Low Doses of LSD Acutely Increase BDNF Blood Plasma Levels in Healthy Volunteers
- Nadia R. P. W. Hutten ,
- Natasha L. Mason ,
- Patrick C. Dolder ,
- Eef L. Theunissen ,
- Friederike Holze ,
- Matthias E. Liechti ,
- Nimmy Varghese ,
- Anne Eckert ,
- Amanda Feilding ,
- Johannes G. Ramaekers , and
- Kim P. C. Kuypers*
Abstract
Despite preclinical evidence for psychedelic-induced neuroplasticity, confirmation in humans is grossly lacking. Given the increased interest in using low doses of psychedelics for psychiatric indications and the importance of neuroplasticity in the therapeutic response, this placebo-controlled within-subject study investigated the effect of single low doses of LSD (5, 10, and 20 μg) on circulating BDNF levels in healthy volunteers. Blood samples were collected every 2 h over 6 h, and BDNF levels were determined afterward in blood plasma using ELISA. The findings demonstrated an increase in BDNF blood plasma levels at 4 h (5 μg) and 6 h (5 and 20 μg) compared to that for the placebo. The finding that LSD acutely increases BDNF levels warrants studies in patient populations.
SPECIAL ISSUE
This article is part of the
Results
LSD dose (μg) | participants (number) | mean age (SD) | sex (male/female) |
---|---|---|---|
5 | 10 | 21.5 (3.06) | 4:6 |
10 | 9 | 22.89 (2.80) | 5:4 |
20 | 8 | 23.75 (2.66) | 6:2 |
Figure 1
Figure 1. Total mean AUC (SEM) of BDNF (A) and of LSD (B) plasma levels for complete WS LSD dose-placebo cases. N(5 μg LSD) = 10; N(10 μg LSD) = 9; N(20 μg LSD) = 8. *, statistical significance at p ≤ 0.05.
Figure 2
Figure 2. Mean (SEM) BDNF plasma levels for each LSD dose with the corresponding WS placebo condition per time of testing (A–C) and corresponding mean (SEM) LSD plasma levels (D–F). *, statistical significance at p ≤ 0.05 in A–C; no statistical tests were performed over data in D–F.
Friedman test main time effect | Dunn’s pairwise comparisons (Z(1))a | ||||||||
---|---|---|---|---|---|---|---|---|---|
LSD dose (μg) | participants number | (x2(3)) | p | effect size Cramer’s V | 0 h–2 h | 0 h–4 h | 0 h–6h | 2 h–4 h | 4 h–6 h |
5 | 10 | 15.72 | <0.01 | 0.51 | 1.21 | 3.64* | 2.77* | 2.42* | 0.87 |
10 | 9 | 13.00 | <0.01 | 0.49 | 1.09 | 2.56* | 3.29* | 1.46 | 0.73 |
20 | 8 | 19.05 | <0.01 | 0.63 | 0.77 | 2.13 | 4.07* | 1.36 | 1.94 |
*, statistical significance at a sequential Bonferroni corrected p value < 0.05.
Discussion
Materials and Methods
Statistical Analysis
Acknowledgments
The authors thank the medical supervisor, Cees van Leeuwen, and the interns who worked on this project. A financial contribution was received from the Beckley Foundation.
Abbreviations | |
5-HT2A | Serotonin 2A receptor |
BDNF | Brain-derived neurotrophic factor |
CI | Confidence interval |
ELISA | Enzyme-linked immunosorbent assay |
i.p. | Intraperitoneal |
IV | Intraveneous |
LSD | d-Lysergic acid diethylamide |
mPFC | Medial prefrontal cortex |
mTOR | Mammalian target of rapamycin |
NMDA | N-Methyl-d-aspartate |
pERK | Phosphorylation of extracellular signal-regulated kinase |
S-R | Signed-rank |
WS | Within subject |
References
This article references 39 other publications.
- 1Ly, C., Greb, A. C., Cameron, L. P., Wong, J. M., Barragan, E. V., Wilson, P. C., Burbach, K. F., Soltanzadeh Zarandi, S., Sood, A., Paddy, M. R., Duim, W. C., Dennis, M. Y., McAllister, A. K., Ori-McKenney, K. M., Gray, J. A., and Olson, D. E. (2018) Psychedelics Promote Structural and Functional Neural Plasticity. Cell Rep. 23 (11), 3170– 3182, DOI: 10.1016/j.celrep.2018.05.022
- 2Catlow, B. J., Jalloh, A., and Sanchez-Ramos, J. (2016) Chapter 77 - Hippocampal Neurogenesis: Effects of Psychedelic Drugs, in Neuropathology of Drug Addictions and Substance Misuse (Preedy, V. R., Ed.), Academic Press, San Diego, CA, pp 821– 831.
- 3Morales-García, J. A., de la Fuente Revenga, M., Alonso-Gil, S., Rodríguez-Franco, M. I., Feilding, A., Perez-Castillo, A., and Riba, J. (2017) The alkaloids of Banisteriopsis caapi, the plant source of the Amazonian hallucinogen Ayahuasca, stimulate adult neurogenesis in vitro. Sci. Rep. 7 (1), 5309, DOI: 10.1038/s41598-017-05407-9
- 4Farzin, D. and Mansouri, N. (2006) Antidepressant-like effect of harmane and other β-carbolines in the mouse forced swim test. Eur. Neuropsychopharmacol. 16 (5), 324– 328, DOI: 10.1016/j.euroneuro.2005.08.005
- 5Fortunato, J. J., Réus, G. Z., Kirsch, T. R., Stringari, R. B., Fries, G. R., Kapczinski, F., Hallak, J. E., Zuardi, A. W., Crippa, J. A., and Quevedo, J. (2010) Chronic administration of harmine elicits antidepressant-like effects and increases BDNF levels in rat hippocampus. Journal of neural transmission 117 (10), 1131– 1137, DOI: 10.1007/s00702-010-0451-2
- 6Catlow, B. J., Song, S., Paredes, D. A., Kirstein, C. L., and Sanchez-Ramos, J. (2013) Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Exp. Brain Res. 228 (4), 481– 491, DOI: 10.1007/s00221-013-3579-0
- 7Colaço, C. S., Alves, S. S., Nolli, L. M., Pinheiro, W. O., de Oliveira, D. G. R., Santos, B. W. L., Pic-Taylor, A., Mortari, M. R., and Caldas, E. D. (2020) Toxicity of ayahuasca after 28 days daily exposure and effects on monoamines and brain-derived neurotrophic factor (BDNF) in brain of Wistar rats. Metab. Brain Dis. 35 (5), 739– 751, DOI: 10.1007/s11011-020-00547-w
- 8Szabo, A., Kovacs, A., Riba, J., Djurovic, S., Rajnavolgyi, E., and Frecska, E. (2016) The endogenous hallucinogen and trace amine N,N-dimethyltryptamine (DMT) displays potent protective effects against hypoxia via sigma-1 receptor activation in human primary iPSC-derived cortical neurons and microglia-like immune cells. Front. Neurosci. 10, 423, DOI: 10.3389/fnins.2016.00423
- 9Dakic, V., Minardi Nascimento, J., Costa Sartore, R., Maciel, R. d. M., de Araujo, D. B., Ribeiro, S., Martins-de-Souza, D., and Rehen, S. K. (2017) Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT. Sci. Rep. 7 (1), 12863, DOI: 10.1038/s41598-017-12779-5
- 10Hutten, N. R. P. W., Mason, N. L., Dolder, P. C., and Kuypers, K. P. C. (2019) Self-Rated Effectiveness of Microdosing With Psychedelics for Mental and Physical Health Problems Among Microdosers. Front. Psychiatry 10, 672, DOI: 10.3389/fpsyt.2019.00672
- 11Fadiman, J. (2011) The Psychedelic Explorer’s Guide: Safe, Therapeutic, and Sacred Journeys, Simon and Schuster.
- 12Kuypers, K. P., Ng, L., Erritzoe, D., Knudsen, G. M, Nichols, C. D, Nichols, D. E, Pani, L., Soula, A., and Nutt, D. (2019) Microdosing Psychedelics: more questions than answers? An overview and suggestions for future research. J. Psychopharmacol. 33, 1039, DOI: 10.1177/0269881119857204
- 13Brunoni, A. R., Lopes, M., and Fregni, F. (2008) A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int. J. Neuropsychopharmacol. 11 (8), 1169– 80, DOI: 10.1017/S1461145708009309
- 14Price, R. B. and Duman, R. (2020) Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model. Mol. Psychiatry 25 (3), 530– 543, DOI: 10.1038/s41380-019-0615-x
- 15Bershad, A. K., Preller, K. H., Lee, R., Keedy, S., Wren-Jarvis, J., Bremmer, M. P., and de Wit, H. (2020) Preliminary Report on the Effects of a Low Dose of LSD on Resting-State Amygdala Functional Connectivity. Biological psychiatry. Cognitive neuroscience and neuroimaging 5 (4), 461– 467, DOI: 10.1016/j.bpsc.2019.12.007
- 16Allen, S. J. and Dawbarn, D. (2006) Clinical relevance of the neurotrophins and their receptors. Clin. Sci. 110 (2), 175– 91, DOI: 10.1042/CS20050161
- 17Nagahara, A. H., Merrill, D. A., Coppola, G., Tsukada, S., Schroeder, B. E., Shaked, G. M., Wang, L., Blesch, A., Kim, A., Conner, J. M., Rockenstein, E., Chao, M. V., Koo, E. H., Geschwind, D., Masliah, E., Chiba, A. A., and Tuszynski, M. H. (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat. Med. 15 (3), 331– 7, DOI: 10.1038/nm.1912
- 18Akimoto, H., Oshima, S., Sugiyama, T., Negishi, A., Nemoto, T., and Kobayashi, D. (2019) Changes in brain metabolites related to stress resilience: Metabolomic analysis of the hippocampus in a rat model of depression. Behav. Brain Res. 359, 342– 352, DOI: 10.1016/j.bbr.2018.11.017
- 19Klein, A. B., Williamson, R., Santini, M. A., Clemmensen, C., Ettrup, A., Rios, M., Knudsen, G. M., and Aznar, S. (2011) Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int. J. Neuropsychopharmacol. 14 (3), 347– 353, DOI: 10.1017/S1461145710000738
- 20Lepack, A. E., Fuchikami, M., Dwyer, J. M., Banasr, M., and Duman, R. S. (2015) BDNF release is required for the behavioral actions of ketamine. Int. J. Neuropsychopharmacol. 18 (1), pyu033, DOI: 10.1093/ijnp/pyu033
- 21de Almeida, R. N., Galvão, A. C. M., da Silva, F. S., Silva, E., Palhano-Fontes, F., Maia-de-Oliveira, J. P., de Araújo, L. B., Lobão-Soares, B., and Galvão-Coelho, N. L. (2019) Modulation of Serum Brain-Derived Neurotrophic Factor by a Single Dose of Ayahuasca: Observation From a Randomized Controlled Trial. Front. Psychol. 10, 1234, DOI: 10.3389/fpsyg.2019.01234
- 22Griffin, É. W., Bechara, R. G., Birch, A. M., and Kelly, Á. M. (2009) Exercise enhances hippocampal-dependent learning in the rat: Evidence for a BDNF-related mechanism. Hippocampus 19 (10), 973– 980, DOI: 10.1002/hipo.20631
- 23Hwang, J., Brothers, R. M., Castelli, D. M., Glowacki, E. M., Chen, Y. T., Salinas, M. M., Kim, J., Jung, Y., and Calvert, H. G. (2016) Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults. Neurosci. Lett. 630, 247– 253, DOI: 10.1016/j.neulet.2016.07.033
- 24Duman, R. S. and Monteggia, L. M. (2006) A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59 (12), 1116– 1127, DOI: 10.1016/j.biopsych.2006.02.013
- 25Woelfer, M., Li, M., Colic, L., Liebe, T., Di, X., Biswal, B., Murrough, J., Lessmann, V., Brigadski, T., and Walter, M. (2019) Ketamine-induced changes in plasma brain-derived neurotrophic factor (BDNF) levels are associated with the resting-state functional connectivity of the prefrontal cortex. world journal of biological psychiatry: the official journal of the World Federation of Societies of Biological Psychiatry 1– 15, DOI: 10.1080/15622975.2019.1679391
- 26Zhang, M., Radford, K. D., Driscoll, M., Purnomo, S., Kim, J., and Choi, K. H. (2019) Effects of subanesthetic intravenous ketamine infusion on neuroplasticity-related proteins in the prefrontal cortex, amygdala, and hippocampus of Sprague-Dawley rats. IBRO Reports 6, 87– 94, DOI: 10.1016/j.ibror.2019.01.006
- 27Radford, C. K. D., Park, T. Y., Osborne-Smith, L., and Choi, K. H. (2018) Effects of Subanesthetic Intravenous Ketamine Infusion on Corticosterone and Brain-Derived Neurotrophic Factor in the Plasma of Male Sprague-Dawley Rats. AANA J. 86 (5), 393– 400
- 28Fraga, D. B., Réus, G. Z., Abelaira, H. M., De Luca, R. D., Canever, L., Pfaffenseller, B., Colpo, G. D., Kapczinski, F., Quevedo, J., and Zugno, A. I. (2013) Ketamine alters behavior and decreases BDNF levels in the rat brain as a function of time after drug administration. Revista brasileira de psiquiatria (Sao Paulo, Brazil: 1999) 35 (3), 262– 6, DOI: 10.1590/1516-4446-2012-0858
- 29Ke, X., Ding, Y., Xu, K., He, H., Zhang, M., Wang, D., Deng, X., Zhang, X., Zhou, C., Liu, Y., Ning, Y., and Fan, N. (2014) Serum brain-derived neurotrophic factor and nerve growth factor decreased in chronic ketamine abusers. Drug Alcohol Depend. 142, 290– 4, DOI: 10.1016/j.drugalcdep.2014.06.043
- 30Ly, C., Greb, A. C., Cameron, L. P., Wong, J. M., Barragan, E. V., Wilson, P. C., Burbach, K. F., Soltanzadeh Zarandi, S., Sood, A., Paddy, M. R. (2018) Psychedelics promote structural and functional neural plasticity. Cell Rep. 23 (11), 3170– 3182, DOI: 10.1016/j.celrep.2018.05.022
- 31Moghaddam, B., Adams, B., Verma, A., and Daly, D. (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J. Neurosci. 17 (8), 2921– 7, DOI: 10.1523/JNEUROSCI.17-08-02921.1997
- 32Browne, C. A. and Lucki, I. (2013) Antidepressant effects of ketamine: mechanisms underlying fast-acting novel antidepressants. Front. Pharmacol. 4, 161– 161, DOI: 10.3389/fphar.2013.00161
- 33Duman, R. S., Li, N., Liu, R.-J., Duric, V., and Aghajanian, G. (2012) Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62 (1), 35– 41, DOI: 10.1016/j.neuropharm.2011.08.044
- 34Ramaekers, J. G., Hutten, N. R. P. W., Mason, N. L., Dolder, P. C., Theunissen, E. L., Holze, F., Liechti, M. E., Feilding, A., and Kuypers, K. P. (2020) A low dose of lysergic acid diethylamide (LSD) decreases pain perception in healthy volunteers. J. Psychopharmacol. DOI: 10.1177/0269881120940937
- 35Holze, F., Duthaler, U., Vizeli, P., Müller, F., Borgwardt, S., and Liechti, M. E. (2019) Pharmacokinetics and subjective effects of a novel oral LSD formulation in healthy subjects. Br. J. Clin. Pharmacol. 85, 1474, DOI: 10.1111/bcp.13918
- 36World Medical Association (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310 (20), 2191– 2194, DOI: 10.1001/jama.2013.281053
- 37Ivarsson, A., Andersen, M. B., Johnson, U., and Lindwall, M. (2013) To adjust or not adjust: Nonparametric effect sizes, confidence intervals, and real-world meaning. Psychology of Sport and Exercise 14 (1), 97– 102, DOI: 10.1016/j.psychsport.2012.07.007
- 38Kornbrot, D. (2014) Point Biserial Correlation, in Wiley StatsRef: Statistics Reference Online, Wiley. https://onlinelibrary.wiley.com/doi/10.1002/9781118445112.stat06227.
- 39Kim, H.-Y. (2017) Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test. Restor Dent Endod 42 (2), 152– 155, DOI: 10.5395/rde.2017.42.2.152
Cited By
This article is cited by 16 publications.
- David E. Olson. The Promise of Psychedelic Science. ACS Pharmacology & Translational Science 2021, 4 (2) , 413-415. https://doi.org/10.1021/acsptsci.1c00071
- L. S. Kaertner, M. B. Steinborn, H. Kettner, M. J. Spriggs, L. Roseman, T. Buchborn, M. Balaet, C. Timmermann, D. Erritzoe, R. L. Carhart-Harris. Positive expectations predict improved mental-health outcomes linked to psychedelic microdosing. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-81446-7
- Robin J. Murphy, Rachael L. Sumner, William Evans, David Menkes, Ingo Lambrecht, Rhys Ponton, Frederick Sundram, Nicholas Hoeh, Sanya Ram, Lisa Reynolds, Suresh Muthukumaraswamy. MDLSD: study protocol for a randomised, double-masked, placebo-controlled trial of repeated microdoses of LSD in healthy volunteers. Trials 2021, 22 (1) https://doi.org/10.1186/s13063-021-05243-3
- Anna M. Becker, Friederike Holze, Tanja Grandinetti, Aaron Klaiber, Vanja E. Toedtli, Karolina E. Kolaczynska, Urs Duthaler, Nimmy Varghese, Anne Eckert, Edna Grünblatt, Matthias E. Liechti. Acute Effects of Psilocybin After Escitalopram or Placebo Pretreatment in a Randomized, Double‐Blind, Placebo‐Controlled, Crossover Study in Healthy Subjects. Clinical Pharmacology & Therapeutics 2021, 78 https://doi.org/10.1002/cpt.2487
- Michael Koslowski, Matthew W. Johnson, Gerhard Gründer, Felix Betzler. Novel Treatment Approaches for Substance Use Disorders: Therapeutic Use of Psychedelics and the Role of Psychotherapy. Current Addiction Reports 2021, 68 https://doi.org/10.1007/s40429-021-00401-8
- Lily R. Aleksandrova, Anthony G. Phillips. Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics. Trends in Pharmacological Sciences 2021, 42 (11) , 929-942. https://doi.org/10.1016/j.tips.2021.08.003
- Cato M. H. de Vos, Natasha L. Mason, Kim P. C. Kuypers. Psychedelics and Neuroplasticity: A Systematic Review Unraveling the Biological Underpinnings of Psychedelics. Frontiers in Psychiatry 2021, 12 https://doi.org/10.3389/fpsyt.2021.724606
- Lisa M. Reynolds, Amelia Akroyd, Frederick Sundram, Aideen Stack, Suresh Muthukumaraswamy, William J. Evans. Cancer Healthcare Workers’ Perceptions toward Psychedelic-Assisted Therapy: A Preliminary Investigation. International Journal of Environmental Research and Public Health 2021, 18 (15) , 8160. https://doi.org/10.3390/ijerph18158160
- Friederike Holze, Isidora Avedisian, Nimmy Varghese, Anne Eckert, Matthias E. Liechti. Role of the 5-HT2A Receptor in Acute Effects of LSD on Empathy and Circulating Oxytocin. Frontiers in Pharmacology 2021, 12 https://doi.org/10.3389/fphar.2021.711255
- Hewa Artin, Sidney Zisook, Dhakshin Ramanathan. How do serotonergic psychedelics treat depression: The potential role of neuroplasticity. World Journal of Psychiatry 2021, 11 (6) , 201-214. https://doi.org/10.5498/wjp.v11.i6.201
- Matthew I. Banks, Zarmeen Zahid, Nathan T. Jones, Ziyad W. Sultan, Cody J. Wenthur, . Catalysts for change: the cellular neurobiology of psychedelics. Molecular Biology of the Cell 2021, 32 (12) , 1135-1144. https://doi.org/10.1091/mbc.E20-05-0340
- Balázs Szigeti, Laura Kartner, Allan Blemings, Fernando Rosas, Amanda Feilding, David J Nutt, Robin L Carhart-Harris, David Erritzoe. Self-blinding citizen science to explore psychedelic microdosing. eLife 2021, 10 https://doi.org/10.7554/eLife.62878
- Paul Tullis. How ecstasy and psilocybin are shaking up psychiatry. Nature 2021, 589 (7843) , 506-509. https://doi.org/10.1038/d41586-021-00187-9
- Antonio Inserra, Danilo De Gregorio, Gabriella Gobbi, . Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanisms. Pharmacological Reviews 2021, 73 (1) , 202-277. https://doi.org/10.1124/pharmrev.120.000056
- Nakul Ravi Raval, Annette Johansen, Lene Lundgaard Donovan, Nídia Fernandez Ros, Brice Ozenne, Hanne Demant Hansen, Gitte Moos Knudsen. A Single Dose of Psilocybin Increases Synaptic Density and Decreases 5-HT2A Receptor Density in the Pig Brain. International Journal of Molecular Sciences 2021, 22 (2) , 835. https://doi.org/10.3390/ijms22020835
- Nadia R.P.W. Hutten, Natasha L. Mason, Patrick C. Dolder, Eef L. Theunissen, Friederike Holze, Matthias E. Liechti, Amanda Feilding, Johannes G. Ramaekers, Kim P.C. Kuypers. Mood and cognition after administration of low LSD doses in healthy volunteers: A placebo controlled dose-effect finding study. European Neuropsychopharmacology 2020, 41 , 81-91. https://doi.org/10.1016/j.euroneuro.2020.10.002
Abstract
Figure 1
Figure 1. Total mean AUC (SEM) of BDNF (A) and of LSD (B) plasma levels for complete WS LSD dose-placebo cases. N(5 μg LSD) = 10; N(10 μg LSD) = 9; N(20 μg LSD) = 8. *, statistical significance at p ≤ 0.05.
Figure 2
Figure 2. Mean (SEM) BDNF plasma levels for each LSD dose with the corresponding WS placebo condition per time of testing (A–C) and corresponding mean (SEM) LSD plasma levels (D–F). *, statistical significance at p ≤ 0.05 in A–C; no statistical tests were performed over data in D–F.