research-article
Public Access
Artifacts Evaluated & Functional
Results Reproduced / v1.1

A multi-scale model for simulating liquid-hair interactions

Authors Info & Claims
Published:20 July 2017Publication History
Skip Abstract Section

Abstract

The diverse interactions between hair and liquid are complex and span multiple length scales, yet are central to the appearance of humans and animals in many situations. We therefore propose a novel multi-component simulation framework that treats many of the key physical mechanisms governing the dynamics of wet hair. The foundations of our approach are a discrete rod model for hair and a particle-in-cell model for fluids. To treat the thin layer of liquid that clings to the hair, we augment each hair strand with a height field representation. Our contribution is to develop the necessary physical and numerical models to evolve this new system and the interactions among its components. We develop a new reduced-dimensional liquid model to solve the motion of the liquid along the length of each hair, while accounting for its moving reference frame and influence on the hair dynamics. We derive a faithful model for surface tension-induced cohesion effects between adjacent hairs, based on the geometry of the liquid bridges that connect them. We adopt an empirically-validated drag model to treat the effects of coarse-scale interactions between hair and surrounding fluid, and propose new volume-conserving dripping and absorption strategies to transfer liquid between the reduced and particle-in-cell liquid representations. The synthesis of these techniques yields an effective wet hair simulator, which we use to animate hair flipping, an animal shaking itself dry, a spinning car wash roller brush dunked in liquid, and intricate hair coalescence effects, among several additional scenarios.

Skip Supplemental Material Section

Supplemental Material

papers-0233.mp4

References

  1. Ryoichi Ando and Reiji Tsuruno. 2011. A particle-based method for preserving fluid sheets. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics symposium on computer animation. ACM, 7--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Omri Azencot, Orestis Vantzos, Max Wardetzky, Martin Rumpf, and Mirela BenChen. 2015. Functional thin films on surfaces. In Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. C Barba, M Martí, J Carilla, AM Manich, and L Coderch. 2013. Moisture sorption/desorption of protein fibres. Thermochimica acta 552 (2013), 70--76. Google ScholarGoogle ScholarCross RefCross Ref
  4. Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Transactions on Graphics (TOG) 26, 3 (2007), 100.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Miklos Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010. Discrete viscous threads. ACM Transactions on Graphics (TOG) 29, 4 (2010), 116.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. 2008. Discrete elastic rods. ACM Transactions on Graphics (TOG) 27, 3 (2008), 63:1--63:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Florence Bertails, Basile Audoly, Bernard Querleux, Frédéric Leroy, Jean-Luc Lévêque, and Marie-Paule Cani. 2005. Predicting natural hair shapes by solving the statics of flexible rods. In Eurographics short papers.Google ScholarGoogle Scholar
  8. José Bico, Benoit Roman, Loic Moulin, and Arezki Boudaoud. 2004. Adhesion: elasto-capillary coalescence in wet hair. Nature 432, 7018 (2004), 690.Google ScholarGoogle ScholarCross RefCross Ref
  9. Pavel Bochev, Denis Ridzal, and Mikhail Shashkov. 2013. Fast optimization-based conservative remap of scalar fields through aggregate mass transfer. J. Comput. Phys. 246 (2013), 37--57. Google ScholarGoogle ScholarCross RefCross Ref
  10. Robert Bridson. 2015. Fluid simulation for computer graphics, 2nd edition. A. K. Peters, Ltd.Google ScholarGoogle Scholar
  11. Menglei Chai, Changxi Zheng, and Kun Zhou. 2014. A reduced model for interactive hairs. ACM Transactions on Graphics (TOG) 33, 4 (2014), 124.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Menglei Chai, Changxi Zheng, and Kun Zhou. 2016. Adaptive Skinning for Interactive Hair-Solid Simulation. IEEE transactions on visualization and computer graphics (2016).Google ScholarGoogle Scholar
  13. R. V. Craster and O. K. Matar. 2006. On viscous beads flowing down a vertical wire. J. Fluid Mech. 553 (2006), 85--105. Google ScholarGoogle ScholarCross RefCross Ref
  14. Andrew K. Dickerson, Zachary G. Mills, and David L. Hu. 2012. Wet mammals shake at tuned frequencies to dry. Journal of the Royal Society Interface 9, 77 (2012), 3208--3218. Google ScholarGoogle ScholarCross RefCross Ref
  15. J. E. Drummond and M. I. Tahir. 1984. Laminar viscous flow through regular arrays of parallel solid cylinders. International Journal of Multiphase Flow 10, 5 (1984), 515--540. Google ScholarGoogle ScholarCross RefCross Ref
  16. C. Duprat, S. Protiere, A. Y. Beebe, and H. A. Stone. 2012. Wetting of flexible fibre arrays. Nature 482, 7386 (2012), 510--513. Google ScholarGoogle ScholarCross RefCross Ref
  17. Sabri Ergun. 1952. Fluid flow through packed columns. Chem. Eng. Prog. 48 (1952), 89--94.Google ScholarGoogle Scholar
  18. Galen Gornowicz and Silviu Borac. 2015. Efficient and stable approach to elasticity and collisions for hair animation. In Proceedings of the 2015 Symposium on Digital Production. ACM, 41--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Gaël Guennebaud, Benoît Jacob, and others. 2010. Eigen v3. http://eigen.tuxfamily.org. (2010).Google ScholarGoogle Scholar
  20. Sunil Hadap, Marie-Paule Cani, Florence Bertails, Ming Lin, Kelly Ward, Stephen Marschner, Tae-Yong Kim, and Zoran Kacic-Alesic. 2007. Strands and hair - Modeling, simulation and rendering. In SIGGRAPH Courses. 1--150.Google ScholarGoogle Scholar
  21. Sunil Hadap and Nadia Magnenat-Thalmann. 2001. Modeling dynamic hair as a continuum. Computer Graphics Forum 20, 3 (2001), 329--338. Google ScholarGoogle ScholarCross RefCross Ref
  22. Dongsoo Han and Takahiro Harada. 2013. Tridiagonal matrix formulation for inextensible hair strand simulation. In Proceedings of the Workshop on Virtual Reality Interaction and Physical Simulation. The Eurographics Association.Google ScholarGoogle Scholar
  23. JGI Hellström and TS Lundström. 2006. Flow through porous media at moderate Reynolds number. In International Scientific Colloquium: Modelling for Material Processing, Vol. 2. 129--134.Google ScholarGoogle Scholar
  24. Hayley Iben, Mark Meyer, Lena Petrovic, Olivier Soares, John Anderson, and Andrew Witkin. 2013. Artistic simulation of curly hair. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 63--71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias Teschner. 2014. SPH fluids in computer graphics. In Eurographics State of the Art Reports.Google ScholarGoogle Scholar
  26. Graham W. Jackson and David F. James. 1986. The permeability of fibrous porous media. The Canadian Journal of Chemical Engineering 64, 3 (1986), 364--374. Google ScholarGoogle ScholarCross RefCross Ref
  27. Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The affine particle-in-cell method. ACM Transactions on Graphics (TOG) 34, 4 (2015), 51.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Michael Kass and Gavin Miller. 1990. Rapid, stable fluid dynamics for computer graphics. SIGGRAPH Comput. Graph. 24, 4 (1990), 49--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Danny M. Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-Marie Aubry, and Eitan Grinspun. 2014. Adaptive nonlinearity for collisions in complex rod assemblies. ACM Transactions on Graphics (TOG) 33, 4, Article 123 (2014), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Tassilo Kugelstadt and Elmar Schömer. 2016. Position and orientation based Cosserat rods. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 169--178.Google ScholarGoogle Scholar
  31. Toon Lenaerts, Bart Adams, and Philip Dutré. 2008. Porous flow in particle-based fluid simulations. ACM Transactions on Graphics (TOG) 27, 3 (2008), 49.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Guoping Lian, Colin Thornton, and Michael J Adams. 1993. A theoretical study of the liquid bridge forces between two rigid spherical bodies. Journal of colloid and interface science 161, 1 (1993), 138--147. Google ScholarGoogle ScholarCross RefCross Ref
  33. Wei-Chin Lin. 2014. Coupling hair with smoothed particle hydrodynamics fluids. In Proceedings of the Workshop on Virtual Reality Interaction and Physical Simulation.Google ScholarGoogle Scholar
  34. Wei-Chin Lin. 2015. Boundary handling and porous flow for fluid-hair interactions. Computers and Graphics 52 (2015), 33--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. T Liu, KF Choi, and Y Li. 2007. Capillary rise between cylinders. Journal of physics D: Applied physics 40, 16 (2007), 5006.Google ScholarGoogle ScholarCross RefCross Ref
  36. Élise Lorenceau, Christophe Clanet, and David Quéré. 2004. Capturing drops with a thin fiber. Journal of colloid and interface science 279, 1 (2004), 192--197. Google ScholarGoogle ScholarCross RefCross Ref
  37. Aleka McAdams, Andrew Selle, Kelly Ward, Eftychios Sifakis, and Joseph Teran. 2009. Detail preserving continuum simulation of straight hair. ACM Transactions on Graphics (TOG) 28, 3 (2009), 62.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. José Meseguer and Angel Sanz. 1985. Numerical and experimental study of the dynamics of axisymmetric liquid bridges. Journal of Fluid Mechanics 153 (1985), 83--101. Google ScholarGoogle ScholarCross RefCross Ref
  39. Rajat Mittal and Gianluca Iaccarino. 2005. Immersed boundary methods. Annual review of fluid mechanics 37 (2005), 239--261. Google ScholarGoogle ScholarCross RefCross Ref
  40. J. J. Monaghan. 1994. Simulating free surface flows with SPH. J. Comp. Phys. 110, 2 (1994), 399--406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-based fluid simulation for interactive applications. In Symposium on Computer Animation. 154--159.Google ScholarGoogle Scholar
  42. Matthias Müller, Tae-Yong Kim, and Nuttapong Chentanez. 2012. Fast simulation of inextensible hair and fur.. In Proceedings of the Workshop on Virtual Reality Interaction and Physical Simulation, Vol. 12. 39--44.Google ScholarGoogle Scholar
  43. P Nithiarasu, KN Seetharamu, and T Sundararajan. 1997. Natural convective heat transfer in a fluid saturated variable porosity medium. International Journal of Heat and Mass Transfer 40, 16 (1997), 3955--3967. Google ScholarGoogle ScholarCross RefCross Ref
  44. C. Py, R. Bastien, José Bico, B. Roman, and A. Boudaoud. 2007. 3D aggregation of wet fibers. Europhysics letters 77, 4 (2007), 44005.Google ScholarGoogle Scholar
  45. Avi Robinson-Mosher, Tamar Shinar, Jon Gretarsson, Jonathan Su, and Ronald Fedkiw. 2008. Two-way coupling of fluids to rigid and deformable solids and shells. ACM Transactions on Graphics (TOG) 27, 3 (2008), 46.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Benoit Roman and José Bico. 2010. Elasto-capillarity: deforming an elastic structure with a liquid droplet. Journal of Physics: Condensed Matter 22, 49 (2010), 493101.Google ScholarGoogle ScholarCross RefCross Ref
  47. W. Rungjiratananon, Y. Kanamori, and T. Nishita. 2012. Wetting effects in hair simulation. Computer Graphics Forum 31, 7 (2012), 1993--2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. A. S. Sangani and A. Acrivos. 1982. Slow flow past periodic arrays of cylinders with application to heat transfer. International Journal of Multiphase Flow 8, 3 (1982), 193--206. Google ScholarGoogle ScholarCross RefCross Ref
  49. Andrew Selle, Michael Lentine, and Ronald Fedkiw. 2008. A mass spring model for hair simulation. ACM Transactions on Graphics (TOG) 27, 3 (2008), 64.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Kiran Singh, John R. Lister, and Dominic Vella. 2014. A fluid-mechanical model of elastocapillary coalescence. J. Fluid Mech. 745 (2014), 621--646. Google ScholarGoogle ScholarCross RefCross Ref
  51. Jos Stam. 1999. Stable fluids. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Triantafyllos Stylianopoulos, Andrew Yeckel, Jeffrey J Derby, Xiao-Juan Luo, Mark S Shephard, Edward A Sander, and Victor H Barocas. 2008. Permeability calculations in three-dimensional isotropic and oriented fiber networks. Physics of Fluids 20, 12 (2008), 123601.Google ScholarGoogle ScholarCross RefCross Ref
  53. Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and François Faure. 2015. Stable constrained dynamics. ACM Transactions on Graphics (TOG) 34, 4 (2015), 132.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Alexander Virozub, Nir Haimovich, and Simon Brandon. 2009. Three-dimensional simulations of liquid bridges between two cylinders: forces, energies, and torques. Langmuir 25, 22 (2009), 12837--12842. Google ScholarGoogle ScholarCross RefCross Ref
  55. C. B. Vreugdenhil. 1994. Numerical methods for shallow-water flow. 262 pages. Google ScholarGoogle ScholarCross RefCross Ref
  56. Huamin Wang, Gavin Miller, and Greg Turk. 2007. Solving general shallow wave equations on surfaces. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 229--238.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Qianbin Wang, Bin Su, Huan Liu, and Lei Jiang. 2014. Chinese brushes: Controllable liquid transfer in ratchet conical hairs. Advanced Materials 26, 28 (2014), 4889--4894. Google ScholarGoogle ScholarCross RefCross Ref
  58. Kelly Ward, Florence Bertails, Tae-Yong Kim, Stephen R. Marschner, Marie-Paule Cani, and Ming C. Lin. 2007. A survey on hair modeling: Styling, simulation, and rendering. IEEE TVCG 13, 2 (2007), 213--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Kelly Ward, Nico Galoppo, and Ming C. Lin. 2004. Modeling hair influenced by water and styling products. In Computer Animation and Social Agents.Google ScholarGoogle Scholar
  60. Kelly Ward, Nico Galoppo, and Ming C Lin. 2007. Interactive virtual hair salon. Presence: Teleoperators and Virtual Environments 16, 3 (2007), 237--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Kelly Ward and Ming C Lin. 2003. Adaptive grouping and subdivision for simulating hair dynamics. In Proceedings of 11th Pacific Conference on Computer Graphics and Applications. IEEE, 234--243. Google ScholarGoogle ScholarCross RefCross Ref
  62. Kelly Ward, Ming C Lin, Lee Joohi, Susan Fisher, and Dean Macri. 2003. Modeling hair using level-of-detail representations. In Proceedings of 16th International Conference on Computer Animation and Social Agents. IEEE, 41--47. Google ScholarGoogle ScholarCross RefCross Ref
  63. Edward W Washburn. 1921. The dynamics of capillary flow. Physical review 17, 3 (1921), 273.Google ScholarGoogle Scholar
  64. Stephen Whitaker. 1996. The Forchheimer equation: a theoretical development. Transport in Porous media 25, 1 (1996), 27--61. Google ScholarGoogle ScholarCross RefCross Ref
  65. Thomas Young. 1805. An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond. 95 (1805), 65--87. Google ScholarGoogle ScholarCross RefCross Ref

Cited By

View all
  1. Cheng W, Song S, Chen C, Hidayati S and Liu J. (2021). Fashion Meets Computer Vision. ACM Computing Surveys. 54:4. (1-41). Online publication date: 31-May-2022.

    https://doi.org/10.1145/3447239

  2. Lyu Q, Chai M, Chen X and Zhou K. Real-Time Hair Simulation With Neural Interpolation. IEEE Transactions on Visualization and Computer Graphics. 10.1109/TVCG.2020.3029823. 28:4. (1894-1905).

    https://ieeexplore.ieee.org/document/9220808/

  3. Zsolnai-Fehér K. (2022). The flow from simulation to reality. Nature Physics. 10.1038/s41567-022-01788-5. 18:11. (1260-1261). Online publication date: 1-Nov-2022.

    https://www.nature.com/articles/s41567-022-01788-5

  4. Sato H, Lenz K, Ito T, Takeshima Y and Kikuchi T. (2022). Visual Simulation of Spaghetti Using Vellum and Fluid-Implicit-Particle Method 2022 International Conference on Cyberworlds (CW). 10.1109/CW55638.2022.00030. 978-1-6654-6814-5. (134-137).

    https://ieeexplore.ieee.org/document/9937375/

  5. Truong N, Yuksel C, Watcharopas C, Levine J and Kirby R. Particle Merging-and-Splitting. IEEE Transactions on Visualization and Computer Graphics. 10.1109/TVCG.2021.3093776. 28:12. (4546-4557).

    https://ieeexplore.ieee.org/document/9468693/

  6. Liu J, Wang M, Feng F, Tang A, Le Q and Zhu B. (2022). Hydrophobic and Hydrophilic Solid-Fluid Interaction. ACM Transactions on Graphics. 41:6. (1-15). Online publication date: 1-Dec-2022.

    https://doi.org/10.1145/3550454.3555478

  7. Su H, Xue T, Han C and Aanjaneya M. (2022). A ‐ULMPM: An Adaptively Updated Lagrangian Material Point Method for Efficient Physics Simulation without Numerical Fracture . Computer Graphics Forum. 10.1111/cgf.14477. 41:2. (325-341). Online publication date: 1-May-2022.

    https://onlinelibrary.wiley.com/doi/10.1111/cgf.14477

  8. Lesser S, Stomakhin A, Daviet G, Wretborn J, Edholm J, Lee N, Schweickart E, Zhai X, Flynn S and Moffat A. (2022). Loki. ACM Transactions on Graphics. 41:4. (1-20). Online publication date: 1-Jul-2022.

    https://doi.org/10.1145/3528223.3530058

  9. Yi X, Zhou Y and Xu F. (2021). TransPose. ACM Transactions on Graphics. 40:4. (1-13). Online publication date: 1-Aug-2021.

    https://doi.org/10.1145/3450626.3459786

  10. Brown G and Narain R. (2021). WRAPD. ACM Transactions on Graphics. 40:4. (1-14). Online publication date: 1-Aug-2021.

    https://doi.org/10.1145/3450626.3459942

  11. Yang K and Chen X. (2021). Unsupervised learning for cuboid shape abstraction via joint segmentation from point clouds. ACM Transactions on Graphics. 40:4. (1-11). Online publication date: 1-Aug-2021.

    https://doi.org/10.1145/3450626.3459873

  12. Kaspar A, Wu K, Luo Y, Makatura L and Matusik W. (2021). Knit sketching. ACM Transactions on Graphics. 40:4. (1-15). Online publication date: 1-Aug-2021.

    https://doi.org/10.1145/3450626.3459752

  13. Martel J, Lindell D, Lin C, Chan E, Monteiro M and Wetzstein G. (2021). Acorn. ACM Transactions on Graphics. 40:4. (1-13). Online publication date: 1-Aug-2021.

    https://doi.org/10.1145/3450626.3459785

  14. Wang X, Fujisawa M and Mikawa M. (2021). Visual Simulation of Soil-Structure Destruction with Seepage Flows. Proceedings of the ACM on Computer Graphics and Interactive Techniques. 4:3. (1-18). Online publication date: 22-Sep-2021.

    https://doi.org/10.1145/3480141

  15. Kugelstadt T, Bender J, Fernández-Fernández J, Jeske S, Löschner F and Longva A. (2021). Fast Corotated Elastic SPH Solids with Implicit Zero-Energy Mode Control. Proceedings of the ACM on Computer Graphics and Interactive Techniques. 4:3. (1-21). Online publication date: 22-Sep-2021.

    https://doi.org/10.1145/3480142

  16. Hirasawa N, Kanai T and Ando R. (2021). A flux-interpolated advection scheme for fluid simulation. The Visual Computer: International Journal of Computer Graphics. 37:9-11. (2607-2618). Online publication date: 1-Sep-2021.

    https://doi.org/10.1007/s00371-021-02187-2

  17. Gao Y, Li S, Hao A and Qin H. (2021). Simulating Multi-Scale, Granular Materials and Their Transitions With a Hybrid Euler-Lagrange Solver. IEEE Transactions on Visualization and Computer Graphics. 27:12. (4483-4494). Online publication date: 1-Dec-2021.

    https://doi.org/10.1109/TVCG.2021.3107597

  18. Ren B, Xu B and Li C. (2021). Unified particle system for multiple-fluid flow and porous material. ACM Transactions on Graphics. 40:4. (1-14). Online publication date: 31-Aug-2021.

    https://doi.org/10.1145/3450626.3459764

  19. Chen J, Kala V, Marquez-Razon A, Gueidon E, Hyde D and Teran J. (2021). A momentum-conserving implicit material point method for surface tension with contact angles and spatial gradients. ACM Transactions on Graphics. 40:4. (1-16). Online publication date: 31-Aug-2021.

    https://doi.org/10.1145/3450626.3459874

  20. Liu K, Liu N, Ma S, Cheng P, Hu W, Jia X, Cheng Q, Xu J, Guo Q and Wang D. (2021). Highly Permeable Polyamide Nanofiltration Membrane Mediated by an Upscalable Wet-Laid EVOH Nanofibrous Scaffold. ACS Applied Materials & Interfaces. 10.1021/acsami.1c02776. 13:19. (23142-23152). Online publication date: 19-May-2021.

    https://pubs.acs.org/doi/10.1021/acsami.1c02776

  21. Jiang J, Sheng B, Li P, Ma L, Tong X and Wu E. (2020). Real-Time Hair Simulation with Heptadiagonal Decomposition on Mass Spring System. Graphical Models. 10.1016/j.gmod.2020.101077. (101077). Online publication date: 1-Jun-2020.

    https://linkinghub.elsevier.com/retrieve/pii/S1524070320300217

  22. Cheshmi K, Kaufman D, Kamil S and Dehnavi M. (2020). NASOQ. ACM Transactions on Graphics. 39:4. (96:1-96:17). Online publication date: 8-Jul-2020.

    https://doi.org/10.1145/3386569.3392486

  23. Pillwein S, Leimer K, Birsak M and Musialski P. (2020). On elastic geodesic grids and their planar to spatial deployment. ACM Transactions on Graphics. 39:4. (125:1-125:12). Online publication date: 8-Jul-2020.

    https://doi.org/10.1145/3386569.3392490

  24. Huang W, Iseringhausen J, Kneiphof T, Qu Z, Jiang C and Hullin M. (2020). Chemomechanical simulation of soap film flow on spherical bubbles. ACM Transactions on Graphics. 39:4. (41:1-41:13). Online publication date: 8-Jul-2020.

    https://doi.org/10.1145/3386569.3392094

  25. Chen X, Li C, Cao G, Jiang Y and Hu S. (2020). A moving least square reproducing kernel particle method for unified multiphase continuum simulation. ACM Transactions on Graphics. 39:6. (1-15). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3414685.3417809

  26. Huang L and Michels D. (2020). Surface-only ferrofluids. ACM Transactions on Graphics. 39:6. (1-17). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3414685.3417799

  27. Fang Y, Qu Z, Li M, Zhang X, Zhu Y, Aanjaneya M and Jiang C. (2020). IQ-MPM. ACM Transactions on Graphics. 39:4. (51:1-51:16). Online publication date: 31-Aug-2020.

    https://doi.org/10.1145/3386569.3392438

  28. Sperl G, Narain R and Wojtan C. (2020). Homogenized yarn-level cloth. ACM Transactions on Graphics. 39:4. (48:1-48:15). Online publication date: 31-Aug-2020.

    https://doi.org/10.1145/3386569.3392412

  29. Ni X, Zhu B, Wang B and Chen B. (2020). A level-set method for magnetic substance simulation. ACM Transactions on Graphics. 39:4. (29:1-29:13). Online publication date: 31-Aug-2020.

    https://doi.org/10.1145/3386569.3392445

  30. Zheng C. (2019). Physics-Based Computational Design for Digital Fabrication. Mathematical Insights into Advanced Computer Graphics Techniques. 10.1007/978-981-13-2850-3_10. (133-149).

    http://link.springer.com/10.1007/978-981-13-2850-3_10

  31. Wiewel S, Becher M and Thuerey N. (2019). Latent Space Physics: Towards Learning the Temporal Evolution of Fluid Flow. Computer Graphics Forum. 10.1111/cgf.13620. 38:2. (71-82). Online publication date: 1-May-2019.

    https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13620

  32. Lee M, Hyde D, Li K and Fedkiw R. A robust volume conserving method for character-water interaction. Proceedings of the 18th annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation. (1-12).

    https://doi.org/10.1145/3309486.3340244

  33. Kim J. (2019). Coupling Framework of Hair with FLIP Solver for Representing Spray Motion of Liquid in Wet Hair. Journal of the Korea Computer Graphics Society. 10.15701/kcgs.2019.25.4.1. 25:4. (1-8). Online publication date: 1-Sep-2019.

    http://journal.cg-korea.org/archive/view_article?doi=10.15701/kcgs.2019.25.4.1

  34. Fei Y, Batty C, Grinspun E and Zheng C. (2019). A multi-scale model for coupling strands with shear-dependent liquid. ACM Transactions on Graphics. 38:6. (1-20). Online publication date: 31-Dec-2020.

    https://doi.org/10.1145/3355089.3356532

  35. Jung S and Lee S. (2018). Hair Modeling and Simulation by Style. Computer Graphics Forum. 10.1111/cgf.13367. 37:2. (355-363). Online publication date: 1-May-2018.

    http://doi.wiley.com/10.1111/cgf.13367

  36. Bico J, Reyssat É and Roman B. (2018). Elastocapillarity: When Surface Tension Deforms Elastic Solids. Annual Review of Fluid Mechanics. 10.1146/annurev-fluid-122316-050130. 50:1. (629-659). Online publication date: 5-Jan-2018.

    http://www.annualreviews.org/doi/10.1146/annurev-fluid-122316-050130

  37. Gao M, Pradhana A, Han X, Guo Q, Kot G, Sifakis E and Jiang C. (2018). Animating fluid sediment mixture in particle-laden flows. ACM Transactions on Graphics. 37:4. (1-11). Online publication date: 31-Aug-2018.

    https://doi.org/10.1145/3197517.3201309

  38. Fei Y, Batty C, Grinspun E and Zheng C. (2018). A multi-scale model for simulating liquid-fabric interactions. ACM Transactions on Graphics. 37:4. (1-16). Online publication date: 31-Aug-2018.

    https://doi.org/10.1145/3197517.3201392

  39. Bao Y and Qi Y. A Survey of Image-Based Techniques for Hair Modeling. IEEE Access. 10.1109/ACCESS.2018.2818795. 6. (18670-18684).

    http://ieeexplore.ieee.org/document/8323371/

  40. Kim J, Kim W, Kim Y, Im J, Lee J and Kim S. (2017). Robust handling of clumping and stiffness in wet hair animation. Computer Animation and Virtual Worlds. 10.1002/cav.1796. 28:6. (e1796). Online publication date: 1-Nov-2017.

    http://doi.wiley.com/10.1002/cav.1796

Index Terms

  1. A multi-scale model for simulating liquid-hair interactions

    Recommendations

    Comments

    About Cookies On This Site

    We use cookies to ensure that we give you the best experience on our website.

    Learn more

    Got it!