research-article

Video-guided real-to-virtual parameter transfer for viscous fluids

Authors Info & Claims
Published:08 November 2019Publication History
Skip Abstract Section

Abstract

In physically-based simulation, it is essential to choose appropriate material parameters to generate desirable simulation results. In many cases, however, choosing appropriate material parameters is very challenging, and often tedious trial-and-error parameter tuning steps are inevitable. In this paper, we propose a real-to-virtual parameter transfer framework that identifies material parameters of viscous fluids with example video data captured from real-world phenomena. Our method first extracts positional data of fluids and then uses the extracted data as a reference to identify the viscosity parameters, combining forward viscous fluid simulations and parameter optimization in an iterative process. We evaluate our method with a range of synthetic and real-world example data, and demonstrate that our method can identify the hidden physical variables and viscosity parameters. This set of recovered physical variables and parameters can then be effectively used in novel scenarios to generate viscous fluid behaviors visually consistent with the example videos.

Skip Supplemental Material Section

Supplemental Material

a237-takahashi.mp4

References

  1. Bradley Atcheson, Ivo Ihrke, Wolfgang Heidrich, Art Tevs, Derek Bradley, Marcus Magnor, and Hans-Peter Seidel. 2008. Time-resolved 3D Capture of Non-stationary Gas Flows. ACM Trans. Graph. 27, 5, Article 132 (Dec. 2008), 9 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Héctor Barreiro, Ignacio García-Fernández, Iván Alduán, and Miguel A. Otaduy. 2017. Conformation Constraints for Efficient Viscoelastic Fluid Simulation. ACM Trans. Graph. 36, 6, Article 221 (2017), 221:1--221:11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Christopher Batty and Robert Bridson. 2008. Accurate Viscous Free Surfaces for Buckling, Coiling, and Rotating Liquids. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 219--228.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Christopher Batty and Ben Houston. 2011. A Simple Finite Volume Method for Adaptive Viscous Liquids. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 111--118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Christopher Batty, Andres Uribe, Basile Audoly, and Eitan Grinspun. 2012. Discrete Viscous Sheets. ACM Transactions on Graphics 31, 4, Article 113 (2012), 7 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Markus Becker and Matthias Teschner. 2007. Robust and Efficient Estimation of Elasticity Parameters using the linear Finite Element Method.. In Simulation and Visualization. 15--28.Google ScholarGoogle Scholar
  7. J. Bender and D. Koschier. 2016. Divergence-Free SPH for Incompressible and Viscous Fluids. IEEE Transactions on Visualization and Computer Graphics PP, 99 (2016), 1--1.Google ScholarGoogle Scholar
  8. Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010. Discrete Viscous Threads. ACM Transactions on Graphics 29, 4, Article 116 (2010), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Kiran S. Bhat, Steven M. Seitz, and Jovan Popovic. 2002. Computing the Physical Parameters of Rigid-Body Motion from Video. In Proceedings of the 7th European Conference on Computer Vision-Part I. 551--565.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Kiran S. Bhat, Christopher D. Twigg, Jessica K. Hodgins, Pradeep K. Khosla, Zoran Popović, and Steven M. Seitz. 2003. Estimating Cloth Simulation Parameters from Video. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 37--51.Google ScholarGoogle Scholar
  11. Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee, Hanspeter Pfister, Markus Gross, and Wojciech Matusik. 2010. Design and Fabrication of Materials with Desired Deformation Behavior. ACM Trans. Graph. 29, 4, Article 63 (July 2010), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Wojciech Matusik, Hanspeter Pfister, and Markus Gross. 2009. Capture and Modeling of Non-linear Heterogeneous Soft Tissue. ACM Trans. Graph. 28, 3, Article 89 (July 2009), 9 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Robert Bridson. 2015. Fluid Simulation for Computer Graphics. A K Peters/CRC Press.Google ScholarGoogle Scholar
  14. Mark Carlson, Peter J. Mucha, R. Brooks Van Horn, III, and Greg Turk. 2002. Melting and Flowing. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 167--174.Google ScholarGoogle Scholar
  15. Da Chen, Wenbin Li, and Peter Hall. 2016. Dense Motion Estimation for Smoke. In Asian Conference on Computer Vision (Asian Conference on Computer Vision).Google ScholarGoogle Scholar
  16. Simon Clavet, Philippe Beaudoin, and Pierre Poulin. 2005. Particle-based Viscoelastic Fluid Simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 219--228.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. David Clyde, Joseph Teran, and Rasmus Tamstorf. 2017. Modeling and Data-driven Parameter Estimation for Woven Fabrics. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA '17). Article 17, 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. T. Corpetti, E. Memin, and P. Perez. 2002. Dense estimation of fluid flows. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 3 (March 2002), 365--380.Google ScholarGoogle Scholar
  19. Gilles Daviet and Florence Bertails-Descoubes. 2016. A Semi-implicit Material Point Method for the Continuum Simulation of Granular Materials. ACM Trans. Graph. 35, 4, Article 102 (2016), 102:1--102:13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Alexandre Derouet-Jourdan, Florence Bertails-Descoubes, Gilles Daviet, and Joëlle Thollot. 2013. Inverse Dynamic Hair Modeling with Frictional Contact. ACM Trans. Graph. 32, 6, Article 159 (Nov. 2013), 159:1--159:10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Marie-Lena Eckert, Wolfgang Heidrich, and Nils Thürey. 2018. Coupled Fluid Density and Motion from Single Views. Comput. Graph. Forum 37, 8 (2018), 47--58.Google ScholarGoogle ScholarCross RefCross Ref
  22. Yu Fang, Minchen Li, Ming Gao, and Chenfanfu Jiang. 2019. Silly Rubber: An Implicit Material Point Method for Simulating Non-equilibrated Viscoelastic and Elastoplastic Solids. ACM Trans. Graph. (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ming Gao, Andre Pradhana Tampubolon, Chenfanfu Jiang, and Eftychios Sifakis. 2017. An Adaptive Generalized Interpolation Material Point Method for Simulating Elastoplastic Materials. ACM Trans. Graph. 36, 6, Article 223 (2017), 223:1--223:12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Gerlach and A. Matzenmiller. 2007. On parameter identification for material and microstructural properties. GAMM-Mitteilungen 30, 2 (2007), 481--505.Google ScholarGoogle ScholarCross RefCross Ref
  25. Tolga G. Goktekin, Adam W. Bargteil, and James F. O'Brien. 2004. A Method for Animating Viscoelastic Fluids. ACM Trans. Graph. 23, 3 (2004), 463--468.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ryan Goldade, Yipeng Wang, Mridul Aanjaneya, and Christopher Batty. 2019. An Adaptive Variational Finite Difference Framework for Efficient Symmetric Octree Viscosity. ACM Trans. Graph. (2019).Google ScholarGoogle Scholar
  27. Ian Grant. 1997. Particle image velocimetry: a review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 211 (1997), 55--76.Google ScholarGoogle ScholarCross RefCross Ref
  28. James Gregson, Ivo Ihrke, Nils Thuerey, and Wolfgang Heidrich. 2014. From Capture to Simulation: Connecting Forward and Inverse Problems in Fluids. ACM Trans. Graph. 33, 4, Article 139 (July 2014), 139:1--139:11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. James Gregson, Michael Krimerman, Matthias B. Hullin, and Wolfgang Heidrich. 2012. Stochastic Tomography and Its Applications in 3D Imaging of Mixing Fluids. ACM Trans. Graph. 31, 4, Article 52 (July 2012), 52:1--52:10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Nikolaus Hansen and Stefan Kern. 2004. Evaluating the CMA Evolution Strategy on Multimodal Test Functions. In PPSN.Google ScholarGoogle Scholar
  31. S. W. Hasinoff and K. N. Kutulakos. 2007. Photo-Consistent Reconstruction of Semitransparent Scenes by Density-Sheet Decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 5 (2007), 870--885.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Liwen Hu, Derek Bradley, Hao Li, and Thabo Beeler. 2017. Simulation-Ready Hair Capture. Comput. Graph. Forum 36 (2017), 281--294.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Ivo Ihrke and Marcus Magnor. 2004. Image-based Tomographic Reconstruction of Flames. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 365--373.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The Affine Particle-in-cell Method. ACM Trans. Graph. 34, 4, Article 51 (July 2015), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim, Markus H. Gross, and Barbara Solenthaler. 2019. Deep Fluids: A Generative Network for Parameterized Fluid Simulations. Computer Graphics Forum (2019).Google ScholarGoogle Scholar
  36. Gergely Klár, Theodore Gast, Andre Pradhana, Chuyuan Fu, Craig Schroeder, Chenfanfu Jiang, and Joseph Teran. 2016. Drucker-prager Elastoplasticity for Sand Animation. ACM Trans. Graph. 35, 4, Article 103 (2016), 103:1--103:12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Egor Larionov, Christopher Batty, and Robert Bridson. 2017. Variational Stokes: A Unified Pressure-viscosity Solver for Accurate Viscous Liquids. ACM Trans. Graph. 36, 4, Article 101 (July 2017), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Huai-Ping Lee and Ming C. Lin. 2012. Fast optimization-based elasticity parameter estimation using reduced models. The Visual Computer 28, 6 (2012), 553--562.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Chuan Li, David Pickup, Thomas Saunders, Darren Cosker, David Marshall, Peter Hall, and Philip Willis. 2013. Water Surface Modeling from a Single Viewpoint Video. IEEE Transactions on Visualization and Computer Graphics 19, 7 (July 2013), 1242--1251.Google ScholarGoogle Scholar
  40. Siwang Li, Jin Huang, Fernando de Goes, Xiaogang Jin, Hujun Bao, and Mathieu Desbrun. 2014. Space-time Editing of Elastic Motion Through Material Optimization and Reduction. ACM Trans. Graph. 33, 4, Article 108 (2014), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Mickaël Ly, Romain Casati, Florence Bertails-Descoubes, Mélina Skouras, and Laurence Boissieux. 2018. Inverse Elastic Shell Design with Contact and Friction. In SIGGRAPH Asia 2018 Technical Papers (SIGGRAPH Asia '18). Article 201, 16 pages.Google ScholarGoogle Scholar
  42. Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid Control Using the Adjoint Method. ACM Trans. Graph. 23, 3 (2004), 449--456.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. E. Miguel, D. Bradley, B. Thomaszewski, B. Bickel, W. Matusik, M. A. Otaduy, and S. Marschner. 2012. Data-Driven Estimation of Cloth Simulation Models. Comput. Graph. Forum 31, 2pt2 (2012), 519--528.Google ScholarGoogle Scholar
  44. Aron Monszpart, Nils Thuerey, and Niloy J. Mitra. 2016. SMASH: Physics-guided Reconstruction of Collisions from Videos. ACM Trans. Graph. 35, 6, Article 199 (Nov. 2016), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Nigel J. W. Morris and Kiriakos N. Kutulakos. 2011. Dynamic Refraction Stereo. IEEE Trans. Pattern Anal. Mach. Intell. 33, 8 (Aug. 2011), 1518--1531.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Kentaro Nagasawa, Takayuki Suzuki, Ryohei Seto, Masato Okada, and Yonghao Yue. 2019. Mixing Sauces: A Viscosity Blending Model for Shear Thinning Fluids. ACM Trans. Graph. 38, 4, Article 95 (July 2019), 17 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Makoto Okabe, Yoshinori Dobashi, Ken Anjyo, and Rikio Onai. 2015. Fluid Volume Modeling from Sparse Multi-view Images by Appearance Transfer. ACM Trans. Graph. 34, 4, Article 93 (July 2015), 93:1--93:10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Dinesh K. Pai, Kees van den Doel, Doug L. James, Jochen Lang, John E. Lloyd, Joshua L. Richmond, and Som H. Yau. 2001. Scanning Physical Interaction Behavior of 3D Objects. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01). 87--96.Google ScholarGoogle Scholar
  49. Dinesh K. Pai, Austin Rothwell, Pearson Wyder-Hodge, Alistair Wick, Ye Fan, Egor Larionov, Darcy Harrison, Debanga Raj Neog, and Cole Shing. 2018. The Human Touch: Measuring Contact with Real Human Soft Tissues. ACM Trans. Graph. 37, 4, Article 58 (July 2018), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias Teschner. 2015. An Implicit Viscosity Formulation for SPH Fluids. ACM Trans. Graph. 34, 4, Article 114 (2015), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. A. Peer and M. Teschner. 2017. Prescribed Velocity Gradients for Highly Viscous SPH Fluids with Vorticity Diffusion. IEEE Transactions on Visualization and Computer Graphics 23, 12 (2017), 2656--2662.Google ScholarGoogle ScholarCross RefCross Ref
  52. N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger, S. Hoon, and R. Fedkiw. 2004. Directable Photorealistic Liquids. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 193--202.Google ScholarGoogle Scholar
  53. Zhimin Ren, Hengchin Yeh, and Ming C. Lin. 2013. Example-guided Physically Based Modal Sound Synthesis. ACM Trans. Graph. 32, 1, Article 1 (2013), 16 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. 121--128.Google ScholarGoogle Scholar
  55. Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. 2013. A Material Point Method for Snow Simulation. ACM Trans. Graph. 32, 4, Article 102 (2013), 102:1--102:10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Alexey Stomakhin, Craig Schroeder, Chenfanfu Jiang, Lawrence Chai, Joseph Teran, and Andrew Selle. 2014. Augmented MPM for Phase-change and Varied Materials. ACM Transactions on Graphics 33, 4, Article 138 (2014), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Tetsuya Takahashi, Yoshinori Dobashi, Issei Fujishiro, Tomoyuki Nishita, and Ming C. Lin. 2015. Implicit Formulation for SPH-based Viscous Fluids. Computer Graphics Forum 34, 2 (2015), 493--502.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Tetsuya Takahashi and Ming C. Lin. 2019. A Geometrically Consistent Viscous Fluid Solver with Two-Way Fluid-Solid Coupling. Computer Graphics Forum 38, 2 (2019), 49--58.Google ScholarGoogle ScholarCross RefCross Ref
  59. Tetsuya Takahashi, Tomoyuki Nishita, and Issei Fujishiro. 2014. Fast simulation of viscous fluids with elasticity and thermal conductivity using position-based dynamics. Computers & Graphics 43 (2014), 21--30.Google ScholarGoogle ScholarCross RefCross Ref
  60. Christopher D. Twigg and Zoran Kačić-Alesić. 2011. Optimization for Sag-free Simulations. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '11). 225--236.Google ScholarGoogle Scholar
  61. Kiwon Um, Xiangyu Hu, and Nils Thuerey. 2017. Perceptual Evaluation of Liquid Simulation Methods. ACM Trans. Graph. 36, 4, Article 143 (2017), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Orestis Vantzos, Saar Raz, and Mirela Ben-Chen. 2018. Real-time Viscous Thin Films. In SIGGRAPH Asia 2018 Technical Papers (SIGGRAPH Asia '18). Article 281, 10 pages.Google ScholarGoogle Scholar
  63. Bin Wang, Longhua Wu, KangKang Yin, Uri Ascher, Libin Liu, and Hui Huang. 2015. Deformation Capture and Modeling of Soft Objects. ACM Trans. Graph. 34, 4, Article 94 (July 2015), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Huamin Wang, Miao Liao, Qing Zhang, Ruigang Yang, and Greg Turk. 2009. Physically Guided Liquid Surface Modeling from Videos. ACM Trans. Graph. 28, 3, Article 90 (July 2009), 90:1--90:11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Huamin Wang, James F. O'Brien, and Ravi Ramamoorthi. 2011. Data-driven Elastic Models for Cloth: Modeling and Measurement. ACM Trans. Graph. 30, 4, Article 71 (2011), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Marcel Weiler, Dan Koschier, Magnus Brand, and Jan Bender. 2018. A Physically Consistent Implicit Viscosity Solver for SPH Fluids. Computer Graphics Forum 37, 2 (2018), 145--155.Google ScholarGoogle ScholarCross RefCross Ref
  67. Jinhui Xiong, Ramzi Idoughi, Andres A. Aguirre-Pablo, Abdulrahman B. Aljedaani, Xiong Dun, Qiang Fu, Sigurdur T. Thoroddsen, and Wolfgang Heidrich. 2017. Rainbow Particle Imaging Velocimetry for Dense 3D Fluid Velocity Imaging. ACM Trans. Graph. 36, 4, Article 36 (July 2017), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Hongyi Xu and Jernej Barbič. 2017. Example-based Damping Design. ACM Trans. Graph. 36, 4, Article 53 (July 2017), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Hongyi Xu, Yijing Li, Yong Chen, and Jernej Barbič. 2015. Interactive Material Design Using Model Reduction. ACM Trans. Graph. 34, 2, Article 18 (March 2015), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Guowei Yan, Wei Li, Ruigang Yang, and Huamin Wang. 2018. Inexact Descent Methods for Elastic Parameter Optimization. In SIGGRAPH Asia 2018 Technical Papers (SIGGRAPH Asia '18). Article 253, 14 pages.Google ScholarGoogle Scholar
  71. Shan Yang, Tanya Ambert, Zherong Pan, Ke Wang, Licheng Yu, Tamara Berg, and Ming C. Lin. 2016. Detailed Garment Recovery from a Single-View Image.Google ScholarGoogle Scholar
  72. Shan Yang, Junbang Liang, and Ming C. Lin. 2017. Learning-based Cloth Material Recovery from Video. In 2017 IEEE International Conference on Computer Vision.Google ScholarGoogle Scholar
  73. S. Yang and M. C. Lin. 2016. MaterialCloning: Acquiring Elasticity Parameters from Images for Medical Applications. IEEE Transactions on Visualization and Computer Graphics 22, 9 (Sept 2016), 2122--2135.Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Yonghao Yue, Breannan Smith, Christopher Batty, Changxi Zheng, and Eitan Grinspun. 2015. Continuum Foam: A Material Point Method for Shear-Dependent Flows. ACM Trans. Graph. 34, 5, Article 160 (2015), 160:1--160:20 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Yonghao Yue, Breannan Smith, Peter Yichen Chen, Maytee Chantharayukhonthorn, Ken Kamrin, and Eitan Grinspun. 2018. Hybrid Grains: Adaptive Coupling of Discrete and Continuum Simulations of Granular Media. In SIGGRAPH Asia 2018 Technical Papers (SIGGRAPH Asia '18). Article 283, 19 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Guangming Zang, Ramzi Idoughi, Ran Tao, Gilles Lubineau, Peter Wonka, and Wolfgang Heidrich. 2019. Warp-and-Project Tomography for Rapidly Deforming Objects. ACM Trans. Graph. (2019).Google ScholarGoogle Scholar
  77. Bo Zhu, Minjae Lee, Ed Quigley, and Ronald Fedkiw. 2015. Codimensional non-Newtonian Fluids. ACM Trans. Graph. 34, 4, Article 115 (2015), 9 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Z. Zivkovic. 2004. Improved adaptive Gaussian mixture model for background subtraction. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., Vol. 2. 28--31 Vol.2. Google ScholarGoogle ScholarCross RefCross Ref

Cited By

View all
  1. Zhang Y, Dong Z, Obaidat M and Ban X. (2023). Non-Newtonian fluid simulation and reconstruction from monocular videos. Simulation Modelling Practice and Theory. 10.1016/j.simpat.2022.102688. 123. (102688). Online publication date: 1-Feb-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S1569190X22001575

  2. Nie X, Hu Y, Shen X and Su Z. (2022). Reconstructing and editing fluids using the adaptive multilayer external force guiding model. Science China Information Sciences. 10.1007/s11432-020-3322-x. 65:11. Online publication date: 1-Nov-2022.

    https://link.springer.com/10.1007/s11432-020-3322-x

  3. Zsolnai-Fehér K. (2022). The flow from simulation to reality. Nature Physics. 10.1038/s41567-022-01788-5. 18:11. (1260-1261). Online publication date: 1-Nov-2022.

    https://www.nature.com/articles/s41567-022-01788-5

  4. Chernousenko V, Ivanova A, Baranov I and Kvasov I. (2021). The Development of a Physics Engine for Simulating Liquids and Gases 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). 10.1109/ElConRus51938.2021.9396385. 978-1-6654-0476-1. (266-269).

    https://ieeexplore.ieee.org/document/9396385/

  5. Tang J, C. Azevedo V, Cordonnier G and Solenthaler B. (2021). Honey, I Shrunk the Domain: Frequency‐aware Force Field Reduction for Efficient Fluids Optimization. Computer Graphics Forum. 10.1111/cgf.142637. 40:2. (339-353). Online publication date: 1-May-2021.

    https://onlinelibrary.wiley.com/doi/10.1111/cgf.142637

  6. Zang G, Idoughi R, Wang C, Bennett A, Du J, Skeen S, Roberts W, Wonka P and Heidrich W. (2020). TomoFluid: Reconstructing Dynamic Fluid From Sparse View Videos 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 10.1109/CVPR42600.2020.00194. 978-1-7281-7168-5. (1867-1876).

    https://ieeexplore.ieee.org/document/9156450/

  7. Asenov M, Burke M, Angelov D, Davchev T, Subr K and Ramamoorthy S. Vid2Param: Modeling of Dynamics Parameters From Video. IEEE Robotics and Automation Letters. 10.1109/LRA.2019.2959476. 5:2. (414-421).

    https://ieeexplore.ieee.org/document/8931564/

  8. Lopez-Guevara T, Pucci R, Taylor N, Gutmann M, Ramamoorthy S and Suhr K. (2020). Stir to Pour: Efficient Calibration of Liquid Properties for Pouring Actions 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 10.1109/IROS45743.2020.9340852. 978-1-7281-6212-6. (5351-5357).

    https://ieeexplore.ieee.org/document/9340852/

Index Terms

(auto-classified)
  1. Video-guided real-to-virtual parameter transfer for viscous fluids

      Recommendations

      Comments

      About Cookies On This Site

      We use cookies to ensure that we give you the best experience on our website.

      Learn more

      Got it!