Privacy technologies: An annotated syllabus

April 16, 2013 at 4:02 am 2 comments

Last semester I taught a course on privacy technologies here at Princeton. Earlier I discussed how I refuted privacy myths that students brought into class. In this post I’d like to discuss the contents of the course. I hope it will be useful to other instructors who are interested in teaching this topic as well as for students undertaking self-study of privacy technologies. Beware: this post is quite long.

What should be taught in a class on privacy technologies? Before we answer that, let’s take a step back and ask, how does one go about figuring out what should be taught in any class?

I’ve seen two approaches. The traditional, default, overwhelmingly common approach is to think of it in terms of “covering content” without much consideration to what students are getting out of it. The content that’s deemed relevant is often determined by what the fashionable research areas happen to be, or historical accident, or some combination thereof.

A contrasting approach, promoted by authors like Bain, applies a laser focus on skills that students will acquire and how they will apply them later in life. On teaching orientation day at Princeton, our instructor, who clearly subscribed to this approach, had each professor describe what students would do in the class they are teaching, then wrote down only the verbs from these descriptions. The point was that our thinking had to be centered around skills that students would take home.

I prefer a middle ground. It should be apparent from my description of the traditional approach above that I’m not a fan. On the other hand, I have to wonder what skills our teaching coach would have suggested for a course on cosmology — avoiding falling into black holes? Alright, I’m exaggerating to make a point. The verbs in question are words like “synthesize” and “evaluate,” so there would be no particular difficulty in applying them to cosmology. But my point is that in a cosmology course, I’m not sure the instructor should start from these verbs.

Sometimes we want students to be exposed to knowledge primarily because it is beautiful, and being able to perceive that beauty inspires us, instills us with a love of further learning, and I dare say satisfies a fundamental need. To me a lot of the crypto “magic” that goes into privacy technologies falls into that category (not that it doesn’t have practical applications).

With that caveat, however, I agree with the emphasis on skills and life impact. I thought of my students primarily as developers of privacy technologies (and more generally, of technological systems that incorporate privacy considerations), but also as users and scholars of privacy technologies.

I organized the course into sections, a short introductory section followed by five sections that alternated in the level of math/technical depth. Every time we studied a technology, we also discussed its social/economic/political aspects. I had a great deal of discretion in guiding where the conversation around the papers went by giving them questions/prompts on the class Wiki. Let us now jump in. The italicized text is from the course page, the rest is my annotation.

0. Intro

Goals of this section: Why are we here? Who cares about privacy? What might the future look like?

In addition to helping flesh out the foundational assumptions of this course that I discussed in the previous post, pairing these opposing views with each other helped make the point that there are few absolutes in this class, that privacy scholars may disagree with each other, and that the instructor doesn’t necessarily agree with the viewpoints in the assigned reading, much less expects students to.

1. Cryptography: power and limitations

Goals. Travel back in time to the 80s and early 90s, understand the often-euphoric vision that many crypto pioneers and hobbyists had for the impact it would have. Understand how cryptographic building blocks were thought to be able to support this restructuring of society. Reason about why it didn’t happen.

Understand the motivations and mathematical underpinnings of the modern research on privacy-preserving computations. Experiment with various encryption tools, discover usability problems and other limitations of crypto.

I think the Chaum paper is a phenomenal and underutilized resource for teaching. My goal was to really immerse students in an alternate reality where the legal underpinnings of commerce were replaced by cryptography, much as Chaum envisioned (and even going beyond that). I created a couple of e-commerce scenarios for Wiki discussion and had them reason about how various functions would be accomplished.

My own views on this topic are set forth in this talk (now a paper; coming soon). In general I aimed to shield students from my viewpoints, and saw my role as helping them discover (and be able to defend) their own. At least in this instance I succeeded. Some students took the position that the cypherpunk dream is just around the corner.

  • The ‘Garbled Circuit Protocol’ (Yao’s theorem on secure two-party computation) and its implications (lecture)

This is one of the topics that sadly suffers from a lack of good expository material, so I instead lectured on it.

One of the exercises here was to install and use various crypto tools and rediscover the usability problems. The difficulties were even worse than I’d anticipated.

2. Data collection and data mining, economics of personal data, behavioral economics of privacy

Goals. Jump forward in time to the present day and immerse ourselves in the world of ubiquitous data collection and surveillance. Discover what kinds of data collection and data mining are going on, and why. Discuss how and why the conversation has shifted from Government surveillance to data collection by private companies in the last 20 years.

Theme: first-party data collection.

Theme: third-party data collection.

Theme: why companies act the way they do.

Theme: why people act the way they do.

This section is rather self-explanatory. After the math-y flavor of the first section, this one has a good amount of economics, behavioral economics, and policy. One of the thought exercises was to project current trends into the future and imagine what ubiquitous tracking might lead to in five or ten years.

3. Anonymity and De-anonymization

Important note: communications anonymity (e.g., Tor) and data anonymity/de-anonymization (e.g., identifying people in digital databases) are technically very different, but we will discuss them together because they raise some of the same ethical questions. Also, Bitcoin lies somewhere in between the two.

Tor and Bitcoin (especially the latter) were the hardest but also the most rewarding parts of the class, both for them and for me. Together they took up 4 classes. Bitcoin is extremely challenging to teach because it is technically intricate, the ecosystem is rapidly changing, and a lot of the information is in random blog/forum posts.

In a way, I was betting on Bitcoin by deciding to teach it — if it had died with a whimper, their knowledge of it would be much less relevant. In general I think instructors should choose to make these such bets more often; most curricula are very conservative. I’m glad I did.

It was a challenge to figure out which deanonymization paper to assign. I went with the DNA one because I wanted them to see that deanonymization isn’t a fact about data, but a fact about the world. Another thing I liked about this paper is that they’d have to extract the not-too-complex statistical methodology in this paper from the bioinformatics discussion in which it is embedded. This didn’t go as well as I’d hoped.

I’ve co-authored a few deanonymization papers, but they’re not very well written and/or are poorly suited for pedagogical purposes. The Kaggle paper is one exception, which I made optional.

This is another pair of papers with opposing views. Since the latter paper is optional, knowing that most of them wouldn’t have read it, I used the Wiki prompts to raise many of the issues that the author raises.

4. Lightweight Privacy Technologies and New Approaches to Information Privacy

While cryptography is the mechanism of choice for cypherpunk privacy and anonymity tools like Tor, it is too heavy a weapon in other contexts like social networking. In the latter context, it’s not so much users deploying privacy tools to protect themselves against all-powerful adversaries but rather a service provider attempting to cater to a more nuanced understanding of privacy that users bring to the system. The goal of this section is to consider a diverse spectrum of ideas applicable to this latter scenario that have been proposed in recent years in the fields of CS, HCI, law, and more. The technologies here are “lightweight” in comparison to cryptographic tools like Tor.

5. Purely technological approaches revisited

This final section doesn’t have a coherent theme (and I admitted as much in class). My goal with the first two papers was to contrast a privacy problem which seems amenable to a purely or primarily technological formulation and solution (statistical queries over databases of sensitive personal information) with one where such attempts have been less successful (the decentralized, own-your-data approach to social networking and e-commerce).

Differential privacy is another topic that is sorely lacking in expository material, especially from the point of view of students who’ve never done crypto before. So this was again a lecture.

These two essays aren’t directly related to privacy. One of the recurring threads in this course is the debate between purely technological and legal or other approaches to privacy; the theme here is to generalize it to a context broader than privacy. The Barlow essay asserts the exceptionalism of Cyberspace as an unregulable medium, whereas the Grimmelmann paper provides a much more nuanced view of the relationship between the law and new technological frontiers.

I’m making available the entire set of Wiki discussion prompts for the class (HTML/PDF). I consider this integral to the syllabus, for it shapes the discussion very significantly. I really hope other instructors and students find this useful as a teaching/study guide. For reference, each set of prompts (one set per class) took me about three hours to write on average.

There are many more things I want to share about this class: the major take-home ideas, the rationale for the Wiki discussion format, the feedback I got from students, a description of a couple of student projects, some thoughts on the sociology of different communities studying privacy and how that impacted the class, and finally, links to similar courses that are being taught elsewhere. I’ll probably close this series with a round-up post including as many of the above topics as I can.

To stay on top of future posts, subscribe to the RSS feed or follow me on Twitter or Google+.

Entry filed under: Uncategorized. Tags: , , .

How I utilized “expectation failure” to refute privacy myths

2 Comments Add your own

  • 1. Dustin Ho  |  April 16, 2013 at 10:46 am

    This is extremely useful, thanks for putting this material online.

    Reply
  • 2. Christine Rehm  |  April 16, 2013 at 7:29 pm

    Thank you so much for sharing! As a student interested in privacy, this is really great.

    Reply

Leave a Reply

Subscribe to the comments via RSS Feed


About 33bits.org

I'm an assistant professor in computer science at Princeton. I research (and teach) information privacy and security, and moonlight in technology policy.

This is a blog about my research on breaking data anonymization, and more broadly about information privacy, law and policy.

For an explanation of the blog title and more info, see the About page.

Subscribe

Be notified when there's a new post — subscribe to the feed, follow me on Google+ or twitter or use the email subscription box below.

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 144 other followers




Follow

Get every new post delivered to your Inbox.

Join 144 other followers