly

use a circumflex («) over a Greek letter to indicate an estimate of the parameter.

Sometexts define s with N — 1 in the denominator, but we shall keep the two formulas
distinct.
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difference between ¢ and s is in the N — 1 factor in the denominator.
Thus, although you have learned to compute s, you are now faced with

the fact that another formula should be used in estimating o. In the

present problem it is ¢/\/N rather than o which needs to be estimated

since it is the former expression which appears in the denominatorof Z.

Although it is true that ¢/1/N is the best estimator of ¢/+/N, it is

possible completely to avoid the computation of ¢ if s has already been

obtained. Notice that

JES (Xx: — ¥)]/w-y
JN VN

Remembering that +»/a/+/b can be written as ~/a/b, we have

 

 

 

 

N

Vn NW)

VIZe-PVE
 

VN—1 V/N—1

Thus we can take a somewhat biased estimate of co, divide by a quantity

which is slightly smaller than »/N, and come out with s/1/N— as an

unbiased estimate of ¢/\/N. It is for this reason that N — 1 appears in

the denominator of ¢.’

In replacing Z with ¢, the modification introduced by using N — 1 is

relatively slight, but the substitution of s in place of « may be of con-

siderable significance if N is small. Since s varies from sample to sample,

the denominator of ¢ varies as well as the numerator. For a given value

of X, if the s for a particular sample happens to be too small, ¢ will be

quite large; if s is large, ¢ will be relatively small. There will thus be

greater variability among ¢ scores than among comparable Z values. ‘This

means that the sampling distribution of ¢ will be flatter than normal.

The ¢ distribution will therefore have larger tails. Just how flat a ¢

distribution is will depend on thesize of the sample. If N is very small

the ¢ distribution will be very flat as compared with the normal curve. In

other words, it will be necessary to go out a larger number of standard

deviations from the mean in order to include 95 per cent of the cases.

7 Some texts recommend the use of N — 1 for small samples and JN for large ones.

Such a procedure seems to add unnecessary confusion. In the case of large samples,

of course, it makeslittle difference which figure is used.
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As N becomeslarge, the é distribution comescloser and closer to approxi-

mating a normal distribution, always being slightly flatter than the

normal curve, however. Thus there is a different ¢ distribution for each

size sample. The fact that ¢ distributions approach normality makes

sense intuitively when werealize that as N becomes large, s becomes a

very accurate estimate of o and it makes verylittle difference whether we

use s or o in the denominator.

In order to make use of the t distribution a normal population must be

assumed, especially if N is relatively small. The computation of the

sampling distribution of ¢ requires that the numerator (X — yz) be

normally distributed and that it also vary independently of the denomi-

nator s/4/N — 1. Ordinarily, we would not expect independence

between numerator and denominator since s is actually computed by

taking deviations about X, and therefore it would be surprising to find
X and s independent of each other. Knowing the sample X we would
expect to improveour ability to predict s for that same sample. It so
happens that for normal populations and random sampling, the sample
mean and standard deviation are independent, however. Since this
property does not generally hold for all population distributions and since
X — uw will not generally be normally distributed unless N is large, we
must assume a normal population when using the¢ test.

Problem. Suppose youare evaluating the programs of a random
sample of 25 casework agencies selected from the population ofall
casework agencies in the state of New York. Each agency keeps a
record of the percentage of successful cases judged according to some
standard criterion. A standard has been set that the mean success
percentagefor all agencies ought to be 60 per cent. In your sample
you find the mean percentage to be 52 per cent and the standard
deviation to be 12 per cent. Do you havereason to suspect that for
the population of agencies as a whole the level of performanceis
below the standard expected?

1. Making Assumptions. Necessary assumptions may be listed as
follows:

Level of Measurement: Interval scale

Model: Random sampling

Normal population

Hypothesis: » = 60 per cent

Notice that no assumption about o is necessary since s has actually
been obtained empirically and can be directly used in the t test. A few
comments about the level of measurement are needed. Since each client
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of an agency is either a successor a failure and since figures obtained for

each agency are percentagesof successes, it might be thought that weare

dealing with a simple dichotomized nominalscale rather than an interval

scale. Indeed, if the units of analysis were clients rather than agencies

this would be the case. But remember that the units being studied are

agencies. A score for each agency(e.g., percentage of successes) has been

obtained, and this score represents a legitimate interval scale. For

example, a difference between 30 and 40 per cent is the sameas a difference

between 70 and 80 per cent. Both differences can be translated into the

same actual numberof clients.

2. Obtaining the Sampling Distribution. Sampling distributions for

t are given in Table D of Appendix 2. Since these distributions differ

for each sample size, the table has been condensedso as to give only the

tails of each distribution. In using the tableit is first necessary to locate

the proper sample size by looking downthe left-hand column. These

sample sizes are ordinarily given in terms of degrees of freedom (df),

which in this type of problem is always N — 1.8 Next, locate the proper

significance level by reading across the top. Figures within the body of

the table indicate the magnitude of ¢ necessary to obtain significance at

the designated level.

3. Selecting a Significance Level and Critical Region. Let us use the

05 level and a one-tailed test. From Table D wesee that for 24 degrees

of freedom a t of 2.064 or larger is needed in order to obtain significance

at the .05 level for a two-tailed test. For a one-tailed test and the .05

level, we need a ¢ of only 1.711 or larger. In the case of one-tailed tests

we simply halve the significance levels required for two-tailed tests.

This is because we go out the same numberof standard deviations from

the mean in order to obtain a one-tailed critical region of .05 as we would

to get a two-tailed region of .10.

4. Computing the Test Statistic. Although it is true that the sampling

distribution of X is Nor(u,o2/N) and therefore that the distribution of Z

is Nor(0,1), this information is of no real use to us since @ 1s unknown.

Instead, we compute the value of ¢, obtaining

X—-4p 52 — 60 |

5. Decision. It has been determined that any ¢ the numerical value

of which is > 1.711 will be within the critical region. Therefore wereject

the hypothesis that » = 60 and conclude, with a certain risk of error,

that the actual level of performance of the agencies is below the standard

expected. Reading across the row correspondingto 24 degrees of freedom

8 For a discussion of degrees of freedom, see Sec. 12.1.
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in Table D, we see that for a one-tailed test the significance level cor-

responding to a ¢ of 3.27 is somewhere between .005 and .0005.°

Several facts about the ¢ distribution can be noted at this point. If

you will examine the column corresponding to p = .05 for a two-tailed
test, you will notice that as the sample size becomeslarger ¢ values become

smaller and convergefairly rapidly to 1.96, the value necessaryforsignifi-

cance if the normal table were used. These values should give a reasona-
bly good idea of the degree of approximation to the normal curve for any
given sample size. For values of N — 1 larger than 30, interpolation
will ordinarily be necessary, and for values much larger than 120 the
normal table will have to be used since ¢ values are not given. Some
texts arbitrarily state that it is only necessary to use the ¢t table when
N < 30. Although such a rule of thumb yields reasonable results, the
position taken hereis that it is always preferable to usethe ¢ table whenever
o 7s unknown and whenever a normal population can be assumed. Since
the ¢ table is no moredifficult to use, it seems sensible to use exact values
in preference to a normal approximation. It should also be emphasized
that there is not a unique theory applying to small samples and an entirely
different one applying to large samples as some texts imply.
As can be seen from the ¢ table, only when the samplesizeis relatively

small do the normal and ¢ distributions differ considerably. Also, a
normal population must be assumed whenever ¢ is used unless N is quite
large, in which case ¢ can be approximated by Z. Therefore, the practical
valueof the ¢ test is in situations where one has small samples and where a
normal population can be assumed. Unfortunately, it is when samples
are small that we are ordinarily most in doubt about the exact nature of
the population. For example, if a researcher is doing an exploratory
study with 17 cases, is he very likely to be in a position to accept the
normality assumption? Probably not. This means that the ¢ test is not
a particularly useful test in spite of its popularity. As we shall see in
Chap.14, there are tests that can be used as alternatives to the ¢ test and
which do not involve the normality assumption. Probably in the next
ten years or so these latter tests will cometo replace the ¢ test altogether.
Since ¢ is frequently used in the literature, however, you should be familiar
with it and with the assumptionsit requires.

11.4. Tests Involving Proportions

Up to this point in the chapter we have considered only examples
involving an interval scale. Furthermore, normality of the population

* Although exact probabilities cannot be obtained from the table, interpolation is
always possible. Usually, however, it is sufficient to indicate that p is between two
values, e.g., .0005 < » < .005.
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also had to be assumed for small samples. In this section we shall see

how the law of large numbers can be used to cover tests involving propor-

tions whenever WN is fairly large. In fact, proportions will be treated

as special cases of means so that our previous discussion will still

apply. .

Suppose we have a simple dichotomized nominal scale. We might

want to test an hypothesis concerning, say, the proportion of males in a

population. Let us arbitrarily assign the value one to males and zero

to females and treat the scores as an interval scale. Although there is no

clearly conceived unit, unless it be the attribute ‘“‘maleness”’ which is

either possessed or not possessed, we can treat these arbitrary scores as

an interval scale because there are only two of them. If a third category

were added this would no longer be possible, however, since it would

becomenecessary to determine the exact position of this category relative

to those of the other two. What weare in effect saying, here, is that it is

unnecessary to make a distinction between nominal, ordinal, and interval

scales in the case of a dichotomysince the problem of comparing distances

between scores never arises.

Wenow have a population made up entirely of ones and zeros. ‘This

is a bimodal distribution, having all cases concentrated at one of two

points, and is certainly not normal. Butif N is sufficiently large we know

that regardless of the form of the population, the sampling distribution of

sample means will be approximately Nor(u,o?/N). All that remains to

be done is to determine the mean and standard deviation of this popula-

tion of ones and zeros.

Let pu represent the proportion of males in the population and q, the

proportion of females, the subscript u indicating that we are dealing with

the entire universe. In order to obtain the mean of the ones and zeros

in the population, we simply add the values and divide by the total

number of cases. The number of ones will be the total number of cases

multiplied by the proportion of males. Regardless of the number of

zeros, their contribution to the sum will be zero. Therefore the popula-

tion mean will be

_ Mpu _
uw
 

where M represents the size of the population (as distinguished from the

sample size NV). Therefore, the mean of a numberof ones andzeros18

exactly the proportion of ones. By similar reasoning X = ps, where ps

represents the proportion of males in the sample.

By using the general formula for the standard deviation, we can show

that o = ~/p,q,. Making use of the symbols for population parameters,
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the formula for « becomes

—_—_

M ae

) (& = 0) i (X; — p.)®
— t=1 a

 

   
‘t=1

M
 

Looking at the numerator of the quantity under the radical, we see that
there will be only two types of quantities representing the squared devia-
tions from the mean p,. For each score of one, the squared deviation
from the mean will be (1 — p,)2, and for every zero it will be (O — pu)?
Since there will be Mp, ones and Mq,zeros in the sum of squares, we get

o = et = Pu)? + Maqu(O = Pu)? _ fete + Mqupy
M M

 

 

 

Factoring Mp.gq. from each term in the numerator, we get

7 = \~Pudu(qu + Pu) _ [Muu
M M

Notice, incidentally, that since M cancels out in both the formulas for
wand o, the population mean and standard deviation are independent of
the actual size of the population.

Therefore we can use the law of large numbers to give

 

 

 

 
T_ _ =|PuQu

VN N
where the symbolo>, indicates that we are dealing with the standard error
of sample proportions. In our new terminology, p, replaces X, p, replaces
u, and op, replaces ox in the formula for Z. Thus

 0X = Oy, =

7 = X =u — Ps — Pu

ox VDuqu/|N
Notice that although it appears as if we have a completely different
formula from that previously used, there is really nothing new except a
change of symbols. This is true since we have been able to show that
proportions can be treated as special cases of means. It should be
emphasized, however, that the law of large numbersrequires that N must
be large in order to make use of the normal approximation. Whenever
N is small the binomial would be a more appropriate test.

 

Problem. You are interested in evaluating the program of a
particular casework agency and have drawn a random sample of
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125 cases from its files. The percentage of successful cases is found

to be 55 per cent as compared with the standard of 60 per cent. Can

you conclude that the agency is below standard performance?

1. Making Assumptions.

Level of Measurement: Dichotomized nominalscale

Model: Random sampling

Hypothesis: py, = .60

This example is purposely similar to the previous one in order to

emphasize the difference in units of analysis. Here, a single agency1s

being studied and the sample is of clients who are either successes or

failures. In the earlier example agencies, rather than people, were the

units being sampled, and the measure for each agency consisted of the

percentage of successful cases. Notice that no assumption other than the

hypothesis is required about the population, as it is implicitly assumed

that it is bimodal.

2. Obtaining the Sampling Distribution. The sampling distribution

will be approximately normal since N is large.

3. Selecting a Significance Level and Critical Region. Let us select, for

sake of variety, the .02 level and a one-tailed test.

4. Computing the Test Statistic. We compute Z asfollows:

Ps — Pul _ .55 — .60 _ — .05 _

DudulN  ~V/{(.60)(.40)]/125

—

.0488

Note that p, and q, are used in the denominator rather than p, and 4.

In case you might be tempted to use ¢ rather than Z you should notice

that given an hypothesized p., the value of o is determined by the formula

T= VDudu:
5. Making a Decision. From the normal table it can be seen that a

Z of —1.14 or less would occur approximately 13 per cent of the time by

chance if the assumptions were true. We therefore do not reject the

hypothesis at the .02 significance level. On the basis of the evidence at

hand it cannot be established that the agency is below standard.

  —1.14 

GLOSSARY

Central-limit theorem
Law of large numbers
Rectangular distribution

i distribution

EXERCISES

1. Using the table of random numbersgiven in Table B of Appendix 2 (see Sec. 22.1

for an explanation of the use of this table), select 10 samples, each of size 4, from the
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population of 65 cases given in Exercise 1 of Chap. 4. Compute the mean for each
of these 10 samples and obtain the standard deviation of these 10 means. You now
have a very rough and slightly biased estimate of the standard error of the mean.
How does your figure compare with the standard error obtained by using the central-
limit theorem, using the population standard deviation you computed in Exercise 2
of Chap. 6?

*2. Verify the sampling distribution of the mean of three dice throws which is
diagramed in Fig. 11.5.

3. A sample of size 50 has a mean of 10.5 and a standard deviation s of 2.2. Test
the hypothesis that the population mean is 10.0 using (a) a one-tailed test at the
05 level, and (b) a two-tailed test at the .01 level. Do the same for samples of
size 25 and 100 and compareresults.

4. Supposeit is known that the mean annual income of assembly-line workers in a
certain plant is $4,000 with a standard deviation of $900. You suspect that workers
with active union interests will have higher than average incomes and take a random
sample of 85 of these active members, obtaining a mean of $4,200 and a standard
deviation of $1,100. Can you say that active union members have significantly
higher incomes? (Use the .01 level.)

5. You have taken a poll of 200 community residents of voting age and have found
that of two candidates for an office, candidate A received 54 per cent of the votes
sampled. Are you justified in concluding that A will win? Use the .05 level. List
all of the assumptions you will have to make.

6. Suppose that a test measuring ‘conformity needs” has been standardized on
college students across the country. Fifty per cent of these college students had
raw scores of 26 or higher (high scores indicating high conformity needs). Suspecting
that conformity needs would generally be higherin the case of adults without a college
education, a social scientist selects a random sample of adults 25 or older residing
within his community. He finds (1) that 67 per cent of the 257 adults without
college education havescores of 26 or higher, and (2) that 59 per cent of the 80 adults
with college education have scores in this range.

a. Can he concludethat the scores of either set of adults within his community
are significantly higher than those of the college students on whom thetest
has been standardized? (Use .001 level.)

6. Suppose the social scientist knows the entire exact distribution of college
students’ scores on the test. On the basis of the materials in the present
chapter, what are some alternative procedures for testing for the significance
of the departures of the two sets of adults’ scores from the standardized
scores? Do these alternative procedures require any additional assumptions?
Explain.
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Chapter 12

POINT AND INTERVAL ESTIMATION

Up to this point the discussion of statistical inference has been con-

cerned solely with the testing of hypotheses. There may also be an

interest in estimating population parameters, and it is with this topic that

the present chapter is concerned. After discussing the principles involved

in estimation, we shall proceed to a discussion of the interrelationships

between estimation and hypothesis testing. Modifications required for

the ¢ distribution and proportions will then be discussed. Finally, we

shall take up the general question of the determination of sample size,

illustrating the problem with estimation procedures.

In the previous two chapters you may have noted that in a number of

practical problems the testing of specific hypotheses is not feasible

because we are unable to specify a particular hypothetical value for the

parameter, say ». Weshall presently see how estimation procedures can

provide a very useful alternative to actual tests in such instances. Also,

the social scientist may be directly interested in estimates rather than

tests of hypotheses. For example, in survey research the practical aim

of the study may be to estimate the proportion of persons using a certain

product or voting in an election. Or it may be necessary to estimate the

median income in an area or the mean numberof children per married

couple. Tests of specific hypotheses might be of some use in such

instances, but estimation would be the more obvious procedure.

There are basically two kinds of estimation: point estimation and

interval estimation. In point estimation we are interested in the best

single value which can be used to estimate a parameter. For example,

we may estimate that the median income in New York City is $4,500.

Usually, however, we also want to obtain some idea of how accurate

an estimate we have. We would like to predict that the parameter1s

somewhere within a given interval on either side of the point estimate.

Thus we may want to make a statement such as, “The median income

in New York City is somewhere between $4,000 and $5,000.” These

154
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two types of estimation are discussed in the sections which immediately
follow.

12.1. Point Estimation

The problem of what statistic to use as an estimate of a parameter
seems, on the surface, to be completely straightforward and a matter of
common sense. If one wants to estimate the population mean (or
median or standard deviation), why not use the sample mean (or median
or standard deviation)? Although common sense would not lead us
too far astray in these instances, we shall see that the problem is not
quite so simple. Obviously, we could estimate a population mean in a
number of ways. In addition to the sample mean, we could use the
sample median or mode, we could use a numberhalf way between the
two extreme values, or we could use as our estimate the value of the
thirteenth observation. Certain of these procedures would be better
than others. We therefore need criteria with which to evaluate each
kind of estimate in order to determine just how good it is. The social
scientist using statistics as an applied tool seldom has to worry about
such criteria. He is usually simply told to use a particular estimate.
Nevertheless, it seems to be worth while to know just what criteria are
used by the mathematician in deciding which estimate to use. Two of
the most important of the mathematician’s criteria are bias and eff-
ciency. We shall discuss each of these in turn. For other criteria,
such as the principle of maximum likelihood, you should refer to more
advanced texts.

Bias. An estimate is said to be unbiased if the mean of its sampling
distribution is exactly equal to the value of the parameter being estimated.
In other words, the expected value of the estimate in the long run is the
parameter itself. Notice that nothing is said, here, about the value of
any particular sample result. According to this definition X is an
unbiased estimate of uw since the sampling distribution of X has yp asits
mean. This does not mean, however, that we can expect that any par-
ticular value of X will equal u, nor will we ever know in any realistic
problem whether or not our sample mean doesin fact equal the popula-
tion mean. You should keep clearly in mind that the term bras, as used
in this sense, refers to long-run results. In practical research you may
be accustomed to using the term to refer to properties of the particular
sample which you have drawn.

It was mentioned in the previous chapter that the sample standard
deviation s is a slightly biased estimate of o. The statistic s has a
sampling distribution as does X. In other words, sample standard
deviations will be distributed about the true population standard devi-
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ation just as sample means are distributed about ». It can be shown

mathematically, however, that the mean of the sampling distribution

of s?is[N — 1/N]o? and notc®. Therefore, s? is a biased estimateof o’.

To find an unbiased estimate of o? we take the quantity

N

- (X; — X)?
N “N 2

s? =
N-1 N-—-1 N

N

¥ (% — X
_ i=l

N-1

 

2
 

—_. A
= 6

Since the mean of the sampling distribution of s? is [V — 1/N] o’, we

see that ¢? has a sampling distribution with mean exactly equal to

vale)“ ="
Although the basic reason why ¢? (and not s”) is the unbiased estimate

is that the mathematics works out that way, an intuitive explanation is

sometimes given in termsof the concept degrees of freedom. The number

of degrees of freedom is equal to the number of quantities which are unknown

minus the number of independent equations linking these unknowns. You

will recall that in order to arrive at a unique solution to a set of simul-

taneous algebraic equations, it was necessary to have the same number

of equations as unknowns. Thusin orderto solve for X, Y, and Z there

must be three equations linking these variables. Had there been only

two equations, we could have assigned any value we pleased to one

variable, say Z. The values of the other two variables could then be

determined by means of the two simultaneous equations. If there were

five unknowns and only three equations to be solved simultaneously, we

could assign arbitrary values to any two of the unknowns and then the

values of the remaining unknowns would be determined. There would

thus be 2 degrees of freedom in this case since we are free to assign values

to any twovariables.

In computing a standard deviation from sample values, we must make

use of an equation linking the N variable X’s with the sample mean,

 

i.e., the equation y X,/N = X. Given the value of X, we can assign

i=l
arbitrary values to N —1 of the X,’s, but the last will then be

determined from this equation. Since we havelost 1 degreeof freedom

in determining the value of the sample mean about which deviations
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have been taken, we must divide by N — 1 rather than N to obtain

our unbiased estimate of o%. If you prefer to think of it this way, you

can consider that we have adjusted the numberof cases slightly in order

to compensate for the fact that we have taken deviations about the

sample mean rather than the true population mean. We have essen-

tially used up one case in computing the mean for the sample.

Efficiency. The effictency of an estimate refers to the degree to which
the sampling distribution 1s clustered about the true value of the parameter.

If the estimate is unbiased, this clustering can be measured by means

of the standard error of the estimate: the smaller the standard error,
the greater the efficiency of the estimate. Efficiency is alwaysrelative.

 
 

#

Fig. 12.1. Comparison of sampling distributions of a biased estimate with high effi-
clency and an unbiased estimate with lower efficiency.

No estimate can be completely efficient since this would imply no samp-
ling error whatsoever. We can compare twoestimates and say that one
is more efficient than the other, however. Suppose, for example, that
we have a normal population. Then for random sampling the standard
error of the mean isa/./N. If the sample median were used to estimate
the population mean, the standarderror of the median would be1.2530/
1/N.! Therefore, since the standard error of the mean is smaller than
that of the median, the mean is the more efficient estimate. This, of
course, is the reason the meanis usually used in preference to the median.
Wesay that the mean is less subject to sampling fluctuations, i.e., it is
more efficient.?

Of the two criteria we have discussed, efficiency is the more important.
If two estimates have the same efficiency we would of course select the

1 Here the population mean and median would be identical.
2 It is not always true that the mean is the moreefficient estimate, although for

most populations, especially if departure from normality is not too great, this will be
the case. Notice that the question of relative efficiency is an entirely different
question from that of which measure is the more appropriate descriptive measure of
central tendency. The latter concerns only the problem of finding the best single
measure to represent the sample data.
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one whichis least biased. This is why ¢ is used in preference to s. But

an efficient estimate which is slightly biased would be preferable to an

unbiased estimate which is less efficient. A simple diagram should help

you see whythis is the case. In Fig. 12.1 the peaked curvewith a slight

bias would be preferable since, even though in the long run we would

tend to underestimate the parameter by a slight amount, we are more

likely on any given trial to obtain a sample estimate which is fairly close

to the parameter. Knowledge that estimates will average out to the

correct figure in the long runis little consolation if, for any given sample,

the estimate is likely to be quite far from the parameter.

12.2. Interval Estimation

You may recall that when you took elementary physics you were

taught to weigh a block of wood several times and then to take the mean

value andindicate a possible range of error. Thus you might have indi-

cated that the weight of the wood was 102 + 2 grams, meaning that

you would estimate that the true weight was somewhere between 100

and 104 grams. In so doing, you were admitting the fallibility of the

measurement procedure and indicating just about how much faith you

had in the accuracy obtained. Although at the time it may not have

been brought explicitly to your attention, you would also have admitted

that you were not absolutely certain that the true value was actually in

the interval obtained. If it were made wider, however, you would have

been even more sure that it was in the interval. Thus you might have

been almost positive that the true value was between 98 and 106 grams

and willing to bet your last dollar that it was between 2 and 202 grams.

In obtaining interval estimates for parameters, we do essentially the

same thing as does the physicist except that we shall be ina position to

evaluate the exact probability of error.

The actual procedure used in obtaining an interval estimate, or what

is referred to as a confidence interval, is quite simple and involves no

really new basic ideas. We shall first merely state how the intervalis

obtained, and then we can examine whyit is constructed in this manner.

One first decides on the risk he is willing to take of making the error

of stating that the parameter is somewhere in the interval when in fact

it is not. Let us say that he decides heis willing to be wrong .05 of the

time or that he uses what is referred to as the 95 per cent confidence

interval.? The interval is obtained by going out in both directions from

the point estimate (e.g., the sample mean) a certain multiple of standard

3 Notice that we refer in the case of confidence intervals to one minusthe probability

oferror. This indicates that we have ‘‘confidence”’ of being correct, say, 95 per cent

of the time. |
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errors corresponding to the confidence level selected. Thus, to estimate

the population mean uw we obtain an interval as follows (using the 95 per

cent level):

X 4 1.960% = X + 1.96 ———
- V/N

where the value 1.96 corresponds to the critical region for the normal

curve, using the .05 level and a two-tailed test. If X = 15, o = 5, and
N = 100, the confidence interval would be

15 + 1.96— = 15 + 0.98
4/100

In other words, the interval would run from 14.02 to 15.98.+4

In order to interpret intervals obtained by this method we need to

return to what we know about sampling distributions, in this case the

i

 1.960% >< 1.960% -

x
 

4 < 19607 -< 1.960% >
<— 1.96 07 ><- 1.9607 —

Fig. 12.2. Comparison of confidence intervals with the sampling distribution of the
mean, showing why 95 per cent confidence intervals include u 95 per cent of the time.

=

sampling distribution of the mean. Let us suppose we have a normal

sampling distribution with mean yu and standard deviation ¢/>/N. For

our purposes there are two kinds of sample means: (1) those which do

not fall within the critical region, and (2) those which dofall within this

area. Let us first suppose that we have obtained an X (X, in Fig. 12.2)

which does not fall within the critical region. We know that such an X

must be within 1.96cx of uw. If we place an interval on either side of

this X by going distances equal to 1.960 we therefore must cross past p,

the mean of the sampling distribution, no matter whether X is to the

right or left of uw. Similarly, if the X obtained lies within the critical

region (see Xin Fig. 12.2), then this X will be further than 1.96 standard
errors from yw and the confidence interval will not extend as far as u.

But wealso know that 95 per cent of the time weshall obtain X’s which

do not lie in the critical region whereas only 5 per cent of the time will

4 These end points of the interval are sometimes referred to as confidence limits.
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they fall within this area. In other words, we know that only 5 per cent
of the time would we get intervals by this procedure which would not include

the parameter (e.g., uw). The remaining 95 per cent of the time the pro-

cedure will yield sample means close enough to the parameter that the

confidence intervals obtained will actually include the parameter.

Several words of caution are necessary in interpreting confidence inter-

vals. The beginning student is likely to use vague phrases such as, “I
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Fig. 12.3. Distribution of variable confidenceintervals about fixed value of parameterp.

am 95 per cent confident that the interval contains the parameter,” or

“the probability is .95 that the parameter is in the interval.” In so

doing he may not clearly recognize that the parameteris a fixed value

and that it is the intervals which vary from sample to sample. Accord-

ing to our definition of probability, the probability of the parameter being

in any given intervalis either zero or one since the parametereitheris or

is not within the specific interval obtained. A simple diagram indicating

the fixed value of the parameter, in this case u, and the variability of the

intervals may help you understand the correct interpretation more

clearly. Figure 12.8 emphasizes that one’s faith is in the procedure used

rather than in any particular interval. We can say that the procedure

is such that in the long run 95 per cent of the intervals obtained will

include the true (fixed) parameter. You should be careful not to imply

or assume that the particular interval you have obtained has anyspecial

property not possessed by comparable intervals which would be obtained
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from other samples. Sometimesit is stated that if repeated samples were

drawn, 95 per cent of the means from these samples would fall within the

confidence interval one has actually computed. This implies, of course,
that the X obtained in the researcher’s sample exactly equals u» or at

least that it is a very close approximation to wp. Actually, the particular

interval obtained may be so far out of line that very few X’s would fall

within it. As is always the case in statistical inference, our confidence

is not in any particular sample result but in the procedure used.

It is possible to set the risk of error at any desired level by using the

proper multiple of the standard error. You should notice, however, that

in reducing the risk of error one necessarily increases the width of the

interval unless he simultaneously increases the number of cases. The

wider the interval, the less he is really saying about the parameter. To

say that the median income of New York families is somewhere between

$1,000 and $10,000 is to claim the obvious. Thus, the researcher is

faced with a dilemma. He can state that the parameter lies within a

very narrow interval, but the probability of error will be large. On the

other hand, he can make a very weak statement and be virtually certain

of being correct. Exactly what he chooses to do will depend upon the

nature of the situation. Although 95 and 99 per cent confidence inter-

vals are conventionally used, it should be emphasized that there is nothing

sacred about these levels.

Confidence Intervals and Tests of Hypotheses. Although the explicit
purpose of placing a confidence interval about an estimate is to indicate

the degree of accuracy of the estimate, confidence intervals are also

implicit tests of a whole range of hypotheses.° They are implicit tests in

the sense that specific hypotheses are not actually stated but only implied.

In a confidence interval we have an implicit test for every possible value

of » which might be hypothesized. Figure 12.4 indicates how con-

fidence intervals are related to tests of hypotheses.

Focus on the confidence interval drawn about X. Suppose that,

instead of having obtained such an interval, we had hypothesized several

alternative values for » and proceededto test these hypotheses. Assume,

for simplicity, that the value of o was given and that the .05 significance

level was used. First suppose that we had hypothesized a value such

as wi (Fig. 12.4a) actually falling within this confidence interval. Then

the sample mean X would clearly not fall within the critical region, and

the hypothesis would not have been rejected at the .05 level. On the

other hand, had we hypothesized a value outside the interval such as pe

(Fig. 12.4b), the distance between the hypothesized u and X would be

ereater than 1.960x, and this second hypothesis would have beenrejected.

5 It should be emphasized that although interval estimation and hypothesis testing

involve closely interrelated ideas, they are distinct procedures.
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Clearly, then, if we were to hypothesize values for u which fell anywhere

within the confidence interval we would not reject these hypotheses at

the appropriate level of significance. Were we to hypothesize values

for pw falling outside the interval we know that these hypotheses would

be rejected.

Thus, having obtained a confidence interval we can tell at a glance

what the results would have been had we tested any particular hypothesis.

If the nature of our problem were such that no particular hypothesis were

#1

(a)
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Fig. 12.4. Comparison of 95 per cent confidence interval with tests of hypotheses at
the .05 level, showing nonrejection of hypothesized mean mwlying within the interval
but rejection of hypothesized mean pe lying outside the interval.

suggested as being preferable to the others, then obviously the practical

alternative to a whole series of tests would be to obtain a single confidence

interval. You should satisfy yourself that examples taken up in the

previous chapter could just as easily have been handled by the con-

fidence-interval method.

Assumptions Made for Confidence Intervals. The use of confidence inter-
vals does not free us from the necessity of making assumptions about

the nature of the population and the sampling method used. Basically,

the assumptions for a confidence-interval problem are the same as those

required for any tests which are being implicitly made except that it is

of course unnecessary to hypothesize a particular value for the parameter

being estimated. Random sampling will always be assumedin this text.

Also, if a normal sampling distribution is being used we must either

assume a normal population or have a sufficiently large sample. If the ¢
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distribution or some other sampling distribution is to be used, the usual
assumptions required in comparable tests would have to be made.

12.3. Confidence Intervals for Other Types of Problems

The discussion of confidence intervals has so far involved only instances
where the parameterbeing estimatedis a population mean and is known.
If the problem is altered, procedural modifications are completely straight-
forward, and the basic interpretation of confidence intervals and their
relationship to tests of hypotheses remains the same. A confidenceinter-
val for a parameter is always obtained by taking the estimate of the
parameter and enclosing it in an interval the length of which is a function
of the standard error of the estimate.

If the ¢ distribution must be used because o is unknown, we simply

make use of the estimate of the standard error and replace the multiple

obtained using the normal table by the comparable figure in the ¢ table.

Thus, for a 99 per cent confidence interval for the mean and 24 degrees
of freedom we would get

X + 2.797%¢¢ = X + 2.7972
/N—1

Had the example in Sec. 11.3 of the previous chapter been worked by

means of a 99 per cent confidence interval, the result would have been

52 + 2.797 (Fa) = 52 + 6.85
v/24

Therefore the 99 per cent confidence interval goes from 45.15 to 58.85.

Wesee that the above result is consistent with that previously obtained

(i.e., .0O1 < p < .01) in that the hypothesized u of 60 is actually out-

side the interval computed, and therefore we know that the hypothesis

should have been rejected at the .01 level (for two-tailed test).

Similarly, we can obtain confidence intervals for proportions. Replac-

ing X by p, and ¢/+/N by Vpiqu/N, the 95 per cent confidence interval
would be

 

 

| PuduDs + 1.96 NT

We encounter a difficulty here which did not occur when a particular

value for p, could be hypothesized. Since p, will obviously not be

known, it becomes necessary to estimate the standard error. Two

6 In some instances, however, such as in the case of confidence intervals for correla-

tion coefficients, the point estimate may not be exactly at the center of the interval.



164 INDUCTIVE STATISTICS

simple procedures, one of which is more conservative than the other,

can be recommended.” First, since the sample size must be large in

order to justify the use of normaltables, p, will ordinarily be a reasonably

good estimate of p.. Therefore if we simply substitute p, for p. (and

gq: for gu) We can obtain an interval which will usually be a close approxi-

mation to the correct one. Thus, in the example in Sec. 11.4 of the

previous chapter, we would have obtained the 98 per cent confidence

interval as follows:

pe + 2.33 (Po = 55 + 2.33, [LSENESS) = 5S + 0.1037

If one objects to the use of an estimate of the standard error without

in some manner correcting for the additional sampling error thereby

introduced, he may prefer a more conservative method of obtaining

the interval. Since the product pg reaches a maximum value when

p =q =.5, it follows that the widest possible confidence interval will

be obtained when the value .5 is used as an estimate of py. Since a

narrow intervalis ordinarily desired, we are being conservative by obtain-

ing an interval which is as large as it could possibly be regardless of the

value of p,. Using this more conservative method we obtain a some-

what different interval

 

(.5)(.5)
59 + 2.33 195 59 + 0.1042 

Notice that this second interval is only slightly wider than the first.

Whenever .3 < p <.7 the two methods will yield approximately the

same results.

*If p, turns out to be either very large or very small, the conservative

method may give an interval which is far too wide. If one hesitates

to use the first method in which p, is estimated by p,, it is possible to

combine the two methods in order to obtain a more reasonable interval

whichis nevertheless a conservative one. Wefirst make use of the more

conservative method to obtain an approximate confidence interval.

Suppose this interval runs from .10 to .25 with p, being .175. We would
then be reasonably sure that the actual value of p, is somewhere within

this approximate (and conservative) interval. In computing the more

exact interval, we now take as our estimate of p, the value within the

approximate interval which is closest to .5. In the above numerical

example, we would select the value .25 since the use of this value in the

formula for the standard error will result in a wider interval than will

7 For a third and somewhat more accurate procedure see [2], p. 231.

8 You should convince yourself that this is true.
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any other value within the interval .10 to .25. In other words, instead
of using our actual p, (i.e., .175), we select the largest value which we
think p, is likely to have. We therefore compute the 95 per cent con-
fidence interval as follows:

175 + 1.96 &25)¢-75)

The above interval will be wider and therefore more conservative than
that obtained by using p, under the radical, and yet it does not involve
the use of the value .5, which we suspect is far too large.

Confidence intervals are commonly used in several other types of
problems which will be taken up subsequently. As will be indicated in
the next chapter, however, there are a numberof problems involving two
or more samples where there seem to be relatively few practical socio-
logical applications in which confidence intervals are used. Therefore,
confidence intervals will not be discussed in connection with every test
taken up in the following chapters. You should be alert, however, for
possible uses of confidence intervals in your own field of interest.

12.4. Determining the Sample Size

In keeping with the practice of introducing a few new ideas at a time,
we have postponed the question of how it is that one’s sample size can
be determined in advance of data collection. One of the most frequent
questions askedof thestatistician is, “How many cases do I need?” The
answer depends, of course, on what one wishes to do with the sample
results. More specifically, there are several facts which must be deter-
mined before an adequate answer can be given. Generally, what we
must do is to work backwards from the data we expect to get in order to
determine the unknown sample size. Thus far we have been taking the
sample size as a known quantity. Statistics such as the sample mean
and standard deviation can be obtained from the sample results. Once
we have decided on the significance level of a test or the desired con-
fidence level, we can then put all of these values into a formula and deter-
mine the width of the confidence interval or whether or not to reject a
null hypothesis. In the kind of problem we are considering in this sec-
tion, however, the sample size will be unknown. This means that in
order to solve our equation for N we must know each of the other quan-
tities in the formuia. Once we have put these values into the equation,
solving for N becomesa straightforward problem of algebra. Weshall
make use of a confidence-interval problem in orderto illustrate the process.
Suppose we wish to know how many cases will be required to estimate

the mean numberof years of schooling completed by persons of foreign-
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born parentage. Before we can determine the answer to this question,

we shall need to have the following pieces of information: (1) the con-

fidence level to be used, (2) the degree of accuracy within which we wish

to estimate the parameter, and (3) some reasonable estimate of the values

of any parameters which may appearin the formula. For example, we

may wish to estimate the mean to within an accuracy of +.1 year of

schooling and to make use of a 95 per cent confidence interval. Notice

that both of these quantities must be specified since, for example, we can

always obtain accuracy to within +.1 year if we permit ourselves a high

risk of error. We now make use of these values in the formula for a

confidence interval

¥ + 1.96 —
4/N

ee

Ll

 

Knowledge of the level of confidence desired has enabled us to insert the

value 1.96. Since we wish accuracy of +.1, or a total interval width

of .2, we know that the quantity 1.96 o/1/N must equal .1. Although

the value of X will be unknown, we see immediately that it is irrelevant
in this problem since we wish to obtain an interval of a certain width

regardless of the value of X.
Suppose we nowtry to solve the equation

A = 1.96 “—
«/N

for N. Thereis still one unknown quantity, the value of c. But how

can we obtain o before the data have been gathered? Clearly, its value

must be estimated by some method which in a sense goes beyond the

data we shall collect. Essentially, we have to make an enlightened guess

as to its value by using either expert knowledge, the results of previous

studies, or conceivably a pilot study of some sort. Usually a pilot study

will be too expensive and reliance must be placed on either of the remain-

ing methods. Admittedly, the most satisfactory procedure would be to

determine o exactly, but if this could be done there would probably be

no point in drawing a sample at all. Notice that the type of estimation

necessary in this kind of problem is completely different from that used

in estimating o from sample data. Therefore there is no point in esti-

mating o with é or in using the ¢ distribution. If we are going to guess

anyway, we might as well guess the value of o rather than that of ¢ ors.

In this example suppose that on the basis of the best available informa-

tion we estimate that o will be approximately 2.5 years. Makinguseof
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this value and solving for the required sample size we get

2.0

VN

and N = 2,401

Notice that we solved for N by placing all quantities except ~/N on one

side of the equation and then simplifying. Finally, we squared both

sides of the equation in orderto get rid of the radical.
To be sure, we can only obtain an approximate value for the desired

sample size since parameters will have to be estimated. There would

certainly be no point in taking exactly 2,401 cases, for example. Never-

theless, such an approximation will usually give far better results than

some intuitive hunch about the numberof cases necessary. In practical

applications we usually study more than one variable at a time, a fact

which may complicate the picture considerably. Weare also ordinarily

limited by available funds and often have to settle for whatever degree

of accuracy we can get. Even so, it will often be helpful to compute the

needed sample size as a guide to one’s research design.

Although the question of determining sample size will not be discussed
in subsequent chapters in connection with other statistical procedures,

you will find several exercises which require you to estimate N for other

kinds of problems. Inall cases, extensions are straightforward although

the algebra may at times becomefairly involved.

GLOSSARY

Confidence interval

Degrees of freedom
Efficiency of an estimate
Interval estimate

Point estimate

Unbiased estimate

EXERCISES

1. Obtain confidence intervals for Exercises 3, 4, and 5 of Chap. 11. Are your
results consistent with those of these previous exercises? How do you know?

2. You take a random sample of 200 families within a community and find that in
36 per cent of these families the husband makes over half of the financial decisions.
What is the 99 per cent confidence interval for the percentage of families in which
the husband makes over half of such decisions? In what specific sense does your
interval give you implicit tests of hypotheses?

3. How manycases will you need to establish a 99.9 per cent confidenceinterval for

the mean, if the total width of the confidence interval is to be no more than $500 and
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if the standard deviation is estimated tc be $1,300? What would you have to assume

in obtaining such an interval?

4. If you suspect that the proportion of homeownersin a certain residential com-

munity is approximately .75, how many cases will you need in order to obtain a

95 per cent confidence interval which will be no wider than .03 when you express the

width in terms of proportions? Suppose the proportion of homeowners wereesti-

mated to be .5. How many cases would then be needed?
5. Using the fact that for normal populations the sampling distribution of the

medianhas a standarderror of 1.2530/+/N, we can place a confidence interval about

the sample median. Suppose in Exercise 3 above that you wished to place an interval

of the same width about the sample median. Using the sameestimate of the standard

deviation, how many cases would you need? What does your result show about the

relative efficiencies of the mean and median?
*6. It has been argued that a 95 per cent confidence interval represents a series

of implicit two-tailed tests at the .05 level. Explain why a 95 per cent confidence

interval does not represent implicit one-tailed tests at the .05 level.
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Chapter 13

TWO-SAMPLE TESTS: DIFFERENCE OF

MEANS AND PROPORTIONS

In Chap. 11 tests involving a single sample were discussed. It was

found that such tests were not very practical to the social scientist
because it is not usually possible to find an hypothesis whichis specific

enough to predict a value for u or py. When interest is focused on com-

parisons between several categories or samples, however, it becomes

unnecessary to specify the absolute levels for either group. Instead,

one can simply test the null hypothesis that there are no differences

between them. For example, it would be extremely difficult to predict

the incomelevel of Negroes in Detroit or the prejudice level of whites in

that city. But suppose one were interested in testing the hypothesis

that the average income of Negroes is the same as that of foreign-born

whites or that Jews have the same amount of prejudice toward Negroes

as gentiles. It is this latter type of hypothesis which will be considered

in this chapter.

In a social science such as sociology, interest is likely to be focused on

establishing relationships between variables. ‘This is in contrast to the

fact-finding type of survey in which, as we have seen, point and interval

estimation of a single parameter may be of primary concern. Whenever

comparisons are made between two samples, we have the most simple

kind of problem in which two variables can be related. Up to this point

we have been concerned with only one variable at a time. This is per-

haps the main reason why the tests discussed so far have not been too

useful to sociologists. In this chapter we shall be taking up tests in

which a simple dichotomized variable can berelated to a second variable.

For example, in comparing Jews and gentiles with respect to prejudice

weare relating religion to prejudice. Similarly, one might wish to com-

pare the two sexes with respect to “other directedness”’ or various other

personality characteristics. Comparisons may also be made between
169
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a control group and an experimental group into which some variable

has been introduced. In subsequent chapters tests involving more than

two samples will be discussed.

13.1. Difference-of-means Test

In order to extend the single-sample means test to a test in which a

comparison can be made between the means of two samples, we must

again makeuse of the central-limit theorem and the law of large numbers.
An important theorem, derivable from the central-limit theorem, can

be stated as follows: If independent random samples of sizes N, and

No, respectively, are drawn from populations which are Nor(u1,017) and

Nor(u2,022), respectively, then the sampling distribution of the difference

between the two sample means (Xi — X2) will be Nor(u1 — me, o12/N1 +
g,?/N2). As was true in the case of single samples, this theorem can

be generalized in the case of large samples to cover any populations with

means of uw; and we and variances o,? and o,? respectively. As Ni and N2

becomelarge, the sampling distribution of X; — X2 approaches normality
as before. Let us now examine the above theorem moreclosely.

Reference is made to independent random samples. This means that

samples must be selected independently of each other. The fact that a

sample is random assures independence within the sample in the sense

that knowledge of the score of the first individual selected does not help

us predict the score of the second. This is not what is meant by the

phrase “independent random samples.’”’ Not only must there be inde-

pendence within each sample (assured by randomness), but there must

be independence between samples. For example, the samples cannot be

matched, as might be the case in comparison between control and experi-

mental groups. If the two sexes were being compared, one could not

use the difference-of-means test on samples composed of husband and

wife pairs. This requirement that samples be independent of each other

is extremely important but often overlooked in applied research. If one

is comparing two subsamples drawn from a single larger random sample,

this assumption of independence between subsamples will be met since

all cases in the total sample will have been selected independently of

each other. Usually in social research we draw a single larger sample

although for purposesof analysis we may conceptualize the data as having

come from several distinct and independent samples. In most instances

the problem of independence between samples will not arise unless we

have deliberately matched the samples or unless we have made use of

a sampling design which does not yield random samples.

In the above theorem weare told that if we were to continue sampling

indefinitely, each time selecting two samples and plotting the difference
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between their means, the sampling distribution of this difference between
means would be normal or approximately normal. You should attempt
to picture exactly what is occurring here. Keep in mind that as a social

scientist you will actually obtain only two samples and single difference

but that here we are dealing with a hypothetical distribution of all pos-

sible differences. Since the sampling distribution is for a difference

between sample means, the mean of the sampling distribution is given

by the difference between two population means rather than either of

them separately. In the special case where u; and pe are equal, the mean

of the sampling distribution will be zero. If ui > pe, we expect that most

X,’s will be larger than the comparable X.’s and the meanof the sampling

distribution will therefore be positive. For example, if wu: = 60 and

wo = 40, the distribution of X, — X, will have 20 as its mean value.

It is not quite so easy to see why the variance should be o12/N,; +

g27/Ne, or the sum of the variances of the sampling distributions for the

separate means. Obviously, a difference of variances o12/N,1 — o22/N2

could not be used since it would then be possible to obtain a zero or

negative variance for the sampling distribution. But the variance

o1°2/Ni + o2?/N2 is larger than either of the variances o12/N, or o2?/N2.

Why should this be the case? Although a complete justification for the

formula cannot be given without resorting to mathematical reasoning,

somesort of intuitive explanation is possible. In essence, we expect the

standard error for the difference of means to be larger than either of the

separate standard errors because there are now two sources of error, one

in each sample. Thus about half the time the two X’s will be in error

in opposite directions. For simplicity let us assume that uw; = we. Then

if X, is larger than uw; and X2 smaller than pe, a large positive number

will result on subtraction because the errors are in opposite directions.

For example, if X; is 20 greater than u; whereas X2 is 15 less than po, the
resulting difference X; — Xe will differ from yi: — pw. by 35, thus com-
pounding the errors involved. Similarly if X, is small and X,2 large,

a substantial negative difference may occur. In other words, weshall

get relatively large differences between sample means quite frequently

since each mean will vary independently of the other. Therefore the

sampling distribution of a difference will have a larger standard deviation

than either of the separate sampling distributions. It is interesting to

note that the sampling distribution of the swm of sample means has

exactly the same standard deviation as does that for differences. Why
should this be the case?

Weshall now take up an exampleillustrating the use of the difference-

of-means test. The case in which the o’s are known will not be treated

since this problem is straightforward and rather impractical. Instead,



172 INDUCTIVE STATISTICS

it will be presumed that the o’s are unknown. Twospecial cases will

be considered. In model 1 it will be assumed that o1 = o2; in model 2

the two o’s will be assumed to be unequal. Obviously, these two models

coverall possible alternatives.

Problem. A comparison is made between two types of counties,

those which are predominantly urban and those which are primarily

rural. The counties are compared with respect to the percentage of

persons voting Democratic in a presidential election with the follow-

ing results:

Urban counties Rural counties

N, = 33 No = 19

X, = 57% Xo = 52%

8; = 11% 82 = 14%

Do the data give reasonable grounds for concluding that there is a

significant difference in voting preference between these two types

of counties? Assume that the counties have been randomlyselected

from list of all counties in the Far West.

Model 1: 01 = 02

1. Assumptions.

Level of Measurement: Percentage of Democratic vote an interval

scale

Model: Independent random samples

Normal populations, o1 = og =¢

Hypothesis: w14 = pe

The normality assumption can be relaxed whenever the N’s are large.

The assumption that o1 = o»2 actually can be tested separately by means

of the F test which will be discussed in Chap. 16. This test involves a

comparison of the two sample standard deviations. If s; and s2 do not

differ markedly, one cannot reject the hypothesis that o1 = oo. If the

assumption of equal standard deviations appears to be reasonable accord-

ing to the results of the F test, it will be moreefficient to take advantage

of it in estimating the common value of «. Given the assumption that

both populations are normal, the additional assumptions of equal means

and equal standard deviations amount to postulating that the two popu-

lations are identical.

Since we are interested in seeing whether or not there is a difference
between the two types of counties, our null hypothesis will be that there

is no difference. Presumably, we suspect that there will actually be a

difference and therefore set up an hypothesis which we wish to reject.
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In this instance, we can legitimately refer to the hypothesis as being a

“null” hypothesis indicating no relationship between the variables

“type of county” and “voting preference.”’ It is conceivable that we
might have been in a position to specify that the difference between

population means could be expected to be some constant other than zero.
For example, the hypothesis might have taken the form uw: — pe = 10

if it had been predicted that the Democratic vote would be 10 per cent
higher in urban counties. In the social sciences we are seldom in a
position to be this specific, however.

2. Sampling Distribution. The ¢ distribution will be used since the
o’s are unknownandsince the total numberof cases is muchless than 120.

3. Significance Level and Critical Region. Let us select the .01 level

and a two-tailed test.
4. Computing the Test Statistic. It will be remembered that ¢ is com-

puted by taking the difference between the obtained sample value and

the mean of the sampling distribution and then dividing by an estimate

of the standard error of the sampling distribution. We are here con-

cerned with the difference between sample means Xi — Xe. Since the

mean of the sampling distribution is wi — we we obtain the following

expression for¢: ;

_ (Xy — Xe) — (us — pe) (13.1)

OX,—X,
t 

where ¢x,_x, 18 an estimate of the standard error of the difference between

sample means. Since under the null hypothesis it has been assumed

that wi = me, the expression for ¢ in this speczal case reduces to

i= xX17 xX2

OX,—X»

The resemblance between the above numerator and the one used in the

single-sample test is more or less coincidental, a result of the fact that

the »’s dropped out under the null hypothesis. You should not draw

the conclusion that the u in the first type of problem has simply been

replaced by the sample mean of the second sample. Actually, the expres-

sion (X; — Xe) has replaced X, (u: — wu) has replaced yu, and éxz,_x, has

replaced éx.

It now remains to evaluate éz,z,. We know, of course, that

oy o2
OX,—X, = Ni + Nz

Since in this case ¢; = a2 we can indicate their common value as o and
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simplify the expression for ox,—x, as follows:

o? o 1 1 Ni+ Ne_ Po +2 = ae 13.2 

The common variance o? can now be estimated by obtaining a pooled

estimate from both samples. Since the two sample variances will ordi-

narily be based on different numbersof cases, we can obtain an estimate

of o? by taking a weighted average of the sample variances, being careful

to divide by the proper degrees of freedom in order to obtain an unbiased

estimate. Taking the square root we get an estimate ¢ as follows:

A N81? + N82?
¢=a\y,+N,2 (13.3)

Ni M1

Since Nys;? = > (X;— X1)? we may replace Nis,2 by > 217. If we do
i=1 i=1

the same for Nos_” we get
 

Mi No

», wy? > L2"
v=1 i=1

Nit N2—- 2
 

Thus if we take the sum of squares about the mean of thefirst sample and

add to this the sum of the squared deviations about the second sample

mean, finally dividing by Ni + Ne — 2, we obtain a pooled estimate of
the common variance.

Notice that the symbol ¢ is now being used to represent a different

estimate from that discussed in the previous two chapters. The symbol

“Ais often used in the statistical literature to indicate an unbiased esti-
mate. Since we have lost 2 degrees of freedom, one each in computing

s, and sp from X; and X2, the total degrees of freedom becomes N, +
N,— 2. We have used both samples in obtaining our estimate, having

given greater weight to the variance from the larger of the two samples.

Such a pooled estimate will be more efficient than estimates based on

either sample alone. As a computational check, the numerical value of ¢

will ordinarily be between that of s; and sz.

Finally, we obtain an estimate of ox,_x, by taking our estimate of o

and multiplying by. eee
LAV 2

eg a (Nasi?+ + (13.4)
8s NNFN. — 2 VMN, :

 

At this point the formula seems quite formidable. You should review
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the algebraic steps discussed above in order to convince yourself that

the formula is not as complicated asit first appears.

In our numerical example we obtain the following results:

oe eee + 19(196) /83 + 19
OX,—-X, =

 

 = (12.42)(.288) = 3.58

 

33 +19 —2 33(19)

Therefore, t= a — Xs) — 0 _— _ 1.40
GX,—x, 3.58

5. Decision. Since a pooled estimate of the common standard devi-

ation was used, the degrees of freedom associated with ¢ will be Ny +

Ne — 2, or 50. We found that ¢ = 1.40, the probability of which would

be considerably greater than .01 if all the assumptions were correct.

We therefore decide not to reject the null hypothesis at the .01 level,

and we conclude that there is no significant difference in voting pref-
erences in Far West urban and rural counties.

Model 2: o1 ¥ o2. Now let us see what modifications are necessary

when it is impossible to assume that the two populations have the same

standard deviations. Presumably, we have tested and rejected the

hypothesis that o1 = a2. It is now no longer possible to simplify the

formula for ox,—-x, by introducing a common value for oa, nor is it pos-

sible to form a pooled estimate. In this instance we estimate the two

(different) standard deviations separately. We estimate o1?/Ni with

$12/(Ni _ 1) and o2"/Ne with S2?/(Ne _ 1), obtaining

OX vi: —1°N—1 (13.5)

In the example used above

éx,-x, = V126g +1969 = +/3.78 + 10.89 = V/14.67 = 3.83
57 — 52

 

 

Therefore, t=

Thus, the results obtained in the two different models are not greatly

different.

Although the procedure used in model 2 is both conceptually and

computationally simpler, the estimate of ox,_x, is not quite as efficient

as the one previously obtained. Also, even if we assume normal popu-

lations, model 2 is somewhat questionable in instances where the N’s

are not too large or where the sample sizes are very different. For

example, if the first sample were unusually small it would be highly

misleading to use Ni + Ne — 2 as the degrees of freedom since s; would

be a very poor estimate of o; and since the value of sy2/(Ni — 1) would

ordinarily be much larger than that of so2/(N2— 1). It has been sug-
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gested that unless the N’s are large the following expression be used to
obtain an approximation to the correct degrees of freedom.

[s1?/(N1 — 1) + 82°/(N2 — DP | _9
[si?/(Mi1 — 1)}? 1/(N1 + 1) H+ [s2?/(M2 — 1)1/2 + 1) 43.6)

13.6

df = 

In the above example, therefore, we obtain

(14.67)?
df = (3.78)2(144) + (10.89)2(140)

2 = 33.89 — 2 = 31.89 ~ 32 

Notice that some of the quantities in the formula for degrees of freedom

have already been computed. From the ¢ table, using 32 degrees of

freedom, we see that the null hypothesis should not be rejected at the
.O1 level.

As far as assumptions are concerned, the only difference between

model 1 and model2 is the assumption that ¢; = o2. Notice that there

is nothing in the second procedure which requires that the standard
deviations be unequal. If they happen to be equal (or nearly so), the

second model will simply beless efficient. It might seem as though the

second procedure is generally preferable since it does not require the
assumption that o; =o. But this second model, as we have seen,
requires approximations for the degrees of freedom. For large samples,
the two methods will usually yield similar results 7f the standard devi-
ations are in fact equal since both sample standard deviations will ordi-
narily be good estimates of the commono.

If the o’s for both populations happen to be known,their values can
be placed directly in the formula for oz,z, since no estimation will be
necessary. Z can then be computed and the normal table used. With
knowno’s there will of course be no need to distinguish between models
land 2. Needless to say, instances in which both o’s are known will be
exceedingly rare in practical research.

13.2. Difference of Proportions

As was true in the case of tests involving single-sample proportions, a
difference between two proportions can be treated as a special case of a
difference between two means. If we are comparing two independent
random samples with respect to the proportion of prejudiced persons, we
can formulate the null hypothesis that the proportions, p,, and p,,, respec-
tively, of prejudiced persons in the two populations are equal. Since
it has already been shownin the case of proportions that o1 = Wpudu,

and o2 = W/Puduy) it follows that the two population standard deviations

must also be equal. The following example therefore makes use of

 



TWO-SAMPLE TESTS: DIFFERENCE OF MEANS AND PROPORTIONS 177

essentially the same procedures as used for the first model in the case of
the difference-of-meanstest.

Problem. Suppose a comparison of recreational habits is made
between assembly-line workers and persons whose work is non-
repetitive and not paced by the machine. Let us assume that the
researcher suspects that assembly-line workers wiil be more inclined
to select “passive” spectator-type forms of recreation. Among a
random sample of 150 assembly-line workers at a given plantit is

found that 57 per cent list passive forms of recreation as their

favorites. In the second sample, also selected randomly, 46 per

cent of the 120 workers list passive forms as favorites. Is there a

significant difference at the .05 level?

1. Assumptions.

Level of Measurement: Typeof recreation is a dichotomy

Model: Independent random samples

Hypothesis: pu, = Pu, (Implies o1 = a2)

2. Sampling Distribution. Since the N’s are both relatively large the

sampling distribution of the difference between proportions will be

approximately normal with mean p,, — p., = 0 and a standard deviation

of
 

 — a1" oo" —_ Pudu Purdue
Tps,—Pey ~ Ni + N> —_ J Ni + Nz (13.7)

where qu, and qu, are equal to 1 — p,, and 1 — p,,, respectively. !

3. Significance Level and Critical Region. The problem specifies that

we are to use the .05 level. A one-tailed test is indicated since the direc-

tion of the difference is predicted ahead of time. Therefore any positive

value of Z greater than 1.65 will indicate that results are so improbable

under the assumptions that the null hypothesis may berejected.

4. Computing the Test Statistic. Since by hypothesis p,, = pu, it fol-

lows that o1 = o2 = o, and the special formula

Nit Ne
ite

ODs,—Poy —= 0 NiN»2

can be used. Previously in the single-sample test for proportions it was

possible to avoid estimating o since the actual value of p,, was hypothe-

sized. This time, however, the hypothesis merely states that pu, = Du,

without specifying what the numerical value of either of these proportions

actually is. For this reason we need a pooled estimate of the standard

error. Rather than directly obtaining a weighted average of the two

1 If samples are small, we use Fisher’s exact test described in Chap. 15.
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sample variances, which is what we did before, we can obtain a slightly
better estimate by computing a pooled estimate (f.) of pu. We then

obtain g, by subtraction. Since

Puqu

we can set G¢ = /Pudu

Ni

+

Np

Nit Ns:Th 4 = ¢ ,/—_--_— = D0 —AT_AT.us Op,.—P, 9 NiN»2 Vpwdu Nw»

 

 (13.8)

In order to obtain j,, a weighted average of the sample proportions is

taken as follows:
A Nips: + NeDe,

Pu Ni+ Nz
 (13.9)

Notice that the numerator of the above expression is simply the total

number of individuals in both samples preferring passive formsof recrea-

tion. Here we do not lose 2 degrees of freedom as was the case with the

comparable difference-of-means test. In the latter test we lost 1 degree

of freedom in computing each s since deviations were taken about the

sample means, whereas the p’s and q’s can be computed without having

to make use of other sample statistics. We therefore get

p, < 150(.57) + 120(.46) 
“= pot i020C

150 + 120d j =an bry,

=

V(-521)(.479)Jee(150) (120)
= (.4996)(.1225) = .0612

Hence Z= (Ds: — Ps) — 90 _ .57 — .46 = 1.80 
bp.—Pa 0612

5. Decision. Since with a one-tailed test the probability of obtaining

a value of Z as large or larger than 1.80 is .036 if the null hypothesisis

actually correct, we may reject the null hypothesis at the .05 level. We

conclude that there is a significant difference with respect to preferences

for passive forms of recreation between the two types of employees at

this plant.

It should be mentioned at this point that there are several alternative

kinds of tests, the most important of which is the chi-square test to be

discussed in Chap. 15, which can be used in place of the difference-of-

proportions test. Since the use of the difference-of-proportions test 1s

restricted to two samples and to a dichotomized variable, it is not as

practical as the chi-square test which can be employed on three or more

samples as well. One advantage of the difference-of-proportions test,

however, is that with suitable modifications it can be used when cluster

or area samples have been selected. These modifications required for

cluster samples are unfortunately beyond the scopeof this text.
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13.3. Confidence Intervals

In the case of single-sample problems we saw that the construction of
confidence intervals is often a much more useful procedure than is the
testing of hypotheses. In sociological research, confidence intervals are
seldom used as alternatives to two-sample tests, however. The reason
for this is that we are usually interested in establishing the existence of a
relationship between two variables,i.e., a significant difference. Thereis
less concern with estimating the actual magnitude of the difference.
Seldom does a social scientist attempt to conclude that the difference
between two means is probably between 17 and 28, for example. Heis
usually satisfied when he finds anysignificant difference at all. This
state of affairs undoubtedly reflects the immaturity of the social sciences
and the preponderance of exploratory studies. Perhaps as hypotheses
become more precise there will be a greater need for confidence intervals
in two-sample problems.
The procedure used in establishing confidence intervals is a straight-

forward extension of that previously discussed. One simply takes the
sample results, in this case a difference between sample means, and places
an interval about X, — X. which is an appropriate multiple of the
standard error. For example, if a 95 per cent confidence interval were
desired we would obtain an interval as follows:

(X, — X2) + 1.960x,_x,

If an estimate of the standard error and the ¢ distribution were required,
the formula would be modified in the usual manner.

13.4. Dependent Samples: Matched Pairs

Sometimes it is advantageous to design a study in which samples are
not independent of each other. One of the most common types of
problemsof this sort is one in which cases in the two samples have been
matched pair by pair. There may be experimental and control groups,
members of which have been matched on relevant characteristics. Or a
simple ‘‘before-after’’ design may be used in which the same persons are
compared before and after an experimental variable has been introduced.
In this latter instance the “two” samples consist of the very same
individuals. Obviously such samples are not independent of each other;
knowing the scores of the first membersof each pair(first sample) would
help to predict the scores of the second members. In fact the whole aim
of matching, or of using the same individuals twice, is to control as many
variables as possible other than the experimental variable. The attempt
is made to make the two samples as muchalike as possible, much more
alike than if they had been selected independently.
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A researcher might be tempted to use a difference-of-means test in such

problems. But it should be quite apparent that this procedure would be

unjustified since we do not have 2N cases (N in each sample) which have

been independently selected. Since samples have been deliberately

matched, any peculiarities in one sample are most likely to occur in the

other as well. In reality there are only N independentcases, each “case ”?

being a pair of individuals, one from each sample. Therefore if we treat

each pair as a single case, we can legitimately make statistical tests

provided other required assumptions are met. Instead of making a

difference-of-means test we can make a direct pair-by-pair comparison

by obtaining a difference score for each pair. If we use the null hypothesis

that there is no difference between the two populations, thereby assuming

that the experimental variable has noeffect, we can simply hypothesize

that the mean of the pair-by-pair differences in the population (up) is

zero. The problem then reducesto a single-sampletest of the hypothesis

that Mbp = Q.

Problem. Suppose an action group is interested in influencing

urban voters to vote in favor of fluoridation proposals in the com-

ing elections. Cities within the state are carefully matched on

variables thought to be relevant, and two different techniques for

influencing the voters are attempted. The technique for group A

involves an indirect approach through influencing city leaders but

making no direct mass appeal. In cities of group B the organization

acts as a pressure group and makesa direct appeal to the voter

as an outside organization. The following figures indicate the

percentages of voters favoring fluoridation. Is either technique

superior?

 

 

Pair no. |Group A, %| Group B, %| Difference, %

1 63 68 5
2 Al 49 8
3 54 53 —1
4 71 75 4
5 39 49 10

6 44 Al —3
7 67 75 8
8 56 58 2

9 46 52 6
10 37 49 12
11 61 55 —6
12 68 69 1

13 51 57 6

52   
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1. Assumptions.

Level of Measurement: Per cent voting is an interval scale
Model: Random sampling

Population differences distributed normally
Hypothesis: up = 0

It must be assumed that the pairs appearing in the samples have been
selected randomly from some population of pairs. As will be discussed
below, this assumption sometimescauses a difficult problem of interpreta-
tion. Since it is the differences for each pair in which we are directly
interested, it must be assumed that the population of all possible dif-
ferences is normally distributed. If N were large this assumption could
be relaxed.

2. Sampling Distribution. Since the population standard deviation
of differences is not given, it will be necessary to use the ¢ distribution
with N — 1 or 12 degrees of freedom. Notice that this is half the degrees
of freedom that would have been used hada difference-of-means test been
possible.

3. Significance Level and Critical Region. Let us use the .05 level and
a two-tailed test. Therefore, for 12 degrees of freedom, if |t| > 2.179
weshall reject the null hypothesis.

4. Computing the Test Statistic. First we find the mean of the sample
differences by adding the difference column and dividing by N (= 18).
The sample standard deviation of differences is also obtained.

Xp = 5243 = 4.0

_ (Xn — Xv)? B28 |sp = J W = (Fg = 5.023

Xp — KBD 4.0 — 0
Therefore {= —— — =

sp/VN —1  5.023/+/12

5. Decision. With 12 degrees of freedom, a probability of .02 corre-
sponds to at of 2.681. Wetherefore decide to reject the null hypothesis,
and noting the direction of the difference we conclude that method B is
superior to method A.

 

 

2.76 

*13.5. Comments on Experimental Designs

Although it is not possible in a general text such as this to gO very
deeply into questions of design of experiments, a few comments are in
order.?- You may have asked yourself why it is that one would ever
want to make use of matched samples in preference to independent

’ For further discussion of experimental designs, see any standard text on research
methods. In particular, see [2], chap. 4.
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samples. Clearly, degrees of freedom are sacrificed. Since the use of

matched samples requires cutting the numberof cases in half (as far as

the test is concerned), don’t we lose more than we gain? This all depends

on how successful we have been in matching cases. The purpose of

matchingis, of course, to minimizedifferences due to extraneousvariables.

What this meansis that careful matching should reduce considerably each

of the pair-by-pair differences. In other words, the better the matching,

the smaller the standard deviation of differences. Thus although the

numberof cases is reduced, sp should also be reduced. If there is a large

reduction in the standard deviation of differences relative to the loss in

cases, then we gain by matching. Since cases will ordinarily be lost in

the matching process (see below), the moral is this: don’t match unless

you are quite sure you havelocated the important relevant variables. If

you are studying delinquency and match according to hair color, you will

probably be worse off than if you didn’t match atall.

Methods texts usually mention the fact that there is likely to be

considerable loss of cases due to the matching process. That is, a large

numberof cases will have to be eliminated because there are no similar

cases with which they can be paired. Such an attenuation of cases can

play havoc with the randomness assumption. A social scientist may

start with a random sample of 1,000 cases, ending up with 200 which are

matchable. In so doing, he is probably biasing his final sample con-

siderably since he is undoubtedly eliminating many of the more extreme

or unusual cases which cannot be matched. Thusit is often difficult to

determine the nature of the population to which oneis generalizing. For

this reason, extreme caution should be used in generalizing results. This

type of designis therefore likely to be most useful in studies in which there

is minimal interest in generalizing to a specific finite population such as

native whites in Chicago.

In connection with such an attenuation of cases and the resulting

difficulties in generalizing to a specific population, it is sometimes claimed

that there is no real interest in the population itself since the researcher’s

concern is primarily with establishing “relationships between variables.”

For example, a social psychologist may begin by using only those white

male college freshmen taking introductory psychology who volunteer as

subjects for study. Still further selectivity may occur as some subjects

are eliminated in the matching process. Suppose a relationship is then

found between the experimental variable and some dependent variable.

It would be tempting to conclude that the samerelationship would hold

regardless of the population studied, i.e., that it is a universal relationship.

If this should indeed prove to be the case, the social scientist may very

well assert that he has no interest in generalizing to any particular finite

population. But on what basis can he assume that the relationship
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foundfor such a very restricted population will hold for other populations
as well? Obviously, the experiment must be performed on a large
numberof very different populations before such an assertion can legiti-
mately be made. Although one may gain control over a number of
variables in a carefully designed experiment, thereis practically always a
comparable loss in the degree to which results can be generalized to more
inclusive populations. It is naive in the extreme to expect that one can
be interested only in relating variables without having to specify the
nature of the population within which such relationships can be expected
to hold.

In pair-by-pair matching it is desirable to randomize within each pair
by flipping a coin to decide which memberof the pair should be assigned
to the experimental group and which to the control group. This pro-
cedure makesinterpretation of results more meaningful in the sense that
possible self-selection can be ruled out. For example, in the attempt to
influence voters on the fluoridation issue, suppose community leaders
were permitted to choose which of the two types of influences they
preferred or which they thought would be mosteffective in their particu-
larcommunity. It is possible that all or most communities with a certain
type of leadership might receive the indirect approach, whereas those
with another type of leadership would receive the direct method. We
would then have an uncontrolled variable (leadership type) the effects
of which would be hopelessly confounded with those of the experimental

variable. Specifically, suppose group B turned out to have the higher

percentage of favorable votes but also the more democratic leadership

because of the fact that democratic leaders tended to favor this approach

for their communities. How would we know whetheror notthe difference

in vote was actually due to the superiority of method B orto the leader-

ship differences between the two communities?
It might be argued that leadership type should have been controlled

in the matching process so that two communities in any given pair would
have the same type of leadership. But it is obviously impossible to
control for all relevant variables in the matching process, not only because
of practical difficulties but also because of our limited knowledge of which
variables are actually the most important. At some point we must admit
that there may be important variables, many of which are unknown

to the researcher, which have not been controlled in the matching process.
It is precisely at this point that we rely on randomization, i.e., on the
laws of probability, in the expectation that the effects of uncontrolled
variables will be neutralized. For example, we expect with a fairly
large N that roughly half of the communities with the more democratic
leadership will fall into group A and half into group B. The same will
also be true for other uncontrolled variables.
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In ex post facto experimental designs, in which the researcher comes

on the scene after the experiment has taken place and consequently has

had no opportunity to make such random assignments, the possibility

of self-selection can never be ruled out. Nor can the laws of probability

be used to help one evaluate the effects of the experimental variable as

contrasted with possible effects of variables for which the groups have

not been matched. One of the major advantages of laboratory experi-

ments over so-called “natural” or ex post facto experiments is this

randomization control over possible self-selection.

Other methods of matching samples are often suggested as alternatives

to pair-by-pair matching. These alternative methods usually have the

advantage of reducing the attenuation of cases but lead to difficulties

when it comesto statistical analysis. One such method involves match-

ing by frequency distributions. For example, care may be taken that

the two groups are similar with respect to mean income, mean age,

general income distribution, and so forth. The groups are thus com-

parable with respect to these summarizing measures even though a given

individual may have no exact counterpart in the other group with whom

he can be paired. In this type of design we are again clearly violating

the independence assumption, but to the writer’s knowledge there is no

simple way to make useof a statistical test which is at the same time effi-

cient and also does not involve dubious assumptions. One could pair cases

as well as possible and proceed as above, but pairing would undoubtedly

lead to an inefficient design. Certainly it would not be legitimate to use

a, difference of means test with N; + N»2 — 2 degrees of freedom.

EXERCISES

1. Fifty census tracts in a city are selected at random. It is found that twenty

of these are serviced by community centers, the remainder are not. You compare

the delinquencyrates for these two types of tracts and obtain the following delinquency

rates (given in terms of the numberof delinquents per 1,000 adolescents):

 

 

Measure With center |Without center

Sample size 20 30

Mean 27 31

Standard deviation (s) 6 8  
 

Test for the significance of the difference between these two types of tracts (.01 level)

using (a) model 1, and (b) model 2. How do the two results compare?

2. A random sample of married womenstill living with their husbandsis selected,

and the womenareclassified as being either ‘“‘satisfied”’ or ‘Cunsatisfied’’ with their

marital lives. The two groups of women are then compared with respect to the

duration of their marriages with the following results:
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Duration of marriage |Satisfied |Unsatisfied
(nearest whole year) fi So

0-2 34 10
3-4. 4] 16
5-9 50 23
10-14 39 25
15-19 18 14

20-39 15 16

Total 197 104   
Is there a significant difference between the two groups at the .01 level?

3. Suppose you expect to find the difference between the mean annual incomesof
samples of doctors and dentists to be about $500 (i.e. X¥1 — X2 = 500). Youesti-
mate the standard deviations to be $1,900 and $1,600 respectively. You plan to
take the same numberof doctors and dentists in the total sample. How manycases
would you need in order to establish significance at the .05 level? Suppose you
intended to take twice as many doctors as dentists. How many cases would you
then need?

4. You have classified a random sample of college students as either “other-
directed” or ‘‘inner-directed.’’ You find that 58 per cent of the males are other-
directed, whereas 73 per cent of the females belong to this category. There are
117 males and 171 females in the total sample. Is this difference significant at the
.001 level?

*5. Suppose you have designed a before-after experiment with control group. In
other words, you have matched two groups, pair by pair, and have before and after
measures on both groups. Makeuse of the ¢ test to test for the effectiveness of your
experimental variable (a) using only the “‘after’’ scores, ignoring the “before” scores,
(6) using the “before” and ‘after’ scores of the experimental group only, and
(c) using all four sets of scores. (Hint: How can youuseall four scores to separate
out the effects of the experimental variable from extraneous factors which might have
affected both groups?) Contrast the advantages and disadvantages of methods (a)
and (6). What are the advantages of (c) over both (a) and (b)?

 

 

 
 

Control group Experimental group

Pair

Before |After Before After

A 72 75 66 77
B 61 60 61 65
C 48 37 43 49
D 55 64 55 53

E 81 76 76 91
F 50 59 52 68
G 42 49 40 51
H 64 55 65 74
I 77 75 67 79

J 69 78 64 63    
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Chapter 14

ORDINAL SCALES: TWO-SAMPLE

NONPARAMETRIC TESTS

As yet we have not had occasion to discuss significance tests involving
ordinal scales, although it was pointed out in Chap. 2 that ordinal scales
are very frequently used in social science research. In the present
chapter weshall take up certain two-sample tests that can be used with
ordinal scales, tests which are directly comparable to tests involving
differences of means and proportions discussed in the previous chapter.
Tests taken up in this chapter can therefore be used in relating ordinal-
scale variables to variables involving a dichotomized nominal scale. In
subsequent chapters weshall take up tests which permit one to relate an
ordinal scale to a nominal scale with any numberof categories or to
another ordinal scale.

The tests discussed in this chapterare often referred to as nonparametric

or distribution-free tests in that they do not require the assumption of a
normal population. Actually, both the terms nonparametric and distri-
bution-free are somewhat misleading. We do not imply that such tests
involve distributions which do not have parameters. Nor can a popula-

tion be “distribution-free.”” Both terms are actually used to refer to a
large category of tests which do not require the normality assumption or
any assumption which specifies the exact form of the population. Some
assumptions about the nature of the population are required in all
nonparametric tests, but these assumptions are generally weaker andless
restrictive than those required in parametric tests. We have already
come across certain nonparametric tests. The binomial, sign, and
difference-of-proportions tests, for example, do not require the assumption
of normality since they all refer to dichotomized nominal scales. In
contrast with these particular nonparametric tests, the tests taken up in
this chapter all involve ordinal scales, thus making it possible to use a
somewhat higher level of measurement. In the following chapter two

187
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additional nonparametric tests will be considered, both involving only

nominal scales.

Whatis the advantage of nonparametric tests as compared with a test

such as the difference-of-meanstest? In using the ¢ test for a difference

of means, we saw that it was necessary to assume not only an interval

scale but normal populations as well. The assumption of normality

could of course be relaxed in the case of large samples, but it was argued

that it is precisely when samples are small that the normality assumption

is most questionable. Therefore we would expect to find that non-

parametric alternatives to the difference-of-meanstest will be most useful

whenevereither of two conditions is met: (1) we cannot legitimately use

an interval scale but ordering of scores is justified, or (2) the sample 1s

small and normality cannot be assumed. Since these nonparametric

tests involve weaker assumptions than the difference-of-meanstest, they

may not take advantage of all the available information. Thus if an

interval scale can legitimately be used and if the normality assumption

can be either made in the case of small samples or relaxed in the case of

larger ones, a difference-of-meanstest will ordinarily be preferable to one

of the nonparametric tests.

In what sense can we speak of one test being preferable to another?

What criteria are used in making such a decision? First, as we have

already implied above, if a test requires us to make certain dubious

assumptions which cannot themselves be tested, it will not be as satis-

factory as one which does not require such assumptions. If everything

else were equal, which is practically never the case, we would always

select that test which required the weakest assumptions. If the results

of the test called for rejection, we could more readily turn to the null

hypothesis as the single faulty assumption. Unfortunately, however, the

problem is not quite so simple. If it were, we would always make use of

nonparametric procedures. It usually turns out that a test which

requires stronger assumptions is a more powerful test in the sense that its

use will involve a lowerrisk of atype Il error. We thus have twocriteria

which work in opposite directions and which must be evaluated accord-

ingly. Nonparametric tests require weaker assumptions but they are less

powerful. We shall get a better idea of what is meant by “strong” and

“weak” assumptions when we come to the specific nonparametric tests

which can be used as alternatives to the difference-of-means test. First,

however, we must consider the question of how therelative power of a test

is evaluated.

*14.1. Power and Power Efficiency

The power of a test is defined as 1 — (probability of a type II error) or

as 1 — 8. Thus the power of a test is inversely related to the risk of
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failing to reject a false hypothesis. The‘hegreater the ability of atest, to
Aone

natuM elineliminate falsehypotheses, the greateris ‘isitsrelativepower. As we have
already indicated, it ismuch more difficult to evaluate the risk of type II
than typelerrors. Not only mustwe knowtheexact formof the popula-
tion, but we must also know“the degree to which the hypothesized
parameterdiffersfrom the true value. In other words, theprobability
ofatypeIIerror, andtherefore the power of the test,depends upon
which“a.‘altérnative hypothesisiis actuallycorrect. For these reasons, we
seldomactuallycompute the probabilities of type II errors in applied
research. As implied earlier, however, the power of a test must be used
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Fig. 14.1. Power functions for two-tailed tests, with a = .05, for samples of varying
size. (By permission from W. J. Dixon and F. J. Massey, Introduction to Statistical

Analysis, McGraw-Hill Book Company, Inc., New York, 1957, fig. 14.6, p. 252.)

in evaluating its relative efficiency. Several alternative tests may be

made to involve the samerisk of a type I error. We then use therelative

risks of making type II errors to select the test which will be most appro-

priate under a given set of conditions. Although the problem of deter-

mining the power of a test is fairly complex and beyondthe scopeof this

text, we can indicate in a general way what is involved in making such

comparisons. In order to do so, we must introduce the notion of a

power function.

The general form of a power function for a two-tailed test is given in

Fig. 14.1. Such a function gives us the power of a test for the various

possible correct alternatives to Ho. To be specific, let us assume that we

have hypothesized a particular value uo for the population mean. Sup-

pose, however, that the true population mean is actually two standard

errors away from the hypothesized mean. Clearly, then, Ho is false and

should be rejected. Since the powerof a test is 1 — 6, the power of the

test actually gives us the probability of rejecting Hy when itis false. This

latter probability, rather than the probability of error, is given bythe

height of the curve. If the true mean is two standard errors from wo,

the probability of rejecting Ho can be determined by finding the height
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of the curve at this point on the X axis. Thus the values along the X

axis indicate the possible correct values of » whereas those on the Y axis

indicate the probabilities of rejecting Ho.

Notice that when the correct value of the mean is actually uo (and

therefore we would be making anerrorin rejecting Ho), the height of the

power function is given by the significance level of the test. Why?

Notice also that if the correct value of » is not too distant from yo, the

powerof the test, as indicated by the height of the curve, will be less than

will be the case if the true value is quite different from wo. This tells

us that our risk of a type II error is relatively large whenever the

hypothesized value is not too far from the correct value, but that if we

have missed the mark by a considerable amount we shall have a much

higher probability of rejecting our false hypothesis. This is consistent

with the intuitive argument we developed earlier in connection with the

binomial. It is also in line with our practical interests. If the null

hypothesis is almost correct we are not too bothered if we fail to reject it,

even though technically we are in error in so doing. It is when Hy is

substantially incorrect that we are really interested in rejecting it.

In order to give a better indication of how power functions are actually

used, we can compare the power function of a two-tailed test (Fig. 14.1)

with those of some one-tailed tests. Again let us suppose that Ho

predicts that the true mean is wo. Consider the one-tailed test in which

we have used the upperorpositive tail as our critical region. If the true

value of » is actually greater than uo, most of the sample means drawn

from the population will also be greater than yo and we have a better

chance of ending upin this one-tailedcritical region than would have been

the case had we used a two-tailed test at the samesignificance level.

In other words,if p is actually to the right of uo we have a better chance of

rejecting Hy with a one-tailed test in this direction. This means, of

course, that the powerof this particular one-tailed test will be greater for

values of » in the positive direction. But suppose the true value of pw is

actually to the left of uo. Then most of the X’s will fall to the left of wo

and very few will fall into the critical region at the opposite (or positive)

end of the continuum. In this case, therefore, we shall practically never

be able to reject Ho, and the power of the one-tailed test will be very

weak indeed. The opposite kind of pattern will obviously hold in

the case of one-tailed tests with critical regions in the lower or nega-

tive tails.

The powerfunctions of one- and two-tailed tests can be compared as in

Fig. 14.2. In summary,wesee that a one-tailed test will bemorepower-

ful than its two-tailed counterpart (using the samesignificancelevel) for

alternatives which are in the direction of thecritical region,butit willbe

muchless powerful than a two-tailed test if the parameter actuallyliesin
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the direction opposite to that predicted. The risk of a type II erroris

therefore considerable if one makes a one-tailed test and happens to

predict the wrong direction. In such an event the data cannot be used

to support the theory anyway. Therefore one would probably have no

interest in proceeding with the test unless, for exploratory purposes, he

wanted to ascertain whether or not a completely opposing theory would
have any merits.

Wehaveseen in comparing one- and two-tailed tests that one test may

be more powerful for certain alternatives but less powerful for others. In
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Fig. 14.2. Comparison of power functions for one- and two-tailed tests, with a = .05.
(a) Reject if Z > 1.645. (b) Reject if Z << —1.645. (c) Reject if Z > 1.96 or if
Z< —1.96. (By permission from W. J. Dixon and F. J. Massey, Introduction to
Statistical Analysis, McGraw-Hill Book Company, Inc., New York, 1957, fig. 14.6,
p. 249.)
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general, this may also occur in comparing twovery different kindsof tests.
For example, we shall soon see that one particular nonparametric test
may be more powerful than a second underoneset of circumstances but
less so under another. It is this fact which makesit difficult to develop
relatively simple generalizations concerning the superiority of one test
over another. The situation is further complicated by the fact that one
test may be powerful for small samples but relatively less so for larger
samples. The powerof any given test will of course increase with the

"sizeTeertially makesit possible to reject the null hypothesis with smaller
deviationsfrom hypothesized values. We have seen, for example, that
the standard error of the mean decreases as N increases and that there-
fore as N increases the sample mean must be closer to the hypothesized
value if we are to retain Ho. What we are saying, then, is that we can
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more easily reject a false hypothesis when is large. But although the

powerof a test may increase with N, the rate of increase in power may not

be the samefor all tests. A test which has relatively weak power for

small N’s may therefore ‘‘catch up” with another test so that the former

test is actually more powerful for large samples. It is no wonder that

we have put off a consideration of type II errors until this point.

In order to compare the relative powers of two tests we can ask our-

selves how many cases would be needed with the first test in order to get

the same power as with a given numberof cases using the secondtest.

Usually we compare the powerof a given test with that of the most

powerful alternative. In the case of the first three nonparametric tests

considered in this chapter, the most powerful alternative will be the ¢ test

for the difference of means. The term power efficiency is usually used to

refer to the power of a certain test relative to that of its most powerful

alternative. If we refer to the power efficiency of one of these non-

parametric tests as 95 per cent, we mean that the power of the non-

parametric test using 100 cases is the same as that of the ¢ test using 95

cases if the model used in the

t

test rs correct.

Since it is necessary to assume a particular form for the population in

order to evalaute the powerof a test, we imaginein the aboveillustration

that we actually have an interval-scale level of measurement and that

the populations are both normal in form. In determining the power

efficiency of the nonparametric test, we are essentially asking ourselves

how muchourfailure to accept the normality assumption will cost us if

in fact such an assumption were actually legitimate. Here we see that

the failure to accept this assumption and our consequent use of the

nonparametric test would cost us an extra five cases above the 95 used in

the difference-of-means test. With such a small loss in efficiency we

would probably go ahead with the nonparametric test if we wereatall in

doubt about the assumptions required by the difference-of-meanstest.

On the other hand, if the power efficiency were only 60 per cent and if

departures from normality were not too great (or if N were large), we

would probably use the difference-of-meanstest.

As indicated in the previous chapter, it is when samples are small that

we need to be most concerned about the normality assumption. For

small N’s it will not in general be possible to translate powerefficiency

statements into comparisons of exact sample sizes since the latter quanti-

ties must always be integers. Thus with 95 per cent efficiency, a sample

of size 10 using the nonparametric test would be equivalent to one of 9.5

using thet test. Although such a statement is operationally meaningless,

it is at least helpful for comparative purposes.

Before closing this section, it is again necessary to remind you that the

powerefficiency of a given test may depend uponthe sample size selected;



ORDINAL SCALES: TWO-SAMPLE NONPARAMETRIC TESTS 193

it may be highly efficient for large samples but muchless so for smaller
ones.

14.2. The Wald-Wolfowitz Runs Test

In the runs test and also in the following two tests to be considered in
this chapter, we assume that we have two independent random samples
and that the level of measurement is at least an ordinal scale. In all
three tests our null hypothesis will be that the two samples have been
drawn from the same continuous population (or identical populations).
The underlying dimension will be assumed to be continuousrather than
discrete, although werecognize that tied scores may result because of the
crudity of the measuring instrument. The hypothesis that the two
samples have been drawn from the same population is actually very
similar in nature to our assumptionsin the difference-of-means test. As
previously indicated, when we put together the assumptions of normality,
equal variances, and equal means wearein effect assuming the two popu-
lations to be identical. In the case of the runs test we are hypothesizing
that the two populations have exactly the same form and hence can be

thought of as identical. We do not have to specify the nature of this

form, however. It might be normal or it might not. Weare therefore

making a weaker set of assumptions than required in the difference-of-

means test, weaker in the sense that the difference-of-means test (with

equal o’s) requires all of the assumptionsof the runs test plus the assump-

tion of normality and the use of an interval scale.

In the difference-of-means test our interest centered on differences in

central tendency rather than differences in dispersion or differences in

form. The runs test essentially tests for all of these possible differences

simultaneously. As we shall see presently, its main use is in testing for

differences in dispersion or form since there are more powerful non-

parametric tests available for testing for differences in central tendency.

Notice, incidentally, that the null hypothesis has not been stated in

terms of means or standard deviations but rather in terms of any dif-

ferences whatsoever. This will also be the case for other nonparametric

tests discussed in this chapter. With ordinal scales, it is of course

meaningless to think in terms of means and standard deviations.

The basic principle involved in the runstest is very simple, as are the

computations. Wefirst take the data from both samples and rank the

scores from high to low, ignoring the fact that they come from twodif-

ferent samples. If the null hypothesis is correct, we would expect that

the two samples will be well mixed. In other words, we would not

expect a long run of cases from the first sample followed by a run of cases
from the second. For example, if we refer to the samples as A and B we
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expect that the rank ordering will be moreorless as follows:

ABBABAAABABBABBAAABAAB

rather than ;

AAAAAAAAABABBBBBBBBBBB

In order to test to see how well the two samples are mixed when ranked,

we can simply count the number of runs that occur. A run is defined as

any sequence of scores from the same sample. In thefirst example above

we have a “run”of a single A, followed by a run of two B’s, then a single

A, a single B, a run of three A’s, and soon. The total numberof runsis

therefore 14. In the second example, however, the A’s are bunched

toward the lower end of the continuum and we have only four runs. The

procedure of counting runs will usually be simplified and errors reduced

by drawing a line underall scores in thefirst sample anda line above those

in the second. We then only need to count the numberof separate lines.

If the numberof runs turns out to be quite large, as in the first case, the

two samples will be well enough mixed that we shall not be able to reject

the null hypothesis. On the other hand, a small numberof runs probably

means that the hypothesis is incorrect and therefore should be rejected.

The sampling distribution of runs can be used to establish the critical

region used in rejecting the null hypothesis.

Problem. Suppose that judges have ranked 19 women’s organiza-

tions according to their prestige, giving a score of 1 to the group

with the highest standing and 19 to that with the lowest. Ten of
these groups restrict their membership to gentiles, whereas the

remaining nine admit Jewish women. Assuming that these women’s

organizations have been selected randomly from a list of all such

organizations in the community, can we conclude that in the popu-

lation there is a significant difference in the prestige of restrictive and

nonrestrictive women’s organizations?

Restrictive membership: Ranks1, 2, 4, 5, 6, 7, 9, 11, 14, 17 (Ni = 10)

Nonrestrictive membership: Ranks 8, 8, 10, 12, 18, 15, 16, 18, 19

(Nz = 9)
1. Assumptions.

Level of measurement: Prestige is an ordinal scale

Model: Independent random samples

Hypothesis: Samples have been drawn from populations having the

same continuous distributions

2. Sampling Distribution. If both Ni and N2are less than or equal to

20, the exact sampling distribution of the number of runs r is given in

Table E of Appendix 2. For larger N’s the sampling distribution of r is
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approximately normal with

2NiN»= 14.1N+| O41
INNA2NiN2 — Ni — No)
(N, + N.)?(Ni + N2 — 1)

IMean

 

 and Standard deviation = o, = J (14.2)

Notice that although normality of the population is not assumed, the

sampling distribution of r will be approximately normal even with small

N’s. As we shall presently see, a number of other nonparametric test

statistics also have this property. Note also that the formulas for the

mean and standard error involve only the sample sizes and therefore do

not require us to estimate population parameters as was necessary for the

difference-of-means test. The comparative simplicity of formulas for

the sampling distributions of nonparametric statistics is in part due to the

fact that since scores have been ranked and therefore must always take

on the numerical values 1, 2,3, . . . , N, such quantities as the sum and

standard deviation of ranks depend only on the numberof cases used.

3. Significance Level and Critical Region. Since Table E, Appendix 2,

gives only the numberof runs necessary for rejection at the .05 level, for

small samples we are restricted to this level of significance, although more

complete tables can be found in [5]. Notice that the runs test does not

take into consideration the direction of the relationship between prestige

and restriction of membership. On the other hand, when we makeuse of

the sampling distribution of r we are interested in only one tail since we

can reject the null hypothesis only when there is a small numberof runs

(regardless of the direction of the difference).! Strictly speaking, there-
fore, we are using the runs test as a one-tailed test even though direction
of relationship has not been predicted. The samesort of situation will
occur in the Mann-Whitney test discussed in the next section and in
several important tests to be taken up in subsequent chapters. In order
to avoid ambiguities we shall therefore distinguish between one-tailed
tests and situations in which direction has been predicted. Upto this
point, such a distinction has been unnecessarysince all one-tailed tests
have involved predictions as to direction. Numbers in the body of the
table give us the numberof runs which will yield significance at the .05
level. Therefore any value of r which is equal to or less than the figure
in the table will indicate that we have so few runs that we mayreject the
null hypothesis at this level. Since the numbers of cases in the two
samples are ten and nine respectively, we see that we may reject if we get
Six or fewer runs.

‘There are other applications of the runs test, however, in which both tails may
be used. For example, there may be too many runsif the samples have been arti-
ficially rather than randomly mixed, andthis fact may be used in a test for randomness.
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4. Computing the Test Statistic. Arranging the organizations in order

of prestige, drawing lines under the scores of the first sample and above

those of the second, we see that there are 12 runs.

123456789 10 11 12 13 14 15 16 17 18 19

Although the number of cases is somewhat too small for the normal

approximation to hold, we can go ahead with the computations usingthis

approximation in order to illustrate its use and to compare results with

those obtained using Table E, Appendix 2. As usual, we compute the

value of Z, which will tell us how many standard deviations the obtained

number of runs is from the mean or expected number of runs under the

null hypothesis. Thus,

 

 

_ 2(10) (9) _Lr = io g + l= 10-47

_ 220) (9)[20.0) (9) — 10 — 9} _and Cr = J (19)2(18) = 2.11

Wetherefore get =— == vont = 725

Since the numberof runs obtained actually exceeds the mean or expected

number, we need go no further since small numbers of runs are needed for

rejection. Had the numberof runs beenless than the expected number,

we would have looked up the Z value in the normal table, using a one-

tailed test since we are only interested in small numbers of runs and

hence negative Z’s.

5. Decision. Since the number of runs turned out to be greater than

six, the figure given in Table E, we decide not to reject the null hypothesis

at the .05 level. As we have just seen, the use of the normal approxima-

tion also leads us to this same conclusion. On the basis of our data we

therefore do not conclude that there is a significant difference between the

two types of organizations with respect to prestige.

Ties. Inthe above data there were no two organizations which received

tied scores. The assumption of underlying continuity theoretically rules

out the possibility of ties since no two scores would ever be exactly the

same. But owing to crudities of measurement, and such crudities will

almost certainly exist in most social research, ties do arise in practice.

Notice that if two organizations within the same sample had beentied

with respect to prestige scores, the runs test would have been unaffected.

But suppose ties occurred across samples. Then the numberof runs can

be considerably affected depending on how theties are broken. Suppose,

for example, that two organizations (from different samples) had been

tied for eighth and ninth positions. Had the positions of these two groups

been switched from the order previously used, we would have obtained
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10 runs instead of 12. In other words, we would get either 10 or 12 runs
depending on the order used. Since this order would be completely
arbitrary, we might find ourselves sometimes rejecting and other times
failing to reject the null hypothesis. The safest procedure we can use in
the caseof ties is to compute the numberof runsusingall possible waysof
breaking the ties. If all orderings lead to the same decision (rejection or
nonrejection), we may safely adhere to this decision. If they lead to
different decisions, it will be possible to resolve the problem by flipping
a coin, but perhaps the safest procedure is to withhold judgment.
Obviously, then, if there are a large numberof tied ranks the runstest
cannot be used.

14.3. The Mann-Whitney or Wilcoxon Test

Another nonparametric test which can be used in situations where the
runs test is appropriate is a test which seems to have been invented
independently by a numberof persons and which is commonly known as
either the Mann-Whitney or Wilcoxon test. This test requires exactly
the same assumptions as the runstest and,like the latter test, involves a
very simple procedure. We again combine the scores of both samples
and rank them from 1 to 19. Wethen focus on the scores in the second
sample (or whichever sample is the smaller). Taking each score in the
second sample, we count the numberof scores in the first sample which
have larger ranks. Having donethis for each of the scores in the second
sample, we then add theresults to give us the statistic U. The sampling
distribution of U can then be obtained exactly if the N’s are small, or it
can be approximated by a normal curve in the case of larger samples. If
U is either unusually small or unusually large we can reject the assump-
tion that the two samples have been drawn from the same population.
An alternative form of exactly the same test may be used with the

normal approximation. Instead of obtaining U directly, we can compute
the sum of the ranks for each of the samples. We then go through a
procedure which is analogous to that used in the difference-of-meanstest.
Wetake a difference of the sums of the ranks for each sample, subtracting
from this difference a quantity representing the expected difference under
the null hypothesis. This difference of differences, whichis analogous to
(X1 — X2) — (uw: — pe), is then divided by the standard error in order
to obtain Z. The analogyis not perfect since we are dealing with sumsof
ranks rather than meansof ranks, but the parallel with the difference-of-
means test is quite clear. Again, a large numerical value of Z will lead
to rejection. Weshall now proceedtoillustrate the Mann-Whitneytest
by making use of the same example as used above. Weshall then com-
pare the powerefficiency of this test with that of the runstest.
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Problem. Sameas used for runstest.
Restrictive membership: ranks 1, 2, 4, 5, 6, 7, 9, 11, 14, 17

Nonrestrictive membership: ranks 3, 8, 10, 12, 13, 15, 16, 18, 19

(No = 9)

1. Assumptions. Same as those required in runstest.

2. Sampling Distribution. The sampling distribution of U will be

found in Table F of Appendix 2 if neither Ni nor N»is larger than eight,

and in Table G if one of the N’s is between 9 and 20 and the other between

land 20. For larger N’s the sampling distribution of U will be approxi-

mately normal with

Mean = = Aw: (14.3)

|=ROED(a.)
 

and Standard deviation I  COU =

3. Significance Level and Critical Region. For comparative purposes

weshall continue to use the .05 level without predicting the direction of

relationship although the Mann-Whitney test can be used to take

advantage of such predictions.

4. Computing the Test Statistic. The statistic U can be computed by

either of two methods. With small N’s it will be relatively simple to

compute U by carrying out the procedure implied in the definitional

formula. Focusing on each of the nine groups in the second sample, let

us count the numberof cases in the first sample which have lowerprestige

and therefore larger rank scores. Since the first organization in the

second sample has been rankedthird in prestige, there are eight groupsin

the first sample having lower prestige scores. Similarly, the second group

in sample 2 is ranked eighth, and therefore there are four groups in the

other sample with lower prestige scores. Continuing the process for

each of the remaining organizations in sample 2, and then summing, we

get

O=8+44+34+2424+1414040= 21

Notice that had we carried out the same procedure but focusing on the

groups within the first sample we would have gotten

U'=9+94+8484+84+84+71+64+4+2 = 69

Either of these quantities could be used to test for the significance of the

relationship, but since the tables have been set up in terms of the smaller

U value, we always makeuseof thelesser of these two quantities. It will

not be necessary to compute both U and U’since once either value has
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been obtained, the other can be computed from the formula

U = NiN, — U' or U' = NiN,-— U (14.5)

In this case we would use the value 21 as ourtest statistic.
If the numberof casesis relatively largeor if ties occur, it will probably

be more convenient to obtain U by summing the ranks of the separate
samples, calling these sums of ranks R; and Rs, and then using the
formulas

U = N.iN2 + Mie FV+1) — Re (14.6)

or U' = NiN, +

whichever is the more convenient. Summing the ranks we thus get

 

1 3

2 8

4 10

5 12

6 13

7 15
9 16

11 18

14 19

17

R, = 76 Re = 114

As a check, we should have

N(N +1Ri +R. = vor)

or 76 + 114 = P29) ~ j99

where WN represents the total numberof cases in both samples. Therefore

9(10)
U = 10(9) + 3 — 114 = 90 + 45 — 114 = 21

*The sums of ranks R; and R2 could have been used directly in making
the test, making it unnecessary to compute U. Since exact tables for
small N’s are usually given in terms of U, you will ordinarily find it
advantageous to think in termsof the U statistic. The use of the sumsof
ranks can be used heuristically to point up the similarity of the Mann-
Whitney test to the difference-of-means test, however. The use of a
little algebra will convince you that we can take equations (14.3) to (14.7)
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and obtain the result that for the normal approximation the statistic

7 = Ri — Rp — (Ni — N2)(N + 1)/2 (14.8)

/NiNAN + 1)/3

will be approximately Nor(0,1). Expressing Z in this form, we notice

that the numerator consists of the difference Ri — Re together with a

term which turns out to be the expected or long-run value of this dif-

ference under the null hypothesis. This correction factor is of course

necessary since weare dealing with a difference of swms rather than means,

requiring us to take into consideration the fact that the two N’s will not

ordinarily be equal. If N, and N» are the same wenotethat this second

factor becomeszero, and weare left with a numerator of Ri — Re Thus

we see the similarity with the difference-of-means test in which the

numerator reduced to X; — Xe in the case of the null hypothesis of no

differences. 'The Mann-Whitney test may therefore be thought of as a

difference-of-summed-rankstest.

5. Decision. Making use of Table G, Appendix 2, we see that at the

.05 level we need a U of 20 or smaller in order to reject the null hypothesis

if direction has not been predicted. Therefore we barely fail to reject the

hypothesis that there is no difference between the two types of organiza-

tions. Notice, however, that had direction been predicted in advance, we

would have needed a U of 24 or less at the .05 level. Wesee, incidentally,

that although the same decision was reached in using both the runs and

Mann-Whitney tests, we came much closer to rejecting when the latter

test was used. If Hy were really false, we therefore in this instance would

have less of a risk of a type II error than with the runstest.

Had our N’s been larger we could have madeuseof the normal approxi-

mation. In orderto illustrate the procedure used, we can compute Z

for the above data. We get

_ U — N,N,/2 eeoe

/NiNANi + No + 19/12 V/10(9)(20)/12

*Had we used equation (14.8) we would also have gotten

_ 76 — 114 — (10 — 9)(20)/2 _

+/10(9) (20) /3

The use of the normal approximation thus yields the conclusion that

we may just barely reject at the .05 level. We see that the exact tables

are slightly more conservative than the approximation and -hould

therefore always be used when the N’s are sufficiently small.

Ties. If ties occur, we must again assumethat they are due to crudities

of measurement and that the underlying distributions are really con-

 

 

 
 

 
— 1.96

 Z — 1.96
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tinuous. If ties occur within classes there will of course be no effect on
U, and we can proceed as before. If ties occur across classes, we give
each of the cases the average of the scores they would have hadif noties
existed. Thus if two organizations are tied for eighth and ninth, each
receives a score of (8 + 9)/2 or 8.5. Had the tenth organization also
been tied with these two groups, each would have received the rank
(8 + 9+ 10)/3 or 9.0. In computing U it will now probably beless
confusing to use the sum-of-ranks method. The correction factor
involves the standarderror of U and therefore appears in the denominator
of Z. The revised formula becomes

U — NiN,/2
“= ViMNUNWDINSry)
 

 

where N = Ni + Ne and T; = (t;3 — t;)/12, where ¢ is the number of
observations tied for a given rank.

In computing 27; wefirst note all of the instances in which ties occur.
Perhaps two groupsaretied for eighth and ninth, and three for the lowest
honors. Thus we have one ?¢ of two, and another of three. Therefore

°v— ty to? — teT,4+7, =! 

 

n= mt 2p
22?3—2 33—~3 6. 294

~ 42 if ~jat py?

and Z= 21 — 45 — — 1,964 

 

 

(10 & =19 5)
19(18) 12

This correction for ties can be used only with the normal approximation
since the exact tables have not been computed allowingfor ties. The cor-
rection factor will ordinarily have negligible effect unless the number of
ties is quite large. Its effect is to produce a larger Z value. If one wishes
to reject the null hypothesis, the failure to correct for ties will therefore
lead to conservative results. This is all the more reason why it will
ordinarily not be necessary to correct for ties. If the numberofties is
extremely large, the Smirnov test (see below) should probably be used as
an alternative to the Mann-Whitneytest.

Comparison of the Mann-Whitney and Runs Tests. The null hypothesis
for both tests is that the two samples have been drawn from identical
populations. Usually our interest centers on differences in central
tendency, as was true in the difference-of-means test. Occasionally,
however, we may be moreinterested in differences in dispersion or form.
As a general proposition, we can say that the Mann-Whitneytest will be
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more powerful than the runs test whenever the major differences between

the two populations are with respect to central tendency, whereasthe runs

test will be more powerful in situations in which the populations differ

only slightly in central tendency but substantially in dispersion or form.

A simple example can be usedtoillustrate this point. Suppose we had

two populations with identical medians but in the one case with a very

homogeneous distribution and in the other a very heterogeneous one.

We then might expect results such as the following:

 

 

Sample 1 Sample 2

5 1
6 2
7 3
8 4

9 13
10 14
11 15
12 16

Ry = 68 Re = 68

In this extreme example, the Mann-Whitney test would not lead to

rejection of the null hypothesis (which is obviously false) because Ris

exactly equal to Re. Using the runs test, on the other hand, we would

obviously be able to reject since there would be only three runs. Since

failing to reject would mean makinga typeII error, we see that the power

of the runstest is greater than that of the Mann-Whitney test. Inmost

instances, however, we are morelikely to find differences in central

tendency with relatively minor differences in dispersion. You should

convince yourself that for populations of this sort we are likely to obtain

a fairly large number of runs toward the center of the distribution. For

such data the runs test will turn out to be much less powerful than the

Mann-Whitney test. For most sociological applications the Mann-

Whitney test seems to be the more useful of the twotests.

*If an interval-scale level of measurement has been attained and normal

populations legitimately assumed, the ¢ test for the difference between

means could have been made. Under such conditions how much would

we lose by using the Mann-Whitney test, thereby dropping backin level

of measurement and using a weaker model? The evidence is that for

moderate and large samples, the powerefficiency of the Mann-Whitney

test is approximately 95 per cent as compared with thet test. The power

efficiency for small samples is also quite high, although exact numerical

values are not easily obtainable. The Mann-Whitneytest is thus a very

powerful alternative to the ¢ test. In view of the fact that it requires

much weaker assumptions, it should therefore be used in instances where
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there is reasonable doubt of the legitimacy of either the interval scale or

normality. Less is known about the powerefficiency of the runstest.

Smith [4] has found efficiencies of approximately 75 per cent in several

empirical examples where sample sizes were about 20 and where the

normal populations had equal standard deviations.

14.4. The Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test, which we shall refer to simply as the
Smirnov test, is another two-sample nonparametric test requiring the

same assumptions as the runs and Mann-Whitney tests and having a

power efficiency comparable with that of the Mann-Whitney test ((3],

page 1386). Unlike the first two tests, however, the Smirnov test can

conveniently be used in instances where there are large numbers ofties.

Quite frequently in sociological research we make use of variables which

are actually ordinal scales but for which data have been grouped into

three or more large categories. If there are four or more such ordered

categories the Smirnov test will be especially useful, whereas the number

of ties involved would prohibit the use of the Mann-Whitney test. <A

sociologist may have divided community residents into six social classes,

treating all persons within one class as tied with the other membersof the

class with respect to over-all status. Or occupations may have been

ranked according to status, with all persons within the same occupational

class receiving tie scores. Perhaps an attitudinal variable has been

foundto yield a Guttman scale with seven response types. Inall of these

examples we may wish to conceptualize the variable as being continuous

in nature but the measuring instrument as being exceedingly crude so as

to yield data which are grouped into a relatively small number of ordered

categories. As was true in the case of interval scales, the finer the dis-

tinctions made and the larger the number of categories used, the less

information lost. What we needis a test statistic which takes advantage

of the ordering of categories without being either invalidated or made

unusually cumbersome by the presence of large numbers of ties. The

Smirnov test has been designed to meet this requirement.

The principle behind the Smirnov test is also a very simple one. If

the null hypothesis that independent random samples have been drawn

from identical populations is correct, then we would expect the cumula-

tive frequency distributions for the two samples to be essentially similar.

The test statistic used in the Smirnov test is the maximum difference

between the two cumulative distributions. If the maximum difference

is larger than would be expected by chance underthe null hypothesis, this

means that the gap between the distributions has becomeso large that

we decide to reject the hypothesis. We can take either the maximum
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difference in one direction only (if direction has been predicted) or the

maximum difference in both directions.

Problem. Suppose we have divided a random sample of adult
males in a community into six social classes and havealso classified

them as having either low or high mobility aspirations. The latter

two categories can be considered to be independent random samples

from the larger populations of adult males with low and high aspira-

tions respectively since a completely random total sample assures

independence between any subsamples we mightselect. Let us sup-

pose that we have predicted that those with high mobility aspira-

tions will tend to have higher class standing than those with low

aspirations. Can we conclude that the results are significant at the

.O1 level?
 

Low High
Class gs

aspirations aspirations

 

 

Lower-lower 508 31

Upper-lower 51 46
Lower-middle 47 53

Upper-middle 44 73
Lower-upper 22 51
Upper-upper 14 20

Total 236 274  
 

1. Assumptions. Same as required for Mann-Whitney and runstests.

2. Sampling Distribution. The sampling distribution of D, the maxi-

mum difference between the two cumulative distributions, can be given

exactly in the case of small N’s (< 40) when Ni = N> ((3], page 129).

This case will not be treated since with relatively small N’s the Mann-

Whitney test may be used instead of the Smirnov test and since in most

sociological examples we ordinarily do not obtain samples of exactly the

same size. If both samples are larger than 40 and if direction has not

been predicted, we shall need a value of D at least as large as

[Ni+ Ne
1.36 NiNe

in order to reject at the .05 level. For the .01 and .001 levels, the

coefficient 1.36 can be replaced by 1.63 and 1.95respectively. In the

case of the .10 level, the comparable coefficient 1s 1.22.

If direction has been predicted we mayuse a chi-square approximation.

The chi-square test statistic (x2) will be considered in the following
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chapter, and the chi-square table will become morefamiliar at that time.?

The approximation formula, however, is as follows:

NiN22— 4p?r2
xo 4D"ON, (14.10)

where the degrees of freedom associated with chi square are two.

Although continuous population distributions are assumed in using the

chi-square approximation, if data are actually discrete and therefore

result in large numbers of ties, the probabilities obtained will be in the

conservative direction if rejection is desired. In other words, the true

probabilities will be less than those computed.

Table 14.1. Computations for Smirnov Two-sample Test
 

 

 

     
 

Mobility aspirations

Difference

Class Low High Fi —Fe
Fy Fy,

Below upper-lower 58 . 246 31 .113 .133
Below lower-middle 109 .462 77 .281 .181

Below upper-middle 156 .661 130 A474 .187 —
Below lower-upper 200 . 847 203 741 . 106
Below upper-upper 222 .941 254 .927 .014

Total 236 1.000 274 1.000

> Nine _ 236(274)

 

3. Significance Level and Critical Region. The problem calls for the

-O1 level of significance. Since direction has been predicted, we shall

use the chi-square approximation.

4. Computing the Test Statistic. We first obtain the cumulative fre-

quency distributions for each of the samples (see Table 14.1), expressing

the F values as proportions of the total sample sizes. Thus the first

value entered in the F column for sample 1 will be 58436 or .246; the

second will be 199486 or .462, andsoon. The last entries in both columns

will of course be unity. We now form a difference column F, — F. and

locate the largest difference with a positive sign since we predicted higher

percentages of lower-class persons with low aspirations, i.e., higher F;

values. This value of D turns out to be .187, as indicated by the arrow.

Next, we compute the value of chi square, using equation (14.10).

2 For this reason, you may prefer to postpone consideration of the Smirnov test
until after you have read Chap.15.
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5. Decision. Note that the larger the value of D, the larger will be

the chisquare. Therefore, we need to determine just howlarge chi square

must be in orderto reject the null hypothesis. Referring to the chi-square

table (Table I, Appendix 2), locating the degrees of freedom down the

left-hand margin andthe significance level across the top, we see that for

2 degrees of freedom the value 9.210 corresponds to the .01 level. This

means that if the null hypothesis were actually true, we would get a chi

square this large or larger by chance less than 1 per cent of the time.

Since we obtained a chi square of 17.74 we see that we can reject the null

hypothesis. This same chi-square test can be used for small samples

when direction has been predicted, and if oneis interested in rejecting the

null hypothesis the chi-square approximation will actually be conserva-

tive. In other words, the probabilities obtained by this method will be

larger than the true probabilities.

Had direction not been predicted, we would need a value of D whichis

at least as large as

Mi+ Ne _ 236 + 274 _ _1.63aS = 1.63 Jeedy = 1-63(.0888) = -145

in order to reach significance at the .01 level. In this case we obtain D

by taking the largest difference regardless of sign. Since this value is the

same as the D previously used (.187), we see that we may again reject the

null hypothesis.

14.5. The Wilcoxon Matched-pairs Signed-ranks Test

All three nonparametric tests discussed up to this point in the chapter

have required that the two samples be selected independently of each

other. It will be remembered that when pairs were matched we could

not use the ordinary difference-of-means test. Instead, we treated each

matchedpair as a single case and obtained a difference score for each pair.

We then went ahead as though we had a single sample and tested the

null hypothesis that up = 0. In addition you will recall that in using the

sign test we also could have made use of matched pairs, considering only

the sign of the difference score and testing the null hypothesis by using

the binomial distribution. In the sign test we had to throw away any

information we might have had about the magnitude of the differences

involved. On the other hand, the most powerful test, the ¢ test, required

not only an interval scale but also the assumption of a normal population

of difference scores. The Wilcoxon matched-pairs signed-ranks test

combines some of the features of both these tests and lies between them

with respect to powerefficiency.



ORDINAL SCALES: TWO-SAMPLE NONPARAMETRIC TESTS 207

As weshall presently see, the Wilcoxon test requires slightly higher
than an ordinal-scale level of measurement. It will be necessary to
assume an ordered-metric scale in whichit is possible not only to rank the
original scores themselves but to rank the differences between such scores.
Since ordered-metric scales are seldom foundin sociological research, this
requirement essentially amounts to our needing an interval scale. Since
the Wilcoxon test does not assume a normal population, however,it will
be considered along with the other two-sample nonparametric tests in
this chapter. The power efficiency of this test is substantially higher
than that of the sign test, a fact which is not surprising since the sign
test takes advantage of so little information. When the assumptionsof
the ¢ test are actually true, the power efficiency of the Wilcoxon test is
approximately 95 per cent for both small and large samples. It is there-
fore especially useful in situations where we have an interval-scale level of
measurement but where the sample size is too small to justify the nor-
mality assumption.

The Wilcoxon test involves essentially the same null hypothesis as
used in the sign test and also the ¢ test for paired samples. The null
hypothesis states that there are no differences between the scores of the
two populations. In making use of this test wefirst obtain the difference
scores for each pair. These differences are then ranked, ignoring the sign
of the difference. Thus a difference of —6 would receive a higher rank

than a difference of +3. Having ranked the absolute values of the dif-
ferences, we then go back and record the signs. Finally, we obtain the
sums of the ranks of both the positive and negative differences. If the

null hypothesis is correct, we expect that the sum of the ranks of

the positive differences will be approximately the same as the sum of

the ranks for negative differences. If these sums are quite different in
magnitude, the null hypothesis may be rejected. We form the statistic
T which is the smaller of these two sums. We can then makeuseof exact
tables for the sampling distribution of T when N is small and a normal
approximation when Nislarge.

For comparative purposes let us use the same data as were used in the
case of the comparable ¢ test. Table 14.2 repeats these data and also
gives the necessary computations for the Wilcoxon test. Notice that
when weignore sign, several of the difference scores are tied as to mag-
nitude. In such an instance we again give the tied scores the average of
the ranks they would have received had the scores not been tied. Thus
there are two differences of size 1. Since we are here giving the smallest
differences the lowest ranks, each of these differences has received a rank
score of 1.5. In the fifth column we haveindicated the sign associated
with each rank in parentheses to the left of the rank. By inspection we
see that the sum of the negative rankswill be less than that of the positive
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Table 14.2. Computations for Wilcoxon Matched-pairs Test
 

 

Pair no. Group A Group B Difference ankof Negative

1 63 68 5 (+) 6
2 41 49 8 (+) 10.5
3 54 53 —1 (—) 1.5 1.5
4 71 75 4 (+) 5
5 39 49 10 (+) 12
6 44 41 —3 (—) 4 4
7 67 75 8 (+) 10.5
8 56 58 2 (+) 3
9 46 52 6 (+) 8
10 37 49 12 (+) 13
11 61 55 —6 (—) 8 8
12 68 69 1 (+) 1.5
13 51 57 6 (+) 8

Total 13.5     
 

ranks. Therefore we obtain 7 by adding these negative ranks. It 1s not

necessary to keep the negative signs in looking up the value of 7 in the

table since 7’ values will always be given as positive. Thus

T=15+44+8 = 13.5

Let us now formalize what we have donebylisting the steps in the usual

manner.

1. Assumptions.

Level of Measurement: Ordered-metric scale (difference scores can be

ranked)

Model: Random sampling
Hypothesis: Sum of positive ranks = sum of negative ranks in

population

2. Sampling Distribution. The sampling distribution of 7 for N < 25

is given in Table H, Appendix 2. For larger samples, T is approximately

normally distributed with

 

 

Mean = ur = Vor (14.11)

and Standard deviation = or = NW + pen +) (14.12)

3. Significance Level and Critical Region. As in the case of the ¢ test

weshall use the .05 level without predicting the direction of the outcome.

4. Computing the Test Statistic. The value of 7 has already been

computed from Table 14.2. We obtained a T of 18.5.
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5. Decision. Table H of Appendix 2 gives critical values of 7 for
N < 25. Since T represents the smaller of the two sums of ranks, we
need small numerical values of T in order to reject the null hypothesis.
Thus we may reject Ho whenever T' is equal to or less than the values
given in the body of the table. We see that for an N of 13 we need a T of
17 or smaller in order to reject at the .05 level. Wealso see that a 7 of
13 or less would be required for rejection at the .02 level. In using the
t test in the previous chapter you will note that we just barely rejected at
the .02 level; here we are slightly above the .02 level, but the results of
the two tests are quite similar.
Although our N is quite small we can makeuse of the normal approxi-

mation for illustrative purposes. Weget

VWN(N + 1)(2N + 1)/24
_ 13.5 — 13(14)/4 _ 18.5 — 45.5

~/13(14) (27) /24 \/204.75

Since a Z of — 2.24 corresponds to p = .025, we again reach the same con-
clusion. The value of T is much smaller than we would expect by
chance, and we may reject the null hypothesis.

 

 

= —2,24 

 

14.6. Summary

In the present chapter we have discussed four different nonparametric
tests. Others will be taken up in later chapters. You have undoubtedly
noted that all of the nonparametric tests we have discussed so far involve
very simple ideas and considerably fewer computations than, say, the
difference-of-means test. This is a further reason why we may predict
that in the future sociologists will make much more frequent use of these
nonparametric tests. It is unfortunately impossible in a general text to
do much more than discuss a few such tests very briefly. Some of the
tests taken up in this chapter have other kinds of applications which have
not been discussed. For example, the runs test can be used as a test for
randomness. The Smirnov test can be used as a one-sample test to
compare observed frequencies with those predicted theoretically. In
some cases, confidence intervals can be obtained using nonparametric
procedures. Once you have gained a certain familiarity with the tests
covered in this text, you may therefore want to consult more specialized
sources. Fortunately, a good many of these nonparametric procedures
can be easily understood by the reader whois not mathematically trained.
It is also fortunate that a numberof these procedures have been sum-
marized in a recent text by Siegel [3]. You may also want to refer to an
extensive bibliography of nonparametric methods compiled by Savage [2].
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GLOSSARY

*Power efficiency
*Power function

*Powerof a test

EXERCISES

1. A numberof Protestant churches in a community have been classified as being

(1) predominantly upper or upper-middle class, or (2) predominantly lower-middle

or lower class. They are ranked according to howformal their services are, with the

following results:

Upper and upper-middle: Ranks1, 2, 3, 6, 7, 8, 1, 13, 14, 15, 17, 21, 25

Lower-middle and lower: Ranks 4, 5, 9, 10, 12, 16, 18, 19, 20, 22, 23, 24, 26, 27

Using the .05 level, can you establish a significant difference (a) with the runstest,

and (b) with the Mann-Whitney test? Which test would you prefer? Why?

2. In Table 18.3, p. 318, data are given on the popularity rankings of the members

of a summer work-camp group. Consider persons with participation ranks 1 to 8

as being ‘“‘active” in group discussions, with the remainder of the group being placed

in the “inactive” category. Is there a significant difference at the .05 level between

the “actives” and “‘inactives” with respect to popularity? Use both the runs and

Mann-Whitneytests.

3. Suppose you have been able to rank urban occupations from high to low, using

the general categories of professional and managerial, clerical, skilled, semiskilled,

and unskilled. You have asked every head of the household whether or not he

favors increasing social security benefits at the taxpayer’s expense. Theresults are

as follows:
 

 

 

Occupational level Favors

|

Opposes

Professional and managerial 46 97

Clerical 81 143

Skilled 93 88

Semiskilled 241 136

Unskilled 131 38

Total 592 502  
 

Is there a significant relationship between occupation and attitude at the .001 level?

4. Work Exercise 2, Chap. 13, using the Smirnov test. Compare results with

those of the ¢ test.

5. Work all parts of Exercise 5, Chap. 18, using the Wilcoxon matched-pairs

signed-ranks test. How do theresults of the two tests compare?

*6, Verify that equation (14.8) is algebraically equivalent to the other formula

for Z given on p. 200.

REFERENCES

1. Dixon, W. J., and F. J. Massey: Introduction to Statistical Analysis, 2d ed.,

McGraw-Hill Book Company, Inc., New York, 1957, chap. 14.



ORDINAL SCALES: TWO-SAMPLE NONPARAMETRIC TESTS 211

2. Savage, I. R.: “Bibliography of Nonparametric Statistics and Related Topics,”
Journal of the American Statistical Association, vol. 48, pp. 844-906, 1953.

3. Siegel, S.: Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill
Book Company, Inc., New York, 1956, chaps. 5 and 6.

4. Smith, K.: “Distribution-free Statistical Methods and the Concept of Power
Efficiency,” in L. Festinger and D. Katz (eds.), Research Methods in the Behavioral
Sciences, The Dryden Press, New York, 1953, pp. 536-577.

5. Swed, F. 8., and C. Eisenhart: ‘Tables for Testing Randomness of Grouping
in a Sequence of Alternatives,” Annals of Mathematical Statistics, vol. 14, pp. 66-87,
1943.

6. Walker, H. M., and J. Lev: Statistical Inference, Henry Holt and Company,Inc.,
New York, 1953, chap. 18.



Chapter 15

NOMINAL SCALES: CONTINGENCY PROBLEMS

In this chapter we shall study the relationships between two or more

nominal scales. We havealready seen that the case of two dichotomized

nominal scales can be handled as a problem involving a difference of

proportions. It is often desirable to make use of a more general test

procedure which enables us to test for differences among three or more

samples or to compare two (or more) samples with respect to a variable

which has more than two categories. The chi-square test discussed in the

next section enables us to interrelate nominal scales with any numberof

categories. Several new ideas will also be introduced. So far we have

only been concerned with tests for the existence of a relationship between

two variables. Some measures indicating the strength or degree of

relationship will be presented in this chapter. Procedures used in

controlling for one or more variables will also be discussed.

15.1. The Chi-square Test

The chi-square test is a very general test which can be used whenever

we wish to evaluate whether or not frequencies which have been empiri-

cally obtained differ significantly from those which would be expected

under a certain set of theoretical assumptions. The test has many

applications, the most common of which in the social sciences are “con-

tingency” problems in which two nominal-scale variables have been

cross-classified.!. For example, suppose religious affiliation and voting

preference have been interrelated and the data summarized in the follow-

ing 3 X 3 contingency table:
 

 

 

 
 

Party Protestants

|

Catholics| Jews

|

Total

Republicans 126 61 38 225

Democrats 71 93 69 233

Independents 19 14 27 60

Total 216 168 134 518    
 

1 For another use of chi square, see Exercise 3 at the end of the chapter.

212
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Notice that if frequencies were converted to percentages we could say
that whereas 58.3 per cent of the Protestants are Republican, only 36.3
per cent of the Catholics and 28.4 per cent of the Jewspreferthis political
party. We would then want to ask whether or not these differences were
statistically significant. Since there are three religious denominations
and three categories of political preference, a single difference-of-propor-
tions test cannot be used. In using the chi-square test we can make
essentially the same kind of null hypothesis as before, however. We can
assume that there are no differences amongthethreereligious populations.
This amounts to saying that the proportions of Republicans, Democrats,
and Independents should be the samein each of the three groups. Pro-
ceeding under the assumption that the null hypothesis is correct and that
the samples are random and independently selected, we can then compute
a set of frequencies that would be expected given these marginal totals.
In other words, we can compute the number of Protestants whom we
would expect to be Republicans and compare this figure with that
actually obtained. If these and comparable differences for other cells
are quite large, we are likely to be suspicious of the null hypothesis.
Some measure of the difference between observed and expected fre-

quencies must be obtained. There are, of course, a large number of
possible measures, but we need one for which the sampling distribution

is known and tabulated. For this reason, we make use of a measure

referred to as chi square (x2) which is defined as follows:

2 — (fo ~ fe)?
x »a (15.1)

wheref, and f, refer respectively to the observed and expected frequencies

for each cell.? In words, chi square is obtained byfirst taking the square
of the difference between the observed and expected frequencies in each

cell. We divide this figure by the expected numberof cases in each cell

in order to standardize it so that the biggest contributions do not always

come from the largest cells. The sum of these nonnegative quantities
for all cells is the value of chi square.

Notice that the larger the differences between observed and expected
frequencies, the larger the value of chi square. Chi square will be zero
only when all observed and expected frequencies are identical. We can
now perform a test of the null hypothesis by looking at the sampling
distribution of chi square. We would hardly expect observed and
expected frequencies to be exactly the same. If the value of chi square
turns out to be larger than that expected by chance, however, weshall be
in a position to reject the null hypothesis under the usual procedures.

* In order to reduce confusion we have dropped the subscript 7, it being assumed
that we are summingoverall the cells.
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Problem. We can make use of the example given above but

simplified so as to givea 2 X 2 table. The extension to the general

case will turn out to be straightforward. Let us assume that

Catholics and Jews have been combined and the Independents

omitted. We then havethe following table:

 

 

 

Party Protestants |Catholics and Jews |Total

Republicans 126 99 225

Democrats 71 162 233

Total 197 261 458   
 

It is important to note that the figuresin each cell are actual frequencies

rather than percentages. If figures given are percentages, they must be

converted into frequencies, since the chi-square test statistic involves a

comparison of frequencies rather than percentages.

1. Assumptions.

Level of Measurement: Two nominalscales
Model: Independent random samples

Hypothesis: No differences amongreligious populations with respect

to political preference

The level of measurement can, of course, be higher. Chi-square tests

are frequently used with ordinal scales and sometimes even interval

scales. As we have seen in previous chapters, however, more powerful

tests are available in such instances and would ordinarily be used in

preference to chi square unless ease of computation were an overwhelming

consideration. Again, it is necessary to assume independence between

samples in order to make use of the chi-square test. The sample size

must be relatively large because chi square, as defined by the formula,

has a sampling distribution which approximates the distribution given in

the table only when

JN

islarge.’

The null hypothesis can be stated in a number of equivalent ways.

Saying that there is no difference amongreligious groups with respect to

political preference is essentially saying that there is no relationship

between religious affiliation and voting preference. It must be realized,

however, that such a statement would apply only to these variables as

they have been operationally defined: in this case political preference and

religion would be defined as dichotomized variables. One could also

state the null hypothesis by listing the various proportions which are

assumed equal. Although this last method is perhaps the most precise,

it can become quite cumbersomein the general case.

3 See pages 220-221 for a more complete discussion of this problem.
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2. Significance Level. Let us suppose that we want to demonstrate a
difference and that we wish to be extremely conservative. We shall
therefore use the .001 level. Suppose, also, that the direction of the
difference is not predicted.

3. Sampling Distribution. The sampling distributions for chi square
are given in Table I, Appendix 2. Notice that distributions differ
according to the degrees of freedom involved. The determination of
degrees of freedom will be discussed below. Since regardless of the
direction of the relationship between religion and political preference, our
interest is in whether or not the obtained chi squareis larger than would
be expected by chance, we are concerned only with the uppertail of the
distribution. The lower tail, consisting of very small values of chi
square, is not ordinarily used in contingency problems.

4. Computation of Test Statistic. Ourfirst task in the computation of
chi square is to obtain the expected frequencies. The null hypothesis
states that there are no population differences as to voting preference.
Therefore, regardless of what the true percentage of Republicans in each
religious population may be, we would expect that in the long run there
would be the same proportion of Republicans in both of the samples.
Since the proportion of Republicans in the combined sample is 225458 OF
4913, we would expect this same figure in each of the two religious
samples. Each sample would thus be expected to have the same per-
centage of Republicans and the same percentage of Democrats. We
can then obtain the expected number of Republicans among the Protes-
tants by multiplying .4913 by the total number of Protestants in the
sample. Thus the expected number of Republican Protestants would be
(.4913)(197) = 96.8. The other expected frequencies can be computed
inasimilarmanner. It is generally advisable to keep at least one decimal
place in computing expected frequencies. Thus we would not round up
to 97.

Before going on, it should be noted that expected frequencies can also
be obtained by reasoning the other way around, i.e., in terms of the
proportion of Republicans we would expect to be Protestant. Since the
proportion of Protestants in the combined sample is 197458 or 4301, we
can get the expected frequency of Protestant Republicans as follows:
(.4301) (225) = 96.8. You should learn to obtain expected frequencies
both ways as a check on your computations.

After the procedure has become a familiar one, you will then probably
find it more convenient to make use of a simple formula described below.
If we label the cells and marginal totals as

a b a+b
c d c+d

ate b+d| N
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the expected frequency for anycell can be obtained by multiplying the

two marginals corresponding to the cell in question and dividing by N.

For example, the expected figure for cell a would be

(a+ b)(a+c)/N - (225) (197)/458 = 96.8

The use of this last procedure reduces any rounding errors which may be

introduced byfirst dividing (to obtain a proportion) and then multiplying.

By convention, we usually place the exnected frequencies in parentheses

beneath the frequencies actually obtained for each cell as indicated below.

 

  

   

Party Protestants Catholics and Jews Total

. 126 99 225
Republicans (96.8) (128.2)

Democrats 71 162 233

" (100.2) (132.8)
Total 197 261 458 
 

Computations for chi square can then be summarized in a table such as

Table 15.1. Notice that the quantity f. — f. has the same numerical

Table 15.1. Computations for Chi Square
 

 

      

Cell fo fe fo — fe (fo — fe)? (fo — fe)?/fe

a 126 96.8 29.2 852.64 8.808
b 99 128.2 —29.2 852 .64 6.651

Cc 71 100.2 —29.2 852.64 8.509

d 162 132.8 29.2 852.64 6.420

Total 458 458.0 30.388
 

value for each cell. You should convince yourself that this will always

be the case in 2 X 2 tables but that it will not hold generally. Squaring

this value has the effect of getting rid of the negative quantities. It is

important that the expected frequencies, rather than the observed ones,

be used in the denominators. The observed frequencies will vary from

sample to sample and some might even be equal to zero.

It is often more convenient to make use of a computing formula which

does not actually require subtraction of each expected frequency from

each observed frequency. Expanding the numerator in the expression

for chi square and thencollecting terms we get
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=Vaiyee

-)% -2)i+ yf

But since both =f, and Zf. are equal to N we obtain

 

2 = ie Nn (15.2)

Using this formula, which involves only a single subtraction, we get the

same result as before (see Table 15.2).

Table 15.2. Computations for Chi Square, Using Computing Formula
 

 

Cell fo? fo?/fe

a 15,876 164.008

b 9,801 76.451

Cc 5,041 50.309

d 26 , 244 197 .620

Total 488 .388   
x? = 488.388 — 458

= 30.388
=
 

In the case of the 2 X 2 table only, it is possible to express chi square

as a simple function of the cell frequencies and marginal totals. If the

table is labeled as before we get

9 N(ad — bc)?

x" ~ faFb(e + dj(a+cyb +d)
 (15.3)

Although this computing form requires the multiplication of large
numbers, the use of logarithms may simplify considerably the computa-
tions involved. Incidentally, we see from equation (15.3) that chi square
will be zero when the diagonal product ad is exactly equal to the product
be. This fact can be used as a quick method to determine whetheror not
it will be necessary to go ahead with a test for significance. If the
diagonal products are almost equal, chi square will be too small to yield
significance. These diagonal products can also be used to determine the
direction of the relationship without bothering to compute percentages.
The larger of the two products indicates which diagonal contains the
bulk of the cases.
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5. Decision. Before using the chi-square table we must first deter-

mine the degrees of freedom associated with this test statistic. In

previous problems the degrees of freedom have always depended on the

number of cases sampled. For contingency problems, however, the

degrees of freedom depend only on the numberof cells in the table. In

computing expected frequencies you may have noticed that it is not

necessary to compute values for each cell since most could have been

obtained by subtraction. In fact in the 2 X 2 table we need to compute

only one expected frequency and theothers will all be determined. This

is true because we make use of our sample marginal totals to compute

expected frequencies. In other words, if wefill in a value for any one cell

the other values are completely determined since expected frequencies

must have the same marginal totals as observed frequencies. We there-

fore have only 1 degree of freedom.

Having determined that there is only 1 degree of freedom in the 2 X 2

table, we look across the row corresponding to 1 degreeof freedom in the

chi-square table until we cometo the desired level of significance. Corre-

sponding to the .001 level we find a chi square of 10.827. This means that

if all assumptions were in fact correct, we would obtain a value for chi

square this large or larger only one time in a thousand. In other words,

only very seldom will observed and expected frequenciesdiffer by such an

amount as to yield a chi square > 10.827 if there were no relationship

between religious affiliation and voting preference (as operationally

defined in this problem). Since we actually obtained a value for chi

square equal to 30.388 we conclude that the null hypothesis can be

rejected at the .001 level. We see incidentally that when N is largeit is

not at all difficult to obtain significance at the .001 level.

Even though we were concerned only with large values of chi square,

the direction of the relationship was not predicted in the above example.

Regardless of whether Protestants were more likely to be Republicans or

Democrats, the result would have been a large chi square if differences

in percentages were also large. In other words, the test statistic is

insensitive to the direction of relationship since it involves the squares

of deviations and cannot be negative. We can take advantage of predic-

tions as to direction simply by halving the significance level obtained.

If chi squareis large enough toyieldsignificance at the .10 level without

predicting direction, the result will be significant at the .05 level

provided, of course, that the direction of the relationship was predicted

beforehand. If the desired significance level cannot be obtained exactly

from the chi-square table, a good approximation can be made by taking

the square root of chi square and entering the normal table. For

example, we know that a chi square of 3.841 with 1 degree of freedom

corresponds to the .05 level when direction has not been predicted. The
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square root of this figure is 1.96 which is the Z value necessaryfor signifi-

cance with the normal table. The normal table can be used only in the

case of 2 X 2 contingency problems.

General Case. In the general case of the contingency table with

r rows and ¢ columns the assumptions and computations for chi square

require only slight modification. The null hypothesis of ‘no difference”’

or ‘‘no relationship”’ now implies that each population will have the same

proportions for each of the categories of the second variable. The

expected frequencies can be obtained in exactly the same way as before,

but there will now berc cells and the degrees of freedom will be different.

Suppose we makeuse of the same exampleas before butin its original

form, that of a 3 X 3 table. Incidentally, this table supplies us with

more information than in the 2 X 2 case in which Catholics and Jews

were combined into a single category. We therefore can expect results

which may differ somewhat from those obtained above. Computing

expected frequencies by any of the methods previously suggested, we

obtain

NOMINAL SCALES: CONTINGENCY PROBLEMS

 

 

  

Party Protestants Catholics} Jews Total

126 61 38 225
Republicans (93 .8) (73.0) (58.2)

71 93 69 233
Democrats (97 .2) (75.6) (60.2)

19 14 27 60
Independents (25 .0) (19.4)

|

(15.6)
Total 216 168 134 518   
 

A computing table can be constructed as before (see Table 15.3).

Table 15.3. Computations for Chi Square for 3 X 3 Contingency Table
 

 

     
 

Cell fo fe fo? fo®/fe

a 126 93.8 15,876 169.254

b 61 73.0 3,721 50.973
c 38 08 .2 1,444 24.811

d 71 97.2 5,041 o1 . 862

e 93 75.6 8,649 114.405

f 69 60.2 4,761 79.086
g 19 25.0 361 14.440

h 14 19.4 196 10.103
1 27 15.6 729 46.731

Total 518 518.0 561.665

x? = 561.665 — 518 = 43.665
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To determine the proper degrees of freedom we notice that once the

first two expected frequencies have beenfilled in for the first column, the

third is determined by subtraction. The samewill be true for the second

column. All the expected frequencies in the third column will then be

determined from the row totals. Generally, for each of the first ¢c — 1

columnsit will be possible to fill in all but one, or r — 1, of the cells. The

final column will then always be completely determined. Therefore the

numberof degrees of freedom for the r X ¢ contingency table can be given

by the formula ,
df = (r — 1)(c — 1)

Notice that this formula gives 1 degree of freedom in the special case

where r = c = 2.

Since there are 4 degrees of freedom associated with our 3 X 3 table,

wesee that a chi square of 18.465 is required for rejection at the .001 level.

Wetherefore reject the null hypothesis. Notice that although a larger

value of chi square is required for rejection, there are many more cells

contributing to its value. Since chi square represents a sum rather than

an average, we would expect that, other things being equal, the greater

the numberofcells the larger the chi square. Thefact that the value of

chi square needed for significance increases with the degrees of freedom

shouldn’t surprise us.*

Correction for Continuity. It has been indicated that the chi-square

test requires a relatively large N because of the fact that the sampling

distribution of the test statistic approximates the sampling distribution

given in the chi-square table only when N is large. The question

naturally arises, then, as to how large N hasto be in order to make use of

this test. 'The answer depends on the numberof cells and the marginal

totals. Generally, the smaller the numberof cells and the more nearly

equal are all marginal totals, the smaller the total N can be. Thecriteria

usually used for deciding whether or not the numberofcasesis sufficient

involve the expected frequencies in each cell. Whenever any of the

expected frequencies are in the neighborhoodof5 or smaller,it is advisable

to make some kind of modification as indicated below.

The chi-square distribution is assumed to be a continuous one. Actu-

ally, however, when the numberofcasesis relatively smallit is impossible

for the computed value of chi square to take on very many different

values. This is true because observed frequencies must always be

integers. In correcting for continuity we imagine that observed fre-

quencies actually can take on all possible values, and we make use of

those values within a distance of half a unit on either side of the integer

obtained which will give the most conservative results. In the case of

‘ Note that the opposite was true in the case of the ¢ distribution. Why?
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the 2 K 2 table a correction for continuity can very easily be made.

This correction consists of either adding or subtracting .5 from the

observed frequencies in order to reduce the magnitude of chi square.

To see the effect of correcting for continuity we can take the following
tables:

    

(A) 7 13 20 (B) 7.5 12.5 20

(10) (10) (10) (10)

8 2 10 7.5 2.5] 10

(5) 6) | (5) 6)
15 15 30 15 15 30

x? = 5.40 x? = 3.75

In Table B we have corrected for continuity by reducing the differences

between observed and expected frequencies in each cell by .5. We have

imagined that there are between 6.5 and 7.5 cases in the top left-hand

cell and have used the number 7.5 sinceit is the closest value within this

interval to the expected frequency of 10.0. In this example, correcting

for continuity reduces the significance level from approximately .02 to
somewhat greater than .05. Obviously, corrections for continuity will

haveless effect when expected frequencies are larger. Since making such

a correction actually involves very little additional effort, and since one

is on the conservative side in so doing, it is reeommendedthat the correc-

tion be made whenever the expected frequency in any cell falls below 10.

With very small samples even this correction produces misleading results.

An alternative test discussed in the next section is available for 2 X 2

tables. |

Corrections for continuity cannot easily be made in the case of the

general contingency table. If the numberofcells is relatively large and

if only one or two cells have expected frequencies of 5 or less, then it is

generally advisable to go ahead with chi-square tests without worrying

about such corrections. If there are a large number of small cells, how-

ever, the only practical alternative may be to combine categories in such

a manner as to eliminate these cells. Of course categories can only be

combinedif it makes sense to do so theoretically. Thus if there were an

“other religions” category consisting of such a wide range of religious

groups as to make the category theoretically meaningless, it would

perhaps be better to exclude these persons from the analysis altogether.

*15.2. Fisher's Exact Test

In the case of 2 X 2 tables where N is small it is possible to make use

of a test developed by R. A. Fisher which gives us exact rather than
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approximate probabilities. If we label the cells and marginals of a

2 X 2 table as
a b a+b

Cc d c+d

ate b+d| N
 

we can obtain the probability of getting exactly these frequencies under

the null hypothesis that there are no differences in the population propor-

tions. This probability is given by the formula

_ td+ala+olO+a!
P N!a!b!c!d!
 

Notice that there are nine factorials in this formula for P. The task of

directly evaluating the formula would therefore be quite formidable.

Furthermore, since one is ordinarily interested in the entire tail of the

sampling distribution rather than the probability of getting exactly the

results obtained, he will then have to add to this first probability the

probabilities of getting even more unusual outcomesin the samedirection.

A simple numerical example can be usedto illustrate whatis involved.

Suppose we have obtained the following 2 X 2 table:

3 9| 12
12 5 |17
15 14 |29

 

If we assume that the marginals remain fixed, we immediately see that

there are three outcomes (in the same direction) which are even more

unlikely than the one obtained. They are as follows:

 

 

2 10/ 12 1 11) 12 0 12); 12
13. 44 17 14 3/17 15 2/17

15 14 29 15 14 29 15 14 29

   

Notice that we can arrive at the successive tables by each time reducing

by one thecells a and d, and increasing by onethecells b and c, until we

reach the final table in which cell a is empty. |

Weshall suppose that it is always cell a which contains the smallest

numberof cases since it will always be possible to arrange the tables in

thisfashion. Let us use the symbol Py to denote the probability of getting

exactly no casesin cell a (given these marginals) under the null hypothesis;

let P; represent the probability of getting exactly one case in cell a, Pe

the probability of getting exactly two, etc. Then in this particular

problem we must obtain the sum of the probabilities

Pot Pit P2+ P3
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in order to compute the probability of getting three or fewer cases in cell a.
Since we are making use of a one-tailed test, we shall have to double
the significance level obtained if we were unable to predict direction
beforehand.

Rather than compute each of the P; from the above formula involving
products of factorials, it will be much more convenient to obtain Po
directly and then to obtain the remaining probabilities as simple functions
of Po. In order to distinguish between the various possible combinations
of numerical values of a, b, c, and d for fixed marginals, let us make use of
the subscript k to denote the magnitude of the smallest cell a. Thus if
there are k individuals in cell a, we shall refer to the quantities in the
various cells as a, (= k), bz, c,, and d,. Since the marginals are assumed
to remain fixed, if we decrease a; and d; by 1 we must increase b; and cz

by 1. We can nowsimplify the formula for Po since ay) = 0 and therefore

ao! = 1 (by definition), (ao + bo)! = bo! and (ao + eo)! = eo!. A number

of the factorials therefore cancel out, leaving us with

P, = (co + do)'(bo + do)!

o Ndo!
 

The numerator now consists of the factorials of just two of the marginals
rather than all four, and the denominator involves only N! and do!. The

value of do can be obtained from the last of the four tables given above.

In this example, therefore, (¢o + do) = 17, (bo + do) = 14, N = 29, and

dy = 2. Po can now be evaluated by using a table of logarithms of

factorials or by writing out the factorials and simplifying.

In order to compute the values of P:, P2, and P3 we now need a general

formula for Pz41 in terms of P,. Since marginals are assumed fixed, we

have

P.., = (a+ ble+d)la+c!6+ ad)!

tl Ni(ay + 1)i(b. — Dia — Did + DY!

because of the fact that when we add 1 to the a cell we also add 1 tod

and subtract 1 from both bandc. If we now divide P,41 by P; practically

all terms will vanish. The numerators for both probabilities are identical

since they involve the same marginals. The factorial N’s cancel. We
are then left with

Pru ax !bi!c, Id,!

Pe (@ + DIG — Dia — Iid+)!
 

But ax!/(a, + 1)!is just 1/(a, + 1) and similarly for d,!/(d, + 1)!. Also,
by!/(b; _— 1)! = b; and Ce!/ (cx _— 1)! = Ck.
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Pryr _ OxCe
Therefore, Py = (ay + 1) (di + 1)

b,Cx,
or Prat =

(ax + 1)(d + nD’

and the troublesome factorials have disappeared. Therefore, we can

make use of this formula to obtain P; from Po. Having computed P1 we

can then get P2 and so on.

Returning to our numerical example, we obtain Po as follows:

 

_ 14!17! _s
Py = 39101 ~ .17535 X 10

Therefore,

bolo _ 12115) _
= Py = 17535

X

1075) = 10.521 10-5
Pi= Goad Fy Tay 617588 X 10) x

In computing P, we must be careful to make use of ai, 61, ¢1, and di

rather than the figures used in obtaining P;. We get

 

 

b1C4 11(14) _

P.= P, = 10.521 10-5 202.52 10-5
=a eDaLtD “B(g (10.521 X 10%) = 202.529 X 10

Similarly,

belo _ 10(18)
P = P. = —5\) — —5

3 (a + 1)(d2 + 1) “3(5) (202.529 & 10-5)

=

1,755.252 & 10

Notice that each of the factors in the numerator is decreased by 1 as we

compute P;41 from P;, whereas the factors in the denominators are each

increased by unity. Adding the probabilities we thus get

Pot Pit P.2+P3 = [.175 + 10.521 + 202.529 4+ 1,755.252] X 10~°

1,968.48 X 10-5 = .0197 :

Therefore the probability of getting three or fewer individuals in cell a

under the null hypothesis is .02, and we would makeour decision whether

or not to reject the null hypothesis accordingly.

Because the Fisher test is an exact test it is to be preferred over the

chi-square test corrected for continuity. Since the chi-square test will

ordinarily yield somewhat lower probabilities than the Fisher test, one

will be on the conservative side in using this exact test if he actually

wants to reject the null hypothesis. In other words, in using the chi-

square test we mayarrive at probabilities which are actually too small,

possibly leading us to the conclusion that the null hypothesis should be

rejected when actually it shouldn’t. If the smallest expected frequency
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is quite a bit larger than 5 andif the correction for continuity is used, the

two tests will give approximately the same results. Even though we may
avoid the use of factorials in the case of the Fisher test, it can be seen

that if the smallest cell frequency is greater than 5, the computations

involved will become quite tedious. Therefore, the Fisher test will be

found to be most useful in the case of very small N’s or wheneverthe total

sample size is moderate but one or more of the marginals very small.

In cases where N < 380, tables are available in [5] which makethis exact

test extremely simple to use.

15.3. Measures of Strength of Relationship

Up to this point we have only been concerned with the question of

whether or not a relationship between two variables exists. We have

set up null hypothesesto the effect that there is no relationship and have

then tried to reject these hypotheses. But just how much have we

accomplished when weare able to reject? Werefer to a relationship as

being statistically significant when we haveestablished, subject to the risk
of a type I error, that there 7s a relationship between the two variables.

But does this mean that the relationshipis significant in the sense of being

a strong relationship or an important one? Not necessarily. The

question of the strength of a relationship is a completely different question

from that of whether or not a relationship exists. In this section weshall

take up several measures of degree of association which can be used to

help answer this second kind of question.

It would seem reasonable, on first thought, to attempt to assess the

strength of a relationship by simply noting the significance level attained

in a test. For example, it might be reasoned that if one test were sig-

nificant at the .001 level and anotherat the .05 level, the formerrelation-

ship would be the stronger of the two. But is this necessarily the case?

Looking at the two significance levels can tell us in which case we can
have more faith that a relationship exists. Thus, we would be almost

certain of the existence of a relationship in the first case but not so sure in

the second. We must remember, however, that the significance level

attained depends on the size of the samples used. As indicated previ-

ously, if the samples are very large it is generally very easy to establish

significance for even a very slight relationship. This means, in effect,

that when samples are large we are saying very little when we have

established a “‘significant’”’ relationship. For large samples, a much

more important question is, ‘Given that a relationship exists, how strong

is it?”’
In order to illustrate the above argument, let us take a closer look at a

property of chi square. In doing so, you should keep in mind that
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exactly the same principles apply for other kinds of significance tests.

Let us ask ourselves what happens to chi square when the number of

cases is increased. Forillustrative purposes we can take the following

2 X 2 table:

 

30 20 | 50
20 30, 50
50 50 | 100

Chi square for this table turns out to be exactly 4.0. Now suppose we

were to double the sample sizes, keeping the same proportions in each

cell. We would then obtain

60 40 100
40 60) 100

100 100 200

and chi square would be 8.0, a figure which is exactly double the previous

one. By examining the formula for chi square it is very easy to prove

that if proportions in the cells remain unchanged, chi square varies

directly with the number of cases. If we double the number of cases,

we double chi square; if we triple them wetriple chi square. Suppose

the original number of cases is multiplied by a factor k. Then since

proportions in the cells remain unchanged, each new observed frequency

will be exactly k times the old one, and similarly for the expected fre-

quencies. The new chi square can thus be expressed as

9\/) __ (kf. 7 kfe)? _ k?(fo 7 fe)? _ (fo ZZ fe)?

ON) = > if 7 > Kf =k) aa

Thus the value of the new chi square is exactly k timesthat of the original

one.

The implications of this fact can be brought out by means of another

illustration. Suppose we obtain the following results when werelate sex

differences to tolerance of deviant behavior:

 

Tolerance| Males Females

 

High 26 24

Low 24 26   
In this case chi square is 0.16, and we would rightly report that the

relationship is not a significant one. Suppose, however, that the survey

had been a very ambitious one and that data had been collected on 10,000
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cases with the followingresults:

 

Tolerance! Males Females

 

High 2,600 |2,400
Low 2,400 |2,600   

Chi square is now 16.0, a value which is highly significant statistically.
Had we expressed the results in terms of percentages, however, they
would have looked muchless interesting. If we said that 52 per cent of
the males were highly tolerant whereas “only’’ 48 per cent of the females
were in this category, we would rightly be criticised for emphasizing
differences which seemedtrivial from the standpoint of theoretical or
practical significance. This example illustrates a very important point.
A difference may bestatistically significant without being significant in
any other sense. In the instance where 10,000 cases were selected, we can

be very sure that there is someslight relationship. Had we used census

data with an N of some 180 million we probably could have established

statistical significance between any two variables we happened to choose!

We can see that when a sample is small it requires a much more

striking relationship in order to obtain significance. Therefore, with

small samples significance tests are far more important. In such cases

we may be saying quite a bit when we can establish significance. The

significance level depends on two factors: the strength or degree of

relationship and the size of the samples. Significance can be obtained

with a very strong relationship and very small samples or with a very
weak relationship and large samples. In mostsocial research our primary
interest is not so much in finding variables that are interrelated but in
locating the important relationships. Although it should be emphasized
that not all strong relationships are important (e.g., the relationship
between age of husband and ageof wife), in orderfor a relationship to be
of some practical importance it must be at least moderately strong.
Having first established the existence of a relationship, the researcher
should always ask himself, ‘‘ How strongis it?”
How is strength of relationship measured, then? Weare seeking a

descriptive measure which can help us summarize therelationship in such
& manner that we can compare several relationships and reach a con-
clusion as to which is the strongest. Ideally, we would also like to have
some kind of operational interpretation for the measure which has intui-
tive appeal. By convention, statisticians have adopted the custom of
designing measures which have unity as an upperlimit and either zero or
—1.0 as a lower limit. Most measures can attain their limit of 1.0 (or
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—1.0) only when the relationship is a perfect one, and they take on the

value zero when thereis no relationship at all between the variables, 1.e.,

they are independent. Several measures which can be used with con-

tingency tables will presently be discussed and their properties evaluated.

Before taking up various measures of association which can be used

with contingency tables, we should at least mention the rather simple and

obvious procedure of reporting differences in terms of percentages. It

is certainly possible to get a very good indication of the degree of relation-

ship between two dichotomized variables by comparing percentages.

For example, if 60 per cent of the males sampled are classed as highly

tolerant whereas only 30 per cent of the females are so categorized, there

is a 30 per cent difference between the two groups. Whynot use such a

figure as a measure of strength of relationship? If, for example, we

compare middle- and lower-class individuals with respect to tolerance,

obtaining only a 20 per cent difference, we can then claim a stronger

relationship between sex and tolerance than between class and tolerance.

In the special case of the 2 X 2 table percentages can easily be com-

pared in such a manner, and the widespread familiarity with percentages

as contrasted with other types of measures would certainly argue for such

comparisons of percentages. But what about the general r X c table?

Here the use of percentages may makeit difficult for the readerto see at a

glance howstrong the relationship may be. For example, suppose three

social classes were used with the following results: upper class, 70 per cent

highly tolerant; middle class, 50 per cent highly tolerant; and lowerclass,

30 per cent highly tolerant. We now have a spread of 40 per cent between

the upper and lowerclasses, a difference which is numerically larger than

that between males and females. On the other hand, we would ordinarily

expect a larger difference when only the extremes are used. Suppose

there had been five classes. What kind of percentage differences would

we now expect, and how would we comparethe results with those of a

2% 2table? To introduce a further complication, suppose we had used

four categories of tolerance. Quite obviously, it becomes difficult to

make comparisons from one table to the next. We need a single sum-

marizing measure which will have the same upper and lower limits

regardless of the numberofcells.

Traditional Measures Based on Chi Square. It has already been noted

that chi square is directly proportional to N. We can make use of this

fact to construct several measures of association. In the case of the two

contingency tables

30 20! 50 60 40 100
20 20| 50 and 40 60 100

50 50 | 100 100 100 200
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wedesire a measure which would have the same value for each table since
when we express results in terms of percentages they are the same in
both cases. In other words, we would probably say that the degrees or
strengths of relationship in the two sets of data are identical, and that
the only difference is in the size of the samples. Although the value of

chi square for the second table is double that of the first, we notice that

if chi square is in each instance divided by the total numberof cases the

results are identical. This suggests that x?/N or some multiple of this

expression would give us one of the properties we desire in our measure,

that it yield the same result when the proportions in comparablecells are
identical.

Notice that the value of x?/N, or ¢? as it is commonly denoted, is 0

when there is absolutely no relationship between the two variables. It

turns out that in the case of 2 X 2 (or 2 X k) tables, ¢? also has an upper

limit of unity when the relationship between the two variablesis perfect.

Suppose we had obtained the following table:

 

50 O07} 50
0 50; 50

50 50 100

You can easily verify that in this case chi square is 100 and therefore ¢?
is 199499 or 1.0. It will always be the case that when two diagonally

opposite cells are both empty the value of chi square in a 2 X 2 table will

be \, and therefore ¢? will be unity. Obviously, the relationship in the
above example is as perfect as it could possibly be. If sex were being
related to tolerance we could then say that all males are highly tolerant
and all females intolerant. In terminology with which we shall shortly
become more familiar, we can say that all of the variation in toleranceis
explained by or associated with sex.®

In the general r X c table, ¢? can attain a value considerably larger
than unity. Therefore, several other measures have been developed
which are also simple functions of x?/N but which also have unity as their
upper limits. Thefirst of these measures, referred to as Tschuprow’s T,
is fairly commonly usedin the literature and is defined as

9 x? ¢”

“NVr—-be-) Ve-be-D
Although the upper limit of T is unity, this limit can be attained only
when the numbers of rows and columns are equal. In other words, T
must always be less than one in a 2 X 3 or 3 X 5 table. If there are
considerably more rows than columns(orvice versa) the upperlimit of T

 
 

 
 

* This assumes, of course, that tolerance is taken as a dichotomized variable.
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may be well below unity. To correct for this fact, we can always divide

the obtained value of T by the maximum possible for given numbers of

rows and columns. Since more satisfactory measures are available,

however, there is no need to discuss such a correction procedure.

There is another measure, introduced by Cramér and which weshall

denote by V, defined as follows

V2 = x? _ o?

N Min (r—1,e—1) Min(r—1,¢c— 1)
 

where Min(r — 1, c — 1) refers to either r — 1 orc — 1, whicheveris the

smaller (minimum value of r— 1 andc-— 1). Although V is not com-

monly used in the social science literature, it seems to be preferable to T

in that it can attain unity even when the numbers of rows and columns

are not equal. Ascan easily be verified, V and T are equivalent whenever

r=c. Otherwise, V will always be somewhat larger than T. Of course

both measures become equivalent to ¢ in the 2 X 2 case. Also, in the

2X k case we see that V and @¢ will be identical.

Still another measure of association based on chi square is Pearson’s

contingency coefficient C whichis given by

x?

OC Nie+N
Like the other measures, C becomes 0 whenthe variables are independent.

The upper limit of C, however, depends on the number of rows and

columns. In the 2 X 2 case the upperlimit of C? becomes N/(N + N)

since x? can reach a maximum value of N. Therefore, the upper limit of

C is .707. Although the upperlimit increases as the numberof rows and

columns increases, this upper limit is always less than one. For this

reason, C is somewhat moredifficult to interpret than the other measures

unless a correction is introduced by dividing by the maximum value of C

for the particular numbers of rows and columns. In the case of the

2 X 2 table, for example, the obtained C should be divided by .707.

The above measures of strength of relationship are all based on chi

square. Since the value of chi square would ordinarily have been

previously calculated in orderto test for significance,all of these measures

require very little additional computation. On the other hand,thereis

no particular reason why a measure of association has to be based on the

comparable test statistic. In fact it can be shown that all measures based

on chi square are somewhatarbitrary in nature, and their interpretations

leave a lot to be desired. For example, they all give greater weight to

those columns or rows having the smallest marginals rather than to

those with the largest marginals [1]. Since both T and are frequently
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found in the literature, however, you should be familiar with their
properties.

Kendall's @. Another commonly used measure is Kendall’s Q. This
measure can only be used in a 2 X 2 table andis defined as

ad — be

Q = cad be

wherea, b, c, and d refer to the cell frequencies. Notice that the numera-

tor, when squared and multiplied by N, is the numerator in the expression

for chisquare. Like the other measures, Q disappears when thevariables

are independent, i.e., when diagonal products ad and be are equal. Unlike

¢*, however, Q attains its limits of +1.0 wheneverany one of the cells is

zero. In order to understand the nature of the circumstances under

which Q can be unity whereas ¢? is less than this value, let us take the

following examples:

 

30 O07; 30 40 0; 40
20 50; 70 10 50; 60

50 50 100 50 50 100

  

Although Q takes on the value of unity in both of the above tables, the

values of ¢* are .429 and .667 respectively. In both cases it would be

impossible to have two diagonally opposite cells vanish because of the

nature of the marginal totals. Therefore ¢? can take on the value 1 only

when certain conditions hold for the marginals. In the 2 x 2 table the

marginals for the first variable have to be identical with those of the

second. The greater the discrepancy between row and column mar-

ginals, the less the upper limit of $2.

“The question now arises as to whether or not we wish to consider a

relationship “perfect’’ when only one of the cells vanishes. The answer

to this question would seem to depend, among other things, upon how the

categories of the two variables were formed. Usually it is possible to

conceptualize a problem in terms of an independent and a dependent

variable. It would then seem reasonable to argue that in order for a

relationship to be perfect, the marginals for the dependent variable should

naturally “fit’”’ those of the independent variable. Suppose, forexample,

that there were 60 Protestants and only 40 Catholics and Jews. Then for

a perfect relationship we would expect all 60 Protestants to vote Republi-

can and all 40 of the others to vote Democratic. The marginals would

® This does not mean that marginals have to involve a 50-50 split. It means that
if one marginal is split 70-30 the other must also be split 70-30. Corrections for
unequal marginals are also possible, but, as implied in the discussion which follows,
one should be cautious in using such corrections.
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then be the same for both variables and both ¢? and Q would be unity.

On the other hand, if half of the sample voted Republican and half

Democrat, then even thoughall of the Republican votes came from the

Protestants, we would not call the relationship a perfect one since 10 of

the Protestants must have voted Democratic. In this case, the marginals

for the dependent variable would not coincide with those of the inde-

pendent variable and ¢? would be less than unity. Therefore ¢? would

seem the more appropriate measure in such an instance since Q would

take on the value unity in spite of the imperfect relationship between the

two variables.

*Occasionally it so happens that the marginals of the dependent
variable are fixed by the method used in categorizing. If, for example,

the dependent variable were actually continuous but had been dichoto-

mized at the median, then the two sets of marginals could not possibly be

identical unless the marginals for the independent variables were also

split 50-50. For example, had religious preference been related to

political conservatism scores dichotomized at the median, then ¢? could

not attain unity (assuming the samereligious split as above). In such

a case Q might be a more appropriate measure since it can take into

consideration the fact that the marginals for the dependent variable

have been completely fixed by the method of research.

Goodmanand Kruskal’s Tau. A numberof other measures of association
which can be used with contingency tables have been presented by

Goodman and Kruskal [2]. Most of these measures, only one of which

will be discussed in this text, involve what have been referred to as

probabilistic interpretations. Since they have an intuitive meaning

enabling one to interpret values intermediate between zero and one, these

measures would seem to be superior to those based on chi square.

In order to illustrate one of these measures 7;, let us take a numerical

example. Weshal! refer to the nominal scales being related as A and B,

and we shall take B as the dependent variable.

By Bz B; Total

Ai 300 600 300 |. 1,200

As 600 100 100 800

Total 900 700 400 | 2,000
 

Now let us suppose that we are given a sample (or population) of 2,000

persons and are asked to place them in one of the three categories By, Bo,

or B3;in such a mannerthat weare to end up with exactly 900 cases in By,

700 in Bs, and 400 in B3. Suppose,first, that we know nothing about the

individuals that will aid usin this task. If the individuals are given to us

in a completely random order, we can very easily calculate the number
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of errors we can expect to make in assigning individuals to one of the

three categories.” a
Since we shall be assigning 900 individuals to B,, whereas 1,100 out of

every 2,000 actually do not belong in this class, we can expect to make

900(1,100/2,000) or 495 errorsin thelongrun. Similarly, we must assign

700 individuals to B. whereas 1,300 out of 2,000 do not belong there.

Therefore we can expect to make 700(1,300/2,000) or 455 errors in putting

individuals into By. In other words, of the 700 weplacein this category

we can expect that only 700 — 455 or 245 will be placed correctly. Of

course we do not expect to make exactly 455 errors, but this is the figure

we would get if we averaged out our errors in the long run. Finally, we

would expect to make 400(1,600/2,000) or 320 errors in assigning indi-

viduals to B3. Notice that although we make fewer assignments to this

smaller category, our risk of error is greater than for the other two

categories since only 20 per cent of the individuals actually belong in this

class. Therefore, in total, we would expect to make

495 + 455 + 320 = 1,270

errors in placing these 2,000 individuals. Our batting average would

not be very good.

Now suppose we are given some additional information about each
individual; we are told whether he isin A; or Az. We now ask ourselves

whether knowing the A class will help us reduce the numberof errors

made in assigning the individuals to B categories. If the variables A

and B are independent, we know that knowledge of A will not help us

predict B. In this case, then, we would expect to make just as many

errors as when wedid not use the information about the A class. On the

other hand,if the relationship between A and B were perfect, we would

be able to predict B with complete accuracy if we knew A. The measure

we shall develop tells us the proportional reduction in errors when A is

known. |

Let us see how we calculate the number of expected errors when A is

known. If we are given the fact that the individual belongs in A, we can

use the top row of figures. We now mustplace exactly 300 of these 1,200

individuals in B,, the remaining 600 in B, coming from A>. Since 900

out of the 1,200 individuals in A, actually do not belong in B,, we can

expect to make 300(900/1,200) or 225 errors. Similarly, out of the 600

7 Notice that the expected numberof errors will actually be minimized if we are
allowed to place all the individuals in B,, the largest of the B categories, rather than
restricting ourselves to 900 cases in this category. Why? A measure Xs, based on
the assignment of all individuals to the largest B category, can be computed in a

manner similar to 7». See [2] and also Exercise 5, Chap. 9.
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individuals in A, we place in Bz we can expect to make 300 errors, and the

expected numberoferrors for B; will be 225. We now take the 800 indi-

viduals in Az and assign 600 to B,; and 100 each to the remaining two

categories. In so doing, we can expect to make 150, 87.5, and 87.5 errors

respectively. Adding these quantities for both Ai and A» wesee that

we can expect to make a total of 1,075 errors when A is known.

We define the measure 7, to be the proportional reduction of errors.

Thus

no. of errors not knowing A — no.of errors knowing A
no. of errors not knowing A

1,270 —1,075 195 _
™= T3570 1270~

 T =

 

In other words, we have saved ourselves 195 errors out of an expected
numberof 1,270 and have reducedourerrors by 15.4 per cent. If 7, had

turned out to be .50 we could thusgiveit the very simple interpretation

that knowledge of A would cut the numberoferrors in half; a value of .75

would mean reducing the numberof errors to one-fourth of the original

number, and so forth. No such simple interpretation is possible in the

case of ¢? (see [1]). Had we wished to predict A classes from B classes,

we would denote the comparable measure aS ta. 7a and 7» will not in

general have the same numerical values. Why?

15.4. Controlling for Other Variables

Discussions of tests of significance and measures of association have

to this point involved only two variables at a time. In most practical

problems, however, it is necessary to control for one or more additional

variables which may be either obscuring a relationship or creating a

spurious one. Althoughit is often true that generalizations in thesocial

sciences are stated in terms of only two variables, it 1s practically always

implicitly recognized that relevant variables are assumed to be controlled.

Frequently the phrase “other things being equal” is used to emphasize

this fact. Ideally, an hypothesis should be stated in such a mannerthat

it is clearly understood what variables are to be controlled. As a disci-
pline advances toward maturity, generalizations become qualified so as to

indicate the exact conditions under which they can be expected to hold

true. In the initial stages of its development, however, it is frequently

impossible to know what the relevant variables are which need to be

controlled. For this reason, propositions are not usually stated in the

social sciences in such a manner as to suggest what variables are to be

controlled. Nevertheless, you should develop the habit of always looking
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for possible control variables even though you may not have been
explicitly told to do so.

As weshall see later, there are several possible methods of controlling

statistically. The method discussed in this chapter is perhaps the most

straightforward and the one most directly analogous to the laboratory

experiment in which control variables are actually physically held con-

stant. In this respect it is far superior to the methods usedin partial

correlation or analysis of covariance which will be discussed in subsequent

chapters. Its major shortcoming, however, is that it requires a much

larger numberof cases. | |

In laboratory experiments a control variable is held at a constant value

while other variables are interrelated. Thus, the temperature may be

held at 70°F while the relationship between pressure and volumeis

investigated. Ifa relationship is then found between the latter variables,

it may be possible to state much more precisely its nature than if tempera-

ture were not controlled. But the scientist would not be justified in

stating a generalization as if it always applied unless he were to find that

exactly the same relationship actually held for all temperatures. He

would undoubtedly perform a series of experiments, each at a slightly

different temperature. It is quite likely that he would find the relation-

ship to hold only within a certain range of temperatures. He would then

have to qualify his generalization to read, ‘‘The relationship between

pressure and volumeis such and such provided the temperature is between

—100 and 600° Fahrenheit.”’” Hopefully, he might find a correction
factor which would enable him to restate his proposition in a more general

form which would apply to a greater range of temperatures. Exactly

the same kind of argument would apply to additional control variables.

Simultaneous controls could be madefor several variables by holding each

at a fixed value. Further experiments could then be performed with

different combinations of values for control variables. With several

controls acting simultaneously, a much larger numberof replications

would be required. |

Basically, we can use the same type of controlling in contingency

problems or any of the other types of problems discussed in previous

chapters. We can physically hold constant variables such as sex or

social class while investigating the relationship between religious prefer-

ence and voting behavior. In order to hold sex constant, for example,

we can look only at the male voter. If the relationship is found to hold

for males and also separately for females, then we can say thatit generally

holds controlling for sex since we have examined both categories of the

sex variable. Quite possibly, however, the relationship might hold for

males but not for females. In this case the generalization would have to

be qualified, and attention could be turned to the question of why it
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should hold for one sex but not the other. It can be seen that controlling

for relevant variables not only provides a more rigorous test of an

hypothesis, but it may also lead to additional insights if the relationship

is found to differ from one category of the control variable to the next.

Sometimes it may be desirable to control for several variables simul-

taneously. Because of a shortage of cases it is frequently necessary to

control for relevant variables one at a time, but a certain amount of

information maybe lost in this manner. For example, suppose that sex

were ignored and a control introduced for the voter’s social class. We

would then look separately at each social class to see whether or not the

relationship always held. In contrast to this procedure, we might have

Table 15.4. Master Table for Interrelating Four Variables
 

 

   
 

  
    

High grades Low grades

Intelli-

gence Effort Middle | Lower Middle Lower Totals

class class class class

High High 60 40 20 16 136

Low 40 18 24 38 120

Low High 40 6 24 32 102

Low 24 2 12 54 92

Totals 164 66 80 140 450  
 

controlled simultaneously for class and sex by takingall possible combina-

tions of the control variables (e.g., male lower class, female lowerclass,

male middle class, etc.) and studying the relationship within each com-

bination of control categories. Conceivably, the relationship might hold

for every combination except that of the female lower-class voter. If

this were the case we would be led to look for any peculiarities of this
particular subgroup.

Let us take another concrete example in orderto illustrate the process.

Suppose we have the following data on school children: their class back-

ground, IQ’s, school grades, and how hard each child works. It will be
helpful to summarize the data in terms of a master table as in Table 15.4.

Suppose we suspect a middle-class bias on the part of teachers resulting

in a tendency to give high grades to middle-class children regardless of

ability or effort but to give high grades to lower-class children only

when there is evidence of both high ability and high effort. We would

then predict that grades should generally be higher for middle-class

children, controlling for both ability and effort, except possibly in the

case of children with high ability and effort. We would also predict



NOMINAL SCALES: CONTINGENCY PROBLEMS 237

that the relationships between grades and both ability and effort would
be stronger in the lower class than the middle. In other words,if middle-
class children always receive high grades there should be no relationship
(or a very slight one) within this class between grades and either effort or
ability. Let us concentrate on the relationship between grades and
ability and investigate whether or not this relationship is stronger for the
lower class. In this case, we shall want to control for effort. In each
class there will be both high- and low-effort students. Therefore we can
construct four contingency tables as in Table 15.5.

Table 15.5. Series of Contingency Tables Relating Two Variables, with Two
Simultaneous Controls
 

 

   
 

 

  
 

  
 

 

 

 

High effort Low effort

IQ
High grades |Low grades |High grades |Low grades

Middle class

High 60 20 40 24
Low 40 24 24 12

Lowerclass

High 40 16 18 38
Low 6 32 2 54

Table 15.6

. Significance
Class Effort Chi square ri

level

Middle High 2.565 Not significant .133

Low | . 188 Not significant .043

Lower High 28 .064 p< .001 . 546

Low 15.582 p < .001 .313     
We now compare the two classes with respect to the existence and

strength of relationship, looking separately at high- and low-effort
students. The direction of relationship can also be noted in each case
by simply computing percentages or by comparing the diagonal products.
Computing chi square and ¢ for each table, we get the results shown in
Table 15.6. Thus we see that relationships for middle-class children are
nonsignificant, but for lower-class children in both effort categories there
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is a moderately strong positive relationship between ability and grades.

Wealso notice that the relationship is somewhat stronger in the case of

the hard-working students.

You have undoubtedly noticed the markedeffect that controlling has
on the number of cases appearing in each cell. Instead of having only

four cells, we have four times this number when weuse two dichotomized

control variables. Had a third simultaneous control, say sex, been
added there would have been 32 cells instead of 16. Had any of the
variables involved more than two categories the number of cells would

have been further multiplied. Therefore, although simultaneous con-

trols can theoretically be added indefinitely, the number of cases must

be very large in order to control by this method. An alternative would
simply be to restrict the nature of the population and to generalize only
to middle-class males with a college education or some comparable sub-

group. A much larger sample of this particular subgroup could then be

selected. Usually if simultaneous controlling is to be used, it becomes

necessary to select those two or three controls which look most promising.

It is, of course, possible to make useof Fisher’s exact test when the num-

ber of cases in each cell becomes very small, but it should be remembered

that it will then be necessary to have a very high degree of relationship
in order to obtain significance. Because of this attenuation of cases, the
mere fact that a relationship becomes nonsignificant when controls are

introducedis not sufficient evidence that the control variable is having an
effect. Measures of degree of relationship should always be computed
and compared.

*It is sometimes both possible and desirable to pool the separate chi-

square tests into a single over-all test. Let us suppose that there are

four separate tables as was the case for the data of Table 15.5. In this

latter example, only two of the chi squares turned out to be significant

and only two of the ¢’s were moderately large. In such a case, it would

hardly make sense to pool the results of all four tables since the relation-

ship between IQ and grades was obviously quite different in the two

classes. But what if all the ¢’s had been roughly the same size and the

direction of the relationship between IQ and grades the same forall

tables? We then might reason that basically the same relationship was

holding up in all four tables, and it would make sense to ask what would

happen if we could pool these results.

*Fortunately, the chi-square statistic has an important property. If

a number of chi squares have been computed for independentdata(e.g.,

on completely different sets of people), then we may add the values of

chi square and also the degrees of freedom, evaluating the result in the

familiar manner. For example, suppose that for four 2 X 2 tables the
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resulting chi squares were 2.1, 3.3, 2.7, and 2.9. The sum of these values
is 11.0, and the sum of the degrees of freedom is 4. From the table we
see that a chi square of 11.0 with 4 degrees of freedom is significant at
the .05 level. Thus, although none of the separate chi squares were
significant, we were able to take advantage of the fact that it makes
theoretical sense to pool the results. In effect, we are saying that if a
relationship comes out in the samedirection each time but the probabili-
ties of the separate results are each greater than .05, we still may ask
ourselves how likely such a combination of outcomes would be if there
were no relationships in any of the four tables.

*Notice that the results of such a pooling operation may very well
differ from the total relationship between the two variables without any

controls. We are essentially getting an average relationship within
categories of the control variable(s) when we pool results. Had we
simply ignored the control variable(s), the effects of such controls would

have been completely obscured. By pooling we are making a single
chi-square test of the over-all relationship between two variables, con-
trolling for the additional variables.

*Similarly, we might want to obtain a single measure of association

by computing a weighted average of the measures based on the four

separate tables. One method which has been suggested for doing this

is to use weights which are proportional to the number of cases in each

table. Thus we might multiply each 7, by the number of cases in the

table, add the results, and finally divide by the total number of cases in

all four tables. We would then end up with asingle test of significance

and a single measureof association representing an average of the results

of all four tables.

*In substituting a single measure and test for four separate measures

and tests we run into the usual problems involved whenever summarizing

statistics are used. We boil down our data so as to obtain fewer statis-

tics. On the other hand, we run therisk of distorting our results. For

example, if one of the four tables produced a large chi square and a very

high degree of relationship as compared with the rest, then combining

the results, thereby obscuring this fact, may prove highly misleading.

As always, statistical manipulations can never be a substitute for com-
mon sense.

Some of the ideas discussed in the present section, and especially the

notion of pooling the results of separate tables, are undoubtedly new and

somewhat confusing at this point. It will therefore be helpful to review

this section after you have been exposed to some of the material in

Chaps. 16 to 20. By that time, several different types of control pro-

cedures will have been discussed and compared.
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EXERCISES

1. Compute chi square for the data of Exercise 5, Chap. 9. Taking occupational

aspirations as the dependent variable B, what is the value of 7»? How does the

value of 7» compare with that of the measure you computed in part (d) of Exercise 5?

2. In Exercise 3 of Chap. 14 you made use of the Smirnov test. Taking these

same data, what conclusion do you reach using the chi-square test? For these

particular data, which test would you prefer? Why? Compute4, 7, V, C, and 7».

*3. The chi-square test can generally be used to compare observed and theoretical

frequencies. In particular, it can be used to test the null hypothesis that sample

data have been drawn randomly from a normal population. The observed fre-

quencies are compared with those which would be expected if the distribution were

actually normal, with the same mean and standard deviation as computed from the

sample data. After obtaining the values of X and s, you may use the true limits

and the normal table to give the expected frequencies within each interval. The

degrees of freedom will be k — 3, where k represents the numberof intervals. One
degree of freedom will be lost since the total of the expected frequencies must be N;
the remaining two degrees of freedom which have been lost are due to the necessity

of using X and s as estimates of the actual parameters » and o. With these facts

in mind, test to see whether or not the following data depart significantly from

normality.
Interval Frequency

0.0- 9.9 7
10.0-19.9 24
20 .0-29 .9 43

30 .0-39.9 56
40 .0-49.9 38

50 .0-59.9 27

60 .0-69.9 13

208

4. Ina recent study, H. L. Wilensky [6] found a general relationship between union

activity and both political orientation and voting intentions, controlling for socio-

economic status. Data for 15 Negro members with respect to voting intentions
tended to support these general findings. Seven of the eight Negroes who were
inactive members of the union did not follow the ‘‘union line”’ in their 1948 voting

behavior. Of the seven members whowerereally active in the union, five voted as
suggested by the union. Test for the significance of a relationship using (a) Fisher’s

exact test with direction predicted, (b) Fisher’s exact test with no direction predicted,
and (c) chi square corrected for continuity with no direction predicted. Compare

the results of (b) and (c).
5. Make use of the data given below to obtain information as to the accuracy of

statements (a), (b), and (c). Where appropriate, compute measures of the degree

of relationship and control for relevant variables.

a. Females are less prejudiced than males.
b. The degree of relationship between religion and prejudice toward Negroes

will depend on thesocial class of the ‘‘prejudiced’’ person.
c. The reason that Jewish persons appear in the table to be less prejudiced

than non-Jews is due to the high percentage of women and upper-class

persons in the Jewish sample.
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Amountof prejudice

toward Negroes

Religion Sex High Low Totals

Upper Lower Upper Lower

class class class class

Non-Jew Male 14 30 15 16 75
Female 8 13 9 7 37

Jewish Male 13 7 22 15 57
Female 18 9 33 21 81

Total 250

REFERENCES

1. Blalock, H. M.: ‘‘Probabilistic Interpretations for the Mean Square Con-

tingency,”’ Journal of the American Statistical Association, vol. 53, pp. 102-105, 1958.
2. Goodman, L. A., and W. H. Kruskal: ‘‘Measures of Association for Cross

Classifications,” Journal of the American Statistical Association, vol. 49, pp. 732-764,
1954.

3. Hagood, M. J., and D. O. Price: Statistics for Sociologists, Henry Holt and
Company, Inc., New York, 1952, chap. 21.

4. McCarthy, P. J.: Introduction to Statistical Reasoning, McGraw-Hill Book Com-

pany, Inc., New York, 1957, chap. 11.
5. Siegel, S.: Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill

Book Company, Inc., New York, 1956, pp. 96-111.
6. Wilensky, H. L.: ‘“‘The Labor Vote: A Local Union’s Impact on the Political

Conduct of its Members,’’ Social Forces, vol. 35, pp. 111-120, 1956.
7. Zelditch, M.: A Basic Course in Sociological Statistics, Henry Holt and Company,

Inc., New York, 1959, chaps. 7 and 10.



Chapter 16

ANALYSIS OF VARIANCE

In Chap. 13 we compared two samples by testing for the significance
of the difference between meansor proportions. Such tests were capable

of handling situations in which one of the two variables being interrelated

was a dichotomized nominal scale. In the last chapter we saw how more

than two samples could be compared by meansof the chi-square test. In

the present chapter we shall take up a very important kind of test,

analysis of variance, which can be usedto test for differences among the

means of more than two samples. Analysis of variance thus represents

an extension of the difference-of-means test and can generally be used

whenever weare testing for a relationship between a nominal (or higher

order) scale and an interval scale. We shall also see that under certain

circumstances analysis-of-variance tests can be extended to situations

in which there is a single interval scale and two or more nominalscales.

An analogous nonparametric test will also be considered, as will several

measures of degree of association.

16.1. Simple Analysis of Variance

Although analysis of variance can be considered as an extension or

generalization of the difference-of-means test, it involves some basically

new principles which will require a fairly lengthy explanation. For this

reason a brief overview may be helpful so that you will not find yourself

becoming lost in the details. The assumptions for analysis of variance

are basically the same as required for the difference-of-means test, but

the test itself is very different. We shall have to assume normality,

independent random samples, and equal population standard deviations,

and the null hypothesis will be that population means are equal. The

test itself, however, involves working directly with variances rather

than means and standarderrors.

Suppose the data in Table 16.1 represent murderrates for each of three

types of cities: those which are primarily industrial, trade, or political

242
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centers. We can compute separate meansfor each of the three categories
or samples, and we can also obtain a grand mean by ignoring the classes
and averaging all scores. In this example all samples are of the same
size, but this need not always bethecase.

Since it is being assumed thatall populations have the same standard
deviation, we can form two independent estimates of the common
variance o%. One of these estimates will be directly analogous to the
pooled estimate used in the difference-of-means test. This estimate will

Table 16.1. Data for Analysis of Variance
 

 

 
 

 

Murder rates

Industrial Trade Political Total
community |community |community

4.3 5.1 12.5
2.8 6.2 3.1

12.3 1.8 1.6
16.3 9.5 6.2
5.9 41 3.8
7.7 3.6 7.1
9.1 11.2 11.4
10.2 3.3 1.9

Sums 68.6 44.8 47.6 161.0
Means 8.58 5.60 5.95 6.71
No. of cases 8 8 8 24    
 

be a weighted average of the variances within each of the separate sam-
ples and will always be unbiased even if the sample means differ con-
siderably among themselves. This is true because each sample variance
will be computed separately and will involve only the deviations from
the mean of that particular sample.
The second estimate of the common variance involves the variance

of the separate sample means treated as individual scores. In this case,
the deviations of the sample meansabout the grand meanwill be used in
estimating o%. For the data of Table 16.1 we would obtain the variation
of the three sample means8.58, 5.60, and 5.95 about the total mean of
6.71. This estimate of o? will be unbiased only if the population means
are in fact equal. If the population meansare equal the sample means
can be expected to differ from one another according to the central-limit
theorem, and we can make use of this law and the actual differences
among sample means to estimate the true variance. On the other hand,
if the population meansare actually different we expect that the sample
means will differ from one another more than would be the case if the
population means were the same. Therefore, if the null hypothesis is
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false the second estimate of o? will ordinarily be too large, and it will be

a biased estimate.

The test used in analysis of variance involves a comparison of the two

separate estimates of the population variance. Instead of taking the

difference between the two estimates, however, we take the ratio of the

second estimate to the first. If the null hypothesis is correct, then both

estimates will be unbiased and the ratio should be approximately unity.

If the population means actually differ, however, the second estimate

will ordinarily be larger than the first and the ratio greater than unity.

Since sampling fluctuations are always a factor, we have to ask ourselves

howlarge a ratio we are willing to tolerate before we become suspicious

of the null hypothesis. Fortunately, the ratio of the two estimates F

has a known sampling distribution, provided the two estimates of vari-

ance are actually independent of each other, and therefore a fairly simple

test can be made. This, in essence, is what we do in an analysis-of-

variance test. Now let us take a more detailed look at the procedure

involved. |

Breaking Total Variation into Component Parts. Although our ultimate

goal is the formation of two independent estimates of the variance, it

will be necessary to introduce a new concept in order to explain how

these estimates are obtained. Let us use the term variation (as distinct

from variance) to refer to the sum of the squared deviations from the

mean. The total variation about the grand mean for all samples would
N

be > (X; — X)%. The term variation thus will refer to a sum of squares,

i=l
ignoring the numberof cases involved. Weshall now proceed to break

this total variation into two component parts, each of which will be used

in the computation of the two estimates.

Let us represent our data symbolically as in Table 16.2. The indi-

vidual scores are represented by X11, X21, ... , Xi, the sample means

by X41, Xo, ..., Xx, and the grand mean by X... The dots are used

in the subscripts in order to distinguish column means from row means

which will be used when we add a second nominal scale. The general

symbol X;; represents the score of the ith individual in the jth column.
M1

The sum > X,1 indicates that the Ni scores in the first column have been

i=l

summed, andsimilarly for the remaining columns.*

1 Since there are two subscripts, i and j, it is important to distinguish between the

symbols > and >. In the latter case, the j values would be summedfor any particu-

a j
lar (fixed) 7, and we would thus obtain the sum of scores in the ith row.
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Now weperform some simple algebra. We can write

Xy— X. = (Xs — FB) + (¥;—-
or

(Individual _ eran) _ (individual _ nateeory
score mean score mean

category _ grand

mean mean

having subtracted X.; (the mean of the jth column) from X,; and then
added it back in immediately. We have therefore expressed the differ-
ence between a single individual’s score and the grand mean as a sum of

 

Table 16.2. Symbolic Representation of Data for Analysis of Variance

 

 
  

  

 

      

Categories

Total
Ai As a Az

Xi X12 7 ss Xik

Xo X92 of 8 X2k

X31 X32 7 ss X3k

Scores . . .

XN XN52 mone XNy,k
Ni Ne Nx

Sums > Xi » X2 o 8 > Xtk » > xi

i=1 i=l i=] i 9
Means X.1 X.9 coe Xt XxX

No. of cases Ni No ee Nx N
 

two quantities: (1) the difference between his score and the mean of the
category to which he belongs, and (2) the difference between the category
mean and the grand mean. In the above numerical example we can
express the difference between the score of the first individual in the
first category and the grand meanas

4.3 — 6.71

or —2.41
(4.3 — 8.58) + (8.58 — 6.71)
—4.28 + 1.87

Squaring both sides of the equation we obtain

(Xy — X..)? = (Xy — X)? + 20K, — ¥)(X, — KB.) + (8, - X..)?
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By summing both sides we obtain the sum of the squared deviations for

all individuals. We can first sum down each column and then add the

resulting figures for each category. When we do this the middle term

becomes zero. In order to see whythis is the case, notice that in sum-

ming down any particular column the value of j will be constant. There-

fore for the jth column the factor (X.; — X..) will be constant and can

be taken outside of the summation. Thus for the sum of the scores in

the jth column the middle term becomes

o(X., — X.) > (X,, - &)

But since for every column the deviations about the column mean must

be zero, we immediately see that the middle term must vanish for each

and every column. Wethusget

>, Xs — X.)? = »» (Xi — Xj)? + >> (Xj — ¥.)? (16.1)
i i

within sum ,between sum
Total sum of squares =

of squares of squares

In so doing, we obtain a double summation which we write as ) >,

4 I

indicating that we have summed over both rows and columns.

Wehavedivided the total variation into two parts. Thefirst of these

is a sum of squared deviations of the individual scores from their own

category means. This is referred to as a within sum of squares and will

be used to obtain ourfirst estimate of the common variance o”. Notice

that this sum of squares is obtained essentially the same way that the

pooled estimate was formedin the difference-of-meanstest. If we write

the within sum of squares as

M1 No Ne

Y (Xu — Kat Y Ka- Kaye t ++ +) Ka - Xt
i=l] t=1 t=1

we see that the first term is just Nisi2, where deviations have been taken

about the category mean, and similarly for the other terms. Therefore

Within SS = N81" +- N282? + - oe 8 + Nx8x2

When we divide by the proper degrees of freedom, which will turn out

to be N — k, we obtain a pooled estimate based on all k categories. The
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second or between sum of squares involves the deviations of category

means from the grand mean andis therefore a measure of the variability

between samples. The second estimate of the variance will be based on

this between sum of squares.

The between and within sums of squares are often referred to as

explained and unexplained variations respectively. It is perhaps easier

to see why the within variation is referred to as being unexplained since

this refers to variation which is left unaccounted for by the categorized

variable. If within category A thereis still some variability about the

category mean, then this variability can certainly not be explained by

the category. On the other hand, if the category means differ consider-

ably among themselves a relatively large fraction of the total variation
may be attributed to differences among the several categories. Thus,
it is the amount of variability within the categories as compared with
differences between them which determines how closely the two variables
are associated. Homogeneous categories which differ considerably
among themselves will explain a high proportion of the variation.2. In
the extremecase, if we had completely homogeneouscategories the within
sum of squares would be zero andall of the variability could be attributed
to the categorized variable. Thusif all industrial cities had exactly the
same murder rates that differed from those of all trade centers which
were also completely homogeneous, etc., then city type could be said to
explain all of the variation in murder rates. Knowing the city type
would enable us to predict the murderrate exactly.

In order to obtain estimates from these two separate sums of squares
it is only necessary to divide by the appropriate degrees of freedom.
The degrees of freedom associated with the total sum of squares is N — 1
since we have seen that ¢? is the unbiased estimate of o2, 1 degree of
freedom having beenlost through the computation of the grand mean X...
Let us now look at the between sum of squares. This quantity represents
the sum of squared deviations of the k sample means from the grand mean.
In effect, each category meanis being treated as a single case. Therefore
there are k — 1 degrees of freedom involved, one having been lost
because of the fact that the weighted average of the X., must be X... In
the case of the within-class estimate, 1 degree of freedom will be lost in
each column through the computation of the X,,. Therefore, in all,
there will be N — k degrees of freedom associated with the within esti-
mate. Notice that the degrees of freedom add as do the sumsof squares.
Thus

N—-1=(N—4k)+ (k—-1)

Total df = within df + between df

2 This does not imply causality, of course.
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Our two estimates of the common variance thus become

> > (Xi; — X.5)?
 

 

Within estimate = — Nok (16.2)

> > (X., — ¥.)
Between estimate = ~~ ha] (16.3)

At this point it may have occurred to you that we actually have three

separate estimates of the common variance if we include the usualesti-

mate based on the total sum of squares. Why, then, not compare the

latter estimate with either of the others since this total estimate may well

be a better estimate than either of the other two? It will be recalled that

the F test requires that the estimates compared be independent of each

other. The estimate based on the total sum of squaresis not independent

of the others, however, and this is the reason this estimate cannot be

used in the F test. Ordinarily, the within and between sums of squares

are not independentof each other either. It so happens that the normal

distribution has the property that these two quantities are independent

in spite of the fact that the same X.,’8 appear in both expressions. It is

for this reason that we must assume all populations sampled to be

normal. It will be recalled that normality was also required in the case

of the ¢ distribution because of the necessity of having the numerator inde-

pendent of the denominator. As will be seen presently, the ¢ distribution

is a special case of the F distribution.

Problem. Let us make use of the above hypothetical data

representing murder rates for three types of cities. We wish to

find out whether there are significant differences among the means

of the three typesofcities.

1. Assumptions.

Level of Measurement: Murderrates an interval scale.

City type a nominalscale.

Model: Independent random sampling.

Normal populations for each city type.

Population variances are equal.
(o2=o2=°°° = o,2 = 0”)

Hypothesis: Population means are equal.

(ui = we = °° + = we)

As was the case with difference-of-means tests, it must be assumed

that samples are selected independently of each other. In other words,
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cities are not matched in any way. Sinceall three populations of city
types are assumed to be normal with equal means and variances, we are
in effect assuming they are identical. The three samples can therefore
be conceived as being randomly drawn from the same population. The
researcher is usually interested in the assumption of equal means. In
this example, he probably would expect differences in murder rates
among the three types of cities and would set up the null hypothesis of
no differences. It should be noted that large samples are not required
because of the normality assumption. Obviously if there were only one
case in each category, however, there could be no variability within the
categories, and therefore notest is possible.
The F test itself does not test the assumption of equal variances or

homoscedasticity (as this assumption is referred to in technical language).
In instances where sample variances seem to differ considerably among
themselves, an independent test for the equality of variances may have
to be made(see [1], pp. 141 to 144). If the results of such a test indicate
that there are rather extreme departures from homogeneity of variance,
then analysis of variance should not be used. Moderate departures from
homogeneity can be tolerated, however. Such departures can often be
reduced considerably by the transformation of variables.? If a single
category 1s either considerably more or less homogeneous than the others,
it may be advisable to omit this category from the analysis-of-variance
test. Generally speaking, moderate departures from normality and
equality of variances can be tolerated without necessitating the use of
nonparametric alternatives (see [1], pp. 220 to 223).

2. Significance Level and Critical Region. Let us use the .05 level. If
the null hypothesis is actually incorrect, then if we always take the ratio
of the between to the within estimate we can expect to find the value of F
to be larger than unity. We shall therefore use the uppertail of the F
distribution as the critical region. If F turns out to be less than unity
there will be no point in looking up the probability value in the table
since Ff’ values of greater than unity will be needed to reject the null
hypothesis. An F of less than unity would indicate a greater degree of
heterogeneity than would be expected by chance. You should again
keep in mindthat although weshall use only onetail of the F distribution,
this does not imply that we are predicting in advance which of the
categories meanswill be the largest.

3. Sampling Distribution. The sampling distribution of F is given in
Table J, Appendix 2. The use of the table will be described below.

*For example, it sometimes happens that categories having the highest means
also are the least homogeneous. In such instances if one takes as his interval scale
the logarithm of the original variable, the effect will be to equalize the variances.
For an additional discussion of the use of logarithmic transformations, see Sec. 18.2.
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4. Computation of Test Statistic. In order to obtain a value for F, the

ratio of the between and within estimates, it will first be necessary to

calculate the total, between, and within sums of squares. Since the

total variation is equal to the sum of the other two, we shall only have to

compute two of the values, the third being obtained from the other two.

The within sum of squares, it will be remembered, involves a pooling

operation. This is considerably more work than that required for the

other two sumsof squares, and therefore we get the within sum of squares

by subtracting the between from the total sum of squares.

The computing formula for the total sum of squares is obtained in the

same way as the formula for the variance [see equation (6.6)]. Thus,

2%)
Total sum of squares = 2, 2, (X;,-— X.)? = 2, 2x —

(16.4)

This is the same formula that we have used in computing standard

deviations, but it is now necessary to make use of double summation

notation.

The computing formula for the between variation looks considerably

more formidable but on inspection is found to involve a relatively simple

procedure. It is as follows:

(2, ¥») Gp)
Between sum of squares =yo — —t4t— (16.5)

N;

.

nnes

Notice that the second term in the above expression is the same factor

which was subtracted from > > X,,;? to obtain the total sum of squares.

t J

The first term may confuse some readers, however. ‘Taking this expres-

sion apart we see that wefirst compute each column sum and then square

it to obtain © xXa) Wethen divide this expression by the numberof

cases in the column, which need not always be the same. We then have

for the 7th column (Y Xu)°/Ni. Finally, we do the same thing for

each column and add theresults.
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Computations for our numerical problem, given below, should help
to make the procedures more clear. The total and between sums of
squares are computed as follows:

dy Xe = (4.3)? + (2.8)2+ +--+ + (1.9)? = 1,453.58

(2 d Xs) _ (161.0)2
eeWo = pg = 1,080.042

Total 8S = 1,453.58 — 1,080.042 = 373.538
2 2 2

Between SS = (68.6) + (44.8) + 7.8)" — 1,080.0428 8
= 1,122.345 — 1,080.042 = 42.303

 

 

To obtain the within sum of squares we simply subtract the second
expression from thefirst, getting

Within SS = total SS — between SS
or 301.235

=

373.538 — 42.303I

The estimates of the common variance can now be computed by divid-
ing by the proper degrees of freedom. Finally, F is computed by dividing
the between estimate by the within estimate. Computations are sum-
marized in Table 16.3.

Table 16.3. Computations for Analysis of Variance
 

 

 

    

Sumsof Degrees of Estimate of P
squares freedom variance

Total 373 .538 N —1 = 23
Between 42.3038 k-1l1= 21.152 1.34
Within 301 .235 N —k = 21 15.773
 

5. Decision. In order to decide whether or not to reject the null
hypothesis we must determine whether the value of F falls within the
critical region. It will be noticed that three separate tables for F are
given corresponding to the .05, -O1, and .001 significance levels respec-
tively. This information cannot be condensed into a single table because
two degrees of freedom must be associated with each fF, one for the
numerator and one for the denominator. The degrees of freedom asso-
ciated with the numerator, the between estimate, are found across the
top of the table. Those for the denominator, the within estimate, are
obtained by reading down the table. Notice that all values of F given
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in the table are > 1.0, indicating that the table is set up directly for

one-tailed tests. In other words, the numerator is always the larger of

the two estimates. In our problem we obtained an F with 2 and 21

degrees of freedom (written F'2,21) equal to 1.34. Using the table for the

.05 significance level and locating the proper degrees of freedom, wefind

the figure 3.47. We therefore know that if the assumptions werecorrect,

we would get a value of F equal to or larger than this value less than

5 per cent of the time. Since the value we actually obtained for F is

less than 3.47, we fail to reject the null hypothesis at the .05 level. We

decide that there is insufficient evidence for concluding that city types

actually differ with respect to murderrates.

Comparison with Difference-of-means Test. It will be noticed that the

above problem could have been handled by using difference-of-means

tests involving the ¢ distribution. ‘Three separate pair-by-pair compari-

sons might have been made between industrial and trade, industrial and

governmental, and trade and governmental cities. In contrast to this

method, analysis of variance offers a single test of whether or not all three

types differ significantly among themselves or, in other words, whether

they all could have come from the same population. The advantage of

analysis of variance is that a single test may be used in place of many.

Had there been four categories, 4(3)/2 or 6 difference-of-means tests

would have been necessary. With 6 categories 15 tests would be required,

whereas with 10 categories 45 would be needed. Suppose 15 tests were

required and only 4 turned out to be significant. What would we con-

clude? It might be difficult to say.

There isan easy way out which, on the surface, appears to be areasonable

procedure. Why not simply perform a difference-of-means test on the

two categories having the smallest and largest means respectively?

Then if these are significantly different we can conclude that the cate-

gories do in fact differ among themselves. But we must rememberthat

we would be selecting the single test most likely to yield significance and

ignoring the rest. Since we can expect one test in twenty to yield

significance at the .05 level even if all population meansare identical, it

is apparent that we are loading the dice in favor of rejection. In other

words, the significance level actually being used is not the .05 level but

perhapsthe .5 or .7 level since we are essentially obtaining the probability

of getting at least one success (significance at the .05 level) in a large

numberof trials.

It should not be concluded that analysis of variance is always prefer-

able to a series of difference-of-means tests, however. The latter tests,

when used cautiously, may yield considerably more information. For

example, analysis of variance may lead to significant results primarily

because one category is far out of line with therest. Had this category
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been excluded the conclusion might have been quite different. A series
of difference-of-means tests might indicate this fact more clearly. Espe-
cially if one suspects before making the test that one or more categories
will differ considerably from the others, a numberof one-tailed cdifference-
of-means tests might be appropriate. It is also sometimes possible to
predict the order in which category meanswill fall. Suppose, for exam-
ple, that it had been predicted that murder rates would be highest in
industrial cities and lowest in governmental. In such a case 2 one-
tailed difference-of-means tests could have been used—one predicting a
difference between industrial and trade cities, and the other a difference
between trade and governmental. Generally, it would seem that the
more knowledge we have for predicting the relative magnitudes and/or
directions of differences, the morelikely it is that separate difference-of-
means tests will be appropriate. Analysis of variance, on the other
hand, seems to be more useful on the exploratory level.

Finally, the relationship between the ¢ and F distributions can be
noted. Had there been only two types of cities an analysis-of-variance
test might also have been madeandthe results compared with those of a
difference-of-means ¢ test. In this case, the degrees of freedom associated
with the numerator of F would have been 2—1or1. The degrees of
freedom for the denominator would have been N — 2, the sameasfor ¢
in a difference-of-means test. Also, it will be recalled that when we
assume o; = o2 the denominators of both ¢ and F involve pooled estimates
of the variance. It turns out that the ¢ distribution can be considered
as a special case of the F distribution. If we were to compute the values
of ¢? with N — 2 degrees of freedom we would find that they are exactly
the same as those for an F with 1 and N — 2 degrees of freedom. In
other words, ¢ is the square root of an F having 1 degree of freedom
associated with its numerator. This means, of course, that exactly the
same conclusions will be reached in the two-sample case regardless of
whether we use analysis of variance or the difference-of-means test. In
this sense analysis of variance is actually an extension of the difference-
of-meanstest.

*16.2. Two-way Analysis of Variance

Undercertain circumstances it is possible to extend analysis of variance
by adding further nominal-scale variables. Such a procedure is mainly
feasible in controlled experiments in which the researcher can assign
individuals randomly to several groups, thereby controlling the number
of cases in each category. In natural situations, where no such control
can be exercised, the extension described in this section will be less useful.
Some of the basic ideas involved in what has been referred to as two-way
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analysis of variance will be useful in helping you understand certain

material presented in Chaps. 19 and 20, however.

If it is possible to introduce another nominal-scale variable in such a

manner that all combinations of subcategories of the two nominal scales

have the same numberof cases, the extension of analysis of variance is a

straightforward one. Suppose the categories of the second nominal

scale are represented by rows. We now obtain a numberof subcells,

each with an equal numberof cases. In order for this condition to be

met, we must of course restrict ourselves to column categories of the

INDUCTIVE STATISTICS

Table 16.4. Data for Two-way Analysis of Variance
 

 

 
 

 
 

     
 

City type
Per cent Total

Negro Industrial Trade Governmental

4.3 5.9 5.1 3.6 3.1 3.8

Low 2.8 7.7 1.8 3.3 1.6 1.9 > Xu = 44.9
(<10%) =X =20.7 =X =13.8 =X = 10.4 ;

X = 5.18 X = 3.45 xX = 2.60 X;. = 3.74

12.3 9.1 6.2 4.1 6.2 11.4

High 16.3 10.2 9.5 11.2 7.1 12.5 > x = 116.1

(>10%) DX = 47.9 ZX = 31.0 DX = 37.2 47
X = 11.98 X = 7.75 X = 9.30 ’ ¥,. = 9.68

> Xa = 68.6 ) Xa = 44.8 ) Xu = 47.6 > > Xs = 161.0
Total " ° ; 75

X.. = 8.58 X.2 = 5.60 X.3 = 5.95 X.. = 6.71

same size. To the numerical data given in Table 16.1, let us add the

variable per cent Negro, dichotomized into “high” and ‘“‘low”’ categories.

Although it would almost never work out so well in real life, let us sup-

pose that there are the same numberof cities in each of the six cells. If

this were not the case an approximate method would have to be used

(see below). The numerical data are now given in Table 16.4, with
subcategory sums and meansindicated in each box.

If there are the same numberof cases in each subcell it is possible to

break the within-columns or unexplained sum of squares into several

components. We can, of course, do an analysis of variance across the

rows, completely ignoring the columns. Between- and within-rows

sums of squares would then be obtained in exactly the same mannerthat

between- and within-column figures were computed. It turns out

mathematically that if there are the same numberof cases in each sub-

cell, the between-rows sum of squares can be considered to come com-
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pletely from the within-column or unexplained (by columns) sum of

squares. Thus the total variation can now be dividedinto three portions

as follows.

Total SS = between-column SS + between-row SS + unexplained 8S

(16.6)

Wehavetaken the total variation and explained all we could by means

of the first nominal scale (city type). Of that which is left unexplained

(the within-column sum of squares), a certain portion can then be
explained by the second nominalscale (per cent Negro). The remainder,

often called an error term, is the proportion of the total variation left

unexplained by both variables. There are now three estimates of the
common variance in addition to the estimate based on the total sum of

squares, and these can be used to make two separate F tests. The error

term can be used in the denominators of both F tests since the estimate

based on the unexplained sum of squares will always be unbiased and

independent of the other two. The numerators of the F’s will be the

estimates based on the between-columns and between-rows sums of

squares. Hach test will be a test for the existence of a relationship

between the interval-scale variable and one of the nominal-scale variables,
controlling for the other nominalscale.

Although weshall discuss this type of controlling operation in greater
detail in Chap. 19, a few words on the subject are necessary at this point
since controlling by using two-way analysis of variance involves a some-
what different principle from that discussed in connection with con-
tingency problems. You will recall that up to this point our controlling
procedure has involvedliterally holding the control variable constant by
examining what happens within each category of the control variable.
For example, we made series of chi-square tests, one for each of these
categories. Here we make a single F test instead of many. Also, we do
not actually hold the control variable constant. Instead we take its
presence into consideration by adjusting values of the interval scale
according to the category of the control variable.
You will note from Table 16.4, for example, that the mean murder

rate for all cities with low percentages of Negroes is 3.74, whereas the
mean for those with high percentages is 9.68. Suppose we were to pre-
tend that all cities had the same percentages of Negroes, performing a
statistical adjustment of the murder rates by adding a fixed quantity
(i.e., 2.97) to all cities in the “low” category andin this case subtracting
the same quantity from those in the “high” category so that both
categories had the same mean (i.e., the grand mean 6.71). Such a
controlling operation involves raising the hypothetical question of what
the murder rates would be like 7f all cities actually had the same minority
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percentages. Rather than actually treating the per cent Negro categories

separately, thereby sacrificing cases, we make use of a poor man’s sub-

stitute by adjusting the murder-rate scores to take this control variable

into consideration. What welose in scientific rigor we gain in efficiency

of design since we can then make useof a single test involving the total

numberof cases.

In adjusting the murder rates in such a fashion weare actually reducing

the total variation in the scores. In effect, we are subtracting out that

portion of the variation due to per cent Negro. Taking the adjusted

scores, we could then compare the between- and within-columnestimates

in the usual manner. Fortunately, it is unnecessary actually to obtain

the adjusted scores. Were we to do so we would find that the results

would be identical with those obtained using two-way analysis of vari-

ance. In other words, the type of analysis we shall describe below is

equivalent to an adjusting operation such as the one we have been dis-

cussing. In effect what we do,first, is let the control variable operate

on the dependent variable, taking out that portion of the total variation

explained by this control variable. We then take the remainder as a

“new total’ variation and determine how much of this remainder can

be explained by the other independent variable. This ‘new total” is

equivalent to the total variation in the adjusted scores. In general, we

can control for additional variables in the same manner. By making

adjustments for each of the control variables, we take out all of the

variation which can be explained by these variables. We then look at

the remainder to see how muchcan be explained by the other independent

variable. We shall make considerable use of this same type of controlling

operation in subsequent chapters.

Interaction. We are not yet ready for a numerical example since there

is one further complication introduced by the addition of a second

nominal scale. Whenever there are at least two cases in each subcell,

an additional test should always be made. This is a test for “‘interac-

tion,” or a possible effect due to the peculiar combinations of the two

nominal-scale variables. In order to make the two-way analysis-of-

variance test previously described, it is necessary to assume the property

of additivity. Formally stated, this property requires that mean

population differences between columns be the same for each row and,

conversely, that differences between rows be the same for each column.

Additivity can beillustrated by the following figures representing hypo-

thetical population means:

Ay A» As

B, 5 10 20
B,| 10 15 25
B; 25 30 40
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Notice that the differences between the first and second columns are

5 for each row; between the second andthird, differences are 10 for each

row. Also, differences between the first and second rowsare all 5, and

between the second and third they are 15. Suppose, however, that

the mean for the middle cell were 35 instead of 15. Then additivity

would not hold, and we would have what is referred to as “interaction.”

Although A; usually produces higher scores than Az and B; higher than

Bs, something peculiar happens when A» and Bz are put togetherin that a

very high mean results. The process is somewhat analogous to what

happens when hydrogen and oxygen are combined and water produced.

The result is not what would be expected if each element were examined

separately.

Let us illustrate the idea with several examples. Suppose that ordi-

narily industrial cities have higher murder rates than governmental

cities and that cities having a large percentage of Negroes have higher

murder rates than those with low percentages. Conceivably, we might

find industrial cities with a large percentage of Negroes having an unex-

pectedly low average murder rate. We might then look for some kind

of interaction between industry and the presence of this minority which

produces a low rate. A second type of example is perhaps moreplausi-

ble. Suppose a choice between three types of teaching methods is

to be made. Four teachers are each asked to use all three methods.

Teacher A may be generally more effective than B. Similarly, the first

method may generally be superior to the second. But conceivably

teacher A may not work well with the first method, producing poorer

results than would be expected. In this case there is interaction between

teacher and method.

The test for interaction can be made independently of the twotests

previously described and involves the same basic procedure. The

unexplained sum of squares, or error term, is further broken down by

subtracting out that portion which can be accounted for by interaction.

The total sum of squares is thus decomposed into

Total SS = between-column SS + between-row SS

-+ interaction SS + error SS (16.7)

This can be accomplished by taking each combination of the categories
of A and B andtreating it as a category of a combined(single) variable.
In other words, we treat the problem as though there were a single
nominal scale with categories A1Bi, A2B,,... , A,B; Obviously, if
there were only one case within each subcell there could be no within-
subclass variation. If there is absolutely no interaction we should get
exactly the same error term as obtained by adding the separate effects
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of the rows and columns[as in equation (16.6)]. On the other hand,if

there is significant interaction the error term will be smaller using this

second approach. For example, you should convince yourself that if

cell 47 producedeffects out of line with the rest, cell 77 would be relatively

homogeneous as compared with either column 7 or row 7, and the within-

subclass sum of squares would be smaller than the residual obtained by

subtracting the sum of the between-column and between-row sums of

squares from the total sum of squares.

The difference between the amount of variation explained using these

subcells and the amount explained assuming additivity can then be

attributed to interaction. Thus we have

Total SS = between-subclass SS + within-subclass SS

where the between-subclass sum of squares has been broken into three

components:

Between-subclass SS = between-column SS + between-row SS

+ interaction SS

Returning once more to the numerical problem involving city types,

per cent Negro, and murder rates, we can begin by listing the required

assumptions.

1. Assumptions.

Level of Measurement: Two nominalscales, one interval scale

Model: Independent random samples

All subcell, row, and column populations normal

Subcell population variances equal

Hypotheses: 1. Population column means equal

2. Population row means equal

3. Additivity in population (no interaction)

There are now three separate hypotheses which can be tested inde-

pendently. The test for interaction should be madefirst, with subse-

quent tests depending on the outcomeof this test. If hypothesis (3) is

not rejected, the usual procedure is to assume additivity in the model,

throwing the sums of squares due to interaction (in the sample) back

into the error term and using this larger error term to test hypotheses

(1) and (2). If the hypothesis of no interaction is rejected, the pro-

cedure to be used in the other two tests will depend upon the nature of

the data (see below). Notice that we now must assume normality and

equality of variancesfor each of the subcells in orderto test for interaction.
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Cases in the different subcells must be selected independently and can-

not be matched.

2. Level of Significance. .05 level
3. Sampling Distribution. F
4. Computation of Test Statistics. We have already obtained the total

and between-column sums of squares. The between-row sum of squares

is computed exactly the same way as the between-column sum of squares.

Thus

44.9? 116.1?
9° a7 7 1,080.042

= 1,291.268 — 1,080.042 = 211.226

Between-row SS =

In order to obtain the interaction sum of squares, we make use of the

sums of each subclass. The between-subclass sum of squaresis

2 2 220.7 4 1.8 Lee 37.2 ~ 1.080.042

= 1,341.585 — 1,080.042 = 261.543

 Between-subclass SS =

We obtain the error term used in testing for interaction by subtracting

the between-subclass sum of squares from the total. Thus

Error 88 = 373.538 — 261.543 = 111.995

The amount actually due to interaction is the between-subclass sum of

squares less the sum of the amounts due to the rows and columnssepa-

rately. Therefore,

Interaction SS = 261.543 — (42.303 + 211.226) = 8.014

The results can be summarized as in Table 16.5.

Table 16.5. Computations for Two-way Analysis of Variance, with Test for Interaction
 

 

    

Sumsof Degrees of freedom Estimate F
squares of variance

Total 373.538 N —1 = 23
Between subclass 261.543 kl-1=5

Between columns 42.303 k-1=2 21.152

Between rows 211.226 iI—-1=1] 211.226

Interaction 8.014 (A -—1)d—1) =2 4.007 0.644

Error (within subclass) 111.995 N — kl = 18 6.222
 

The degrees of freedom are determined by the usual procedures.

With / rows and k columnsthere will be 1 — 1 degrees of freedom asso-
ciated with the between-row sum of squares. To obtain the degrees of
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freedom for the interaction term, we take the number of subcells less

one (kl — 1) and subtract from this quantity the degrees of freedom

associated with the between-row (J — 1) and between-column (k — 1)

sums of squares. A simpler rule of thumbis to take the product of the

degrees of freedom associated with the between-columns and between-

rows sums of squares. Thus, if we multiply the between-columns and

between-rows degrees of freedom we get (k — 1)(J — 1) = 2 degrees of

freedom. This is the same result as we would obtain by taking the

between-subclass degrees of freedom (= 5) and subtracting from this the

sum of the degrees of freedom for the between-rows-and-columns sums

of squares (= 1+ 2). This can be expressed algebraically with the

following identity.

(kl -1) —-(k -14+12-1)=(k-DU-1})

The remaining degrees of freedom, which should equal the total number

of cases less 1 degree of freedom for each subclass, can then be associated

with the error term.

5. Decision. The test for interaction produces an F whichis less than

unity. We therefore have no reason to reject the null hypothesis of no

interaction. This means that the small additional amount explained by

interaction within these samples can easily be attributed to sampling

fluctuations. In this case, we would probably be willing to accept the

assumption of additivity even though we are on the wrong end of the

test and should therefore be primarily concerned with the risk of a

type II error. Incidentally, had tables been available we might have

Table 16.6. Computations for Two-way Analysis of Variance with Interaction Thrown
into Error Term
 

 

Sums of Degrees of| Estimate PF Significance
squares freedom of variance level

Total 373 .538 23

Between columns 42.303 2 21.152 3.525 p< .05

Between rows 211.226 1 211.226 35.204 p < .001

Error 120.009 20 6.000     
 

used a level of significance such as .3 if we had really been interested in

keeping the additivity assumption. Having decided that there is no

interaction, we can now throw the sum of squares due to (sample) inter-

action back into the error term, using this larger error term as the basis

for the error estimate of variance. Doing this, we get Table 16.6 in

which the error term of 120.009 is the sum of the interaction and error

terms in Table 16.5.
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From the table we see that for an F with 2 and 20 degrees of freedom

we need an F of 3.49 or larger to attain significance at the .05 level. We

also see that an F with | and 20 degrees of freedom of 35.204 is highly
significant since an f’ of only 14.82 would be required for significance at

the .001 level. ‘Thus there is little doubt that a relationship exists

between per cent Negro and murder rates. Notice that when we control

for per cent Negro by letting this variable explain all that it can of the
variation in murder rates and then letting city type explain what it can

of the remainder, we now get a significant relationship between city type

and murder rates. It will be recalled that the relationship without a

control for per cent Negro was notsignificant.

It should be noted that if interaction is not significant we practically

always gain more than we lose by throwing the interaction back into

the error term, using this combined error term in the denominatorof F.

Although the error sum of squares is therebyslightly increased, there will

also be more degrees of freedom associated with the larger error term.

Since the interaction term will be relatively small, the net effect will

usually be to obtain a smaller denominator for F. Also, of course, there

will be a larger number of degrees of freedom associated with F, and

therefore a smaller value of F will be required for significance.

We must now ask what we would have done had interaction been
significant. The answer to this question is not at all simple, but we can

at least give a few suggestions. The reader whois interested in a more

complete treatment should consult a text such as McNemar [6] or

Anderson and Bancroft [1]. If interaction is significant, it will usually

be possible to locate by inspection the subcells contributing most to the

interaction term. Separate analysis-of-variance tests might be made

omitting these subcells, or a series of difference-of-means tests may be

used to evaluate the significance of the contribution to interaction coming

from each subcell. It may well turn out to be the case that the discovery

of interaction and the necessity of accounting theoretically for its exist-

ence are the most important outcomesof the entire study. Therefore,

there is no substitute for the careful isolation of those subcells which are
out of line with the rest.

In addition to focusing attention on interaction itself, there may also

be an interest in whether or not one or the other of the nominal-scale

variables is related to the interval scale. What tests of these relation-

ships can be made? The question boils down to this: “‘ Which estimate

of the variance should be used in the denominatorof F, the error estimate

or the estimate based on the interaction term?’ The answer to this

question seems to depend on the nature of the two nominal-scale vari-

ables, and in particular on whether or not the categories used represent

all categories in the population or merely a sample of categories. It is
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frequently the case in sociological problems, in which we do not usually

assign individuals randomly to categories, that these categories represent

all of the possible categories in the classification scheme. Thus, if we

divide all cities into three types and exclude nocities in so doing, or if

we simply take cities having high and low percentages of Negroes, we

expect to include at least some cities from all types. Similarly, if we

classify persons as male or female, or Protestant, Catholic, or Jewish, we

ordinarily expect to include some representatives from all (or nearly all)

categories. On the other hand, our categories might themselves involve

a sampling of all types. For example, we might have selected Method-

ists, Quakers, and Jehovah’s Witnesses as three religious groups repre-

senting a much larger number. Perhaps each of these denominations

is a representative of a certain type of religion. Let us look at each of

these situations in turn.

In the first situation our categories represent all or nearly all possible

types. There is certainly no sampling error involved in selecting cate-

gories as there might be if only three religious denominations were used

for comparison. In most of these problems, our interest is likely to be

centered on the degree of homogeneity of each type relative to the mag-

nitude of differences between types. The second nominal-scale variable

may be considered primarily as a disturbing variable which needs to be

controlled. Interaction may be only an interesting by-product of the

analysis. In this case, it would make sense to compare the estimate

based on the between sum of squares with the estimate based on the

unexplained sum of squares. This latter estimate is a within-subclass

estimate and involves the variation which still remains unexplained by

the joint operation of the major independent variable (say, city type)

and the control variable (per cent Negro). We are letting the control

variable operate first, and then letting the major independent variable

explain what it can of the remainder. A certain additional amount is

also explained by the interaction of the two variables. Each of these

‘Cexplained’’ sums of squares can be compared with the “unexplained”

sum of squares or error term. We would then take this error estimate

as our denominator in each of the separate F tests. In testing for

the significance of a difference among columns we would therefore

take the between-column estimate divided by the error term, and simi-

iarly for rows. In our numerical problem, had interaction been signifi-

cant these F’ ratios would have been 21.152/6.222 and 211.226/6.222

respectively.

Other considerations arise when the categories of either (or both)

nominal-scale variable involve only a small sample of possible categories.

If interaction turns out to be significant and thereforeis larger than the

error estimate, there is always the added question of whether or not this
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would have occurred had the categories been different. Under these

circumstances we may be much more interested in the relative size of

the between-column (or row) estimate and the interaction estimate than

in comparing between estimates with the error term. For example, if
we were interested in relating religion to income,controlling for education,

and if we found a highly significant interaction between religion and

education (say, highly educated Quakers having very low incomes),

we might be very hesitant to generalize about a relationship between

religion and income unlessreligious differences were very large as com-

pared with interaction. Otherwise, a different set of religious denomina-
tions might produce very different results. As another example, if
three teaching methods were tested by different teachers and if inter-
action were significant, then one would want to make sure that the

average differences among methods were large as compared with inter-

action. If not, he might emphasize one method only to learn that a

large number of teachers (only a few of whom were sampled) could not

use this particular method effectively.
In problems in which there has been a sampling of categories, it may

thus make more sense to compare between-row and between-column

sums of squares with the interaction term. In our problem, had inter-

action been significant and had there been many more city types, we

would have taken 21.152/4.007 and 211.226/4.007 as our two F ratios.

Although most sociological problems seem to involve the first type of

situation in which the error term would be used in the test, you should
develop the habit of treating each problem separately and making your

decision according to the nature of the data and the kinds of com-

parisons you are making. Fortunately, or perhaps unfortunately,

many sociological problems do not seem to involve highly significant

interaction.

Extension to Three or More Nominal Scales, In theory there is nothing
that prevents us from extending analysis of variance to additional vari-

ables. In practice, however, weare likely to be restricted by the require-

ment of equal numbersof cases in each subcell unless weare in a position
experimentally to control this factor. If we add a third nominal scale
we can divide the total sum of squares into between A, between B,

between C, interaction, and error terms, and we can make a numberof F

tests of separate hypotheses. This time, however, there will be more
than one kind of interaction. There can be interaction between variables
A and B, A and C, B and C, and amongall three variables acting together.
Wefirst make a test for the second-order interaction (A X B XC). If
this is not significant, we can throw it back into the error term andtest
for the three first-order interactions. Tests of the significance of A, B,
and C' can then be made. The extension to four or more nominalscales
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would be made in a similar way. In the event that the researcher is

able to control the number of cases in each category by random assign-

ment, there are numerous other experimental designs available, and a

textbook on experimental design should be consulted. Most of these

designs have limited applicability to the sociologist because of the fact

that contrived experiments are not possible.

* Two-way Analysis of Variance with Unequal Subclasses. When the num-
ber of cases in each subclass is unequal, as will usually be the case in

sociological research, two-way analysis of variance is no longerstraight-

forward. If the number of cases is sufficiently large, it will of course

always be possible to control for a second nominal scale by running

separate analyses within each category of the control variable as we did

in the case of contingency problems. If the numberof casesis relatively

small to begin with, certain approximate methods may be used. One

of these methods involves the use of logarithms, but in other respects

it is straightforward (see [5], pp. 260 to 266).

Another procedure, described in Walker and Lev ({8], pp. 381 to 382),

is conceptually much simpler. This latter method involves treating

the means of the various subcells as though they were single cases.

Sums of squares and estimates of variance can be obtained for the

between-rows, between-columns, and interaction terms by essentially

assuming that there is only one case (the mean) in each subcell. The

error sum of squares is then obtained as in ordinary two-way analysis of

variance by subtracting the between-subclass sum of squares from the

total sum of squares using the total number of cases rather than the

means of each subcell. The error estimate is obtained by dividing by

the error degrees of freedom, as before, and then dividing the latter

figure by the harmonic mean of the number of cases in each subcell.

This latter operation is necessary in order to make the error estimate,

based on the total number of cases, comparable to the estimates based

only on the subcell means treated as single cases. F tests can then be

made in the usual manner.

16.3. Nonparametric Alternatives to Analysis of Variance

In case the assumptions required for analysis of variance are not met,

there are nonparametric tests available which can be used asalternatives

to one- and two-way analysis of variance. The Friedman two-way

analysis of variance with ranks will not be discussed in this text since

this particular test is designed for problems in which there is only one

observation in each subclass (see [7], pp. 166 to 172). Such problems

seldom arise in sociological research unless it is possible to makeuse of an

experimental design in which the numberof observations in each subcell
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can easily be manipulated. We shall therefore confine our attention

to one-way analysis of variance.

The test considered in this section was developed by Kruskal and

Wallis and is appropriate whenever we have a number of independent

random samples and an ordinal-scale level of measurement. Its power

efficiency for large samples is approximately 95 per cent. The test is

basically a very simple one, involving a comparison of the sums of the

rankings for each of the categories of the nominal-scale variable. <A

statistic H is computed in order to measure the degree to which the

Table 16.7. Data and Computations for Analysis of Variance with Ranks
 

 

  

Industrial city Trade city Political city

Rate Rank Rate Rank Rate Rank

4.3 10 5.1 11 12.5 23

2.8 4 6.2 13.5 3.1 5

12.3 22 1.8 2 1.6 1

16.3 24 9.5 18 6.2 13.5

5.9 12 4.1 9 3.8 8

7.7 16 3.6 7 7.1 15

9.1 17 11.2 20 11.4 21

10.2 19 3.3 6 1.9 3

Sums Ry, = 124 Re = 86.5 R; = 89.5      
 

various sumsof ranks differ from what would be expected underthe null

hypothesis. If there are more than five cases in each class, the sampling

distribution of H is approximately chi square.‘

For comparative purposes let us illustrate the use of the Kruskal-

Wallis test with the same data. In Table 16.7 the murder rates for the

three types of cities have been ranked from high to low (low ranks

indicating low murderrates).

1. Assumptions.

Level of measurement: Ordinal and nominalscale

Model: Independent random sampling
Hypothesis: Samples drawn from same continuous population

2. Significance Level and Critical Region. Let us again use the .05 level.
3. Sampling Distribution. The sampling distribution of H will be

approximately chi square with k — 1 degrees of freedom, where k is the

number of categories used.

4 In the case of three classes and very small N’s see [7], pp. 185 to 187.
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4. Computation of Test Statistic. We compute H by means of the

formula

(vain DSNe) ~ 8 +0
H= , (16.8)

1— Ty(N% — N)

where N; and WN represent the numberof cases in the 7th category and in

the total sample respectively. The denominator in the above formula

represents a correction for ties, where

T=t-—¢
t being the number of observations tied for a given rank.

In this particular example there is only one pair of scores whichistied.

Hence 7 = 2? — 2=6. We thus get

[12/24(25)](1242/8 + 86.52/8 + 89.52/8) — 3(25) _
1 — 6/248 — 24)

 

H = 2.17 

5. Decision. Referring to the chi-square table, we see that for 2

degrees of freedom we need a chi square of 5.991 or larger in order to

obtain significance at the .05 level. Since we obtained an H of 2.17, we

decide not to reject the null hypothesis at this level of significance. We

see, incidentally, that we have reached the same conclusion as before.

16.4. Measures of Association: Intraclass Correlation

Analysis-of-variance tests only enable us to determine whether or not

a relationship exists between two variables. As we have already seen,

it is fairly easy to obtain statistical significance with even a very slight

relationship provided there is a sufficiently large number of cases.

Having determined that a relationship exists, subject to the risk of a type

I error, of course, we next need to measure the strength or degree of

relationship. Some indication of the magnitude of the relationship can

be obtained by simply comparing the means of the various categories.

If these means are very different, the relationship is likely to be a strong

one; if the differences are slight, we may not be able to attach much

practical significance to them even though we may have obtained

statistical significance. A mere comparison of category means may be

misleading, however, unless one also notes the degree of homogeneity

within each group. Usually, although perhaps not always, our interest

centers on the relative magnitude of differences among means as com-

pared with differences within categories. In other words, we wish to

obtain a measure of the degree to which categories are homogeneous as

compared with the total variability in the interval-scale variable. If
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the categories are perfectly homogeneous, the association between the

two variables will be complete; knowing the category to which an indi-

vidual belongs enables one to predict his score exactly.

Several closely related and essentially interchangeable measures of

association have been developed which make use of the total, between,

and within sums of squares or of the estimates of variance based on these

sums of squares. The correlation ratio E?, perhaps the simplest of these

measures, involves our taking the ratio of the explained to the total sum

of squares. Thus
explained SS _ between SS

totalSS —s total SS

As weshall see in the next chapter, the interpretation for the correlation

ratio is directly analogous to that for ordinary product-momentcorrela-

tion, and we shall makeuse of this measure in testing for the nonlinearity
of the relationship between two interval scales.

Thecorrelation ratio is seldom used directly as a measure of associa-
tion in analysis-of-variance problems, however. You will rememberthat
the sample standard deviation or variance tends to underestimate the
population standard deviation or variance, the degree of bias becoming
fairly serious for small samples. For this reason we used N — 1 rather
than N in the denominator in order to obtain an unbiased estimate.
Likewise, when the number of cases in each category becomes rather
small, the variability within each sample, as measured by the standard
deviation, s, will tend to be less than that within the population. In
order to correct for a comparable bias in the correlation ratio, we can
obtain what is referred to as the unbiased correlation ratio by making use
of the correct degrees of freedom and working directly with the estimates
of variance rather than the sumsof squares.

The formula for the unbiased correlation ratio e2 turns out to be

21 _ Vw= ] v. (16.10)

where V, and V; stand for the within and total estimates respectively.
Although we have not as yet found it necessary to compute the total
estimate, its value can easily be obtained by dividing the total sum of
squares by N — 1. In the numerical example we have been using, the
values of # and ¢ are

E? = (16.9)

42.303
12 —_— ———_—__->  -== =Ei 373539 118 K =34

15.773
2 = — a —€ 1 373.538/23 .029 e= .17

Notice that the value of ¢ is smaller than that of E.
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A somewhat more commonly used measure of association is the

intraclass correlation coefficient. This measure derives its name from the

fact that basically it involves a product-momentcorrelation between all

possible pairs of cases within categories of the nominal-scale variable.®

Like the other measures discussed in this section, the intraclass correla-

tion coefficient 7; can also be considered as a measure of the degree of

homogeneity of the classes relative to the total variability in the interval

scale. Its formula is as follows

Vn — Vw

V+ G1, G61)
 Tr;

where V,; and V, are the between and within estimates respectively and

fi represents an average numberof cases in eachclass.

If the numberof cases in each class is the same, there will of course be

no question as to the value of 7. For unequal classes a simple arithmetic

mean may be used to give the value of 7. Haggard [3] recommends a

somewhat different kind of average value which should be used whenever

the number of cases differs considerably from one category to the next.

This formula for computing 7 is

k

i Ne

eh (Sx-4Sy
1=1

 (16.12)

where N; represents the numberof cases in the ith category and k the

numberof categories. In our numerical exampleall categories are of the

same size and therefore 7 = 8.

21.152 — 15.773 5.379

Thus "= 57159 + 715.773) 131.563 ~ O*
 

Several properties of the intraclass correlation coefficient can be noted.

When the categories are all perfectly homogeneous there will be no

within-class variation, and the value of 7; will be +1.0. At the other

extreme, suppose that all of the variation occurred within classes and

that the category means were exactly equal. In this case V, would

vanish, and the lowerlimit would be

ove
(“i —1)V, a-1

5 After reading Chap. 17 you may wish to consult [3] to see the precise nature of

the relationship between these two measures.
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Thus, the lower limit is not —1.0 except in the special case where there

is an average of 2 cases within each class. Ordinarily, therefore, the

lower limit will be less than unity in absolute value. Actually this

seldom bothers us since werarely find categories which are substantially

less homogeneous than would be expected by chance. When the between

and within estimates are exactly equal, i.e., when the value of F is exactly

unity, 7; will be zero. Thus 7; = 0 whenever categories are exactly as

homogeneous as would be expected by chance if there were no relation-

ship between the two variables. Ordinarily the values of r; will be

between 0 and 1.0. Unfortunately, there seems to be no simple inter-

pretation for values of r; between these limits.

*The notion of intraclass correlation can easily be generalized to cover

two-way analysis of variance. In those situations in which we would

use the error term in the denominator of F, we may obtain a measure of

the degree of relationship between the column variable and the interval

scale, controlling for the row variable, by taking as V; the between-column

estimate and replacing V. by the error term. Similarly, we might

also take the between-row estimate as V;, thus obtaining a measure of

the degree of association between the interval scale and the rowvariable
after having subtracted out the variation due to the column variable.

As weshall see in Chap. 19, this procedure is directly analogous to what

we do in obtaining “partial’’ correlations between two interval scales,
controlling for a third interval scale. We can also compute a measure

of the degree to which the two nominal scales act together to explain

the variation in the interval scale. Such an intraclass “multiple”

correlation could be obtained by replacing V; by the between-subclass

estimate, using the within-subclass estimate as V,. After you have

studied Chap. 19 and have become more accustomed to partial and

multiple correlations, you may wish to review this section.

16.5. Additional Remarks

Analysis of variance is undoubtedly of most value in thosescientific

disciplines in which experimental designs are possible. For example, if

one can assign individuals to categories on a random basis he will gain

control over the numberof cases in each subcell, thereby permitting the

use of highly efficient analysis-of-variance designs. In addition, he will
be in a much better position to make causal inferences on the basis of

his results. Although the problem of causality will be considered in more

detail in Chap. 19, we can at least inject a word of caution at this point.

Suppose, for example, that we had found highly significant differences

among the three types of cities. We can legitimately infer that the

three samples were probably not drawn from identical populations.
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This means that we can argue that the three populations actually differ

with respect to murder rates. We would certainly not want to infer, how-

ever, that industrial characteristics are direct causes of this particular

type of criminal behavior. Among other things, the three types of

cities may haveselected different types of migrants. Had we been able

to assign individuals randomly to cities or assign cities to one of the

three types on a random basis, afterwards observing the murderrates,

we might have been in a much better position to infer a causal relation-

ship. Even so, we would have to make certain assumptions about the

effects of other variables which may also be operating. The assignment

of individuals to a category on a random basis has the advantage of

ruling out the self-selection effect and is therefore our best insurance

that “other things” are in fact equal or nearly so. Nevertheless, it will

still be true that if we wish to make causal inferences we must go beyond

a purely statistical interpretation of the data.

It is sometimes the case that we have collected information on all of

the cases that are available. For example, all cities within the United

States may have been placed within one of the three categories. We

could then take the position that our task is a purely descriptive one,

since there may be no existent larger population to which one can gen-

eralize. This may very well be the case. On the other hand, one’s

interest may be primarily in developing a generalization which could

apply to other as yet nonexistent cities. One way to conceptualize the

problem is to imagine that the particular cities studied constitute a

random sample from a hypothetical infinite ‘“‘universe of possibilities.”’

Such a universe might consist of all cities which might develop “under

similar circumstances.”’

If this way of conceptualizing the problem seems philosophically

unsatisfactory, a somewhat simpler approach may be more appealing.

Wecan admit that there is no question of generalizing to a larger popu-

lation, but we can raise the following question: ‘What would happen

if we had taken the entire population of cities and selected three com-

pletely random samples from this population so as to includeall of the

cities in one or another of the samples?’”’ What is the probability that

in so doing we would have obtained differences at least as large as those

we have computed using city type as the criterion for classification?

Obviously, if we have obtained differences which could very easily have

arisen by chance, we cannot have too much faith in our conclusion that

the three city types actually differ with respect to murder rates. A

skeptic can legitimately claim that had he divided the cities into three

classes according to almost any irrelevant criterion, he would probably

have obtained differences as large as ours. In short, we are arguing that

some sort of significance test will practically always be helpful in evalu-
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ating one’s findings. Especially in instances where random assignment

has been impossible, one must be very careful not to make causal

inferences.

GLOSSARY

Correlation ratio

Explained and unexplained variation
Homoscedasticity
Interaction
Intraclass correlation

EXERCISES

1. Since the F test can be used to test the null hypothesis that we have two inde-
pendent estimates of the same variance, we can use this test to test the assumption

that o1 = o2 in difference-of-means problems. Since it will ordinarily not be possible
to predict which value of s? will bethe larger, we take the ratio of the larger to the
smaller and then double the probability value given in the F table. With these
facts in mind, take the data of Exercise 1, Chap. 13, and test the hypothesis that
01 = 02.

2. Suppose that the data given below represent the incomesof the chairmen of the

boards of various types of community organizations. You have randomly selected
five organizations of each type for both large and small communities and therefore
have obtained equal numbers of cases in each subclass.

a. Make use of one-way analysis of variance to test for a relationship between
organization type and income of board chairmen, ignoring the size of the
community. What are the values of E and e?

*b. Using two-way analysis of variance, what can you say about the relationship
between organization type and income, controlling for community size?
How do results compare with those in (a)?

c. Compute the intraclass correlation for both (a) and *(b) above.

 

 

 

 

 

. Organization type
Size of

community Religious |Social welfare Civic

$ 8,000 $10,000 $15,800

6,500 5,600 13,100
Large 12,300 7,300 9,600

14,100 6,400 17,300

11,700 5,800 11,500

10,000 4,300 9,400

7,300 5,400 5,800

Small 8,900 7,900 4,700

9 ,300 6,000 7,300

6,760 4,100 8,100  
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3. Convert the income data for Exercise 2 to ranks and, using the Kruskal-Wallis
test, test for a relationship between organization type and income:

a. Ignoring community size
b. Controlling for community size

*4. Analysis of variance can be performed on grouped as well as ungrouped data.
To reduce confusion it will be simplest to make use of equations (16.4) and (16.5) in

unmodified form, remembering, however, that in the case of grouped data we treat

scores as though they were concentrated at the mid-points of intervals. With these
facts in mind, perform a one-way analysis of variance on the data of Exercise 2,

Chap. 13. Asa check on your computations, how do the values of F and ¢ compare?
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Chapter 17

CORRELATION AND REGRESSION

In the present chapter and in Chap. 18 we shall consider the relation-

ship between two interval scales. An extension to three or more interval-

scale variables will be made in Chap. 19 when we discuss multiple and

partial correlation. For the time being, our concern is with situations

in which we have two interval-scale measures on each individual. For

example, we may knowboth the numberof years of education completed

and the annual incomeof adult males in a given community. Or we may

be interested in relating the percentage of the labor force engaged in

manufacturing to a city’s population growth.

In certain problems of this sort we are often not only interested in

significance tests and measures of degree of relationship but also may

want to describe the nature of the relationship between the two variables

so that we can predict the value of one variable if we know the other.
For example, we may want to predict a person’s future income from his
education or a city’s rate of growth from the percentageof its labor force
engaged in manufacturing. When interest is focused primarily on the
exploratory task of finding out which variables are related to a given
variable, we are likely to be mainly interested in measures of degree or
strength of relationship such as correlation coefficients. On the other
hand, once we have found the significant variables we are more likely
to turn our attention to regression analysis in which we attempt to
predict the exact value of one variable from the other.
Although you are already familiar with significance tests and measures

of association, it will be advisable to begin our discussion by studying the
prediction problem. This is because the notion of regression is both
logically prior to and theoretically more important than that of correla-
tion. The reason for this will be more apparent as we proceed. After
discussing the prediction problem, we shall turn our attention to measur-
ing the strength of relationship. In Chap. 18, which actually represents
a continuation of the present chapter, we shall discuss various significance
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tests as well as rank-order correlation which can be used in relating two

ordinal scales.

17.1. Linear Regression and Least Squares

In onesense the ultimate goal of all sciences is that of prediction. This

does not imply, of course, that one is only secondarily interested in

‘“‘understanding’’ why two or more variables are interrelated as they

are. Perhaps it is correct to say that such “‘understanding”’ is the

ultimate goal and that to the degree that understanding becomesper-

fected, prediction becomes more and more accurate. Presumably, if

understanding were complete, perfect prediction would also be possible.

Regardless of the philosophical implications of such a deterministic point

of view, it remains that prediction is the goal of every science.

Predictive statements in sociology and other social sciences are often

of necessity rather crudely worded. Usually this is because we have not

reached the interval-scale level of measurement. Thus we might predict

that the higher a person’s status in the group, the greater his conformity

to group norms. Such a statement need not imply one-way causality;

it merely says that status and conformityare positively related. Making
an analogy with mathematical terminology whichis not strictly correct,

we say that status is a function of conformity or conformity is a function

of status, begging the question of causality. Notice, however, that we

have said very little about the form of this relationship other than that

it is positive. Unless we have an interval-scale level of measurement

for both variables it becomes very difficult to say much more.

Suppose, however, that we do have two interval scales. It then

becomes possible to describe more exactly how the one variable varies

with the other. For example, we might be able to say that for every

year of schooling completed the expected incomewill increase by $1,000.

If this were indeed the case we would have a very simple relationship, a

linear or straight-line relationship. But most relationships are not

nearly this simple although, as weshall see, it is frequently possible to

obtain a very good approximation to the true relationship by assuming

linearity. The most elegant and simple way to express a relationship

between two (or more) variables is by means of a mathematical equation.

Thus, you are acquainted with certain laws of physics which state a

relationship between pressure, volume, and temperature (PV/T = k) or

which indicate a relationship between the rate of acceleration of a falling

body, the distance it has fallen, and the length of time it has been falling.

Wecan also represent each of these mathematical equations as somesort

of a geometrical curve. Fortunately, in sociology we usually deal with

very simple equations and the simplest possible curves (straight lines).
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When we add more variables, we cannot so easily represent equations as

geometrical figures since we run out of dimensions, but we need not

worry about this for the present.

Suppose there is a dependent variable Y which is to be predicted from

an independent variable X. In some problems X will clearly precede Y

in time. For example, a person usually completes his education before

earning his income. In these instances such a conceptualization makes

very good sense, although we want to be careful not to imply a necessary

or causal relationship or that X is the only variable influencing the value

of Y. In other problems, the dependent and independent variables must

be arbitrarily chosen since we may be equally interested in predicting Y

from X or X from Y. Let us assume, however, that Y is taken as the
dependent variable.

We have seen that if X and Y are independent, we cannot predict Y

from X, or more exactly, knowledge of X does not improveourprediction

of Y. Presumably, then, when the variables are not independent,

knowledge of X does help us predict Y. The stronger the dependence, the

more accurate our prediction will be. Later we shall measure the

strength of this relationship by means of correlation coefficients. We

now focus on how we predict Y from X. For example, we may wish to

estimate a man’s future income, given that he has completed three

years of high school. Without this knowledge of education, our best

guess (assuming no inflation) would be the mean incomeof all adult

males. Knowing his education, however, ought to enable us to obtain

a better prediction.

The Regression Equation. Let us conceptualize the problem in the
following way. We imagine thatfor every fixed value of the independent

variable X (education) we have a distribution of Y’s (incomes). In

other words, for each educational level there will be a certain income

distribution in the population. Not all persons who have completed

high school will have exactly the same income, but these incomeswill be

distributed about some mean. There will be similar income distributions

for grammar school graduates, college graduates, postgraduates, etc.

Each of these separate income distributions (for fixed X’s) will have a

“mean, and we can plot the position of these means in the familiar rec-

tangular coordinates. Werefer to the resulting path of these means of the

Y’s for fixed X’s as a regression equation of Y on X. Such a regression

equation can be illustrated in Fig. 17.1.

These regression equations are the “laws” of a science. In some
instances there is very little dispersion about the regression equation.

In these instances very accurate predictions can be made, and deviations
from the law are often thought of in terms of measurement error or as
being due to minor uncontrolled forces. The “law” can then be stated
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as though a perfect relationship between Y and X existed. In theideal,
all points would be thought of as falling exactly on the curve, and the
relationship would be abstracted as a perfect mathematical function

in which there is a unique Y foreach X. In the social sciences we cannot

be nearly this pretentious. We expect considerable variability about

the regression equation and prefer to think in terms of means and vari-

ances of a Y distribution for each X. Nevertheless, in principle the

procedure is the same in all sciences, although the “laws”’ of social

science are nowhere near as precise as those of physics. When we come
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Fig. 17.1. General form of regression of Y on X or the path of the means of Y values

for fixed values of X.

to measure the degree of association we shall see that unless the associa-

tion is very high by present social science standards, we probably have

no right to speak of ‘“laws”’ at all.

In Fig. 17.1 we have indicated the general nature of regression equations

as involving the paths of the means of Y values for given values of X.

Weshall now have to make some simplifying assumptions in order to

make the problem manageable statistically. Although the idea of

regression is perfectly general, most statistical work has been carried

out on only the simplest of models. In particular, we shall for the

present assume (1) that the form of the regression equation is linear,

(2) that the distributions of the Y values for each X are normal, and

(3) that the variances of the Y distributions are the same for each value

of X. Wecan look at each of these assumptions in turn, giving most of

our attention to thefirst.

If the regression of Y on X is linear, or a straight-line relationship, we
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can write an equation as follows

Y=a+ 6x (17.1)

where both @ and 8 are constants. Greek letters have been used since
for the present we are dealing with the total population. In such an
equation both a and @ have definite geometrical interpretations. If
we set X equal to zero, we see that Y = a. Therefore, a represents
the point where the regression line crosses the Y axis (i.e., where X = 0).
The slope of the regressionline is given by 8 since this constant indicates

the magnitude of the change in Y for a given change in X. The fact
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Fig. 17.2. The linear regression equation, showing geometrical interpretations for a
and £.

that the relationship is linear means that any given change in X, say 5
units, always produces the same change in Y (i.e., 58 units) regardless
of the position on the X axis. (See Fig. 17.2.) You should convince
yourself that if 6 = 1 and if the units of X and Y are indicated by equal
distances along the respective axes, the regression line will be at a 45-
degree angle with the X axis. A @ larger than unity indicates a steeper
slope. The steeper the slope, the larger the change in Y for a given
change in X. Similarly, if 6 is less than unity but greater than zero it
will take a larger change in X to produce a given change in Y. In the
limiting case where theline is horizontal, 8 becomes zero and changes in
X produce no change in Y. In other words, if 8 = 0 there is no linear
relationship between X and Y. Knowledge of X will not help one
predict Y if a linear model is assumed.! If 8 is negative we know that

1 As we shall see later, independence assures us that 8 will be zero, but it does not
follow that if 6 is zero we necessarily have independence.
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there is a negative relationship between the two variables: as X increases,

Y decreases.

A straight line can always be completely determinedif we knoweither

two points on the line or a single point and the slope. Therefore, there

is a uniqueline with the equation Y = « + BX provided, of course, that

a and B are assumedto befixed (but general) quantities. If the a and 6

are given, the line can be drawn by simply taking two points on the line.

We know that when X = 0, Y = a. Therefore the point (0,a) lies on

the line. Also, when Y = 0 we have 0 = a + BX or X = —a/8. This

 

 
Fig. 17.3. The bivariate normal distribution. (By permission from A. M. Mood,

Introduction to the Theory of Statistics, McGraw-Hill Book Company, Inc., New York,

1950, fig. 41, p. 165.)

point (—a/B,0) is, of course, the point where the line crosses the X axis.

If it is inconvenient to use these two points, any other points can be

determined by the same procedure.’

It was indicated above that we shall assume that the Y’s are dis-

tributed normally about each value of X. It will also be convenient to

assumethat for each fixed value of Y the X’s are also distributed normally.

We say that the joint distribution of X and Y is a bivariate normal

distribution, meaning that there are two variables, each of which is

distributed about the other normally. Such a bivariate normal dis-

tribution has a definite mathematical equation and can be represented

as a three-dimensionalsurface as in Fig. 17.3. The height of the surface

at any given point (X,Y) is proportional to the numberof cases at that

point. Thus it takes a three-dimensional diagram to represent the

joint distribution between X and Y just as we required two dimensions

? For a numerical example see page 284.
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to represent the frequency distribution of X alone. The exact shapeof

this figure, which looks very muchlike a fireman’s hat, will depend on

how closely the variables are related. If both variables have been

expressed in terms of standard-deviation units, then the more highly

related the two variables, the narrower the hat. In the extreme case

in which Y can be exactly predicted from X, and thereforeall points are

exactly on the regression equation, the standard deviations of Y’s for each

X would be zero and there would be no thickness to the hat at all. On

the other hand, if there were no relationship between X and Y, the base
of the hat would be circular. Any plane perpendicular to the XY plane

will cut the surface in a normal curve. A plane parallel to the XY plane
will cut it in an ellipse (or circle if X and Y are independent).

The bivariate normal distribution has the property that the regression

of Yon X islinear. Therefore if we have a bivariate normal distribution,

we know that if we trace the means of Y’s for each X theresult will be

a straight line. It does not follow, however, that if the regression is

linear, the Joint distribution is necessarily bivariate normal. Bivariate

normality will have to be assumed when we cometo tests of significance,

and since the sociologist is usually interested in making such tests he
will probably need to make this assumption. If one is merely interested

in point estimates rather than confidence intervals or significance tests,
he can estimate the population parameters of the regression equation
without having to assume bivariate normality.

Weshall also need to assume that the standard deviations of the Y’s

for each X are the same regardless of the value of X. This assumption

will be discussed in connection with the topic of correlation since correla-

tion is essentially a measure of spread about the regression line. For

the present it is sufficient to point out that if the joint distribution is

bivariate normal, the standard deviations of the Y’s for each X will in

fact all be identical. This property of equal variances is referred to as

homoscedasticity and is analogous to the assumption madein analysis of

variance that 01 = 02 = °°** =on.

Linear Least Squares. The regression model we have been discussing
is conceptually rather simple, but unfortunately it is not directly useful
in its theoretical form. Seldom do we have enoughcases to examine the
distribution of Y’s for successive fixed values of X. More commonly, we
find that there are relatively few cases in which the X’s are identical or
nearly so. If we plot the distribution of cases on the X and Y axes in
the conventional manner, we usually find a scattering of dots such as
indicated in Fig. 17.4. When weplot the distribution of points in this
manner we obtain whatis referred to as a scattergram or scatter diagram.
You should develop the habit of always drawing a scattergram before
proceeding with further analysis. Mere inspection of the scattergram
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may indicate that there is no point in going any further. For example,

if dots appear to be randomlydistributed on the diagram there1s clearly

no relationship, or a very weak one, between the two variables.

Having plotted the scores on a scattergram, you may want to approxi-

mate these points by some sort of a best-fitting curve. One way of

doing this is to draw a curve(in this case a straight line) by inspection.
There are other more precise methods of doing this, however. One of

these is the method of least squares which will be discussed in the present

Y

 

  
Fig. 17.4. Scattergram and least-squaresline.

section. Our goal is now somewhat different from that of regression

analysis in which we traced the path of the mean of the Y’s. Here we

want to approximate a number of dots by a best-fitting curve of some

type.

In order to use least-squares theory, we must postulate the form of the

curve to be usedin fitting the data. In the case of regression analysis the
form of the curve would actually be determined by the path of the means,

assuming that data for the entire population were available. Again we

shall take the simplest possible curve, the straight line, as our least-

squares curve. This means that we shall fit the data with a best-fitting

straight line according to the least-squares criterion, getting an equation

of the form
Y=at+bx (17.2)

It will then turn out that the a and b obtained by this method are the

most efficient unbiased estimates of the population parameters a and 6

if the regression equation actually is a straight line.
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The least-squares criterion involves our finding the unique straight
line which has the property that the sum of the squares of the deviations

of the actual Y values from this line is a minimum. Thus if we draw

vertical lines from each of the points to the least-squares line, and if we

square these distances and add, the resulting sum will be less than a
comparable sum of squares from any other possible straight line. (See

Fig. 17.5.) Notice that it is the vertical distances rather than the
perpendicular or horizontal distances which are being considered here.

It would be possible to minimize the sum of the squares of perpendicular

 
 

x |

Fig. 17.5. Least-squares equation minimizing sum of squares of vertical distances and
estimating the regression of Y on X.

distances (referred to as orthogonal least squares), but the resulting
equations are not nearly as convenient. If the horizontal distances

were used, the resulting least-squares line could be used to estimate the

regression of X on Y. You should convince yourself that minimizing

the sum of squares of vertical distances does not necessarily minimize

the sum of squares of horizontal distances. Thus we can obtain two

distinct least-squares lines. Only if all points lie exactly on a single line

will these lines coincide. It also turns out that by minimizing the sum

of squares of vertical distances we are in effect finding the straight line

having the property that the sum of the positive and negative vertical

distances will be zero and the standard deviation of the points from the

line will be a minimum. The notion of the standard deviation of the

Y’s from the line will be discussed below in more detail.

In order to obtain the least-squares line, then, we need to compute the

a and b which determine the line with the desired property. This type
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of problem can easily be solved by means of calculus and leads to the

following computing formulas for a and b.

N N

2,_2 -
N
 a= = Y—0bX (17.3)

N N

Y (Xi - XK - P) Yow
and —— = th (17.4) 

 

M
1
2 N

(X; _— x)? x,"dt= 1 a

where x; = X; — X and y; = Y; — Y. Notice that in these equations
a and b are the unknowns,the other quantities being determineddirectly

from the data. Once b has been obtained, a can readily be computed

from the first of the two formulas. We can thus focus our attention on

the computation of b.
N

The numerator of b involves the expression » (X; — X)(Y; — Y)
i=l

which is referred to as the covariation of X and Y. This quantity 1s

directly analogous to the sumsof squares for either X or Y except that

instead of squaring (X — X) or (Y — Y) we take the product of these

two terms. We thus get a measure of how X and Y vary together, hence

the name covariation. If we divide this expression by N we obtain, by

analogy, what is called the covariance. It will be seen immediately that

b can be set equal to the ratio of the covariance to the variance in X.

Taking a more detailed look at the covariation of X and Y weseethat,

unlike a sum of squares, the covariation can take on both positive and

negative values. If X and Y are positively related, then large values

of X will ordinarily be associated with large values of Y. Thus if

X > X,it will usually be true that Y > Y. Also, for a positive relation-
ship, if X < X we shall ordinarily have Y < Y. Therefore the product

of (X — X) and (Y — Y) will usually be positive, and the sum of these
products will also be positive. Similarly, if X and Y are negatively

related we would expect that if X > X then Y will be less than Y, and

the resulting sum of the products will be negative. If there is no relation-

ship, then about half of the products will be positive and half negative

since X and Y will vary independently. In this case b will be zero or

close to zero. Therefore the higher the degree of the relationship,

regardless of direction, the larger the numerical value of the covariation.

As weshall see shortly, the covariation also appears in the numerator of

the correlation coefficient, our measure of degree of association. In the
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case of 6, we take the covariation and divide this by the sum of squares
in X in order to obtain our estimate of the slope of the regression equation.

It is more convenient to use a computing formula for the covariation
which is directly analogous to the computing formula for the sum of
squares and which can be derived in a similar manner. Wecan write
the computing formula for b as follows:

, . N2XY — (2X)(2Y)
NZX? — (2X)?
 (17.5)

In equation (17.5) both numerator and denominator have been multiplied
by N in order to reduce rounding errors due to division and in order to
facilitate machine computation.?

Problem. Suppose we have the data given in Table 17.1, with
X representing the percentage of Negroes in large Midwestern cities
and Y indicating the difference between white and Negro median
incomes as a measure of economic discrimination.

Table 17.1. Data for Correlation Problem
Per cent Discrimi- Per cent Discrimi-
Negro nation Negro nation

xX Y xX Y

2.13 $809 4.62 $859
2.52 763 5.19 228
11.86 612 6.43 897
2.55 492 6.70 867
2.87 679 1.53 513
4.23 635 1.87 335

10.38 868
souRcE: U.S. Census, 1950.

From the raw data we can computefive sums which, together with N,
are all that we need in order to handle regression and correlation problems.
All but one of these sums will be used in computing a and 6. Computa-
tions can be summarized as follows:

N = 18 DY = 8557
SX = 62.88 SY? = 6,192,505
2X? = 432.2768 OXY = 43,943.32

The only new quantity here is XY. Placing these valuesin the formulas

3 Jn this and succeeding formulas the subscripts have been dropped since we are
always summingoverthe total numberof cases N.
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for a and b we now get

_ NEXY — (2X)(ZY)
 

 
 

b= —NSX? — GXyp
_18(43,943.32) — (62.88)(8,557) _ 33,199.0 _ 49 92,

13(432.2768) — (62.88)? 1,665.7
wnd gn Te a BEX

N
_ 8,557 — (19.931) (62.88)
 13 = 561.83

The resulting linear equation is therefore

Y,=a+bX = 561.83 + 19.931X

where we have used Y, to indicate that the Y value has been predicted

from a least-squares equation. As previously mentioned, the a and b

obtained by this method are the most efficient unbiased estimates of a

and 8, the actual regression coefficients. The least-squares line there-

fore will be the best estimate of the true regression if the regression
equation actually is linear. The least-squares equation also has the

property of passing through the point (X,Y) representing the meansof
both X and Y. This can be seen from equation (17.3). Since

a= Y — bX
we have Y=at+bx

indicating that these values of X and satisfy the equation. Therefore

the point (X,Y) lies exactly on theline.
In the above problem if we know the X value (per cent Negro) for

any given Midwestern city, our best guess as to the Y value would be

that value of Y on the least-squares equation corresponding to the given

X. Since discrimination scores indicate differences (in dollars) between

the median incomes of whites and Negroes, we see that an increase of 1

per cent Negro corresponds to a difference of $19.93 in the median

incomes of whites and Negroes. A scattergram and the least-squares

equation have been drawn in Fig. 17.6. To illustrate the use of such a

prediction equation, if we knew that there were 8 per cent Negroes in

a given city, the estimated median income differential would be

Y, = a+ 0(8) = 561.83 + (19.931)(8) = $721.28

We can see from the figure that approximately the same result would

have been obtained graphically. Incidentally, by setting X = 8 and
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solving for Y we have located a second point on the line which can then

be used for the purpose of drawing in the line on the scatter diagram.
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Fig. 17.6. Scattergram and least-squares line for data of Table 17.1.

17.2. Correlation

Not only do we want to know the form or nature of the relationship
between X and so that one variable can be predicted from the other,
but also it is necessary to know the degree or strength of the relationship.
Obviously, if the relationship is very weak there is no point in trying to
predict Y from X. Sociologists are often primarily interested in dis-
covering which of a very large number of variables are most closely
related to a given dependent variable. In exploratory studies of this
sort, regression analysis is of secondary importance. As a science
matures and as important variables become identified, attention can
then be focused on methods of exact prediction. Somestatisticians are
of the opinion that entirely too much attention has been given to correla-
tion and too little to regression analysis. Whether or not this is true
depends, of course, on the state of knowledge in the science concerned.
We can admit that the ultimate goal of any science is precise prediction.
On the other hand, in many of our problems the use of regression equa-
tions as predictors would be highly pretentious. As we shall see, corre-
lations of a very high order are necessary for even moderately accurate
prediction.
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The correlation coefficient 7 to be discussed in this section was intro-
duced by Karl Pearson andis often referred to as product-momentcorre-

lation in order to distinguish it from other measures of association.

This coefficient measures the amount of spread about the linear least-

squares equation. There is a comparable population coefficient rho (p)

which measures the goodness of fit to the true regression equation.

Weobtain an estimate 7 of this parameter by measuring deviations from

the line computed by least squares.

Y . Since the regression equation

represents the path of the means

of Y’s for given X’s, it would also

be possible to measure spread about

this line by taking a standard de-

viation from theline.* Researchers

in most applied fields have become

accustomed to the correlation coef-

° ‘ . . ficient, however, and although some

. : . mathematical statisticians seem to

(b) - prefer the second kind of measure,
. ° ° the correlation coefficient is prob-

ably here to stay. It has the ad-

y vantage of being easily interpreted,

and its range is from —1.0 to 1.0, a

fact which is appealing to most

ce 2 * practitioners. As we shall see, the

(c) eee . relationship between the correla-
. . . tion coefficient and the standard

° deviation about the least-squares

Weak negative relationship % lime is a very simple one, and this

Fig. 17.7. Scattergrams showing different fact can be used to provide an

strengths and directions of relationships interpretation forr.
between X and Y. It has been mentioned that r has

an upperlimit of 1.0. If all points

are exactly on the straight line, r will be either 1.0 or —1.0 depending on

whetherthe relationship is positive or negative. If the dots are randomly

scattered r will be zero. The better the fit, the larger the magnitude of

r. This is indicated in Fig. 17.7.

Notice that r is a measureof linear relationship, being a measure of the

goodness of fit of the least-squares straight line. You should not be

(a)

 

  
Strong positive relationship WwW

 

  

  

4 The exact nature of such a measure will be discussed below. For the present we

can simply point out that it represents an extension of the notion of a standard

deviation, where the mean of the Y’s is no longer taken as fixed but is considered

to be a function of X.
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mislead into thinking that if r = 0 (or if p = 0) there is no relationship
whatsoever. If there is no relationship, it follows that r will be approxi-
mately zero and there will be a random scatter of points. There may,
however, be a perfect curvilinear relationship and yet r can be zero,

indicating that there is no straight line which can fit the data. In Fig.
17.8 this is actually the case. Therefore,if a researcher findsa correlation

of zero he should be careful not to infer that the two variables are unre-

lated. Usually, inspection of the scattergram will indicate whether there

Y

 
 

x

Fig. 17.8. Scattergram for perfect nonlinear relationship for which r = 0.

is in fact no relationship or whether the relationship is sufficiently non-
linear to produce a zero correlation. In most sociological problemsrela-

tionships can be approximated reasonably well with straight lines. This

does not mean that one should not be alert for possible exceptions,
however.

Wehavenotas yet defined the correlation coefficient, but we can easily

do so in terms of the formula

x(x — X)(Y — Y) _ Dry

i V[>(X — X)yay — Y)y — V/(S2) (By?)
 

 (17.6)

In words, the correlation coefficient is the ratio of the covariation to the
square root of the product of the variation in X and the variation in Y.
Dividing numerator and denominator by N, writing this quantity as N?
within the radical, we see that r can also be defined as the ratio of the
covariance to the product of the standard deviations of X and Y. The
covariance is a measure of the joint variation in X and Y, but its mag-
nitude depends on the total amount of variability in both variables.
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Since the numerical value of the covariance can be considerably greater

than unity, it is inconvenient to useit directly as a measureof association.

Instead, we standardize by dividing by the product of the two standard

deviations, thereby obtaining a measure which varies between —1.0

and 1.0.

We have already seen that the covariance will be zero whenever X

and Y are unrelated. It can also easily be shown that the upper limit

of r is unity. Let us take the case where 6 is positive and whereall

points lie exactly on the line. Then for every Y wecan write Y = a + bX.

Since (X,Y) also lies on the line we have Y =a+ bX. Therefore for

all points on the line

Y —Y =(a+bX) — (a+ 6X) = (X — X)
Hence >(X — X)\(Y — Y) = ba(X — X)?

and S(Y — Y)? = b°=(X — X)?

Inspection of the numerator and denominator of r now indicates that

under these conditions r = 1.0. Similarly, it can be shown that if

all points lie exactly on a line with negative slope, the resulting r will be

—1.0.
The relationship between the correlation coefficient and the slopes of

the two least-squares equations should also be noted. If we let 6,. be

the slope of the least-squares equation estimating the regression of Y on

X, andif welet b,, indicate the slope of the estimate of the regression of

X on Y, we have by symmetry that

x(x — X)(Y — Y)

x(Y — Y)?

where X = Azy + DayY

 bry =

Thus, r has the same numerator as both b’s. If the 6’s are zero it follows

that r must also be zero and vice versa.

For given sums of squares in X and Y,the value of 6,2 (or b.,) will be

proportional to r. This might seem to lead to the conclusion that the

strength of relationship is proportional to the slope of the least-squares

line. This will be true only if the denominator remains fixed, however.

Thusb is a function not only of the strength of the relationship but also

of the standard deviations. If there is considerable variability in X

relative to Y, the value of 6 will be relatively small, indicating that it

takes a large change in X to produce a moderate change in Y. As will

be discussed below, the numerical values of the 6’s therefore depend on

the size of the units of measurement.

5 Except in cases where confusion might arise, we shall continue to make use of 6

without the subscripts to represent dyz.
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The value of r has been standardized so that it is independent of the

relative sizes of the standard deviations in X and Y. It would indeed be

unfortunate if this were not the case, since we would hardly want a

measure which varied according to whether weselected dollars or pennies

as our monetary unit. It will be noted from the formulas for r and the

b’s that r? can be expressed in terms of the b’s. Thus

[zxy]?
Lxzy?
 r = dyedey = (17.7)

You should verify that when r is 1.0 (or —1.0), byz = 1/bz, and that this

means that the two least-squares equations coincide. Generally, as r

approaches zero, the angle between the two lines becomes larger and

larger until when r = 0 the lines have become perpendicular.

Finally, we can introduce a computing formula for r which involves

the five sums previously obtained in connection with the computations

of aand b. The formula is

NXIXY — (2X)(2Y)

a V([N>X?2 — (ZX)NEY? — (SV)3 (17.8)
 

 

The numerator has, of course, already been computed, and so has part of
the denominator. Thus the correlation between per cent Negro and the
index of discrimination is

_ 13(43,943.32) — (62.88) (8,557)
v/[13(432.2768) — (62.88)7][13(6,192,505) — (8,557)3]
33,199 _

= 170,120 ~ -°0!

 

 

It should be noted that one can add or subtract values from either X
or Y without affecting the value of the correlation coefficient. Likewise,
a change of scale can be madefor either variable by multiplying or divid-
ing by any constant. This says in effect that the correlation between
income and education is the same regardless of whether income is meas-
ured in dollars or pennies. But although the correlation coefficient is
invariant under transformationsof this sort, the least-squares equation is
not. Adding or subtracting values will affect the numerical value of a.
A change of scale will affect the slope of the line. For example, if every
X is divided by 10 while Y is kept fixed, the resulting b will be multiplied
by 10. You should verify that these properties hold by examining the
formulas for r, a, and b. These facts may be used in order to simplify
computations. For example, if X involves either a very large number or
a very small decimal, a change of scale may reducetherisk of computing
errors. Or if the X variable consists of values such as 1,207, 1,409, 1,949,
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and 1,568, it would probably be advisable to subtract 1,000 from each

score. Certain computing routines require that all values be positive.

In computing r, therefore, it may be necessary to add to each value a

number which isslightly larger than the largest negative score.

Another fact about the correlation coefficient should be noted at this

time. Since this measure involves both variances and covariances, it is

highly affected by a few extreme valuesof either variable. Furthermore,

Y

 

(a)

 
 

(0)

 

 
 

x

Fig. 17.9. Scattergrams showing possible effects of extreme X values.

the magnitude of r depends on the degree of general variability in the

independent variable. Figure 17.9 illustrates these points. In Fig.

17.9a, the effect of one or two extreme valuesis to produce a moderately

high correlation where none exists among the remaining cases. In Fig.

17.9b, we have a moderately high linear relationship except for the fact

that extreme cases are out of line with the rest. In this latter instance we

probably have an example of a nonlinear relationship. A scattergram

will always be helpful in indicating the nature of the situation in any

given problem. Let us now discuss what can be done if either of these

situations should occur.

Figure 17.9a illustrates the point made above that the magnitude of the
correlation coefficient depends on the range of variability in both varia-

bles. Had there been a larger number of extreme cases, the resulting
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distribution might have been as in Fig. 17.10. In this instance the
over-all correlation may be high, but within any limited range of X’s
the correlation may be close to zero. In effect, this indicates that there
is insufficient variability in X within this limited range to counteract the
effects of numerous uncontrolled variables. In reality, X is almost being
held constant. Therefore, if a scattergram turns out to be similar to the
one in Fig. 17.9a, one should always attempt to extend the range of
variability in X by finding more extremecases.

Y

 

  
x

Fig. 17.10. Scattergram showing norelationship within a limited range of variation

in X but a positive relationship over the total range.

If extending the range of variability is not feasible empirically or if
the researcher’s interest is focused primarily on less extreme cases, it

may be more sensible to exclude the extreme cases from the analysis

altogether. For example, suppose X is size of city and New York City
appears in the sample. Unless there are a large numberof cities of

comparable size, and there aren’t, it may become necessary to confine

one’s attention to cities of less than 500,000. In some instances it

would seem advisable to compute 7 both with and without the extreme
cases. Obviously, the decision made will depend upon the nature of the

problem and the research interests of the social scientist. You should be

alerted to the fact that one or two extreme scores can have a very pro-

nounced effect on the magnitude of r, and you should always take this

into consideration in some manner. The range of variability should

therefore be reported with correlation coefficients. This is another

illustration of the important point that a single summarizing measure, no

matter how superior it may be to other measures, can often be misleading.

It the data turn out to be as in Fig. 17.96, we would obviously suspect
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nonlinearity. Again, if possible, additional extreme cases should be

obtained. If there are only one or two extremes it may be advisable to

exclude these from the analysis. Situations of this sort illustrate the fact

that within a limited range of variation a relationship may be approxi-

mately linear, but when extended the linear model may be inappropriate.

You should therefore be careful not to generalize beyond the limits of the

data. A cautious statement such as, ‘‘ Within the limits of and

the relationship appears to be approximately linear”? would be

most appropriate.

Computations from Grouped Data. If the number of cases is large or

if modern desk calculators are unavailable, the computation of correlation

coefficients may become extremely tedious. In such instances it may be

more convenient to make use of grouped data in spite of the fact that

certain slight inaccuracies will be introduced. In principle, these compu-

tations for grouped data are straightforward extensions of the procedures

used in obtaining the mean and standard deviation. We now have two

variables which must be crossclassified as in Table 17.2. Weshall guess

a meanfor each variable, taking step deviations from each guessed mean,

and make use of correction factors in each case. In addition, we shall

need a cross-product term equivalent to Zxzy. Since deviations for both

X and Y will be taken from the respective guessed means, we shall need

to make use of a correction factor to be subtracted from the estimated

cross-product term. We can then modify the computing formulas for r

and 6 so as to take into consideration the fact that we have used guessed
means rather than correct means.

You will recall that one of the computing formulas for s using grouped

data was (dropping the subscripts)

  

 

$= ASE — (Xfd’)?

Since we now have two variables X and Y, we shall make use of subscripts

in order to distinguish frequencies and step deviations for X (1e., f, and

d’) from those for Y (ie., fy and d,). In computing the cross-product
term we also need to obtain the frequencies f,, in each subcell. These

latter frequencies will ordinarily be smaller than either f, or fy. Thus,

although there are 24 cases in the category 40.0 to 49.9 for the X variable

and 30 cases in the 15.0 to 19.9 category of Y, there are only 6 cases in

the subcell corresponding to both of these categories. You should

convince yourself that the computing formula for r (equation 17.8) can

be modified as follows

_ N2faydid, — (Sheds) (Shut)
V(NSA — Sf.aUNSa — Cha)
 (17.9)
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Similarly, the formula for b becomes

— N2frygdy _ (=fzz) (2f.yy) ly

N2fed; — (2fedz)? te
where 7, and 2, represent the interval widths for Y and X respectively.

The value of a can now be computed from the equation

DY — brXxX - =
a= = Y — bX

where X and Y can be obtained using the usual formula for grouped data.

Let us now compute the values of these coefficients for data on 150

Southern counties given in Table 17.2. We shall take as the dependent

b (17.10)

Table 17.2. Data Cross Classified for Obtaining Correlations from Grouped Data
 

 

 

 

Percentage of females in the labor force, Y
Per cent

| ruralarm, 10.0- 15.0- 20.0- 25.0- 30.0- 35.0- 40.0- *°t8
14.9 19.9 24.9 29.9 34.9 39.9 44.9

0.0- 9.9 0 0 0 1 8 4 0 13
10.0-19.9 1 2 0 2 4 1 3 13
20 .0-29.9 2 5 1 2 3 3 0 16

30 .0-39.9 2 0 5 5 7 3 0 22
40.0-49.9 4 6 6 7 1 0 0 24

50 .0-59.9 3 10 9 6 2 0 0 30
60 .0-69.9 2 4 3 7 4 0 0 20
70 .0—79 .9 2 3 4 1 0 0 0 10
80 .0-89 .9 1 0 1 0 0 0 0 2

Totals 17 30 29 31 29 11 3 150         
souRcE: U.S. Census, 1950.

variable Y the percentage of females in the labor force, the independent

variable being the percentage of the population classed as rural-farm.

It will be convenient to make use of a computing form such as that given
in Table 17.3. In this table the class limits and mid-points are given

across the top (for Y) and down the left-hand margin (for X). Focus

your attention on the boxed-in area of the table. Notice that there are

three numbers in each subcell. In each subcell the top numberrepresents

the numberof cases in the subcell as given in Table 17.2. The remaining

numbers in the subcell are used in computing the cross-product term.

The middle figure in each subcell represents the product of the step

deviations djd,. Thus in the bottom left-hand subcell (corresponding to
the categories 80.0 to 89.9 and 10.0 to 14.9) the entry —12 is the product

of 4 and —3. In other words, the category 80.0 to 89.9 is four step

deviations above the hypothesized mean of X, and the category 10.0 to
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Table 17.3. Computations for Correlations from Grouped Data*
 

 

 

 

 

 

 

 

 

 

 

 

   
 

Class 10.0—| 15.0—| 20.0-| 25.0- 30.0—| 35.0- 40.0— ’ ’ No
limits ¥ l\i4.9 |19.9 |24.9 29.9 |34.9 |39.9 44.9 fz dz feds Jx(ds)

Mid-xX 12.45 17.45 22.45] 27.45 32.45 37.45 42.45
points

0.0- 1 8 4
9.9 4.95 0 —-4| -8 13 —4] —52] 208

0 —32 —32

10.0- 1 2 2 4 1 3
19.9 14.95} +9] +6 0 —3/ -—6| -9 13 —3| —39 117

9 12 Oo -12} -6]| —27

20.0- 2 5 1 2 3 3
29.9 24.95] +6] +4] +2 0 —2| -4 16 —2| —32 64

12 20 2 0 —6| —12

30.0- 2 5 5 7 3
39.9 34.95 +3 +1 0 —1]} -2 22 -1 —22 22

6 5 0 —7| -6

40.0- 4 6 6 7 1
49.9 44.95 ) 0 0 0 0 24 0 0 0

4) 0 0 0 0

50.0— 3 10 9 6
59.9 54.95] -—3] -2] —-1 0 +1 30 1 30 30

—9|-20| —9 0

60.0— 2 4 3 7 4
69.9 64.95 —6] -—4] —2 0 +2 20 2 40 80

—12| -16| -6 0 8

70.0- 2 3 4 1
79.9 74.95] -—-9]| -6] —3 0 10 3 30 90

—18 —18 —12 0

80.0- 1 1
89.9 84.95 —12 —4 2 4 8 32

—12 —4
ty 17 30 29 31 29 11 3] N= —37 643

150

d, —3| -—2]| -1 0 1 2 3

fudy —51 —60 —29 0 29 22 9 —80 Lfrydzdy
= —200

Su(dy)? 153 120 29 0 29 44 27 402             
* This computing form has been taken, with slight adaptations, from [1], table 19.4, p. 476, with the

kind permission of the publisher.
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14.9 is three step deviations below the hypothesized meanof Y. Finally,
the bottom numberin each subcell represents the product of the first two
numbers and therefore can be represented symbolically as feyd,d,. The
sum of these bottom figures over the entire numberof subcells therefore
gives us the cross-product term uncorrected for errors introduced by
using guessed means. This sum, which will be used in the first term of
the numerator of r, is numerically equal to —200 and has been placed in
the lower right-hand cornerof the table.
The remaining quantities needed in the computation of r and b can be

obtained in the familiar manner. The last four columnsin the table are
used to obtain f,, d;, f.d,, and f,(d;)*, the sums of the latter two quantities
being directly used in the formula for r. Notice that in computing the
numerical values for these last four columns we are completely ignoring
the Y values. Thus, if we ignore the boxed-in area, we have exactly the
same kind of table as was used in computing the mean and standard
deviation from grouped data. Similarly, the bottom four rows can be
used to obtain comparable sumsfor the Y variable. All of the quantities
neededin the formulas for r and 6 can nowbeplacedin the bottom right-
handcells of the larger table.

We nowobtain the values of r and b as follows:

 
 

—_ 150(—200) — (—37)(—80) _ — 32,960 _ ge
+/[150(643) — (—37)7][150(402) — (—80)2] 71,590

5 — 150(—200) — (—37)(—80) 5.0 _ —32,9601 _ 1733
 

150(643) — (—37)? 10.0 «95,081 2 ~

Since the values of X and Y are 42.48 and 24.78 respectively, we get

a= Y — bX = 24.78 — (— .1733)(42.48) = 32.14

and the least-squares equation can be written as

Y, = 32.14 — .1733X

Interpretations for the Correlation Coefficient. In order to obtain an
interpretation for r which will be meaningful when

r

is neither 0 nor 1.0,
let us return to the notion of variability about the regression equation.
We have defined the variance about the mean of Y as

— z(Y _ by)?

M
gy”

where M represents the size of the population (as contrasted with the
sample size NV) and where we use the subscripts to emphasize the fact
that there are now two variables which must be distinguished. Thus
the ordinary concept of variance involves deviations from a fixed measure
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of central tendency, the over-all mean. But we can also obtain the mean

of Y’s for a fixed X, and we are assuming that these values vary with X

so as to produce a linear regression. We thus can generalize the concept

of a mean, obtaining a kind of conditional mean of Y for a given X which

we may symbolize as pyje.

If we generalize the concept of variance in a similar manner we can

obtain as a measure of spread about the regression equation

2 _ =(Y — Lyjx)?
Cyia M (17.11)

where the symbolo%,, is used to emphasize the fact that the magnitude

of variability about the regression equation, as well as the mean of Y,

depends upon the value of X. In other words, for each X there is both

a mean of the Y’s and a variance about this mean. The amount of

spread about the line need not always be the same for each X although we
are going to assume the property of homoscedasticity or equal variances.

We now have two measures of variability for Y. The first measures

the spread about that value of Y, the grand mean p,, which would be the

best single predicted value of Y if X were not known. In other words,
if one were asked to predict Y with no knowledge of X his best guess

would be p, (or Y if only sample data were available). Knowing X,

however, he would predict the corresponding value of Y which lay on

the regression equation. Unless there were no relationship between
X and Y, knowledge of X should help him predict the value of Y. If
the relationship were perfect he could predict Y exactly since all points

would be exactly on the line. Ordinarily, he will not be able to do this

well, but since we are assuming a normal distribution of Y’s and a fixed

standard deviation oy, we can make probability statements about the

risks and magnitude of his error. More important for our purposes, we

can compare the two standard deviations (or variances) and obtain a

measure of how much the prediction has been improved by knowing X.

In so doing, we can make use of processes familiar from analysis of

variance.
In analysis of variance we took the total variation or sum of squares

and divided this quantity into explained and unexplained portions. We

shall now use exactly the same procedure,obtaining almost as a by-product

the values of o7,, and r?.. We can then give a meaningful interpretation

for the correlation coefficient. First, we express the deviations of each

Y from Y as the sum of two quantities (VY — Y») + (Yp,— Y). (See
Fig. 17.11.) The first of these quantities represents the deviation of the

Y value from the least-squares line and indicates the amount of error

made when Y,is used to predict Y. The second expression indicates the

deviation of the least-squaresline (at a given X) from Y. For most cases,

this quantity will represent the amount by which the error is reduced
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when Y, is known. If we now square both sides of the equation and
then sum overall cases, we obtain

z(Y — Y)? = 2(Y — Y,)? + 22(¥ — Y,)(Yp — Y) + 3(¥, — Y)?

Fortunately, the middle term again drops out, and weareleft with

x(Y—Y)?= 3(Y-—Y,)? + 3(Y,— Y)? (17.12)
Total SS = unexplained SS + explained SS

The first quantity on the right-hand side of the equation represents

the sum of the squares of the deviations of the actual Y values from the

  

 

 
 

Y

Y

(Y-¥)
‘

(%-F)
¥

x

Fig. 17.11. Geometric representation showing deviations from mean Y as a sum of
deviations from least-squares line and deviations of least-squares line from Y.

least-squares line. This quantity is unexplained since it indicates the
amount of error in prediction. The remaining quantity indicates what
we have gained in using Y, in preference to Y and can be referred to as
the explained sum of squares. By “explained,” of course, we do not
imply a causal explanation but merely an association between the two
variables. Let us now look moreclosely at each of these quantities.

If we take the unexplained sum of squares and divide by the total
number of cases, we obtain the sample variance Siz about the least-
squares line. Thus

20 2(Y _ Y>)?Sie = WV (17.13)

If we wish to obtain an unbiased estimate of the population variance
oy about the true regression, we must divide not by N but by the
appropriate degrees of freedom. In this case we have lost 2 degrees of
freedom in calculating a and b as estimates of a and 8. Therefore, if we
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wish to estimate o2),, we would use ~

_ 2
$,, == (17.14)

Thus the unexplained sum of squares can readily be converted into an

estimate of the variance about the regression equation. You should

convince yourself that what we have done is directly parallel to our

earlier treatment of analysis of variance. The variability about the

least-squares equation has replaced the notion of variability within

categories of X.

Turning now to the explained sum of squares =(Y, — Y)?, we can

easily show that this quantity is equivalent to r7[=(Y — Y)2] or r2Zy?.

Since Y, = a+ bX and Y = a+ bX, we have

(Y,— Y) = 0(X — X)
Therefore

=(Y, — Y)? = b?=(X — X)2 = b2E2?
2_ (2ay) (S22) = (ey)?

  

 

(Sa)? Sx?
ary)?

= rD(Y — Y)?
We have thus shown that

»2 _ U(V»—Y)? _ explained SS
 3Y—Y)2 total SS

By a similar argument we could show that r? represents the ratio of
explained variation in X to total variation in X. The square of the

correlation coefficient can therefore be interpreted as the proportion

of the total variation in the one variable explained by the other. The

quantity ~/1 — r2, sometimesreferred to as the coefficient of alienation,

represents the square root of the proportion of the total sum of squares

that is unexplained by the independent variable.
It should be noted that there is no direct and simple interpretation for

r itself. In fact it is possible to be mislead by values of r since these

values will be numerically larger than those of r? (unless r is O or +1.0).

Thus it might appear that an r of .5 is half as good as a perfect correlation

whereas wesee that in this case we are explaining only 25 per cent of the

variation. A correlation of .7 indicates that slightly less than half of

the variation is being explained. Wesee also that correlations of .3 or

less mean that only a very small fraction of the variation is being explained.

Table 17.4 indicates the relationships among the various quantities.

Since 1 — r? represents the proportion of unexplained variation, we

have
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(1 — r°)[2(Y — Y)*] = 3(¥ — Y,)?
X(Y—Y)? x(Y —Y,)?

Therefore (1 — r?) NT == v

or (1 — r?)s,? = 82,
Hence Siz = V1 — Psy

This result gives us an indication of how much wecan reducethe standard

deviation by knowing X. (See the last column of Table 17.4.) When r

is zero the two standard deviations are equal. This fact is obvious, of
course, when werealize that the least-squares line would in this case be a

Table 17.4. Numerical Relationships between r, r?, 1 — r?, and 4/4 — 7?
 

 

  

r r2 1—r?) VYfi—r

.90 .81 19 44

.80 . 64 .36 .60

.70 AQ ol 71

. 60 .o6 . 64 .80

. 50 .20 05 .87

.40 .16 84 .92

.30 .09 91 .95

. 20 04 .96 .98

.10 .O1 .99 .995 
 

horizontal line having the equation Y = Y. When 7’is unity, Syj2 will
of course be zero since all points will be exactly on the line.
From Table 17.4 we see that the magnitude of r has to be large before

we get a substantial reduction in standard deviations. For anr of .80 the
standard deviation about the least-squares line is .60 of the ordinary
standard deviation, but for an r of .40 we see that we have not gained a
great deal in estimating Y from X. It is for this reason that prediction
equations are not as practical as they might appear to be. Unless the
correlation is reasonably high (say, .7 or above), it may be rather mislead-
ing to make use of prediction equations. When we note that most
correlations in the social sciences are considerably less than .7 we realize
that exact prediction becomes out of the question. In most problems in
social science, attention is rightly focused more on locating the important
variables. In exploratory work of this sort, correlational analysis
becomes more important than regression analysis.

GLOSSARY

Bivariate normaldistribution
Coefficient of alienation

Coefficient of correlation
Covariance

Least-squares equation
Regression of Y on X
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1. The following data for 29 non-Southern cities of 100,000 or more are taken from

R. C. Angell’s study of moral integration of American cities. The moral-integration

index was derived by combining crime-rate indices with those for welfare effort.

Heterogeneity was measured in terms of the relative numbers of nonwhites and

A mobility index measuring the relative

numbers of persons moving in and out of the city was also computed as a second
foreign-born whites in the population.

independent variable.

EXERCISES

INDUCTIVE STATISTICS

 

 

Ci Integration

|

Heterogeneity

|

Mobility
ity . . .

index index index

Rochester 19.0 20.6 15.0

Syracuse 17.0 15.6 20.2

Worchester 16.4 22.1 13.6

Erie 16.2 14.0 14.8

Milwaukee 15.8 17.4 17.6

Bridgeport 15.3 27.9 17.5

Buffalo 15.2 22.3 14.7

Dayton 14.3 23.7 23.8

Reading 14.2 10.6 19.4

Des Moines 14.1 12.7 31.9

Cleveland 14.0 39.7 18.6

Denver 13.9 13.0 34.5

Peoria 13.8 10.7 35.1

Wichita 13.6 11.9 42.7

Trenton 13.0 32.5 15.8

Grand Rapids 12.8 15.7 24.2

Toledo 12.7 19.2 21.6

San Diego 12.5 15.9 49.8

Baltimore 12.0 45.8 12.1

South Bend 11.8 17.9 27.4

Akron 11.3 20.4 22.1

Detroit 11.1 38.3 19.5

Tacoma 10.9 17.8 31.2

Flint 9.8 19.3 32.2

Spokane 9.6 12.3 38.9

Seattle 9.0 23.9 34.2

Indianapolis 8.8 29.2 23.1

Columbus 8.0 27 .4 25.0

Portland (Ore.) 7.2 16.4 35.8   
 

source: R. C. Angell, ‘“The Moral Integration of American Cities,’? American

Journal of Sociology, vol. 57, part 2, p. 17, July 1951, with the kind permission of the

author and publisher. (Copyright 1951 by the University of Chicago.)

a. Draw a scattergram, relating moral integration to heterogeneity.

b. Compute 7, a, and 6b for these same variables and draw in the least-squares

line on your scattergram, taking moral integration as Y.

c. Howlargeis the standard deviation about the least-squares line as compared

with the standard deviation about Y?
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2. You will need to obtain the correlations between moral integration and mobility
and between heterogeneity and mobility in order to handle exercises in Chap. 19.
Compute both of these r’s.

3. Group the moral-integration and heterogeneity indices into intervals and com-
pute 7, a, and b using formulas for grouped data. Compare results with those for
ungrouped data.
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Chapter 18

CORRELATION AND REGRESSION

(CONTINUED)

In the present chapter we shall continue the discussion of correlation

and regression. First, various tests of significance will be considered.

Weshall then turn to nonlinear relationships, a subject which will also

be discussed briefly in Chap. 19. Finally, the topic of rank-order corre-

lation will be treated.

18.1. Significance Tests and Confidence Intervals

Significance Test for 7 and b. Since r and the least-squares coefficients
a and b are descriptive only of the sample data, our interest usually

centers on the comparable population parameters p, a, and 6. In

particular, we may wish to test the null hypothesis that there is no

(linear) relationship in the population, or wemay want to obtain con-

fidence intervals for p or the regression coefficients. We shall first

consider a test of the null hypothesis that there is no linear relationship

in the population. As we shall see, if we can assume a bivariate normal

distribution we can use analysis of variance to test the hypothesis that

p=f=0.
Let us makeuse of the fact that since r and b (and therefore p and 8)

have the same numerators, a test of the hypothesis p = 0 is also a test of

the hypothesis 8 = 0 and vice versa. In other words,if there is no linear

association in the population, the slope of the regression equation will be

zero and the line will therefore be horizontal. Remembering that a

regression equation represents the path of the means of the Y’s for fixed

values of X, we see immediately that whenever 8 = 0 the meansof the

Y’s must be the samefor every value of X (see Fig. 18.1). This assumes,

of course, that the regression equation is actually linear in form. In

particular, if we were to divide the X axis into a numberof categories we

302
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would find the population category means to be exactly equal. Thus we
can translate the hypothesis that p = 0 into the statement that the means
for Y will be equal for each of the X categories. If we imagine an infinite
population, as will be necessary in order to meet the assumption of
normality, we can imagine the X axis being divided into an indefinitely
large numberof categories each having identical means in Y. Thus our
null hypothesis becomes py1 = wy2 = bys = * °° , where we have used
the double subscript to emphasize that it is the means of the Y’s with
which we are concerned and that we have an indefinitely large number of
X categories.

 

 
 

Y

| | | |
l | | | |
| x ! x | x | x | x
| x l x 7; x | x | x

° e | ° ° t e
f x | x 1 xX |f| ™M | xX
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x
Fig. 18.1. Geometric representation of the fact that the hypothesis that B = 0 is
equivalent to the hypothesis uw. = wp =---: = Lhe

The above line of reasoning obviously suggests an extension of the
analysis-of-variance test covering an indefinitely large number of cate-
gories of the nominal-scale variable (now X). Let us recall the assump-
tions required in analysis of variance. In addition to the null hypothesis
and the assumption that cases have been selected randomly and inde-
pendently from each of the categories, we must also assume normal
populations and equal variances within each category. Provided we can
also assume random sampling, we see that all of these assumptions can
be met if we assume the joint distribution of X and Y to be bivariate
normal. You will recall that this latter assumption simultaneously
assures us of a linear regression equation, normality of the Y’s for each
fixed value of X, and equal variances for all values of X. In effect,
therefore, the assumptions of random sampling and bivariate normality
enable us to make use of analysis of variance to test the hypothesis that
p=6B=0.

Previously we found it necessary to obtain the total and between sums
of squares and then to subtract in order to get the within sum of squares.
In testing the hypothesis that p = 0, the process is substantially simpli-
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fied, however. We have already seen that the proportion of the total sum

of squares of Y explained by X is given by r?. Likewise, the proportion

left unexplained by X will be 1 — r?. Since the total sum of squares can

be symbolized by Zy?, the explained and unexplained sums of squares

therefore become r?Zy? and (1 — r?)Zy? respectively.

The degrees of freedom associated with the total sum of squares is of
course N — 1. In computing the unexplained sum of squares we take

the sum of the squared deviations about the least-squares line rather

than about the grand mean of the Y’s. But in order to obtain theleast-

squaresline we have had to makeuse of two coefficients a and 6. We have

therefore lost 2 degrees of freedom, one more than was lost in taking

deviations about the single value Y. We thus can associate N — 2

Table 18.1. Analysis of Variance Test of the Hypothesis that » = 0
 

 

Degrees of |Estimates of
Sums of squares . F

freedom variance

Total Sy? N-1

Explained resy? 1 — aN 2)

1 — r2)=y7?2 77rk)

Unexplained (1 — r2)dy? N —2 ( y r a (1

—

r?)    
 

degrees of freedom with the unexplained sum of squares, and by sub-

traction we see that there is 1 degree of freedom to be associated with

the explained sum of squares.

The results can now be summarized as in Table 18.1. The advantage

of inserting symbols rather than numbers into the table is that we see
immediately that the quantity Zy? disappears when we take the ratio of

the explained to unexplained estimates. In other words, the total sum

of squares cancels out and we can write a formula for F in termsof the

proportions of explained and unexplained sumsof squares. The formula

for F then involves only the quantities r? and 1 — r? along with the

degrees of freedom of N — 2 and 1. Therefore we may use the formula

2

Piya = 73 (N — 2) (18.1)

without actually bothering to construct an analysis-of-variance table as

was necessary in the previous chapter.

We can illustrate the use of this analysis-of-variance test for the

significance of 7 with the data of Table 17.1. We obtained a correlation

of r = .301 between per cent Negro and our index of discrimination. In
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testing for the significance of r we are asking the very important question,
‘ How likely is it that we would obtain an r of .301 or larger (in absolute
value) if there were actually no linear association in the population? ”’
In order to make the F test, we simply compute r? and 1 — r? and make
use of equation (18.1). Thus, since r was based on 13 cases,

(301)? ,, _ .0906
[t — (3014 ++~ 9094 11 = 1-10

Pui —=

Referring to the F table, we see that for 1 and 11 degrees of freedom we
would need an F of 4.84 or larger in order to reject at the .05 level. We
therefore decide not to reject the null hypothesis that p = 0. Appar-
ently, we could have gotten an r of .301 or larger fairly frequently by
chance even if there were absolutely no association in the population.

Again, it is necessary to emphasize the distinction between a test of
significance and a measure of the degree of relationship. Had we
obtained an r of .301 with a sample size of 50 we would have gotten

0906
Fas = 9094 48 = 4.78

a value which is significant at the .05 level. In both cases we have
explained approximately 9 per cent of the total sample variation, but
in the latter case we have morefaith that there is a relationship, however
slight, in the population.

Confidence Intervals. Whenever a bivariate normal population can be
assumed or approximated,it is possible to construct confidence intervals
for p, 8, and the regression line. The standard errorof

r

is given by the
formula

1 — ,?
0, =
— 4/N—1

Unfortunately, the sampling distribution of r will not in general be sym-
metrical except in the special case where p = 0. In fact, the sampling
distribution becomes more and more skewed as the absolute value of p
approaches unity. In addition, we note that in order to make use of the
above formula for the standard error of r it would be necessary to know
or estimate the value of p. Both of these complications makeit difficult
to obtain confidence intervals for p in the straightforward manner.

In computing a confidence interval about r, we shall first convert r to
a new statistic Z which has a sampling distribution which is approxi-
mately normal. We then place a confidence interval about Z in the
usual way. Finally, after noting the upper and lower confidence limits
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for Z, we reconvert these particular Z values back into 7’s, thereby

obtaining the confidence limits for r.

We transform r into Z by meansof the formula

t+rZ = 1.151 log

 

where Z can take on values from zero to infinity. It should be called to

your attention that the Z value computed from the above formula has

absolutely no connection with the Z values we have been using with the

standard normal curve. Values of Z can be directly obtained from

Table K, Appendix 2, rather than making use of logarithms. The

first two digits of r are located by going down the left-hand margin, the

third being given across the top. The corresponding Z values are given

in the body of the table. For example, a Z of 0.3228 corresponds to an

r of .312; a z of 1.3892 corresponds to an r of .883. In using Table K

we ignore the sign of 7, affixing to Z the proper sign after its numerical

value has been located. Notice that the numerical values of Z are only

slightly larger than r whenever r < .40 but that as r increases Z begins

to take on values greater than unity.

We may now makeuseof the Z transformation in a confidence-interval

problem. The sampling distribution of Z 1s approximately normal even

for relatively small N’s and moderate departures from normality. Its

standarderror is given by
1

73
Not only does this make it possible to use the normal table, but we have

eliminated the necessity of estimating p since the standard error of Z

depends only on N. Taking as our numerical example the correlation

of .301 between per cent Negro and discrimination, we find that the

corresponding Z value is 0.3106. Since there were only 13 cases,

1 1

7 /B-3 vV10

Suppose we wish to obtain a 95 per cent confidence interval for p.

Wefirst compute such an interval in terms of Z values. Thus we would

take

(18.2)

= 0.3162

Z + 1.9607 = 0.3106 + 1.96(0.3162)
= 0.3106 + 0.6198

Therefore the confidence interval about Z runs from —.3092 to +.9304.

Notice that in obtaining the lower limit we had to subtract a number

which was numerically larger than 0.3106. This yields a negative result
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which, in turn, means that the value of r corresponding to this lower
limit must also be taken as negative. Looking up the valuesof r corre-
sponding to the two confidence limits for Z we get values of —.300 and
./31 for the lower and upperlimits respectively.

Notice that the interval is not quite symmetrical about the obtained
rot .301. In this case the upper limit is somewhat closer to r than is the
lower limit. Had we found an

r

of .80, the resulting interval would have
been even more highly skewed in the same direction. This can be seen
to make sense intuitively when we realize that whenever we begin to
approach the upperlimit of unity we also place a restriction on the upper
limit of the confidence interval. Thus it would be impossible to obtain
a confidence interval of .86 + .16. If r happens to be negative, the
direction of skewness will of course be opposite to that obtained above.
Only when r = 0 will the interval be exactly symmetrical about r.

Wecan interpret this confidence interval in the usual manner. Our
procedure is such that in the long run we can expect to obtain intervals
which will include the (fixed) value of p 95 per cent of the time. We may
also use such confidence intervals as implicit tests of hypotheses. In the
above problem we havealready noted that the lower limit of the interval
is negative. Since zero is included in the interval we know immediately
that we would not reject the null hypothesis that p=0Q. If weever wanted
to test any other specific hypothesized value of p we could also do SO.
For example, had we hypothesized that p = .80 we would have rejected
at the .05 level since this value is beyond the upper limit of .731.

It would also be desirable to compute confidence intervals about other
measures of degree of relationship. Unfortunately, too little is known
about the sampling distributions of most measures of association for con-
tingency problems to permit the construction of confidence intervals for
these measures. Haggard [2] suggests a methodfor computing confidence
intervals about the intraclass correlation 1;.

“Occasionally one may want to put a confidence interval about 8,
or he may needto find a band within which the true regression equation
can be expected to lie. In both cases we can makeuseof the ¢ distribution
in a fairly straightforward manner. The estimate of the standard error
of 6 is given by

by= (18.3)

{> (X; — X)?
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For computational purposes it can be shown algebraically that

ay
. | |

Gyj2 = {2e
e2 Ee ANG 8)

N—2

 

 (18.4)

We can now makeuse of numerical computations already obtained for the

discrimination data of Table 17.1, getting

.a— 19.9312,553.77) _

.

/qg9gq = 215.1 

 

Pule 11
215.1 — 215.1

— _2' = 2 = 19,00
>» A/128.131 11.82

and 6

If we wish to compute the 99 per cent confidence interval we go directly

to the t table using N — 2 or 11 degrees of freedom. We thus get

b + (3.106)(19.00) = 19.931 + 59.014

*In estimating the regression equation we have seen that our best

single (“point”) estimate is the least-squares line. Since the quantity

we are now estimatingis no longer a single value but rather an entire line,

our “interval estimate’ will no longer be an interval but instead will

consist of a band on eitherside of the least-squares line. Atfirst thought,

one might expect such a band to consist of two lines running parallel to

the least-squares line. But such a band would imply that we knew the

correct slope and that the only source of error came in estimating a. We

must remember that there are now two quantities being estimated (a and

8) and therefore two sources of error. You should convince yourself

that since the slope may also have been estimated incorrectly, the further

one goes in either direction from the point (X,Y), the greater the possible

inaccuracy. The confidence band takes the general form shown in

Fig. 18.2.

*In order to draw such a confidence band,it will be necessary to com-

pute the standard error of Y, for various values of X. The estimated

standard error is given by the formula

 

fy xX — xX)
Oy, = Cy\z N +

(Xx

—

Ay

(18.5)

>, (xX, — X)
4=1

where the particular value of X to be used in (X — X)? maybe set at

any desired location on the X axis. Notice, incidentally, that the further

X is from X, the larger the numerical value of the standard error. Sup-
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pose we wish to obtain the estimated standard error when X = 10.0.
Since X = 4.837 we get

 

(10.0 — 4.837)?
8151 = 215.1 ~/.28496 = 114.86

1éy, = 215.1 [5 + 

“Again using the ¢ table and a 99 per cent interval about Yp computed
for this fixed value of X, we would get

Y, + (3.106)(114.86) = Y, + 356.8
Once we have obtained similar intervals about Y, for other particular
values of X we can plot the entire band. Needless to say, the pro-
cedure involved would become quite tedious if the entire band were

y

 

 
 

x
Fig. 18.2. Confidence band about least-squaresline.

desired. Therefore unless the correlation between the two variables is
quite high and unless one’s interest centers primarily on obtaining
accurate predictions from the least-squares equation, he would seldom
find it advisable to compute such a confidence band.

Testing the Difference between Two Correlations. It is frequently the
case that one has obtained several correlations and wishes to establish
that one is significantly higher than another. As long as he is content to
describe relationships within his particular sample, he may simply com-
pare the relative sizes of the two r’s and note the magnitude of the
difference. If he wishes to generalize to some larger population, however,
the question will arise as to whether or not the obtained difference is
likely to be due to chance. Suppose, for example, that he has obtained
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one r of .50 and another of .30. He may wish to test the null hypothesis

that the two population correlations are identical, 1.e., p1 = pz.

Two different situations in which such tests might be made come to

mind. First, one may have two independent samples and may wish to

compare the degrees of relationships between X and Y within each of

these samples. For example, the relationship between per cent Negro

and discrimination may not be the samein the South asit is in the North.

One might set up the research hypothesis that pzy is higher in the South

than in the North, testing the null hypothesis that the two correlations

are equal. A second type of situation, likely to be confused with the

first, may occur when one has a szngle sample. There may be a single

dependent variable (say, discrimination) and two independent variables

(say, per cent Negro and percentage of the labor force engaged in manu-

facturing). One may wish to establish that one of these independent

variables is more highly related to the dependent variable than is the

other. Referring to the second independent variable as Z, he would then

be interested in testing the null hypothesis that pry = py. Let us first

see how the former type of situation can be handled, then turn to the

single-sample test.

If the two correlations are based on independent samples, we can

transform each of the r’s into Z’s and then make use of a formula for

the standard error of the difference between two Z’s, which is analogous

to that for the standard error of a difference between means, and whichis

as follows
 

1 1
OZ,—Z2 =Woo + N.—

3

(18.6)

We can then either put a confidence interval about (Z1 — Z2) or look

up the value of
(Zi — Ze) — 0

OZ,—Z2
 Z=

in the normal table. Zero appears in the above formula because of the

fact that our null hypothesis takes the form p1 = pz.

Suppose that for 17 Southern cities the correlation between per cent

Negro and discrimination turns out to be .567 as compared with the

result of .301 for Northern cities. |

 

Thus m1 = .oOL To = 567

Z,= 0.3106 Ze = 0.6431

and onm = Vo + Ma = V.1000 + 0714 = .414
3106 — 6431 _ —.3325 _
 

 

Therefore Z= — .803
14 A14
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and we see that this difference in r’s is not significant at the .05 level.
Thus even though the correlation is higher for Southern cities, such a
difference could have occurred fairly frequently by chance.

In the second type of situation mentioned above, we do not have two
independent samples and cannot use the same formula for the standard
error of Z; — Zs. A method of handling this latter type of problem is
available, provided weare interested in generalizing only to a subpopula-
tion of all possible samples for which X and Z (the two independent
variables) have the same sets of values as those in the particular sample
we have obtained. For most practical purposes, this restriction can be
safely ignored unless there is reason to suspect that the range of variation
is much greater in the population than in the sample studied—in which
case one should be very much on guard against generalizing anyway.

If we are testing the null hypothesis that p,, = pzy We form ¢ as follows

 

t= (Tey ~ ev) 2(1 — Tay" — Tne — Tey” + 27zyxePzy)

Wecan then look up the value of ¢ in the table, using N — 3 degrees of
freedom. In our numerical example, suppose the correlation for Northern
cities between X and Z turns out to be .172 and that between Y and Z is
749. We would then get

 

10(1 + .172)(301 — .749) mi — 801? = 172? — 749 + 20301) (.172)(.749)]= -1.72
 

t

Since we have 10 degrees of freedom we see that we cannot reject the
null hypothesis of no difference between the population correlations of
each of the independent variables with discrimination.
You may have noted that in discussing measures of association for

contingency problems and also in treating intraclass correlation, no
mention was made of comparable tests for the significance of a difference
between two such measures. As was the case with confidence intervals,
not enough is known about the sampling distributions of contingency
measures to make such comparative tests. In the case of intraclass
correlation, a comparable test can be made for independent samples
(see [2]).

18.2. Nonlinear Correlation and Regression

Up to this point we have assumed that the regression equation was
linear inform. In manypractical sociological problemsthe linear model,
although perhaps not exact, yields a close enough approximation to the
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true form of the equation that we need not concern ourselves with alterna-

tive more complicated models. This will especially be true for explora-

tory studies in which the degree of fit is not too exact. There are

instances, however, when inspection of the scattergram may clearly

indicate a nonlinear relationship or when one’s theory has predicted such

a relationship. Whenever such a nonlinear relationship does exist, the

product-moment coefficient will obviously underestimate the true degree

of relationship since this coefficient measures only the goodness of fit of

the best single straight line. You have already seen that in the case of a

U-shaped curve it is possible to have a strong relationship with an r of

approximately zero, and you have been cautioned that it is therefore

incorrect to conclude that two variables are independent merely because

ris zero. Ifthe scattergram indicates a moreor less random distribution

of dots we may then conclude that no relationship exists, but we must

also be on the lookout for nonlinear relationships. This is of course all

the more reason why one should form the habit of always drawing

scattergrams before proceeding with his analysis.

The general topic of nonlinear correlation and regression is far too

complex to be covered adequately in this text. The reason for the

complexity of nonlinear analysis is that once we get beyond the equation

of the straight line, there are numerous types of equations representing

the different possible forms that nonlinear relationships can take. Only

the simplest of these equations can be treated in a year’s course in

statistics. Fortunately, these relatively simple equations will usually be

adequate for the kinds of nonlinear relationships arising from sociological

research. One general type of nonlinear function can be represented in

terms of polynomials of the nth degree which have equations of the form

Y=at+o0X +cX?4+ dX?+---: + kx”

Our discussion of nonlinear relationships of this general type will be

postponed until the next chapter when we take up multiple-regression

problems. Once these latter regression problems are understood, we

shall have a relatively simple method for handling those types of non-

linear relationships which can adequately be described by means of

polynomials.

Certain other relatively simple types of nonlinear relationships can

often be handled by a transformation of variables which permits the use

of the familiar linear model. The process can beillustrated in the case

of logarithmic functions represented by equations of the type

Y=a-+blog X

and which have the general form illustrated in Fig. 18.3. In an equation
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of this type, Y is actually a linear function not of X itself but of log X.

This suggests that if we transform each of the X scores into a new variable

Z = log X we can write Y as a linear function of Z. Thus

Y=a+blogX¥ =a+0Z

Wecan now compute the correlation between Y and Z (i.e., Y and log X)
in the usual manner. If we plot the distribution of scores on the Y and
Z axes, the result should be approximately linear in form. If we wish,
we can compare the degree of relationship between Y and Z with that
between Y and X andtest for the significance of the difference between

Y

x(MKC)

  
 

Xx
Fig. 18.3. Logarithmic least-squares equation of the form Y = a +} log X.

them in the mannerto be described below. If ryz is significantly larger
than r,,, the logarithmic model gives a better fit than the linear model
between X and Y.

Logarithmic models of the above sort often arise in instances where the
independent variable X takes on a wide range of values but where once a
certain value has been reached, further increases produce less and less
effect on the dependent variable. City size is a variable which often has
this kind of effect. Cities over 500,000 mayall have very much the same
scores on Y. But if New Yorkis included in the sample, the value of X
for this city will be so much greater than that of the remainder that the
net effect will be to bend the relationship in much the same manner as
shown in Fig. 18.3. In such a case, it may be preferable to relate
Y to log X since taking the logarithm of city size will have the effect of
bunching together the extremely large scores and lessening the ‘‘ bending
effect’ of these largecities.

In a numberof instances the researcher may have noreal interest in
finding the exact form of the prediction equation which best fits his data.
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He may simply wish to show that the relationship is nonlinear in form or

to obtain a measure for the degree of relationship regardless of its form.

When a simple transformation such as the log transformation can be

made, it will undoubtedly be to one’s advantage to make use of such a

procedure. Even so, he maystill wish to test whether or not the measure

he has obtainedis a good approximation of the result he would have gotten

had the best possible fit been found. In order to handle problemsofthis

sort we can make use of the basic principles of analysis of variance and

Y
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|
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Fig. 18.4. Comparison of deviations about least-squares line with deviations about

category means.

some of the measures of degree of association developed in the previous

chapter.

You will recall that in obtaining the within sum of squares for one-way

analysis of variance we took the sum of the squared deviations from each

of the category means. Now let us suppose that X were subdivided into

a numberof categories and that the sum of squares in Y were analyzed in

the usual manner. We know for any given category of X that the sum

of squares about the category mean will produce a smaller numerical

result than the sum of squares about any other number. In particular,

it follows that the within sum of squares will be smaller than the sum of

squared deviations about those points on the least-squares line falling at

the mid-points of the intervals (see Fig. 18.4).

If the regression equation happensto be linear in form, we can expect

that the Y.; will all fall approximately on the least-squaresline so that it

will makelittle difference whether deviations are taken about the category

meansor the least-squares line. On the other hand,if the relationship is
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actually nonlinear, then for at least some of the categories the sum of

squares about the category mean will be quite a bit smaller than that

about the least-squares line. In other words, the within or unexplained

sum of squares will be minimized by using the category means, and there-

fore the between or explained sum of squares will be maximized. Thus

the proportion of variation explained by the categories, as measured by

the correlation ratio E?, will be larger than the proportion explained by
the least-squares line unless the true relationship is actually linear in
form.

Wecan take advantage of this fact in making a test for nonlinearity.
If we form the quantity H? — r? we get the proportion of variation
explained assuming any form of relationship which is not explained by a
linear relationship. It is clear that in obtaining E? we are permitting the
relationship to take any possible form since we have simply taken devia-
tions about category means, regardless of where these category means
happen to lie. We are essentially asking ourselves how much we can
improve our ability to predict values of Y if we do not restrict ourselves
to the linear model. If the improvementis greater than we would expect
by chance under the assumption that the regression equation is actually
linear, then we may conclude that the relationship is nonlinear.
The analysis-of-variance test we shall use to test for nonlinearity takes

a form that will soon become familiar. We first find the amount of
variation that can be explained using the linear model. Algebraically,
this quantity can be represented as r?Xy?._ Of the variation left unex-
plained by the linear model, (1 — r?)Zy?, we then find out how much can
be accounted for by the general model. Since H22y? gives us the sum of
squares that can be explained by X whenthereis no restriction placed on
the form of the relationship, the quantity (H? — r?)Zy* represents the
explained increment due to nonlinearity. Assuming no rounding errors
this quantity should always be positive. Since the quantity (1 — H?)Zy?
gives us the sum of squares which is unexplained by even the best-
fitting model, we can make an F test as indicated in Table 18.2. As
usual, the denominator of F is the error term, and since we are testing
for departures from linearity, we take as the numerator the estimate of
variance based on (£? — r?)dy? or the amount explained by the best
general model which has not already been explained by the linear model.
The degrees of freedom associated with the numerator can be obtained by
subtraction.

Again we note that the total sum of squares cancels, leaving us with the
following formula for F:

r _ (£2 — r)(N — k)
RNR" = EXE — 2)
 (18.8)
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where k represents the number of categories into which X has been

divided.

Table 18.2. Analysis-of-variance Test for Nonlinearity
 

 

 

  

Sums of Degrees of Estimates of PF

squares freedom variance

Total Ly? N—-1
Explained by linear
model r2yy? 1

Acditona. expiaine! um 2)" 9 (E? — 72) by?
y nonlinear mode r2) Sy eae (Bt —1)(N — b)

1 _ E2 > 2 _. 2 —

Unexplained (1 — B)zy2 N—k Cet (L A)(h 2)    
Let us illustrate the test for nonlinearity with the data which were

grouped in Table 17.2. As can easily be verified, the total and between

sums of squares in Y are as follows:

Total SS = 101,115.38 — 92,132.04 = 8,983.34
Between SS = 94,792.59 — 92,132.04 = 2,660.55

where we havetreated all Y scores as though they were at the mid-points
of their respective intervals and where we have made use of procedures

for grouped data (see Sec. 6.4). Therefore,

2 = between SS — 2,660.55 |
~ totalSS ~— 8,983.34 —
 .2962

Since we previously found an r of —.460 assuming a linear relationship,

we get

Peg, = 12962 — (—.460)? 150 — 9 _ 0846 141 _ 11.929 _ 4 45
mar T= 12902 ««9 — 2 ~—.7088 7 ~)~=«—4.9270
 

and we see that at the .05 level we may reject the null hypothesis of a

linear relationship between the percentage of persons classified as

rural-farm and the percentage of females in the labor force.

If a relationship turns out to be nonlinear in form,it is quite possible

that r will not be statistically significant whereas EH will be. The signifi-

cance of H can of course be tested by a straightforward analysis of vari-
ance by taking the ratio of the explained and unexplained estimates of

variance. There are thus three distinct tests that can be made: (1) the

significance of r, (2) the significance of departures from linearity (H? — r’),

and (3) the significance of £.
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If a nonlinear relationship is found and an estimate of the degree of
relationship in the population desired, it is preferable to use the un-
biased correlation ratio « discussed in Chapter 16 and given by the
formula

Vw2 — —_—€ 1 V,

since the numerical value of H is a function of the numberof categories
used and will generally slightly overestimate the relationship in the
population. If H has already been computed, the value of « can be
computed from the formula

, . E(N — 1) - (k—-1)
a N—k
 (18.9)

18.3. Ordinal Scales: Rank-order Correlation

We have now taken up measuresof association which can be used to
relate two nominal scales (2, 7, etc.), a nominal and an interval scale
(intraclass correlation), and two interval scales (r). The two measures
to be discussed in this section, Spearman’s r, and Kendall’s tau, can be
used to correlate two ordinal scales. As long as both variables can be
ranked, either of these latter measures can be used to give correlations
which are somewhat analogous to product-moment correlations. Both
measures can be used if ties occur, although Kendall’s tau seems to be
more satisfactory whenever the numberof ties is quite large. Since
Spearman’s measure seems to be somewhatless useful than tau, although
easier to compute, we shall discuss this former measure rather briefly.

Spearman's 7;. The principle behind Spearman’s measure is very
simple. We compare the rankings on the two sets of scores by taking
the differences of ranks, squaring these differences and then adding, and
finally manipulating the measureso that its value will be +1.0 whenever
the rankings are in perfect agreement, —1.0 if they are in perfect dis-
agreement, and zero if there is no relationship whatsoever. If we sym-
bolize the difference between any pair of ranks as D;, we then find theN

value of > D;? and compute r, by meansof the formula
t=] N

6 d D?

N(N? — 1)
r= 1— (18.10)

Let us illustrate with some data collected by the author. Members of
a work-camp group were ranked from high to low with respect to both
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popularity, as measured by friendship choices, and participation in group

discussions. For both variables a rank of one indicates a high score.

Tied ranks are computed by giving each tied score the arithmetic mean

of the scores that would have been received had there been no ties. The

values of D; are then computed as indicated in Table 18.3. If the

numberofties is relatively small, as is presently true, we need make no

Table 18.3. Computation of Spearman's Coefficient of Rank-order Correlation
 

 

 

Person Popularity

|

Participation D, D?

rank rank

Ann 1 5.5 4.5 20.25

Bill 2.5 5.5 3.0 9.00

Jim 2.5 1 —1.5 2.25

Hans 4 2 —2.0 4.00

Marcia 5 3 —2.0 4.00

Joan 6 9.5 3.5 12.25

Ruth 7 5.5 —1.5 2.25

Doris 8 13.5 5.5 30.25

Barbara 9 9.5 0.5 0.25

Cynthia 10 16 6.0 36.00

Ellie 11.5 5.5 —6.0 36.00

Flo 11.5 11.5 0.0 0.00

Nancy 13.5 8 —5.5 30.25

Mart 13.5 15 1.5 2.25

Stan 15 11.5 —3.5 12.25

Sarah 16 13.5 —2.5 6.25

Total 0.0 207 .50    
 

modifications in the formula for r;. If there is a substantial numberof

ties a correction factor can be computed (see [6], pp. 206 to 210). We get

6(207.50) _
ro= 1— 467955) = 1 — 308 = .699

N

Notice that if the rankings agree perfectly, > D;? will be zero and the

j=l

value of r, will be unity. Although direct inspection of the formula does

not immediately give us the values of r, for independence and. perfect

negative association, it turns out that for perfect negative association

the value of the second term will be —2.0 and therefore r, will be —1.0.

For no association, the second factor will be exactly unity.

If N > 10 the sampling distribution of r, is approximately normal with

standard deviation 1/1/N — 1. In the above example the standard

error will therefore be 1/1/15. As a test of the null hypothesis of no
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relationship in the population we can compute Z as follows

r, — 0 =
JWT 695 +/15 2.69

Making use of the normaltable we see that the relationship is significant
at the .01 level.

Kendall's Tau. In computing Spearman’s r, we madeuse of the squares
of the differences in ranks. Kendall’s tau, which also varies between
—1.0 and 1.0, is based upon a somewhat different operation. We first
compute a statistic S by looking at all possible pairs of cases and noting
whether or not the ranks are in the same order. For example, suppose
we have the following sets of ranks:

 

| a bed

All 2 3 4

B;2 3 1 4

Since the scores of set A have been given in ascending order we may
compute S by examining each of the B rankings in turn. Focusing on
the first value in the B row (individual a), we see that the B score is in
the proper orderfor the pairs (a,b) and (a,d). In other words, individual
a has received a lower rank than b and d on both variables A and B.
On the other hand, the B scoreis out of order (with respect to the A score)
for pair (a,c) since a has a lower rank than c for A but the opposite is true
for B.

Let us make use of +1 every time a given pair is ordered the same way
for both A and B and —1 whenever they are ordered oppositely. The
value of S is obtained by summing these +1’s and —1’s forall possible
pairs. The contribution of pairs (a,b), (a,c), and (a,d) is therefore
+l—1-+1= (2—1)=1. In order to pick up the remaining pairs
we move across the table. We see that the contribution of pairs (b,c)
and (b,d) is -1+ 1or0. Finally, the contribution of pair (c,d) is +1.
Notice that in effect we can obtain the total value of S by first arranging
A in the proper order and then examining successive rankings in the B
row, each time counting the number of ranks falling to the right which
are in the properorder and subtracting out those which are in the opposite
order. Thusin this simple example we get

=2-)+0-)+U-0) =2
If we nowdivide S by the maximum possible value that it could have,

ne, (V—-1)4+ (N—-—2)4+--- 42441 N(N — 1)/2, we obtain a
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coefficient which can vary from —1to +1. Thus

S

Clearly, if there is perfect disagreement between the two ranking systems

(i.e., if B were ranked 4, 3, 2, 1), the value of S would be —l4N(N — 1)

andr would be —1.0. Also, if the two variables are completely unrelated,

the positive and negative contributions to S will exactly cancel and 7 will

be zero.

In order to illustrate the case of tied rankings let us again make use

of the work-camp example. Let us arrange the individuals in horizontal

arrays and substitute letters for names. Our rankings thus become

  

        

_jalblelaels[ol a lelsfe | el m| mol
All 2.512.5)4)] 5) 6 7 8 9 10); 11.5/}11.5/13.5)138.5)15 j16

B\5.5|5.5)1 213/9.5)5.5113.519.5)16| 5.5)11.5| 8 15 |11.5)/13.5

We must now follow the rule that whenever any pair involves a tie in

either the A or B score, its contribution to S will be zero. Looking first

at all pairs that can be made witha, wesee that pairs (a,b), (a,g), and (a,k)

will contribute nothing to S since the B scores for all these individuals

are tied at 5.5. Therefore, the contribution from all the remaining a

pairs will be

(a,c) (a,d) (a,e) (a,f) (a,h) (a,2) (a,9) (a,l) (a,m) (a,n) (4,0) (a,p)
—1 —1 —1 +1 41 41 41 41 41 41 41 «441

=9—-3=6

We next compare the b ranks with each of the ranks to the right of 6.

Notice, however, that 6 and ¢ are tied with respect to A. Since 6 and ¢

could therefore just as well have been given in the reverse order, we must

eliminate the pair (b,c). Likewise, the pairs (b,g) and (0,k) are tied on B

and will also make no contribution to S. Thusfor b pairs we get a sum of

9 —2or7. Continuing across we get

S = (9 — 3) + 9 — 2) + (13 — 0) + 12 — 0) + (11 — 0) + 6 — 8)
+ (8-0) + (2-5) + (—-2)+ 0-6) + 4—90) + 2-1)

+ (2-0) + 0-2) + (1 — 0) = 60

We must now make an adjustment in the denominator of tau in order

to correct for ties. Such an adjustment has an effect of increasing the

numerical value of tau, although the increase will be slight unless the



CORRELATION AND REGRESSION 321

numberof ties is quite large. The formula for tau can be generalized as
follows

Sa | (18.12)
VIN(N —- 1) -TVIBN(N — 1) — U0
 

  

where T = 1621,(¢; — 1), ¢; being the numberof ties in each set of ties in
A,and U = 16du:(u; — 1), u; being the numberofties in each set of ties
in B. In the above example, we have three ties of two each in variable
A (popularity). Thus

P= 7[20) + 21) + 2(1)] = 8

Similarly, there are three ties of two each and one score with fourties in
variable B (participation). Therefore

U = Wl2(1) + 2(1) + 2(1) + 4(3)] = 9

Hence

60 60 60

" /{8(15) — 3803) — 9] /Ginail i407 °°
 
 

 

Notice that the numerical value of tau is somewhat less than that of
rs. This will usually, although not always, be the case. In comparing
the two measures, we see that r, gives relatively more weight to extreme
differences in ranks, since all differences are squared. Tau, on the other
hand, gives equal weight to all pairs of scores as we can note from the
formula. Neither measure can be interpreted in terms of the percentage
of variation explained since the notion of variation, as we have been using
the term, is meaningless with ordinal scales. About the only interpreta-
tions we can give to numerical scores between —1.0 and +1.0 are in
terms of the formulas themselves. Thus tau is a measure of the degree
to which pairs in the proper order exceed in numberthose in the reverse
order.

Computation of Tau for Large Numbers of Ties. One advantage of tau
over r, is that the former measure can readily be used when there are
very large numbers of ties. Although the computing routine described
above would become extremely tedious in such instances, we maygreatly
simplify the procedure whenever both variables have been grouped into
several rather crude categories. For example, persons may have been
placed into oneof five social classes, with all those in the sameclass being
considered as tied with respect to status. If the second variable has
Seen categorized in a similar manner, we can use a modified formula for
tau and thereby makeuse of the information that the data have actually
been ranked rather than simply categorized.
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Wecan compute S by a procedure to be described below. Using the

formulas given above, we would find that the upper limit of tau would be

unity only when the number of rows and columns were equal. In order

to correct for the possibility that r ~ c we form theratio

 

_ S

"e  VENA(m — 1)/ml (18.13)
where m = Min (r,c)

Here we follow Kendall in using the symbol 7, in order to distinguish

equation (18.13) from the previous two formulas. Let us now see how

T- 18 computed.

Table 18.4. Data Cross Classified for Computing Kendall's Tau from Grouped Data
 

 

 

 

Concern with proper behavior (B)

Strength of desire to

join organizations (A) ; Moderately Moderately Total
High Low

high low

High 18 19 12 8 57
Moderately high 16 16 12 10 54

Moderately low 11 14 18 16 59
Low 5 5 15 22 AT

Total 50 54 57 56 217     
 

The data given in Table 18.4 represent rankings given to 217 students

of introductory sociology at the University of Michigan. Variable B

involves the student’s general concern that he engage in the ‘‘proper”’

or “correct”? forms of behavior in conventional settings. Variable A

involves his desire to join organizations merely to improve his social

status. Since the measurement of both variables was somewhat crude,it

was decided to divide each variable into four categories: high, moderately

high, moderately low, andlow. Thus, although each variable involves an

ordinal scale with large numbersof ties, the results can be summarized in

the form of a contingency table.

In computing S wefirst note that scores on A have again been ranked

from high to low except that we now have 57 individuals “tied” for high,

54 for moderately high, 59 for moderately low, and 47 for low. Looking

first at those with high scores on A, we see that 18 are also high on B, 19

moderately high, and so forth. In obtaining the contributions to S we

note that since all of the individuals in the high category of A are tied,

none of these pairs will contribute to S. Likewise, none of the pairs in

the same columnwill contribute to S because of the fact that they areall

tied with respect to B. If we look at any given cell, all the scores which
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are below it and to the right will contribute positively to S, whereas those

below it and to the left will yield negative scores. For example, each of

the 18 individuals in the top left-hand cell will produce positive scores

with any of the

164+ 14+5+4+12+ 18+ 15+ 10 + 16 + 22

scores which are beneath and to the right of this cell. In total, then, the

contribution from this cell to S will be

18116 + 144+5+ 12+ 18+ 15+ 10 + 16 + 22) = 18(128)

Next, we focus on the 16 cases immediately below the top left-hand

corner. Hach of these individuals also has high B scores. In order to

count the numberof pairs with positive contributions to S we again add

the quantities appearing below and to the right. Multiplying by the

number of cases in this cell we get

16(14 +5 + 18+ 15 + 16 + 22) = 16(90)

When we moveover into the second and subsequent columns we begin
to find negative contributions since columnsto the left will have higher
B scores. Thus for the first cell in the second column we get as the
contribution to S

19112 + 18 + 15 + 10 4+ 16 + 22 — 16 — 11 — 5) = 19(61)

By continuing down and across the table in a similar manner we can
obtain S rather simply, as follows:

S = 18(128) + 16(90) + 11(42) + 19(61) + 16(53)
+ 14(32) + 12(—19) + 12(3) + 18(12)

+ 8(—112) + 10(—68) + 16(—25) = 4,741
_ 4,741 _ 268

4(217)7[(4 — 1)/4] °

Notice that the numerical value of tau is relatively small in spite of
what on inspection appears to be a moderately strong relationship.
Since it can be shown that tau can reach unity only when all cells are
empty except those in the diagonal, we can seldom expect to get a value of
tau approaching unity. Among other things, the numerical upper limit
of tau depends upon the marginal totals in much the same manner as
does that of ¢?. In fact, it can be shown that in the special case of the
2 X 2 table, the value of tau as computed from the original formula with
a correctionfor ties [equation (18.12)] will be exactly equal to ¢. Had o
or some other measure based on chi square been used in the general case,

Thus Te 
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however, we would not have been able to make use of the information

that the categories of A and B are ordered.

Tests of Significance for Tau. Kendall [4] has shown that for samplesizes
of 10 or more the sampling distribution of S under the null hypothesis will

be approximately normal with mean of zero and variance given by

o, = W%gN(N — 1)(2N +5) (18.14)

Strictly speaking, the above formula holds only when there are no ties

but can safely be used when the numberof ties is relatively small. If

there is a very large number of ties a rather lengthy correction factor

must be used (see [4], p. 55).

To test for the significance of tau for the work-camp data, we first

compute og,” as follows

o,? = 148(16)(15) (87) = 493.3

Taking the square root we get

o, = 22.21

which can be used in the denominator of Z in testing the null hypothesis

that A and B are unrelated. Thus

S— 0 60.0
Z= 3. = 24 = 2.70

and wesee that a value of tau of .526 is significant at the .01 level.

In concluding this section it should be noted that Kendall’s tau can be

used in connection with partial correlation to be discussed in the next

chapter. There are also certain other measures that can be used with

ranked data in other types of problems. For example, if a number of

judges have each ranked individuals with respect to a certain criterion, a

measure referred to as the coefficient of concordance W can be used to

measure the degree to which the judges are in agreement on their rankings.

For these and other uses of rank-correlation methods, you should refer

to Kendall [4] or Siegel [6].

EXERCISES

1. In Exercises 1 and 2, Chap. 17, you computedthree correlation coefficients.

a. For each of these coefficients, make use of analysis of variance to test the

null hypothesis that p = 0.

b. Place 99.9 per cent confidence intervals about all three 7’s.

c. Test the relationship between moral integration and heterogeneity for

nonlinearity.

d. Convert these same data to ranks and obtain both Kendall’s tau and Spear-

man’s rs for all three correlations.

e, Test each of these rank-order coefficients for significance.
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2. In Exercise 3, Chap. 17, you grouped both the moral integration and hetero-
geneity indices. Compute Kendall’s tau for these grouped data and compare the
result with that obtained above in Exercise 1d.
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Chapter 19

MULTIPLE AND PARTIAL CORRELATION

In the last two chapters we have been concerned with the relationship

between two interval scales, between a dependent variable and a single

independent variable. Correlation and regression analysis can readily

be extended to include any numberof interval scales, one of which can

be taken as dependent and the remainder independent. The problem

can be conceptualized as a prediction problem in which we attempt to

predict a dependent variable Y from the variables X1, Xo, ... , Xp.

Weshall again have to make use of a very simple model which will be

directly analogous to linear regression except for the fact that there will

be more than two dimensions.

The notion of correlation will be generalized in two ways. Weshall

use the term partial correlation to refer to the correlation between any

two variables when theeffects of the other variables have been controlled.

Multiple correlation, on the other hand, will be used to indicate how much

of the total variation in the dependent variable can be explained byall

of the independent variables acting together. You will find that, for

the most part, the materials discussed in the present chapter involve

straightforward extensions of arguments previously presented. Once

we have extended the notions of correlation and regression we shall be

in a position in the next chapter to take up analysis of covariance which

involves a combination of correlational techniques with analysis of

variance.

19.1. Multiple Regression and Least Squares

In multiple regression we attempt to predict a single dependent

variable from any number of independent variables. If there are a large

numberof interval-scale variables which are to be interrelated, it will of

course be possible to predict any particular variable from any combination

of the others. It will usually be clear from context which variables are

326
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to be taken as independent and which dependent. For example, one

may want to predict performance in college from a series of aptitude

scores and performance in high school. Or it may be possible to predict

the rate of growth of cities knowing such factors as present size, per-

centages of the labor force in various types of occupations, or the size and

distance of the nearest large city.

In multiple regression analysis we define the regression equation as the
path of the mean of the dependent variable Y for all combinations of

X1, X2, ..., Ax. In other words, for every combination of fixed X’s

there will be a distribution of Y’s. Each distribution will have a mean

MY|X,,X,,...,X, and a standard deviation cy)x,,x,,...,x,, and we shall again

assume that these distributions are all normal and that the standard

deviations are equal (homoscedasticity). The path of the means will

no longer be a curve in two-dimensional space. Instead it will be a kind

of hypersurface in (k + 1)-dimensional space. Obviously, we shall no

longer be able to represent such a path except in the case where there are

only two independent variables X, and Xe.

In the previous chapter we assumeda linear regression equation of the

form Y = a+ 8X. Weshall again have to assume a simple form for

the regression equation. Let us assume that the path of the means of

Y takes the form

Y=at BiX1+ BoXe+ -°++- + BX; (19.1)

where a, Bi, 62, . . . , and ®, are constants. This is the simplest possible

type of multiple regression equation and is directly analogous to linear

regression in the two-variable case. In fact, if all 6’s except one are zero,

the problem reduces to the two-dimensionalcase.

If we can assume a “multivariate normal” population in which each

variable is distributed normally aboutall of the others, then we can meet

all three of our required assumptions. In other words, a multivariate

normal distribution assures us that regression equations will be of the

above form, that the distributions of Y’s for fixed X’s will all be normal,

and that the variances are also equal. This is an obvious generalization

of the properties of the bivariate normal. Needless to say, the multi-

variate normal distribution cannot be pictured geometrically (though it

has a definite algebraic equation) since we have already used three

dimensions in depicting the bivariate case.
In order to give you a better intuitive grasp of the nature of the exten-

sions involved,it will be helpful to examine the case where there are only

two independent variables (see Fig. 19.1). The regression equation
Y =a-+t 6:X1 + 62X- can in this instance be represented by a plane in
three-dimensional space. If we let X1 = X2 = 0, we get Y = a,indicat-
ing that the regression plane crosses the Y axis at a height a. In order
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to get an interpretation for the 6’s, we take the intersections of the regres-
sion plane with planes perpendicular to the Xi:and X2axes. For example,

if we take a plane perpendicular to the X. axis, we are in effect holding X_

constant since all points on this plane will have the same X2 value. This

plane intersects the regression planein a straight line, and the slopeof this

line will be 6:1. In other words,if we hold X, at a fixed value, 81 represents

the slope of the regression line of Yon X1. Similarly, holding X1 constant

gives us a plane which intersects the regression plane in a line with

slope Be.

 

   

Y

Regression plane

cc | Intersection: line with slope By
| /

| feFlone perpendicular to Xo axis
!

| | x;
| |
| |
LfJ

Fig. 19.1. Geometrical interpretation of multiple regression of Y on X; and Xe.

It should be noted that the 6’s used in multiple regression will not

ordinarily be the same as those obtained in the two-variable case.

Referring to the two-variable case as “‘total’’ regression, we see that the

8 used in total regression is obtained by ignoring other independent

variables, not by holding them constant. The 6’s obtained in multiple

regression equations are referred to as partial coefficients, since they

involve slopes that would be obtained by holding out or holding

constant each of the remaining independent variables considered in the

regression equation.

The concept of least squares can be extended in a similar manner.

Since it is practically always necessary to estimate a regression equation

by fitting an equation to empirical data, we shall again require that the

estimating equation have a particular form and use the least-squares

criterion to obtain the ‘‘best”’ fit. We shall use a least-squares equation

of the form
Y> = a+ bX, + b2.Xe + . 8 + bX; (19.2)

and it will again turn out that, provided the true regression equation is

actually of this same form, the least-squares equation represents the best

estimate of the regression equation. In other wordsif we use a to esti-
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mate a and 6; to estimate @;, these estimates will be unbiased and also of
maximum efficiency. Our attention can then be focused on least-squares
analysis as a practical method for estimating a theoretical equation which
applies to the population. If there are only two independent variables,
we shall be fitting a series of points in three-dimensional space with a
best-fitting plane. In a (k + 1)-dimensional space we shall befitting
points with a k-dimensional hyperplane,if such a figure can be imagined.
Taking the three-dimensionalcase,

we shall minimize the quantity
x(Y — Y,)? which represents the
sum of the squared deviations from
the least-squares plane in the verti-
cal Y dimension (see Fig. 19.2). The
result will be a unique best-fitting
plane determinedbyspecific values of
a, b;,and bs. As we shall see, a multi-
ple correlation coefficient can then be
used to measure the goodness of fit —+
of the points to the least-squares
plane. It would, of course, also be
possible to measure goodness of fit
by means of a standard deviation
about the plane, and we could com- Xp
pare this standard deviation with the Fig. 19.2. Least-squares plane mini-
standard deviation about the fixed Y mizing sum of squared deviations in
(now represented as a plane perpen- vertical Y dimension.
dicular to the Y axis). Algebrai-
cally, the more general case is a straightforward extension of the three-
variable one. The quantity =(Y — Y,)* is minimized, and there will be
(k + 1) coefficients to compute, 1.e., a, bi, bs, . . . , by. The actual com-
putation of these coefficients will be discussed later after we have taken
up partial correlation.
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19.2. Partial Correlation

We can make use of this multiple regression model to obtain measures
of the degree of relationship between a dependent variable Y and any of
the independentvariables, controlling for one or more other independent
variables. The term partial correlation is used to refer to this type of
controlling procedure which, as we shall see, 18 basically very different
from that used in connection with contingency tables but similar to that
involved in two-way analysis of variance. In contingency problems we
controlled by literally holding constant one or more control variables.
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This was accomplished by investigating the relationship between two

variables within categories of the control variable(s). A serious dis-

advantage of this method of controlling, it will be recalled, wasin the fact

that a very large numberof cases was required if more than one simul-
taneous contro] was used.

In partial correlation, the control

variables are not actually held con-

stant in this manner. Instead, we

control by adjusting values of the

dependent and independent varia-

bles in order to take into considera-

tion the scores of the control varia-

Per cent Negro *% bles. In a sense, then, we pretend
(a) that the control variables are actually

held constant. Inso doing, we sacri-

fice scientific rigor but gain in eff-

ciency of design in that fewer cases

will be required. In order to under-

stand the nature of partial correlation

and the adjusting procedure, we shall

for the present confine our attention

to the simplest problems involving

(2) only three variables and shall assume

Fig. 19.3. Least-squares lines indicating linear regression models between all
residuals between (a) Y and X:and (6) three combinations of variables
X,and Xe. .

taken two at a time.

Let us assume we wish to measure the degree of relationship between a

dependent variable Y and an independent variable X1, controlling for a

second independent variable X». To make use of a concrete example, we

may be interested in predicting the rate of economic discrimination

against Negroes, as measured by incomedifferentials between whites and

Negroes, and degree of urbanization, as indicated by the percentage of a

county which is defined as urban. It is certainly expected that the

percentage of Negroes in the countywill also affect the rate of discrimina-

tion, andit is therefore decided to use per cent Negro as a control variable.

Suppose that the least-squares lines between discrimination Y and

per cent Negro X, and between per cent urban X, and per cent Negro are

as indicated in Fig. 19.3. The relationship between discrimination and

per cent Negro is positive, indicating that high rates of discrimination

are associated with high minority percentages. On the other hand, the

relationship between the urbanization index and per cent Negro is

negative. On the basis of this information alone, we would predict a

negative relationship between discrimination rates and urbanization.
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In other words, urban areas might have low rates simply because of the

fact that, on the average, they have relatively fewer Negroes. Suppose,

however, that we could in some manner “‘force”’ all counties to have the

same minority percentages. We could then cancel out the disturbing

effect of this third variable. In reality, of course, we cannot actually

make all minority percentages equal, but we can at least make adjust-

ments for the fact that they differ. Since we know (or can estimate) the

relationship between the control variable and each of the other two

variables, we can predict how both variables would behave with changes

in the control variable. In fact, the least-squares equations represented

in Fig. 19.3 are our prediction equations and can be used in the adjusting

process.

In relating discrimination Y to per cent Negro X.2, we can think of

variation in discrimination rates as being the result of two components:

the first component being per cent Negro and the remainderbeing due to

other factors, one of which may be urbanization. As we have already

seen, this second component can be represented as deviations from the

least-squares equation involving Y and X». In terms of Xo, these devia-

tions or residuals represent error. Even if X2 were held constant they

would still remain. It is these residuals, therefore, in which weare really

interested since they represent the amount of variation in discrimination

left after per cent Negro has explainedall of the variation it could.
Similarly, we shall be interested in the residuals or deviations from the

equation used to predict per cent urban from per cent Negro. In other
words, we let per cent Negro explain all of the variation it can in both of
the other variables. If we now correlate the residuals, we obtain a
measure of the relationship between Y and X, which is independent of
the effects of X»2. The partial correlation between Y and X1, controlling
for Xs, can be defined as the correlation between the residuals of the regres-
stons of Y on X2 and X; on Xe. In a sense, then, a partial correlation
represents the correlation between “errors” with respect to the control
variable.

The reason why it makes sense to control for X» by correlating residuals
may still be obscure. Perhaps the explanation will be made intuitively
more appealing if we look more closely at an hypothetical relationship
between these residuals. Suppose, for example, that for county A we
find a large negative residual when wecorrelate Y with X». This means
that county A has considerably less discrimination than would be expected
knowing only its percentage of Negroes. The point representing this
particular county would of course be somewhere below the least-squares
line. Suppose, also, that the residual for this same county was positive
when wecorrelated X, with X;._ In this case we know that the countyis
more highly urbanized than would be expected knowing only its minority
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percentage. We therefore have a relatively urbanized county with low

discrimination rates, and furthermore we know that these values are
high and low respectively as compared with other counties having the
same percentage of Negroes. We thus cannot attribute the negative
relationship between the residuals to the fact that the per cent Negro
figure happensto be either large or small. Similarly, county B may have
large positive residuals for Y but negative ones for X;. This county,
therefore, would be one with higher discrimination rates than expected

but would also be less urbanized than other counties having the same

minority percentage. Clearly, if most counties are similar to either

county A or B we shall obtain a negative correlation between the

residuals, indicating a negative relationship between discrimination and

urbanization, adjusting for per cent Negro.

Partial correlation yields a single measure summarizing the degree of

relationship between two variables, controlling for a third. As weshall

see when we discuss computational procedures, the argument can readily

be extended to additional control variables. We can visualize several

multiple regression equations, one involving Y and all the control variables

and the other relating X,; to these same control variables. Residuals can

be obtained from each of these multiple regression equations and then

correlated. We shall thus be adjusting for all of the control variables

simultaneously. The important point, here, is that we obtain only one

partial correlation, whereas in controlling with contingency tables we

obtained a separate measure for each of the categories of the control

variables.

In Chap. 15 we saw that the degree of relationship between two

variables may vary from one category of the control variable to the next.

Thus, had per cent Negro been categorized, it is entirely possible that we

might have found a high negative correlation between discrimination and

urbanization for counties with very low minority percentages but even a

positive correlation at the opposite end of the per cent Negro continuum.

The fact that we have obtained a single summarizing measure in the

partial correlation may therefore obscure certain information. The

advantages of the one method of controlling are the disadvantagesof the
other. In partial correlation we are adjusting for the control variable

rather than holding it constant; we thus get by with fewer cases, but we

obtain a single measure which may obscure some important information.

What, then, is the relationship between the two methods of controlling?

It turns out that the partial correlation coefficient can be interpreted as

a weighted average of the correlation coefficients that would have been

obtained had the control variable been divided into very small intervals

and separate correlations computed within each of these categories.

The exact nature of this weighting procedure is unimportant since in
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practice we never makeuse of it. Consequently, it does not make sense

to think of partial correlations as relating two variables ‘‘holding con-

stant”’ a third variable, since the strength of their relationship may vary

according to the particular value at which the control variable is held

constant.

In the case of the multivariate normal distribution we know thatall
regression equations will have the special form described by equation

(19.1). The multivariate normal distribution has another remarkable

property as well. The strength of relationship between two variables

will be the same regardless of the values of the control variables. In

other words, if a large number of categories of a control variable were

selected and correlations obtained within each of these categories, all

correlations would have the same value. Therefore the partial correla-

tion would have the samevalue as each of these within-category correla-

tions. In this special case it would thus make somesense to think in

terms of holding the third variable constant. Since the multivariate

normal distribution can at best be only approximated with real data,

however, it is safer to think of a partial correlation as a weighted average

or as involving an adjustment for the control variable.

Computation of Partial Correlation Coefficients. The computation of
partial correlations is extremely simple unless it is desired to control for

three or more variables simultaneously. Before presenting the formula

for partial correlation we must introduce a changeof notation. Unfortu-

nately, what is a convenient notation for one purpose may not beso for

another, nor is conventional usage completely consistent. We have been
letting the dependent variable be represented by Y and the independent

variables by Xi, Xe, .. . , Xz. Inrecognition of the fact that sometimes

the choice of dependent variable is more or less arbitrary and that we
may therefore want to compute partial correlations between various
combinations of variables, it will be convenient simply to renumber the
variables from 1 to k +1 and to represent the correlation between
variables 1 and 2 controlling for 3 by rie.3. Similarly, the correlation
between variables 2 and 3 controlling for 1 would be 793-1.

This notation can readily be extended to any number of control
variables by adding further numbers to the right of the center dot.
Thus, the relation between variables 5 and 7, controlling for variables
1, 2, 3, 4, and 6, would be given by757-1234. The orderof the twovariables
to the left of the dot is irrelevant as is that to the right. To dis-
tinguish between partials with differing numbers of control variables,
we refer to the numberof controls as the order of the correlation. Thus,
a first-order partial will have one control, a second-order two controls,
and so on. In keeping with this terminology, a correlation with no
controls is often referred to as a zero-order correlation. As indicated
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above, the term total correlation is also used to indicate a correlation

between two variables with no controls.

Wecan nowgive the formula for the general first-order partial rjj.4:

Pin = Tig — (tix) (rik)

, “/1 — ik? V/1 _— VK"

Notice that the first correlation in the numeratoris the total correlation

between the two variables to be related (¢ and 7). The control variable

appears in the second expression of the numerator, whereit is related to

each of the other variables, and in both terms of the denominator. Any
particular partial correlation can be obtained from this general formula

by substituting the proper numbers for 7,7, and k. Thus

 (19.3)

T13 — (112) (123)

V1 — 11" V1 — 123"

In a study of 150 Southern counties [2], the correlation between income

discrimination and per cent Negro was .536; that between incomedis-

crimination and per cent urban was .139; and the correlation between per

cent Negro and per cent urban was —.248. Calling the discrimination

index variable 1, per cent Negro variable 2, and per cent urban variable 3,

we can obtain the partial between discrimination and per cent urban,

controlling for per cent Negro. We have

 13.2 = 

139 — (.536)(—.248) 2719 |= ——~ = 332
V1 — (.536)2 1 — (—.248)? 8178
 713.2 =  

The result can be interpreted as the correlation between discrimination

and per cent urban after per cent Negro has been allowed to explain all

it can of both variables.

Although it will not be immediately apparent that the above formula

can be derived from the definition of a partial correlation in terms of a

correlation of residuals, the computing formula at least makes sense.

In the numerator weare essentially subtracting a correction factor from

the total correlation. The denominator consists of two correction

factors, neither of which can be greater than unity, which take into

consideration the fact that the control variable explains a certain propor-

tion of the variation in the other variables. If we square the partial

correlation coefficient, the resulting numberwill represent the proportion

of variation in variable 1 (discrimination) which is left unexplained by

2 (per cent Negro) but which can be explained by 3 (per cent urban).
Let us examine equation (19.3) more carefully to note how the partial

correlation behaves in relation to the three total correlations. For the
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sake of simplicity, let us first assume that r,; is positive. If ry and ry

both have the same signs (either positive or negative), their product will

be positive, and either the numeratorwill be asmaller positive number than

r,; or it may even be zero or negative. On the other hand, the denomi-

nator will always be less than unity unless rz = rj, = 0. The resulting

fraction may therefore be almost any number between —1.0 and +1.0,

depending on the magnitudes of the three total correlations. We shall

see later just what we can and cannot say about the behavior of the

partial under these circumstances.

Now suppose the correlations with the control variable are of opposite

signs. We then obtain a negative product to be subtracted from a

positive number, and the result will be a larger positive number. This

meansthat if we start with two variables which are positively related and

if we can find a control variable which is negatively related to one of them

but positively related to the other, the resulting partial will be larger

than the zero-order correlation. If the correlation of the control variable

with either of the other variables happens to be zero, the correction

factor in the numerator will be zero. But if the control variable is

correlated either positively or negatively with the remaining variable,

the denominator will be less than unity, and the partial correlation will

again be larger than the total correlation.

If we had started with a negative total correlation, a control variable

related to each of the other two in the same direction (either positive or

negative) would produce a larger negative correlation. If it were related

oppositely to the other two, however, the result would be analogous to

the one first described (where the total correlation was positive and the

correction factor also positive). Why? Again, if the control variable

were not related to one of the other variables, the result would be a

partial correlation with a larger absolute value than the total correlation.

If the control variable were unrelated to both other variables, the partial

correlation would of course exactly equal the total correlation. After we

have discussed the relationship between partial correlation and causal

interpretations, we shall be able to give an intuitive justification for the

behavior of partial correlations under these various conditions.

The formulas for second- and higher-order partials are directly anal-

ogous to that for the first-order partial. We simply add successive

control variables, each time starting with the partial of order one less
than that desired. Thus the formulas for r,j;-4, and 1;j-zim Will be

 

 

Tipek — (rit-k) (rj1-k)
Tij-kl = ——————— eee 19.4
um V/1 — r,V1 — Tok ( )

and lij-kim = Tagkt —_(Timkt) (Timekt) (19.5) 
/1 —_ r?kl /1 —_ Temk
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Notice in equation (19.4) that we assume we have already controlled for

variable k. Therefore, k appears to the right of each dot in all three

first-order partials. Similarly, in equation (19.5) we have previously

controlled for both k and J, and therefore both of these quantities appear

in each of the second-orderpartials.

Fourth- and fifth-order partials could be obtained in a similar manner,

and it will be instructive to try to write out formulas for these higher-

order partials. The form for computing higher-order partials is thus

identical to that used for the first-order case. But the work involved

rapidly becomes tedious. For example, in order to obtain a third-order

partial by this method, one mustfirst have obtained three second-order

partials, each of which in turn must be obtained by computingfirst-order

partials from the zero-order correlations. If you were to try to express

the formula for third-order partials directly in terms of the zero-order

correlations, you would begin to see how much work would actually be

involved.

Fortunately, it is seldom necessary in sociological research to go much

beyond second- or third-orderpartials. Usually, the addition of controls

beyond a second or third control produces very few new insights. If it

is necessary to makeuse of higher-order partials, or of multiple regression

equations involving four or more variables, there are computing routines

which can do the job much more simply. You may wish to refer to

either the abbreviated Doolittle method or Dwyer’s square-root method

in order to handle such problems (see [3], [6], and [7]). Of these two

methods, the latter is perhaps more satisfactory in that it enables one to

obtain directly the successive partials 712.3, 719-34, 112-345, etc.

Partial Rank-order Correlation. The theory with respect to partial rank-
order correlations is less well developed. Kendall’s tau can be extended

in the case of first-order partials although the interpretation for the

partial tau is not as intuitively appealing as in the case of product-moment

correlation. If there are noties, it turns out that the formula for partial

tau’s is identical to that we have been using. Thus

SEF (19.6)
— Tk — Tik

Strictly speaking, the partial is undefined if there are ties, but if rank-

order correlations are being used in an exploratory fashion to give a rough

indication of the comparable product-moment partials, it will probably

make sense to go ahead unless the numberofties is considerable. Unfor-

tunately, the sampling distribution of the partial tau is unknown so that

it is not possible to test the partial for significance.’

 Tipk = 

1See [8]. A formula for a multiple rank-order correlation analogous to equation

(19.15) has also been suggested.
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19.3. Partial Correlation and Causal Interpretations

It has been pointed out that correlation analysis cannot be directly

used to establish causality because of the fact that correlations merely

measure covariation or the degree to which several variables vary

together. One of the basic aims of any science, however, is to establish

causal relations. Regardless of one’s philosophical reservations concern-

ing the notions of cause andeffect, it is extremely difficult to think theo-

retically in any other terms. In Chap. 2 it was pointed out that there

is a very real gap between the theoretical language used for thinking and

the operational language used for testing hypotheses. The thorny prob-

lem of causality is Just another indication of the existence of this gap.

Weoften think in terms of causal relationships involving necessary tem-

poral sequences. Thus, if A is a cause of B then A must necessarily be

followed by B, and if A is absent B must also be absent. This con-

ceptualization of causality is of course greatly oversimplified. For one

thing, other variables have not been considered, and it makes sense to

think of cause and effect only when certain assumptions can be made

about these other factors. Also, both A and B may vary in degree

rather than merely being present or absent.

Empirically, we can of course never prove that the connection between

two variables is necessary. We can ascertain, however, the degree to

which they vary together, and it is also sometimes possible to note the

time sequence involved. From these two pieces of information we may

make causal inferences if we wish. If our theory is able to show logical

connection between the two variables or to predict that A will be followed

by B, we need not be too unhappy about making the intellectual leap

to a causal interpretation. On the other hand, if we can find no theo-

retical reason for directly connecting the two events, we are ordinarily

more hesitant. We are morelikely to think of the relationship as “spuri-

ous,” for example. Unfortunately, there is nothing in correlational

analysis which can help us makethis decision unless weare willing to make

certain assumptions about these particular variables and about others

that might also be operating. Let us see what these assumptions will

have to be.

Suppose we are investigating the relationship between the per capita

consumption of ice cream and rates of juvenile delinquency. We are

likely to find a negative relationship. One possible causal interpretation

would be that ice cream is so good for children that it prevents delin-

quency. Another would be that high rates of delinquency cause children

to lose their appetites for sweets. We would of course immediately

reject both these interpretations as absurd—although many similarly

absurd ones have at one time or another been taken seriously. It would
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probably be argued that the relationship found was “spurious” in that

a third variable, let us say income, was causing both variables to vary in

such a manner that a negative correlation was obtained.

One test for spuriousness, and a valid one if used properly, is to control

for income level. If the partial correlation between ice cream consump-

tion and delinquency is reduced to zero, or approximately zero, we may

conclude that there is no causal relationship between the two variables.

Or can we? Let us take another very similar example. Suppose we

find a negative relationship between income

level and delinquency and decide to con-zZ

trol for the percentage of broken homes

in the area. Again we may find that the

partial is reduced to zero. Is this rela-

tionship therefore also spurious? This

time we’re not so sure, although there

may be absolutely nothing about the

x = ~ ¥
magnitude of the correlations or the be-

havior of the partials which is in any way

Fig. 19.4, The six possible causal different from the first case. In order to

arrows among X, Y, and Z. come to grips with the basic problem we
are facing here, let us go back and look

at it somewhat more systematically.

Confining our attention for the moment to the three-variable case, we

note that there are six possible causal connections between the three

variables. Calling the variables X, Y, and Z and indicating the direction

of causality by means of an arrowhead, we can diagram these possible

connections as in Fig. 19.4. In any given problem, of course, some of

these arrows will have to be erased. Let us do away with the possibility

of two-way causation by arguing that if discrete events are selected, the

time sequence must be in one direction or the other but not both simul-

taneously. For example, rather than claim that unemployment causes

a recession and vice versa, let us say that Jones’s unemployment causes

him to spend less money, which in turn puts Smith out of work,etc. We

are then left with only certain possible causal relationships which have

been indicated in Fig. 19.5. In order to reduce the numberof figures

shown in Fig. 19.5, it was arbitrarily decided to select Y as the dependent

variable or the one which must occurlast in any time sequence. ‘There-

fore, no arrows have been drawn from

Y

to either X or Z. Of all these

possible relationships, the first three are uninteresting and call for no

further comment. Also, in order to simplify matters, let us confine our

attention to those figures in which only two causal arrows have been

drawn (d, e, f, g, and h).

Can we distinguish among these various models by looking at the
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relative magnitudes of the correlation coefficients? The answer is in

the affirmative if we are willing to make two kinds of assumptions.

Simon [9] has shown mathematically what these assumptions must be.

First, we must be able to eliminate certain of the models by postulating

that at least some of the possible causal relationships do not hold. This

we have already done to some extent in that all double arrows were ruled

out, and also Y was taken to be the dependent variable, i.e., was assumed

to cause neither X nor Z. Still further assumptions will have to be

made, but we shall postpone their consideration until later.

(a) (2) (c)
eZ Z \

Y xX Y

(7) (e) (Ff)

\ /\ / \
x Y X Y XxX

(g) (A) (z ) (/)
/ / / Z

xX>Y Y JL L \,

 

Fig. 19.5. Possible causal relationships among X, Y, and Z taking Y as the dependent
variable and ruling out two-way causation.

The second type of general assumption we have to makeconcerns other

variables that might be operating. We shall assume, following Simon,

that all other variables influencing X are uncorrelated with all other

variables affecting Y and Z, and so forth. In other words, we can admit

the existence of other uncontrolled variables, but we have to assume that

they have essentially a random effect on X, Y, and Z. Notice that this
really involves a weaker set of assumptions thanis usually implied in the
model of the ideal experiment in which it is assumed that all “relevant”
variables have been controlled. We recognize the disturbing influence

of other variables in that we do not expect correlations to be perfect.

On the other hand, we must assume that they operate in such a manneras
not to disturb the pattern of relationships among X, Y, and Z. This
condition can be approximated empirically if there are a large numberof

other variables operating, no one of which has a very great effect on more

than one of the variables under consideration.
If an outside variable with a disturbing effect does exist, it should be
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brought into the model as a fourth variable. Simon argues that this is
essentially what we always must do and that our failure to be satisfied

with a causal explanation in the two-variable case is the reason why we

introduce the notion of a spurious relationship. For example, if we were

satisfied that there were no such variable operating to disturb the

relationship between ice cream consumption and delinquency, and if we

could rule out the possibility that delinquency caused ice cream sales to

go down, then we would be satisfied with the explanation that the causal
arrow went in the opposite direction. We introduce the income factor

precisely because we expect this latter variable to affect the relationship

between the first two. Similarly, we could add a fourth or fifth variable

to the system, but at some point we must be willing to stop. At this

point, if we are to make any causal inferences at all, we must assume the

system to be ‘‘closed”’ in the sense we have been describing.

Notice that we are in the familiar position of having to make certain

assumptions which cannot be verified empirically by the statistical

analysis. It will therefore not be possible to establish the correctness of

any particular causal model, but we can proceed by elimination. For

example, one of the models indicated in Fig. 19.5 may appear to work.

But the correct model might actually involve four or more variables and

the picture might look quite different indeed. Having made these

assumptions, however, we can make use of the mathematical analysis

formalized by Simon to lead to certain predicted relationships that ought

to hold amongthecorrelations if the particular model is actually correct.

As weshall see, exactly the same empirical relationships among correla-

tions are predicted by several of the above models, making it necessary

to choose between them on other grounds. It is here that we must make

use of the first kind of assumption discussed above, namely,that certain

causal relationships do not hold. Let us first examine the mathematical

predictions concerning the interrelations among correlation coefficients,

however.

If we look at Fig. 19.5g we see that the relationships between X and Y

and between X and Z are direct, whereas that between Y and Z is only

indirect. The sameis also true in Fig. h. In both these cases, common

sense would suggest that if all other variables were operating in an

essentially random manner we would expect to find that the correlation

between Y and Z is smaller in magnitude than either of the other two

correlations. Similarly, in Fig. 19.5e and f we would expect the correla-

tion between X and to be the smallest of the three, ignoring signs. As

the mathematics works out, we can be even moredefinite than this. It

is possible to show for both (g) and (h) where the relationship between

V and Z is indirect that

Pyz = PxyPxz
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We haveused p’sto indicate the fact that these exact relationships can

be expected only in the population and that the values of sample r’s

will ordinarily deviate from this predicted relationship because of

sampling fluctuations. Similarly, it can be shown that for cases (e) and
(f) we shall have

Pxy = PxzPyz

Since the absolute values of correlation coefficients cannot be greater

than unity, it is clear that in the first case the numerical value of pyz
must be less than that of either of the other coefficients unless one of these
values happens to be unity. In this special case, of course, one of the
variables can be predicted exactly from one of the others, and we have
essentially a problem in only two variables.
Looking moreclosely at the first of these equations which applies to

Fig. 19.5g and h, we see immediately that were this equation to hold,
the partial correlation (in the population) between Y and Z controlling
for X would vanish since the numerator in the formula for the partial
would then be zero. Thusif either (g) or (h) should hold, the value of
ryz-x Should be zero or very close to zero if we allow for sampling errors.
Similarly, for both (e) and (f) the partial between X and Y controlling
for Z can be expected to be approximately zero. What are the implica-
tions of these facts? Confining our attention to a comparison between
(e) and (f), since the relationship between (g) and (h) is directly com-
parable if X and Z are interchanged, wesee that in (f) we would interpret
the relationship between X and Y as “spurious” since Z is operating to
cause variation in both X and Y. This situation is exactly that described
in the example of ice cream consumption X and delinquency rates Y.
Because wesuspect the relationship between these two variables to be due
to a third variable, incomelevel Z, we control for Z to see if the correlation
between X and Y is reduced to approximately zero. If (f) in fact is the
correct model, we have just seen mathematically that this will happen.

Wehavealso seen, however, that the partial would have been zero if
Fig. 19.5e were the correct model. In (e) we have Z operating as an
“intervening”’ variable in the sense that X causes Z which in turn causes
Y. But does it make any sense to control for Z under these circum-
stances? Probably not. For if X is actually a cause of Z, how can we
imagine ourselves holding Z constant whilestill varying X? That the
partial reduces to zero is an example of the absurdity of attempting to
hold Z constantin this situation. The fact that in using partial correla-
tion we are notliterally holding Z fixed means only that the real purpose
of what we are doing here is likely to be lost. The manipulation of
statistical formulas is no substitute for knowing what one is doing. In
this instance, knowing what one is doing consists of being in a position
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to choose between models (e) and (f) by going beyond the statistical

information available and making an assumption about the direction of

the arrow between X and Z.

So far we have ignored situation (d) in Fig. 19.5 in which arrows go

from both X and Z to Y but in which there is no direct relationship

between X and Z. What happens in this case if we control for Z? We

notefirst that it makes sense tocontrol for Z here because Z is conceivedas

a completely independent variable which also affects Y. From the point

of view of the relationship between X andY,it is operating as a disturbing

influence. It is an “outside” variable which is producing essentially

random variations in Y with respect to variations in X. We would

therefore expect that controlling for Z would increase the magnitude of

the relationship between X and Y. It can be shown mathematically that

if we make the required assumptions aboutother variables, the correlation

in the population between X and Z will be zero. Incidentally, this fact

will enable us to distinguish (d) empirically from each of the other situa-

tions we have been discussing. This is the situation, then, in which the

control variable is unrelated to one of the other variables, and we have

already seen that in this case the partial will be larger in absolute value

than the total correlation, a fact which is consistent with commonsense.

There is another type of control situation which has not been discussed

but which can be handled briefly since there are few, if any, instances in

which one would be tempted to use a control. Suppose in either of

situations (e) or (h) that one wereto relate the intervening and dependent

variables, controlling for the independent variable. In (h), for example,

what would happen if we were to obtain the partial between X and Y

controlling for Z? It can be shownalgebraically that the resulting partial

would be smaller in magnitude than the total correlation. This is

consistent with the intuitive notion that in holding constant the inde-

pendent variable one necessarily reduces the variation in the intervening

variable, thereby weakening the relationship with the dependentvariable.

Again, it would makelittle sense to carry out such an operation. Our

interest would ordinarily center on the question of whether or not a direct

link exists between X and Y and not on the problem of antecedent causes

of Y.

We have examined only the three-variable case because of the fact

that the introduction of additional variables into the model complicates

the analysis considerably. And yet the very nature of most sociological

problems prevents us from limiting ourselves to the three-variable case.

Theoretically, the method of analysis proposed by Simon can be extended

to any numberof variables.2. We therefore have a powerful tool with the

potential for enabling one to set up fairly complicated alternative causa-

2For an illustration of the four-variable case see [1].
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tive models involving a large numberof variables. It should be possible

to eliminate someof these models by showing mathematically that they

imply certain relationships among correlation coefficients which do not

hold up empirically. We could thus makeuseof correlational analysis to

make inferences about causality, subject to the qualification that we

would also have to make certain assumptions which were not subject to

testing. Unfortunately, the mathematical operations have apparently

not as yet been simplified to the point where the average sociologist

could apply them to his particular empirical problem. Also, as the

numberof variables in the system is increased beyond four, the number

of cases required in order to overcome inaccuracies introduced by sampling

error becomes very large. It is hoped, however, that before very long

some of these problems will have been resolved.

19.4. Multiple Least Squares and the Beta Coefficients

We have been using partial correlations to indicate the degree of
relationship between a dependent variable and an independent variable,
controlling for one or more other independent variables. If we have a
large number of independent variables we can obtain an indication of
their relative importance by relating the dependent variable to each
independent variable in turn, always controlling for the remaining
variables. In so doing, we must of course be careful not to control for
any intervening variables. Larlier, in our discussion of multiple regres-
sion and least squares, we also noted that the b’s and 6’s which appearin
our equations linking Y to the independent variables can in a sense be
interpreted as partials. It will be recalled that they represent the slopes
of the regression or least-squares equations in the dimension of the
appropriate independent variable, i.e., with all other independent
variables held constant. Each coefficient therefore represents the
amount of change in Y that can be associated with a given change in one
of the X’s with the remaining independent variables held fixed. Noting
this similarity to the partial correlation coefficients, it would not be
surprising if the formulas used in computing these partial b’s turned out
to be very similar to those used in obtaining partial r’s and if, furthermore,
these slopes could be used to give an indication of the relative importance
of each of the independent variables in determining variation in Y.
We must again modify our notation in order to distinguish among the

large number of possible combinations of slopes. Referring to our
variables simply as 1, 2, 3, and so forth, we use the symbol b,».3 if we are
predicting variable 1 from variables 2 and 3 and if we are referring to
the coefficient of the second variable. The coefficient bi..3 must be
distinguished from b2:.; which would be used if the second variable were
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taken as the dependent variable. In both cases, the fact that the number

three has been placed to the right of the dot indicates that the third

variable has been controlled. Similarly, bio.34 is used to indicate the

coefficient of the second variable in a prediction equation in which the

first variable is taken as the dependent variable and which involves two

control variables. In this case, the least-squares equation would be

given as

X1 = Gy-234 + Die-34X2 + B13-24X3 + O14-23X4

where the subscript for a indicates that we are predicting to variable 1

from variables 2, 3, and 4. The reason we have found it convenient to

depart from the practice of denoting the dependent variable by Y is to

makeuse of a simpler set of subscripts for keeping track of the various 6’s.

The computing formulasfora;.;, and b,;., are as follows

 

Q;-jk = X, — bj-k X; — Dine; XxX; (19.7)

big = (ix) bas)
and Dik = T= Buubay (19.8)

Notice that although the denominator in (19.8) differs in form from that

in the formula for 7;;.4, the numerator is essentially similar in nature.

Recalling that

Tyee = DyxDng

we see that even the denominators are not too dissimilar in form. In

using this formula to obtain the partial b’s, however, you must be careful

to distinguish between b,, and b;; since the subscripts can no longer be

interchanged.

The extension to higher-order partials is straightforward (see [4]).

The equationsfor a;.j.; and b,;-4, can be written as

Qi-jkt = X; —_ b5-41 X; — bix-51 X, — bitin XxX, (19.9)

ban — (bit-x) (b1;-x)ona = 19.10and b qekl 1 __ bst-% (b1;-2) ( )
 

Similarly true in computing higher-order partial correlations, as the

numberof variables becomeslarge the use of these formulas may involve

considerably more work than that required by the abbreviated Doolittle

or Dwyer square-root method.

If the partial b’s are to be used to compare various independent

variables as to their relative abilities to produce changes in the dependent

variable, we must correct for the fact that there will undoubtedly be

differences in scale involved. One variable may be measured in terms of

dollars, another in years. It would therefore be meaningless to compare
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a unit change in one variable with a unit change in another. If each
variable is standardized by dividing by its standard deviation, just aswas donein obtaining the standard norma] curve, we can obtain adjustedslopes which are comparable from one variable to the next. We thusmeasure changes in the dependent variable in terms of standard-deviation
units for each of the other variables, a fact which assures us of the samevariability in each of these variables. These adjusted partial slopes are
called beta weights.

Unfortunately we are again involved with notational inconsistencies.These beta weights are not the same as the @’s in the regression equationwhich refer to characteristics of the population and which have not beenadjusted for differences in variability. The beta weights are obtainedfrom sample data and are simple functions of the partial b’s. Thegeneral formulasfor @,;., and Bij-x are

Bir = dij (19.11)
and Bint = barn ~ (19.12)

Thus the beta weight can be obtained by multiplying the comparable bby the ratio of the standard deviation of the independent variable (notcontrolled) to that of the dependent variable.
The comparability of beta weights and partial correlation coefficientscan be seen from the formula

oe Pig inl
Bapek JTike9 ( 1 9 . 1 3 )

The two measures differ only in their denominators. In fact, we seeimmediately that

Tren = (Biz-x) (Bien)
since 6;;., differs from Bi; only in that the denominator of r;z° Will bereplaced by rz,2. Since the beta weights andpartial correlations representsomewhat different types of measures of association, they will not giveexactly the sameresults although usually they will rank variables in thesame order of importance. The partial correlation is a measure of theamount of variation explained by one independentvariable after the othershave explained all they could. The beta weights, on the other hand,indicate how much change in the dependent variable is produced by astandardized change in one of the independent variables when the othersare controlled.
The choice of the appropriate measure will depend uponthe nature ofthe analysis and upon which measure one’s audience is most likely tounderstand. Beta weights would seem to be preferable when attention
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has been focused on the prediction equation itself rather than measures

of degree of relationship. The fact that one finds many more references

in the sociological literature to partial correlations may in part be a

reflection of the fact that unless the degree of relationship is reasonably

strong, prediction equations are of relatively little interest. Perhaps as

we increase our ability to predict accurately to a dependent variable,

beta weights will replace partial correlations as measures of the relative

importance of various independent variables.

19.5. Multiple Correlation

Since our primary interest may be in the explanatory power of a

number of independent variables taken together, rather than in the

relationship between the dependent variable and each of the independent

variables taken separately, we may prefer to make use of the mulizple

correlation coefficient which is a measure of the goodness of fit of the

least-squares surface to the data. Just as the square of the zero-order

correlation coefficient indicated the percentage of the variation explained

by the best-fitting straight line, the square of the multiple correlation

coefficient can be used to give the percentage of variation explained by

the best-fitting equation of the form

Yp = at 01X11 + boX2 + ss + OLXE

Another way of conceiving of multiple correlation is that it represents

the zero-order correlation between the actual values obtained for the

dependent variable and those values predicted from the least-squares

equation. Ifall of the points are exactly on the least-squares surface, the

actual and predicted values will coincide and the multiple correlation

will be unity. The greater the scatter about the least-squares equation,

the lower the correlation between actual and predicted values.

The formula for the multiple correlation can easily be developed using

the fact that the square of the multiple will be equal to the percentage of

the variation explained by all of the independent variables. Again, it

should be emphasized that a linear-type model is being assumed. In

writing a formula for the multiple correlation, we first let one of the

independent variablesdoall of the explainingit can. We then permit the

second independent variable to go to work on that portion of the variation

left unexplained by thefirst. In order to avoid duplication, however, we

must control for this first independent variable. We then permit the

third to explainall it can of the remainder, now controlling for both of the

first two independent variables. The process can be extended indefi-

nitely. For the present, we confine ourselves to the three-variable case

involving only two independent variables. If we take the first variable
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as the dependent variable and denote the multiple correlation coefficient
by R123, we may write

1-93 = rhe + ripe (1 — ris)
Proportion proportion additional proportion
explained

|

=| explained ]|+

{

proportion unexplained

|

(19.14)
by 2 and 3 by 2 explained by 2

by 3

Notice that multiple correlations have only one figure to the left of
the dot, this figure indicating the dependent variable. Numbers to
the right indicate those independent variables which are being used to
explain the variation in the dependent variable. The general formula
(for three variables) can thus be written

2  _ 2 2 2
ijk = Vig + ing — ij

= Te + ria(l — ri) (19.15)

It is irrelevant, of course, which of the two independent variables is used
first in the formula, as long as this variable is controlled in subsequent
terms in the equation.

Weare dealing with the squares of both the total and partial correla-
tions since we are obtaining the percentages of variation explained.
Therefore we do not have to worry about the sign of these correlations.
In fact, the direction of the multiple has no meaning since it involves
correlations with a numberof variables, some of these correlations being
positive and others possibly negative. By convention we always take
the positive square root of R? in denoting the multiple correlation
coefficient.

If we solve equation (19.14) for the partial r?,., we obtain

2 2

P59 =

Ais

~

Ti

(19.16)
— Tie

This enables us to see the relationship between multiple and partial
correlation coefficients in a somewhat different perspective. In the
numerator we have subtracted the proportion of the variation in 1
explained by 2 alone from the proportion explained by both 2 and 3
acting together (Ri..;). The result is the increment explained by 3 after
2 has been allowed to operate. When this increment is divided by the
proportion of variation left unexplained by 2 we obtain the partial
between 1 and 3 controlling for 2. This is consistent with our earlier
interpretation of the partial correlation coefficient.

Several alternative but equivalent formulas for R2.., can be derived
from equation (19.14), Subtracting both sides of this equation from
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unity we get

1 — R}.o3 =l|-—- Tt — ri3-(1 — Tio)

= (1 —- rie) (1 — Tis-2)

This equaticn indicates that we can write the proportion of variation left

unexplained by 2 and 38 together as the product of the proportion

unexplained by 2 and that unexplained by 3, controlling for 2.

The formula for the multiple can also be written completely in termsof

zero-order correlations. Making use of equation (19.3) for ri3.2 in terms

of zero-order coefficients and simplifying the resulting algebraic expres-

sion, we get

(19.17)

2 2
R? _ Tye + Ti3 271of137 23

1:23
 

 

1 — Te

or, in general,
2 2

og Pig TS 2PegPinin (19.18)
tik = li-P

In particular, if the correlation between the two independent variables 7

and k happens to be zero we get

2 _ 22 2
Rin = Vig in

Several relationships between the multiple R and the various total

correlations can now be noted. Obviously, R cannot be less in magnitude

than any of the total correlations since it is impossible to explain less

variation by adding further variables. Ordinarily, of course, the

multiple R will be larger than any of the total r’s. Its maximum value

relative to the total coefficients usually occurs when the intercorrelations

between independent variables are all zero. As we have just seen, the

square of the multiple correlation will in this case be equal to the sum of

the squares of the other correlations. On the other hand, if the inter-

correlations among independent variables are quite high in magnitude

the multiple R will ordinarily not be much larger than the largest total

correlation with the dependent variable. In other words, if we wish to

explain as much variation in the dependent variable as possible, we should

look for independent variables which are relatively unrelated to each

other but which have at least moderately high correlations with the

dependent variable. Put another way,if we have two highly interrelated

independent variables, the second will be explaining essentially the same

variation as the first since there will be considerable overlap. If they

are uncorrelated, they will each explain a different portion of the total

variation.

As a numerical example of the computation of the multiple F, let us

see how much of the variation in discrimination can be explained by
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both per cent Negro and per cent urban. Using equation (19.14) we get

i233 = ris + Tige(1 — rie) (.536)? + (.332)7[1 — (.536)?]
.2873 + (.1102) (.7127) = .8658

Hence Ry.23 = .605

Therefore, per cent urban explains very little variation over and above
that explained by per cent Negro.
As a check on our computations, we note that the sameresult should be

obtained if we allow per cent urban to operate first. We then get

’12 — 113(Te3) 036 — (.1389)(—.248)
   

2
= ———— 095mes V/i-r,Vi-n, VTo (139)? 1/1 — (—.248)?

Thus 2g = ri + Tio.3(1 — ris)
= (139)? + (.595)2[1 — (.139)2] = .3667

and hence Rios = .605

The formulas for the multiple correlation coefficient can also readily be
extended to any number of independent variables. In introducing a
third independent variable, denoted as variable X4, we merely add to the
formula for R}.,.3 a term involving the product of the square of the partial
between 1 and 4, controlling for 2 and 3, and the proportion of variation
left unexplained by 2 and 3. Thus

1234 = rio + Tis.o(1 — Tie) + risoa[1 - rho - riso(1 - T10)]
2

= 28 + Ti4-93(1 _ 1-23)

We can therefore keep adding to the proportion of variation explained
as long as we controlfor all variables previously used and provided that
we permit the new partial to work only on that portion of the variation
left unexplained by those variables which have preceded it. Note,
incidentally, the parallel with what we did in analysis of variance. As
we shall presently see, we can makeuseofthis fact in tests of significance
for both multiple and partial correlation. If we were to add a fifth
variable, we would get

2 _ p2 2 2
Ri.o348 = Rio + Tis-234(1 _- Ri-o34)

We can again solve these equations for the partial coefficients. For
example, from (19.19) we have

(19.19)

p? — Riess ~~ 98 (19 20)
14-23 1 — R255 °

indicating that the partial between 1 and 4, controlling for 2 and 3, can
be interpreted as the ratio of the proportion of additional variation
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explained by 4 over and above that explained by 2 and 3 to the proportion

of variation left unexplained by the latter two variables. We can also

extend equation (19.17) to cover more variables. Thus

1 — Risg = (1 — ri2)(1 — Tiz2)(t — Tis-23)

and, in general,

1— Rigga-k =(1- rie)(1 — Tise) 7 °° (lL — Tik234---tk—1)) (19.21)

The Multiple-partial Coefficient. Sometimes it is desirable to compute

a multiple correlation between a dependent variable and several inde-

pendent variables, controlling for one or more independent variables.

Suppose, for example, that one is trying to predict actual family size from

a numberof independent variables. Obviously, certain variables such as

the duration of marriage and the age of wife at marriage need to be taken

into consideration. On the other hand, they are so obviousthat throwing

them into the general multiple coefficient might obscurethe effects of the

remaining variables. Interest might therefore be focused on the variation

in family size after such theoretically unimportant variables have

explained all of the variation they could. Following Croxton and

Cowden[5], we indicate the multiple-partial between variable 1 (depend-

ent) and 2 and 3, controlling for 4, by ric2s).4. The formula in this case

becomes

Ri.oz4 — Ti

1 — rig

2
74(23)-4 =

The above formula for the multiple-partial is a simple extension of the

formulas we have been using for multiple and partial correlations. We

first let control variable 4 do all of the explaining it can. We then note

that R?2..,, represents the proportion of variation explained by all of the

three independent variables taken together. The difference, then, must

be due to variables 2 and 3. The numerator thus represents the propor-

tion of variation explained by 2 and 8 over and above that explained by

4. But since we must work only on that variation left unexplained by the

control variable, we divide by the quantity 1 — ri, Making use of the

principle that we allow all control variables to operate first, we can write

the general formula for the multiple-partial as

2 2
) _ Fee.skew ~ Repy

ViGgk--n):tus-w = 1 _ R?,
ya Ur*W

 (19.22)

For example,
2 2

2 __ Ps. 19456 ~~ P3.194

73(56)-124 = 1 — Roan,
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The multiple-partial does not seem to have been used very frequently
in sociological research, perhaps because of its lack of familiarity to
persons in the field. As a measure which enables one to handle both
multiple and partial correlation problems simultaneously, its potential
utility would seem to be great, however. In the next section we shall
consider another kind of use for this measure.

19.6. Multiple Regression and Nonlinearity

All of our work thusfar in the chapter has been based on the assumption
of linear-type models. In the previous chapter we took up a test for
nonlinearity, but we had verylittle to say about the form of the nonlinear
relationship except in the case of logarithmic transformations. In other
words, we simply tested for the existence of a departure from linearity,
but we made no test for the form of the curve. Although the general
problem of nonlinearity is beyond the scope of this text, we can examine
briefly how the techniques of multiple regression andleast squares can be
modified slightly so as to enable us to handle certain types of problems
involving nonlinearity.
As pointed out in the previous chapter, there are an extremely large

number of different forms a nonlinear relationship can take. Let us
consider equations of the type

Y=at+0iX + bX2+b,X34+--- 4 b,Xe (19.23)

If all of the coefficients be, bs, . . . , bg are zero, the equation is reduced
to the familiar linear form. In other words, a straight line can be
considered as a special case of this general type of curve which is referred
to as a polynomial. Similarly, if all of the coefficients except a, bi, and
bz are zero we get a polynomial of the second degree. The degree of
the polynomial refers to the highest exponent of X which has a nonzero
coefficient.

Polynomials have a very important property which enables us to tell
the degree of the equation that is likely to be the most appropriate to
one’s data. Note that a polynomial of the first degree is a straight line
with no bendsin it. It turns out that a second-degree equation will
have exactly one bend in it and, in fact, describes the particular curve
which we call a parabola. A third-degree polynomial will have two
bends, a fourth-degree three bends, and so on. If we ignore certain
degenerate cases in which the “bends” do not behave properly, we can
diagram these second-, third-, and fourth-degree equations as in Fig.
19.6. The direction in which the parabola or higher-degree curves ‘‘open
up” will depend uponthesign of the coefficients. The important point
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is that there will always be oneless bend than is indicated by the degree
of the equation.
We sometimes get empirical curves which look like one or another of

these polynomials, although seldom,if ever, do we need to go higher than

a third-degree equation. A simple parabola may often give a reasonably

good fit to the data, especially when werealize that the curve may be

quite flat and that our data need not extend far enough to complete the

/
\/

~~
YeathyX+boX* =2 $bX+bX*4bsX° =athN+bhoX*+b3 X34 byX4

 

Fig. 19.6. Formsof second-, third-, and fourth-degree polynomials.
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Fig. 19.7. Hypothetical data best fitted by a parabola.

bend. Thus the data might be similar to those indicated in Fig. 19.7.

Here, even though there maybe no theoretical reason to expect scores to

go down again once we have gonea certain distance along the X axis,

the parabola may be a reasonable fit within the limits of variation given

in the problem. It is thus quite possible that a least-squares parabola

might fit the data much better than a straight line.

Suppose this turns out to be the case. How can the problem be

handled? You have undoubtedly already noticed the similarity between

the formula for the general polynomial and the formula for the least-

squares equation involving more than one independent variable. The

only difference is that in place of X2 we have written X?2and soon. Now

suppose we were to conceptualize X? as a separate and distinct variable
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from X. As long as we are makinguse of abstract symbols this is entirely
possible, although admittedly this practice would make little sense in
terms of a concrete variable. The mathematics of the situation turns
out to be identical, however. For example, if we suspect that the
relationship between discrimination and per cent Negro can befitted by
a second-degree curve, we take per cent Negro as one independent
variable X, and (per cent Negro)? as the second independent variable
X2. Therefore the second-degree equation

Y=a+0,X + 6.X?

which is difficult to handle by least squares is reduced to the familiar
equation

Y= a +- bX, + bX9

To obtain a measure of goodnessoffit to the parabola, we can now use
the multiple correlation between Y and X, and X>. The difference
between the square of this multiple correlation and the square of the
total r (assuming linearity) will give us a measure of the degree to which
we have improved our ability to predict to discrimination by using a
second-degree equation rather than a straight line.

In principle, the above procedure can be extended in several ways.
Third- and higher-degree equations might be used in order to obtain a
somewhat better fit. Also, other variables can be added to the picture.
For some of these independent variables a nonlinear model can be
assumed, for others a linear one. In predicting discrimination rates from
a number of independent variables, we might find that somewhat better
prediction equations could be obtained assuming nonlinear models for
some of the variables. In particular, perhaps the relationship between
discrimination and per cent Negro may be of parabolic form, whereasall
the remaining independentvariables are linearly related to discrimination.
The multiple least-squares equation therefore would take the form

Y =a+t (b1X1 + 02X20) + 63X3+:-:-: + 0,X%

where the two terms within the parentheses are needed to describe the
(nonlinear) relationship between discrimination and per cent Negro. In
this case also, the X» variable again represents (per cent Negro)?.
Conceivably, some of the other X’s in the equation may also be used to
indicate nonlinear relationships between discrimination and other
variables.

In the above example suppose that we wished to obtain the partial
correlation between discrimination and per cent Negro, controlling for
the remaining variables. Since X, and X, have been used to refer to
the first and second powers of per cent Negro, it would not makesense to
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relate Y and Xi, controlling forall of the remaining “variables,’’ including

X.. Rather, we need to obtain the multiple correlation between Y and

both X, and X2, controlling for X3, X4, ...,Xx. The multiple-partial

coefficient can be used to accomplish this purpose.

There are obviously many moreuses andpossible extensions of multiple

correlation and regression techniques than can be discussed in a general

text. A sufficient number of the more elementary basic principles have

been given, however, that you should be able to consult intelligently with

a statistician if more complicated problems should arise.

19.7. Significance Tests and ConfidenceIntervals

It will of course be necessary to test both multiple and partial coefh-

cients for significance. The null hypotheses and assumptions will be

similar to those madein the case of total correlation. A random sample

will as usual be assumed. The assumption of a multivariate normal

distribution will assure us that each variable is normally distributed about

the others, that variances are equal, and that the regression equation will

have the form indicated by equation (19.1). Having made these assump-

tions, we can make use of analysis-of-variance tests for the significance

of various partial and multiple coefficients. We shall first take up tests

for the significance of multiple correlations since these are conceptually

simpler than tests for partials.

Since the square of the multiple correlation always represents the

proportion of the total variation explained by the independent variables

acting together, we have in effect divided this total variation into two

portions, the explained and unexplained sumsof squares. The analysis-

of-variance table will therefore alwaysbe similar to Table 19.1.

Table 19.1. Analysis-of-variance Test for Significance of Multiple Correlation
 

 

 

Sumsof Degrees of

|

Estimate of Pr

squares freedom variance

Total ra1? N-1

Explained REx k feexplaine Xi ; Ro N-k-1

1 — R*)r2? — R2

Unexplained (1 _ R?)Yax1? N—-k-1 oo J ke k     
In Table 19.1 we have indicated the dependent variable by Xi and

have let k represent the numberof independent variables. If R involves,

say, a dependent variable and three independent variables, there will be

four parameters in the regression equation which must be estimated.
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We would therefore lose 4 or (k + 1) degrees of freedom in using theleast-

squares equation to estimate the dependent variable. Thus the

degrees of freedom associated with the error term will in general be

N—(k+1)=N-—k-—1. The degrees of freedom associated with

the explained sum of squares can then be obtained by subtraction.

Since the degrees of freedom for the explained and unexplained sumsof
squares will always turn out to be k and N —k — 1, respectively,
we may write a general formula for F. Note that as was true with total
correlations, the factor representing the total sum of squares cancels.
We thus get as a general formula for testing for the significance of a
multiple R

hk? N—k—-1
Fyne = i R k (19.24)

It is not necessary, therefore, to set up the analysis-of-variance table in
conventional form. Testing for the significance of the multiple correla-
tion we obtained in explaining discrimination from per cent Negro and
per cent urban (see page 349), we get

3658 150-3  .3658 147
Maui = [365g gO 6342 2
 = 42.39

whichis significant at the .001 level.
In testing for the significance of partial coefficients we operate on the

principle of first letting the control variables do all of the explaining they
can. We then take that portion of the total sum of squares which is
unexplained by the control variable and use this as our new total. This
latter quantity is then broken into two components, the explained and the

Table 19.2. Analysis-of-variance Test for Significance of Partial Correlation 713.2
 

 

 

Degrees of Estimate ofSumsof squares . Ffreedom variance

Total Lx12 N-1
Explained by 2 r122D212 1
Unexplained by 2 (1 — ri22)a2 N— 2
Explained by 3 r13.22(1 — rie2) D212 1 713.227(1 — ri22) D212 2(N 3)

, (1 — ris.22)(1 — re2)B212) R27

72)

Unexplained by 3 (1 = 713.22)(1 — rie2) D212 N —3 Nu3 1 — ri3.22    
 

unexplained portions, and an F test made by taking the ratio of the esti-
mates of variance based on these last two components. The process is
illustrated in Table 19.2 in which we are testing for the significance of
rise (1e., Ho: pis.e = Q).
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Notice that the degrees of freedom decrease by one each time a new

variable is added. Again, in the formula for F, the expression simplifies

so that it becomes unnecessary to write out the whole table each time

we wish to make a test. In the numerical problem we have been using

(see page 334), the F value for testing for the significance of the relation-

ship between discrimination and per cent urban, controlling for per cent

Negro, becomes

Tis 2 _Fyw-3 ~—— (N 8)
1 — ri.9(339) (19.25)

Thus the partial is significant at the .001 level.

In extending this procedure, if we wish to test for the significance of

114.93 we can take as our new total the unexplained by 2 and 3 combined.

This quantity can then be broken into explained and unexplained portions

and the F test made as before. Again, all quantities in both numerator

and denominator of F will cancel except the factors involving the partials.

Since the degrees of freedom associated with the numerator will always

be unity and since those for the denominator will be N — k — 1, we may

write as a general formula for testing the partial rijann...t

yr?

—ltimn--t (MN — k — 1) (19.26)
—_ Vijemn---t

where the total number of variables is k + 1.

Notice that in comparing tests for the significance of multiple and

partial correlations, the final error term involving the sum of squares

unexplained by all variables should be the same in both tables—pro-

vided, of course, that the same dependent and independent variables are

used. We have already shownthis to be the case since we know that

1 — 128 = (1 —- rie) (1 _- Ti3-2)

From Tables 19.1 and 19.2 we see that these expressions are the ones

that appear in the bottom rows of the respective tables.

The procedure we have described for testing partial correlations can

also be used to test for the significance of the multiple-partial. By now

you should be able to verify that in order to test for the significance of

11(23).48 we would take the sum of squares unexplained by both 4 and5,

then using the square of the multiple-partial to give the proportion of this

new sum of squares which is explained by variables 2 and 3.

Confidence intervals can also be computed for both the partial and

multiple coefficients by a slight modification of the Z transformation

procedure described in the previous chapter. We can again convert
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either type of coefficient into Z using the table. The only change

required is that the standard error of Z be no longer given by

1
oO — _—

“ 4/N —3

Instead, we lose one more degree of freedom for each variable added

so that the standard error in general becomes

]

V/N—m—1

where m represents the total numberof variables.

We therefore obtain the 95 per cent confidence intervals for Rj.23
and 113.2 aS follows:

(19.27) >

 

 

1.9607 = 1.%a = .1622

Z Zl = Z _ 1.9607 Lu = Z + 1.9607 Tl Tx

Ry.23 = .605 . 7010 .5388 . 8632 492 .698

113.2 = .dd2 0451 .1829 .9073 .181 .468    
 

Thus the 95 per cent confidence interval about R..3 goes from .492 to
.698 whereas that about 713.2 ranges from .181 to .468.

Before closing the chapter, one further important point should be
noted. Hach time we add anothervariable to the least-squares equation
we lose only one more degree of freedom. Wecan therefore add variables
with verylittle loss of efficiency as far as significance tests are concerned.
Occasionally, the addition of more variables may lower the significance
level because of the fact that they do not help explain enough additional
variation to compensatefor the loss in degrees of freedom. Nevertheless,
we have in multiple and partial correlation a tool which, if properly used,
is far more powerful than any of the methods we have previously dis-
cussed. Ifthe number of variables used begins to approach the number
of cases, however, we can expect to obtain very large multiple correlations
simply because we are able to take advantage of chance fluctuations.
With 15 cases and 15 variables it will be possible to pass a least-squares
surface exactly through all of the points even if we assume a linear-type
model. The multiple R will therefore automatically be unity. There-
fore, like all other statistical techniques, multiple regression and correla-
tional techniques must be used with caution. At this point it should
hardly be necessary to point out that except for exploratory purposes,
they should not be used unless the required assumptions are met or at
least approximated.
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GLOSSARY

Beta weights
Multiple correlation
Multiple-partial correlation
Multiple regression equation
Multivariate normal distribution

Partial correlation
Polynomial equation

EXERCISES

1. Using the data of Exercise 1, Chap. 17:

a. Obtain the partial correlation between moral integration and heterogeneity,

controlling for mobility. Also compute the partial between moral integration

and mobility, controlling for heterogeneity.

b. Obtain the multiple least-squares equation, taking moral integration as the

dependent variable.

c. What are the beta weights? How do they compare with the partials obtained

in (a)?

d. Compute the multiple correlation, taking moral integration as the dependent

variable. How would you check your computations?

e. Test for the significance of the partial and multiple correlations computed

in parts (a) and (d). Place 99 per cent confidence intervals about each of

these correlations.

2. Write out formulas for 737.124568, R3.1235) ANG 15¢93)-1467°

3. Write the formulas for F which would be used in testing for the significance of

each of the correlations in Exercise 2 above.
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Chapter 20

ANALYSIS OF COVARIANCE

We have studied analysis of variance in which a single interval scale
can be related to one or more nominal scales. In the previous chapter we
saw how correlation techniques can be used to relate any number of
interval scales. In analysis of covariance we combine the basic ideas of
analysis of variance andcorrelational analysis in order to handle problems
involving more than oneinterval scale in combination with any number
of nominal scales. Thus analysis of covariance is a theoretical extension
of these two procedures which ideally enables us to handle problems
involving various combinations of interval and nominalscales.

Unfortunately, as we shall presently see, the computations required
for analysis of covariance becomequite tedious even for the three-variable
case. This fact plus certain limitations imposed by the assumptions
required by analysis of covarianceseverely restricts the utility of analysis
of covariance as a general procedure for handling simultaneously large
numbers of variables. Nevertheless, this rather powerful technique
seems to be of considerably more potential value to the sociologist than
is indicated by its rather infrequent use in the literature.

In this chapter our attention will be confined to the three-variable case
in which we have one nominal and two interval scales. The basic
problem which will concern us is that of relating two of these variables,
controlling for the third. Although such controlling could be accom-
plished by taking categories of the control variable and running separate
analyses within each of these classes, it is possible to achieve far greater
eficiency through the use of analysis-of-covariance techniques. In
other words, the controlling can be accomplished without having to make
use of an extremely large numberof cases. As before, we sacrifice rigidity
for efficiency in that we cannotliterally hold the control variable constant.
Instead, we make use of weighted averages and adjustment procedures
as we did in the case of partial correlation. In using analysis of covari-
ance we can, however, obtain considerably more information than was
possible in partial correlation.

359
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There are two types of situations with which we shall be concerned:

(1) those in which we wish to relate the two interval scales, controlling

for the nominal scale, and (2) those in which one of the interval scales is

related to the nominal scale, the control variable being the other interval

scale. Although interest will seldom be in both types of problems for any

given set of data, it will be necessary to carry out most of the analysis

required for the first type of problem even when interest is primarily

focused on the second. For this reason, we shall proceed first with the

type of problem in which the nominal-scale variable is used as the control.

20.1. Relating Two Interval Scales, Controlling for Nominal Scale

The basic methods of correlation and regression can be used to relate

two or more interval scales within categories of the control variable.

Having investigated each of the relationships within the separate cate-

gories it may then be possible to pool results, obtaining average within-

class correlation and least-squares coefficients, provided that it can be

assumed that the relationships are the same from one category to the

next. If results can be pooled, a single over-all measure can be obtained

which may serve as an effective summarizing measure and which will be

more reliable as an estimate than any of the measures for the separate

categories. The average within-class correlation coefficient so obtained

can be interpreted as being directly analogous to a partial correlation

coefficient since it can be used to represent the relationship between the

two interval-scale variables after the control variable has been allowed

to operate.

There are two significance tests we must makein this type of problem.

Thefirst is a test to see whether pooling the results for the various classes

is legitimate. Here, we are essentially testing for interaction to see

whether or not we can assume the same nature of relationship (as

measured by the b’s) in all the classes. If we cannot, then pooling will

make little sense and we must make separate analyses for each of the

categories of the control variable. If pooling results does seem justified,

we then go ahead and obtain an average within-class correlation, and the

second test we make will be to see whether or not this coefficient is

significantly different from zero.

As usual, we have to make certain assumptions about the method of

sampling and the populations from which the data have been drawn, and

as we might expect, these assumptions will be essentially those required

by analysis of variance and correlational analysis. In broad outline,

this is what we do in this first type of analysis of covariance problem.

Let us now look more closely at the details of the procedures.

In order to obtain a clearer picture of what may happen when we make
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use of analysis of covariance to control for a nominal-scale variable, let
us consider two extreme types of situations. In Fig. 20.1 we have a
situation in which there is a slight over-all or total negative correlation
(indicated by the solid line) between the dependent variable Y and an
independent variable X. If we look separately at each of the categories
(A,, As, and A;) of the control variable A, we see that within each class
there is a rather strong positive relationship between X and Y. In this
instance, the means in X within the various categories are sufficiently
different that they may obscure thebasic relationship between X and Y.

Y Ay 2

/ 7 2 J
x jx 0 f° “ 3

 

 
 

x
Fig. 20.1. Hypothetical data indicating a weak total correlation between X and Y
but stronger correlations within categories of A.

If we were to superimpose the means of the three categories upon each
other we would bein effect moving the within-class equations so that they
fell on top of each other, thereby obtaining a muchstrongerrelationship
between X and Y. In essence, this is what we do when we obtain an
average within-class correlation coefficient. One way to visualize the
process is to think in terms of our having adjusted for differences among
the A categories by taking out that source of variation due to the control
variable. Having adjusted for A by superimposing the means for X
and Y, we can now compare the relationships between X and Y within
categories by investigating the differences among within-class slopes (as
indicated by the dashedlines). Superimposing the means will of course
affect the a’s in each of the least-squares equations but will leave these
slopes and the within-class r’s unchanged.

Figure 20.2 represents a contrasting situation in which there are
extremely weak relationships within categories of A but where the over-all
relationship between X andY is quite strong. Again, the control variable
is affecting the relationship between X and Y, but this time if we were to
superimpose means we wouldfind essentially no relationship between the
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two interval scales. Perhaps there is no causal relationship between X

and Y at all, and the over-all relationship is due to the fact that A is

causing changes in both X and Y. In this instance, then, we would

consider the relationship between X and Y to be spurious.

In both of these general typesof situations, then, it may make very good

sense to control for A. In thefirst case, the partial or within-class

correlation will be larger in magnitude than the total; in the second it

will be smaller. A carefully constructed scattergram, using different

Y

 

 
 x

Fig. 20.2. Hypothetical data indicating a strong total correlation between X and Y

but weaker correlations within categories of A.

colored dots to represent the various categories of the control variable,

will usually indicate whether or not it will be worth the trouble to carry

out an analysis of covariance on the data at hand. If the results are

similar to those indicated in either Fig. 20.1 or 20.2 it will probably prove

worthwhile to proceed with the analysis. On the other hand, if the

different colored dots are moreor less randomly distributed on the scatter-

pram so that the category means are not very different, it cannot be

expected that analysis of covariance will produce very interesting results.

In superimposing the means of one category upon those of another we

in effect control for the magnitude of these means. Actually, then, we

are measuring variations and covariations about the individual category

means rather than the grand means. You will remember that this is

exactly what was done in analysis of variance when we divided the total

sum of squares into two components. One of these components, the

within-class variation, involved deviations about the category means,

whereas the second component involved deviations of the class means

about the total or grand mean. All that we now need to do is to extend

these same procedures by breaking the total covariation, or sum of

products, into explained and unexplained portions. Our reasoning will
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be exactly parallel to that used in connection with sumsof squares. Since

xX, -

and Y3—-

we may write

(Xy- XI)P.) a a
= ((Xy; — Xy) + (X5 — X.Y — ¥.) + (¥, - ¥..)

mt
Ps
t | is |

m
e -+

- iS | P<

When we sum overall cases and multiply out the factors, we obtain four
terms but the middle two will drop out. As a result we may write

» ) Be — Ky - P= VY Oy - FNS - Py
Total sum of products = within sum of products

(unexplained)

+ >> (X.,, — X.)(¥., — V..)

+ between sum of products

(explained)

Again, it is most convenient to make use of computing formulas for
the total and between sums of products, obtaining the within figure by
subtraction. These computing formulas turn out to be exactly analogous
to those used in getting sums of squares except that a Y value replaces
one of the X’s so that we get cross products rather than squares. Thus
we get |

> (22%) 2%)
Total sum of products = XY; — —— W ts

aio
 

 

 

(20.1 )

s (2 Xs) (2 ¥s)
Between sum of products = | > N; *

(> > Xi) (> > Ys)
—~ —_) NT td (20.2)

where N; represents the numberof cases in the jth class.
As wastrue for the sumsof squares, the second term in both equationsis

the same quantity. Notice, also, that in the formula for the between
sum of products the quantity in the numerator of the first term simply
represents the product of the sum of the X’s and the sum of the Y’s for
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each class. The formula tells us to divide this product by the number

of cases in the class and then sum overall classes.

There is one important difference between a sum of products and a sum

of squares: a sum of products may be negative in value. Thus, the total

covariation may be negative but the between value may bepositive.

This would mean, of course, that when we subtract a positive number

from a negative one theresulting within sum of products will be a larger

negative number.

Problem. Before going any furtherit will be helpful to introduce
a numerical example and to indicate how the various computations

required in analysis of covariance can be carried out in a systematic

manner. Table 20.1 shows such computations for the following

variables:

Y (dependent variable, interval scale): measure of educational dis-

crimination against Negroes

X (independent variable, interval scale): per cent Negro!

A (independent variable, nominalscale): state.

Data were collected for a random sample of 150 Southern counties

using the 1950 census. Let us suppose, in this part of the problem,

that we are interested in studying the relationship between dis-

crimination scores and per cent Negro, controlling for the state in

which the county is located.

At first glance Table 20.1 appears quite formidable, but if we examine

it column by column wesee that at least the first 18 columns contain

nothing really new. Columns2, 3, 5, 7, 9, and 11 contain the basic data

neededfor all other computations. Columns 2 to 6 and 7 to 10 are used

to obtain the total, between, and within sumsof squaresfor the dependent

and independent variables respectively. Using this computing routine,

one simply works across the table, obtaining the values for each row by

using the formulasas indicated at the top of each column. For example,

figures in column 6 representing the sum of squares in Y are obtained by

subtracting column 4 from column 5. Therefore, for Florida we have

54,989 = 3,866,409 — 3,811,420. We thus obtain in column 6 the sum

of squares within each state. When these quantities are summed weget

the within-class sum of squares so that we can enter this same quantity

in the bottom row of column 6. Note that this particular computing

routine differs from the one we havepreviously used in working analysis-

of-variance problems in that we have obtained the within-class sum of

squares directly, subtracting this value from the total to get the between

sum of squares. Thus 1,370,555 = 2,961,762 — 1,591,207.

1In Table 20.1 per cent Negro figures have been multiplied by 10 to avoid decimals.
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Table 20.1. Computations for Analysis of Covariance *
 

For computing sums of squares in Y (cel. 6) For computing sums of squares in X (col. 10)
 

 
 

 

Class N;

(1) (2) SY (xTY)2/N; ZY? Sy? =x (2X)2/N; Dx? Dx?

(3) (4) = @)*/(2) (5) (6) = (5) — (4)| (7) (8) = (7)?/(2) (9) (10) = (9) — (8)

Florida 11} 6,475 3,811,420 3 , 866, 409 54,989 2,683 654,408 744,861 90,453

Alabama 8 4,030 2,030,112 2,168,898 138,786 3,367 1,417,086 1,964, 231 547,145

Arkansas 10; 4,608 2,123,366 2,223,740 100 ,374 3,211 1,031,052 1,236,701 205 , 649

Georgia 33 |18,911} 10,837,149 [11,239,451 402 , 302 12,707 4,892,965 5 , 826,629 933 , 664

Kentucky 9} 2,724 824, 464 891,102 66,638 695 53 , 669 63 , 293 9,624

Louisiana 15| 7,476 3,726,038 3,926,182 200,144 5,257 1,842,403 2,025,311 182,908

North Carolina 24] 9,281 3,589 , 040 3 , 862,309 273 , 269 7,459 2,318,195 3,266, 843 948 , 648

Mississippi 20 |12, 206 7,449,322 7,586,664 137 ,342 10,419 5,427,778 6 , 043 , 283 615,505

South Carolina 11 5,967 3, 236,826 3,371,315 134,489 4,676 1,987,725 2,367,054 379,329

Tennessee 9} 3,260 1,180,844 1,263,718 82 , 874 1,088 131,527 229 , 200 97 ,673

Sums 150 174,938] 38,808,581 (40,399,788 1,591,207 51,562} 19,756,808 (23,767,406 4,010,598

Totals 150 37,438,026 |40,399,788 2,961,762 17,724,266 {23,767,406 6,043 , 140

Between class

(explained by A) 1,370,555 2,032,542

Within class

(unexplained by A) 1,591,207 4,010,598         
 

* Adapted from [2], Table 74, pp . 486-487, with the kind permission of the publisher.



Table 20.1. Computations for Analysis of Covariance (Continued)
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For computing covariations (col. 13) Slopes oe wnexyHained Horcomputing

Class 2

(1) (ZX)(ZY)/N; =r = 2/Da2 (Zry)? a r=XY i Y Say/Da2 Hry)?/Ex zy? — —— (ay)? 18) =
(11) Ty tee 4) = OS = zat seme aT(8(/@)_] AN) = 42)] (13) 749] 13)4)_ 16) = 6) — 15) az Gy@q) WED

Florida 1,601,644, 1,579,311 22,333 .24690 5,514 49,475 . 10027 317
Alabama 1,894,209} 1,696,126 198,083 .36203 71,712 67,074 .51671 .719
Arkansas 1,579,758) 1,479,629 100,129 .48689 48,752 51,622 .48570 .697
Georgia 7,765,621} 7,281,881 483,740 .51811 250, 630 151,672 .62299 . 189
Kentucky 217,349 210,353 6,996 .72693 5, 086 61,552 .07632 .276
Louisiana 2,700,374; 2,620,089 80,285 .43894 35,240 164,904 . 17607 .420
North Carolina 3,203,824, 2,884,457 319,367 .33665 107,515 165,754 .389344 .627
Mississippi 6,620,545} 6,358,716 261,829 .42539 111,379 25,963 .81096 . 900
South Carolina 2,737,694} 2,536,517 201,177 .53035 106 , 694 27,795 . 79333 .891
Tennessee 464,348 394,098 70,250 .71924 50,527 32,347 .60968 (81

Sums 28,785,366} 27,041,177 1,744,189 798,158
Totals 28,785,366) 25,759,688 3,025,678 .50068 1,514,896 1,446, 866 .51148 415
Between class

(explained by A) 1,281,489 614,189

Within class by =

(unexplained by A) 1,744,189 .48489 758, 530 832,677 .47670 .690     
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Table 20.1. Computations for Analysis of Covariance (Continued)
 

 

 

 

For computing adjusted Y’s (col. 23)
Class ,

(1) X.; = EX/N; a= X.,; —X.. Dros Y.; = ZY/N; Y!, = Y.j — but
(19) = (7)/(2) (20) = (19) — X.. (21) = 6y(20) (22) = (3)/(2) (23) = (22) — (21)

Florida 243 .909 — 99.838 —43.42 588 . 64 632.06

Alabama 420.875 77.128 33.54 503.75 470.21
Arkansas 321.100 — 22.647 —9.85 460.80 470.65

Georgia 385.060 41.313 17.97 573 .06 555.09

Kentucky 77.222 — 266.525 —115.91 302.67 418.58
Louisiana 350.467 6.720 2.92 498 .40 495.48

North Carolina 310.792 —32.955 —14.33 386.71 401.04

Mississippi 520.950 177.203 77.06 610.30 533 .24
South Carolina 425.091 81.344 35.38 542.45 507 .07
Tennessee 120.889 — 222.858 —96.92 362.22 459.14

Sums

Totals X.. = 343.747 Y.. = 499.59      
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In obtaining the total sum of squares weuse exactly the same procedure
as that used in the case of each state: we subtract column 4 from column 5.

In so doing, of course, we are making use of the formula

(DY)? (74,938)?Sy? = py2—- “4 = — Sey LV Wr 40,399,788 150

= 40,399,788 — 37,438,026 = 2,961,762

Here the N for the totals row is the total numberof cases in the sample
(150). It will be helpful at this point to work through a sufficient

number of the computations in columns 2 to 6 and 7 to 10 so that you

understand what is involved and becomeconvinced that the results you

obtain by this new method are exactly the same (subject to rounding

errors) as those we would have got by the old method.

Columns 11 to 18 are used to break the covariation into component

parts in an analogous manner. As indicated above, the formulas are
similar to those used for analysis of variance, except that products

replace squares, and we therefore obtain column 13 by subtracting 12

from 11 as indicated by the computing formulas. Again, we compute the

within sum of products directly and the between value by subtraction.

Thusthe total covariation is 3,025,678, and the within is 1,744,189, giving

1,281,489 as the between-class covariation. It so happens for these data

that all three sums of products, as well as all state values, are positive,

but this will not necessarily be the case. We now have performed the

basic computations weshall need for our later work, having obtained the

total, explained, and unexplained sumsfor y?, x?, and zy. Our attention

can now be focused on the various tests and measures needed in carrying

out the analysis. The remaining columnsin Table 20.1 will be explained

as we come to them.

Testing for Interaction. It will be remembered that in two-way analysis
of variance the first test we made was for an interaction effect. The

reason for makingthis test first was that if the two independent variables

produce different results when acting in combination than would be

expected on the basis of their separate effects, then it makes very little

sense theoretically to study the effects of one while controlling for the

other. In other words, the relationship between one independent

variable and the dependent variable differs according to the value of the

control variable. If this is the case, the relationship should be studied

separately within each of the categories of the control variable. We face

a similar problem in analysis of covariance, although instead of thinking

in terms of the additivity assumption weshall now find ourselves compar-

ing the slopes of the least-squares equations within each of the categories.

Let us first note the parallel between the assumption of additivity and

the assumption of equal slopes. Then we shall be in a better position to
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understand the nature of the test for interaction in analysis of covariance.

In Chap. 16, which covers analysis of variance, we used the following

numerical example to illustrate additivity.

Ay As Ag

 

Bi} 5 10 20
B,} 10 15 25

B; |25 30 40

It was noted that it is not necessary to assume equal differences between

the scores of B; and B., on the one hand, and By, and B; on the other.

But we did have to assume that the differences between B,; and Bz» are

Y

40

35

30

25

 
  xX

Fig. 20.3. Lines with equal slopes indicating no interaction.

the same for each of the A categories. Now let us suppose that the
variable B actually represents an interval-scale variable X which has been
categorized. We shall assume that the relationships between X and
the dependent variable Y (represented by scores in the body of the table)
are linear within each of the categories of A. A little thought will
convince you that by properly locating the B categories along the X axis
we can translate the additivity property into the statement that the three
regression lines all have the same slope. Figure 20.3 indicates this
relationship. Thus wesee that a test for additivity is directly analogous
to a test of the hypothesis that the within-class slopes are equal.

In testing for interaction in two-way analysis of variance, we took the
amountof variation in the dependentvariable that could not be explained
by the two nominal scales when additivity was assumed. This quantity
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was then broken down into two components: the amount that could be

explained by interaction, and the amountstill left unexplained by the

between-column, between-row, and interaction effects. The ratio of

these last two components was used to test for interaction. In analysis

of covariance we do exactly the same thing, but as we might expect, our

procedure takes a somewhat different form. We have just seen that

the assumption of additivity is analogous to the assumption that the

population slopes within each of the categories are the same. If there is

a significant interaction effect, however, this will mean a different relation-

ship for at least some of the categories. In other words, a given changein

X will produce different changes in Y in the various classes of A. If we

now take the amount of variation in Y left unexplained by X assuming

equal slopes, we can see how much additional variation we can explain

through interaction. Then we can test for interaction by comparing

the interaction sum of squares with the error term.

How do we determine the amount of variation we can attribute to

interaction? In order to answer this question wefirst must ask ourselves

how much variation we could possibly expect to explain using linear

models within each of the categories of A. Obviously, the individual

least-squares equation for each category gives us the best fit that can be

expected of a straight line, and the correlation coefficient computed on

the data for that particular category will give a measure of goodnessof

fit. We therefore can obtain figures for each category representing the

amount of the variation in Y that is explained by X, using the straight

line which best fits the data for that particular category. When we sum

the explained variations for each of the categories we thus obtain the

amount of variation actually explained byall of the separate least-squares

equations. Similarly, in summing the unexplained sums of squares we

obtain the amountof variation in Y whichisstill left unexplained by these

separate least-squares lines.

In Table 20.1 these computations have been carried out in columns 15

and 16. In the case of Florida, for example, the total variation in Y

(column 6) is 54,989. Of this quantity, 5, 514 is explained by the least-

squares equation which best fits the Florida data, and 49,475 is left

unexplained. Of the total variation in Y (2,961,762), the quantity

798,158 represents the amountleft unexplained by these separate least-

squares equations. —
We next must ask how much variation is left unexplained whenit is

assumed that there is no interaction effect. If there is no interaction,

then all of the slopes for the categories of A will be equal. Our best

estimate of this common slope will be a pooled estimate which is a

weighted average of the individual within-class slopes. These slopes

have been computed in column 14. The pooled estimate or average
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within-class slope has also been computed in column 14 by making use of

the within-class data from columns 10 and 138. Thus the value .43489

was obtained by dividing 1,744,189 by 4,010,598. |
We can now compare the relative explaining abilities of the separate

within-class least-squareslines, each with a different slope, and a number

of straight lines drawn through the meansof each category but all having

the same slope, 7.e., the average within-class b (see Fig. 20.4). These

 

Least squares lines
———— Lines with slope by

  
 

Fig. 20.4. Comparison of separate least-squares lines with lines drawn through category
means but all having the sameslope by.

latter parallel lines cannot be expected to explain as much of the total

variation as the actual best-fitting lines for each of the categories, but if

there is in fact no interaction in the population data, the various regression

equations will all have the same slope and we can expect that the least-

squares lines will not differ too markedly in slope. In other words,if

there is no interaction the series of parallel dashed lines will approximate

fairly closely the actual least-squares equations for each category.

Since the value of the average within-class slope will then be not too

different from that of each of the separate within-class slopes, the dashed
lines will have almost as high explanatory poweras thesolid lines.

Because of sampling fluctuations we can expect someinteraction within

the sample even though there may be none within the population. The

solid and dashed lines will never be identical and therefore the latter
lines will always leave somewhat more unexplained variation than the
least-squares lines. The question now is whether or not the separate
least-squareslinesdiffer sufficiently among themselves, and therefore from
the dashed lines, to warrant our concluding that the interactioneffect is
statistically significant.
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In this and other analysis-of-covariance tests we must make a number

of assumptions which are essentially those assumptions required by

analysis-of-variance and regression analysis. As usual, independent

random sampling must be assumed. We must also assume bivariate

normality between X and Y within each of the categories of A. Further-

more, we must assume that the variances for both X and Y are the same

within all A categories. In the test for interaction our null hypothesis

will of course be that each of the category relationships between X and Y

involves the sameslope £.

In Table 20.2 an F test is madefor interaction. We take the amountof

variation in Y left unexplained by X and A, assuming no interaction or

equal population slopes. This quantity can be found from Table 20.1

by reading across the within-class row until we come to the unexplained

Table 20.2. Analysis-of-variance Test for Interaction
 

 

Sum of Degrees of Estimate PF
squares freedom of variance

Unexplained by X and 4,
assuming no interaction 832,677 N — (kK +1) = 139

Explained by interaction 34,519 k-1=9 3,835.4 <1.0

Error 798,158 N — 2k = 180 6,139.7    
 

by X column (column 16). Since the figure 832,677 was obtained by

using the sameset of figures as was the average within-class b, we see that

we have essentially assumed equal slopes in computing this unexplained

sum of squares. Wehavealso seen that the quantity 798,158 represents

the amount of variation left unexplained by the separate least-squares

equations. The difference between these two quantities therefore

represents the amount of variation that can be attributed to interaction.

In associating degrees of freedom with each of these quantities we count

up the numberof coefficients that have been estimated in the respective

least-squares equations. Looking first at the error term, or the amount

left unexplained by the separate least-squares equations, we note that for

each of these separate equations we have had to compute twocoefficients

(a and b). Wetherefore will lose 2k degrees of freedom, where é repre-

sents the number of categories of A. Hence the degrees of freedom

associated with this term will be N — 2k. In making use of the dashed

lines, however, we have had to compute only a single slope, the average

within-class b. Since each of these lines passes through a different set

of sample means, however, we have different a values for each of these

lines. We therefore have lost (k + 1) degrees of freedom, and the degrees

of freedom associated with this term will be N — (k + 1) or N — k — 1,
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Wecan then obtain the degrees of freedom for the interaction term by

subtraction, getting

(N —k—1) —(N — 2k) =k -1

or one less than the number of categories. We now compute F in the

usual manner and conclude that since F933 < 1.0 we do not have

significant interaction.

Since interaction did not turn out to be significant we are justified in

throwing the small amount of sample interaction back into the error term,

henceforth using the quantity 832,677 as the variation which is unex-

plained by both X and A. Since we are on the wrong end of the test for

interaction, we must of course be somewhat cautious in doing this. With

such a large N and small value of F we are undoubtedly safe in ruling out

interaction in this particular problem, however.

Had interaction been significant, our next step would be to look for the

state or states which are out of line with the rest. This is easily accom-

plished by looking at the column of b’s. If several states are obviously

creating the interaction effect and if good theoretical reasons can be

suggested why this is the case, it may be possible to exclude these states

and repeat the analysis with the remainder. If no states stand out in

this manner it may be necessary to proceed by analyzing each state

separately. In such an eventuality, valuable theoretical insights might

be gained by asking oneself why the relationship between discrimination

and per cent Negro should differ from one state to the next.

The Average Within-class Correlation. Having established that there
is no significant interaction effect, we are now justified in pooling the

individual within-class r’s to obtain an average within-class correlation

coefficient which will be analogous to the partial correlation coefficient.

In other words, since we are justified in assuming a single slope for all

the regression equations, we can also assume that the population correla-

tion coefficients will all be the same and that the common value can be

estimated by pooling the sample r’s for the various classes. The average

within-class correlation coefficient, which we can symbolize as rxy.a, is

computed in the same manner as the average within-class 6 by using

within-class data given in the bottom rowof Table 20.1. (See columns

17 and 18.) The square of this coefficient can be interpreted as the

proportion of variation in Y which is left unexplained by A but is

explained by X. Thus

758,530
.47670 = (.690)? = 1,591,207

Tf you will note the formulas used in computing each of these numbers,
you will see that the interpretation follows immediately from these
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formulas. As a rough check on one’s computations, the average within-

class r should turn out to be comparable in magnitude with the various

separate within-class r’s. Since it is essentially a weighted average, the

states with the largest numbers of counties will have the greatest effect

in determining its value.

If we wished a measure analogous to a multiple R, we might take the

ratio of the amount of variation explained by both X and A to the total

sum of squares. In this problem, for example, we have explained

2,961,762 — 832,677 or 2,129,085. Therefore we have explained

2,129,085/2,961,762 or 71.9 per cent of the variation. We must remem-

ber, however, that if we wish to form a multiple R by taking the square

root of this value, the result will be partially a function of the average

numberof cases within categories of A (see Sec. 16.4).

We can test for the significance of rxy.4 in the usual manner. First

we let the control variable A do all the explaining it can. We then let X

go to work on the variation left unexplained by A, breaking this latter

quantity into two components. ‘The first of these components will be

that portion which is explained by X while the other will be the error term

which is left unexplained by both X and A (assuming no interaction).
Wehave already seen that the degrees of freedom for the error term will

be N — (k +1). The degrees of freedom associated with the variation

unexplained by A, which is found in the bottom row of column 6, will

of course be N — k (see Sec. 16.1). This leaves 1 degree of freedom

associated with the component which is unexplained by A but explained

by X. The results of this test are summarized in Table 20.38. We thus

see that the average within-class correlation is significant at the .001 level.

Table 20.3. Analysis-of-variance Test for Significance of Average
Within-classCorrelation (¢xy.a)
 

 

    

Sum of Degrees of Estimate PF
squares freedom of variance

Unexplained by A 1,591,207 N —k = 140
Unexplained by A but

explained by X 758 , 530 1 758, 530
Error (assuming no inter- 126.6

action) 832,677 N — (k +1) = 139 5,990.5
 

Before we conclude this portion of the chapter in which we havestudied

the relationship between two interval scales while controlling for the

nominal scale, we can draw a comparison with the type of controlling

accomplished by partial correlation. Controlling by means of analysis

of covariance obviously involves considerably more work than the use of

partial correlation. As can readily be imagined, extensions involving
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additional variables will begin to require so many computations that

analysis of covariance will generally not be feasible. On the other hand,

analysis of covariance supplies us with more information than does

partial correlation. Not only may we makea test for interaction, but we

can investigate the relationships between X and Y within each of the

categories of the control variables, comparing the various values of r and

b. In making use of partial correlations, we obtain only the single

measure which is comparable to the average within-class correlation, and

we cannot makea test for interaction.

Wesee that analysis of covariance has a number of advantages over

analyses using partial correlations, especially in studies where interaction

may be expected. Thus in some instances it may be well worth while to

convert one of the interval scales into a nominal scale and to proceed with

analysis of covariance in preference to partial correlation, even though in

so doing we may lose information with respect to the level of measurement.

20.2. Relating Interval and Nominal Scales, Controlling for Interval Scale

In one-way analysis of variance we related an interval scale to a single

nominal scale, testing for the significance of the differences among the

means of the categories of A. In order to determine the magnitude of the

relationship between the two variables, we computed an intraclass

correlation coefficient. We also obtained the means of the various

categories which could be used for descriptive purposes to indicate the

relative scores of one category compared with the others. In two-way

analysis of variance we were able to control for a nominalscale and test

for interaction. We found ourselves severely limited, however, in that

we were required to have equal numbersof cases in each of the subcells.

In this section we shall take up situations in which we wish to relate Y

and A but where the control variable is an interval scale X. Weshall

again find that we cannot literally hold the control variable constant.

Instead, our method of controlling will involve an adjusting operation. .

Suppose that our interest is primarily in discovering the relationship

between discrimination rates and subregions of the South, as defined by

the various states. Admittedly, states are not the best kinds of units

to delineate subregions, but they will serve for illustrative purposes.

Obviously, a variable such as per cent Negro needs to be controlled since

the various Southern states differ considerably in their minority per-

centages. Suppose we were to categorize per cent Negro and proceed
with separate analyses of variance for each of these categories. Note
that we would probably not even attempt two-way analysis of variance
because of the necessity of having equal subclasses. But would separate

analyses of variance really solve our problem? We would immediately
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find that when we examined the counties with low minority percentages

we would be excluding practically all of the counties in Mississippi and

Alabama andincluding practically all of those in Kentucky and Tennessee.

On the other hand, there would be at most one or two counties from these

latter states among the counties with high percentages of Negroes. Thus

in attempting to control by this method we almost do away with our

problem in that only a few of the states will be represented in each of the

separate analyses. The effects of subregions or states would be hopelessly

confounded with per cent Negro. We cannot literally hold the one

variable constant without at the same time decreasing the variability of

the other.
Although we cannot actually hold this control variable constant, we can,

by using analysis of covariance, makecertain adjustmentsforits effects.

Specifically, if we are willing to assume that the regressions of Y on X

within each of the categories of A have a common slope which can be

estimated by the average within-class b, we can estimate the change in Y

produced by a given change in X. In other words, we can makecertain

predictions about what would happento the discrimination rates in each

state if the minority percentages were to change. In particular, we can

ask ourselves what would happento these rates if the various percentages

of Negroes were to be equalized. This sort of adjustment process yields

purely hypothetical results, and this fact should be madeperfectly clear.

Weare not getting discrimination rates for the various states with per

cent Negro actually held constant; we can only predict what they would

be if this were to happen andif the relationships between X and Y were

as assumed. Quite conceivably, if Negroes were actually to redistribute

themselves more evenly amongthe Southern states, the particularrelation-

ships we found between X and Y would nolonger hold. Nevertheless,

such an adjustment procedure can often lead to useful insights.

If it can be assumed that there is no interaction effect, we have seen

that we can best estimate the commonslopes of the within-class regression

equations by meansof the average within-class b computed in Table 20.1.

The adjustment procedure we shall use can now be described. We would

like to adjust each of the class means Y.; so as to take into consideration

the fact that the means in X also differ from state to state. For con-

venience we shall assume that all of the X.,’s are adjusted to the grand

mean of the X’s. This will involve moving the mean in X for each class

a distance of (X..— X.,). Figure 20.5 indicates this difference as the

length of the base of the triangle. But we know that in order to obtain

the amount of change in Y for a given change in X we must multiply the

change in X by the average within-class b. Therefore Y.; changes by

the amount b,,(X.. — X.;) where we have used the symbol 6, to represent

the average within-class slope. The adjusted value of the means for Y
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can now be found by adding this increment to the original mean for Y.

Thus, letting Y’; represent the adjusted value, we get

= Y.; — by (X.; — X..)

The second of these forms, which just involves reversing the order of

X..and X.; and changingsigns, is the form used in computing the adjusted

Y in Table 20.1. Notice that the slope in this particular example is

positive. Also, the change from X.;to X.. as shownin Fig.20.5 is positive.

(20.3)

Y
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Fig. 20.5. Geometrical interpretation of the computations for the adjusted Y means.

Exactly the samealgebraic results hold in cases where the slopeis negative
or where the X value is decreased. By now you should be able to con-

vince yourself that this is the case.
Figure 20.6 should help you visualize what we have done in adjusting

the mean Y values. We havein effect moved each of the class means
parallel to the slope of the average within-class b to a position whereall
of the X’s are equal to the grand mean of the X’s. The adjusted Y’s can
be found along the vertical dashed line corresponding to the grand mean
of the X’s. The relative magnitudes of the means in Y may be con-
siderably altered. In Fig. 20.6 the unadjusted Y values are such that the
mean of A, is slightly below that of A» which, in turn, is substantially less
than that of As. Notice that A; has a very small X value, however.
Since the slope is represented as positive, adjusting for X has the effect
of increasing the value of Y in the case of Ay. On the other hand, the
adjustment process decreases the Y values for both A» and A; since both
of these categories have relatively large X values. As a result, the
adjusted Y for A, is actually larger than that for As, and the value for A;
is much closer to that of A.
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If you will refer back to Table 20.1, columns 22 and 23, you will note

the effect on discrimination rates of adjusting for per cent Negro.

Florida, with its relatively low percentage of Negroes, now stands out as

having very high adjusted rates, whereas states such as Mississippi and

Tennessee have been brought more into line with the remaining states.

Note also that the over-all differences among states have been con-

siderably reduced.

It was mentioned earlier in the chapter that analysis of covariance will

be useful if scattergrams show that the various class means in X are quite

different in value. This can be seen from Fig. 20.6. Had the class means

Y

 
  x

Fig. 20.6. Geometrical interpretation of adjusting Y meansbysliding category means

parallel to line with slope bw.

in X been closely bunched around the grand mean,the bases, and there-

fore the legs, of the triangles would have been quite short. In other

words, adjusting for X would not produce a very markedeffect since,

in reality, there was very little adjustment actually needed. Had all

the class means in X been exactly equal we would in effect have had a

control for X. It is only when the class means in X are very different

that we can expect adjustment to have a noticeable effect. Put another

way, there must be a fairly strong relationship between X and A, the

two independent variables.

Something else is also necessary in order for adjustment to be worth

while. Had the average within-class b been very small numerically, it

would have taken a very large change in X to producea slight change in

Y. Thus, if there is little or no relationship between X and Y within

classes of A, there will be no point in adjusting for X. These observa-

tions are of course consistent with common sense whichtells us that there
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is not much to be gained in controlling for a variable which is not related

to both of the variables in which weare interested. True, if X is related

only to the dependent variable it may be controlled as a disturbing

influence. We can see from Fig. 20.6, however, that unless there are

some variations with respect to X among categories of A there will be

little point in adjusting.

In using the average within-class b we have had to assumenointeraction

effect. Therefore, it will be necessary to carry out the test for interaction

as well as the computationsfor b before going ahead with the adjustment

process. If interaction turns out to be significant, the problem is more

complicated and beyond the scope of this text. Under some circum-

stances it may be possible to adjust using the individual within-class

slopes. However, the interpretation must be carefully made. Suppose,

for example, that the slope for Mississippi turned out to be quite different

from that of Tennessee. Could we legitimately use their individual

least-squares lines to adjust Y values? ‘This would require the assump-

tion that Mississippi maintains essentially the same patterns of dis-

crimination as it continues to lose Negroes. The fact that other states

show different relationships with per cent Negro suggests, however, that

this may not be a legitimate assumption. The fact that interaction has

been shown to exist should make us cautious in projecting what would

happen if the X’s actually were changed. On the other hand, if we find

essentially the same relationship between per cent Negro and discrimina-

tion in each of the states, i.e., no interaction, we are somewhat more

confident that adjustment will not lead us too far astray.

Wenext must raise the question as to the significance of the differences

among the adjusted Y means. Differences among the unadjusted means

may or may not have been significant, but this does not mean that the

same result will hold for the adjusted values. Perhaps adjusting for X

has had the effect of moving the Y values closer together. Or perhaps

they are now further apart. We have accomplished a descriptive task,

that of actually obtaining the adjusted figures so that they may be dis-

played for comparative purposes. We nowmust test the null hypothesis

that in the population the adjusted Y means are all the same. The

assumptions for this test are the usual ones. We must assume inde-

pendent random samples, normality, and equal variances for the adjusted

Y’s, and we must also make the assumptions required by regression

analysis, a bivariate normaldistribution of X and Y within each category

of A.

Fortunately, we do not have to recompute sums of squares using the

adjusted values themselves. We can carry out an analysis-of-variance

test using the familiar procedure of first letting the control variable

explain all of the variation it can. Since X is now our control variable,
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we take the amount of variation left unexplained by X as our new total
sum of squares. Wethen break this quantity into the amount explained
by A and the amountleft unexplained by both variables. The degrees of
freedom associated with each of these quantities have already been
determined. The results of the F test are summarized in Table 20.4.
Thus we see that the adjusted differences, although smaller than the
original ones, are significant at the .001 level. We concludethat, although

Table 20.4. Analysis-of-variance Test for Significance of Differences
among Adjusted Means
 

 

    

Sum of Degrees of Estimate Pr
squares freedom of variance

Unexplained by X 1,446, 866 N — 2 = 148
Unexplained by X but

explained by A 614,189 k-1=9 68, 243
Error (assuming no inter- 11.39

action) 832,677 N — (k +1) = 1389 5,990.5
 

adjusting for per cent Negro does decrease differences in discrimination

rates among states, these differences are not completely wiped out in the

process.

Finally, we may wish to compute a partial intraclass correlation

between Y and A, controlling for X¥. This might be advisable in order to

obtain a better indication of the degree of relationship between the two

variables than can be indicated by the differences among adjusted means.

Simply by looking at these adjusted differences one cannot get a very

good idea of their magnituderelative to differences within the categories,

and for this reason a partial intraclass correlation may be helpful.

Generalizing the notion of intraclass correlation we may write

. _ Vo ~— Ve

"VAX" TE (i — DV.
 

where V; = between-class estimate (unexplained by X; explained by A)

V. error estimate (unexplained by X and A)

”% average numberof cases per class, as computed in equation

16.12

Here weare interested in the between-class estimate of the variance for

the adjusted Y’s. Ourerror estimate takes into consideration that X has

already explained all it could of the variation in Y.
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Numerically, we thus get
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(150 — 19.05) = 14.55

1 | 68,243 — 5,990.5an MYA-X = Be5243 + 13.55(5,990.5)

— 2,252.5 aig

 

20.3. Extensions to Four or More Variables

The addition of a second nominalscale will complicate the analysis of
covariance because of the requirement of equal subclasses. Practically
speaking, this in effect means that this type of extension will not be
feasible except in studies involving experimental designs in which such a
control over the number of cases is possible. If we add one or more
interval scales, however, the extension is straightforward in principle,
although it will introduce a considerable number of additional computa-
tions. Weshall have to add new columns to the computing table. In
particular, there will be a column indicating the amount of variation left
unexplained by both interval scales (X and Z) acting simultaneously.
Weshall thus become involved with multiple least-squares equations for
each of the categories of A. In obtaining adjusted Y means, for example,
we shall have to adjust for X and Z using both of the partial average
within-class b’s. Instead of moving category means parallel to a least-
Squares line, we shall now slide them parallel to an average within-class
plane. In testing for the significance of the adjusted Y’s we first let X
and Z explain all they can of Y and then let A work on the remainder.

20.4. Other Analysis-of-covariance Techniques

Since we have by no means exhausted the subject of analysis of covari-
ance, you may wish to consult some of the references listed below for
other applications and extensions of this general method. In particular,
whenever the numberof categories in A is quite large, it is sometimes
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useful to investigate the regression of the category means in Y on the

means in X, thereby in effect considering each category as a case. For

example, in the problem we have been considering, we might wish to

study the relationship between X and Y using states rather than counties

as units, treating the X’s and Y’s for each state as single scores. In most

problemsof interest to sociologists, the numberof categories in A will be

too small to justify such an-analysis, however, and for this reason the

topic has not been discussed in the present chapter.

EXERCISES

1. Check as many of the computations in Table 20.1 as is necessary in order for

you to understand how these figures were obtained.
2. Take the data for Exercise 1, Chap. 17, and collapse the heterogeneity index

into the following categories: 10.0-14.9, 15.0-19.9, 20.0-24.9, 25.0-29.9, and 30.0—-49.9.

Referring to moral integration as Y, mobility as X, and heterogeneity as A:

. Test for interaction.
Obtain rxy-a and test for significance.

. Adjust the category means in Y for differences with respect to X.

. Test for the significance of differences among the adjusted Y’s.

. Obtain the partial intraclass correlation riya.x.eo
Q
a
o
k
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Chapter 21

FACTOR ANALYSIS AND OTHER

MULTIVARIATE TECHNIQUES

There are a numberof techniques that have been developed for handling
problems involving a large number of variables. Multiple regression

analysis is one of the most useful of these techniques. Another technique.

that can be used with interval scales is multiple factor analysis, a pro-

cedure developed by Thurstone and others and originally used in psy-.

chology to analyze the interrelationships amongintelligence or personality

tests of various sorts. Basically, factor analysis is a technique which can

be used to take a large number of operational indices and reduce these to

a smaller number of conceptual variables. ‘The purpose of this chapter

is to present a few of the essential ideas of factor analysis without going

into computational considerations. Other multivariate procedures will

be discussed even more briefly in order to indicate some of the other.

possibilities that are available.

21.1. Multiple Factor Analysis

Underlying the use of factor analysis is the notion that if we have a

large number of indices or variables which are intercorrelated, these

interrelationships may be due to the presence of one or more underlying

variables or factors which are related to the indices to varying degrees.

In the simplest case, there may be only one underlying variable which is

imperfectly measured by each of the indices used. Those indices which

are most highly correlated with the underlying factor, i.e., those which

are the best measures of this factor, should in such a case be most highly

related to the other indices. In other words, the imperfect correlations

among indices may be accounted for by their varying associations with

the underlying factor. By examiningthe intercorrelations amongindices
we may be able to make inferences as to the correlations of each index
with the common factor if this factor could actually be measured,

383
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If there are several underlying factors, any given index may becor-

related with more than one factor. Thus an index may be conceived as

having several components, one associated with the first factor, another

with the second, and so forth. In other words, the index may be measur-

ing several factors simultaneously, although it may be much more highly

correlated with one than with the others. One of the goals of factor

analysis is to estimate the correlations of each index with all of the

underlying factors and, in so doing, to gain insights as to what these

factors may be. Factor analysis may also be used to test hypotheses

concerning the nature of such underlying factors.

Notice that we are making use of one particular way of conceptualizing

the problem of interrelating theory and research. We conceive of

underlying variables which ‘really exist”? but which can be only imper-

fectly measured by indices. One of the problems posed in every factor

analysis is the theoretical one of identifying these underlying variables.

In some cases it may make sense theoretically to think in terms of such

underlying factors. Perhaps the main value of factor analysis is that

it enables one to replace a large number of indices which may have very

little theoretical meaning with a much smaller number of conceptual

variables which may make very good sense theoretically. It is very

possible, however, to end up with a set of factors which have verylittle

theoretical meaning. We then have merely replaced a large number of

clear-cut operational indices by a smaller number of theoretically mean-

ingless factors.

Factor analysis will therefore be of relatively little value unless the

factors obtained can be identified. But how does one go about identifying

the factors he obtains? Here we run into certain difficulties. Usually,

although not always, the various operational indices will be clustered in

the sense that within any given cluster of indices there will be high

intercorrelations whereas correlations between clusters will be relatively

low. If this is the case, we may makethe theoretical assumption that the

high intercorrelations within each cluster are due to the presence of a

single factor representing that cluster. We then maytry to associate a

second factor with another cluster, and so on until all clusters have been

identified. By examining the nature of the indices in each cluster we may
be in a position to identify what they all haveincommon. This common

element among all the indices of the cluster is, presumably, the factor

associated with the cluster and can be named accordingly.

Unfortunately, the procedures used in obtaining or “extracting”’ the

underlying factors do not immediately yield such pure or readily inter-

pretable factors. The first factors to be extracted always turn out to

be uncorrelated with each other. Since those factor-analysis techniques

in common useall assume linear relationships among indices, this means
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that the uncorrelated factors will be independent of each other. Such

independent factors are referred to as orthogonal factors, since uncorrelated

factors can be represented geometrically as perpendicular or orthogonal

axes. (See Fig. 21.1.) Itis possible to represent the correlation between

any two variables in terms of the angle between them, with the angle

between two highly correlated variables being very small. As the corre-

lation approaches zero, the angle between the two lines will approach

90 degrees. A cluster of highly intercorrelated indices can thus be

represented as a cluster of lines. Strictly speaking, it would require a

k-dimensional space to represent a cluster of k items if all possible inter-

correlations were to be represented accurately. For visual purposes a

two-dimensional diagram will usually be sufficient, however.

 
 

Fig. 21.1. Geometrical interpretation of intercorrelations, showing clustering effect
and oblique factors fitting the clusters.

In Fig. 21.1 there are two distinct clusters. Since the angle between

the two clusters is not 90 degrees, we see that the clusters themselves are

intercorrelated, making it impossible to fit both clusters with perpen-

dicular or orthogonal factors. It is because of this fact that factors must

be “rotated.’”’ Under most schemes of rotation, it is possible to end up

with nonperpendicular or ‘oblique”’ factors which fit the clusters more

perfectly. These rotated factors may in fact turn out to be uncorrelated,

but usually this will not be the case. The aim of rotation is to obtain a

set of factors which has the property that any given factor will be fairly

highly correlated with some of the indices but uncorrelated with therest.

Kach factor can then be identified with one of the clusters of indices,

thereby reducing the effective number of variables to the number of

factors used.

In very brief outline this is what we accomplish with factor analysis.

Although it will not be possible here to take up the actual computations

used in obtaining the original orthogonal factors or the rotated factors,

we can indicate what they involve. Since factor analysis is basically a

technique for analyzing the interrelationships among the various indices,

we start with the matrix of intercorrelations among indices. A matrix is
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simply a rectangular arrangement of scores. The matrix of correlations

indicates the correlations of each index with every other index (see Table

21.1). These are the basic data used in factor analysis. If the data are

taken from a sample, there will inevitably be certain sampling errors

involved in these correlation coefficients. Since factor analysis is

ordinarily used as a descriptive technique rather than a test of statistical

hypotheses, it is essential that the sample be quite large so that sampling

errors are minimal. Ifthe sample r’s were to vary considerably from one

sample to the next, the factors obtained would have even greater insta-

bility and the resulting analysis might be highly misleading. Factor

analysis is, therefore, a technique that can only be used with large

samples.}

In extracting the factors from the correlation matrix one must go

through a process referred to as matrix inversion. Unless one is familiar

with matrix algebra, this procedure will inevitably involve ‘‘cookbook”’

operations which will not be clearly understood. Factors will be com-

puted or extracted in the order of their ability to explain the variation

in the indices used. It is, therefore, relatively easy to determine when to

stop extracting factors. If, say, the fourth factor explains only a very

small proportion of the total variation in the indices, the fifth and sub-

sequent factors will explain even less.

We then proceed to rotate these factors to obtain factors which are

more easily interpreted. One criterion for rotation is Thurstone’s

“simple structure” criterion which involves finding factors which are

highly correlated with given clusters of variables but which are uncor-

related with those indices belonging to the other clusters. The term

factor loading is used to refer to the correlation between an index and a

given factor. We can also compute the proportion of the total variation

in each index explained byall of the factors used. This squared multiple

correlation between the index (taken as the dependent variable) and the

several factors is referred to as the communality of the index.

Let us now illustrate the use of factor analysis by meansof a sociological

example taken from Bell’s study of census tracts in the San Francisco

Bay region [1]. Bell used seven indices designed to measure different

characteristics of the area. The results are summarized in Table 21.1.

In order to determine whether or not the clustering effect among these

indices would warrant the use of a smaller numberof conceptual variables,

Bell extracted three orthogonal factors, as indicated in Table 21.2.

Notice that although one can get some idea of the clustering effect from

Table 21.1, the pattern is by no means obvious.

1In situations in which N is relatively small but where a very large number of

indices have been used, it is possible to make use of what has been termed ‘‘inverted”’
factor analysis. See [7]. Usually, however, factor analysis requires large samples.
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Noris the picture much moreclear in Table 21.2, in which are given

the correlations of the several indices with each of three factors. for

example, we see that factor I (unnamed) is highly related to five of the

indices and weakly related to the remaining two. Factor II is positively

Table 21.1. Correlation Matrix
 

 

(1) (2) (3) (4) (5) (6) (7)

Measures Occ. Educ.| Rent Fert. WLF SFDU SEG

(1) Occupation Lee .780| .775| .678 .482| .190 .135

(2) Education .780 |...... .796| .490 .126, —.255| .488
(3) Rent (—) 775 796). ..... .555 .260} —.051| .360
(4) Fertility .678 490) .555) .... .759| .476| .205

(5) Womenin the labor
force (—) 482 .126) .260) .759 |...... .753 — .066

(6) Single family dwelling units .190 |— .255)— .051} .476 1538)... 060. — .248
(7) Relative number of persons

in subordinate ethnic
groups .135 .488) .360} .205 |— .066| — .248       
 

sourcE: W. Bell [1], Table 6, p. 50, with the kind permission of the author and

publisher.

Table 21.2. Orthogonal Matrix
 

 

 

  

Factors
Communalities

Measures h?

I II III

(1) Occupation 844 .185 — .319 .848
(2) Education 711 .659 .053 .943

(3) Rent (—) 771 .457 — .179 .835

(4) Fertility . 866 — .256 .114 . 828

(5) WLF (—) .679 — .650 — .073 . 889

(6) SFDU 307 — .744 — .175 .712

(7) SEG .301 .394 .426 427  
 

sourcE: W. Bell [1], Table 7, p. 50, with the kind permission of the author and
publisher.

related to some indices but negatively to others. The communalities h?

indicate the proportion of variation in each index explained by the three

factors. Thus, since the factors in Table 21.2 are uncorrelated, the

communality for the first index (.848) is obtained by squaringeach of the

three correlations in the top row and then adding. Wesee that the three

orthogonal factors explain a very high percentage of the variation in all

but the last index, but since we cannot identify the factors involved this

fact is of little theoretical significance.
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Bell then proceeded to rotate in order to obtain a new set of factors

which are moreeasily identified (see Table 21.3). Notice that the first

of these rotated factors is highly related to the first three indices but

unrelated to the rest. The second factoris related to the following three

indices but not to the remainder, while the third is related to the last

index but very weakly related to the others. We are nowfaced with the

theoretical problem of interpreting these factors. Examining the nature

of the first three indices, as contrasted with the others, Bell argued that

Table 21.3. Rotated Matrix
 

 

 

    

Factors*

Measures

I’ IT’ IIT’

(1) Occupation .635 .070 — .178
(2) Education .467 — .105 . 209

(3) Rent (—) .602 — .071 — .028
(4) Fertility .097 .630 .215

(5) WLF (—) .031 711 — .029

(6) SFDU — .031 .573 — .183
(7) SEG — .098 . 106 .496

* TI’ = economic status, II’ = family status, III’ = ethnic status.

sourcE: W. Bell [1], Table 9, p. 50, with the kind permission of the author and
publisher.

since each of these indices moreorless directly involved economic status,

the first factor could be identified as such. The following three indices

seemed to have in common a focus on family patterns, and therefore

factor II’ was conceptualized as “family status.’ The final index

apparently formed a cluster to itself, being not too highly related to the

remaining indices. Bell therefore identified factor III’ as ‘ethnic

status.’’?

In the above example, we see how seven indices have been essentially

reduced to three conceptual variables. The primary value of this kind

of use of factor analysis seems to be in the contribution it may make to

conceptual clarification. In areas of research where there is apparently

no end to the number of indices which may be computed, but where the

theory underlying use of these indices is either not in existence or badly

in need of clarification, factor analysis may prove to be a very useful

exploratory device. In other instances, especially whereit is difficult to

identify the final factors even after rotation has been accomplished,

factor analysis may not be worth the effort involved. Like other

2 Actually, Bell did not identify these factors in ex post facto fashion as implied

here. ‘They were hypothesized as a result of a previous study.
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statistical techniques, it should be used as a tool which may possibly

contribute to the clarification of theory, but it cannot be expected to

serve as a substitute for sound theoretical thinking.

Factor analysis may also be used in a purely practical manner as a

criterion for the construction of indices (see [4]). Suppose, for example,

that one wishes to establish a general index of social class or discrimina-

tion. He may have half a dozen or more separate indices all designed

to measure the “‘same” underlying variable. Rather than relating

each of these separate indices to other variables, he may wish to combine

them in some manner to obtain a better single index of this underlying

variable. Quite commonly, arbitrary weightings are used in order to

accomplish this. Sometimes equal weights are given to all indices.

On other occasions, a researcher may use his own judgment as to which

index is most satisfactory, giving this index more weight than the others.

If factor analysis is used in assigning weights, we first determine

whether or not a single factor should be used to account for the inter-

correlations among indices. If the second and subsequent factors can

be shown to explain very little of the common variance among the

indices, it can be reasoned that the intercorrelations among these indices

are due to the presence of a single factor, presumably the factor being

measured by the indices. The indices can then be weighted according

to their correlations or loadings with this factor, with those indices

having the highest loadings receiving the greatest weight. Indices are

thus in effect weighted according to the strength of their intercorrelations

with the other indices rather than arbitrarily. The weighting criterion

used is therefore a function of the internal consistency among indices.

21.2. Other Multivariate Techniques

One of the major advantages of interval scales over either nominal or

ordinal scales is that as yet no techniques have been developed in the

case of the latter scales which are comparable to regression analysis or

analysis of covariance. It is, of course, possible to control simultaneously

for several variables by looking separately at the various subcategories

of control variables, but a very large number of cases will be required if

this is to be done satisfactorily. We have seen that partial correlations

can be computed using Kendall’s tau. It has been indicated in Sec. 15.4

that partial coefficients can also be computed for contingency tables by

obtaining a weighted average of the coefficients computed for the various

categories of the control variables.

It is also possible to compute multiple coefficients in the case of nominal

scales by relating the dependent variable to a single independent variable

consisting of all combinations of categories of the independent variables.
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Thus, if variables A and B are the independent variables, we could take
as categories of a single independent variable the subcategories A1B,,
A,B2, A2Bi, A2B2, A3Bi, etc. If we then compute a measure of associa-
tion, such as V or 75, between this combination variable and a dependent
variable C, we have in effect a multiple correlation coefficient. For
example, Goodman and Kruskal’s 7, could be interpreted as the propor-
tional reduction in the numberof errors in C when information about A
and B is used. To the writer’s knowledge, there have as yet been
developed no really satisfactory measures of multiple rank-order corre-
lation, nor are there any nonparametric rank-order techniques comparable
to analysis of covariance.

Certain procedures comparable to factor analysis have been developed
for use with nominal or ordinal scales, but these techniques are so new
that they have seldom, if ever, been used in thesociological literature.
Latent structure analysis is a multivariate technique developed by
Lazarsfeld and others and is theoretically a generalization of factor
analysis for the case of nominal scales (see [5]). By postulating the

existence of one or more underlying factors or dimensions, as well as a

given numberof categories or “latent classes” for each dimension, one

can account for certain interrelationships among nominal scales in much

the same manner as can be done by means of factor analysis. In most

of the applicationsof latent structure analysis published by the Lazarsfeld
group, the nominal scales have been dichotomized items taken from

attitude questionnaires, and the technique has been used to sort persons

into categories along a single dimension according to their response

patterns. When more than one dimension is postulated and when

nominal scales with more than two categories are used, the computations

apparently become quite involved, so that for all practical purposes the

methodis of limited use at the present time. It is hoped, however, that

as computing techniques becomeperfected and simplified, latent structure

analysis will come to fill an important gap in the body of available

techniques. Also of potential value are some nonmetric factor-analysis

techniques being developed by Coombs and his associates (see [3]).

There is no doubt that once such procedures have been developed and

simplified to the point where they can be used and understood by the

average practitioner, we shall have much morepowerful tools for investi-

gating the interrelationships among a large number of variables. As is

true in the case of factor analysis, however, we can expect these techniques

to require large samples. Apparently there is no computationally simple

procedure as yet developed which can handle large numbersof variables

while simultaneously requiring only moderate-sized samples. Perhaps no

such technique can ever be developed. If this turns out to be the case,

the implications for social research are profound.
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GLOSSARY

Communalities
Correlation matrix
Factor loading
Oblique factors
Orthogonal factors
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Chapter 22

SAMPLING

All the tests we have considered, as well as the procedures used for
obtaining confidence intervals, have required the assumption of random
sampling. In fact, you may have formed the impression that random
sampling is the only respectable kind of sampling usedby the statistician.
This is far from the case. There are four basic types of probability
sampling which will be discussed in this chapter: random sampling,
systematic sampling, stratified sampling, and cluster sampling. As we
shall see, it is possible to make use of statistical inference with each of
these four types of probability samples, although it is unfortunately true
that at the present time we are quite restricted as to the number of
different types of tests that can be used with nonrandom probability
samples. Especially in the case of cluster samples, our formulas also
become much more complicated. In a general text such as this, it will
therefore be impossible to do much more than to indicate some general
considerations of strategy in choosing the type of sampling which will be
most appropriate in a given situation.
We have indicated that there are four basic types of probability

sampling, one of which is random sampling. What, then, is a probability
sample? The distinguishing characteristic of a probability sample is
that every individual must have a known probability of being included
in the sample. In a random sample we haveseen that all combinations
of individuals have an equal chance of appearing. In makingstatistical
inferences it is not absolutely necessary that all probabilities be equal,
since, if the probability of selection is known,it will be possible to adjust
for unequal probabilities by a weighting procedure of some kind. It is
essential, however, that probabilities be known in order to arrive at the
proper weights. If probabilities are unknown, it will be impossible to
make legitimate use of statistical inference. With nonprobability
sampling we mayactually obtain a very representative sample, but we
shall not be in a position to evaluate the risks of error involved. After

392
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describing and comparing each of the four types of probability sampling,

we shall discuss briefly certain instances where nonprobability samples

are likely to be obtained.

22.1. Simple Random Sampling

It has been emphasized that in random sampling not only must each

individual have an equal chance of being selected but that all combi-

nations must be equally probable. We have also indicated that it is
usually more convenient to sample without replacement. Sampling

specialists usually refer to such a sample as a ‘‘simple random sample.”

Notice that on each successive draw the probability of an individual’s

being selected is slightly increased because of the fact that there will be

fewer and fewerindividuals left unselected from the population. If, on

any given draw, the probabilities of all remaining individuals being

selected are equal regardless of the individuals previously selected, then

we have a simple random sample. In effect, we have independence from

one draw to the next except for the fact that no individual can be selected

twice.

By what mechanical procedures are random samples selected? It

is sometimes erroneously thought that almost any ‘‘hit or miss’’ method

of sampling will yield arandom sample. Thisisfar from the case. Such

methods almost invariably lead to a biased sample because of the human

element involved. In order to assure ourselves that all individuals,

including those who are atypical or difficult to locate, do in fact have an

equal chance of appearing, we must ordinarily go to great lengths to draw

oursample. First, we must be sure that each individualin the population

is listed once and only once. We can then associate a number with each

position on the list and make use of some mechanical procedure, such as

that used in a bingo game, to assure equal probabilities of selection. Let

us first examine certain problems that may be encountered in thelisting

process itself.

It might be thought that obtaining a list is usually a simple matter.

In most practical research problemsthis is not the case. Often, there are

no lists at all. For example, there is no list of residents of the United

States or the state of Michigan. There will almost certainly be nolist of
Negroes or Japanese living in a given community. If nolist exists, it

may be extremely expensive to compile one. If this is the case, other

methods of probability sampling may be preferable to simple random

sampling. Lists may exist, but they may be out of date. Some indi-

viduals may not have been included while others on the list may no

longer be members of the population concerned. City directories, which

at first thought appear to be the ideal source for one who wishes to draw
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a random sample of residents, may be so out of date by the time they

are published as to be next to useless. Those individuals who have

recently arrived will be excluded from the list and therefore will have no

chanceof being selected in the sample. To the degree that such persons

differ from the rest of the population with respect to whatever charac-

teristics are being studied, the researcher will obtain a biased sample and

misleading results. Other lists, such as telephone directories or motor-

vehicle registration lists, may be biased in that lower-income groupsare

especially likely to be underrepresented. It is safe to say, therefore,

that no matter how accurate a list appears to be, you should always

carefully investigate its adequacy. A poor list can be worse than none

at all if it leads to an unusually biased sample.

What can we do if the list is inadequate? If the list is complete but

involves duplications, the problem is relatively simple provided, of

course, that the duplications are readily spotted. For example, if the

list consists of all children at a particular school and we wish toselect a

random sample of parents, we would undoubtedly discover that some

parents had more than one child attending school. Therefore if we gave

each child’s card an equal chanceof being selected, certain parents would

have a better chance than others of being included. In order to remedy

this situation we could simply remove the cardsof all but onesibling, or

we could select a parent only if his oldest child’s card were chosen,reject-

ing him if any of his other children’s cards have been included.

It should be noted that if Jones’s second or third child were selected

and we therefore did not include Jones in the sample, it would not be

legitimate to substitute for Jones the parent whose child appeared next

to Jones’s on the list. If this were done, persons with cards next to

parents with more than one child would have a higher probability of

being selected. The correct procedure would be to omit Jones and go on

to the next card selected by probability methods. Another alternative

which is theoretically possible but which may create additional problems

for analysis would be to include Jones if any of his children’s cards are

selected but to give him relatively less weight in the analysis. Thus,if

he has three children and therefore three times the ordinary probability of

selection, his scores would be given one-third the weight of the parent with

only one child.

In most problems it is more likely that the list will be incomplete or

that it will include names of individuals who are no longer members of

the population. Here it will again be possible to purify the list until it 1s

correct. If this is not feasible, it may be desirable to redefine the

population slightly to conform to the list. Suppose a list of employeesis

known to be complete and accurate as of the first of the year. Rather

than obtain the names of all persons hired since that date, it may be
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possible to confine one’s attention to employees who were with the com-

pany prior to this time and whoare presently employed there. Any

persons included in the sample but found to have left the company can

then be ignored. Notice, however, that the population studied would

not be all present employees, and any reader should be made well aware

of this fact.

Having obtained an accuratelist, it is a relatively simple matter to draw

a random sample. Theoretically, a number of mechanical devices could

be used to assure equal probabilities of selection. One could use a well-

shuffled deck of cards or draw numbers froma hat. Perhaps a round cage

containing balls with numbers on them would give more reliable results

because of the tendency of cardsorslips of paper to stick together when

shuffled or mixed. Actually, the researcher need not go through such an

involved process since tables of random numbers have already been

constructed for this purpose. Such tables were constructed by using

mechanical devices such as indicated above. For example, one could

place an equal numberof balls with the digits 0,1,2,...,9 in a basket

and proceedto select balls, each time replacing and shuffling thoroughly.

The resulting digits could then be used to form a table of random numbers

such as that given in Table B of Appendix 2.

In using a table of random numbers it makes no difference whether

we go down columnsor across rows, nor does it matter which column or

row we start with—as long as our decision is made prior to examining the

data. To illustrate the use of a table of random numbers, let us suppose

that one wishes to draw a sample of size 100 from a population consisting

of 736 individuals. Since the number 736 consists of three digits, we

shall find it convenient to select three adjacent columns (any three),

selecting another three columns when we cometo the bottom of the page.

Suppose, for example, that we decide to use the first three columnsof

the first page of Table B. As thefirst case in the sample, we select the

first number between 001 and 736 which appears. This numberis 100.

In other words, the one hundredth individual will be in the sample. We

proceed down columns1 to 3, obtaining the numbers 375 and 084. We

then come to the number 990. This would correspond to the 990th

individualin the population, but since there is no such individual we move

on to the next number whichis 128.

After a while, we begin to run into numbers which have already been

selected. Since we are sampling without replacement, we must omit

these repetitions until we have finally selected 100 cases. This is all

there is to it. The reason that the process is so simple and that arbitrary

decisions can be madeasto the use of columnsor rowsis, of course, that

the numbers appearing in the table are completely random. As a

matter of fact, it is almost impossible to use such a table incorrectly
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unless columns (or rows) are repeated or unless one cheats by deciding
he wants the 219th case in the sample and deliberately looks for a column
containing this number.

Correction for Sampling without Replacement. It was mentioned in
Chap. 9, which was on probability, that when we sample without replace-
ment we violate the assumption of independence and that, strictly
speaking, we therefore must modify our formulas to take this fact into
consideration. Usually the problem is not a serious one since the sample
selected is a small fraction of the population, and therefore the chances
of any given individual’s being selected two or more timesis rather slight.
If the sample size is as much as one-fifth the size of the population, how-
ever, it may be desirable to introduce correction factors whenever these
factors are known. Unfortunately, exact correction factors are known
only in the simplest kinds of problems. This fact is seldom a disturb-
ing one, however, since, if we were going to select a sample which is
one-third or one-half the size of the population, we would probably be in
a position to select the entire population anyway. The use of a correc-
tion factor for formulas involving the standard error of the mean will be
discussed below. In more complicated cases you should refer to a
standard text on sampling, although you will probably not find any
discussion of correction factors for the various nonparametric tests, in

such texts. Such tests, however, are most applicable for small samples

where the replacement problem is of minor importance.

The formula we should actually use for the standard error of the mean

if we have sampled without replacement is

> oC
os V1—fTN (22.1)

where f represents the “‘sampling fraction”’ or the ratio of the number of

cases in the sample to the size of the population. If we refer to the

sample size as N and the popultion size as M, we mayrewrite the correc-
tion factor as

N

V!  M

It can immediately be seen that if the sample size is relatively small

as compared with M, the value of the correction factor becomes approxi-

mately unity and thereis little or no point in using it. Thus, if a sample

of 500 is selected from a population of 10,000, the sampling fraction is

1459 and the value of the correction factor becomes .975. Notice that

since the correction factor must be less than | for finite populations, the

corrected value of the standard error will always be less than the uncor-
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rected figure. Thus, if we desire a small standarderror,as is usually the

case, we shall be on the conservative side if we do not make use of the

correction. Unless the sampling fraction is of the order of one-fifth or

more, we seldom bother to useit.

This same correction factor can be used in other formulas involving

standard errors of means or proportions. Thus, if an estimate is to be

used, we would use the formula

pe = 1/17 (2) = Vi —-7f (SS 22.2

In a difference-of-means test there would be two sampling fractions, and

the basic formula for the estimate of the standard error of the difference

of means would be

  

 

  62?

2
ina, = (1 -f+ 0-1 F (22.8)

22.2. Systematic Sampling

Another type of sampling used quite frequently is likely to be confused

with simple random sampling and, in fact, is often used interchangeably

with simple random sampling. In systematic sampling, instead of using

a table of random numbers we simply go downa list taking every kth

individual, starting with a randomly selected case among the first k

individuals. Thus, if we wanted to select a sample of 90 persons from a

list of 1,800, we would take every twentieth in the list. Ourfirst choice,

however, must be determined by some random process suchas the use of

a table of random numbers. Suppose the eleventh person wereselected.

The sample would then consist of individuals numbered 11, 31, 51, 71,

91,....
Systematic sampling is obviously much simpler than random sampling

whenever a list is extremely long or whenever a large sample is to be

drawn. If a telephone directory or city directory could legitimately be

used, we can imagine the difficulty in locating the 512th, 1,078th, and

15,324th individuals. If the ordering used in compiling the list can be

considered to be essentially random with respect to the variables being

measured, a systematic sample will be equivalent to a simple random

sample. For example, most lists are given in alphabetical order. Sur-

names, of course, are not random. A husbandand wife listed separately

would have practically no chance of appearing together in the sample

unless their name were an extremely common one. Certain ethnic

groups may have an undueproportion of names beginning with the same

letter (O’Brien, O’Neil, etc.). Actually, in the case of alphabeticallists
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we have something approximating a stratified sample (see below) in which
ethnic groups may have a tendency to be grouped together. Taking
every kth individualis thus likely to give a proper representation of each
group. In practice, since alphabetical ordering is essentially irrelevant
to most variables studied, we are usually safe in considering a systematic
sample as equivalent to a simple random sample. Special formulas
have been developed, however, which make use of somewhat different
assumptions. In most cases they will hardly be worth the extra
trouble.

There are two types of situations in which systematic sampling may
cause serious biases. Fortunately, neither occurs very frequently in
sociological problems. First, the individuals may have been ordered so
that a trend occurs. If persons have been listed according to office,
prestige, or seniority, the position of the random start may affect the
results. Suppose, for example, that the sampling fraction is i409. Two
persons may draw systematic samples with very different random starts.
A random start of two would yield a considerably higher average score
(if individuals were ranked from high to low) than a start of 27 since each
individual in the first sample will be 25 ranks ahead of the comparable
person in the second sample. If a trend of this sort is noticed, the list
may have to be shuffled somewhat or a “‘middle start’”’ used (e.g., start
with the fifteenth or sixteenth individual).
The second type of situation to be avoided is that in which thelist has

some periodic or cyclical characteristic which correspondsto the sampling
fraction. For example, in a housing development or apartment house
every eighth dwelling unit may be a corner unit. If it is somewhat larger
than the others its occupants can be expected to differ as well. If the
sampling fraction also happensto be 1g, one could obtain a sample with
either all corner units or no corner units depending on the random start.
To avoid this pitfall, one could change the sampling fraction slightly to
14 or 14, or he could make useof several different random starts. After
selecting ten households, he could pick another random number and gO
to ten more residences, draw a third number, and so on.

Systematic sampling, in combination with other designs, is often used
in social surveys because of its simplicity. An untrained interviewer can
much more easily be told to go to every third house in a block than to
use a table of random numbers. As with simple random sampling, how-
ever, the listing must be complete and accurate. If the interviewer were
to miss the smaller apartmentsor certain residences in back alleys, serious
errors could result. It is important to realize that in all types of proba-
bility sampling there must be both some element of randomization and
some sort of a complete listing. As we shall see presently, however, the
nature of the required lists may differ from one design to the next, some
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being much simpler to obtain than others. It will always be necessary

for the researcher to examinehis list carefully and to know how it has

been constructed and the nature of its defects.

29.3. Stratified Sampling

While the differences between simple random and systematic sampling

are usually relatively minor in termsof cost saving or problemsof analysis,

the remaining two basic types of sampling differ in certain fundamental

respects from the preceding two already discussed. As we shall see, both

stratified and cluster sampling can be used, under certain circumstances,

to improvethe efficiency of the sampling design. In other words, they

may be designed to yield greater accuracy for the samecost or, if you

prefer, to involve less cost for the same accuracy. It will also be found

that both of these designs require different formulas from any we have

previously used.

In a stratified sample we first divide all individuals into groups or

categories and then select independent samples within each group or

stratum. It is important that the strata be defined in such a way that

each individual appears in one and only one stratum. In the simplest

and most frequently used types of stratified sampling, we take either a

simple random sample or a systematic sample within each stratum.

The sampling fractions for each stratum may be equal, in which case we

speak of proportional stratified sampling, or we may have disproportional

stratified sampling.

One reason that we often stratify a sample is that different sampling

methods or lists may have been used for each stratum. For example,

the strata may consist of separate factories, schools, or dormitories, each

of which was studied at a different time and by different persons. It

might have been completely unfeasible to combinethelists for all strata

and then to select a single random sample. Another important reason

for stratifying rather than taking a random sample is to reduce the

number of cases required in order to achieve a given degree of accuracy.

To the degree that the strata are homogeneous with respect to the

variables being studied, we can improvethe efficiency of the design. By

discussing proportional and disproportional stratified sampling, we

shall see more specifically some of the advantagesof stratified sampling

over simple random sampling.

Proportional Stratified Sampling. Proportional stratified sampling is
often used to assure a more representative sample than might be expected

under simple random or systematic sampling. Suppose, for example,

that it is known that there are 600 Protestants, 300 Catholics, and 100

Jews in a given population. If arandom sample of size 100 were drawn,
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we would certainly not expect to get exactly 60 Protestants, 30 Catholics,

and 10 Jews. The proportion of Jews, especially, might be relatively

either too large or too small. Now suppose we were interested in

studying some variable, such as church attendance, which is closely

related to denomination. Suppose, also, that we wished to estimate the

mean number of times persons in the population attended church. It

is easy to see intuitively that a proportional stratified sample in which

the sampling fractions for all three strata were 1/9 (ie., consisting of

60 Protestants, 30 Catholics, and 10 Jews) would ordinarily yield more

reliable results than a simple random sample.

Wehavehere, in effect, a problem analogous to analysis of variance.

In a random sample there are two sources of variation. There may be

sampling errors within each stratum and there may be errors between

strata with respect to the relative numbersselected. Not only might we

select very atypical Jews or Catholics but also might select too many or

too few of each type. In stratified sampling we have eliminated this

type of between-stratum variation and are left only with the within

variation. If the strata were completely homogeneous, proportional

stratified sampling would always yield exactly correct results whereas

simple random sampling would not. On the other hand, if the strata

were as heterogeneous as would be expected by chance we would gain

nothing by stratifying. In other words,if the differences between groups

are small as compared with the within differences, stratification is of no

help. Thus the gain from stratifying is roughly proportional to the

intraclass correlation between the two variables. If the criterion for

stratifying is highly related to the variable studied, the gain may there-

fore be considerable. In gaining control over the number of cases in

each stratum, something that was not possible in random sampling, we

can assure ourselves of more accuracy for a given size sample.

You should not come to expect too much of proportional stratified

sampling. If the size of the sample is relatively large, we expect, of

course, that chance factors alone will assure us of approximately the

correct proportions from each of the strata. Since problems of analysis

are not made too complex by proportional stratified sampling, there is

little to lose by stratifying, however. It is usually neither essential nor

feasible to hunt around to obtain a single ‘‘best’’ criterion for stratifying.

To obtain a proportional stratified sample the sizes of the population

strata must be known, andit will, of course, only be possible to stratify

according to variables for which information is given from thelisting at

the time the sample is drawn. This often means that one is confined to

such simple variables as sex, age, occupation, or area of residence.

Several of these variables may even be used in combination, if so desired,

although it will seldom be advantageous to stratify by more than two or
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three variables simultaneously. Since stratification is such a simple

procedure, however, its possibilities should always be explored.

Disproportional Stratified Sampling. In disproportional stratified sam-
pling we make use of different sampling fractions to manipulate the

numberof cases selected in order to improvestill further the efficiency of

the design. There are several types of situations in which this type of

sampling is desirable. Often our interest may center primarily on the

separate subpopulations represented by the strata rather than on the entire

population. Suppose, for example, that we wished to compare the three

major religious groups with respect to their attendance. Obviously,

both simple random sampling and proportional stratified sampling would

give us too few Jews in the sample to make meaningful comparisons.

We might therefore decide to select equal numbers from each group,

thereby giving each Jewish person a probability of selection equal to three

times that of each Catholic and six times that of any given Protestant.

If we were to select 50 from each group, the respective sampling fractions

would thus be 49, 16, and 14. If we then wished to generalize to the

entire population in order to estimate the mean attendance figure, we

would have to weight the means of the three strata to compensate for the

fact that Jews have been oversampled. This weighting procedure will

be described below.

Even if our goal is to generalize to the entire population rather than to

comparedifferent subpopulations, it may still be desirable to make use of

disproportional stratified sampling if either (1) the standard deviations

within the separate strata differ considerably among themselves or (2)

the cost of gathering data varies substantially from stratum to stratum.

There will always be some optimum allocation for which the sampling

design will have maximum efficiency. In other words, there will be a

certain set of sampling fractions which will yield the smallest sampling

error for a given cost. We can obtain such an optimum allocation if we

make the sampling fraction for each stratum directly proportional to the

standard deviation within the stratum and inversely proportional to the

square root of the cost of each case within the stratum. Let us see intuitively

whythis is the case, lookingfirst at the question of the standard deviations.

If one particular stratum is unusually homogeneous with respect to

the variable being studied, it will be unnecessary to select a very large

sample from this stratum in order to obtain a given degree of accuracy.

On the other hand,it will be advisable to take a much larger sample from

a very heterogeneous stratum. Since our over-all accuracy will be

determined primarily by the degree of accuracy in the weakest link in the

chain, so to speak, it is important that we do not have oneor two strata

with large sampling errors. This is especially true if these strata happen

to be large ones. It would be pointless to have perfect accuracy in
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several of the smaller strata but a very large sampling error in another

stratum. Therefore, if we take relatively more cases from the hetero-

geneous strata and fewer from the homogeneous ones, we can get by with

fewer cases. As it turns out mathematically, the desired sampling

fractions are actually proportional to the relative standard deviations

rather than the variances.

A wordof caution is necessary at this point. A particular stratum may

be very homogeneous with respect to one variable being studied and yet

heterogeneous with respect to another. Since a research project usually

involves a study of more than one variable, it therefore may be extremely

difficult to find allocations which are optimal, or nearly optimal, for more

than one variable. Infact, a design whichis veryefficient for one variable

may be extremely inefficient for another. Therefore, it is best to consult

a sampling specialist and to be well aware of the important variables

before using disproportional allocation. When in doubt, proportional

allocation would be muchsafer.

Thus far, cost considerations have never been considered because of

the fact that we have been implicitly assuming equal costs for gathering

data on all individuals. Suppose, however, that this is not the case and

that certain strata involve higher costs than others. Various adminis-

trators, for example, may permit different data-collecting techniques, or

perhaps the physical layouts in the different strata are such that more

time is consumed interviewing in one stratum than in the rest. Other

factors being equal, 1t would obviously be less expensive to select a

relatively larger number of cases from the cheapest strata. It can be

shown mathematically that optimum allocation will be attained if

sampling fractions are taken inversely proportional to the square root of

the cost factors.

Notice that in the special case where all costs are equal and whereall

within-stratum standard deviations are equal, the sampling fractions will

also be equal and we havethesituation in which proportionalstratifica-

tion gives us optimum allocation. In general, it is usually wise to follow

the rule of using proportional stratification unless cost differentials are

very great or unless stratum standard deviations are substantially

different. As will be seen below, the use of disproportional sampling

tends to complicate problems of analysis and should therefore not be

used unless it is clearly to one’s advantage to do so.

Wehavenot as yet faced up to an extremely important question. How

can we make use of cost calculations and the relative standard devia-

tions when these are unknown at the time the sample is drawn? ‘The

obvious answeris that they have to be estimated, just as we had to make

enlightened guesses as to the values of certain parameters before we could

estimate the size of the sample we would need. We must realize, how-
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ever, that the kindsof estimates we need are not the kinds of estimates we

make from sample statistics. Of course, it would be possible to do a

pilot study in order to obtain such estimates, but unless the study is to be

an extremely large and expensive one, such an outlay of money will

probably not be feasible. Our estimates must therefore be based on the

experience of experts or on the results of previous studies. The situation

is not quite as bad as it sounds, however, since it is usually possible to

obtain very good approximations to optimum allocation with very crude

guesses as to costs and standard deviations. In other words, if there is

reason to suspect large differences among strata with respect to either of

these factors, an enlightened guess is likely to yield a design which is

almost as efficient as would be obtained with exact values.

Computations with Stratified Samples. When computing estimates of

means and estimating standard errors from stratified samples, we must

compute values separately for each of the strata and then weight them

according to the relative size of the stratum in the population. If we

let W, indicate the weight of the 7th stratum in the population and if

we set 2W; = 1, thereby reducing the weights to proportions, we can

write the formula for estimating the population mean as

X= y WX;
i=l

where the X, are the sample meansfor each of the k strata. This formula

is as we would expect. It simply says that if one stratum is three times

as large as a second, its mean should receive three times as much weight.

If proportionalstratified sampling has been used andif we let N; and M,,

respectively, indicate the sizes of the sample and population for the 7th

stratum, then by definition all N;/M; will be equal to N/M. But since

for the zth stratum
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This double summation simply means that we have summedall of the X’s.

Since we then divide this sum by the total number of cases to get X,

we thus see that in the case of proportional stratified sampling we could
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have obtained the estimate of u exactly as we did in the case of simple
random samples. For this reason we refer to proportional stratification
as being “‘self-weighting.”’ In other words, each stratum has received
its proper weight. If stratification has been disproportional, we must
multiply each X; by the weight of that stratum in the population.

In estimating the standarderror of the mean, our computations cannot
be worked out so easily. We must first estimate the standard error for
each stratum and then pool the results as was done in the difference-of-
means test and in analysis of variance. It will be remembered that
instead of summing standard deviations, we worked with the variances
and sums of squares. We also have to square the weights W;. The
formula for the estimated variance of the mean using stratified sampling
can thus be written

Gx? = LW6x,"

where 6,7 indicates an estimate of the variance of the mean within the

7th stratum. We can obtain the estimated standard error of the mean by

taking the square root of the above expression and can then compute the

¢ statistic as before.

Suppose, for example, that there are three counties and that data for

the counties can be summarized as in Table 22.1. Notice that we have

Table 22.1. Data for Computing Parameter Estimates from Stratified Samples
 

 

 

County

Total

1 2 3

Size of county (M;) 10,000 15,000 25,000 50,000 (= M)

Weight (W;) 20 .30 .50 1.00
Size of sample (N;) 50 50 50 150 (= N)
Sample mean (X;) 3,100 4,300 38,800
Sample standard deviation (s;) 500 400 300      
obtained a disproportionate sample since unequal sampling fractions

have been used. Let us assume that simple random sampling was used

within each stratum and that samples were independently drawn. ‘The

estimated standard errors, ignoring the factor 1 — f, are

 

$1 500
C ty 1: ————— — = 71.4
oe JNi—-1 /49

82 400
ounty \/No — 1 4/49

County 3: *3 300 _ 42.9
/N;—1. 49
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The estimated mean and variance will therefore be

X = .20(3,100) + .30(4,300) + .50(8,800) = 3,810

zg? = (.20)2(71.4)? + (.30)2(57.1)? + (.50)?(42.9)?

= 957.5

Although computations for means and proportions are straightforward

in the case of stratified samples, it should be recognized that one cannot

legitimately use the various nonparametric tests, tests for the significance

of correlation, analysis of covariance, etc., without substantial modifica-

tion. Unfortunately, you will generally not find discussions of these

problemsin textbooks on sampling. We knowhowto handle complicated

statistical problems if we can assume the simplest kind of sampling,

random sampling. With the more complicated sampling designs we can

handle the simplest of statistical problems such as estimating means or

proportions, computing confidence intervals for means and proportions,

and making tests of differences of means. There is a gap, however,

when it comes to more sophisticated statistical techniques with com-

plicated sample designs. It is hoped that this gap can befilled in the near

future.

and 6

29.4. Cluster Sampling

In stratified sampling we divided our population into groups which we

called strata and we sampled from every stratum. Sometimes it is

advantageous to divide the population into a large number of groups,

called clusters, and to sample among the clusters. For example, we

might divide a city into several hundred census tracts and then select

40 tracts for our sample. Such a sampling design is referred to as cluster

sampling andis frequently used in social surveys in order to cut down on

the cost of gathering data. As we shall see presently, the aim in cluster

sampling is to select clusters which are as heterogeneous as possible but

which are small enough to cut down on such expenses as travel costs

involved in interviewing.

In cluster sampling we do not sample our elements directly. Instead,

we sample clusters or groups of elements. In the simplest of cluster

designs we might use random selection among clusters and then select

every individual within those clusters included in the sample of clusters.

Such a design is often referred to as a single-stage cluster design since

sampling occurs only once in the process. In multistage sampling, on the

other hand, the design may be much more complicated. We might first

take a simple random sample of census tracts within the city. Then

within each tract we might take a simple random sample of blocks (smaller

clusters). Finally, the interviewer might be instructed to select every
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third dwelling unit within those blocks included and to interview every
second adult within each of these households. Thus, sampling pro-
cedures may enter the selection process at a number of points. It is
essential in probability sampling, of course, that there be some element
of randomness in the procedure. Sampling fractions may be computed
which produce unbiased samples so that every individual in the popula-
tion has an equal chance of appearing in the sample. It will not be
possible to ensure independence of selection by this method, however.
Persons within the samecluster will generally have a better chance of
appearing together in the same sample than membersof different clusters.
In fact, the whole purpose of cluster sampling is to ensure that this will
occur.

It will be instructive to compare cluster sampling with both simple
random sampling and stratified sampling. In order to simplify the
argument, let us suppose that we are using a single-stage cluster design

in which clusters are selected randomly and then every individual within

the sampled clusters is used in the total sample. How does cluster

sampling differ from stratified sampling? Notice that although both

involve dividing the population into groups, they in a sense involve

opposite sampling operations. In stratified sampling we sample indi-

viduals within every stratum. Weare therefore sure that every stratum

is represented by a certain numberof cases. Our sampling errors involve

variability within the strata. We therefore want the strata to be as

homogeneousas possible and as different as possible from each other.

In (single-stage) cluster sampling, on the other hand, we have no

source of sampling error within a cluster because every case is being used.

Since we are only taking a sample of clusters our error now involves

variability between the clusters. If the cluster means differ considerably

as compared to the variability within clusters, we run therisk of obtain-

ing some very unusual clusters in our sample of clusters. If this should

occur, and if the clusters are homogeneous, our sampling error could be

considerable. But if the clusters are heterogeneous as compared with

differences among clusters, we can get by with relatively few large clusters.

Suppose, in the extreme, that every cluster were heterogeneous and that,

by comparison, differences among cluster means were insignificant. We

could then simply select one very large cluster and obtain an excellent

sample. However, if the clusters were completely homogeneous we would

need only one case in each cluster. We thus attempt to obtain homo-

geneous strata but heterogeneous clusters, the reason for the variance in

strategy being the difference in the point at which the sample is drawn.

Let us now compare cluster sampling with simple random sampling.

In practically all examples you will encounter, cluster samples will be

less efficient (i.e., will yield greater sampling errors) than simple random
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samples of the same size. As we shall see shortly, however, it may cost

considerably less to obtain cluster samples. Our problem will be essen-

tially that of balancing cost and efficiency. How, then, do we compare

the relative efficiencies of the two designs? Efficiency is most con-

veniently measured in termsof the size of the standard error of the esti-

mate, a small standarderror indicating high efficiency. As we have seen,

it is desirable to obtain clusters which are as heterogeneous as possible.

This intuitive notion can be translated into a formula involving the

intraclass correlation coefficient. It can be shown that the ratio of the

variances of the estimates of » for cluster and for simple random samples

is approximately

OX," =
OX = 1+ p(N — 1)

where ox,? and ox,” represent the variances of the means for cluster and

simple random samples, respectively, p; represents the population intra-

class correlation, and N is the mean numberofcases in each of the clusters.

Notice that the ratio of variances will ordinarily be greater than unity,

indicating larger variances (and hence standarderrors) for cluster sam-

pling. The expression will be greater than unity unless either N =1or

0: <0. Obviously, if N = 1 the cluster sample reduces to the special

case of a random sample since each ‘‘cluster’’ consists of a single case.

Intraclass correlation is, of course, a measure of homogeneity. If the

cluster is more homogeneous than would be expected by chance, p; will be

greater than zero, and the more homogeneousthe cluster, the larger the

value of p; Conceivably, p; can be negative. But this would require

that the cluster be more heterogeneous than would be expected by chance.

Asit turns out, the kinds of clusters which we ordinarily select for practical

purposes will nearly always be at least as homogeneous as expected by

chance.

Wesee that if p; > 0, the larger the numberof cases N inthecluster,

the greater the ratio of variances and therefore the lower the relative

efficiency of the cluster design. This can be seen intuitively. If a

cluster is quite homogeneous we do not need very many cases to obtain

an accurate estimate of its mean. We might very well have taken a small

sample from within the cluster and used the money saved to study addi-

tional clusters. There are thus two factors which determine therelative

efficiency of the cluster design: the degree of homogeneity within the

clusters and thesize of the cluster itself. We want homogeneousclusters

to be small; if they are heterogeneous we can afford to take more cases

within each cluster without seriously impairing the efficiency.

As we have already indicated, cluster sampling is usually more economi-

cal than simple random sampling. Suppose, for example, that one wished
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to obtain a nationwide sample to study votingor fertility behavior. In
the first place, no list of adults would be available. The cost of compiling
such a list would be prohibitive. Lists of counties are available, however.
It would certainly be muchless expensive to draw a random (or systematic
or stratified) sample of counties and then to work only within those
counties actually selected. Even within each county a simple random
sample would probably not be feasible. There is another obvious cost-
saving factor. It will be much less expensive to send interviewers into,
say, 50 counties than to scatter them all over the countryside. In a
simple random sample, there might be only ten persons selected in the
state of Montana. Imagine sending an interviewer all over the state to
collect data on these persons! With cluster sampling, local interviewers
can be efficiently trained, and each can obtain a relatively large numberof

interviews without incurring huge travel expenses. Cluster samplings
taken on state, county, or city levels would all have the same advantages,
although to a lesser degree to be sure.

There are a numberof costs involved in any sample survey. It is these

costs, not the numberof cases, which set the limits to the study. There

are certain fixed costs which will be independent of the sample design and

the numberof cases selected. For our purposes, these can be ignored

since they can simply be subtracted from the total funds available.

Then there will be costs involved in actually listing the units to be

sampled. As we have seen, cluster sampling often reduces listing costs
considerably. Certain costs will be directly proportional to the number

of cases ultimately selected. The salary paid to the interviewer while he

is actually talking to the respondent, costs of coding the data, and certain

computational costs fall into this category.

Other costs may be proportional to the number of clusters selected,

however. Most travel costs, including costs of call-backs, are of this

variety. It will be more economical to send an individual into a given

county for several days and then into a second county than to have him

travel all over the state only to find that certain respondents are not

homethefirst time he calls. Generally speaking, whenever travel costs
and other costs which depend on the numberof clusters selected are quite

large aS compared with costs which vary directly with the number of

cases, cluster sampling will be more economical than simple random

sampling. For example, in a survey of a large area involving very short

interviews, cluster sampling may be appropriate. If interviewslast for

several hours or more, simple random sampling may be more sensible

providedlisting costs are not prohibitive.

Thus, when deciding which design to use, one must balance cost

considerations against the efficiency of the design. Whichever method
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will yield a smaller standarderrorfor a given cost should be used. Since

it is not necessary to take every individual within sampled clusters, a

multistage sample may provide a satisfactory compromise. We then

have the complicated problem of selecting an optimum design in which

we must determine the numberof stages in which samplingis to be used,

the numberof clusters to be used, and the numberof cases to be selected

from within each cluster. The problem is further complicated by the

fact that most studies will undoubtedly involve not one but a numberof

variables and that the clusters will not be of the same size. Lest there

be any doubt in your mind at this point, it is therefore always wise to

consult a sampling specialist before making a decision as to design.

Careful planning not only can be economical but also can result in

fewer problems whenit comes to analysis of the data.

Before closing this section on cluster sampling, it is again necessary to

inject a word of caution. Formulas found in this text cannot be used

with cluster sampling. As has been pointed out, errors introduced by

using simple random sampling formulas for data collected from cluster

samples can be extremely serious. These errors are not of the order of

magnitude of errors introduced by using the normaltable instead of the ¢

table. They may be much greater. Instead of having significance at

the .05 level, the true level (as obtained by correct cluster sample for-

mulas) may be as high as .50 (see [3]). If we wish to reject a null

hypothesis, we shall seldom if ever be on the conservative side using

random sampling formulas for clustered data. It will be remembered

that cluster samples are less efficient than simple random samples of the

same size. Therefore, simple random sample formulas will underestimate

the true standard errors. Put differently, a cluster sample of a given

size may be equivalent in termsof efficiency to a much smaller random

sample. A cluster sample of size 800 may be equivalent in efficiency to a

simple random sample of 500. If simple random sample formulas are

used with an N of 800, therefore, we are more likely to obtain significance

than if the correct procedures were used.

One should thus be extremely cautious in analyzing data from clustered

samples. He should not make use of statistics such as chi square unless

the sampling specialist can help him introduce appropriate correction

factors. The problem is not quite so serious with stratified samples

because, if anything, stratified samples are more efficient than simple

random samples. A stratified sample of a given size may be equivalent

in efficiency to a somewhat larger random sample, and the researcher

will generally be on the conservative side in rejecting a null hypothesis.

This is not always the case, however, and proper caution should therefore

be exercised.
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22.5. Nonprobability Sampling

Weturn,briefly, to certain situations in which nonprobability sampling

has been used. The major disadvantage of nonprobability sampling is

that we can obtain no valid estimate of our risks of error. Therefore,

statistical inference is not legitimate and should not be used. This does

not mean that nonprobability sampling is never appropriate. In

exploratory studies, the main goal of which is to obtain valuable insights

which ultimately may lead to testable hypotheses, probability sampling

either may be too expensive or lead to fewer such insights. One may

wish to interview persons whoare in especially good positions to supply

information, for example. Or he may wish to interview extreme cases,

those which will provide him with most striking differences. If this is

done, of course, he has no legitimate right to test for the significance of

differences among extremes unless he is attempting to generalize to a

population made up entirely of such persons. The fact that you can

undoubtedly think of studies in which statistical tests have been made on

such extreme cases does not mean that such a procedureis legitimate.

This is not to deny, however, that useful insights may be obtained by

such a comparison.

Nonprobability methods are sometimes used when the purposeis to

make generalizations about a population sampled. Such methods

invariably either make use of the interviewer’s judgment as to the

individuals to be included or permit an individual sampled to be selected

out of the study on some nonrandom basis.

Quota samples often used in public opinion surveys seem, on the

surface, to be similar to stratified samples. An interviewer is given

certain ‘‘quotas”’ he must fill. He must have so many females over 40,

SO many persons with an income of less than $3,000, or a certain per-

centage of Catholics. But it is left up to his discretion which females over
40 or which Catholics to interview. Being only human,heis likely to

select those persons who are most conveniently located. If he goes to

their home, he mayselect only those persons who are at homeat the time.

Even if he is consciously aware of such a selective tendency it will be

difficult for him to correct for it exactly. An extremely conscientious

interviewer might even oversample persons who are seldom at home or

lower-class individuals who might be missed by other interviewers.

Perhaps a well-trained person may become quite expert in the use of his
judgment. Butit will be difficult if not impossible to tell. If any group

which is either under- or oversampled happens to differ markedly from

others with respect to the variable being studied, the sample may be

seriously biased. What is more, we have no way of estimating just how

biased it may be. The famous example of the Literary Digest poll, in
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which such a biased sample was obtainedin predicting election results,is

an example of a nonprobability sample and what can happen when one

attempts to generalize on the basis of such results.

Whenever lists are incomplete or whenever a large percentage of

persons must be considered as nonrespondents, we havein effect another
example of nonprobability sampling. If one receives a 50 per cent return

on a mailed questionnaire, serious biases can be introduced owing to the
fact that nonrespondents maydiffer significantly from those who returned

the questionnaire. Thus, even though pains may have been taken

initially to obtain a probability sample, certain individuals actually have

no probability of being includedin the ultimate sample because they have

selected themselves out by refusing to answer. It is for this reason that

it is of utmost importance to follow up a mailed questionnaire with one

or more postcardsin order to obtain a higher percentage return. Like-

wise, the interviewer must learn to be persistent and must expect to make

several call-backs in order to get a sufficient return. Obviously, a

substantial bias cannot be compensated for by a large sample.

22.6. Nonsampling Errors and Sample Size

Even if one has been extremely careful to design a study which meetsall

of the requirements of good sampling, there will always be certain non-

sampling errors involved. Probability theory enables us to evaluate the

risks of samplingerrors, i.e., those errors introduced by virtue of the fact

that samples vary from one to the next. Nonsampling errors, on the

other hand, are errors of measurement. In astudy involving an interview

or questionnaire there will always be response errors. In some cases,
such as women’s ages, for example, there may be a consistency of errors —

leading to a definite bias. In other examples, response errors may be

more or lessrandom. An interviewer’s own biases maycolorhis results.

In this text we cannot go into a detailed discussion of the kinds of non-

sampling errors possible, nor is this necessary since this question has
been treated more than adequately ina numberof sources. One extremely

important point is worth mentioning, however. There is nothing to be

gained in reducing sampling errors below a certain point as compared

with nonsampling errors. If these two types of errors can be assumed

to be independent of each other, we can diagram thesituation as in Fig.

22.1. The total error is thus a function of two independent sources of

error and cannot be substantially reduced unless both types are simul-

taneously controlled. If nonsampling mistakes such as responseorinter-

viewing errors are large, there is no point in taking a huge sample in

order to reduce the standard error of the estimate since the total error will

be primarily determined by the length of the base of the triangle. Like-
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wise,if oneis willing to go to great pains to reduce nonsamplingerrors to a

minimum,it will be foolish for him to make use of a small sample, thereby

having a large sampling error. A proper balance between sampling and

nonsampling errors should therefore be maintained. Research accuracy

limits effective sample size and vice versa. Unfortunately, nonsampling

¢

gi ertot Sampling
error

 

Nonsompling error

Fig. 22.1. Relationship between total error and sampling and nonsamplingerrors.

errors are usually difficult to estimate. If errors can be estimated, how-

ever, the most effective total design would be one for which bothlegs of the

triangle are equal. It is well to keep this fact in mind.

GLOSSARY

Cluster sample
Sampling fraction
Simple random sample
Stratified sample
Systematic sample
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Chapter 23

CONCLUSIONS

We have covered a fairly broad range of statistical techniques, and

while there are many other topics which are beyond the scope of this

text, you should have a reasonably clear conception of the kind of tasks

statistics can and cannot perform. It is hoped, of course, that any

previous misconceptions you may have had about the field have disap-

peared and that you now perceive statistics neither as a subject which
should be avoided at all costs nor as a tool which in itself assures the

inevitable development of a scientific discipline. We have seen that

statistics cannot serve as a substitute for sound theory, nor can it be

used to solve the difficult problems of measurement presently confront-

ing the social sciences. On the other hand, we have seen that such
multivariate techniques as multiple and partial correlation, analysis of

covariance, and factor analysis can be used for exploratory purposes in

order to help locate the important variables, permit indirect causal

inferences, make hypothetical adjustments to take into consideration the

effects of uncontrolled variables, or even as an aid to conceptual clarifica-

tion. Although we should be on guard against expecting too much of this

relatively new and rapidly developing discipline, we may look forward

to some exciting new developments in the not-too-distant future. For

this reason, if for no other, it is hoped that you will endeavor to look into

topics other than those covered in this text and that you will be alert for

new possible applicationsof statistics to your ownfield.

Although it is impossible to summarize briefly all of the tests and other

procedures discussed in the preceding chapters, we can indicate once more

the general kinds of procedures we have covered. We shall then turn to a

consideration of one’s over-all strategy in deciding what technique to use

in any given problem.

We have,first of all, certain descriptive measures which include not

only such quantities as percentages, means, and standard deviations but

also the various measures of association between two or more variables.

413
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Multiple factor analysis belongs under the heading of descriptive sta-

tistics since, although interest may ultimately center on generalizing to a

population on the basis of sample results, we can as yet make nostate-

ments of inference concerning the sampling fluctuationsof factor loadings.

The value of inductive statistics, the second major category we used in

delimiting the field of statistics, lies in the fact that we are able to make use
of probability theory to make rational decisions concerning the nature of

the population on the basis of limited sample information. The major

portion of this book has been concerned with the testing of hypotheses,

most of which have taken the form of null hypotheses predicting no rela-

tionship between two variables. We have seen that although the usual

reason for establishing confidence intervals is to estimate population

parameters, the basic logic underlying tests of hypotheses and inter-

val estimation is essentially the same. For example, we found that

confidence intervals can be used to test a whole range of hypotheses

simultaneously.

An important question that you have undoubtedly been raising for

quite some time concerns the problem of deciding which amonga large

numberof possible techniques will be most appropriate for a given applica-

tion. There is, of course, no simple answer to such a general question,

since every problem will be unique in someaspects and since there may be

several satisfactory procedures, no one of which is clearly superior to the

others. Perhaps the best that can be donehere is to list some general

canonsof strategy that one should follow in narrowing downhis range of

choice. Having thought his problem through andarrived at some tenta-

tive decisions, one should always consult a statistician where feasible

unless the problem is a straightforward one. This, incidentally, should be

considered the most important canon of strategy; if followed, it can save

considerable grief later on.

Listed below are three general steps that should be carried out in the

planning of any statistical project. Ideally, they should be considered

more or less simultaneously since the decisions made in connection with

any one step mayaffect those for the others. It will be impossible in any

realistic problem to makeall such decisionsprior to the collection of data.

The more the major problemscan be anticipated and intelligent decisions

made at an early stage, however, the morelikely the research design will

be a good one.

1. Anticipating Results. Before proceeding very far with a research

project it is always a good idea to try to predict what theresults will look

like when the study is completed. For example, one may construct

dummy tables using hypothetical data which are as realistic as possible.

How will such tables have to be modified when certain controls are intro-

duced? About how many cases will be needed to obtain significance
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with results such as these? What measures, if any, willbe needed? How

will items be scored? Which variables should be related first? By

attempting to answer questions such as these, with hypothetical data

in front of him to make it easier to visualize the form of his results, a

researcher can acquire valuable insights about how hewill analyze his data

to obtain the kinds of information he desires. By setting up dummy

tables, for example, he may discover that his questions must be asked and

scored in one manner rather than another, and he can design his research

instrument accordingly. If considerations of analysis are postponed

until after the data have been collected, he may find that he lacks just

that piece of information required in one of his tests. Or he may find

that one of his procedures requires an ordinal scale which might have been

obtained had his questions been asked in a different manner.

9. Choosing a Sample Design. If the problem of sample selectionis at

all complicated, a sampling specialist should be consulted at an early stage

in the development of the project. Not only must one consider such

factors as the number of cases sampled, the availability of lists, and cost

considerations, but he should also anticipate the kind of analysis he

wishes to perform. For example,if he wishes to use analysis of covariance

or certain nonparametric procedures on a given subsample, he may wish to

avoid cluster-sample designs even at a slight cost in sampling efficiency.

To the extent that he can inform the sampling specialist of his tentative

plans for analysis, it may be possible to work out certain modifications in

the sampling design which makefor the most effective possible compromise.

3. Selecting among Alternative Procedures for Analysis. One of the first

decisions with respect to analysis will involve the general kind of

procedures to be used: significance tests, confidence intervals, measures

of association, regression equations, etc. Assuming that his interest is

focused on the relationships among several variables, there is a definite

sequence one will probably wish to follow. rst, he will want to test for

the significance of a relationship to see whether or not a relationship

(however slight) may be assumed to exist. If he has established the
existence of a relationship, he has at least discovered that there is one

which may be worth explaining. Second, if a relationship has been found

to exist, he will then want to ask how strong it is. Some measure of

degree of relationship can be used to answer this question. He will also
probably want to ask the theoretical question, “How important is this

relationship, given the fact that it is at least moderately strong?”
Third, if the relationship is at least moderately strong andif an interval-

scale level of measurement has been attained, it may be desirable to

obtain a prediction equation describing the nature of the relationship

between the variables concerned. We thus havethree levels of analysis,

each designed to answer a different question. Significance tests provide
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answers to the weakest of these questions and cannot be used directly
to make inferences about the strength of relationship.
Having decided upon the general class of procedure to be used, and

having also decided which variables are to be interrelated and which con-
trolled, it will then be necessary to select among the various available
tests and measures. In selecting among measures, one considers the level
of measurement attained for each of the variables being interrelated and
then examines the properties of the various measures available. In
choosing between alternative tests, one is confronted with a somewhat
more complicated problem. Wefirst determinethe level of measurement
attained for each of the variables used. This will ordinarily narrow down
the range of alternative procedures and sometimes will almost auto-
matically point to a particular technique. For example, if there are two

interval scales and one nominal, analysis of covariance would come to

mind. With one interval and one nominal we would thinkof analysis of
variance.

After deciding upon the level of measurement, we then examine the

assumptions required by each of the remaining alternative tests. When

choosing amongthese tests we consider the degree to which these assump-

tions may be violated, balancing against this criterion the power of the

test. If two tests are almost equally powerful, we would ordinarily

choose the one involving weaker assumptions. This may involve drop-

ping back to a lower level of measurement, with a loss of certain informa-

tion. The choice of test or measure may also be influenced by other

considerations such as the degree of sophistication expected of the reader.

If a large numberof different variables are to be related, it may be neces-

sary to make use of the same procedure in each case for the sake of com-

parability or readability.

There are thus no hard and fast rules that can be used to provide

“cookbook”? answers to the important question of which procedure to

use. It will often be almost impossible to evaluate the degree to which

certain assumptions are being violated, nor will exact power functions be

known. It would therefore be extremely misleading if you were left

with the impression that the application of statistics to specific research

problems involves a routine procedure of locating the ‘‘correct”’ test or

measure. It is for this reason that it is much more important to obtain

a good grasp of the fundamentals of statistical inference, together with

some understanding of the assumptions underlying each test, than to

master a wide range of techniquesin the hope that one of them will apply

to any particular problem at hand.

An effort has been made to help you develop a strict statistical con-

sclence in avoiding the use of techniques requiring dubious assumptions.

On the other hand, you should try not to permit an overly strict con-
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science to restrict the use of certain powerful techniques such as analysis

of covariance or regression analysis to situations in which you are almost

certain the assumptions have been met. Especially in instances where

comparable nonparametric techniques are not available and where the

aims of the research are exploratory in nature, valuable insights may be

gained through the use of these methods even though results must be

interpreted with caution. Statistics is one among a numberof tools used

by the social scientist. Like all tools, if used skillfully and sensibly

statistics can be of considerable value to the practitioner; if misused, it

may lead to conclusions which are highly misleading.
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REVIEW OF ALGEBRAIC OPERATIONS

Since most students will have forgotten much of what they learned in

elementary algebra, a brief review of some of the basic algebraic opera-

tions may be helpful. Someof these rules will be stated below in very

concise form. If a more extensive review is needed, you should consult

an algebra text.

One of the basic things to remember about arithmetic and algebraic

manipulations is that the order in which the operation is carried out is of

extreme importance. Generally speaking, whenever there is a fairly

complicated expression one works from the inside out. The following

rules should be more or less committed to memory.

1. Expanding a Squared Sum or Difference

(a+b? =a@+4+20b+ 0? Aa’ + BO

(a—b)?? =a? —2ab+ 0 4a’ — WD

The converse holds when dealing with square roots

 

Ja + 20b +P = Vat b)i=a+b

It is definitely not true that

JVae+e=at+b

2. Dividing by a Sum or Difference. Although it is true that

a+b_a
 ¢

o
C C

+

we cannot so readily simplify the expressions

a a

b+e oF b—c

419
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a

b+¢

3. Dividing by a Fraction. If the denominatoris itself a fraction, we
can place the denominatorof the denominatorin the numeratorasfollows:

For example,

 

a a
aaa

ee ec
bfe Wb

a a/b  ad_ adLikewise, id be 7 be

a _ ¢e+td_ a(e+d)
ane b/(e+d) “bh

4. Multiplication of Powers. If we have the product of a numberraised
to the power a and the same number raised to the power 6b, we may add
exponents. Thus

X*X? = Kors and XeX? = X5
But X*-+ Xo ~ Xats and X? + X* = XX +1) ~ X5

Similarly, we subtract exponents when dividing

a 3

a= ke and 4-X=x

In particular, y= XI4 = X09 = |

Thus, any real number(other than 0) when raised to the 0 poweris 1.
5. Negative Exponents. A numberraised to a negative power may be

written as the reciprocal of that numberraised to the same positive power.
Thus

1 1—a — —2 —xX Ya and xX ¥

6. Removing or Adding Parentheses. Here wefollow the rule of working
from the inside out. A negative sign before a parenthesis means that
each term within the parentheses must haveits sign changed if the
parentheses are removed. Thus

—la — (6—c)] = -—[fa—b+c] = -a+bd-e

and a — [b — (ec — d)*] = a — [b — (c? — 2cd + A?)]
=a —[b — c?+ 2cd — a?

=a—b+c— 2d+ a

Similarly, we must changeall signs of quantities placed inside any paren-
theses we may introduce if the parentheses are preceded by a negative
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sion. Thus

a—-b—c=a-—(b+0)

and a—b+e—d=(a—b)+(c —d) = —(b—a) —- (d—¢)

Use of Summation Signs. In statistics it is frequently necessary to make

use of formulas involving sums of numerous quantities. As a shorthand

substitute for writing out each of these sums at length, we make use of

the Greek letter = (capital sigma) to indicate asummation. Asa general

rule, whenever this symbol appears it means that all quantities appearing

to the right of it should be summed. Rather than using completely dif-

ferent letters for each quantity being summed (e.g., a, b,c, d,e,f,... ),

we ordinarily make use of a single letter (usually X, Y, or Z), together

with a subscript 7, j, or k which can take on any numerical values we

please. Usually, although not always, the first score will be symbolized

by Xi, the second by X2, and so forth. We then make use of 2 as follows:

N

) X= Xit Xe+ Xt ss + Xy

t=1

The notations above and below > are used to indicate that 7 takes on the

successive values 1, 2, 3, up to N. Similarly, we might write

8

Y Xi Xt Net Xe t+ Xot Xr + Xs
t=3

In this latter case, we have been instructed to add the scores of the third

through the eighth observations.

If we follow the usual rules of algebra, we may derive certain rules

which must apply to summations. Most of these rules will be stated with

little or no explanation, since many obviously follow from the definition of

> and very simple rules of algebra.

N

1. ) Xe= XP + XP + XP t 00+ + Xy!

y

2. > XiY; = XiV1 + XoYe + X3V3 + . ff ¢ + XwYN

. =

3. > (Xi + I =(Xi+ Yi) + (X2.+ V2 +-°-- + (Xv 4+ Yy)

t=1

= (Xi+ X2+-°++: + Xy)

+(¥it Yet--+:+ + Yw)

xt Sy.

n
s
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(Xi-Y¥) = )xX,- YY; (see3)
1 > >

5. (X;+ Y)?

i
b
e
T
W
h

Soe text ra

= dare Larne Ye
t=]

N
Note: The factor 2 can be taken out of the second term, giving 2 > X,Y;

(see 6)

6. If k is a constant

i=l

N

) kX = kX1 + kXe + Les LEX
41=1 Ny

=KXi+Xet +++ +Xy) =k) x,
1=1

N

7. () x:)'= (Kit Ket +++ + Xy)?

= X/’+ X.2 + “fe * + Xn? + 2X1X2

+ 2X1X3 + sc" + 2Xy_iXyN

AXVH+XP +--+ + Xy’?

In other words, we must distinguish between

N N ,

Yxe ona (Px)
We mayalso sometimesfind it convenient to express a sum in termsof a

double summation over two indicesi andj. Each quantity to be summed
N M

can be written with a double subscript (7). The quantity > > Xi;

t=1lj=1

means that we first sum the second subscript 7 from 1 to M, and then,

working outwards, we sum 7 from 1toN. Thus

N M N

d Xi= Y Kat Xet Xat ++ + Xa
i=1j=1 i=l

= (Xi1 + Xie + ss + Xia) + (Xe1 + Xo2 + ane + Xoar)

Pett Hb (Xw1i t+ Xne + ++ + Xvm)
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d(y Xi) = > (Xi + Xie + .- °° + Xin)?

t=1 j=l

Working with Very Large or Very Small Numbers. In working with very

large or small numbers, especially when taking squares or square roots, it

is often convenient to make use of powers of 10. Since 10° = 10,

102 = 100, 10? = 1,000 and so forth, by counting the number of places

to either the right or left of the decimal we can write any figure as a

number between 0 and 10 times a certain power of 10. Thus

13 = 1.3(10) = 1.3 X 10!

138 = 1.38(100) = 1.388 X 10?

Similarly,

1,382 = 1.382(1,000) = 1.382 x 10°
1,382,461 = 1.382461 X 10°

13 = = = 13x 107

013 = a=3 1.3 X 107

00013 = 16,000 = 1.3 x 10-4

If we wish to square the quantity 1,382, we get

1,3822 = (1.382 x 10%)? = 1.382? X 10°
= 1,9099 X 1,000,000 = 1,909,900

It is thus much easier to keep track of the decimal point.

In taking square roots it is simplest to make use of even powersof ten.

Since 1/100 = 1/102 = 10 and v/10,000 = 1/104 = 10? = 100

and, in general, 4/102 = 10*

whereas

4/1,000 = 1/10? = 101/10 and ~+/100,000 = 1/10* = 100 1/10

we see that it is always possible to take even powers of 10 out from under

the radical, although this is not possible with odd powers. When taking

a square root, therefore, we can count the numberof pazrs ofdigits to the

right or left of the decimal and can express the original quantity as a

number between 1 and 100 times an even powerof 10.
 

 
 

Thus /20,681,461,385 = ~/2.068 X 10° = 10° 1/2.068
MILLI

and _-+/151,456,008,351.75 = ~/15.146 X 10= 105 +/15.146
MIU ULI

Also «000003571 = \/3.871X10 = 10/3871 = VOT
UU

1,000
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TABLES

Table A. Table of Squares and Square Roots

Number Square Square root Number Square Square root

1 1 1.0000 31 961 5.5678
2 4 1.4142 32 10 24 5.6569
3 9 1.7321 33 10 89 5.7446
4 16 2.0000 34 11 56 5.8310
5 25 2.2361 35 12 25 5.9161
6 36 2.4495 36 12 96 6 .0000
7 49 2.6458 37 13 69 6.0828
8 64 2.8284 38 14 44 6.1644
9 81 3.0000 39 15 21 6.2450

10 1 00 3.1623 40 16 00 6.3246

11 1 21 3.3166 41 16 81 6.4031
12 1 44 3.4641 42 17 64 6.4807
13 1 69 3.6056 43 18 49 6.5574
14 1 96 3.7417 44 19 36 6.6332
15 2 25 3.8730 45 20 25 6.7082
16 2 56 4.0000 46 2116 6.7823
17 2 89 4.1231 47 22 09 6.8557
18 3 24 4.2426 48 23 04 6.9282
19 3 61 4.3589 49 24 O01 7.0000
20 4 00 4.4721 50 25 00 7.0711

21 441 4.5826 51 26 O1 7.1414
22 4 84 4.6904 52 27 04 7.2111
23 5 29 4.7958 53 28 09 7.2801
24 5 76 4.8990 54 29 16 7.3485
25 6 25 5 .0000 55 30 25 7.4162
26 6 76 5 .0990 56 31 36 7.4833
27 7 29 5.1962 57 32 49 7.5498
28 7 84 5.2915 58 33 64 7.6158
29 8 41 5.3852 59 34 81 7.6811
30 9 00 5.4772 60 36 00 7.7460     
 

sourcE: H. Sorenson, Statistics for Students of Psychology and Education, McGraw-
Hill Book Company, Inc., New York, 1936, table 72, pp. 347-359, with the kind per-
mission of the author.
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Table A. Table of Squares and Square Roots (Continued)
 

 

     

Number Square Square root Number Square Square root

61 37 21 7.8102 101 1 02 O1 10.0499
62 38 44 7.8740 102 1 04 04 10.0995
63 39 69 7.9373 103 1 06 09 10.1489
64 40 96 8 .0000 104 1 08 16 10.1980
65 42 25 8.0623 105 1 10 25 10.2470
66 43 56 8.1240 106 112 36 10.2956
67 44 89 8.1854 107 11449 10.3441

68 46 24 8.2462 108 1 16 64 10.3923
69 47 61 8.3066 109 11881 10.4403
70 49 00 8.3666 110 1 21 00 10.4881

71 50 41 8.4261 111 1 23 21 10.5357
72 51 84 8.4853 112 1 25 44 10.5830
73 53 29 8.5440 113 1 27 69 10.6301
74 54 76 8.6023 114 1 29 96 10.6771

75 56 25 8.6603 115 1 32 25 10.7238
76 57 76 8.7178 116 1 34 56 10.7703

77 59 29 8.7750 117 1 36 89 10.8167

78 60 84 8.8318 118 1 39 24 10.8628
79 62 41 8 .8882 119 1 41 61 10.9087
80 64 00 8.9443 120 1 44 00 10.9545

81 65 61 9 .0000 121 1 46 41 11.0000
82 67 24 9.0554 122 1 48 84 11.0454

83 68 89 9.1104 123 1 51 29 11.0905
84 70 56 9.1652 124 1 53 76 11.1355
85 72 25 9.2195 125 1 56 25 11.1803

86 73 96 9.2736 126 1 58 76 11.2250
87 75 69 9.3274 127 1 61 29 11.2694
88 77 44 9.3808 128 1 63 84 11.3137
89 79 21 9.4340 129 1 66 41 11.3578
90 81 00 9.4868 130 1 69 00 11.4018

91 82 81 9.5394 131 17161 11.4455
92 84 64 9.5917 132 1 74 24 11.4891
93 86 49 9.6437 133 1 76 89 11.5326

94 88 36 9.6954 134 1 79 56 11.5758
95 90 25 9.7468 135 1 82 25 11.6190
96 92 16 9.7980 136 1 84 96 11.6619

97 94 09 9.8489 137 1 87 69 11.7047
98 96 04 9.8995 138 1 90 44 11.7473

99 98 O1 9.9499 139 193 21 11.7898
100 1 00 00 10 .0000 140 1 96 00 11.8322
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141 198 81 11.8743 181 3 27 61 13 .4536
142 2 01 64 11.9164 182 3.31 24 13 .4907
143 2 04 49 11.9583 183 3 34 89 13.5277
144 2 07 36 12 .0000 184 3 38 56 13.5647
145 2 10 25 12.0416 185 3 42 25 13.6015
146 2 13 16 12 .0830 186 3 45 96 13 .6382
147 2 16 09 12.1244 187 3 49 69 13.6748
148 2 19 04 12.1655 188 3 53 44 13.7113
149 2 22 01 12.2066 189 3 57 21 13.7477
150 2 25 00 12.2474 190 3 61 00 13.7840

151 2 28 01 12 .2882 191 3 64 81 13 .8203
152 2 31 04 12 .3288 192 3 68 64 13 .8564
153 2 34 09 12.8693 193 3 72 49 13 .8924
154 2 37 16 12 .4097 194 3 76 36 13 .9284
155 2 40 25 12 .4499 195 3 80 25 13 .9642
156 2 43 36 12 .4900 196 3 84 16 14.0000
157 2 46 49 12.5300 197 3 88 09 14.0357
158 2 49 64 12 .5698 198 3 92 04 14.0712
159 2 52 81 12 .6095 199 3 96 O1 14.1067
160 2 56 00 12.6491 200 4 00 00 14.1421

161 2 59 21 12 .6886 201 40401 14.1774
162 2 62 44 12.7279 202 4 08 04 14.2127
163 2 65 69 12.7671 203 41209 14.2478
164 2 68 96 12.8062 204 41616 14.2829
165 2 72 25 12 .8452 205 4 20 25 14.3178
166 2 75 56 12.8841 206 4 24 36 14.3527
167 2 78 89 12.9228 207 4 28 49 14.3875
168 2 82 24 12.9615 208 4 32 64 14.4222
169 2 85 61 13 .0000 209 4 36 81 14.4568
170 2 89 00 13 .0384 210 4 4100 14.4914

171 2 92 41 13 .0767 211 4 45 21 14.5258
172 2 95 84 13.1149 212 4 49 44 14.5602
173 2 99 29 13.1529 213 4 53 69 14.5945
174 3 02 76 13.1909 214 4 57 96 14.6287
175 3 06 25 13 .2288 215 4 62 25 14.6629
176 3 09 76 13 .2665 216 4 66 56 14.6969
177 3 13 29 13 .3041 217 4 70 89 14.7309
178 3 16 84 13.3417 218 475 24 14.7648
179 3 20 41 13.3791 219 47961 14.7986
180 3 24 00 13.4164 220 4 84 00 14.8324     
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Number Square Square root Number Square Square root

221 4 88 41 14.8661 261 6 81 21 16.1555

222 4 92 84 14.8997 262 6 86 44 16.1864

223 4 97 29 14.9332 263 6 91 69 16.2173
224 5 01 76 14.9666 264 6 96 96 16.2481

225 5 06 25 15 .0000 265 7 02 25 16.2788
226 5 10 76 15 .0333 266 7 07 56 16.8095
227 5 15 29 15 .0665 267 71289 16.3401

228 5 19 84 15 .0997 268 7 18 24 16.3707
229 5 24 41 15.1327 269 7 23 61 16.4012

230 5 29 00 15.1658 270 7 29 00 16.4317

231 5 33 61 15.1987 271 7 34 41 16.4621
232 5 38 24 15.2315 272 7 39 84 16 .4924
233 5 42 89 15.2643 273 7 45 29 16 .5227

234 5 47 56 15.2971 274 7 50 76 16.5529
235 5 52 25 15 .8297 275 7 56 25 16.5831
236 5 56 96 15 .8623 276 7 61 76 16.6132
237 5 61 69 15.3948 277 7 67 29 16 .6433
238 5 66 44 15 .4272 278 7 72 84 16 .6733

239 5 71 21 15.4596 279 778 41 16.7033
240 5 76 00 15.4919 280 7 84 00 16.7332

241 5 80 81 15.5242 281 7 89 61 16.7631

242 5 85 64 15.5563 282 795 24 16.7929
243 5 90 49 15 .5885 283 8 00 89 16 .8226
244 5 95 36 15 .6205 284 8 06 56 16.8523
245 6 00 25 15 .6525 285 8 12 25 16.8819
246 6 05 16 15 .6844 286 8 17 96 16.9115
247 6 10 09 15.7162 287 8 23 69 16.9411

248 6 15 04 15.7480 288 8 29 44 16.9706

259 6 20 01 15.7797 289 8 35 21 17 .0000
250 6 25 00 15.8114 290 8 41 00 17 .0294

251 6 30 01 15 .8430 291 8 46 81 17 .0587
252 6 35 04 15.8745 292 8 52 64 17 .0880
253 6 40 09 15.9060 293 8 58 49 17.1172
254 6 45 16 15 .9374 294 8 64 36 17.1464

255 6 50 25 15 .9687 295 8 70 25 17.1756
256 6 55 36 16 .0000 296 8 76 16 17.2047
257 6 60 49 16 .0312 297 8 82 09 17 .2337
258 6 65 64 16 .0624 298 8 88 04 17 .2627
259 6 70 81 16.0935 299 8 94 O1 17 .2916

260 6 76 00 16.1245 300 9 00 00 17.3205
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Number Square Square root Number Square Square root

301 9 06 01 17.3494 341 11 62 81 18.4662

302 9 12 04 17.3781 342 11 69 64 18.4932
303 9 18 09 17.4069 343 11 76 49 18.5203
304 9 24 16 17.4356 344 11 83 36 18.5472

305 9 30 25 17.4642 345 11 90 25 18.5742
306 9 36 36 17.4929 346 11 97 16 18.6011
307 9 42 49 17.5214 347 12 04 09 18.6279
308 9 48 64 17.5499 348 12 11 04 18.6548

309 9 54 81 17.5784 349 121801 18.6815
310 9 61 00 17.6068 350 12 25 00 18.7083

311 9 67 21 17.6352 351 12 32 01 18.7350
312 9 73 44 17.6635 352 12 39 04 18.7617

313 9 79 69 17.6918 353 12 46 09 18.7883
314 9 85 96 17.7200 354 12 53 16 18.8149
315 9 92 25 17.7482 355 12 60 25 18.8414

316 9 98 56 17.7764 356 12 67 36 18.8680
317 10 04 89 17.8045 357 12 74 49 18.8944

318 10 11 24 17 .8326 358 12 81 64 18.9209
319 10 17 61 17.8606 359 12 88 81 18.9473
320 10 24 00 17.8885 360 12 96 00 18.9737

321 10 30 41 17.9165 361 13 03 21 19.0000
322 10 36 84 17.9444 362 13 10 44 19.0263
323 10 43 29 17.9722 363 13 17 69 19.0526
324 10 49 76 18.0000 364 13 24 96 19.0788
325 10 56 25 18.0278 365 13 32 25 19.1050
326 10 62 76 18.0555 366 13 39 56 19.1311
327 10 69 29 18.0831 367 13 46 89 19.1572
328 10 75 84 18.1108 368 13 54 24 19.1833
329 10 82 41 18.1384 369 13 61 61 19.2094

330 10 89 00 18.1659 370 13 69 00 19.2354

331 10 95 61 18.1934 371 13 76 41 19.2614
332 11 02 24 18.2209 372 13 83 84 19.2873

333 11 08 89 18.2483 373 13 91 29 19.3132

334 11 15 56 18.2757 374 13 98 76 19.3391

335 11 22 25 18.3030 375 14 06 25 19.3649
336 11 28 96 18.3303 376 14 13 76 19.3907
337 11 35 69 18.3576 377 14 21 29 19.4165

338 11 42 44 18.3848 378 14 28 84 19.4422

339 11 49 21 18.4120 379 14 36 41 19.4679

340 11 56 00 18.4391 380 14 44 00 19.4936
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Number Square Square root Number Square Square root

dsl 14 51 61 19.5192 421 17 72 41 20.5183

382 14 59 24 19.5448 422 17 80 84 20 .5426

383 14 66 89 19.5704 423 17 89 29 20 .5670

384 14 74 56 19.5959 424 17 97 76 20.5913

385 14 82 25 19.6214 425 18 06 25 20.6155

386 14 89 96 19 .6469 426 18 14 76 20 .6398

387 14 97 69 19.6723 427 18 23 29 20 .6640

388 15 05 44 19.6977 428 18 31 84 20 .6882

389 15 13 21 19.7231 429 18 40 41 20.7123

390 15 21 00 19.7484 430 18 49 00 20.7364

391 15 28 81 19.7737 431 18 57 61 20.7605

392 15 36 64 19.7990 432 18 66 24 20 .7846

393 15 44 49 19.8242 433 18 74 89 20.8087

394 15 52 36 19.8494 434 18 83 56 20 .8327

395 15 60 25 19.8746 435 18 92 25 20 .8567

396 15 68 16 19.8997 436 19 00 96 20 .8806

397 15 76 09 19.9249 437 19 09 69 20 .9045

398 15 84 04 19.9499 438 19 18 44 20 .9284

399 15 92 O1 19.9750 439 19 27 21 20 .9523

400 16 00 00 20 .0000 440 19 36 00 20 .9762

A401 16 08 O1 20 .0250 441 19 44 81 21.0000

402 16 16 04 20 .0499 442 19 53 64 21.0238

403 16 24 09 20 .0749 443 19 62 49 21.0476

404 16 32 16 20 .0998 444 19 71 36 21.0713

405 16 40 25 20.1246 445 19 80 25 21.0950

406 16 48 36 20.1494 446 19 89 16 21.1187

407 16 56 49 20.1742 447 19 98 09 21.1424

408 16 64 64 20 1990 448 20 07 04 21.1660

409 16 72 81 20 .2237 449 20 16 01 21.1896

410 16 81 00 20 .2485 450 20 25 00 21.2132

411 16 89 21 20.2731 451 20 34 01 21.2368

412 16 97 44 20 .2978 452 20 43 04 21.2603

413 17 05 69 20 .3224 453 20 52 09 21.2838

414 17 13 96 20 .3470 454 20 61 16 21.3073

415 17 22 25 20.3715 455 20 70 25 21.3307

416 17 30 56 20.3961 456 20 79 36 21.3542

417 17 38 89 20 .4206 457 20 88 49 21.3776

418 17 47 24 20 .4450 458 20 97 64 21.4009

419 17 55 61 20 .4695 459 21 06 81 21.4243

420 17 64 00 20 .4939 460 21 16 00 21.4476     
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Number Square Square root Number Square Square root

461 21 25 21 21.4709 501 25 10 01 22 .3830
462 21 34 44 21.4942 502 25 20 04 22 .4054
463 21 48 69 21.5174 503 25 30 09 22.4277
464 21 52 96 21.5407 504 25 40 16 22 .4499
465 21 62 25 21.5639 505 25 50 25 22.4722
466 2171 56 21.5870 506 25 60 36 22 .4944
467 21 80 89 21.6102 507 25 70 49 22.5167
468 21 90 24 21.6333 508 25 80 64 22 .5389
469 2199 61 21.6564 509 25 90 81 22 .5610
470 22 09 00 21.6795 510 26 01 00 22 .5832

471 22 18 41 21.7025 oll 26 11 21 22 .6053

A472 22 27 84 21.7256 512 25 21 44 22 .6274
473 22 37 29 21.7486 513 26 31 69 22 .6495
474 22 46 76 21.7715 514 26 41 96 22 .6716
475 22 56 25 21.7945 515 26 52 25 22 .6936
476 22 65 76 21.8174 516 22 62 56 22.7156
477 22 75 29 21.8403 517 26 72 89 22.7376
478 22 84 84 21.8632 518 26 83 24 22.7596
479 22 94 41 21.8861 519 26 93 61 22.7816
480 23 04 00 21.9089 520 27 04 00 22 .8035

481 23 13 61 21.9317 521 27 1441 22 .8254
482 23 23 24 21.9545 522 27 24 84 22 .8473
483 23 32 89 21.9773 523 27 35 29 22 .8692
484 23 42 56 22 .0000 524 27 45 76 22 .8910
485 23 52 25 22 .0227 525 27 56 25 22 .9129
486 23 61 96 22 .0454 526 27 66 76 22 .9347
487 23 71 69 22 .0681 527 27 77 29 22 .9565
488 23 81 44 22 .0907 528 27 87 84 22 .9783
489 23 91 21 22.1133 529 27 98 41 23 .0000
490 24 01 00 22 .1359 530 28 09 00 23 .0217

491 24 10 81 22.1585 531 28 19 61 23 .0434
492 24 20 64 22.1811 532 28 30 24 23 .0651
493 24 30 49 22 .2036 533 28 40 89 23 .0868
494 24 40 36 22 .2261 534 28 51 56 23 .1084
495 24 50 25 22 .2486 535 28 62 25 23.1301
496 24 60 16 22.2711 536 28 72 96 23 .1517
497 24 70 09 22 .2935 537 28 83 69 23 .1733
498 24 80 04 22.3159 538 28 94 44 23.1948

499 24 90 01 22 .3383 539 29 05 21 23 .2164
500 25 00 00 22 .3607 540 29 16 00 23 .2379 
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541 29 26 81 23 .2594 581 33 75 61 24.1039
542 29 37 64 23 .2809 582 33 87 24 24.1247
543 29 48 49 23 .3024 583 33 98 89 24.1454
544 29 59 36 23 .3238 584 34 10 56 24.1661

545 29 70 25 23 .3452 585 34 22 25 24.1868
546 29 81 16 23 .3666 586 34 33 96 24.2074
547 29 92 09 23 .3880 587 34 45 69 24 .2281

548 30 03 04 23 .4094 588 34 57 44 24 .2487
549 30 14 01 23 .4307 589 34 69 21 24 .2693

550 30 25 00 23 .4521 590 34 81 00 24 .2899

551 30 36 01 23 .4734 591 34 92 81 24.3105
552 30 47 04 23 .4947 592 35 04 64 24 .3311
553 30 58 09 23 .5160 593 35 16 49 24 .3516
554 30 69 16 23 .5372 594 35 28 36 24.3721
555 30 80 25 23 .5584 595 35 40 25 24 .3926
556 30 91 36 23.5797 596 35 52 16 24.4131
557 31 02 49 23 .6008 597 35 64 09 24 .4336
558 31 13 64 23 .6220 598 35 76 04 24.4540
559 31 24 81 23 .6432 599 35 88 01 24.4745
560 31 36 00 23 .6643 600 36 00 00 24.4949

561 31 47 21 23 .6854 601 36 12 01 24.5153

562 31 58 44 23 .7065 602 36 24 04 24 .5357
563 31 69 69 23 .7276 603 36 36 09 24.5561
564 31 80 96 23 .7487 604 36 48 16 24.5764

565 31 92 25 23 .7697 605 36 60 25 24 .5967
566 32 03 56 23 .7908 606 36 72 36 24.6171
567 32 14 89 23 .8118 607 36 84 49 24.6374
568 32 26 24 23 .8328 608 36 96 64 24.6577
569 32 37 61 23 .8537 609 3/08 81 24.6779
570 32 49 00 23.8747 610 37 21 00 24 .6982

571 32 60 41 23 .8956 611 37 33 21 24.7184

572 32 71 84 23 .9165 612 37 45 44 24.7385
573 32 83 29 23 .9374 613 37 57 69 24.7588
574 32 94 76 23 .9583 614 37 69 96 24.7790
575 33 06 25 23 .9792 615 37 82 25 24.7992
576 33 17 76 24 .0000 616 37 94 56 24.8193
577 33 29 29 24 .0208 617 38 06 89 24 .8395

578 33 40 84 24 .0416 618 38 19 24 24 .8596
579 33 52 41 24 .0624 619 38 31 61 24.8797

580 33 64 00 24 .0832 620 38 44 00 24.8998     
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621 38 56 41 24.9199 661 43 69 21 25 .7099

622 38 68 84 24 .9399 662 43 82 44 25 .7294

623 38 81 29 24 .9600 663 43 95 69 25 .7488

624 38 93 76 24 .9800 664 44 08 96 25 .7682

625 39 06 25 25 .0000 665 44 22 25 25 .7876

626 39 18 76 25 .0200 666 44 35 56 25 .8070

627 39 31 29 25 .0400 667 44 48 89 25 .8263

628 39 43 84 25 .0599 668 44 62 24 25 .8457

629 39 56 41 25 .0799 669 44 75 61 25 .8650

630 39 69 00 25.0998 670 44 89 00 25 .8844

631 39 81 61 25.1197 671 45 02 41 25 .9037

632 39 94 24 25 .1396 672 45 15 84 25 .9230

633 40 06 89 25.1595 673 45 29 29 25 . 9422

634 40 19 56 25.1794 674 45 42 76 25.9615

635 40 32 25 25 .1992 675 45 56 25 25 .9808

636 40 44 96 25 .2190 676 45 69 76 26 .0000

637 40 57 69 25 .2389 677 45 83 29 26 .0192

638 40 70 44 25 .2587 678 45 96 84 26 .0384

639 40 83 21 25 .2784 679 46 10 41 26 .0576

640 40 96 00 25 .2982 680 46 24 00 26 .0768

641 41 08 81 25 .3180 681 46 37 61 26 .0960

642 41 21 64 25 .3377 682 46 51 24 26.1151

643 41 34 49 25 .3574 683 46 64 89 26 .1343

644 41 47 36 25 .3772 684 46 78 56 26 .1534

645 41 60 25 25 .3969 685 46 92 25 26 .1725

646 41 73 16 25 .4165 686 47 05 96 26.1916

647 41 86 09 25 .4362 687 47 19 69 26 .2107

648 41 99 04 25 .4558 688 AT 33 44 26 .2298

649 42 12 01 25 .4755 689 AT 47 21 26 .2488

650 42 25 00 25 .4951 690 47 61 00 26 .2679

651 42 38 O01 25.5147 691 47 74 81 26 .2869

652 42 51 04 25 .5343 692 47 88 64 26 .3059

653 42 64 09 25 .5539 693 48 02 49 26 .3249

654 42 77 16 25 .5734 694 48 16 36 26 .3439

655 42 90 25 25 .5930 695 48 30 25 26 .3629

656 43 03 36 25 .6125 696 48 44 16 26 .3818

657 43 16 49 25 .6320 697 48 58 09 26 .4008

658 43 29 64 25 .6515 698 A8 72 04 26 .4197

659 43 42 81 25 .6710 699 48 86 O1 26.4386

660 43 56 00 25 .6905 700 49 00 00 26.4575 
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701 491401 26 .4764 741 54 90 81 27 .2213
702 49 28 04 26.4953 742 55 05 64 27 .2397
703 49 42 09 26.5141 743 55 20 49 27 .2580
704 49 56 16 26 .5330 744 55 35 36 27 .2764
705 49 70 25 26.5518 745 55 50 25 27 .2947
706 49 84 36 26.5707 746 55 65 16 27 .3130
707 49 98 49 26.5895 747 55 80 09 27 .3313
708 50 12 64 26 .6083 748 55 95 04 27 .3496
709 50 26 81 26.6271 749 56 10 O01 27 .38679
710 50 41 00 26 .6458 750 56 25 00 27 .3861

711 50 55 21 26 .6646 751 56 40 O1 27 .4044
712 50 69 44 26 .6833 752 56 55 04 27 .4226
713 50 83 69 26.7021 753 56 70 09 27 .4408
714 50 97 96 26.7208 754 56 85 16 27 .4591
715 51 12 25 26.7395 755 57 00 25 27 .4773
716 51 26 56 26.7582 756 57 15 36 27 .4955
717 51 40 89 26.7769 757 57 30 49 27.5136
718 51 55 24 26.7955 758 57 45 64 27 .5318
719 51 69 61 26.8142 759 57 60 81 27 .5500
720 51 84 00 26 .8328 760 57 76 00 27 .5681

721 5198 41 26.8514 761 57 91 21 27 .5862
722 52 12 84 26.8701 762 58 06 44 27 .6043
723 52 27 29 26.8887 763 58 21 69 27 .6225
724 52 41 76 26.9072 764 58 36 96 27 .6405
725 52 56 25 26 .9258 765 58 52 25 27 .6586
726 52 70 76 26 .9444 766 58 67 56 27 .6767
727 52 85 29 26 .9629 767 58 82 89 27 .6948
728 52 99 84 26.9815 768 58 98 24 27.7128
729 53 14 41 27 .0000 769 59 13 61 27 .7308
730 53 29 00 27 .0185 770 59 29 00 27 .7489

731 53 43 61 27 .0370 771 59 44 41 27 .7669
732 53 58 24 27 .0555 772 59 59 84 27 .7849
733 53 72 89 27 .0740 773 59 75 29 27 .8029
734 53 87 56 27 .0924 774 59 90 76 27 .8209
735 54 02 25 27.1109 775 60 06 25 27 .8388
736 54 16 96 27 .1293 776 60 21 76 27 .8568
737 54 31 69 27.1477 777 60 37 29 27 .8747
738 504 46 44 27.1662 778 60 52 84 27 .8927

739 54 61 27 27 .1846 779 60 68 41 27 .9106
740 54 76 00 27 .2029 780 60 84 00 27 .9285
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781 60 99 61 27 .9464 821 67 40 41 28 .6531

782 61 15 24 27 .9643 822 67 56 84 28 .6705

783 61 30 89 27 .9821 823 67 73 29 28 .6880

784 61 46 56 28 .0000 824 67 89 76 28 .7054

785 61 62 25 28.0179 825 68 06 25 28 .7228

786 61 77 96 28 .0357 826 68 22 76 28 .7402

787 61 93 69 28 .0535 827 68 39 29 28.7576

788 62 09 44 28 .0713 828 68 55 84 28 .7750

789 62 25 21 28 .0891 829 68 72 41 28 .7924

790 62 41 00 28.1069 830 68 89 00 28 .8097

791 62 56 81 28 .1247 831 69 05 61 28 .8271

792 62 72 64 28.1425 832 69 22 24 28 .8444

793 62 88 49 28.1603 833 69 38 89 28 .8617

794 63 04 36 28.1780 834 69 55 56 28.8791

795 63 20 25 28 .1957 835 69 72 25 28 .8964

796 63 36 16 28 .2135 836 69 88 96 28 .9137

797 63 52 09 28 .2312 837 70 05 69 28 .9310

798 63 68 04 28 .2489 838 70 22 44 28 .9482

799 63 8401 28 .2666 839 70 39 21 28 .9655

800 64 00 00 28 .2843 840 70 56 00 28 .9828

801 64 16 01 28.3019 841 70 72 81 29 .0000

802 64 32 04 28 .3196 842 70 89 64 29 .0172

803 64 48 09 28 .3373 843 71 06 49 29 .0345

804 64 64 16 28 .3549 844 71 23 36 29.0517

805 64 80 25 28.3725 845 71 40 25 29 .0689

806 64 96 36 28.3901 846 71 57 16 29 .0861

807 65 12 49 28 .4077 847 71 7409 29 .1033

808 65 28 64 28 .4253 848 71 91 04 29 .1204

809 65 44 81 28 .4429 849 72 08 O01 29 .1376

810 65 61 00 28 .4605 850 72 25 00 29.1548

811 65 77 21 28.4781 851 72 42 01 29.1719

812 65 93 44 28 .4956 852 72 59 04 29 .1890
813 66 09 69 28 .5132 853 72 76 09 29 .2062

814 66 25 96 28 .5307 854 72 93 16 29 .2233

815 66 42 25 28 .5482 855 73 10 25 29 .2404

816 66 58 56 28 .5657 856 73 27 36 29 .2575

817 66 74 89 28 .5832 857 73 44 49 29 .2746

818 66 91 24 28 .6007 858 73 61 64 29 .2916

819 67 07 61 28 .6082 859 73 78 81 29 .38087

820 | 67 24 00 28 .6356 860 73 96 00 29 .3258 
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861 74 13 21 29 .3428 901 811801 30 .0167
862 74 30 44 29 .3598 902 81 36 04 30 .0333
863 74 47 69 29 .3769 903 81 54 09 30 .0500
864 74 64 96 29 .3939 904 8172 16 30 .0666
865 74 82 25 29 .4109 905 81 90 25 30 .0832
866 74 99 56 29 .4279 906 82 08 36 30.0998
867 75 16 89 29 .4449 907 82 26 49 30.1164
868 75 34 24 29.4618 908 82 44 64 30.1330
869 75 51 61 29 .4788 909 82 62 81 30.1496
870 75 69 00 29 .4958 910 82 81 00 30.1662

871 75 86 41 29.5127 911 82 99 21 30.1828
872 76 03 84 29 .5296 912 83 17 44 30.1993
873 76 21 29 29 .5466 913 83 35 69 30.2159
874 76 38 76 29 .5635 914 83 53 96 30 .2324
875 76 56 25 29 .5804 915 83 72 25 - 30.2490
876 76 73 76 29 .5973 916 83 90 56 30 .2655
877 76 91 29 29 .6142 917 84 08 89 30 .2820
878 77 08 84 29 .6311 918 84 27 24 30.2985
879 77 26 41 29 .6479 919 84 45 61 30.3150
880 77 44 00 29 .6648 920 84 64 00 30 .3315

881 77 61 61 29 .6816 921 84 82 41 30 .3480
882 77 79 24 29 .6985 922 85 00 84 30.3645
883 77 96 89 29.7153 923 85 19 29 30.3809
884 78 14 56 29 .7321 924 85 37 76 30.3974
885 78 32 25 29 .7489 925 85 56 25 30.4138
886 78 49 96 29 .7658 926 85 74 76 30.4302
887 78 67 69 29 .7825 927 85 93 29 30 .4467
888 78 85 44 29 .7993 928 86 11 84 30.4631
889 79 03 21 29 .8161 929 86 30 41 30.4795
890 79 21 00 29 .8329 930 86 49 00 30 .4959

891 79 38 81 29 .8496 931 86 67 61 30.5123
892 79 56 64 29 .8664 932 86 86 24 30.5287
893 79 74 49 29 .8831 933 87 04 89 30 .5450
894 79 92 36 29 .8998 934 87 23 56 30.5614
895 80 10 25 29 .9166 935 87 42 25 30.5778
896 80 28 16 29 .9333 936 87 60 96 30.5941
897 80 46 09 29 .9500 937 87 79 69 30.6105
898 80 64 04 29 .9666 938 87 98 44 30 .6268
899 80 82 01 29 .9833 939 88 17 21 30.6431
900 81 00 00 30 .0000 940 88 36 00 30 .6594     
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941 88 54 81 30.6757 971 94 28 41 31.1609

942 88 73 64 30.6920 972 94 47 84 31.1769

943 88 92 49 30.7083 973 94 67 29 31.1929

944 89 11 36 30.7246 974 94 86 76 31.2090

945 89 30 25 30.7409 975 95 06 25 31.2250

946 89 49 16 30.7571 976 95 25 76 31.2410

947 89 68 09 30.7734 977 95 45 29 31.2570

948 89 87 04 30.7896 978 95 64 84 31.2730

949 90 06 01 30.8058 979 95 84 41 31.2890

950 90 25 00 30.8221 980 96 04 00 31.3050

951 90 44 01 30.8383 981 96 23 61 31.3209

952 90 63 04 30.8545 982 96 43 24 31.3369

953 90 82 09 30 .8707 983 96 62 89 31.3528

954 91 01 16 30 .8869 984 96 82 56 31.3688

955 91 20 25 30.9031 985 97 02 25 31.3847

956 91 39 36 30.9192 986 97 21 96 31.4006

957 91 58 49 30.9354 987 97 41 69 31.4166

958 91 77 64 30.9516 988 97 61 44 31.4325

959 91 96 81 30 .9677 989 97 81 21 31.4484

960 92 16 00 30 .9839 990 98 01 00 31.4643

961 92 35 21 31.0000 991 98 20 81 31.4802

962 92 54 44 31.0161 992 98 40 64 31.4960

963 92 73 69 31.0322 993 98 60 49 31.5119

964 92 92 96 31.0483 994 98 80 36 31.5278

965 93 12 25 31.0644 995 99 00 25 31.5436

966 93 31 56 31.0805 996 99 20 16 31.5595

967 93 50 89 31 .0966 997 99 40 09 31.5753

968 93 70 24 31.1127 998 99 60 04 31.5911

969 93 89 61 31.1288 999 99 80 Ol 31.6070

970 94 09 00 31.1448 1000 100 00 00 31.6228            
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10 09 73 25 33

37 54 20 48 05
08 42 26 89 53
99 01 90 25 29
12 80 79 99 70

66 06 57 47 17

31 06 01 08 05
85 26 97 76 02

63 57 33 21 35
73 79 64 57 53

98 52 01 77 67
11 80 50 54 31

83 45 29 96 34

88 68 54 02 00
99 59 46 73 48

65 48 11

80 12 43
74 35 09 98 17
69 91 62 68 03
09 89 32 05 05

76 74

56 35

45 23
45 98

19 49
37 42

93 29

91 49 91
80 33 69
44 10 48
12 55 07

63 60 64

04 46

52 66
85 73

62 13
83 17

61 19 69
15 47 44
94 55 72
42 48 11
23 52 37

24 94

76 54
04 49 35
00 54 99
35 96 31 53 07
59 80 80 83 91
46 05 88 52 36

32 17 90 05 97
69 23 46 14 06
19 56 54 14 30
45 15 51 49 38
94 86 43 19 94

souRcE: The

Table B. Random Numbers

76 52 01 35 86
64 89 47 42 96
19 64 50 93 03
09 37 67 07 15
80 15 73 61 47

34 07 27 68 50
45 57 18 24 06
02 05 16 56 92
05 32 54 70 48
03 52 96 47 78

14 90 56 86 07
39 80 82 77 32

06 28 89 80 83
86 50 75 84 O1

87 51 76 49 69

17 46 85 09 50
17 72 70 80 15
77 40 27 72 14

66 25 22 91 48
14 22 56 85 14

76 86
68 58
79 54
20 40
44 84

68 47 92
26 94 03

85 15 74
11 10 00

16 50 53

77 74
99 53
43 87
87 21

98 37

26 45 74

95 27 07
67 89 75
97 34 40

73 20 88

38 24

81 59
93 54
68 42

22 86

75 24 63
64 05 18
26 89 80
45 42 72

01 39 09

87 37 92 52 41
20 11 74 52 04

Ol 75 87 53 79
19 47 60 72 46
36 16 81 08 51

34 67 35 48 76
24 80 52 40 37
23 20 90 25 60

38 31 13 11 65
64 03 23 66 53

36 69 73 61 70
35 30 34 26 14
68 66 57 48 18

90 55 35 75 48
35 80 83 42 82

22 10 94 05 58

50 72 56 82 48
13 74 67 00 78
36 76 66 79 51

91 82 60 89 28

58 04 77 69 74
45 31 82 23 74
43 23 60 02 10

36 93 68 72 03
46 42 75 67 88

46 16 28 35 54

70 29 73 41 35
32 97 92 65 75
12 86 O07 46 97
40 21 95 25 63

51 92 43 37 29
59 36 78 38 48
54 62 24 44 31
16 86 84 87 67
68 93 59 14 16

45 86 25 10 25

96 11 96 38 96
33 35 13 54 62
83 60 94 97 00
77 28 14 40 77

05 56 70 70 07
15 95 66 00 00
40 41 92 15 85
43 66 79 45 43
34 88 88 15 53

80 95 90 91 17
20 63 61 04 02

15 95 33 47 64

88 67 67 43 97
98 95 11 68 77

65 81 33 98 85
86 79 90 74 39
73 05 38 52 47
28 46 82 87 09
60 93 52 03 44

60 97 09 34 33
29 40 52 42 O01

18 47 54 06 10
90 36 47 64 93

93 78 56 13 68

73 03 95 71 86
21 11 57 82 53
45 52 16 42 37

76 62 11 39 90
96 29 77 88 22

94 75 08 99 23

53 14 03 33 40
57 60 04 08 81
96 64 48 94 39
43 65 17 70 82

65 39 45 95 93
82 39 61 01 18
91 19 04 25 92

03 07 11 20 59
26 25 22 96 63

61 96 27 93 35
54 69 28 23 91
77 97 45 00 24
13 02 12 48 92

93 91 08 36 47

86 74 31 71 57
18 74 39 24 23
66 67 43 68 06
59 04 79 00 33
O01 54 03 54 56

Ill., 1955, pp. 1-3, with the kind permission of the publisher.
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39 29 27 49 45
00 82 29 16 65
30 08 03 36 06
04 43 62 76 59
12 17 17 68 33

11 19 92 91 70
23 40 30 97 32
18 62 38 85 79
83 49 12 56 24

35 27 38 84 35

50 50 07 39 98
52 77 56 78 51
68 71 17 78 17
29 60 91 10 62

23 47 83 41 138

40 21 81 65 44

14 38 55 37 63
96 28 60 26 55
94 40 05 64 18
54 38 21 45 98

37 08 92 00 48
42 05 08 23 41
22 22 20 64 13
28 70 72 58 15

07 20 73 17 90

42 58 26 05 27

33 21 15 94 66
92 92 74 59 73
25 70 14 66 70
05 52 28 25 62

65 33 71 24 72
23 28 72 95 29

90 10 33 93 33
78 56 52 01 06
70 61 74 29 41

85 39 41 18 38
97 11 89 63 38
84 96 28 52 07
20 82 66 95 41

05 01 45 11 76

RAND Corporation, A Million Random Digits, Free Press, Glencoe,
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48
62
04
91
25

98 08 62
33 18 51
80 95 10
79 75 24
18 63 33

94
84
44

47
49

39
56

98
79
41

74
04
11
48
69

02
17

66
32
07

00
54

09 18
90 04
73 18
75 76
54 O01

82
58
95 02
87 64
64 40

86 99
60 32
08 62
75 37
59 26

08 35
28 30
53 84
91 75
89 41

77
19
21
51

99

ol
50
81
47

55

30
23

85
46

96

38
71

93
64
83

33
85
84

56
65

71
27
13
73
13

34
48
38
21

85

80
68
96
62
68

38
37
97
21
73

00
40
12
82
13

10
29 63

54 03
64 11
54 27

21

87 79
52 88 34

59 63 56
85 06 27

82 09 89

07
60
83
10

39

63

26

32
06
40

37

02
11

83
28
38

97
97
07
90
56

10
64
33
41
94

20
74
13

99
ol

07
93
40
34
06

76
97
48
34
42

29
4]

55
46
52

Table B. Random Numbers (Continued)

45 24 02 84 04

41 94 15 09 49
96 38 27 O7 74
71 96 12 82 96
98 14 50 65 71

22 70
71 43
48 27
47 10
19 76

73
33

98
96
79

77
80
52
31
87

55
99
07
24
63

95 27
06 54
52 69
17 49
10 03

82 53
98 15
67 72

97 18
28 13

32
51
47
20

66

78 54 24
81 33 31
81 59 41

61 61 36
00 39 75

27 85
05 91
36 28
22 69
83 91

83 42
97 92

27 88
10 72

53 52

99 O01
02 88
17 57
36 21
41 70

86
69
93
68
62

93 58
11 30
44 03
17 39
87 64

47
32

55
59
88

28 69
92 70
21 66
61 31
52 61

71
30

87 08
47 14

95 71

17 11
75 86
14 17
40 72

90 35

81
01

91
47
33
30
90

80 72
98 14

03 06 11
07 95 41

06 95 89 29 83
99 59 91 05 07
43 62 26 31 47

44 99 90 88 96

89 43 54 85 81
20 15 12 33 87
69 86 10 25 91
31 O1 02 46 74

97 79 01 71 19
05 33 51 29 69

59 38 17 15 39
02 29 53 68 70
35 58 40 44 O1

04 22 08 63 04
94 93 88 19 97
62 29 06 44 64
90 42 91 22 72

00 68 22 73 98

13 66 15 88 73
40 51 00 78 93
51 21 59 02 90
50 26 39 02 12
12 60 71 76 46

68 41 48 27 74

55 21 02 97 73
05 68 67 31 56

94 04 99 13 45
69 77 71 28 30

51 92 66 47 21
28 83 43 41 37

73 85 27 00 91
10 12 39 16 22
34 31 36 58 61

71 60 29 29 37

56 27 11 00 86
21 81 53 92 50
64 63 88 59 02

85 79 47 42 96

96 20 74 41 56
59 17 52 06 95
05 12 80 97 19
13 49 90 63 19
64 42 18 08 14

39 09 47 34 07

88 69 54 19 94
25 01 62 52 98

74 85 22 05 39
05 45 56 14 27

52 52 75 80 21
56 12 71 92 55
09 97 33 34 40
32 30 75 75 46

10 51 82 16 15

83 38 98 73 74
91 87 O07 61 50
27 12 46 70 18
95 37 50 58 71
20 71 45 32 95

04 61 89 75 53
32 60 46 04 75
28 46 66 87 95

55 78 17 65 14
48 94 97 23 06

51 90 81 39 80
74 28 77 52 51
07 08 28 50 46
42 83 60 91 91
74 81 97 81 42

58 30 32 98 22
73 51 59 04 00
61 22 26 05 61

85 49 65 75 60
45 87 52 10 69

74 21 96 40 49
47 32 46 26 05
75 23 76 20 47
49 13 90 64 41

08 78 98 81 56

23 82 19 95 38

05 53 35 21 39
77 43 35 37 83

53 07 57 18 39
43 80 00 93 51

APPENDIX 2

35 44 13 18 80
37 54 87 30 43
94 62 46 11 71
00 38 75 95 79

77 93 89 19 36

80 81 45 17 48
36 04 09 03 24

88 46 12 33 56
15 02 00 99 94

O01 84 87 69 38

64 27 85 80 44

68 47 66 46 59
41 36 18 27 60

93 82 34 31 78
07 70 61 78 13

31 22 30 84 20

94 11 90 18 40
77 76 22 07 91

83 48 34 70 55
94 54 13 74 08

72 89 35 55 07
65 34 46 74 15
dl 85 33 84 52

08 00 74 54 49
43 86 07 28 34

93 17 49 39 72
71 14 84 36 43
62 32 71 84 23

81 60 41 88 80
85 64 44 72 77

65 58 44 96 98
40 03 03 74 38
15 50 12 95 78
03 85 65 45 52
64 69 11 92 02

04 71 36 69 94
61 21 20 64 55
92 30 15 04 98
06 41 O01 93 62
31 02 47 31 67
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59 58 00 64 78
38 50 80 73 41
30 69 27 06 68

65 44 39 56 59
27 26 75 02 64

91 30 70 69 91
68 43 49 46 88

48 90 81 58 77
06 91 34 51 97
10 45 51 60 19

12 88 39 73 43

21 77 83 09 76
19 52 35 95 15

67 24 55 26 70

60 58 44 73 77

53 85 34 13 77
24 63 73 87 36
83 08 01 24 51
16 44 42 43 34

60 79 O01 81 57

03 99 11 04 61
38 55 59 55 54
17 54 67 37 04
32 64 35 28 61

69 57 26 87 77

24 12 26 65 91
61 19 63 02 31
30 53 22 17 04
03 78 89 75 99
48 22 86 33 79

60 36 59 46 53
83 79 94 24 02
32 96 00 74 05
19 32 25 38 45
11 22 09 47 47

31 75 15 72 60
88 49 29 93 82
30 93 44 77 44
22 88 84 88 93

78 21 21 69 93

Table B. Random Numbers (Continued)

75 56 97 88 00
23 79 34 87 63

94 68 81 61 27
18 28 82 74 37
13 19 27 22 94

19 07 22 42 10
84 47 31 36 22

54 74 52 45 91
42 67 27 86 01
14 21 03 37 12

65 02 76 11 84

38 80 73 69 61
65 12 25 96 59

35 58 31 65 63
07 50 03 79 92

36 06 69 48 50
74 38 48 93 42

38 99 22 28 15
36 15 19 90 73

57 17 86 57 62

93 71 61 68 94
32 88 65 97 80

92 05 24 62 15
95 81 90 68 31
39 51 03 59 05

27 69 90 64 94
92 96 26 17 73
10 27 41 22 02

75 86 72 07 17
85 78 34 76 19

35 O7 53 39 49
56 62 33 44 42
36 40 98 32 32

57 62 05 26 06
07 39 93 74 08

68 98 00 53 39
14 45 40 45 04

O07 48 18 38 28
27 49 99 87 48
35 90 29 13 86

88 83 55 44 86
90 82 29 70 22
56 19 68 00 91
49 63 22 40 41

O07 47 74 46 06

36 69 95 37 28
62 12 69 84 08
39 70 00 47 54

11 88 30 95 28
91 34 23 78 21

04 28 50 13 92

31 64 94 20 96

86 28 36 82 58

79 24 68 66 86
45 13 42 65 29

58 83 87 38 59
52 62 30 79 92

O07 75 95 17 77
27 49 37 09 39
11 16 17 85 76

66 08 32 46 53
08 35 56 08 60
55 12 12 92 81
00 91 19 89 36
14 06 04 06 19

14 84 54 66 72
41 83 95 53 82

39 68 52 33 09
74 41 65 31 66

53 15 26 74 33

42 61 42 92 97
34 99 44 13 74
99 38 54 16 00
66 49 76 86 46
48 50 92 39 29

15 47 04 83 55
20 09 49 89 77

73 78 80 65 33
60 53 04 51 28
44 37 21 54 86

23 76 80 61 56
17 71 90 42 07

82 06 76 34 00
08 33 76 56 76
17 98 54 89 11

28 82 53 57 93
12 84 38 25 90
83 82 45 26 92
63 01 19 89 O1
88 32 58 08 51

17 97 41 50 77
63 28 10 20 23
69 57 21 37 98
76 46 33 42 22
26 76 08 36 37

49 36 47 33 31
12 36 91 86 01

97 37 72 75 85
85 13 03 25 52
45 81 95 29 79

84 60 95 82 32
29 73 54 77 62

59 07 60 79 36
76 35 59 37 79
29 54 96 96 16

61 95 87 71 00
17 26 77 09 43
10 06 16 88 29
35 20 83 33 74
35 66 35 29 72

O01 91 82 83 16
70 O7 11 47 36
11 13 30 75 86

78 13 86 65 59
27 48 24 54 76

88 65 12 25 96
74 84 39 34 13
28 59 72 04 05
74 02 28 46 17
65 74 11 40 14
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04 11 10 84 08
95 95 44 99 53
05 46 26 92 00
96 29 99 08 36

97 34 13 03 58

28 97 66 62 52
09 81 59 31 46
54 13 05 51 60
14 97 44 03 44
43 66 77 08 83

90 71 22 67 69
08 81 64 74 49
16 43 59 15 29
26 65 59 08 02

41 32 64 43 44

96 24 04 36 42
03 74 28 38 73
51 97 23 78 67
54 84 65 47 59
65 13 00 48 60

88 61 81 91 61
71 29 92 38 53
27 95 45 89 09
80 86 30 05 14
33 56 46 07 80

90 89 97 57 54
78 03 87 02 67

55 98 66 64 85
87 53 90 88 23
16 81 86 03 11

98 95 37 32 31
09 95 81 80 65
15 91 70 62 53
19 64 09 94 13

85 24 43 51 59

03 15 21 92 21
22 10 97 85 08

94 20 52 03 80
82 03 71 02 68
87 48 13 72 20
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41 84 98 45 47
46 35 23 30 49
11 08 79 62 94

52 70 10 83 37
57 27 53 68 98

20 85 77 31 56
15 63 38 49 24

92 69 44 82 97
77 61 31 90 19
38 68 83 24 86

25 16 30 18 89
65 25 10 76 29
36 81 54 36 25
64 39 71 16 92
04 51 52 56 24

83 76 16 08 73
14 38 70 63 45
51 32 19 22 46
72 47 20 00 08
05 46 65 53 06

39 52 87 24 84

81 61 61 87 11
07 58 61 61 20

90 76 70 42 35
40 18 82 81 93

34 41 48 21 57
63 43 97 53 63
67 04 90 90 70

79 49 50 41 46
91 70 43 05 52

Table B. Random Numbers (Continued)

46 85 05 23 26

69 24 89 34 60
14 O01 33 17 92

56 30 38 73 15
81 30 44 85 85

70 28 42 43 26
90 41 59 36 14

39 90 40 21 15
88 15 20 00 80
45 13 46 35 45

70 O1 41
of 23 93
18 63 73
05 32 78

95 09 66

50 21
32 95
75 09
21 62

79 46

43 25 38 41 45
80 85 40 92 79
80 08 87 70 74
80 89 01 80 02
93 12 81 84 64

82 47 42 55 93

53 34 24 42 76
82 64 12 28 20
13 57 41 72 00
29 59 38 86 27

86 88 75 50 87
44 98 91 68 22

93 39 94 55 47
52 16 29 02 86
04 73 72 10 31

34 67 75 83 00
45 30 50 75 21

59 74 76 72 77
16 52 06 96 76
68 65 22 73 76

79 37 59 52 20
33 52 12 66 65

59 58 94 90 67
20 55 49 14 09

59 40 47 20 59

41 29 06 73 12

05 87 00 11 19
82 44 49 90 05
20 24 78 17 59
48 46 08 55 58

60 83 32 59 83
43 52 90 63 18

88 72 25 67 36
94 81 33 19 00
74 45 79 05 61

48 54 53 52 47

75 12 21 17 24
92 90 41 31 41
69 90 26 37 42

94 97 21 15 98

19 15 20 00 23
36 02 40 09 67
94 45 87 42 84
54 15 83 42 43

75 05 19 30 29

74 91 06 43 45

61 31 83 18 55
76 50 33 45 13
11 65 49 98 93

92 85 25 58 66

O01 15 96 32 67
55 82 34 76 41

66 82 14 15 75
96 27 74 82 57
43 94 75 16 80

71 85 71 59 57
92 78 42 63 40
04 92 17 37 O1
45 19 72 53 32

15 19 11 87 82

01 29 14 13 49
38 38 47 47 61
66 16 44 94 31

54 15 58 34 36
72 84 81 18 34

18 61 91 36 74

74 62 77 37 07
32 39 21 97 63

78 46 42 25 01
62 09 53 67 87

12 30 28 07 83
76 37 84 16 05
05 04 14 98 07
46 97 83 54 82
47 66 56 43 82

APPENDIX 2

19 32 58 15 49
14 41 37 09 51

39 66 37 75 44
02 18 16 81 61

88 44 80 35 84

10 62 24 83 91
86 22 53 17 04
49 76 70 40 37

50 81 69 76 16
43 85 25 96 93

68 97 11 14 03
18 47 76 56 22

14 70 79 39 97
83 74 52 25 67
16 93 03 33 61

20 36 80 71 26
41 19 63 74 80

66 91 93 16 78
35 35 25 41 31
79 98 26 84 16

18 61 11 92 41

58 31 91 59 97
61 19 96 79 40
18 62 79 08 72

00 44 15 89 97

32 62 46 86 91
65 96 17 34 88
20 28 83 40 60
59 36 29 59 38
99 78 29 34 78
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Table C. Areas under the Normal Curve
Fractional parts of the total area (10,000) under the normal curve, corresponding

to distances between the mean and ordinates which are Z standard-deviation units
from the mean.
 

 

 

Z .00 .O1 .02 03 04 05 06 07 08 .09

0.0

|

0000 0040

|

0080

|

0120

|

0159

|

0199

|

0239

|

0279

|

0319

|

0359
0.1

|

0398 0438

|

0478

|

0517

|

0557

|

0596

|

0636

|

0675

|

0714

|

0753
0.2

|

0793 0832

|

0871

|

0910

|

0948

|

0987

|

1026

|

1064

|

1103

|

1141
0.3

|

1179 1217

|

1255

|

1293

|

1331

|

1368

|

1406

|

1443

|

1480

|

1517
0.4

|

1554 1591

|

1628

|

1664

|

1700

|

1736

|

1772

|

1808

|

1844

|

1879

0.5

|

1915 1950

|

1985

|

2019

|

2054

|

2088

|

2123

|

2157

|

2190

|

2224
0.6

|

2257 2291

|

2324

|

2357

|

2389

|

2422

|

2454

|

2486

|

2518

|

2549
0.7

|

2580 2612

|

2642

|

2673

|

2704

|

2734

|

2764

|

2794

|

2823

|

2852
0.8

|

2881 2910

|

2939

|

2967

|

2995

|

3023

|

3051

|

3078

|

3106

|

3133
0.9

|

3159 3186

|

3212

|

3238

|

3264

|

3289

|

3315

|

3340

|

3365

|

3389

1.0

|

3413 3438

|

3461

|

3485

|

3508

|

3531

|

3554

|

3577

|

3599

|

3621
1.1

|

3643 3665

|

3686

|

3718

|

3729

|

3749

|

3770

|

3790

|

3810

|

3830
1.2

|

3849 3869

|

3888

|

3907

|

3925

|

3944

|

3962

|

3980

|

3997

|

4015
1.3

|

4032 4049

|

4066

|

4083

|

4099

|

4115

|

4131

|

4147

|

4162

|

4177
1.4

|

4192 4207

|

4222

|

4236

|

4251

|

4265

|

4279

|

4292

|

4306

|

4319

1.5

|

4332 4345

|

4357

|

4370

|

4382

|

4394

|

4406

|

4418

|

4430

|

4441
1.6

|

4452 4463

|

4474

|

4485

|

4495

|

4505

|

4515

|

4525

|

4535

|

4545
1.7

|

4554 4564

|

4573

|

4582

|

4591

|

4599

|

4608

|

4616

|

4625

|

4633
1.8

|

4641 4649

|

4656

|

4664

|

4671

|

4678

|

4686

|

4693

|

4699

|

4706
1.9

|

4713 4719

|

4726

|

4732

|

4738

|

4744

|

4750

|

4758

|

4762

|

4767

2.0 4773 4778 4783 4788 4793 4798 4803 4808 4812 4817
2.1

|

4821 4826

|

4830

|

4834

|

4838

|

4842 | 4846

|

4850

|

4854

|

4857
2.2 4861 4865 4868 4871 4875 4878 4881 4884 4887 4890
2.3 4893 4896 4898 4901 4904 4906 4909 4911 4913 4916
2.4

|

4918 4920

|

4922

|

4925

|

4927

|

4929

|

4931

|

4932

|

4934

|

4936

2.5 4938 4940 4941 4943 4945 4946 4948 4949 4951 4952
2.6 4953 4955 4956 4957 4959 4960 4961 4962 4963 4964
2.7 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
2.8

|

4974 4975

|

4976

|

4977

|

4977

|

4978

|

4979

|

4980

|

4980

|

4981
2.9 4981 4982 4983 4984 4984 4984 4985 4985 4986 4986

3.0

|

4986.5 4987

|

4987

|

4988

|

4988

|

4988

|

4989

|

4989

|

4989

|

4990
3.1

|

4990.0 4991

|

4991

|

4991

|

4992

|

4992

|

4992

|

4992

|

4993

|

4993
3.2 4993.129
3.3 4995.166
3.4 4996.631
3.5 4997.674

3.6 4998.409
3.7 4998.922
3.8 4999 .277
3.9 4999 .519
4.0 4999.683

4.5 4999 .966
5.0 4999 .997133           
souRcE: Harold O. Rugg, Statistical Methods Applied to Education, Houghton

Mifflin Company, Boston, 1917, appendix table III, pp. 389-390, with the kind per-
mission of the publisher.



442 APPENDIX 2

Table D. Distribution of ¢
 

 

 

 

 

 

Level of significance for one-tailed test

.10 .05 025 01 .005 .0005

df
Level of significance for two-tailed test

.20 10 05 .02 O01 001

1 3.078 6.314 12.706 31.821 63 .657 636 .619

2 1.886 2.920 4.303 6.965 9.925 31.598

3 1.638 2.353 3.182 4.541 5.841 12.941

4 1.533 2.132 2.776 3.747 4 .604 8.610

5 1.476 2.015 2.571 3.365 4.032 6.859

6 1.440 1.943 2.447 3.143 3.707 5.959

7 1.415 1.895 2.365 2.998 3.499 5.405
8 1.397 1.860 2.306 2.896 3.355 5.041

9 1.383 1.833 2 .262 2.821 3.250 4.781
10 1.372 1.812 2.228 2.764 3.169 4.587

11 1.363 1.796 2.201 2.718 3.106 4.437

12 1.356 1.782 2.179 2.681 3.055 4.318
13 1.350 1.771 2.160 2.650 3.012 4.221
14 1.345 1.761 2.145 2.624 2.977 4.140

15 1.341 1.753 2.131 2.602 2.947 4.073

16 1.337 1.746 2.120 2.583 2.921 4.015

17 1.333 1.740 2.110 2.567 2.898 3.965
18 1.330 1.734 2.101 2.552 2.878 3.922

19 1.328 1.729 2.093 2.539 2.861 3.883
20 1.325 1.725 2.086 2.528 2.845 3 .850

21 1.323 1.721 2.080 2.518 2.831 3.819

22 1.321 1.717 2.074 2.508 2.819 3.792

23 1.319 1.714 2.069 2.500 2.807 3.767
24 1.318 1.711 2 .064 2.492 2.797 3.745

25 1.316 1.708 2.060 2.485 2.787 3.725

26 1.315 1.706 2.056 2.479 2.779 3.707
27 1.314 1.703 2.052 2.473 2.771 3.690
28 1.313 1.701 2.048 2.467 2.763 3.674
29 1.311 1.699 2.045 2.462 2.756 3.659

30 1.310 1.697 2.042 2.457 2.750 3.646

40 1.303 1.684 2.021 2.423 2.704 3.551

60 1.296 1.671 2.000 2.390 2.660 3.460
120 1.289 1.658 1.980 2.358 2.617 3.373
00 1.282 1.645 1.960 2 .326 2.576 | 3.291     
 

souRCE: Table D is abridged from Table III of R. A. Fisher and F. Yates, Statistical
Tables for Biological, Agricultural and Medical Research (1948 ed.), published by

Oliver & Boyd, Ltd., Edinburgh and London, by permission of the authors and

publishers.
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Table E. Critical Values of r in the Runs Test, P = .05

443

For the two-sample runstest any value of r which is equalto or less than that shown
in the body of the table is significant at the .05 level.
 

 

 

wr 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4 2

5 2 2 3

6 2 3 3 38
7 23 3 4 4

8/2 2 3 3 4 4 5

91/2 2 3 4 4 5 5 6
10';2 3 3 4 5 5 6 6 6
1l;}2 3 3 4 5 56 6 6 7 7
22;2 3 445 667 7 8 8
1/2 3 4 4 5 6 67 8 8 9g 9g
14/2 3 45 5677 8 8 9 9g 10
15;2 3 4 5 6 6 7 8 8 9 9 10 10 11
16/2 3 4 5 6 6 7 8 8 9 10 10 11 11 21
7i23 4 5 6 7 7 8 9 9 10 10 11 11 #12 12
1}2 3 4 5 6 7 8 8 9 10 10 11 IL 12 12 13 13
19;2 8 4 5 6 7 8 8 9 10 10 11 12 12 13 13 14 #14
20 ;2 3 4 5 6 7 8 9 9 10 11 11 12 12 13 18 14 14 15
 

souRCcE: F. 8. Swed and C.Eisenhart, ‘‘Tables for Testing Randomness of Grouping
in a Sequence of Alternatives,” Annals of Mathematical Statistics, vol. 14, pp. 83-86,
1943, with the kind permission of the authors and publisher.
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Table F. Table of Probabilities Associated with Values asSmall as Observed Values

of U in the Mann-Whitney Test

 

 

 

    
 

   

  

Ne=83 Nz = 4

Ni N,

U 1 2 3 U 1 2 3 4

0 .250 .100 .050 0 .200 .067 .028 .014

1 .500 .200 .100 1 .400 .133 .057 .029

2 .750 .400 .200 2 .600 .267 .114 .057

3 .600 .350 3 .400 .200 .100

4 .500 4 .600 .314 .171

D .650 5 429.2438
6 571 .3438
7 443
8 .557

N.=5
No =

N, N,

U 1 2 3 4 5 U 1 2 3 4 3 6

O

|

.167 .047 .018 .008 .004 0

|

.148 .0386 .012 .005 .002 .001

1

|

.833 .095 .036 .016 .008 1

|

.286 .071 .024 .010 .004 .002

2 .500 .190 .071 .032 .016 2 .428 .148 .048 .019 .009 .004

3 .667 .286 .125 .056 .028 3 .571 .214 .083 .0383 .015 .008

4 .429 .196 .095 .048 4 821) 6131) =«.057) 026.0138

5 571.286 .143) .075 5 429 .190 .086 .041 .021

6 .393 .206 .111 6 571 .274 129 .0638 .082

7 .500 .278 .155 7 3857 .176 .089 047
8 .607 .365 .210 8 452 .238 .123 .066
9 452.274 9 .548 .305 .165 .090
10 .648 .345 10 .o8l .214) .120
11 421 11 457 .268 .155

12 .900 12 5645 .3831 .197
13 .579 13 .3896 .242

14 465 .294

15 .535 .350
16 .409
17 .469
18 Od  

source: H. B. Mann and D. R. Whitney, ‘“‘On a Test of Whether One of Two

Random Variables is Stochastically Larger than the Other,’’ Annals of Mathematical

Statistics, vol. 18, pp. 52-54, 1947, with the kind permission of the authors and

publisher.
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Table F. Table of Probabilities Associated with Values as Small as Observed
Values of U in the Mann-Whitney Test (Continued)

 

 

N,z=7

DN 1 2 3 4 5 6 7

0; .125 .028 .008 .003 .001 .001 .000
1 .250 .056 .017 .006 .003 .001 .001
2 .375 .111 .033 .012 .005 .002 .001
3 .500 .167 .058 .021 .009 .004 .002
4 .625 .250 .092 .0386 .015 .007 .003

5 .333 .133 .055 .024 .011 .006
6 444 .192 .082 .037 .017 .009
7 .906 .258 .115 .053 .026 .013
8 .333 .158 .074 .0387 .019
9 417 .206 .101 .051 .027

10 .500 .264 .134 .069 .036
11 .§683 .324 .172 .090 .049
12 3894 .216 .117 .064
13 .464 .265 .147 .082

14 .0388 .319 .183 .104

15 .3878 .223 =.130
16 4388 .267 .159
17 .600 .314 .191

18 .562 .365 .228
19 418 .267
20 473.310
21 627 .355
22 .402
23 451
24 .500
25 .549 
 

445
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Table F. Table of Probabilities Associated with Values as Small as Observed
Values of U in the Mann-Whitney Test (Continued)

 

 

Ne =

NiU 1 2 3 4 5 6 7 8

Oj} .111 .022 .006 .002 .001 .000 .000 .000
1 .222 .044 .012 .004 .002 .001 .000 .000
2 .833 .089 .024 .008 .003 .001 .001 .000
3 .444 .133 .042 .014 .005 .002 .001 .001

4 .556 .200 .067 .024 .009 .004 .002 .001
5 .267 .097 .036 .015 .006 .003 .001
6 .306 .1389 .055 .023 .010 .005 .002

7 444 .188 .077 .0383 .015 .007 .003
8 .656 .248 .107 .047 .021 .010 .005
9 .315 .141 .064 .030 .014 .007
10 .3887 .184 .085 .041 .020 .010
11 .461 .2380 .111 .054 .027 .014

12 .6389 .285 .142 .071 .036 .019
13 841 .177 .091 .047 .025

14 404 .217 .114 .060 .032
15 467 .262 .141 .076 .041

16 033.311) 172) «=.095 =.052
17 .3862 .207 .116 .065
18 416 .245 .140 .080
19 472.286 .168 .097

20 .628 .3831 .198 .117
21 O17) =.232 139

22 426 .268 .164
23 .475 .306 .191
24 625 .3847 .221

29 .389 .253
26 .483  .287

27 .478  .323
28 .922 .360
29 .399
30 .439
ol .480

32 .520  



TABLES 447

Table G. Table of Critical Values of U in the Mann-Whitney Test
Critical values of U at a = .001 with direction predicted or at a = .002

with direction not predicted
 

AN;

1 ] 2NN 9 0 1 1 13 14 15 16 17 18 19 20

 

1
2

3 0 0 0 0
4 0 0 O0O 1 1 1 2 2 3 3 8
5 1 41 2 2 3 3 4 5 5 6 7 7
6 2 3 4 4 5 6 7 8 9 10 11 12

7 3 5 6 7 8 9 10 11 13 14 15 16
8 59 6 8 9 11 12 14 15 17 18 20 21
9 ¢ 8 10 12 14 15 17 #19 21 23 25 26

10 8 10 12 14 17 19 21 23 25 27 29 32
11 10 12 15 17 20 22 24 27 29 32 34 37
12 |}12 14 17 20 23 25 28 31 34 37 #40 42

13 14 17 20 23 26 29 32 35 38 42 45 48
14 15 19 22 25 29 32 36 39 43 46 50 54
15 17 21 24 28 32 36 40 43 47 51 55 59
16 19 23 27 31 35 39 48 48 52 56 60 65
17 21 25 29 34 388 43 47 52 57 61 66 70
18 23 27 32 37 42 46 51 56 61 66 71 76
19 25 29 34 40 45 50 55 60 66 71 77 82
20 26 32 37 42 48 54 59 65 70 76 82 88 
 

sourcE: D. Auble, ‘Extended Tables for the Mann-Whitney Statistic,” Bulletin of

the Institute of Educational Research at Indiana University, vol, 1, no. 2, Tables 1,3, 5,
and 7, 1953, with the kind permission of the publisher; as adapted in S. Siegel Non-
parametric Statistics, McGraw-Hill Book Gompany, Inc., New York, 1956, table K.
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Table G. Table of Critical Values of U in the Mann-Whitney Test (Continued)

Critical values of U at a = .01 with direction predicted or at a = .02
with direction not predicted
 

 

a 9 10 11 12 13 14 15 16 17 18 19 20

1
2 0 0000 0 1 1
3/1 1 1 2 2 2 3 38 4 4 4 «5
4/3 3 4 5 5 6 7 7 8 9 9 10
5| 5 6 7 8 9 10 11 12 18 14 #15 16
6/7 8 9 11 12 13 15 16 18 19 20 22
7) 9 11 12 14 16 17 19 21 23 24 26 28
8111 13 15 17 20 22 24 26 28 30 32 34
9|14 16 18 21 23 26 28 31 33 36 38 40

10 |16 19 22 24 27 30 33 36 38 41 44 47
11 18 22 25 28 31 34 37 41 44 47 50 53
12 21 24 28 31 35 38 42 46 49 53 56 60
13 23 27 31 35 39 43 47 51 55 59 63 67
14 126 30 34 38 43 47 51 56 60 65 69 73
15 28 33 37 42 47 51 56 61 66 70 75 80
16 31 36 41 46 51 56 61 66 71 76 82 87
17 33 38 44 49 55 60 66 71 77 82 88 98
18 36 41 47 53 59 65 70 76 82 88 94 100
19 38 44 50 56 63 69 75 82 88 94 101 107
20 40 47 53 60 67 73 80 87 93 100 107 114  
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Table G. Table of Critical Values of U in the Mann-Whitney Test (Continued)
Critical values of U at a = .025 with direction predicted or

at a = .05 with direction not predicted
 

 

mm 9 10 11 12 18 14 15 16 17 18 19 20

1

2 0 0 O 1 1 1 1 =1 2 2 2 2

3 2 38 3 4 4 5 5 6 6 7 7 8
4 4 5 6 7 8 9 10 11 11 #12 #13 «+13

5 7 8 9 11 12 13 #14 15 #17 «18 19) 20
6/10 11 138 14 16 17 19 21 22 24 25 27
7 12 14 16 18 20 22 24 26 28 30 32 34
8 15 17 19 22 24 26 29 31 34 36 38 41
9 {17 20 23 26 28 31 34 387 39 42 45 48

10 20 238 26 29 33 36 39 42 45 48 652 55
11 23 26 30 33 37 40 44 47 51 55 58 62

37 41 45 49 53 57 61 65 69
41 45 50 54 59 63 67 72 76
45 50 55 59 64 67 74 78 88

39 44 49 54 59 64 70 75 80 85 90
53 59 64 70 75 81 86 92 98
57 63 67 75 81 87 93 99 105
61 67 74 80 86 93 99 106 112
65 72 78 85 92 99 106 113 119
69 76 83 90 98 105 112 119 127B
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Table G. Table of Critical Values of U in the Mann-Whitney Test (Continued)

 

 

Critical values of U at a = .05 with direction predicted or at a = .10

with direction not predicted

aN7 9 10 11 12 13 14 15 16 17 18 19

=

20

1 0 0
2 1 1 1 2 2 2 3 3 3 4 4 4

3 3 4 5 5 6 7 7 8 9 9 10 Ii

4 6 7 8 9 10 Ii 12 14 15 16 17~= 18

3 9 11 12 13 15 16 18 19 20 22 23 25

6 12 14 16 17 19 21 23 25 26 28 30 32

7115 17 19 21 24 26 28 30 33 35 37 39
8 |18 20 23 26 28 31 33 36 389 41 44 47

9 21 24 27 30 33 36 39 42 45 48 51 54
10 24 27 381 34 37 4!1 44 48 51 55 58 62

11 27 31 34 88 42 46 50 54 57 #461 £465 69

12 30 34 88 42 47 51 55 60 64 68 72 W7
13 33 37 42 47 51 56 61 65 70 75 80 84
14 36 41 46 51 56 61 66 71 77 82 87 92

15 39 44 50 55 61 66 72 77 83 88 94 100
16 42 48 54 60 65 71 77 88 89 95 101 107
17 45 51 57 64 70 77 83 89 96 102 109 115
18 48 55 61 68 75 82 88 95 102 109 116 123
19 51 58 65 72 80 87 94 101 109 116 123 130
20 54 62 69 77 84 92 100 107 115 1238 130 188  
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Table H. Table of Critical Values of 7 in the Wilcoxon Matched-pairs Signed-ranks Test
 

 

 
 

 

 
 

Level of significance, direction predicted

.025 | .O1 .005

N oo. . oo.
Level of significance, direction

not predicted

.05 .02 01

6 0 — —

7 2 0 —

8 4 2 0

9 6 3 2

10 8 5 3

11 11 7 5

12 14 10 7

13 17 13 10

14 21 16 13

15 25 20 16

16 30 24 20

17 35 28 23

18 40 33 28

19 46 38 32

20 52 43 38

21 59 49 43

22 66 56 49

23 73 62 55

24 81 69 61

25 89 77 68 
 

souRcE: F. Wilcoxon, Some Rapid Approximate Statistical Procedures, American
Cyanamid Company, New York, 1949, table I, p. 13, with the kind permission of the

author and publisher; as adaptedin 8. Siegel, Nonparametric Statistics, McGraw-Hill
Book Company, Inc., New York, 1956, table G.
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Table I. Distribution of x?

Probability

df} 99 8 95 90 .80 .70 50 30 .20 10 05 02 .01 .001

1 .03157 .03628 .00393| .0158; .0642 .148 .455| 1.074) 1.642} 2.706| 3.841] 5.412) 6.635] 10.827

2 .0201/ .0404 .103 211 .446 .713| 1.386] 2.408] 3.219| 4.605] 5.991] 7.824] 9.210) 13.815

3} .115| .185] .352] .584] 1.005] 1.424] 2.366] 3.665] 4.642] 6.251| 7.815] 9.837 11.341 16.268
4 297 .429 711} 1.064] 1.649} 2.195} 3.357] 4.878] 5.989] 7.779! 9.488 11.668 13.277 18.465

5 554 .752 1.145] 1.610} 2.343] 3.000) 4.351] 6.064] 7.289] 9.236 11.070 13.388 15.086 20.517

6 .872| 1.184] 1.685] 2.204} 3.070] 3.828} 5.348] 7.231) 8.558 10.645 12.592 15.033 16.812 22.457

7 1.239] 1.564] 2.167] 2.833] 3.822] 4.671] 6.346] 8.383] 9.803 12.017 14.067 16.622 18.475 24.322

8 1.646] 2.082} 2.733) 3.490| 4.594] 5.527) 7.344] 9.524 11.080 13.362 15.507 18.168 20.090 26.125

9 2.088] 2.532] 3.325] 4.168} 5.380] 6.393} 8.343 10.656 12.242 14.684 16.919 19.679 21.666 27.877

10 2.558] 3.059] 3.940} 4.865] 6.179| 7.267) 9.342] 11.781 18.442 15.987 18.307 21.161 23.209 29.588

11 3.053; 3.609| 4.575; 5.578] 6.989] 8.148] 10.341 12.899 14.631 17.275 19.675 22.618 24.725 31.264

12 3.571} 4.178) 5.226} 6.304] 7.807] 9.034) 11.340] 14.011 15.812 18.549 21.026 24.054 26.217 32.909

13 4.107| 4.765) 5.892| 7.042] 8.634| 9.926 12.340 15.119 16.985 19.812 22.362 25.472 27.688 34.528

14 4.660] 5.868] 6.571| 7.790| 9.467 10.821 13.339 16.222 18.151 21.064 23.685 26.873 29.141 36.123

15 5.229) 5.985| 7.261} 8.547 /}10.307 11.721 14.339 17.322 19.311 22.307 24.996 28.259 30.578 37.697

16 5.812} 6.614) 7.962) 9.312 11.152 12.624 15.338 18.418 20.465 23.542 26.296 29.633 32.000 39.252

17 6.408| 7.255) 8.672 10.085 12.002 13.531 16.338 19.511 21.615 24.769 27.587 30.995 33.409 40.790

18 7.015| 7.906| 9.390} 10.865 12.857 14.440 17.338 20.601 22.760 25.989 28.869 32.346 34.805 42.312
19 7.633} 8.567} 10.117 11.651 13.716 15.352 18.338 21.689 23.900 27.204 30.144 33.687 36.191 43.820

20 8.260} 9.237 10.851 12.443 14.578 16.266 19.337 22.775 25.038 28.412 31.410 35.020 37.566 45.315

21 8.897) 9.915} 11.591 18.240 15.445 17.182 20.337 23.858 26.171 29.615 32.671 36.343 38.932 46.797

22 9.542 10.600 12.338 14.041 16.314 18.101 21.337 24.939 27.301 30.813 33.924 37.659 40.289 48.268

23 10.196 11.293 13.091 14.848 17.187 19.021 22.337 26.018 28.429 32.007 35.172 38.968 41.638 49.728

24 10.856 11.992 13.848 15.659 18.062 19.948 23.337 27.096 29.553 33.196 36.415 40.270 42.980 51.179

25 11.524 12.697 14.611 16.473 18.940 20.867 24.337 28.172 30.675 34.382 37.652 41.566 44.314 52.620

26 12.198 13.409 15.379 17.292 19.820 21.792 25.336 29.246 31.795 35.563 38.885 42.856 45.642 54.052

27 12.879 14.125 16.151 18.114 20.703 22.719 26.336 30.319 32.912 36.741 40.113 44.140 46.963 55.476

28 13.565 14.847 16.928 18.939 21.588 23.647 27.336 31.391 34.027 37.916 41.337 45.419 48.278 56.893
29 14.256 15.574 17.708 19.768 22.475 24.577 28.336 32.461 35.139 39.087 42.557 46.693 49.588 58.302

30 14.953 16.306 18.493 20.599 23.364 25.508 29.336 33.530 36.250 40.256 43.773 47.962 50.892 59.703               
For larger values of df, the expression +/2x2 — +/2df — 1 maybe used as a normal deviate with unit variance, remem-

bering that the probability for x2 corresponds with that of a single tail of the normal curve.

 

souRcE: Table I is reprinted from Table IV of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and

Medical Research (1948 ed.), published by Oliver & Boyd Ltd,., Edinburgh and London, by permission of the authors and

publishers.
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Table J. Distribution of F

p = 05

vty 2 3 4 5 6 8 12 24 00
No

1 |}161.4 |199.5 215.7 224.6 230.2 (284.0 |238.9 |248.9 |249.0 |254.3
2 18.51] 19.00; 19.16] 19.25] 19.30] 19.33] 19.37] 19.41] 19.45} 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94, 8.84) 8.74 8.64) 8.53
4 7.41 6.94 6.59 6.39 6.26 6.16) 6.04, 5.91) 5.77| 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95) 4.82) 4.68] 4.53] 4.36

6 5.99 5.14 4.76 4.53 4.39 4.28} 4.15) 4.00) 3.84) 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87, 3.73) 3.57! 3.41] 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58] 3.44, 3.28) 3.12) 2.93

9 5.12 4.26 3.86 3.63 3.48] 3.37) 3.23} 3.07) 2.90! 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22) 3.07) 2.91} 2.74) 2.54

11 4.84 3.98 3.59 3.36 3.20! 3.09) 2.95) 2.79) 2.61) 2.40

12 4.75 3.88 3.49 3.26 3.11 3.00} 2.85) 2.69) 2.50! 2.30

13 4.67 3.80 3.41 3.18 3.02 2.92} 2.77| 2.60!) 2.42) 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85} 2.70) 2.53) 2.35) 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79| 2.64) 2.48] 2.29) 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74, 2.59) 2.42) 2.24 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70} 2.55) 2.38! 2.19) 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66, 2.51) 2.34 2.15) 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63; 2.48) 2.31) 2.11} 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60) 2.45) 2.28) 2.08) 1.84

21 4.32 3.47 3.07 2.84 2.68 2.57, 2.42) 2.25) 2.05) 1.81

22 4.30 3.44 3.05 2.82 2.66 2.55} 2.40) 2.23) 2.03) 1.78

23 4.28 3.42 3.03 2.80 2.64 2.53} 2.38) 2.20) 2.00) 1.76

24 4.26 3.40 3.01 2.78 2.62 2.51} 2.36) 2.18 1.98) 1.73

25 4.24 3.38 2.99 2.76 2.60 2.49} 2.34, 2.16) 1.96) 1.71

26 4.22 3.37 2.98 2.74 2.59 2.47) 2.32) 2.15) 1.95) 1.69

27 4.21 3.35 2.96 2.73 2.57 2.46; 2.30!) 2.13) 1.93) 1.67

28 4.20 3.34 2.95 2.71 2.56 2.444 2.29) 2.12) 1.91| 1.65

29 4.18 3.33 2.93 2.70 2.54 2.43; 2.28 2.10) 1.90) 1.64

30 4.17 3.32 2.92 2.69 2.53 2.42} 2.27| 2.09) 1.89) 1.62

40 4.08 3.23 2.84 2.61 2.45 2.34, 2.18) 2.00) 1.79) 1.51

60 4.00 3.15 2.76 2.52 2.37 2.25, 2.10) 1.92) 1.70) 1.39

120 3.92 3.07 2.68 2.45 2.29 2.17; 2.02) 1.88) 1.61] 1.25

00 3.84 2.99 2.60 2.37 2.21 2.09) 1.94 1.75) 1.52) 1.00          
 

Values of n; and n2 represent the degrees of freedom associated with the larger and

smaller estimates of variance respectively.
 

souRcE: Table J is abridged from Table V of R. A. Fisher and F. Yates, Statistical
Tables for Biological, Agricultural and Medical Research (1948 ed.), published by
Oliver & Boyd, Ltd., Edinburgh and London, by permission of the authors and
publishers.
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Table J. Distribution of F (Continued)

p = Ol

Nt} 2 3 4 5 6 8 12 24 |
ne

1 4052 4999 5403 5625 5764 5859 5981 6106 62384 6366

2/1 98.49 99.01 99.17 99.25 99.30 99.33 99.36 99.42 99.46 99.50

3 34.12 30.81 29.46 28.71 28.24 27.91 27.49 27.05 26.60 26.12

4 21.20 18.00 16.69 15.98 15.52 15.21 |14.80/| 14.37 138.93 138.46

5 16.26 18.27 12.06 11.39 10.97 10.67 10.27] 9.89; 9.47] 9.02

6 13.74 10.92 9.78 9.15 8.75 8.47| 8.10] 7.72| 7.381] 6.88

7 12.25 9.55 8.45 7.85 7.46 7.19] 6.841 6.47] 6.07| 5.65

8 11.26 8.65 7.59 7.01 6.63 6.37| 6.03| 5.67] 5.28] 4.86

9) 10.56 8.02 6.99 6.42 6.06 5.80] 5.47] 5.11] 4.73)| 4.31

10 10.04 7.56 6.55 5.99 5.64 5.389| 5.06] 4.71] 4.338); 3.91

11 9.65 7.20 6.22 5.67 5.32 5.07) 4.74] 4.40); 4.02) 3.60

12 9.33 6.93 5.95 5.41 5.06 4.82] 4.50] 4.16] 3.78] 3.36

13 9.07 6.70 5.74 5.20 4.86 4.62} 4.30] 3.96] 3.59] 3.16

14 8.86 6.51 5.56 5.03 4.69 4.46] 4.14] 3.80] 3.43] 3.00

15 8.68 6.36 5.42 4.89 4.56 4.82] 4.00] 3.67) 3.29| 2.87

16 8.53 6.23 5.29 4.77 4.44 4.20] 3.89] 3.55| 3.18] 2.75

17 8.40 6.11 5.18 4.67 4.34 4.10} 3.79} 3.45] 3.08; 2.65

18 8.28 6.01 5.09 4.58 4.25 4.01] 3.71] 3.37) 3.00| 2.57

19 8.18 5.93 5.01 4.50 4.17 3.94] 3.63] 3.30} 2.92) 2.49

20 8.10 5.85 4.94 4.43 4.10 3.87| 3.56] 3.23} 2.86] 2.42

21 8.02 5.78 4.87 4..37 4.04 3.81} 3.51] 3.17| 2.80; 2.36

22 7.94 5.72 4.82 4.31 3.99 3.76| 3.45] 3.12] 2.75) 2.31

23 7.88 5.66 4.76 4.26 3.94 3.71] 3.41] 3.07) 2.70) 2.26

24 7.82 5.61 4.72 4.22 3.90 3.67) 3.36] 3.03] 2.66) 2.21

25 7.77 5.57 4.68 4.18 3.86 3.63] 3.382] 2.99] 2.62] 2.17

26 7.72 5.53 4.64 4.14 3.82 3.59] 3.29| 2.96] 2.58; 2.13

27 7.68 5.49 4.60 4.11 3.78 3.56] 3.26| 2.938; 2.55) 2.10

28 7.64 5.45 4.57 4.07 3.75 3.53] 3.23] 2.90) 2.52) 2.06

29 7.60 5.42 4.54 4.04 3.73 3.50] 3.20] 2.87| 2.49) 2.03

30 7.56 5.39 4.51 4.02 3.70 3.47] 3.17] 2.84} 2.47] 2.01

40 7.31 5.18 4.31 3.83 3.51 3.29] 2.99| 2.66) 2.29} 1.80

60 7.08 4.98 4.13 3.65 3.34 3.12] 2.82) 2.50] 2.12; 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96) 2.66) 2.34; 1.95) 1.38

00 6.64 4.60 3.78 3.02 3.02 2.80} 2.51 2.18) 1.79} 1.00          
 

Values of n; and nz represent the degrees of freedom associated with the larger and

smaller estimates of variance respectively.
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Table J. Distribution of F (Continued)

p = .001

tT 4 2 3 4 5 6 8 12 24 ow
Ne

1

|

405284

|

500000

|

540379

|

562500

|

576405 |585937/598144|6106671623497/636619
2|998.5 |999.0 |999.2 |999.2 |999 3 {999.3 |999.4 1999.4 1999.5 |999.5
3 |167.5 |148.5 |141.1 |137.1 |134.6 {132.8 1180.6 1128.3 1125.9 1123.5
4) 74.14| 61.25] 56.18} 53.44] 51.71] 50.53] 49.00] 47.41] 45.771 44.05
5

|

47.04] 36.61} 33.20] 31.09] 29.75] 28.84! 27.64] 26.42] 25.14] 23.78

6

|

35.51] 27.00| 23.70) 21.90; 20.81] 20.03} 19.03] 17.99] 16.89] 15.75
@| 29.22) 21.69] 18.77] 17.19} 16.21] 15.52] 14.63] 13.71] 12.73 11.69
8

|

25.42) 18.49} 15.83] 14.39] 13.49} 12.86) 12.04) 11.19 10.30; 9.34
9) 22.86; 16.39} 13.90} 12.56} 11.71] 11.13! 10.37] 9.57] 8.72) 7.81
10

|

21.04| 14.91] 12.55] 11.28} 10.48] 9.92) 9.20) 8.45] 7.641 6.76

11 19.69 13.81; 11.56] 10.35 9.58;} 9.05) 8.35) 7.63) 6.85) 6.00
12; 18.64] 12.97} 10.80 9.63 8.89; 8.38} 7.71) 7.00) 6.25) 5.42
13 17.81] 12.31] 10.21 9.07 8.35) 7.86) 7.21} 6.52) 5.78) 4.97
14; 17.14] 11.78 9 73 8.62 7.92] 7.48) 6.80} 6.13! 5.41} 4.60
15 16.59) 11.34 9.34 8.25 7.57| 7.09| 6.47) 5.81) 5.10! 4.31

16 16.12; 10.97 9.00 7.94 7.27| 6.81) 6.19} 5.55) 4.85) 4.06
17 15.72; 10.66 8.73 7.68 7.02; 6.56} 5.96) 5.32) 4.63) 3.85

18 15.38) 10.39 8.49 7.46 6.81 6.35, 5.76) 5.13) 4.45! 3.67

19 15.08] 10.16 8.28 7.26 6.61 6.18} 5.59) 4.97) 4.29) 3.52

20 14.82 9.95 8.10 7.10 6.46} 6.02} 5.44, 4.82! 4.15) 3.38

21} 14.59 9.77 7.94 6.95 6.32; 5.88 5.381) 4.70) 4.03) 3.26

22; 14.38 9.61 7.80 6.81 6.19; 5.76) 5.19} 4.58) 3.92) 3.15

23 14.19 9.47 7.67 6.69 6.08; 5.65) 5.09} 4.48) 3.82] 3.05

24 14.03 9.34 7.55 6.59 5998; 5.55) 4.99) 4.39) 3.74) 2.97

25 13.88 9.22 7.45 6.49 5.88; 5.46) 4.91} 4.31) 3.66) 2.89

26 13.74 9.12 7.36 6.41 5.80} 5.38) 4.83} 4.24) 3.59) 2.82

27 13.61 9.02 7.27 6.33 5.73 5.31) 4.76) 4.17) 3.52) 2.75

28 13.50 8.93 7.19 6.25 5.66} 5.24) 4.69) 4.11] 3.46) 2.70

29 13.39 8.85 7.12 6.19 5.59; 5.18) 4.641 4.05) 3.41) 2.64

30; 13.29 8.77 7.05 6.12 59.038| 5.12) 4.58) 4.00) 3.36) 2.59

40 12.61 8.25 6.60 5.70 5.138) 4.73) 4.21] 3.64 3.01] 2.23

60; 11.97 7.76 6.17 5.31 4.76| 4.37) 3.87) 3.31] 2.69) 1.90

120 11.38 7.31 5.79 4.95 4.42; 4.04) 3.55} 3.02) 2.40] 1.56

) 10.83 6.91 5.42 4.62 4.10| 3.74) 3.27] 2.74) 2.13) 1.00          
 

Values of 1 and nz represent the degrees of freedom associated with the larger and

smaller estimates of variance respectively.

 



456 APPENDIX 2

Table K. Values of Z for Given Values of r
 

r .000 .001 .002 .003 .004 .005 .006 .007 .008 .009

 

.000 . 0000 .0010 .0020 .0030 .0040 . 0050 . 0060 .0070 . 0080 .0090

.010 .0100 .0110 .0120 .0130 .0140 .0150 .0160 .0170 .0180 .0190

.020 .0200 .0210 .0220 .0230 .0240 .0250 .0260 .0270 .0280 .0290

.030 .0300 .0310 .0320 .0330 .0340 .0350 .0360 .0370 .0380 .0390

.040 .0400 .0410 .0420 .0430 .0440 .0450 .0460 .0470 .0480 .0490

.050 .0501 .0511 .0521 .0531 “0541 .0551 .0561 .0571 .0581 .0591

.060 .0601 .0611 .0621 .0631 .0641 .0651 .0661 .0671 .0681 .0691

.070 .0701 .0711 .0721 .0731 .0741 .0751 .O761 .0771 .0782 .0792

.080 . 0802 .0812 .0822 .0832 .0842 .0852 .0862 .0872 .0882 .0892

.090 .0902 .0912 .0922 .0933 .0943 .0953 .0963 .0973 .0983 .0993

. 100 . 1003 .1013 . 1024 . 1034 . 1044 . 1054 . 1064 .1074 . 1084 . 1094

.110 .1105 .1115 21125 ~1135 .1145 .1155 .1165 .1175 .1185 .1195

.120 . 1206 . 1216 . 1226 . 1236 . 1246 .1257 . 1267 .1277 .1287 . 1297

.130 . 1308 .1318 .1328 . 1338 . 1348 . 13858 . 1368 .1379 . 1389 . 1399

. 140 . 1409 .1419 . 1430 . 1440 . 1450 . 1460 . 1470 .1481 . 1491 .1501

. 150 .1511 . 1522 . 1532 .1542 . 1552 . 1563 . 1573 . 1583 . 1593 . 1604

. 160 .1614 . 1624 . 1634 . 1644 . 1655 . 1665 . 1676 . 1686 . 1696 . 1706

.170 .1717 .1727 .1737 .1748 . 1758 . 1768 .1779 . 1789 . 1799 .1810

. 180 . 1820 . 1830 . 1841 .1851 .1861 . 1872 . 1882 .1892 . 1903 .1913

. 190 .1923 . 1934 .1944 . 1954 . 1965 .1975 . 1986 . 1996 . 2007 .2017

.200 . 2027 . 2038 . 2048 . 2059 . 2069 . 2079 . 2090 . 2100 .2111 .2121

.210 .2132 2142 .2153 . 2163 .2174 . 2184 .2194 .2205 .2215 . 2226

. 220 . 2237 2247 . 2258 . 2268 . 2279 . 2289 . 2300 .2310 .2321 . 2331

. 230 . 2342 . 2353 . 2363 .2374 . 2384 . 2395 . 2405 . 2416 2427 . 2437

. 240 . 2448 . 2458 . 2469 . 2480 . 2490 .2501 .2511 . 2522 . 2533 . 2543

. 250 . 2554 . 2565 .2575 . 2586 . 2597 . 2608 . 2618 . 2629 . 2640 . 2650

. 260 . 2661 , 2672 . 2682 . 2693 . 2704 .2715 . 2726 . 2736 2747 . 2758

.370 . 2769 .2779 . 2790 . 2801 . 2812 . 2823 . 2833 . 2844 . 2855 . 2866

. 280 . 2877 . 2888 . 2898 . 2909 . 2920 .2931 . 2942 .2953 . 2964 . 2975

. 290 . 2986 . 2997 . 3008 . 3019 . 3029 . 3040 .3051 . 3062 . 38073 . 3084

. 300 . 38095 .3106 .3117 . 3128 . 3139 .3150 .3161 .3172 .3183 .3195

.310 . 3206 38217 . 3228 . 3239 . 3250 .3261 3272 . 3283 . 3294 . 3305

. 320 .3317 . 3328 . 3339 .3350 .3361 .3372 . 3384 .3395 . 3406 .3417

. 330 3428 . 3439 . 3451 3462 .3473 3484 . 3496 . 3507 .3918 . 3530

. 340 . 3541 . 3552 . 3564 .3575 . 3586 . 3597 . 3609 . 3620 . 3632 . 3643

. 350 . 3654 . 3666 . 3677 . 3689 . 3700 .3712 .38723 .3734 .3746 3757

. 360 .3769 .3780 .3792 . 3803 .3815 . 3826 . 3838 . 3850 . 3861 . 3873

.370 . 3884 . 3896 . 3907 .3919 .3931 . 3942 . 3954 . 3966 .3977 . 3989

. 380 .4001 .4012 .4024 .4036 .4047 .4059 .4071 . 4083 .4094 .4106

. 390 .4118 .4130 .4142 .4153 .4165 .4177 .4189 .4201 .4213 ~4225

.400 .4236 .4248 .4260 .4272 .4284 .4296 .4308 .4320 .4332 4344

.410 . 4356 .4368 .4380 .4392 .4404 .4416 . 4429 .4441 .4453 .4465

.420 4477 . 4489 .4501 .4513 .4526 . 4538 .4550 .4562 4574 .4587

.430 .4599 .4611 4623 . 4636 .4648 .4660 .4673 .4685 .4697 .4710

.440 4722 .4735 4747 .4760 4772 .4784 .4797 .4809 .4822 .4835

.450 . 4847 .4860 .4872 .4885 .4897 .4910 .4923 .4935 .4948 .4961

. 460 .4973 .4986 .4999 .5011 . 5024 . 5037 . 5049 . 5062 .5075 . 5088

.470 .5101 .5114 .5126 .5139 .§152 .5165 .5178 .5191 .5204 .§217

.480 .5230 . 5243 . 5256 . 5279 . 5282 .5295 . 5308 . 5321 . 5334 . 5347

.490 .5361 . 5374 . 5387 . 5400 .5413 .5427 . 5440 . 5453 . 5466 . 5480          
 

sourcE: Albert E. Waugh, Statistical Tables and Problems, McGraw-Hill Book Company, Inc.,
New York, 1952, table All, pp. 40-41, with the kind permission of the author and publisher.



 

 

          
 

TABLES 457

Table K. Values of Z for Given Values of r (Continued)

r -000 .001 .002 .003 .004 .005 .006 .007 .008 .009

.500 5493 . 5506 5520 6533 5547 . 5560 .5573 . 5587 . 5600 .5614

.510 .5627 9641 5654 . 5668 . 5681 .5695 . 5709 .5722 .5736 5750

.620 .5763 5777 .O791 . 5805 5818 .§832 . 5846 . 5860 . 5874 . 5888

.530 .5901 .5915 . 5929 5943 .5957 .5971 5985 .5999 .6013 .6027

. 940 .6042 .6056 .6070 .6084 .6098 .6112 .6127 .6141 .6155 .6170

.550 .6184 .6198 .6213 .6227 .6241 .6256 .6270 .6285 .6299 .6314

. 560 .6328 .6343 .6358 .6372 . 6387 .6401 .6416 .6431 .6446 .6460

.570 .6475 .6490 .6505 .6520 .6535 .6550 .6565 .6579 .6594 .6610

. 580 .6625 .6640 .6655 . 6670 .6685 .6700 .6715 .6731 .6746 .6761

.590 .6777 .6792 . 6807 . 6823 .6838 6854 .6869 .6885 .6900 .6916

.600 .6931 .6947 .6963 .6978 .6994 .7010 . 7026 . 7042 1057 .7073

.610 . 7089 7105 7121 .71387 7153 .7169 7185 7201 7218 7234

.620 4250 . 7266 4283 7299 7315 7332 7348 . 7364 7381 7398

.630 (414 7431 1447 7464 7481 7497 7514 7531 1548 7565

.640 7582 .7599 . 7616 . 7633 . 7650 . 1667 . 1684 7701 7718 4736

.650 1753 .7770 1788 . 7805 . 7823 . 7840 . 7858 1875 0893 7910

.660 . 7928 . 7946 7964 . 7981 .7999 .8017 . 8035 . 8053 . 8071 . 8089

.670 .8107 . 8126 .8144 .8162 .8180 .8199 8217 8236 . 8254 8273

.680 .8291 .8310 . 8328 . 8347 . 8366 .8385 . 8404 8423 . 8442 .8461

.690 . 8480 . 8499 .8518 .8537 . 8556 .8576 8595 . 8614 .8634 . 8653

.700 . 8673 . 8693 .8712 8732 8752 8772 . 8792 .8812 . 8832 8852

.710 8872 . 8892 .8912 . 8933 . 8953 .8973 . 8994 .9014 .9035 . 9056

. 720 .9076 . 9097 .9118 .9139 .9160 .9181 . 9202 .9223 .9245 .9266

.730 . 9287 . 9309 .9330 .9352 .9373 .9395 9417 .9439 .9461 . 9483

.740 .9505 .9527 .9549 .9571 .9594 .9616 . 9639 . 9661 . 9684 .9707

.750 .9730] .9752] .9775| .9799| .9822/ .9845| .9868| .9892| .99151 .9939

. 760 .9962 .9986 1.0010 1.0034 1.0058 1.0082 1.0106 1.0130 1.0154 1.0179

.770 1.0203 1.0228 1.0253 1.0277 1.0302 1.0327 1.0352 1.0378 1.0403 1.0428

.780 1.0454 1.0479 1.0505 1.0531 1.0557 1.0583 1.0609 1.0635 1.0661 1.0688

.790 1.0714 1.0741 1.0768 1.0795 1.0822 1.0849 1.0876 1.0903 1.0931 1.0958

.800 1.0986 1.1014 1.1041 1.1070 1.1098 1.1127 1.1155 1.1184 1.1212 1.1241

.810 1.1270 1.1299 1.1329 1.1858 1.1388 1.1417 1.1447 1.1477 1.1507 1.1538

.820 1.1568 1.1599 1.1630 1.1660 1.1692 1.1723 1.1754 1.1786 1.1817 1.1849

.830 1.1870 1.1913 1.1946 1.1979 1.2011 1.2044 1.2077 1.2111 1.2144 1.2178

.840 1.2212 1.2246 1.2280 1.2315 1.2349 1.2384 1.2419 1.2454 1.2490 1.2526

.850 1.2561 1.2598 1.2634 1.2670 1.2708 1.2744 1.2782 1.2819 1.2857 1.2895

.860 1.2934 1.2972 1.3011 1.3050 1.3089 1.3129 1.3168 1.3209 1.3249 1.3290

.870 1.3331 1.3372 1.3414 1.3456 1.3498 1.3540 1.3583 1.3626 1.3670 1.3714

.880 1.3758 1.3802 1.3847 1.3892 1.3938 1.3984 1.4030 1.4077 1.4124 1.4171

.890 1.4219 1.4268 1.4316 1.4366 1.4415 1.4465 1.4516 1.4566 1.4618 1.4670

.900 1.4722 1.4775 1.4828 1.4883 1.4937 1.4992 1.5047 1.5103 1.5160 1.5217
-910 1.5275 1.5334 1.5393 1.5453 1.5513 1.5574 1.5636 1.5698 1.5762 1.5825
.920 1.5890 1.5956 1.6022 1.6089 1.6157 1.6226 1.6296 1.6366 1.6438 1.6510
-930 1.6584 1.6659 1.6734 1.6811 1.6888 1.6967 1.7047 1.7129 1.7211 1.7295
.940 1.7380 1.7467 1.7555 1.7645 1.7736 1.7828 1.7923 1.8019 1.8117 1.8216

-950 1.8318 1.8421 1.8527 1.8635 1.8745 1.8857 1.8972 1.9090 1.9210 1.9333
.960 1.9459 1.9588 1.9721 1.9857 1.9996 2.0140 2.0287 2.0439 2.0595 2.0756
.970 2.0923 2.1095 2.1273 2.1457 2.1649 2.1847 2.2054 2.2269 2.2494 2.2799
.980 2.2976 2.3223 2.3507 2.3796 2.4101 2.4426 2.4774 2.5147 2.5550 2.5988
.990 2.6467 2.6996 2.7587 2.8257 2.9031 2.9945 3.1063 3.2504 3.4534 3.8002

r z

.9999 4.95172

. 99999 6.10303
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Ackoff, R. L., 96
Adler, F., 21
Affirming the consequent, fallacy of,

92-94
Algebraic operations, 419-421
Alienation, coefficient of, 298
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means in, 376-880

computations for, 363-368
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380
test for interaction in, 360, 368-373
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269
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and difference-of-meanstests,

252-253
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354-356
for nonlinearity, 314-316
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Angell, R. C., 300

Area samples (see Cluster samples)
Assumptions (see specific tests)
Auble, D., 447
Averages (see specific measures)

Bancroft, T. A., 261, 272

Bell, W., 386-388, 391
Beta weights, 345

Bias (see Unbiased estimates)
Bimodal distributions, 61

Binomial distribution, applications of,
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definition and computation of, 115-
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Bivariate normal distribution, 278-279

Blalock, H. M., 241, 342, 358

Bogue, D. J., 358

Bridgman, P. W., 10, 21

C (contingency coefficient), 230
Cattell, R. B., 391
Causal inferences, and partial correla-

tions, 337-343

and randomization, 269-270
Central-limit theorem, 135-138, 170
Chi square, in contingency problems,

212-221
computation of, 215-217, 219

correction for continuity in, 220-

221
degrees of freedom for, 218, 220
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Chi square, definition of, 213
pooled values of, 238-239
and sample size, 226-227
and Smirnov test, 204-206
table for, 452
as test for normality, 240

Cluster samples, definition of, 405
and independence, 110
and random samples, 406-409

and stratified samples, 406

Cochran, W. G., 412
Cohen, M. R., 21
Concordance, coefficient of, 324
Confidence intervals, for correlation

and regression, 305-809, 356-357

definition of, 158

for difference of means, 179

errors and, 158, 161

interpretation of, 159-161
for intraclass correlations, 307

for means, 159, 163

for proportions, 163-165
and tests of hypotheses, 161-163

Confidence limits, 159n.
Contingency problems, 212-241

controlling in, 234—239

measures of relationship in, 225-234

significance tests in, 212-225
Controlling, in analysis, of covariance,

361-362, 376-379
of variance, 255-256

in contingency problems, 234—239
in partial correlation, 330-333
sample size and, 238

Cook, S. W., 21, 96, 184, 186
Coombs, C. H., 19, 21, 390, 391
Correlation ratios, 267, 315-317

unbiased, 267, 317

Correlations, product-moment, com-
putation of, 289

from grouped data, 292-295
confidence intervals for, 305-307

table for Z, 456-457

definition of, 287
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as measure of dispersion, 286, 299

INDEX

Correlations, product-moment, and
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significance tests for, 302-805,

309-311
and slopes, 288-289

(See also Intraclass correlations;

Least-squares equations; Multi-
ple correlations; Partial correla-

tions; Regression equations)
rank-order, Kendall’s tau, 319-324

with grouped data, 321-324
and partial correlation, 336
significance test for, 324

Spearman’s r,, 317-319
Costs in sampling, 401-402, 407-409
Covariance, and correlation, 287-288

definition of, 282
(See also Analysis, of covariance)
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Cowden, D. J., 301, 325, 350, 358
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definition of, 122
Croxton, F. E., 301, 325, 350, 358
Cumulative distributions (see Fre-

quency distributions)
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covariance, 372-374, 380

of variance, 247, 259-260
for chi square, 218, 220
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355, 356
definition of, 156
for difference of means, 175-176
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Descriptive statistics, 4, 23-86

Deutsch, M., 21, 96, 134, 186
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(See also specific tests)
Dixon, W. J., 189, 191, 210, 272, 382

Doolittle method, abbreviated, 336,

344
Dornbusch, 8. M., 32, 44, 63, 75, 86
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Eisenhart, C., 211, 443
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161

measurement, 6
nonsampling, 411-412

rounding, 26

types I and II, 93-95, 122-128, 188—
193

(See also Standarderrors)
Estimation, interval, 158-165

point, 155-158
(See also Least-squares equations)

Events, 98-99
Experimental designs, 180, 179, 181—

184
and analysis of variance, 269-270

F distribution, tables of, 4538-455
(See also Analysis, of variance)

Face validity, 10

Factor analysis, multiple, concepts in,

384-386
illustrated, 386-388
and index construction, 389

nonmetric, 390

Festinger, L., 21, 96, 211, 412

Fisher, R. A., 221, 442, 452, 453
Fisher’s exact test, 221-225

Frequency distributions, 33-43
cumulative, 39-40, 42, 55, 203

finite versus infinite, 76-78

(See also specific distributions)
Frequency polygons, 42

Freund, J. E., 114, 184, 153, 168

Geometric mean, 61
Goodman, L. A., 232, 241
Gossett, W.S., 145

Grouping of data, 34-39

equal-appearing intervals method, 15
and size of intervals, 34-37
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Grouping of data, and truelimits,
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Guttman scale, 19

Haggard, E. A., 268, 272, 307, 325
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168, 186, 241, 272, 301, 325, 358,
382, 391

Hansen, M. H., 412
Harmonic mean, 61
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of means, 136

of medians, 157
of proportions, 151

Standard scores, 83
Statistics, descriptive, 4, 23-86

versus parameters, 89-90
test, 128-129

(See also Inductivestatistics; specific
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Thrall, R. M., 21
Thurstone, L. L., 383, 391

Tippett, L. H. C., 7
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