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A riderless bicycle can automatically steer itself so as to recover from falls. The common view
is that this self-steering is caused by gyroscopic precession of the front wheel, or by the wheel
contact trailing like a caster behind the steer axis. We show that neither effect is necessary for
self-stability. Using linearized stability calculations as a guide, we built a bicycle with extra
counter-rotating wheels (canceling the wheel spin angular momentum) and with its front-wheel
ground-contact forward of the steer axis (making the trailing distance negative). When laterally
disturbed from rolling straight, this bicycle automatically recovers to upright travel. Our results
show that various design variables, like the front mass location and the steer axis tilt, contribute to
stability in complex interacting ways.

Abicycle and rider in forward motion ba-
lance by steering toward a fall, which
brings the wheels back under the rider

[supporting online material (SOM) text S1 and
S2] (1). Normally, riders turn the handlebars
with their hands to steer for balance. With hands
off the handlebars, body-leaning relative to the
bicycle frame can also cause appropriate steering.
Amazingly, many moving bicycles with no rider
can steer themselves so as to balance—likewise
with a rigid rider whose hands are off the handle-
bars. For example, in 1876, Spencer (2, 3) noted that
one could ride a bicycle while lying on the seat
with hands off, and the film JourdeFêteby Jacques
Tati, 1949, features a riderless bicycle self-balancing
for long distances. Suspecting that bicycle ride-
ability, with rider control, is correlated with self-
stability of the passive bicycle, much theoretical
research has focused on this bicycle self-stability.

The first analytic predictions of bicycle self-
stability were presented independently by French
mathematician Emmanuel Carvallo (1897) (4)
and Cambridge undergraduate Francis Whipple
(1899) (3, 5). In their models and in this paper, a
bicycle is defined as a three-dimensional mecha-
nism (Fig. 1A) made up of four rigid objects
(the rear frame with rider body B, the handlebar
assembly H, and two rolling wheels R and F)
connected by three hinges. The more complete
Whipple version has 25 geometry and mass pa-
rameters. Assuming small lean and steer angles,
linear and angular momentum balance—as con-
strained by the hinges and rolling contact—lead
to a pair of coupled second-order linear differ-
ential equations for leaning and steering (SOM
text S3) (6). Solutions of these equations show
that after small perturbations, the motions of a
bicycle may exponentially decay in time to up-
right straight-ahead motion (asymptotic stabili-

ty). This stability typically can occur at forward
speeds v near to

ffiffiffiffiffi

gL
p

, where g is gravity and L
is a characteristic length (about 1 m for a mod-
ern bicycle). Limitations in the model include
assumed linearity and the neglect of motions
associated with tire and frame deformation, tire
slip, and play and friction in the hinges. None-
theless, modern experiments have demonstrated
the accuracy of the Whipple model for a real
bicycle without a rider (7).

The simple bicycle model above is energy-
conserving. Thus, the asymptotic stability of a
bicycle, that the lean and steer angles exponen-
tially decay to zero after a perturbation, is jarring
to those familiar with Hamiltonian dynamics. But
because of the rolling (non-holonomic) contact of
the bicycle wheels, the bicycle—although energy-
conserving—is not Hamiltonian, and it is possi-
ble for a subset of variables to have exponential
stability in time (6, 8). There is no contradiction
between exponential decay and energy conser-
vation because for a bicycle, the energy lost from
decaying steering and leaning motions goes to
increase the forward speed. Unresolved, how-

ever, is the cause of bicycle self-stability. In some
sense, perhaps, a self-stable bicycle is something
like a system with control, albeit self-imposed.

Rider-controlled stability of bicycles is indeed
related to their self-stability. Experiments like
those of Jones (9) and R. E. Klein (10) show that
special experimental bicycles that are difficult
for a person to ride, either with hands on or off,
tend not to be self-stable. Both no-hands control
(using body bending) and bicycle self-stability
depend on “cross terms,” in which leaning causes
steering or vice versa. The central question about
what causes self-stability is thus reduced to, what
causes the appropriate coupling between lean-
ing and steering? The most often discussed of
the coupling effects are those due to front-wheel
gyroscopic torque and to caster effects from the
wheel trailing behind the steer axis. Trail (or
“caster trail”) is the distance c that the ground
contact point trails behind the intersection of
the steering axis with the ground (Fig. 1A).

There is near universal acceptance that either
spin angular momentum (gyroscopic effect) or
trail, or both, are necessary for bicycle self-stability
(3). Active steering of a bicycle front wheel causes
a gyroscopic torque on an upright frame and rider.
Because the front wheel is relatively light as com-
pared with the more massive bicycle and rider, the
effect of this gyroscopic torque on the lean is gen-
erally small (SOM text S1) (11). However, coupling
the other way—the effect of active bicycle-leaning
on hands-free steering—is nonnegligible. For ex-
ample, when the bicycle has a lean rate to the right
the front axle also has a lean rate to the right, and the
spinning wheel exerts a clockwise (looking down)
reactive torque carried at least in part by the handle-
bar assembly. This reaction torque tends to turn the
handlebars rightward. Thus, the common explana-
tion of no-hands rider control: To steer to the right,
the rider bends her upper body to the left, tilting
the bicycle and wheels rightward (5). The bicycle
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Fig. 1. (A) The bicycle model consists of two interconnected frames, B and H, connected to two wheels,
R and F. The model has a total of 25 geometry and mass-distribution parameters. Central here are the
rotary inertia Iyy of the front wheel, the steer axis angle (“rake”) ls, and the trail distance c (positive if
contact is behind the steer axis). Depending on the parameter values, as well as gravity g and forward
speed v, this bicycle can be self-stable or not. (B) A theoretical TMS bicycle is a special case. It is
described with only nine free parameters (eight plus trail). The wheels have no net rotary inertia and
thus function effectively as ice skates. The two frames each have a single point mass and no mass
moments of inertia. A heavy point mass on the rear skate at the ground contact point can prevent the
bicycle from tipping over forward; because it has no effect on the linearized dynamics, it is not shown.
Even with negative trail (c < 0; inset), this non-gyroscopic bicycle can be self-stable.
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handlebars, considered as freely rotating on the
steer axis and forced by the gyroscopic front wheel,
thus initially turn rightward. Such leaning-induced
steering can be used for rider control of balance.
Likewise, this gyroscopic coupling also contributes
to a forward-moving passive bicycle self-steering
toward a fall (12).

The most thorough discussion of the neces-
sity of gyroscopic coupling of leaning to steering
for bicycle self-stability is in the bicycle chapter
of the fourth volume of the gyroscope treatise
by Klein and Sommerfeld (11, 13). They took the
example bicycle parameters fromWhipple and elim-
inated just the spin angularmomentumof thewheels.
Using their own linearized dynamic stability anal-
ysis of theWhipplemodel, Klein and Sommerfeld
concluded that, ‘‘... in the absence of gyroscopic
actions, the speed range of complete stability
would vanish’’ [(11) p. 866] and make what ap-
pears to be a strong general claim about bicycles:
‘‘The gyroscopic action, in spite of its smallness,
is necessary for self-stability’’ [(11) p. 866].

They emphasized that the gyroscopic torque
does not apply corrective lean torques to a bicy-
cle directly, as others seem to have thought (14).
Rather, through the gyroscopic torque, leaning
causes steering, which in turn causes the right-
ing accelerations: ‘‘The proper stabilizing force,
which overwhelms the force of gravity, is the cen-
trifugal force, and the gyroscopic action plays
the role of a trigger’’ [(11) p. 881].

In Jones’s famous search for an unrideable
bicycle (URB) (9), he added a counter-rotating
disk to the handlebar assembly, canceling the gy-
roscopic self-steering torque of the front wheel.
He could still (barely) ride such a nongyro bi-
cycle using no hands. Jones rightly deduced that
the gyroscopic effect discussed in (11) was not the
only coupling between leaning and steering. Jones
emphasized the importanceof the front-wheelground
contact being behind the steering axis (positive trail,
c > 0) (Fig. 1A). Even though the front forks of

modern bicycles are typically bent forward slight-
ly, with the wheel-center forward of the steering
axis, all modern bicycles still have positive trail
(typically from 2 to 10 cm on modern bicycles)
because of the steering axis tilt ls > 0. When Jones
modified his bicycle by placing the front-wheel
ground contact in front of the steer axis (negative
trail, c < 0), he could not ride using no hands.

In Jones’s view, a bicycle wheel is in part like
a caster wheel on a shopping cart, with the wheel
trailing behind a vertical pivot axis. If a modern
bicycle was rolled forward by guiding the rear
frame in a straight line while it was held rigidly
upright, the front wheel would quickly self-center
like a shopping-cart caster. Jones noted, ‘‘The bi-
cycle has only geometrical castor [sic] [trail] stabil-
ity to provide its self-centering’’ [(9) p. 40]. Jones’s
main focus was a second trail effect: The vertical
ground contact force on the front-wheel–ground
contact point exerts a steering torque on a leaned
bicycle even when the bicycle is steered straight.
Jones calculated the steer torque caused by lean as
a derivative of a static potential energy, neglecting
the weight of the front assembly. If a typical mod-
ern bicycle is firmly held by the rear frame, leaned
to the right, and pressed down hard, then the ver-
tical ground contact force on the frontwheel causes
a rightward steering torque on the handlebars. The
Jones torque can be felt on a normal bicycle by
riding in a straight line and bending your upper
body to the left, leaning the bicycle to the right:
To maintain a straight path, the hands must fight
the Jones torque and apply a leftward torque to the
handlebars. According to Jones, this torque causes
steering toward a fall onlywhen the trail is positive.
When the trail is zero, Jones’s theory predicts no
self-correcting steer torque. Jones seems to con-
clude that no-hands control authority (the ability
to cause steeringbybodybending) and self-stability
both depend on positive trail. A mixture of the two
mechanisms Jones discusses certainly suggests
that trail is a key part of bicycle stability.

Following Klein and Sommerfeld and Jones,
it has become common belief that steering is
stable because the front-wheel–ground contact
drags behind the steering axis, and leaning is sta-
ble because some mixture of gyroscopic torques
and trail causes an uncontrolled bicycle to steer
in the direction of a fall (3).

Are gyroscopic terms or positive trail, togeth-
er or separately, really either necessary or suffici-
ent for bicycle self-stability? Following Carvallo,
Whipple, Klein and Sommerfeld, and others since
[see history in (6)], we began with the linearized
equations of motion. Using the numerical values
from the benchmark example in (6) and setting
the gyroscopic terms to zero, we found that self-
stability is lost (SOM text S6.1, which is similar
to the result of Klein and Sommerfeld for the
Whipple parameters). However, we also found
bicycle designs that are self-stable even without
gyroscopic terms.

The conflict with Klein and Sommerfeld is
partly resolved by noting sign errors in their key
stability term (3). Despite their calculation errors,
the Whipple bicycle with Whipple’s example pa-
rameters does indeed lose self-stability when the
gyro terms are set to zero. But with their incor-
rect expressions, Klein and Sommerfeld could
make slightly more general claims that are not
valid when the sign errors are corrected (3). What-
ever generality Klein and Sommerfeld intended
(their wording is ambiguous), their result does
not apply to bicycles in general.

Similarly, Jones’s simplified static-energy cal-
culation seems incomplete in the context of a dy-
namical system, such as the Whipple and Carvallo
models. Jones’s static energy calculation only
calculates (incompletely) one term, K0df, of the
full dynamics equations (3, 6). In a full dynamic
analysis, K0df does not predict the steering of a
falling bicycle (3). For example, that term can
be nonzero for a bicycle that falls with no self-
corrective steering at all. And just as for the gy-

Fig. 2. Realization of the model from Fig. 1B. (A) The experi-
mental TMS bicycle. (B) Front assembly. A counter-rotating wheel
cancels the spin angular momentum. The ground contact is slight-
ly ahead of the intersection of the long steer axis line with the

ground, showing the small negative trail (movie S3). (C) Self-stable experimental TMS bicycle rolling and balancing [photo for (C) by S. Rentmeester/FMAX].
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roscopic term, we can find designs with zero or
negative trail that we predict are self-stable (SOM
text S6.2).

In contrast to the conventional claims above
for the necessity of gyroscopic terms and trail, we
have found no rigorous reasoning that demands
either. To understand better what is needed for
self-stability, we eliminated as many bicycle pa-
rameters as possible (15). Most centrally, we elim-
inated the gyroscopic terms and set the trail to
zero (c = 0). We also reduced the mass distribution
to just two point masses: one for the rear frame B
and one for the steering assembly H (Fig. 1B).
With these theoretical parameters, the wheels—
having no net spin angular momentum—are me-
chanically equivalent to skates. These simplifi-
cations reduce the number of parameters from
Whipple’s 25 to a more manageable eight.

Stability analysis of this theoretical two-mass-
skate (TMS) bicycle model (SOM text S7), con-
firmed by means of numerical solution of the
governing differential equations, shows that neither
gyroscopic terms nor positive trail are needed
for self-stability [Routh-Hurwitz analysis shows
that all eigenvalues of the theoretical TMS bicy-
cle can have negative real parts at some forward
speeds (16)].

We used the stable theoretical TMS bicycle
parameters as a basis for building an experimen-
tal TMS bicycle (Fig. 2A and SOM text S8 and
S9). We used small wheels to minimize the spin
angular momentum. To further reduce the gyro-
scopic terms, following Jones we added counter-
spinning disks that rotate backward relative to
the lower wheels (Fig. 2B and movie S2). The
experimental TMS bicycle was built to have a
slightly negative trail (c = –4 mm < 0) (movie
S3). Although the experimental TMS bicycle

looks like a folding scooter, it is still a bicycle
(two wheels, two frames, and three hinges).

Because all physical objects have distributed
mass, the measured parameters of the experimen-
tal TMS bicycle were necessarily slightly differ-
ent from those of the theoretical design, which
was based on point masses. Using measured pa-
rameters, we calculated the stability plot of Fig. 3A
(SOM text S7 and S8). For rolling speeds greater
than 2.3 m/s, all eigenvalues have negative real
parts (implying self-stability).

After an initial forward push, the coasting ex-
perimental TMS bicycle (Fig. 2C) would remain
upright before it slowed down to about 2 m/s
(SOM text S10 and S11 and movie S1). As it
slowed below 2 m/s, the bicycle would begin to
fall. In a perturbation experiment, the stable coast-
ing bicycle (v > 2.3 m/s) was hit sideways on the
frame, causing a jump in the lean rate, followed
by a recovery to straight-ahead upright rolling.

The lean and yaw rates were measured (tele-
metered). A data set was compared with theory
in Fig. 3B (movie S4). One difference between
experiment and theory is lateral wheel slip at the
initial perturbation, which caused an initial jump
in the measured yaw rate (Fig. 3B, triangles in
the first 0.25 s). The theoretical model assumed
no slip. High-speed video (movie S4) also shows
a 20-Hz shimmy, which is due at least in part to
unmodeled steering axis play (SOM text S11).
Nonetheless, after the slipping period—even with
the shimmy—the data reasonably track the low-
dimensional linear model’s predictions.

Both the theoretical analysis and physical ex-
periment show that neither gyroscopic torques nor
trail are necessary for bicycle self-stability. Nor are
they sufficient. Many bicycle designs with gyro-
scopic front wheels and positive trail are unstable

at every forward speed (SOM text S6.3). Also, all
known bicycle and motorcycle designs lose self-
stability at high speeds because of gyroscopic
terms [for example, (6)]. In contrast, the TMS bi-
cycle does not have gyroscopic terms and is pre-
dicted to maintain stability at high speeds.

With no gyroscopic torque and no trail, why
does our experimental TMS bicycle turn in the di-
rection of a fall? A general bicycle is complicated,
with various terms that can cause the needed cou-
pling of leaning to steering. Only some of these
terms depend on positive trail or on positive spin
angular momentum in the front wheel. In the the-
oretical and experimental TMS designs, the front
assembly mass is forward of the steering axis and
lower than the rear-frame mass. When the TMS
bicycle falls, the lower steering-mass would, on its
own, fall faster than the higher frame-mass for
the same reason that a short pencil balanced on
end (an inverted pendulum) falls faster than a tall
broomstick (a slower inverted pendulum). Because
the frames are hinged together, the tendency for
the front steering-assembly mass to fall faster
causes steering in the fall direction. The impor-
tance of front assembly mass for Jones-like static
torques has been noted before (8, 17, 18).

Why does this bicycle steer the proper amounts
at the proper times to assure self-stability? We have
found no simple physical explanation equivalent
to the mathematical statement that all eigenval-
ues must have negative real parts (SOM text S4).
For example, turning toward a fall is not suffi-
cient to guarantee self-stability. For various can-
didate simple sufficient conditions X for stability,
we have found designs that have X but that are
not self-stable. For example, we have found bi-
cycles with gyroscopic wheels and positive trail
that are not stable at any speed (SOM text S6.3).
We also have found no simple necessary condi-
tions for self-stability. Besides the TMS design
with no gyroscope and negative trail, we have
found other counterexamples to common lore. We
have found a bicycle that is self-stable with rear-
wheel steering (SOM text S6.7). We also found
an alternative theoretical TMS design that has,
in addition to no-gyro and negative trail, also a
negative head angle (ls < 0) (SOM text S6.6).

Are there any simply described design fea-
tures that are univerally needed for bicycle self-
stability? Within the domain of our linearized
equations, we have found one simple necessary
condition (SOM text S5): To hold a self-stable
bicycle in a right steady turn requires a left torque
on the handlebars. Equivalently, if the hands are
suddenly released from holding a self-stable
bicycle in a steady turn to the right, the imme-
diate first motion of the handlebars will be a turn
further to the right. This is a rigorous version of
the more general, as-yet-unproved claim that a
stable bicycle must turn toward a fall.

Another simple necessary condition for self-
stability is that at least one factor coupling lean
to steer must be present [at least one ofMdf, Cdf,
or Kdf must be nonzero (SOM text S3)]. These
coupling terms arise from combinations of trail,
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Fig. 3. (A) Stability plot for the experimental TMS stable bicycle. Solutions of the differential equations
are exponential functions of time. Stability corresponds to all such solutions having exponential decay
(rather than exponential growth). Such decay only occurs if all four of the eigenvalues li (which are
generally complex numbers) have negative real parts. The plot shows calculated eigenvalues as a function
of forward speed v. For v > 2.3 m/s (the shaded region), the real parts (solid lines) of all eigenvalues are
negative (below the horizontal axis), and the bicycle is self-stable. (B) Transient motion after a dis-
turbance for the experimental TMS bicycle. Measured and predicted lean and yaw (heading) rates of the
rear frame are shown. The predicted motions show the theoretical (oscillatory) exponential decay. Not
visible in these plots, but visible in high-speed video (movie S4), is a 20-Hz shimmy that is not predicted
by the low-dimensional linearized model (SOM text S10 and S11).
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spin momentum, steer axis tilt, and center of mass
locations and products of inertia of the front and
rear assemblies.

Although we showed that neither front-wheel
spin angular momentum nor trail are necessary
for self-stability, we do not deny that both are
often important contributors. But other parameters
are also important, especially the front-assembly
mass distribution, and all of the parameters interact
in complex ways. As a rule, we have found that
almost any self-stable bicycle can be made unstable
by misadjusting only the trail, or only the front-
wheel gyro, or only the front-assembly center-of-
mass position. Conversely, many unstable bicycles
can be made stable by appropriately adjusting any
one of these three design variables, sometimes in an
unusualway.These results hint that the evolutionary,
and generally incremental, process that has led to
common present bicycle designsmight not yet have
explored potentially useful regions in design space.
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DNA Origami with Complex Curvatures
in Three-Dimensional Space
Dongran Han,1,2* Suchetan Pal,1,2 Jeanette Nangreave,1,2 Zhengtao Deng,1,2

Yan Liu,1,2* Hao Yan1,2*

We present a strategy to design and construct self-assembling DNA nanostructures that define
intricate curved surfaces in three-dimensional (3D) space using the DNA origami folding technique.
Double-helical DNA is bent to follow the rounded contours of the target object, and potential
strand crossovers are subsequently identified. Concentric rings of DNA are used to generate
in-plane curvature, constrained to 2D by rationally designed geometries and crossover networks.
Out-of-plane curvature is introduced by adjusting the particular position and pattern of crossovers
between adjacent DNA double helices, whose conformation often deviates from the natural, B-form
twist density. A series of DNA nanostructures with high curvature—such as 2D arrangements of
concentric rings and 3D spherical shells, ellipsoidal shells, and a nanoflask—were assembled.

DNAnanotechnology can now be used to
assemble nanoscale structures with a va-
riety of geometric shapes (1–12) [for a

recent review, see (13)]. Conventionally, a series
of B-form double helices are brought together
and arranged with their helical axes parallel to
one another. The structure is held together by
crossovers between neighboring helices, and the
allowed crossover points are based on the pre-
existing structural characteristics of B-formDNA.
Many DNA nanostructures are variations of po-
lygonal shapes and, although this level of com-
plexity has been sufficient for many purposes, it
remains a challenge tomimic the elaborate geom-

etries in nature because most biological mole-
cules have globular shapes that contain intricate
three-dimensional (3D) curves. Here, we reveal a
DNA origami design strategy to engineer com-
plex, arbitrarily shaped 3D DNA nanostructures
that have substantial intrinsic curvatures. Our ap-
proach does not require strict adherence to con-
ventional design “rules” but instead involves
careful consideration of the ideal placement of
crossovers and nick points into a conceptually
prearranged scaffold to provide a combination of
structural flexibility and stability.

The scaffolded DNA origami folding tech-
nique, in which numerous short single strands of
DNA (staples) are used to direct the folding of a
long single strand of DNA (scaffold), is thus far
one of the most successful construction methods
based on parallel, B-form DNA (14). The most
commonly used scaffold (M13) is ~7000 nucleo-
tides (nts) long and is routinely used to construct

objects with tens to hundreds of nanometer di-
mensions. Several basic, geometric 3D shapes
such as hollow polygons and densely packed
cuboids have been demonstrated, as well as a few
examples of more complex structures, including
a railed bridge and slotted or stacked crosses
(15–17). The biggest limitation with conven-
tional, block-based DNA origami designs is the
level of detail that can be achieved. Analogous to
digitally encoded images, DNA origami struc-
tures are usually organized in a finite, raster grid,
with each square/rectangular unit cell within the
grid (pixel) corresponding to a certain length of
double-helical DNA. The target shape is achieved
by populating the grid with a discrete number of
DNA pixels (for most origami structures, each
DNA pixel has a parallel orientation with respect
to the other pixels) in a pattern that generates the
details and curves of the shape. However, as with
all finite pixel-based techniques, rounded ele-
ments are approximated and intricate details are
often lost.

Recently, Shih and co-workers reported an
elegant strategy to design and construct relatively
complex 3D DNA origami nanostructures that
contain various degrees of twist and curvatures
(18). This strategy uses targeted insertion and
deletion of base pairs (bps) in selected segments
within a 3D building block (a tightly cross-linked
bundle of helices) to induce the desired curvature.
Nevertheless, it remains a daunting task to en-
gineer subtle curvatures on a 3D surface. Our
goal is to develop design principles that will al-
low researchers to model arbitrary 3D shapes
with control over the degree of surface curvature.
In an escape from a rigid lattice model, our
versatile strategy begins by defining the desired
surface features of a target object with the scaf-
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Summary

This Supplementary Online Material (SOM text Chapters 1-11), supports many of the claims in
the main paper. This supplementary text is divided into two mostly-independent sections within
which some of the chapters are also independent. The chapters are called out in the main paper.
We end with a guide to the SOM videos. For those pursuing this supplement on its own, here is a
summary.

Part I: Bicycle Self-Stability. We begin with a general discussion of which forces could and
do right a falling bicycle with or without control (Chapter 1). For those interested in the
nature of the control, we qualitatively explain the contributions of steering angle and of
steering rate, (Chapter 2). The new results in this paper were discovered by investigating
the equations of motion described in Meijaard et al. [6] (Chapter 3). Like others before us,
we use the Routh stability criteria to examine the negativity of the real parts of the roots
of the characteristic polynomial (Chapter 4). Some general features of the roots are noted,
including the only simple necessary condition for self-stability that we know (Chapter 5).
Besides the TMS bicycle which we built and tested, using the same equations we have also
found a variety of other designs that, in theory, highlight one or another counterexample
to common bicycle stability conjectures concerning gyros, trail, head angle and rear-wheel
steering (Chapter 6).

Part II: Experimental design and testing. We begin by considering a highly simplified version
of the general Whipple bicycle. This theoretical TMS bicycle is the core of the results in this
paper (Chapter 7). There are various complications in reducing the point-mass concepts to
a manufacturable design (Chapter 8), and then still more issues when building the machine
(Chapter 9). The experiments are then described (Chapter 10). However, anyone attempting
to reproduce the experiments should be aware of various experimental subtleties (Chapter
11).

1



SOM for A bicycle can be self-stable without gyroscopic or caster effects April 15, 2011

Contents

I BICYCLE SELF-STABILITY 3

1 Forces that can right a bicycle 4

2 Both steering angle and steering rate cause lateral acceleration of the support line 7

3 Review of the linearized equations of motion for the bicycle model 9

4 The characteristic polynomial and the Routh stability criteria 11

5 A necessary condition for self-stability: in a steady left turn the torque on the handle-
bars is to the right 14

6 Counterexamples: bicycles which are self-stable or not, despite common lore 19

II DESIGN AND TESTING OF EXPERIMENTAL BICYCLE 30

7 Theoretical two-mass-skate (TMS) bicycle 31

8 From theoretical two-mass-skate (TMS) bicycle to experimental TMS bicycle 37

9 Experimental two-mass-skate (TMS) bicycle construction 39

10 Experimental procedure and results 43

11 The experiment, general observations and experiences 45

Description of videos 47

References 49

2



SOM for A bicycle can be self-stable without gyroscopic or caster effects April 15, 2011

Part I

BICYCLE SELF-STABILITY

3
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Chapter 1

Forces that can right a bicycle

The focus of the main paper and this supplement is self-stability, the ability of a riderless bicycle
to balance itself, that is, to automatically return to upright straight-ahead motion after a small
disturbance. Self-stability also applies to a bicycle with a no-hands rigid rider. Before discussing
self-stability in more detail, in this first chapter we review some general considerations about what
can and does cause a bicycle (that may or may not have rider control) to lean in wanted and
unwanted ways.

A bicycle is balanced in straight-ahead motion when the rider is over the wheels, that is, when
the center of mass of the bicycle-rider system is directly over the support line which connects the
points where the front and rear wheels touch the ground. Like an inverted pendulum, the more
a bicycle leans away from this balance, the more gravity pulls it further. What forces counteract
the destabilizing gravitational torques? What regulates or causes these stabilizing forces [18]? We
discuss these questions below. They eventually lead to the more focused question; what causes
automatic self-balancing steering of an uncontrolled bicycle?

The material reviewed in this chapter is almost entirely not original, but there is no simple
reference for it.

What forces right a bicycle?

One can imagine several forces that might help to bring a falling bicycle upright. First let’s name
the dominant mechanism for forward-moving bicycles of common design.

As Rankine [1] noted in 1869, a forward-moving leaned bicycle is primarily righted by the
lateral acceleration of the support line due to steering. To balance a bicycle that initially is falling
to the left, it is steered to the left, causing the wheels to move on curved paths to the left. These
leftward curved paths lead to a leftward acceleration of the support line. So a bicycle is balanced
like an inverted broomstick is balanced on an open hand, by acceleration of the support back under
the center of mass. To maneuver, riders manipulate this falling: to turn right they first counter-
steer left, inducing a lean to the right, and then later steer right in the direction of the induced
fall (see Figure 5 in Rankine [1], p. 153). More details concerning the lateral acceleration of the
support line are in Chapter 2 below. Using these ideas it is, in principle, easy to steer and balance
a bicycle [19] (although exactly how people actually do it is an open question [20, 21, 22]).

Acceleration of the support line, a clarification. When we discuss the acceleration of the
ground support line of a forward moving bicycle, we are not talking about the acceleration of
material points. At any instant in time there are two points where the front and rear wheels touch
the ground. Those points define a line. We are talking about the acceleration of that line (and not
the acceleration of the bits of rubber on the tires or the non-acceleration of the bits of pavement on
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the ground). Alternatively, at any instant in time we can imagine rigid extensions of the rear and
front frames that have on them points that instantaneously coincide with the ground contact points.
It is the accelerations of those imaginary material points that concern us.

What forces do not right a bicycle?
First let’s dismiss one gyroscopic effect. When a bicycle with fixed straight-ahead steering falls
there are reaction torques on the frame and handlebars from the precession of the spinning wheels.
However, these torques are orthogonal to the axis of fall and, for a bicycle with steering locked-
straight ahead, are completely reacted by the moment from the lateral forces of the ground on the
wheels. A bicycle with locked steering falls over when moving forward exactly as it does when
not rolling: “any kind of gyroscopic stabilization is going to disappear” [11].

A second small gyroscopic effect is sometimes overstated: actively steering the relatively
lighter spinning front wheel causes a forced-precession gyroscopic torque on the relatively heavier
frame and rider. In order to conserve angular momentum a bicycle with spinning wheels floating
in space would indeed tip right when steered left. (You can feel this leaning torque by holding a
spinning bicycle wheel, with one hand on each end of the axle, and turning in place.) This term
might be important on a special bicycle with a big gyrostat added to the front wheel. But for a
typical bicycle, righting due to this gyroscopic torque is swamped by the support-line acceleration
described above [18, 11].

A variety of other forces might contribute to righting a bicycle, some of them acting even at zero
forward speed. Despite common lay confusions, and like the gyroscopic mechanisms discussed
above, there is no controversy in the scientific literature about the general insignificance of all of
these mechanisms to a typical bicycle’s balance [18].

These further mechanisms (or effects), below, can move the center of mass and support line
relative to each other, just not very much. There is no universal way of quantifying the importance
of these effects; they are not generally associated with terms that can be set to zero without affecting
others; the relative importance of the mechanism depends on whether steering is by a controlled
torque or a controlled angle; and a small effect in one bicycle might be a large term in an unusual
bicycle design. Finally, the contribution of an effect or term depends on the definition: contribution
to what?

A candidate quantification is through a measure of control authority. For example, what is the
largest lean angle from which a fall can be prevented with the proposed mechanism alone? But
even then one needs to set bounds on the allowed angles of steer, allowed steer rates, allowed body
bends, etc.

Here are six other effects that might be imagined to contribute to the righting of a falling
bicycle, either by causing a lateral force on the center of mass, or by moving the support line, or
both. We feel all of these are generally insignificant. All of these apply to a bicycle at, or close to
rest, as much or more than they apply to a forward moving bicycle.

1. Because bicycle wheels are toroidal, and not knife-edged, tipping a bicycle rolls the ground
contact sideways. Special training bicycles [10] with very broad wheels can be statically
stable. Such bicycles have tire crown radius that is larger than the center-of-mass height.
However, a standard bicycle, with tire radius a small fraction of the wheel radius, the contact
point only moves a negligible few milimeters for a 10 degree lean.

2. Bending the rider’s body causes a sideways ground reaction force that accelerates the system
center of mass laterally. For a typical bicycle, leaning the body left relative to the frame
causes a leftward force of the wheels on the ground, leading to a rightward acceleration of
the center of mass. For example, a double pendulum can be balanced by an actuator at the
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intermediate joint [23]. However, the system center of mass can only be moved a small
distance by this means. The mechanism is the same as that used in tightrope walking (with
no pole), but more difficult because of the more limited body motion and because of the mass
distribution on a bicycle. Circus-level performers can wiggle their bodies so as to balance
a stationary bicycle that is steered straight forward (as seen in YouTube videos of people
riding bicycles along fence tops). When a bicycle is rolling forward without steering, this
double-pendulum balance mechanism has no more or less ability to move the center of mass
laterally than when it is stationary.

3. With the front wheel both steered substantially (say 90◦ to get the picture) and locked, tipping
the bicycle rolls the front contact laterally. This is a partial contributor to the balance in a so-
called ‘track stand’. However, for typical bicycle layouts (with nearly vertical head angles),
the system center of mass would have to be below a line connecting the rear wheel contact
with a point somewhat above the center of the front wheel in order to get static stability this
way.

4. With a large steering angle (say 45◦), rolling the rear wheel fore and aft moves the front
contact laterally. This is the main balancing mechanism in a track stand: with the handlebar
turned to the left, the rider pedals forward and backward to move the front support to the
left and right, respectively. This mechanism depends on both forward acceleration and steer
angle. It could contribute to balance during braking with large steering angles or during
acceleration with large steer angles, but seems of little importance in normal riding where
both forward acceleration and the steer angle are small.

5. Because for most bicycles the front wheel contact is not on the steering axis, steering a
bicycle at rest causes a lateral motion of the frame. For a single point-mass bicycle and rider
(with no steering assembly mass) this causes no acceleration of either the center of mass or
the contact support points. For a distributed mass bicycle-rider system this can cause a small
lateral force that laterally accelerates the center of mass.

6. Finally, if the steer-assembly has mass, steering can induce lateral ground reaction forces
which laterally accelerate the center of mass. This is a similar mechanism to 2 above, but
with the steer assembly replacing the upper-body bending. Few, if any, people can balance a
conventional bicycle that is not rolling forward using steering-alone to balance.

In summary, the lean angle of a bicycle is affected by two dominant terms: 1) a destabilizing
gravity torque (like the falling of an upside-down broom stick when initially balanced on end) and
2) the linear and angular acceleration of the support line due to steering angle and steering rate.
Other effects are generally negligible.

6
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Chapter 2

Both steering angle and steering rate cause
lateral acceleration of the support line

The lateral acceleration of the support-line of a moving bicycle has contributions from both steering
angle and steering angular rate.

To better understand these contributions, consider some unusual bicycles and skateboards, all
of which have the simplification that the trail is zero for both front and rear wheels. For simplicity
of discussion let’s consider the lateral acceleration aM of a point M which is midway between the
front and rear wheels and on the ground.

Both-wheels steering. On a both-wheels-steer bicycle, where the rear wheel is steered as much
but opposite to the front wheel M has a lateral acceleration due to the steer-angle but not due to the
steer-rate [24].

aM = c1δ (acceleration proportional to steer angle) (2.1)

Such a bicycle is said to be more difficult to ride [25]. This is somewhat like a conventional
skateboard where the rear truck steers exactly opposite to the front truck (a‘truck’ is an assembly
of two wheels, with steering mechanism, that is bolted to the bottom of the skateboard). On such
a conventional skateboard M has only lateral acceleration due to the steer-angle [26].

Parallel steering. On the other hand, a bicycle with the rear wheel steered parallel to the front
wheel, would have lateral acceleration of M due to steer-rate, but not due to steer-angle,

aM = c2δ̇ (acceleration proportional to steer angle) (2.2)

Such a bicycle is easily balanced [25] (but can’t be turned). This is like a modified skateboard
with the rear truck made to steer parallel to the front truck, and thus having lateral acceleration due
only to steer-rate. In a 15 minute experiment one can verify that such a parallel-steer skateboard
can be easily balanced (but like a parallel-steered bicycle, can’t be turned).

Combination. A conventional bicycle is between the two extremes of opposite and parallel steer-
ing, so both steer and steer rate contribute to the lateral acceleration of M. The curvature of the
rear-wheel path is proportional to the steer angle: the bigger the steer angle the smaller the radius
of the circle of the rear wheel path. And the path of the front wheel is additionally curved due to
the rate of steering (i.e., the angular velocity of the handlebars relative to the frame). Even when
passing through a steer angle of zero the steer rate causes a curved path of the front wheel (Rank-
ine’s ‘promptitude’ [1], 1870 p. 2). The acceleration of the midpoint M is the average of these
front and rear wheel lateral accelerations.

aM = c1δ + c2δ̇ (2.3)
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Rear-wheel steering. On a backward-moving bicycle, or equivalently a reer-wheel-steered bicy-
cle, steer and steer rate contribute with opposite signs,

aM = c1δ − c2δ̇, (2.4)

generally making such a bicycle more difficult to balance [1] (these rear-wheel-steer issues can be
circumvented by adjusting the mass distribution, however [27]; see also Section 6.7).

8
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Chapter 3

Review of the linearized equations of motion
for the bicycle model

x

z

w
c

s

P Q

Rear wheel, R Front wheel, F

rear frame including
rider Body, B

front frame (fork and
Handlebar), H

steer axis

Figure 3.1: The Whipple bicycle model is described with 25 geometry and mass parameters. There
are two frames B (rear frame plus rider Body) and H (fork plus Handlebar) connecting two wheels
R (Rear) and F (Front). Each has geometric and mass parameters. The velocity degrees of freedom
are the forward speed v, the rear frame lean rate φ̇ (positive for a rightward fall) and steer rate
δ̇ (positive for a rightward turn). The steer axis tilt λs, and trail c, are positive, as shown, on
conventional bicycles. (Note that the eigenvalues λi, discussed in later chapters, are unrelated to
the geometry parameter λs.)

The bicycle model we use is the so-called Whipple [5] model described in Meijaard et al. [6]
The model (see Figure 3.1) consists of four rigid bodies connected to each other by hinges. The
contacts between the knife-edged wheels and the flat level surface are modeled by holonomic con-
straints in the vertical direction, and by non-holonomic constraints in the longitudinal and lateral
directions. We assume no-hands operation either with no rider or with a rigid hands-free rider. The
resulting non-holonomic mechanical model has three velocity degrees of freedom: forward speed
v, lean rate φ̇, and steering rate δ̇.

The following is a brief review of the linearized equations of motion for small perturbations
of the upright steady forward motion described in Meijaard et al. [6] The linearized dynamics of
the lateral and the forward motion are decoupled in this configuration. So, for these linearized
equations, the forward speed is constant. The equations of motion for the lateral dynamics are
expressed in terms of the rear frame rightward roll angle, φ, and the rightward steering angle, δ,
both measured relative to the upright straight ahead configuration [φ, δ] = [0, 0]. At forward speed
v the linearized lateral dynamics equations are

Mq̈ + vC1q̇ + [gK0 + v 2K2]q = f , (3.1)

9
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where the time-varying variables are q = [φ, δ]T and the generalized torques f = [Tφ, Tδ]
T . The

first torque, Tφ, is an external roll torque on the rear frame, about the ground contact line (more
generally, Tφ is the work-conjugate of bicycle lean). The second, Tδ, is an internal steering torque
acting positively on the front handlebars and negatively on the rear frame (the work conjugate of
steer).

We will set the lean and steer torques to zero, but they are left in the equations to help with
interpretation. The subscripts for the C and K matrices are chosen to match the exponents of the
v multipliers.

The constant entries in matrices M, C1, K0 and K2 have the following structure,

M =
[
Mφφ Mφδ

Mδφ Mδδ

]
, C1 =

[
0 C1φδ

C1δφ C1δδ

]
,

K0 =
[
K0φφ K0φδ

K0δφ K0δδ

]
, K2 =

[
0 K2φδ

0 K2δδ

]
.

(3.2)

Each of the matrix entries is defined in terms of the 25 design parameters in Meijaard et al. [6]
Briefly, M is a symmetric positive-definite mass matrix which gives the kinetic energy of the

bicycle system at zero forward speed by q̇TMq̇/2. The damping-like (there is no real damping)
matrix C = vC1 is linear in the forward speed v and captures gyroscopic torques due to steer and
lean rate, inertial reaction from the rear frame yaw rate (due to trail), and inertial reaction from yaw
acceleration proportional to steer rate. The stiffness matrix K is the sum of two parts: a velocity-
independent symmetric part gK0 proportional to the gravitational acceleration, which can be used
to calculate changes in potential energy with qT [gK0]q/2; and a part v 2K2 which is quadratic in
the forward speed and is due to gyroscopic and centrifugal effects. With these coefficient matrices
and the assumption of exponential motions q = q0 exp(λit), the characteristic equation,

det
(
Mλ2 + vC1λ+ gK0 + v 2K2

)
= 0, (3.3)

can be formed and the eigenvalues (roots of the polynomial), λi, can be calculated.

10
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Chapter 4

The characteristic polynomial and the
Routh stability criteria

The stability of lateral motions of an uncontrolled bicycle is determined by the four eigenvalues
calculated from the characteristic equation (3.3). Real roots define exponential behavior, corre-
sponding to exponential growth of lean and steer angles if the roots are positive and to decays of
lean and steer angles if the eigenvalues are negative. Complex roots come in complex conjugate
pairs and are associated with exponentially growing or decaying oscillatory motion depending on
the signs of their real parts.

For common bicycle and motorcycle geometries at low speed there are typically four real roots
which transition to two real roots and a complex pair with increasing speed. The smaller (positive
or negative) real root is associated with a so-called capsize mode where the motion is an ever
tightening spiral in which both lean and steer angles slowly increase in proportion. The complex
pair is associated with a weave mode involving oscillations of both lean and steer; the real part
of the weave root can be positive (unstable) or negative (stable). The third remaining eigenmode
is called castering mode where the steering rapidly aligns with the frame. The castering mode is
typically associated with a large negative real eigenvalue (stable). However, for arbitrary bicycles
moving at arbitrary speeds the roots are generally not so simply categorized.

For asymptotically stable bicycle motions all eigenvalue real parts must be negative. The char-
acteristic equation for the two degree of freedom lateral motions of the bicycle model (3.3) is a
fourth order polynomial in λ, whose roots are the eigenvalues λi,

Aλ4 +Bλ3 + Cλ2 +Dλ+ E = 0. (4.1)

The coefficients of this polynomial are themselves polynomials in the forward speed v:

A = A0

B = B1v

C = C0 + C2v
2 (4.2)

D = D1v +D3v
3

E = E0 + E2v
2.

The individual coefficients for v (e.g., A0, B1, . . . ) are lengthy expressions in the 25 bicycle pa-
rameters. The Routh [15] stability criteria now state that for all eigenvalues λ satisfying the quartic
characteristic equation (4.1) to have a negative real part, all polynomial coefficients A,B,C,D,E
and the Routh determinant X = BCD − ADD − EBB must have the same sign. This last
determinant is a sixth order polynomial in v of the form,

X = X2v
2 +X4v

4 +X6v
6, (4.3)

11
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where the coefficients (X2, X4 and X6) are even longer expressions in terms of the 25 bicycle
parameters.

The first coefficient A = A0 = det(M) > 0 because the mass matrix is positive-definite
(except for special singular mass distributions). Thus for stability we need all of B,C,D,E, and
X to be positive. For a conventional bicycle design, B1, C2, D3, E0 are positive and C0, D1, E2 are
negative. One simple summary of the entire main paper and of this supplement is the following.

Because the dependence of these coefficients on the 25 bicycle parameters is com-
plicated there is no simple way to describe what bicycles are stable and at what speeds.

However, for some simple designs such as the theoretical two-mass-skate (TMS) bicycle (see
Chapter 7), some general results have been found.

Throughout our discussion of what is and is not possible we assume that no mass is negative,
and that all mass is above the ground (i.e., we do not consider bicycles on elevated roads that have
mass hanging below the road).

The apparently erroneous conclusion of Klein and Sommerfeld [11] (p. 866) that the gyro-
scopic action is essential for self-stability is based on their analysis of the D coefficient above.
The errors and their implications in the Klein and Sommerfeld analysis are described in Chapter 2
of [3].

The special roles of E and X in the Routh criteria
An uncontrolled bicycle that exhibits stability has all four eigenvalues in the left half of the com-
plex plane. These eigenvalues are either real (representing exponential decay), or complex pairs
symmetric about the real axis (representing damped oscillations). As a set there be 4 real eigen-
values, or 2 real and one complex pair, or 2 complex pairs. With continuous change of a parameter
(e.g., speed, a mass, or a geometric dimension), these eigenvalues change continuously. Some-
times a complex pair coalesces at the real axis and splits apart as two reals. Or in the opposite case,
two real eigenvalues coalesce and split apart as a complex pair.

Stability is lost when any eigenvalue attains a zero real part, then travels further into positive
real territory. Generically this can occur in only two ways:

A) A single real eigenvalue takes on the value zero. This is possible only when the E coefficient
in the characteristic equation is zero. Near this transition the eigenvalue can be estimated as
λ = −E/D.

B) A pair of complex eigenvalues, symmetric about the horizontal (real) axis, moves to sit on the
vertical (imaginary) axis. In other words a purely imaginary eigenvalue pair is a condition of
neutral stability. The existence of such a solution to the characteristic equation is expressed
by X = 0.

The condition for the existence of a pair of purely imaginary roots, X = 0, can easily be derived
as follows [5]. If we assume that the characteristic equation has one pair of purely imaginary roots
then it should have the form

(Aλ2 +Bλ+ P )(λ2 +Q) = 0. (4.4)

Expanding and comparing powers of λ with (4.1) gives us the following three equations for the
two unknown coefficients P and Q,

AQ+ P = C, BQ = D, PQ = E. (4.5)

12
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Using the first two equations to solve for P and Q and substitution into the third equation gives us
the condition for the existence of one pair of purely imaginary roots

BCD − ADD − EBB︸ ︷︷ ︸
X

= 0 =⇒ X = 0. (4.6)

Therefore we have:

From a condition of stability (whereA,B,C,D,E andX are all positive)X orE will
vanish before B,C, or D. Stability is only lost by either E or X passing through zero.
Thus all stability boundaries as v is varied are at either X = 0 or E = 0 (sometimes
called the D-decomposition [8]).

This picture can be more complicated in singular cases in which a parameter variation makes
two conditions vanish simultaneously, for example D and X . In that case one boundary is formed
by both D = 0 and X = 0.

13
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Chapter 5

A necessary condition for self-stability: in a
steady left turn the torque on the
handlebars is to the right

Our interest is no-hands riding with no applied steering torque (i.e., zero on the right hand side of
Eq. 3.1). But one of the necessary conditions for the self-stability (no-hands stability) of a bicycle,
E > 0, can be expressed in terms of the hands-on control torque needed in one special situation, a
steady turn. We derive the result here, and also give some interpretations.

We are interested in the ‘handlebar torque’ Tδ, the torque applied to the handlebars from the
rider, needed to hold a steady turn (constant φ, constant δ). A clockwise (right) torque on the
handlebars (Tδ > 0) causes a clockwise (right) angular acceleration of the steering as long as no
gyro torque or other forces are acting on the front assembly.

Start with the linearized equations of motion (3.1). Now consider only steady solutions where
there is an applied steer torque Tδ but no applied lean torque. All terms involving q̇ or q̈ drop out,
giving

[gK0 + v 2K2]

[
φ
δ

]
=

[
0
Tδ

]
. (5.1)

The first line of this equation gives the ratio of lean to steer in all turns at a given v. Using this
ration to eliminate φ from the second equation we find (using that K0φφ = mTzT from Meijaard et
al. [6]),

Tδ =
det(gK0 + v2K2)

gmTzT
δ. (5.2)

The numerator of (5.2) is the determinant of the total stiffness matrix, which is the constant term
E from the characteristic equation (4.1),

E = E0 + E2v
2 = det

(
gK0 + v2K2

)
. (5.3)

Recall that E must be positive for stability. The denominator of (5.2) has gravitational acceleration
g, total massmT and the height zT of the center of mass of the total system (with the positive z-axis
pointing down). Thus the denominator is always negative. So:

self-stability =⇒ E > 0 =⇒ sgn(Tδ) = −sgn(δ). (5.4)

In words:

A necessary condition for a bicycle to have self-stability is that the steady turn torque
applied by the rider is of the opposite sign of the handlebar angle.

Thus, to keep a self-stable bicycle in a rightward (clockwise looking down) circle the rider must ap-
ply a leftward (counter-clockwise) torque to the handlebars; in other words, the rider is restraining
the handlebars from turning even further.
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Figure 5.1: Left: front wheel ground track for a bicycle getting into a steady turn. From a state
of straight-ahead stable riding at 5 m/s a leftward (CCW, negative) steering torque Tδ is applied
as a step function (Right Top). This CCW torque causes a very short small (barely visible as a
negative dip in the steer angle curve (Right Bottom)) CCW turn of the handlebars which serves as
counter-steering for the subsequent turn into a steady CW (right) turn. Note, δ < 0 is a leftward
handlebar turn. The counter-steering is barely visible on the track as it only displaces the track 2
cm to the left before the eventual turn to the right. Note that the applied torque is only about 0.13
Nm (about one poundforce inch).

Counter-steering. For all bicycles initially going straight ahead, a turn to the right is accom-
plished by counter-steering: rotating the handlebars briefly to the left and then quickly, after the
bicycle has fallen somewhat to the right, to the right. For a self-stable bicycle this leftward-then-
rightward rotation steer angle can all be accomplished by applying a single leftward (counter-
clockwise) step in torque (with subsequent constant sign and magnitude). The simulations shown
are based on the benchmark bicycle [6]. A constant torque of one fixed sign automatically accom-
plishes the counter-steering, as shown in Figure 5.1. (Note: Of course in a normal riding maneuver
a rider does not wait for 12 seconds to attain a desired lean angle. Initially a large torque is applied,
leading to a faster roll, and is the reduced to maintain the turn.)

The short time response to a suddenly applied steer torque Tδ is determined by the equation

M

[
φ̈

δ̈

]
=

[
0
Tδ

]
(5.5)

from which we can solve the steer angle acceleration in terms of the steer torque as

δ̈ =
ITxx

det(M)
Tδ, (5.6)

where ITxx > 0 is the mass moment of inertia of the whole bicycle about the forward axis going
through the rear contact point P (see Figure 3.1). Because the mass matrix is positive definite we
thus have that the first motion after the sudden application of a leftward applied torque is a leftward
steer. However, for a self-stable bicycle the long time response, from Eq. 5.4 is a steady right turn
(with the left torque still applied)

Similarly, if a self-stable bicycle is in a steady turn to the right, and if the steer torque is
suddenly removed, the first motion will be a steer to the right, after which the bicycle will return

15



SOM for A bicycle can be self-stable without gyroscopic or caster effects April 15, 2011

to upright straight rolling. It is in this sense that we can make precise the intuitive notion that a
self-stable bicycle must turn toward a fall:

If steer control is suddenly removed from a state of steady turning, the first motion is
to turn more.

In summary, we have the following mutually equivalent necessary conditions for a bicycle to be
self-stable:

1. The characteristic polynomial coefficient E > 0.

2. The eigenvalues of the stiffness matrix K are both negative.

3. det(K) > 0

4. In a steady circular turn (i.e., constant steer angle and constant lean angle), sgn(Tδ) =
−sgn(δ): the steer torque opposes the steer angle (e.g., a steady turn to the right can be
accomplished by a forward push on the right handlebar).

5. When control torque of a steady circular turn is released, the first motion is a further turn
towards the side of the lean.

Recall that this is only one necessary condition. For stability we also need B,C,D,X > 0.

More about the E coefficient: the capsize speed
For self-stability we have the necessary condition that

E = E0 + E2v
2 = det(K) = det(gK0 + v2K2) > 0. (5.7)

For an understanding of ‘capsize’ (defined below) we would like to consider when this inequality
is met or not. For the general Whipple model (Figure 3.1), as described in Meijaard et al. [6], E0

and E2 are

E0 = −g2SA(mTzT sinλs + SA),

E2 = g cosλs(SFmTzT sinλs + (SF + SR)SA)/w. (5.8)

The terms in (5.8) are the acceleration of gravity g, the total mass mT, the height of the total mass
zT (negative, with the z-axis down, located at the rear wheel contact), the steer axis tilt λs, the
front and rear gyrostatic constants SF = IFyy/rF and SR = IRyy/rR, the front and rear wheel mass
moments of inertia about the hub axis IFyy and IRyy, the front and rear wheel radii rF and rR,
the wheelbase w, a frequently appearing static moment term SA = mAuA + µmTxT, with front
assembly mass mA, the perpendicular distance that the center of mass of the front assembly is in
front of the steer axis uA, the horizontal distance of the total mass with respect to the rear contact
point xT, and the dimensionless mechanical trail µ = (c/w) cosλs, where c is the trail.

Interpretation of E0. At zero speed the stiffness matrix K is determined solely by the potential
energy of the bicycle as a function of lean and steer. In the straight ahead configuration the bicycle
cannot be at a potential energy minimum because falling without steering reduces the energy. So
at least one of the eigenvalues of K0 is negative. Thus either

a) K0 is negative definite and both eigenvalues of K0 are negative. Then det(gK0) = gλ′1λ
′
2 =

E0 > 0. In this case the straight-ahead configuration is a potential energy maximum. Or,
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b) K0 is indefinite and the eigenvalues have opposite sign. Then det(gK0) = gλ′1λ
′
2 = E0 < 0.

The potential energy then has a saddle at the straight-ahead configuration and the potential
energy can rise for some steer and lean combinations.

For a typical modern bicycle the potential energy is at a local maximum in the upright straight-
ahead configuration: every combination of leaning and steering lowers the center of mass. For
example, when leaning without steering the whole bike is like an inverted pendulum. And that
steering without leaning lowers the system center of mass can be detected by the tendency for the
steering to flop to one side or the other when a bicycle is held still and upright. In more detail,
for a typical modern bicycle E0 > 0 because |mTzT sinλs| � SA > 0 (and zT < 0). Note that
E0 cannot be positive if the tilt λs is zero because then E0 = −(gSA)2. Allowing design changes,
the magnitude and sign of E0 can be adjusted by altering masses, altering geometry, or adding a
negative spring to the steering.

Interpretation of E2. The expression for E2 has the gyroscopic terms SF and SR as multipliers.
A typical modern bicycle has positive and approximately equal gyroscopic terms, SF > 0 and
SR > 0, and head angle less than 90◦ (λs > 0). Keeping in mind that the above relations involving
zT and SA, normally E2 < 0 (recall that zT < 0).

Considering a wider variety of conceivable designs, the magnitude and sign of E2 can be
changed/adjusted by the addition of counter-rotating wheels or by adjusting the tilt axis λs. One
way to make E2 vanish is if there are no gyroscopic contributions from the wheels. Another way
to make E2 vanish is by reducing the steer axis tilt λs such that

sinλs = −((SF + SR)/SF)(SA/(mTzT)). (5.9)

This is not an explicit formula for the needed steer axis tilt λs because its cosine is part of SA. For
the benchmark bicycle [6], we find such a zero for E2 when λs is close to 2.6 degrees and no other
parameters are changed. It turns out if (5.9) is satisfied then E0 = g2S2

ASR/SF which is necessarily
positive if SR and SF are of the same sign.

Capsize speed. As noted above, for a typical modern bicycle E0 > 0 and E2 < 0 so E =
E0 + E2v

2 changes from positive (allowing the possibility of self-stability, depending on other
coefficients) to negative (self-stability is not possible) as speed increases. The transition speed

v =
√
−E0/E2 (5.10)

is called the ‘capsize speed’. At this speed the steady turn steer torque vanishes [28] and the
characteristic equation (4.1) has one root which is zero. The eigenvector (mode) associated with
this zero eigenvalue is a steady turn (constant φ, constant δ) of arbitrary radius.

Rice [29] noted the change in sign of quasi-static steer stiffness (i.e., the coefficient of δ in
equation (5.2)) namely a ‘control reversal’ at the onset of the capsize instability, and called the
critical speed or the “inversion speed”.

Because both E0 and E2 can have either sign or be zero, there are a number of ways to meet
the necessary stability condition E = E0 + E2v

2 > 0. These are shown in Figure 5.2 below or by
the following enumeration.

E0 > 0, E2 < 0. This is the common situation for modern bicycles: self-stability is only
possible at speeds v below the capsize speed.

E0 < 0, E2 < 0. The potential energy has a saddle, and both the gyro (spin angular momen-
tum) terms and the head angle have their common values: self-stability is impossible.
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E0 > 0, E2 > 0. The potential energy has a local maximum (the usual situation) and the
combination of gyro terms and head angle are negated: self-stability is possible (according
to this one Routh criteria) at all speeds. If the bicycle is stable for some speed, the loss of
stability as speed increases due to E changing sign does not occur. The bicycle might keep
its stability to infinite speed (depending on whether the other critical Routh parameter X
changes sign).

E0 < 0, E2 > 0. The potential energy has a saddle and the combination of gyroscopic terms
and head angle are reversed: self-stability is only possible at speeds v above the capsize
speed.

In situations where the equation E0 + E2v
2 has no real root v, there is no capsize speed. This

occurs if E0 and E2 have the same sign or if E2 = 0. Thus, for example, setting E2 = 0 eliminates
the capsize transition. E2 can be set to zero various ways, for example by eliminating gyro terms
(as in the bicycle in this paper), or by geometric changes.

Note that here we are only considering one of the 5 non-trivial Routh conditions for stability.
Even with E > 0 satisfied there are many ways a bicycle can be unstable. A figure somewhat
analogous to Figure 5.2 but that takes account of all the Routh criteria for the theoretical TMS
bicycle highlighted in this paper, is Figure 7.3 on page 34.

E0

E2v2

Potential
Energy:

local maximumsaddle

v increasing

"negative
gyro"

"usual
 gyro"

E > 0

E < 0
necessarily unstable

E = 0

Figure 5.2: Regions where stability is possible (E > 0) are unshaded. In the shaded regions
stability is impossible. The sign of the E0 term is determined by the mass distribution and the
geometric lay-out. For the right hand plane the potential energy has a local maximum (E0 > 0).
The sign of the E2 “gyro” term is mostly determined by the spin angular momentum of the wheels
but is also affected by other parameters, notably the head angle λs. For the lower half plane the E2

“gyro” term is negative. Common bicycles are often in the lower right quadrant with E > 0 and
E2 < 0. For a given bicycle, increasing the speed v moves E away from the x-axis. For the case
E0 > 0 and E2 < 0 this is shown by the dashed line ‘v increasing’ in the lower right quadrant.
Crossing the E = 0 line occurs at the capsize speed. Thus there is no capsize speed in the upper
right quadrant. In the upper left quadrant an upwards v increasing line could be constructed,
indicating that stability would be possible at sufficiently great speeds. The dependence of E0 and
E2 on parameters is discussed in more detail with regard to the theoretical two-mass-skate (TMS)
bicycle in Chapter 7.
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Chapter 6

Counterexamples: bicycles which are
self-stable or not, despite common lore

There are various ways in which stability can be gained or lost by adjusting one or more of the
25 bicycle parameters in the Whipple bicycle model [6]. In this chapter a number of examples are
given which show that no combination of positive (i.e., forward spinning) gyroscopic action, or
positive trail, or positive steer axis tilt, are either necessary, or sufficient for self-stability over at
least a small range of speeds. The examples are calculated with the help of JBike6 [30], a Matlab
program for performing the bicycle eigenvalue calculation. The usage and output of JBike6 is
explained below.

The nine cases below, seven of which are detailed on the following pages, give the flavor of the
situation.

A) Benchmark bicycle. The benchmark bicycle from Meijaard et al. [6] is not presented again
here. That bicycle is similar to bicycles of common construction including an attached rigid
no-hands rider. It has spin angular momentum in the wheels (gyros) and positive trail. It has
a self-stable speed range from about 4.3 m/s to 6 m/s. By ‘benchmark bicycle’ we mean not
just the model in Meijaard et al. but exactly the particular high-precision parameter values
given in the main example in Meijaard et al.

B) Self-stable with no gyro and negative trail. A bicycle that has negative trail and zero gyro
yet is self-stable. This two-mass-skate (TMS) bicycle is the main topic of the paper. It is
presented in the main text and is described in detail in Chapter 7. It is not repeated here.

1) Benchmark bicycle, unstable with no gyro. The benchmark bicycle entirely loses its sta-
bility if it is only changed by the removal of the wheel gyro terms, confirming the narrowest
interpretation of the conclusion of K&S. This is the first of several examples below based on
making small changes to the benchmark bicycle from Meijaard et al. [6]

2) Benchmark bicycle, unstable with negative trail. The benchmark bicycle entirely loses its
stability if the trail is made negative by displacing the steer axis rearward while leaving the
wheel position and mass locations unchanged. K&S were concerned with gyros, not trail, so
missed that trail is just as important.

3) Benchmark bicycle, with gyro and positive trail but unstable if the mass distribution is
changed. A bicycle that is conventional in that it has positive trail and positive gyro but
is unstable at any speed. One might think that trail and wheel spin angular momentum are
sufficient for self-stability. They are not.

4) Stable with negative trail. Two bicycles based on the benchmark, that are thus more con-
ventional than the TMS bicycle in the main paper, but have negative trail and yet are still
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self-stable at some speeds. This example differs from (2) in that the mass distribution was
also changed. This provides another proof that positive trail is not necessary for self-stability.

5) Stable with negative gyro. A bicycle that is self-stable with negative gyro. This provides
another proof that wheel spin angular momentum is not necessary for self-stability.

6) Stable with steer axis tilt reversed. A bicycle that is self-stable with a steer axis tilted the
reverse of conventional (and also a negative gyro). This proves that the steer axis does not
have to have the conventional (rearward) tilt to achieve self-stability.

7) Stable with rear-wheel steering. A rear-steered bicycle with vertical steer axis that is self-
stable. This proves that rear-wheel steering is not necessarily unstable. It also proves, violat-
ing simpler examples from the literature, that self-stability is possible with a vertical steering
axis.

How to read JBike6 input. A JBike6 [30] Matlab screenshot is shown in Figure 6.3. First we
explain how to read this screen. In the top half the 25 parameters for a bicycle design are specified.
Basically four bodies have to be specified: the rear frame, the front frame and the two wheels.
The interface allows separate descriptions for the rider and the rear rack but combines these with
the rear frame into one rigid body. Likewise the front fork and the front basket are combined into
one rigid body. The wheels are assumed to be axisymmetric so only two mass moments of inertia
need be specified. The other bodies are assumed symmetric about the vertical plane and the mass
moments of inertia are specified by the three principal values and the angle α of the 1-axis with
the x-axis in the xy-plane. The program output is in the bottom half of the screen: on the left is
a sketch of the bicycle to scale, and on the right is a plot of the eigenvalues as a function of the
forward speed. In the bicycle sketch the mass moment of inertia of the wheel is indicated by a
radius of gyration circle (concentric with and inside the outer wheel circle). The mass moments of
inertia for the other rigid bodies are depicted by 6-mass balls lined up in pairs in the three principal
directions. The mass of every ball is 1/6 of the total mass (the circle at the center represents both a
right mass and a left mass hidden behind it). The relative volumes (diameter cubed of the circles
in the front and rear dumbbells) indicate the relative masses of those two assemblies.

How to read JBike6 output. The eigenvalue plot on the right shows the real (dark dots) and
imaginary (light dots) parts of the eigenvalues in the specified forward speed range. Note that
the appearance of two light curves (imaginary components symmetrically positive and negative)
occurs at the speed where two dark curves coalesce. The coalesced dark curve then represents the
real part of the complex pair, and must be negative for stability (in this figure it is positive). The
stable speed range, if it exists, is where all (usually ‘all’ = ‘two reals and one real part of a complex
pair’) dotted dark lines are below zero, and is marked with a thick horizontal bar on the bottom
edge of the graph. This is often between the weave and capsize speeds (see Figure 6.4). The weave
and capsize speeds, as well as any other boundaries of the stable speed range, are shown as vertical
lines (see Figure 6.4). Note that in the benchmark bicycle the front and rear wheels have different
sizes. This size difference is for benchmarking purposes and is not significant for the self-stability
of a bicycle.

JBike6 versus benchmark coordinates. The JBike6 program uses another coordinate system
than the benchmark bicycle paper [6]. In JBike6 the x-axis is forward, the y-axis is up, and the
z-axis is to the right (looking forward). In the bicycle benchmark paper the SAE J670 [31] z-
down convention is used, with the x-axis forward, the z-axis down, and the y-axis to the right
(looking forward). Thus [x, y, z]Benchmark = [x, z,−y]JBike6. In matrix form the transformation from
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the JBike6 coordinate system, denoted by the superscript J, to the benchmark bicycle coordinate
system, denoted by superscript B, is x

y
z

B

=

 1 0 0
0 0 1
0 −1 0

 x
y
z

J

, xB = TxJ, → xJ = TTxB. (6.1)

The mass moments of inertia matrices transform according to a second order tensor and are IJ =
TT IBT and IB = TIJTT , or written out in components

I J
xx = IB

xx, I J
xy = −IB

xz, I J
xz = IB

xy, I J
yy = IB

zz, I J
yz = −IB

yz, I J
zz = IB

yy. (6.2)

Finally, in the JBike6 interface, the mass moments of inertia are specified by the three principal
values (I11, I22, Izz) and the counterclockwise angle α of the 1-axis relative to the x-axis in the
xy-plane, which can be calculated from

I11,22 =
Ixx + Iyy

2
±

√
I2
xy +

(
Ixx − Iyy

2

)2

, and α =
1

2
arctan

(
2Ixy

Ixx − Iyy

)
. (6.3)
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6.1 The benchmark bicycle has no stable region when the gyro
is removed

The benchmark bicycle of Meijaard et al. [6] has a self-stable speed range. This is the first of 3
examples based on this benchmark. In this first example we just eliminate the gyroscopic term by
setting the Izz of the wheels to zero. This calculation is identical in spirit to that done by K&S [11]
in which they eliminated the gyro terms from the parameters given by Whipple. As discussed in [3]
we agree that a bike with Whipple’s parameters loses its stability if the gyro term is removed. As
for the bicycle with the Whipple parameters, the benchmark bicycle also loses its stability if the
gyro terms are removed.
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Figure 6.1: A bicycle of common construction but with the gyroscopic terms eliminated. The
model is based on the benchmark bicycle [6] where the only change that has been made is to
eliminate the spin angular momentum of the wheels. This bicycle is unstable at all forward speeds.
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6.2 The benchmark bicycle has no stable region when the trail
is made negative

In the spirit of the previous example where the stability of the benchmark bicycle was lost by
removing the gyro term, we now manipulate the trail. By making the trail negative (setting the Trail
box to -0.009, effectively, this translates the steering axis while leaving all other mass positions and
wheels centers unchanged) we lose all self-stability. (Note that when starting with Whipple’s own
example parameters instead of the benchmark values, stability is also lost when the trail is set to
zero.)

Benchmark2007 Neg Trail

0
x

y

wheel base trail

0 2 4 6 8 10
-10

-5

0

5

10

forward speed - m/s

R
e(
)

 in
 b

lu
e 

an
d 

Im
(

) 
in

 c
ya

n 
- 

1/
s

S
ta

bl
e 

<
->

 U
ns

ta
bl

e

Figure 6.2: A bicycle of common construction but with the trail altered. The model is based on the
benchmark bicycle [6] where the only change that has been made is making the trail negative by
displacing the steer axis backwards. The self-stability speed range vanishes.
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6.3 Lacks any stable speed range even with positive trail and
positive gyro

Common bicycles have positive trail and positive gyro terms (the wheels spin clockwise as a bi-
cycle moves from left to right in front of you). Here we demonstrate that these two terms are not
sufficient to give self-stability. Our example is based on perturbing the benchmark bicycle [6] by
only changing the x-coordinate of the front fork center of mass from 0.9 m to 0.7 m. The result is
a bicycle that is not self-stable at any speed.

The previous two examples show that the gyro term and trail are necessary to achieve stability
of the benchmark bicycle. Here we show that they are not sufficient to guarantee stability.
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Figure 6.3: A bicycle of common construction with gyroscopic action and positive trail but with
no stable forward speed range. The model is based on the benchmark bicycle [6] where the only
change that has been made is to place the center of mass of the front fork behind the steer axis
instead of in front of it. Clearly the bicycle is unstable at all forward speeds.
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6.4 Conventional bicycle displaying stability even with nega-
tive trail

While the main paper shows a bicycle with negative trail that has self-stability, that bicycle may be
viewed as rather unconventional. The bicycles below have more conventional geometry and mass
distribution but have negative trail while maintaining self-stability for some range of speeds. This
first example is based on increasing front fork mass but not moment of inertia, and increasing the
steer axis tilt.
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Figure 6.4: A bicycle of common construction but with negative trail, which still shows a stable
forward speed range. The model is based on the benchmark bicycle [6] but now with a negative
trail of -0.02 m, an increased steer axis tilt of 25 (= 90− 65) degrees and therefore with the center
of mass of the front assembly more forward of the steer axis. The front frame mass was also
increased. This bicycle still shows a (small) stable forward speed range (between the vertical lines
marking the weave and capsize speeds).
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Next we present a second example, also based on the benchmark bicycle, and stable with
negative trail. In this case the compensating change was the addition of a decentering spring
implemented as a control torque Tδ = −kδ, with k = −10 Nm/rad. Physically such a decentering
spring can be implemented as a tensile spring from the seat post to a point on the handlebars
forward of the steer axis (thus making a toggle-like mechanism). A physical bicycle with negative
trail and such a negative spring was demonstrated by Hand [32]. We do not view this as a control
system compensating for passive instability, but rather as a change in the passive components that
allows negative trail.
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Figure 6.5: A bicycle of common construction but with negative trail, which still shows a stable
forward speed range. The model is based on the benchmark bicycle [6] but now with a negative
trail and a decentering steering spring (Tδ = −kδ, with k = −10 Nm/rad). This bicycle still shows
a (small) stable forward speed range (between the vertical lines marking the weave and capsize
speeds).
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6.5 Stable with negative gyro
The bicycle described in the main paper had an approximately zero gyro term (exactly zero in
theory, approximately zero in physical construction). Here we show that stability is not lost even if
there is a slightly negative gyro term for both wheels (e.g., with the counter-rotating wheels more
massive than the rolling wheels). The JBike6 wheel polar inertia, Izz, is really the spin angular
momentum per unit forward velocity. So a negative polar inertia means that an added counter-
spinning wheel, geared to the rolling wheel, has greater spin angular momentum than the regular
rolling wheel. For this bicycle the Routh coefficients are such that E0 < 0 (meaning that the
potential energy is indefinite) and E2 > 0, the reverse of the situation with a conventional bicycle
(in which E0 > 0 and E2 < 0).
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Figure 6.6: The model is based on the theoretical two-mass-skate (TMS) model from Chapter 7, but
with slightly negative gyroscopic action (e.g., by counter-spinning wheels) and where the center
of mass of the front fork has been lowered to 0.2 m. This bicycle has a large stable forward speed
range.
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6.6 Stable speed range with a reverse tilted steer axis
In addition to the conventional wisdom about the need for positive trail and positive gyroscopic
terms, there is also a conventional wisdom that the head tube of a bicycle must be tipped back (i.e.,
that we need λs > 0). Here we show a bicycle with steer axis tipped forward, λs < 0 (Head angle =
95◦). This shows as the line leaning 5◦ forward in the lower-left portion of the figure. The example
after this one (on rear-wheel steering) demonstrates self-stability when the steering axis is vertical.
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Figure 6.7: A two-mass-skate (TMS) bicycle with negative gyroscopic action, reverse tilted steer
axis, which shows a stable forward speed range. The model is based on the alternative theoretical
two-mass-skate (TMS) model from Chapter 7, which has a reverse tilted steer axis with added
negative gyroscopic action. This bicycle clearly shows a stable forward speed range.
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6.7 Stable with rear wheel steering
Another common thought is that a rear-wheel steered bicycle cannot be self-stable, for example
that a large positive eigenvalue “is inherent in the rear steered configuration” [33]. Note that the
definition of rear-wheeled steering is somewhat problematic because it lacks an objective defini-
tion. The Whipple bicycle has a symmetric definition: there is a rear frame connected to a wheel
and there is a front frame connected to a different wheel. And the two frames are connected by a
hinge. Steering is the control of that hinge angle. If we imagine a sequence of bicycles where more
and more mass is put on the front assembly and where the hinge location is put closer and closer
to the rear wheel, at what point is the bicycle declared to be ‘rear-wheel steering’? With regard to
rear-wheel steering, most people think they’d know it if they saw it [34] because for most vehicles
the hinge is much closer to one wheel than the other and that wheel assembly has much smaller
mass. Our ‘rear-wheel’ steering example is of that nature, not objectively rear-wheel steering, but
rear-wheel steering just as much as conventional bicycles have front wheel steering.

This example also has a vertical head-tube (shown just forward of the steering rear wheel). By
this and the previous example we falsify the plausible conjectures that the steering axis tilt λs must
be positive or at least non-zero.
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Figure 6.8: A bicycle with ‘rear wheel steering’ which shows a stable forward speed range. The
steer axis is just in front of the rear wheel and is vertical. The heavy front assembly has a center of
mass in front of the front wheel. This rear wheel steered design has a stable forward speed range
to the right of the rightmost vertical line, from 3 m/s→∞.
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Part II

DESIGN AND TESTING OF
EXPERIMENTAL BICYCLE
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Chapter 7

Theoretical two-mass-skate (TMS) bicycle

x

z

O w

s

mB

(xB,zB)

mH

(xH,zH)

uH

Figure 7.1: Theoretical two-mass-skate (TMS) bicycle. The wheels are replaced with skates.

The complexity of the full 25-parameter Whipple bicycle model (see Chapter 3) makes it hard
to probe for theoretical insights. We have focused our investigations on a simplified, or so-called
theoretical ‘two-mass-skate’ (TMS) bicycle introduced in Hand [32] and described in various in-
formal writings of Papadopoulos [14]. The theoretical two-mass-skate (TMS) bicycle has zero
trail. It has massless wheels so its dynamics are equivalent to that of a bicycle with ice skates
instead of wheels, see Figure 7.1. The mass distribution of the rear and the front frame are those of
two point masses. An extra point mass can be added exactly at either contact point with no effect
on the lateral balance equations. In our experimental machine, such a mass near the rear contact
was used to keep the bicycle from tipping over forward. The theoretical two-mass-skate (TMS)
bicycle has only 8 non-zero parameters. These are shown in Figure 7.1 and Table 7.1.

For the full Whipple model, entries in the mass, damping and stiffness matrices (M,C1,
K0 and K2 in Eq. (3.1)) are large expressions. For the theoretical two-mass-skate (TMS) bicycle
these matrices are more manageable, taking the form

M =

[
mB zB

2 +mH zH
2 −mH uH zH

−mH uH zH mH uH
2

]
, (7.1)

C1 =

[
0 −(mB xB zB +mH xH zH)/w̄
0 (mH uH xH)/w̄

]
, (7.2)

K0 =

[
mB zB +mH zH −mH uH

−mH uH −mH uH sinλs

]
, (7.3)
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Parameter Symbol Value
Wheel base w 1 m
Steer axis tilt λs 5◦

Rear frame assembly B mass mB 10 kg
Rear frame assembly B center of mass (xB, zB) (1.2,−0.4) m
Front fork and handlebar assembly H mass mH 1 kg
Front fork and handlebar assembly H center of mass (xH, zH) (1.02,−0.2) m

Table 7.1: Parameters and values for a theoretical two-mass-skate (TMS) bicycle. Only non-zero
values are mentioned. The values given are for the ideal target-design of the experiments described
in Chapters 8–11.

K2 =

[
0 −(mB zB +mH zH)/w̄
0 (mH uH)/w̄

]
, (7.4)

where we have introduced new redundant parameters to represent two recurring expressions, the
distance uH = (xH − w) cosλs − zH sinλs of the front mass mH in front of the steer axis, and a
projected wheelbase w̄ = w/ cosλs. Note that the positive z-axis points down from ground level,
so that z-coordinates are all negative. Then the polynomial coefficients of (4.2) and (4.3) from the
characteristic equation become:

A0 = mB mH uH
2 zB

2

B1 = −mB mH uH zB (xB zH − xH zB) /w̄

C0 = −g mH uH
(
mB sinλs zB

2 −mB uH zB +mH sinλs zH
2 +mH uH zH

)
C2 = mB mH uH zB (zB − zH) /w̄

D1 = −g mB mH uH zB (xB − xH) /w̄

D3 = 0 (7.5)
E0 = −g2mH uH (mH (xH − w) cosλs +mB zB sinλs)

E2 = 0

X2 = −g2 (mB
2mH

3 uH
3 zB

2 (zB − zH) (mB sinλs xB
2 zB zH +mB uH xB

2 zB

−mB sinλs xB xH zB
2 −mB uH xB xH zB +mH sinλs xB xH zH

2 +mH uH xB xH zH

−mH sinλs xH
2 zB zH −mH uH xH

2 zB))/w̄2

X4 = g mB
3mH

3 uH
3 zB

3 (xB zH − xH zB) (xB − xH) (zB − zH) /w̄3

X6 = 0 .

Although these expressions are complicated, they are simpler than the expressions for the same
quantities in terms of the full 25-parameter Whipple model. Each of the Routh conditions (see
Eqs. (4.2) & (4.3) in Chapter 4) below is necessary for self-stability. If any are not met the bicycle
is not self-stable. Together they make up a sufficient condition for stability.

A = A0 > 0: A0 is the determinant of the positive semi-definite mass matrix. A0 is positive when
the mass matrix is non-singular. So long as both point masses are positive, the mass matrix
is only singular if there exists a combination of steer and lean motions that don’t move any
mass. [There are two ways this can occur: 1) if the front frame mass mH is on the steer axis
so steering alone does not move any mass; or 2) if the rear frame mass mB is on the contact
line (line from rear contact point to front contact point) so leaning does not move the mass
and also the front mass is off of the steering axis so that a compensating steer can keep the
front mass stationary during this lean.] Thus the condition A0 > 0 is generally met.
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B = B1v > 0: For a forward moving (v > 0) bicycle B1 must be positive. This occurs if a) the
front mass mH is in front of the steer axis (uH > 0) and the rear mass mB is above the line
connecting the rear contact point with the location of the front mass mH, or b) the front mass
mH is behind the steer axis and the rear mass is below the line from the rear contact to the
front mass.

C = C0 + C2v
2 > 0: With increasing forward speed, C will be positive when C2 is positive. This

occurs if a) the front mass mH is in front of the steer axis (uH > 0) and the rear mass mB is
above the front mass, or b) the front mass is behind the steer axis and the rear mass is below
the front mass.

D = D1v +D3v
3 > 0: Since D3 = 0 and v > 0, D is positive if D1 > 0. This occurs if a) the

front mass mH is in front of the steer axis (uH > 0) and the rear-assembly mass mB is in
front of the front-assembly mass mH or b) the front-assembly mass is behind the steer axis
and the rear-assembly mass is behind the front-assembly mass.

E = E0 + E2v
2 > 0: Since E2 = 0, E is positive if E0 > 0. This occurs a) when the front mass

mH is in front of the steer axis (uH > 0), and when the steer axis tilt is larger than a minimal
tilt angle, that is λs > λs,min, with

λs,min = arctan

(
mH(xH − w)

−mBzB

)
, (7.6)

or b) vice versa (uH < 0 and λs < λs,min). The minimal steer axis tilt λs,min is small for a
light front frame mH << mB but can never be zero since uH > 0. Thus (xH−w) > 0. Thus,
a theoretical two-mass-skate (TMS) bicycle with vertical steer axis can never be self-stable.
Steer axis tilt (forward or backward) is necessary. Although plausible as a conjecture, this
result does not hold for more general bicycles (see page 29).

X = X2v
2 +X4v

4 +X6v
6 > 0: Because X6 = 0, with sufficiently great speed, X will become

positive if X4 is positive. This is assured if B1, D1, and C2 are positive. However, the speed
at whichX becomes positive depends of the value ofX2, a term for which we have no simple
physical interpretation.

A numerical example of a theoretical two-mass-skate (TMS) bicycle is given in Table 7.1. The
eigenvalues for this theoretical TMS bicycle are shown in Figure 7.2a and the coefficients of the
characteristic polynomial are shown in Figure 7.2b. The real parts of all eigenvalues are below
zero for the shaded region, for forward speeds of 2.8 m/s < v <∞ (Figure 7.2a).

The theoretical two-mass-skate (TMS) bicycle has zero trail. While trail is positive on common
bicycles, it can be made slightly negative on the TMS bicycle without destroying its stability.
However, to maintain self-stability the steer axis tilt then needs to be increased. One can further
increase the stability by adding some mass moment of inertia to the front frame where one principal
axis is aligned along the steer axis. These are the ingredients for the physical gyro-free stable
bicycle: the experimental two-mass-skate (TMS) bicycle as described in Chapter 8.

Because the final physical design cannot be made of infinitesimal point masses, and the mass
at the rear ground contact can never be located exactly at the rear contact point (it will always be
slightly above), the parameters of the experimental bicycle have to be carefully chosen in order to
preserve stability. All of the experimental bicycle parameters had to be fine-tuned in order to keep
a stable forward speed range which starts at a low enough speed and has enough margin in the
negative real part of the eigenvalues (not too close to zero) to be robust.

Another way to design a stable two-point-mass bicycle is to go through the necessary Routh
conditions A–E and X but not in that order. We start with a wheelbase w, a steer axis tilt λs, and
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Figure 7.2: a) Eigenvalues and b) Characteristic polynomial coefficients A · · ·X . The bars show
the speeds where the coefficients are positive (green) for a theoretical two-mass-skate (TMS) bicy-
cle from Figure 7.1 and Table 7.1 in a forward speed range of 0 ≤ v ≤ 10 m/s. Note that the real
parts of all eigenvalues are negative for v > 2.8 m/s.
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Figure 7.3: a) Allowed location for the front mass mH (shaded areas) for which the two-point-
mass bicycle to be stable when λs > 0; b) the same but now when λs < 0. The shaded regions are
described in the text.
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a location and value for the rear frame mass mB and then find possible locations and values for the
front mass mH. As an example we take the common case of a positive λs, with leaned-back steer,
see Figure 7.3a. First we use the requirement that E0 > 0. E0 is the determinant of the constant
stiffness matrix gK0 which expands to

E0 = det(gK0) = g2(−(mB zB +mH zH)mHuH sinλs −m2
Hu

2
H).

Because all z-coordinates are negative, for E0 > 0, we need at least uH sinλs > 0, and with a
positive λs, this means that uH > 0. In other words, for a leaned-back steer axis the front mass
mH should be in front of the steer axis. Next we apply the condition on the B coefficient, that is,
B1 > 0. Drawing a line from the rear contact point to the rear mass mB, we see that the front mass
mH should be below this line. Then we apply the condition on C, that is, C2 > 0, by drawing a
horizontal line through the rear mass mB, and see that the front mass mH should be below this line.
The next condition is on D, that is, D1 > 0, which means that the front mass mH should be behind
the rear mass mB, and we draw a vertical line through mB. (Note that this makes the condition on
C obsolete.) The result is the shaded area enclosed by four lines in which we can place the front
mass mH. Finally we revisit the condition on E to find restrictions on the magnitude of the front
mass mH. We use the expanded form of E0 from equation (7.5),

E0 = g2mHuH (mH (w − xH) cosλs −mBzB sinλs) ,

and see that E0 > 0 if (w−xH) > 0. In other words, there is no restriction on the magnitude of the
front mass mH when this mass is behind the vertical line through the front contact point within the
triangular-shaped shaded region. But when mH is in front of the vertical through the front contact
point, there is a restriction on the magnitude of the front mass,

mH < mHmax = mB
−zB

(xH − w)
tanλs.

This is in the quadrilateral shaded area next to the triangular-shaped shaded area.
The same approach can now be used but starting from a negative λs, which is a forward leaned

steer axis. This results in the allowed region for mH as shown in Figure 7.3b. Note that in all cases
the front mass is located in such a way that the steering in itself is unstable, or in other words,
the front mass is always above the tilted steer axis, expressed here by the condition uH sinλs > 0.
mHmax is inversely proportional to distance of mH in front of the contact.

Finally, as an example, we generate an alternative theoretical two-mass-skate bicycle based
on the original one from Table 7.1, but now with a forward leaned steer axis, that is λs ⇒ −λs.
These two bicycles are drawn to scale in Figure 7.4 whereas the parameters and eigenvalues for the
alternative design are shown in Table 7.2 and Figure 7.5. Note the striking similarity between the
eigenvalue structure of the original theoretical two-mass-skate bicycle and the alternative design.
We conjecture that by tinkering with the parameters of this alternative design we probably could
get exactly the same eigenvalues as with the original design.This alternative design would have
been easier to build, because the mass of the rear frame is now within the wheelbase (thus not
needing a big mass near the rear contact point). But we had not thought this through at the time of
construction.
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Figure 7.4: a) Original theoretical two-mass-skate (TMS) bicycle from Table 7.1 and b) alternative
theoretical two-mass-skate (TMS) bicycle from Table 7.2. Both are drawn to scale.

Parameter Symbol Value
Wheel base w 1 m
Steer axis tilt λs −5◦

Rear frame assembly B mass mB 10 kg
Rear frame assembly B center of mass (xB, zB) (0.85,−0.2) m
Front fork and handlebar assembly H mass mH 1 kg
Front fork and handlebar assembly H center of mass (xH, zH) (1,−0.4) m

Table 7.2: Parameters for an alternative theoretical two-mass-skate (TMS) bicycle. Only non-zero
values are mentioned.
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Figure 7.5: a) Eigenvalues and b) Characteristic polynomial coefficients A · · ·X (green when pos-
itive) for the alternative theoretical two-mass-skate (TMS) bicycle from Figure 7.4b and Table 7.2
in a forward speed range of 0 ≤ v ≤ 10 m/s. Note that for v > 2.6 m/s the real parts of all
eigenvalues are negative.
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Chapter 8

From theoretical two-mass-skate (TMS)
bicycle to experimental TMS bicycle

To go from the infinitesimal point-mass concepts in the previous chapter to a physical design we
used an iterative design process:

1. Draw a constructible bicycle in a computer aided design package (CAD, SolidWorks)

2. Export the mass, the location of the center of mass and the mass moments of inertia of the
four rigid bodies of the bicycle model from this CAD model into the dynamic model.

3. Investigate how the CAD model might be adjusted such that the dynamic model has not only
a stable forward speed range which starts at a low enough speed but also has enough margin
in the negative real part of the eigenvalues (not too close to zero) to be robust.

4. Return to step 1.

Eventually when a physically realizable and predicted-to-be-stable model was designed in
CAD, a striking similarity between the eigenvalues of the theoretical two-mass-skate (TMS) bicy-
cle, Figure 7.2a, and the final design of the experimental TMS bicycle, in the main paper Figure 3A,
was apparent.

This bicycle was then produced and all 188 parts (not counting the balls in a bearing as
separate parts) – that’s what it takes to connect 6 rigid objects (two wheels, two frames and
two counterspinning wheels) with 5 hinges! – were weighed individually and in subassemblies.
Parts/subassemblies weighing less than 10 g were weighed to an accuracy of 0.01 g, those up to 2
kg with an accuracy of 1 g and for the assemblies up to 5 kg with an accuracy of 2 g.

Independently the parts were described in a SolidWorks CAD model. The CAD program then
calculated the moments of inertia and locations of centers of mass for use in the dynamics model.
The total mass predicted by the CAD model differed from the measured 8837 g by less than one
gram. The geometry parameters like wheelbase, steer axis tilt and location of the point masses
were measured with standard mechanical hardware. A special procedure was used to measure
the small negative trail, see Video 3: Measuring Trail. The parameters of the experimental TMS
bicycle are shown in Table 8.1. In Table 8.2 the mass distribution across the front and rear frames
is shown for the experimental TMS bicycle.
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Parameter Symbol Value for benchmark
Wheel base w 0.750 m
Trail c -0.004 m
Steer axis tilt λs 7◦

(90◦ − head angle) (90◦ − 83◦)
Gravity constant g 9.81 N/kg
Forward speed v various m/s

Rear wheel R
Radius rR 0.050 m
Mass mR 0 kg
Effective spin inertia IRyy 1.8 · 10−5 kgm2

Rear Body and frame assembly B
Position center of mass (xB, zB) (0.5044,−0.4279) m
Mass mB 6.425 kg

Mass moments of inertia

 IBxx 0 IBxz
0 IByy 0
IBxz 0 IBzz

  0.875295 0 1.18665
0 2.59262 0

1.18665 0 1.73573

 kgm2

Front Handlebar and fork assembly H
Position center of mass (xH, zH) (0.7338,−0.3022) m
Mass mH 2.412 kg

Mass moments of inertia

 IHxx 0 IHxz
0 IHyy 0

IHxz 0 IHzz

  0.038384 0 −0.00055657
0 0.038071 0

−0.00055657 0 0.00143206

kgm2

Front wheel F
Radius rF 0.050 m
Mass mF 0 kg
Effective spin inertia IFyy 1.8 · 10−5 kgm2

Table 8.1: Parameters of the experimental two-mass-skate (TMS) bicycle (shown in Figure 2A of
the main paper).

Part Mass [g]
Wheels
Rotating 174
Counter rotating 168
Total 342
Rear frame
Point mass at front 2197
Point mass at rear contact point 2013
Supporting construction 1873
Wheels 342
Total 6425
Front frame
Point mass 1452
Supporting contruction 618
Wheels 342
Total 2412
Total bicycle 8837

Table 8.2: Mass distribution of the experimental two-mass-skate (TMS) bicycle.
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Chapter 9

Experimental two-mass-skate (TMS) bicycle
construction

A photograph of the experimental TMS bicycle is shown in Figure 9.1 together with the nomencla-
ture of the different frame parts. Here we explain some of the design choices. Based on the theory
described earlier, the design we pursued has mass extending forward and above the front wheel
contact. For ease of construction we gave our model a smaller wheel-base than a conventional
bicycle, 0.75 m. To make non-gyroscopic wheels we added counter-rotating wheels [9, 10]. The
final total mass is 8.837 kg.

The ‘point’ masses from the theoretical TMS bicycle model were made, for the experimental
machine, of 50 mm diameter lead rods. One 1.45 kg cylinder of lead was placed 35 mm in front
of and parallel to the steer axis with its center of mass 387.5 mm above the ground. Two lead
cylinders, each of mass 1 kg, were each attached 100 mm above the ground to each side of the
rear frame at the same longitudinal position as the rear contact point. Two 1 kg lead cylinders
were connected to the carbon upper frame tube via a bracket and threaded rod 1.15 m in front
and 0.90 m above the rear wheel contact point. The threaded rod allows for the compensation of
miss-alignments during the assembly of the bicycle: by adjusting the mass positions to get the net
center of mass in the bicycle mid-plane.

A parameter study of the location of the 2-kg mass on the front of the rear frame indicated that
the fore aft position is less critical than the vertical position of the mass. Therefore a 1400 mm long
upper frame tube, originating at the rear wheels is used as frame member allowing for the shal-
lowest orientation of the beam (see Figure 9.1). On the one hand, the dynamic calculations show
that stability depends on the rear frame having low inertia, on the other hand the lead cylinders
require a sturdy support to ensure that no large parasitic vibrations occur. For this reason a 30 mm
diameter, 1.5 mm thick carbon fiber composite tube was used for the frame material (for both the
upper tube and the support tube). To further increase the ability to adjust the location of the rear
frame front mass (in case the machine would not work as expected) two extra holes were drilled in
the lower rear frame member (a square cross section - 30× 30× 1.5 mm aluminum tubing), one to
each side of the calculated position such that the lower end of the carbon fiber composite support
tube could be placed over each of the three holes, thereby enabling the forward end of the upper
frame tube to be raised or lowered by 5 cm.

The carbon tubes are connected to the aluminum lower frame by aluminum insert-brackets.
The bracket-half of the insert-bracket is bolted to the the aluminum frame by a single 8 mm bolt,
whilst the insert half is glued (two-component epoxy) to the inside of the carbon tube. A jig was
used to align the brackets and carbon tubes during the gluing process ensuring frame symmetry.
The brackets used to connect the upper shaft with the support shaft were produced using the wire
electric discharging machining (EDM) method.

A crucial part of the construction of the bicycle is the‘head bearing’ required for steering. This
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Figure 9.1: left) Overview of the experimental two-mass-skate bicycle, with (A) 2 kg rear frame
forward point mass, (B) 2 kg point mass at the rear contact point, (C) Point mass front frame, (D)
Rear frame upper tube, (E) Rear frame support tube (F) Lower rear frame member. right) Front
view of the experimental two-mass-skate bicycle.
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Figure 9.2: left) Side view of the front assembly of the experimental TMS bicycle. right) Front
frame and steering head cross-section. (A) Rear frame head bracket, (B) Front frame head bracket,
(C) Dowel with threaded ends, (D) Bearings, (E) Glued bearing spacer, (F) Spacer, (G) Washer,
(H) Nuts.

’head bearing’ enables relative rotations between the front frame and rear frame. Its construction
details are shown Figure 9.2. We required both minimal play and minimal friction in this joint.
Two small, 4 mm inner diameter, open single row deep groove ball bearings (D) were aligned by
boring a hole straight through the aluminum head material (A) such that a bearing could be inserted
from the top and bottom of the hole. To prevent the bearings from displacing axially, a cylinder
(E), of which the outer surface was glued to the bored head, was placed between the two bearings
(D). For a play-free connection between the front frame and rear frame a dowel (C) with thread on
both ends was used as the axle through the bearings (D). Furthermore the two holes in the front
frame head-bracket (B) were bored in one motion to ensure alignment. The gap between either side
of the front frame head-bracket and the bearings was filled with a single spacer custom made to
size (F). The dowel (C) was then clamped in place by nuts (H) tightened at both ends. Using small
bearings (D) ensures that the arm about which the friction occurs is only roughly 4 mm, therefore
minimal steering torque is required to overcome the bearing friction. As the bicycle is intended to
be used only on a smooth level surface, and without a rider, the axial loads on the small bearings
remain within the bearing specifications.

To achieve zero gyroscopic effect, without being restricted to ice skating rinks, the bicycle
was designed with two extra wheels that counter-rotate, one relative to the front wheel and the
other relative to the rear wheel [9, 10]. The addition of counter-rotating wheels eliminates the net
gyroscopic effect. In the computer model, the mass properties of the set of rotating and counter-
rotating wheels contribute to the masses and moments of inertia of the front and rear frame.

An important design parameter is the mass moment of inertia of the front frame about the
steering axis. For self-stability this should not be too large. Therefore the counter rotating wheels
had to be placed approximately in line with the steering axis. However to counteract the offset of
the front frame head bracket the counter rotating wheel was placed slightly more aft as can be seen
in Figure 9.2a.

A major concern was the wheel-to-ground contact. In the model, point contact is assumed.
For conventional-size bicycle wheels with high-pressure pneumatic tires this has been shown to
be reasonably accurate [7]. However, this model has small wheels. Initially 100 mm diameter
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Figure 9.3: Two different types of 100 mm diameter wheels used, left: a polyurethane “inline
skate” wheel, which didn’t work, and right: the sharp aluminum wheel, with a crown radius of 2
mm, that was used in the experiments presented.

polyurethane wheels (sold for use on inline skates) were used (see Figure 9.3). However, with
these polyurethane wheels rolling on a rubber gym floor, the experimental TMS bicycle showed no
self stability. We conjecture that the large contact patch introduced a too large scrubbing torque,
thereby destroying the steering dynamics. We then tried aluminum (7075-T6) wheels of 100 mm
diameter, with holes drilled through to reduce the mass, see Figure 9.3. These wheels have a 2
mm crown radius shape. With these sharp hard wheels on a rubber gym floor the experimental
machine did show self-stability. A defect of this design, which we never improved upon, is the low
coefficient of friction between aluminum and the rubber floor. Our experiments were thus limited
to small lean angles. At larger lean angles the wheels would slip laterally and cause a low-side fall.

To keep the counter-rotating wheel rotating at the same speed as the ground-contact wheel,
a groove was turned into the wheel tread of the counter-rotating-wheel and a rubber O-ring was
placed in this groove, thereby making the total outer diameter of the counter-rotating-wheel 100
mm once more. This rubber O-ring increased the coefficient of friction between the counter-
rotating and rotating wheel.

Slotted holes in the two fork plates (both front and rear) allow the counter-rotating wheels to be
displaced. By tightening the axle bolt the counter rotating wheel can be fixed in place with some
pressure between the two wheels, thereby preventing slip between the wheels.

How well have we canceled the gyroscopic effects? A rough measure of the size of the gyro-
scopic effect of the wheels is

Cang =
spin angular momentum of a wheel

(mass of bicycle)·(speed of bicycle)·(height of bicycle)
(9.1)

=
Jωwheel

mbicyclevh
=
Jv/rwheel

mbicyclevh
=

J

mbicyclehrwheel
(9.2)

For a normal riderless bicycle Cang ≈ 0.02 and for our bicycle, before adding the counter-rotating
wheels, Cang ≈ 0.0008. The counter-rotating wheels further reduce 90 % of even that effect. Why
not 100 %? Because the counter rotating wheels have an aluminum groove cut out and an O-ring
placed in the groove that is 6 g lighter. This makes the counter-rotating wheel only have 90 % of
the rotary inertia of the rolling wheel. Thus our small light wheel has about 5 % the gyroscopic
contribution of a normal bicycle wheel and 90 % of that is cancelled. In total our bicycle thus has
about 0.5 % (one part in 200) the gyroscopic effect of a normal bicycle. At 99.5 % gyro-free, we
feel comfortable saying ‘no-gyro’. This could have been easily reduced to zero or less, had we
thought-through before-hand that rubber O-rings have a lower density than aluminium.
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Chapter 10

Experimental procedure and results

When the experimental TMS bicycle had been refined to show self-stability, at least some times,
and could even be perturbed laterally without falling over, we wanted to know whether the motion
was close to that predicted by the dynamic model. However, we did not want the measuring system
to substantially change the mass distribution. Since mass near the rear-wheel contact point has little
effect on dynamics, a wireless transmitting inertial sensor was mounted just above the rear wheel
for measuring the bicycle lean and yaw. The forward speed was measured post-facto by using
a high speed video camera and counting the number of frames for a fixed number of rear-wheel
rotations. The wireless inertial sensor (Philips Pi-Node) measured 3-D orientation, rate of turn and
acceleration.

Here are some more details about the measurements.

Forward Speed: Half of the Aluminum rear wheel was covered with black tape. A Casio Exilim
EX-F1 digital photo camera was placed facing nearly perpendicular to the direction of the bi-
cycle and used to video the motion of the bicycle with a frame rate of 300 frames per second.
The launch speed of the bicycle was calculated by counting the number of frames (nframes)
required for the wheel to make three complete rotations as in v = (3π 0.1)/(nframes/300)
m/s.

Lean and Yaw: A Philips Pi-Node, a wireless transmitting inertial sensor that uses 3-D accelerom-
eters and 3-D magnetometers to provide drift free orientation data and 3 gyroscopes to track
fast changes in orientation, was used. The sensor has a wireless transmitting range of 100
m. The Pi-Node upper acceleration limit is 2 g. The small amplitude, but high frequency
vibrations due to the road unevenness can cause this limit to be reached, which degrades the
signal. The sensor was thus taped to padding that in turn was taped on the rear frame near
the rear wheel. This padding attenuated the transmission of high-frequency small amplitude
vibrations to the accelerometer.

Each experiment was carried out in a gym with a rubber-like floor by two experimenters. The
first experimenter worked with the bicycle, the second operated the measurement laptop computer
to start and stop the data recording and operated the high-speed video camera. An experimental
run starts when the collection of data on the laptop computer has started and the high speed camera
is running.

The handlebars of the bicycle are initially held in the straight ahead position whilst the bicycle
is brought up to speed by pushing it along in a straight line. The experimenter releases the bicycle
when the bicycle feels stable. The experimenter then continues running alongside the bicycle until
the lateral motions of the bicycle have mostly died out and the bicycle moves in a straight line.
This is the start of the measurement. Next the bicycle is perturbed laterally by striking it (applying
an impulse) on the upper (carbon fiber) frame tube, instantly giving the rear frame a lean rate.
The experimenter now follows the bicycle and catches it just before it either collides with another
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object (gym wall) or falls over due to the reduced speed. The bicycle is then returned to the initial
location in preparation for the start of the next run. A video of such an experiment can be seen in
the second run from Video 1: The Experiment.

For comparison of the experimental results with the model, first the matrix coefficients for the
linearized equations of motion (3.1) were determined with the parameter values from Table 8.1
resulting in

M =

[
2.310172 0.006029
0.006029 0.002974

]
, C1 =

[
0 4.093917
0 0.027376

]
,

K0 =

[
−3.477968 −0.033536
−0.033536 −0.004099

]
, K2 =

[
0 4.602036
0 0.044374

]
.

(10.1)

The theoretical transient response of the rear frame lean angle φ and the steer angle δ were then
calculated from the linearized equations of motion (3.1). The yaw angle of the rear frame, ψ, is a
so-called ignorable coordinate and does not show up in the equations of motion. This yaw angle
can be calculated from the kinematic equation,

ψ̇ =
v

w
cos(λs) δ +

c

w
cos(λs) δ̇, (10.2)

which, with substitution of the bicycle parameters from Table 8.1, is

ψ̇ = 1.3234 v δ − 0.0052936 δ̇. (10.3)

For the initial conditions we take the upright configuration, φ0 = 0, straight ahead, δ0 = 0. We
assume that the initial steer rate is zero, δ̇0 = 0. The initial lean rate, φ̇0, is now the only remaining
parameter. This initial condition is determined from a best fit of the measured lean rate to the
simulated one. The results, the measured and simulated lean and yaw rate of the rear frame, are
shown in the main paper in Figure 3B.
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Chapter 11

The experiment, general observations and
experiences

Physical experiments are performed in the real world, in non-ideal situations. Therefore it was
envisioned that some sort of damping would be required in the wheels to compensate for the
vertical unevenness of the floor and the first version of the experimental machine had 100 mm
diameter polyurethane inline-skate wheels (Figure 9.3). However the bicycle fitted with these
wheels seemed to have ‘locked steering’, presumably because of the high friction in the contact
patch.

The aluminum knife-edged wheels were installed to reduce the large scrubbing torque. How-
ever, with the aluminum wheels we found performance differences that were floor dependent. The
very hard wooden sports hall floors had the drawback that the surface was not continuous. The
transition from one plank to the next destabilized the bicycle, occasionally tipping the bicycle or
causing it to shift. The slightly softer, continuous, linoleum floor did not have the drawback of the
transitions, but the coefficient of friction between the aluminum wheel and linoleum floor was so
small that the smallest lateral perturbation caused the front wheel to slip away, making the bicy-
cle fall over. The Delft University of Technology’s sports center has two large sports halls with a
rubber floor. The coefficient of friction between the rubber floors and the aluminum wheels were
significantly larger than between the harder wooden and linoleum floors and the wheels. However
sports hall number 1 has a relatively thick and soft rubber floor which significantly deforms under
the bicycle wheels. The damping of this floor was so large that the bicycle reduced speed too fast
to get a chance to see self-stability. The floor of sports hall number 2 was made of a thinner layer
of rubber, which showed far less damping, allowing the experiments to be carried out success-
fully. The rolling resistance coefficient Cr = Fr/(mg) of the wheels on the sports hall floor was
calculated from the recorded video material by determining the average deceleration during the
measurements. The result, Cr = 0.06, indicates that the rolling resistance is about 10 times larger
than that for conventional bicycle tires on hard pavement [35]. In summary, the wheel contact
was surely far from point contact and the results are sensitive to the contact conditions. That the
physical model, when it worked, corresponded well in behavior to the theoretical model could be
partly fortuitous.

Lateral symmetry turned out to be a delicate issue. Because of damage and misalignments
that occurred during falls, and because of padding added to prevent damaging the gym floor in
the event of a fall, the bicycle was not perfectly symmetrical. We found that any small lateral
symmetry offset had a large effect on the resulting stable path. A slight imbalance led to a circular
path. Adjustment of the lateral position of the front masses (recall the threaded rod holding the
rear frame front masses) could restore the symmetry and change the stable path back to a straight
one.

Another issue is a high frequency steering oscillation that appears when the bicycle is brought
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up to speed. This steering motion can clearly be seen in slow motion in Video 4, Slow Motion
Experiment. This small amplitude oscillation has a frequency of roughly 20 Hertz. When the
bicycle was not self stable (locked steering, polyurethane wheels, etc.) then these high frequency
steering oscillation were not present.

It was not directly clear what the cause of this oscillation was so we carried out a number of tests
to determine its origin. We noticed that the oscillations occur on all the floors we experimented on,
and the phenomena always started at roughly walking speed. From the high speed videos that we
made we determined that the oscillations have roughly the same frequency on all surfaces, about
20 Hz. The amplitude is also roughly similar (we did not measure it) on all surfaces we tested
on and always settles into a limit cycle. This suggested that the cause of the oscillations could
be front wheel shimmy. To investigate this we started by investigating the effect of adjusting the
play about the head bearing by adjusting the nuts (H) on the dowel (C) in Figure 9.2. When the
tension was decreased (play occurs in the head), no significant change was noted in the situation.
However when the tension was increased and (any play remaining was removed) a small amount of
pretension was placed on the head bearing, not only did the self stability of the bicycle disappear,
but so did the high frequency steering oscillation indicating that it is indeed a shimmy phenomenon.

To be certain that the phenomenon really was shimmy we investigated further. Firstly we tried
pressing down hard on the frame whilst pushing it along. This did not change the situation, the
vibrations continued. Next we investigated the effect of the interaction between the rotating and
counter-rotating wheel. First we firmly pressed the counter rotating wheel against the rotating
wheel. This was done to be absolutely sure that the wheels were not slipping relative to one and
other, this also made no difference to the shimmy, but did cause the bicycle to decelerate drastically.
Next to be sure that any angle offset between the rotating and counter-rotating wheels causing
gyroscopic steering torque was not the cause, the counter-rotating wheel was lifted slightly such
that it no longer made contact with the rotating wheel so that the counter-rotating wheel no longer
rotated, leaving just the ordinary situation with one rotating wheel. This made no difference to the
shimmy either. Completely removing the counter-rotating wheel all together did not significantly
improve the situation either. The final modification (with respect to the standard situation where
both wheels were installed and the machine had straight ahead, upright, stability) that was tried
was to drastically adjust the front frame’s mass and inertia. We did this by removing the front
frame point mass (C in Figure 9.1). This drastically changed the steering characteristics of the
bicycle, which no longer showed any steering tendency and of course no self-stability, but it also
completely removed the steering vibration. Thus we conclude that this high frequency oscillation
is indeed shimmy and in this case of little influence on the global dynamics of the bicycle.

A final intriguing aspect that we noticed through investigating the recorded orientation data,
was that directly after the perturbation the bicycle shows a yawing motion in the opposite direction
(see in the main paper Figure 3B). Initially the sensor readings were doubted. However, in some of
our videos the camera was positioned behind the bicycle on a skateboard that followed the bicycle
from behind. This video showed that when the bicycle is struck to the left (at a high point on the
frame) it starts to lean to the left, as expected. Simultaneously, however, the front wheel slips to
the right causing the recording of a sudden yaw to the right, this can be seen in the second run in
Video 1, The Experiment. The bicycle generally quickly recovers from this slip.
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Description of videos

These are Supplementary Online Material (SOM) Videos 1–4. See authors website (on cover of
this text) for links to more and higher-resolution videos and photos.

Screenshot of videos: 1) The Experiment 2) Counter rotating wheels 3) Measure trail 4) Slow
Motion

Video 1 The Experiment. The video Video1BasicExperiment.mp4 shows a typical exper-
imental run. In order to effectively capture the experiment on film many different camera
positions were tried. The main objective was to show that the bicycle once released follows
a straight line. When it is perturbed, it stabilizes and then continues on a straight line in a
new direction. The difficulty was finding a viewing position from where clearly can be seen
that the bicycle actually goes through these three stages. Multiple fixed positions were tried,
with both zoom and panning motions, however the most effective camera position turned out
to be mobile, on a skateboard that closely followed the bicycle. One person carried out the
experiment with the bicycle, the cameraman stood on the skateboard and only concentrated
on filming the bicycle while a the third person pushed the cameraman forward and ensured
that the distance between the bicycle and camera stayed roughly constant.

Video 2 Counter rotating wheels. The video Video2CounterSpinningWheels.mp4 demon-
strates the working of the front counter rotating wheel when the front wheel is rotated.

Video 3 Measuring trail. The video Video3MeasuringTrail.mp4 shows how the small neg-
ative trail on the experimental two-mass-skate (TMS) bicycle is measured. A piece of paper
is placed underneath the front wheel and stuck to the ground with tape. The front wheel is
lowered and now touches the paper. The rear frame of the bicycle is clamped to prevent it
from moving. The handlebars are then turned either way a number of times and the wheel
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marks the paper. The bicycle is removed from the clamp and the mark on the paper is exam-
ined. The mark follows an arc, a line is drawn tangentially to either end of the mark. The
point where the two lines cross indicates the point about which the wheel rotates. Next the
arc traversed by the middle of the contact ‘point’ is drawn on the paper. The distance from
the center point to the arc is approximately the trail. When we measured the trail this way it
turned out to be −4 mm, that is, the contact point is 4 mm ahead of the intersection of the
steer axis with the ground.

Video 4 Slow motion experiment The video Video4SlowMotion.mp4 is a high speed video
(300 fps) of one of the experiments where we measured the lateral motions with a wireless
inertial sensor (Philips Pi-Node) and forward speed by post-facto counting frames.
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[10] K. J. Åström, R. E. Klein, and A. Lennartsson. Bicycle dynamics and control. IEEE Control
Systems Magazine, 25(4):26–47, 2005.
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leurs applications aux arts et à l’industrie, pages 353–355, 1892.

[18] F. G. Maunsell. Why does a bicycle keep upright? Mathematical Gazette, 30(291):195–199,
1946.

[19] M. Cook. It takes two neurons to ride a bicycle. Demonstration at NIPS, 4, 2004.
[20] A. van Lunteren and H. G. Stassen. On the variance of the bicycle rider’s behavior. In

Proceedings of the 6th Annual Conference on Manual Control, April 1970.
[21] D. H. Weir. Motorcycle Handling Dynamics and Rider Control and the Effect of Design

Configuration on Response and Performance. PhD thesis, University of California, LA, 1972.
[22] A. J. R. Doyle. The essential human contribution to bicycle riding. In J. Patrick and K. Dun-

can, editors, Training, human decision making, and control, pages 351–370. North Holland,
1988.

[23] M.W. Spong. The swing up control problem for the acrobot. IEEE Control Systems Magazine,
15(1):49–55, 1995.

[24] W. H. Laubach. Velocipede, January 1869.
[25] Don Pardo, private communication, 2010.
[26] M. Hubbard. Lateral dynamics and stability of the skateboard. Journal of Applied Mechanics,

46:931–936, 1979.
[27] C. J. Cornelius. Rear-steering recumbent bicycles. Human Power, 8(2):6, 1990.
[28] J. W. Zellner and D. H. Weir. Development of handling test procedures for motorcycles.

Technical Report 780313, SAE, 1978.
[29] R. Rice. Bicycle dynamics - simplified dynamic stability analyses. Technical Report ZN-

592l-V-2, Calspan, 1976. Prepared for: Schwinn Bicycle Co.
[30] http://ruina.tam.cornell.edu/research/topics/bicycle%5Fmechanics/JBike6%5Fweb%5Ffolder/index.htm.
[31] SAE J670 (R) Vehicle Dynamics Terminology. Technical Report J670, SAE International,

2008.
[32] R. S. Hand. Comparisons and stability analysis of linearized equations of motion for a basic

bicycle model. Master’s thesis, Cornell University, May 1988.
[33] R. Schwarz. Accident avoidance characteristics of unconventional motorcycle configurations.

Technical Report 790258, SAE, 1979.
[34] P. Gewirtz. On “I Know It When I See It”. Yale Law Journal, 105(4), 1996.
[35] D. G. Wilson. Bicycling Science. The MIT Press, 3rd edition, 2004. (with contributions by

J. M. Papadopoulos).

50


	I BICYCLE SELF-STABILITY
	Forces that can right a bicycle
	Both steering angle and steering rate cause lateral acceleration of the support line
	Review of the linearized equations of motion for the bicycle model
	The characteristic polynomial and the Routh stability criteria
	A necessary condition for self-stability: in a steady left turn the torque on the handlebars is to the right
	Counterexamples: bicycles which are self-stable or not, despite common lore

	II DESIGN AND TESTING OF EXPERIMENTAL BICYCLE
	Theoretical two-mass-skate (TMS) bicycle
	From theoretical two-mass-skate (TMS) bicycle to experimental TMS bicycle
	Experimental two-mass-skate (TMS) bicycle construction
	Experimental procedure and results
	The experiment, general observations and experiences
	Description of videos
	References


