
Mathematical Theory of Laminated
Transmission Lines-Part I

By SAMUEJ, P. MORGAN, JR.

A mathematical analysis is given of the low-loss, broad-band, laminated
transmission lines proposed by .4.. M. Clogston, inclwling both idealized
parallel-plane lines and coaxial cables. Part I deals with "Clogston 1"
lines, which have laminated conductors with a dielectric, chosen to provide
the proper phase velocity for waves on the line, filling the space between the

conductors. Part I I will treat lines having an arbitrary fraction of their
total volume filled with laminations and the rest w1:th dielectric, and will be
concernedin particular with "Cloqsum. 2" lines, in which the entire propaga­
tion space is occupied by laminated material.
The electromagnetic problem is first formulated in general terms, and then

specialized to yield detailed results. The major theoretical questions treated
include the determination of the propagation constants and the fields of the
principal mode and the higher modes in laminated transmission lines, the
choice of optimum proportions for these lines, the calculation of the fre­
quency dependence of attenuation due to the finite thickness of the laminae,
the increase in loss caused by improper phase velocity (dielectric mismatch)
in Clogston 1 lines and by nonunijormiu) of the laminated material in
Clogston 2 lines, and the effects of dielectric and magnetic dissipation.
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I. INTRODUCTION

A recent theoretical paper! by A. lVI. Clogston presents the very
interesting discovery that under certain conditions skin effect losses in
the conductors of a transmission line at elevated frequencies can be
much reduced by laminating the conducting surfaces, parallel to the
direction of current flow, with alternate thin layers of conducting and
insulating material. The requirements are that the thickness of each
conducting layer must be considerably smaller than the skin depth in
the conductor, and the phase velocity of waves on the transmission line
must be held very close to a certain critical value, which depends OIl the
relative thicknesses and the electrical properties of the conducting and
insulating layers. Under these conditions the "effective skin depth" of
the laminated surface is greatly increased; in other words, the eddy cur­
rents induced by a high-frequency alternating field will penetrate much
farther into such a laminated structure than into a solid conductor, with
consequent marked reduction of ohmic losses in the metal. The metal
losses can also be made to vary much less with frequency, over a fixed
band, than the ordinary skin effect losses, which are known to be very
nearly proportional to the square root of frequency.
Clogston goes on to show that a laminated material composed of

alternate thin conducting and insulating layers may itself be regarded
as a transmission medium. For example, if the space in a coaxial cable
which is ordinarily occupied by air or other dielectric be filled with a
large number of coaxial cylindrical tubes which are alternately conduct­
ing and insulating, the cable will propagate various transmission modes,
and under the proper circumstances some of these modes will exhibit
lower attenuation constants than the transmission mode in a conven­
tional coaxial cable of the same size at the same frequency.
Experimental verification of Clogston's theory of laminated conductors

has been obtained- at the Bell Telephone Laboratories, and the trans­
mission properties of a line filled with laminated material have also been
measured at these Laboratories and found in reasonable agreement with
theory. However experiments with structures as complex as those pro­
posed by Clogston are by no means simple, and the experimental work
on laminated conductors is still in an early, exploratory stage. Inasmuch
as the experiments arc necessarily time-consuming, it has been thought

1 A. M. Clogston, Proc. Inst, Radio Engrs., 39, 767 (1951), and Bell System Tech.
J., 30, 491 (1951). References will be to the Bell System Technical Journal article,
although except for equation numbers the two papers are identical.

2 H. S. Black, C. O. Mallinckrodt, and S. P. Morgan, Jr., Proc. Inst, Radio
Engrs., 40, p. 902 (1952).
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desirable to carry out simultaneously as complete a theoretical treat­
ment of Clogston-type transmission lines as possible. Clogston's original
paper brought out the fundamental ideas by analysis of idealized trans­
mission lines bounded by infinite parallel planes. The present paper con­
siderably extends the theoretical analysis of parallel-plane systems, and
also treats laminated transmission lines bounded by coaxial circular
cylinders, which are of course the structures of practical engineering
interest.
Part I of this paper deals with both plane and coaxial lines having

laminated conductors and having the space between the conductors filled
with a suitable main dielectric, which may so far as the theory is con­
cerned also be a nonconducting magnetic material. Structures of this
type are called "Clogston 1" transmission lines. Although in principle
the total space may be divided between the main dielectric and the
laminated stacks in any desired ratio, we suppose in Part I that the
width of the main dielectric is several times the total thickness of the
laminations. 'When this is true, the principal mode fields in the main
dielectric are almost identical to the fields of the transverse electro­
mngnetic (TEM) mode between perfectly conducting planes or cylinders.
The phase velocity is controlled by the properties of the main dielectric,
while the attenuation constant is determined by the surface impedances
of the laminated boundaries (and the dissipation, if any, in the main
dielectric). The calculation of thc surface impedance of a laminated plane
or cylindrical stack is reduced, using the generalized impedance concept
developed by Schelkunoff, to the calculation of the input impedance of a
chain of transducers with known impedance elements, the chain also
being terminated in a known impedance. We are thus able to employ the
lunguagc nnd the results of one-dimensional transmission theory to solve
0\11' three-dimensional field problem.
In the remaining sections of Part I we introduce various simplifying

approximations and special assumptions into the general equations in
order to obtain simple and explicit results. We first calculate the propa­
gation constant and the field components of the principal mode under
the assumption that the individual conducting laminae are extremely
thin compared to the skin depth at the operating frequency, and show
that the attenuation constant is substantially independent of frequency
so long as this assumption is valid. We then give formulas for the reduc­
tion of the effective skin depth in the stacks and the consequent increase
of attenuation with frequency when the laminae are of finite thickness.
Xext we investigate the effect of varying the phase velocity of the line
away from the optimum value given by Clogston; and in the last section
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we discuss losses due to imperfect dielectrics and lossy magnetic ma­

terials.
Part II will be largely devoted to transmission lines of the so-called

"Clogston 2" type, in which the entire propagation space is filled with
the laminated medium, though to a lesser extent we shall also consider
transmission lilies having an arbitrary fraction of their total volume
filled with laminations and the rest with dielectric. We shall first derive
expressions for the propagation constant and the fields of the lowest
Clogston 2 mode assuming infinitesimally thin laminae, so that the
attenuation constant is essentially independent of frequency, and then
go on to investigate the transition of the lowest Clogston 1 mode into
the lowest Clogston 2 mode as the space occupied by the main dielectric
is gradually filled with laminations. We shall also discuss the higher
modes which can exist in Clogston 1 and Clogston 2 lines with infinitesi­
mally thin laminae. Next the effect of finite lamina thickness on the
variation of attenuation with frequency in a Clogston 2 will be investi­
gated, and then the important question of the influence of nonuni­
forrnity of the laminated medium on the transmission properties of the
line. We shall conclude with a short section on dielectric and magnetic
losses.
Insofar as possible, plane and coaxial lines will be treated together

throughout the paper. Since however Bessel functions are not so easy
to manipulate as hyperbolic functions, there will be a few cases where
explicit formulas are not yet available for the cylindrical geometry. In
these cases the formulas derived for the parallel-plane geometry usually
provide reasonably good approximations, or if greater accuracy is desired
specific examples may be worked out numerically from the fundamental
equations in cylindrical coordinates.
The purpose of the present paper is to set up a general mathematical

framework for the analysis of laminated transmission lines, and to treat
the major theoretical questions which arise in connection with these
lines. In view of the length of the mathematical analysis, we have not
devoted much spare to numerical examples, although a large number of
specific formulas are given which may be used to calculate the theoretical
performance of almost any Clogston-type line that happens to be of
interest. A considerable part of our work is directed toward evaluating
the effects of deviations from the ideal Clogston structure. Both theoreti­
cal and experimental results suggest that the limitations on the ultimate
applications of the Clogston cable are likely to he imposed by practical
problems of manufacture. These limitations, however, depend upon
engineering questions which we shall not consider here.
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II. WAVE PROPAGATION BETWEEN PLANE AND CYLINDRICAL IMPEDANCE

SHEETS

We shall consider waves in a homogeneous, isotropic medium of
dielectric constant E, permeability p., and conductivity g (rationalized
MKS units). When convenient we shall also describe the medium in
terms of the secondary electromagnetic constants q and 11, defined by

a = Viwp.(g + iWE) , 11 = Viwp./(g + iWE). (1)

The quantity a is called the intrinsic propagation constant and 11 the
intrinsic impedance of the medium.
We begin by considering structures bounded by infinite planes parallel

to the x-z coordinate plane, and we confine our attention to transverse
magnetic waves propagating in the z-direction. We assume that the
only non-vanishing component of magnetic field is Hz , and that all the
fields are independent of x. Then the non-zero field components, written
to indicate their dependence on the spatial coordinates, are Hz(y, z),
Ey(Y, z) and E.(y, z), the time dependence e'w' being understood through­
out. The field components are shown in Fig. 1.
The field vectors are connected by Maxwell's two curl equations, which

reduce in the present case to

iJH,jiJz = (g + iWE)Ey ,

iJHz/iJy = -(g + iWE)E.,

and

If we eliminate E; and E. we get

iJ2Hr / iJy2 + iJ2H r / iJz2 = (lHz ,

(2)

(3)

(4)

where a is the intrinsic propagation constant defined above. It is easy
to see that (4) is satisfied by a wave function of exponential form, say

(5)

provided that the constants K and 'Y are such that

(6)

We may regard K and 'Y as the (possibly complex) propagation constants
in the li: and a-directions respectively. Either may be chosen at will and
the other is then determined by the condition (6). The electric field com-



(7)
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ponents corresponding to any particular H, are easily obtained from
equations (2).
A concept important in what follows is that of wave impedances" at

a point. For a wave whose field components are H:r: , Ey, Ez, the wave
impedances looking in the positive and negative y- and a-directions at a
typical point are defined to be, respectively,

z; = EzIH:r:, Z; = -EyIH:r:,

Z;; = -EzIH:r:, Z; = EyIH:r:.

For waves of the type that we consider, zt and Z;; are functions of
y only, so that if two media having different electrical properties are
separated by the plane y = Yo, the continuity of the tangential compo-

", . // ZCr

',..,

";'".: ..

ZCr
'Fig. I-Transmission line bounded by parallel impedance sheets.

nents of E and H across the boundary can be assured by merely reo
quiring the continuity of z; (say) at y = Yo. This is equivalent to the
requirement that the sum of the impedances zt and Z;; looking into the
media on opposite sides of the boundary be zero. A similar condition
holds for the impedances Z; and Z; at a boundary z = Zo •

As an example of the use of the wave impedance concept, we shall
consider the propagation of a transverse magnetic wave between parallel
impedance sheets

4
which are separated by a distance b. For the moment

nothing is specified about the structure of the sheets except that the
normal surface impedance looking into each is Z(-y), for a wave whose
propagation constant in the z-direction is 'Y. The fact that in general Z
will depend upon 'Y should be noted, since in some cases this dependence

as. A. Schelkunoff , Electromagnetic Waves, D. van Nostrand Co., Inc., New
York, 1943, pp, 249-251. Since in our problem three field components vanish identi­
cally, we need only two of the six impedances which are defined in the general case.

• Reference 3, pp. 484-489.
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is quite important. The sheets are located at y = ±!b,as shown in Fig.

1, and the space between them is filled with a medium whose electrical

constants are eo ,J.LO , go (or 0"0,1/0 , if we wish to use the derived constants).
From the symmetry of the boundary conditions it is evident that for

any particular mode H x must be either an even function or an odd func­

tion of !Jabout the plune y = O. Taking the even case first, we have

where

E%=

'" h -r%---'.- C lO.oy e ,
go +

10.0 I -r%. +. s 1 /(oy e ,
go

" 2 I)

/(0 + '" = 0"0.

(8)

(9)

If we replace go + by 0"01110 and 10.0 by - ",2)\ the boundary con­
dition at y = !b, namely

becomes

1 ( 2 2) lb tanh I ( 2 2) lb2 0"0 - ",an 1 2 0"0 - '"

Similarly, the odd case gives

H" = sh /(o!Jc--r
z
,

(10)

(11)

Ez =
10.0 I -r­

-.....,--;.:-- C 1 lO.o!J e •;
go +

and the boundary condition becomes

(12)

(13)(
2 2) 1 1 ( 2 ") 1 O"ob ()! 0"0 - '" 'b coth 2 0"0 - ",' 'b = - 2- Z v .

1/0

The transcendental equations (11) and (13) are satisfied by the propa­

gation constants of the various even and odd modes; presumably each
has an infinite number of roots, which we could find, at least in principle,
if we knew the explicit form of the function Z(",). 'Ve shall confine our­

selves here to deriving an approximate expression for the propagation
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constant of the principal mode (lowest even mode) when the walls are
very good conductors,
If the walls were perfectly conducting we should have Z(I') = 0,

and the lowest root 1'0 of (11) would be given by

or 1'0 = (To ' (14)

(15)

The principal mode between perfectly conducting sheets is just an un­
disturbed slice of the plane TEM wave which could propagate in an
unbounded medium. If Z(l'o) is not rigorously zero, but still so small that

IuobZ(l'o) I« 1,
I 27/0

and if Z(I') does not vary rapidly with l' in the neighborhood of 1'0,
then the lowest root of (11) is given approximately by

1'2 = + 2uoZ(1'0)/7/ob, (IG)

If Z(l'o) is so small that we have the further inequality

I Z(l'o) 1

2

«1
2 (Tob7/o '

then (16) yields the approximation

l' = 0"0 + Z(l'o)/7iob,

(17)

(18)

where the second term is the first-order change in l' due to the finite
impedance of the walls, If we formally set go = 0 (this does not actually
restrict us to perfect dielectrics since we could still assume Eo or J.Lo to be
complex), we have

a = iwV , 1/ = VJ.Lo/Eo. (1n)

If the medium between the sheets is lossless, the attenuation and phase
constants of the principal mode become

a = Re l' = Re Z(l'o)/7iob,

{3 = Im l' = wVJ.LoEo + Im Zho)/7/ob.

(20)

(21)

Although the fields of the principal mode between perfectly conducting
walls are entirely transverse to the direction of propagation, if the walls
are not perfectly conducting there will also be a small longitudinal com­
ponent E. of electric field associated with this mode, The leading terms
in the expressions for the field components, as obtained from equations
(8), (9), and (16), are
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u, H 01'-':,

e,». -TJoJ{oC--':,

891

(22)

where Ho is an arbitrary amplitude factor.

As an example of the use of (20) and (21), suppose that the impedance

sheets in Fig. 1 are electrically thick metal walls of permeability P-l and
(high) conductivity gl . Then to a verv good approximation at all en­
gineering frequencies and for all ordinary dielectrics between the walls,
the surface impedance is

(23)

(24)

is the skin depth in the metal. We tim" obtain from (20) and (21) the
familiar formulas

a = 1/TJobg1lh ,

{J = wyjJoEo + 1/TJob(Jllh •

(25)

(26)

It should be noted that in practical cases the inequality (17) on which
we based the approximations (20) and (21) does not hold down to the

mathematical limit of zero frequency. In the present paper, however,
when we speak of "low frequencies" we shall mean frequencies still high
enough so that the approximations (20) and (21) for a and (J are valid.
Generally this will be equivalent to the assumption that the attenuation
pel' radian is small. In our applications this assumption will usually be
justi fiecl down to frequencies of the order of a few kc .sec-I.
Xow let us consider t.ransmiseiou lines bounded by coaxial circular

cylinders and confine our attention to circular transverse magnetic waves
propagating in the z-direction. For these waves the fields are inde­

pendent of the angle q" and the only non-vanishing field components are
Hq,(p, z), EAp, z), and Ez(p, z). The field components are shown in Fig. 2.
For circular transverse magnetic fields Maxwell's curl equations in a

homogeneous, isoptropic medium reduce to

aHq,/az = - (0 + iWE)Ep ,

a(pHq,)/ap = (g + iWE)pE.,
(27)



(29)

(28)
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and

aE./ap - aEpjaz = iwp.Hq, ,

from which we can eliminate Ep and E. to obtain

il
a

2

JI.¢+ aaHq, - H.q, + iJ
a

2

H.'" = u2H",.
p: pp p- z:

If we assume a wave traveling in the positive z-direction with propaga­
tion constant ')' and write

Hq,(p, z) = R(p)e-",

we find that (29) becomes

(30)

(31).' (p dR) _ + = 0,
p dp dp P-J

where K is given by (6) as before. But (31) is just the equation satisfied
by modified Bessel functions of order one and argument KP, so

(32)

where A and B arc arbitrary constants. The other field components can
be obtained from H'; using (27); the results are

H.p = [AII(Kp) + BKI (Kp)]e- 1\

Ep
(33}

E, = K. [Alo(Kp) - BKo(Kp)]e-'Y'.
g + ZWE

For cylindrical fields of the type that we are considering, the wave
impedances looking in the positive and negative p- and z-directions at a
typical point me defined to be, respectively,

z; = -E,jH.p,

Z; = E,jII.p I z; = -E/Hq,.
(34)

We shall now discuss the propagation of circular transverse magnetic
waves in a homogeneous region of space whose electrical constants are

, !J.o , go (or 0"0 , '1/0), and which is bounded by coaxial cylinders of radii
PI and P2 , where P2 > PI , as shown in Fig. 2. 'Ye suppose that the radial
impedances looking from the main dielectric into the inner and outer
cylinders ure, respectively,

= Zl(')'), = Z2(')'). (35)
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Then from (33) nud (34) the boundary conditions are

8H3

where

!lop

!lop

A IO(KoPl) - BKo(KoPl)

AI1(KoPI) + BK1(Kopd

Alo(KoP2) - BKo(KOP2)

,HI (KOP2) + BK1(KOP2)

(3li)

KO • I
!lop = - . = 1'/0(1 - ./l(Tii) .+ tWfo

If equations (3!i) are to he satisfied hy values of A and B which are not
both ze1'0 , it is easily shown that a necessary and sufficient condition is

1'/OpKO(KOP1) + ZIh")K1{KOPl)

!lOplo(Kupd - ZI(I')I1(KUP1)

!lOpKO(KOP2) - Z2(I')K1(KOP2)

!lOplo(KOP2) + ,
(38)

and (38) is a transcendental equation for the determination of the propa­
gation constants of all the circular magnetic modes in the coaxial line.
As in the discussion of the parallel-plane line, we shall confine our

attention to the principal mode and shall assume forthwith that the wall
losses are small.' Since for the principal mode we expect that I' will be
nearly equal to 110 , WP may write 1'0 for 110 and evaluate Zl and Z2 at 1'0 ;

and we may replace the modified Bessel functions in (38) by their up-

Fig. 2-Tmnsmission line bounded b.\' coaxial impedance cylinders.

6 J. A. Stratton, Electronuuinetic Theory, McGraw-Hill, New York, 19-t1, pp,
551-554, gives a similar treatment of the principal mode in an ordinary coaxial
cable with solid metal walls.
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(39)-log 0.8905x,

proximate values for small argument. From the series given in Dwight"
813.1, 813.2, 815.1, and 815.2, vote have

Io(x) 1,

I\(x) !:1",

Ko(x) - (0.5772 + log !x)

tc, (.1') + h log 0.8905.1",
.1'

for 1.1' I « 1, where log represents the natural logarithm. If we put
these approximations into (38) and if we suppose that the wall im­
pedances arc so small that

IUOP\ZI('Yo)/21/0 I« 1,

we obtain, after a little algebra,

o 0 0 uo[Zt (1'0) /PI + Z2('Yo) / P2]
Ko = Uo - 'Y' =

- -- 1/0 log(pt/PI)

(40)

(41)

X ow further assuming that

1 Zt('YO)/PI + Z2(I'0)/P2 1

2« 1
8 Uo1/o log (pdPI) ,

we get by the binomial theorem

(42)

(43)'Y =uo + ZI("O)/PI + Z2(I'0)/P2.
21/0 log (pd PI)

If we formally set go = 0, we lind that the attenuation and phase con­
stants of the principal mode in a coaxial line with low-loss walls and no

dissipation in the main dielectric are

ex = Re l' = He ZtC-Yo) / PI + Z2(')'0)/ P'l , (44)
21/0 log (pdPt)

(3 - I - + I ZI(')'O)/PI + Z2(')'0)/P2 (45)
- m ')' - W J.iOEo m 21/0 log (P'l/pd .

As before, these approximations for ex ami {3 will ultimately break down
as the frequency approaches zero, but they will certainly be valid over

the frequency range in which we are interested in the present paper.

6 H. B. Dwight, Tables of Integrals and Other Mathematical Data, Revised Edi­
tion, Macmillan, New York, 1947.We shall refer to Dwight for a number of stand­
ard series expansions.
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(46)

The magnetic field lines of the principal mode will of course be circles
and the electric field will be largely radial, but with a small longitudinal
component unless the wall impedances are rigorously zero. The general
expressions (33) for the fields may be reduced to simple approximate
formulas if we use the fact that is given by (41) and KOP is small com­
pared to unity. The ratio A/B may be obtained from either of equations
(3(j). Introducing the approximations (39) for the Bessel functions and

carrying out a little algebra, we get the following approximate expres­
sions for the fields:

H ,..., I --y.

"''''''2- e ,Trp

u, «>,
_Trp

E ,..., I [ZI ("Yo) I P2 + Z2("Yo) 1 PI] --y.

'. ,..., 2Tr log (pdpI) og p -----p;- og p e ,

where the amplitude factor I is equal to the total current flowing in the
inner cylinder. Incidentally we note that the above results might have

been derived from more elementary arguments if we had started with the
fields in a coaxial line with perfectly conducting walls and treated the
effect of finite wall impedance IlR a small perturbation.
If we consider an ordinary coaxial cable with solid metal walls at a

frequency high enough so that there is a well-developed skin effect on
both conductors, then to a good approximation

(47)

(48)

(49)

where (/1 and 01 me the conductivity and the skin thickness of the metal;
and the attenuation and phase constants are given by the well-known
expressions

l/Pl + 1/P2
a=

27)Og101 log (P2/PI) ,

{3 = wV;;;; + 1/Pl + 1/P2
27)Og101 log (P2/PI)

If necessary we may take aCCO\.Ult of dissipation in the main dielectric
of either a plane or a coaxial transmission line by assigning complex
values' to Eo and J.Io, say

7 See, for example, C. G. Montgomery, Principles of Microwave Circuits, M. I. T.
Ratl. Lnh. Series, 8, McGraw-Hili, New York, 1948, pp. 365--369 and 382-385.
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Eo = - = - i tan f!Jo),

/JO = - = - i tan to),

where tan f/Jo is the dielectric loss tangent and tan to is the magnetic
loss tangent (if any). Inserting (50) into (18) or (43), we find for the at­
tenuation due to dielectric and magnetic losses,

CXd = Re CT = Re iwy (1 - i tan f/Jo) (1 - i tan to)

= (tan f/Jo + tan !"o),

provided that tan f/Jo and tan toare both small compared to unity, as they
will always be in practice. We shall neglect second-order effects and so
regard the dielectric losses, the magnetic losses, and the wall losses as
additive.

III. SURFACE IMPEDANCE OF A LAMINATED BOUNDARY

The main problem in the theory of Clogston 1 transmission lines is the
compu tation of the surface impedance of a laminated plane or cylindrical
boundary having alternate thin layers of conductor and dielectric. Por­
tions of such laminated structures are shown schematically in Figs. 3
and 4. We shall begin with an analysis, similar to Clogston's," of the plane
stack. This will lead to a convenient point of view for the treatment of
the mathematically more complicated coaxial stack.
Let us consider a wave with field components H; .E; ,E. , propagating

• I

...
7711 0-'; 771. lot,

T
Fig. 3-Portion of laminated plane stack.

8 Reference 1, Section III.
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(52)

(53)

in a layer of homogeneous, isotropic material whose electrical constants
are e, p., g (or a, 11), and which is bounded by planes perpendicular to
the y-axis. Henceforth we shall always assume that the z-dependenee of
CVeJ'y field component is given by the factor c-"f', where the complex
quantity -y,whose value mayor may not be known a priori, is the propa­
gation constant of the wave in the z-direction. Then the first of Maxwell's
equations (2) yields

E, = -h/(g + iWf)]H;r,

and on eliminuting E y from the other Maxwell equations, we get

aU,,/ay = -(g + iWf)E z ,

aE./iJy = -[l/(g + iWf)]H" ,

where ,,2 is defined by equation (6).

Now if we formally identify H" with "current" and E z with
"voltage", equations (53) are just the equations of a uniform one-dimen­
sional transmission line extending in the v-direction, with series im­
pedance i/(g + iWE) per unit length and shunt admittance (g + iWE)

per unit length; in other words a transmission line whose propagation
constant is « and whose characteristic impedance is l1Y' where

K = u(l - ...//u
2
)i, 'l/y = K/(g + iWE) = '1/(1 - i/u2)i . (54)

Hence we can apply the whole theory of one-dimensional transmission
lines with the assurance that in so doing we shall not violate the field
equations. For example, if E(O), H(O) and E(t), H(t) represent the
tangential field components E. , H" at two planes separated by a dis-

Fig. -i-Portion of laminated coaxial stack.
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tance t, these fields are related by the general circuit parameter matrix
of a uniform line, namely

(
E(O») = (Ch «i

H(O) sh Kt
711/

7/1/ sh Kt) (E(t») .
ch Kt H(t)

(55)

(56)

We are now in a position to determine the surface impedance normal
to a laminated plane structure composed of layers of which every other
one has thickness t1 and electrical constants 0"1, 7/1, while the inter­
vening layers each have thickness and electrical constants 0"2 I 7]2.

Fig. 3 shows the cross section of such a stack in which the total number
of double layers is n (2n single layers), while Fig. 4 represents the corre­
sponding coaxial stack. Ultimately we shall assume the layers of thickness
t1 to be good conductors and those of thickness t2 to be good insulators,
but these assumptions need not be brought in immediately.
If the fields in the plane stack all vary with z according to e-'Y·, then

when we look in the direction of increasing y each double layer may be
regarded as a four-terminal network formed by two sections of uniform
transmission line of lengths t1 and t2, the propagation constants and
characteristic impedances of the two sections being given respectively by

K1 = 0"1(1 - ·l/ui)\ 1/11/ = 1/1(1 - ·l/
K2 = 0"2(1 - 7/21/ = 7/2(1 -

The matrix of the double layer is the product of the matrices of the two
single layers in the proper order. Thus if the tangential field components
are Eo ,H; at the lower surface of the first layer and E1 , HI at the upper
surface of the second layer, we have

(57)

where

a = ch K1tl ch K2t2 + "111/ sh Kltl sh K2t2 ,

"121/

ill = 7/2/1 ch Kltl sh + 7/11/ sh Klt1 ch K2t2 ,

(58)

5) = 7/2/1sh Kltl sh K2t2 + ch K1t1 ch K2t2 •

Ttll/
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The stack of double layers may be regarded as a chain of iterated four­
poles; such chains have an extensive literature." The relation between
the tangential fields En , H; at the upper surface of the nth double layer
and Eo , Ho at the lower surface of the first double layer is

(59)

where M is the Qffie:D-matrix appearing in equation (57). However there
is a simple expression" for the nth power of a square matrix of order
two, namely

M n = lIf!(n-1l sh nr M _ sh (n - l)r I (60)
sh r sh r '

where I is the unit matrix of order two, r is the propagation constant
per section of the chain of four-poles, defined by

ch r = (Q + D)/2M!, (HI)

and ]I[ is the determinant of the matrix M, that is,

j\1 = aD - <:Be. (fi2)

(H3)
K
2
= -(a - + V(Q+ :0)2 - 4M

2e

The determinant of the matrix whose elements are given by (58) is unity,
as may easily be verified j but this may not be the case for all the matrices
which occur in our study of cylindrical structures. ill will therefore be
carried explicitly in the following equations.
We now introduce the iterative impedances 1(1 and [(2, defined hy

K
1
= (a - + v(a + D)2 - 4M

'

K 1 is the impedance seen when we look into a semi-infinite stack of
double layers if the first layer is of type 1, while K 2 is the impedance seen
if the first layer is of type 2. In calculations relating to Clogston 1 lines
with dissipative walls, the real parts of K 1 and K 2 will both be positive.
By a straightforward procedure we may express the matrix elements
a, CB, e, :D in terms of [(I , K 2 , I', and ill, and then transform equation

9 Sec, for example, E. A. Guilk-min, Communication. Networks, 2, Wiley, New
York, HJ35, pp. WI-lull.

10 F. Abeles, Com.pies licndus, 226, 1872 (HJ-!8). This result was called to the
author's attention by MI'. J. G. Kreer.
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(60) into

M
n
= 2Mtn (HK1enr + K'Jf3-nr)

(KI + K 2) sh »r
(64)

Finally we obtain from (59) and (64) an expression for the impedance
Zo looking into a plane stack of n double layers when the nth layer is
backed by a surface whose impedance is Zn , namely

Z _ Eo _ !Zn(KIenr + K'Jf3-nr) + KIK2 sh nr (65)

o - Ho - Zn sh nr + !(Kle nr + K'Jf3nr)
.

For the cylindrical geometry, matters are a good deal more compli-
cated. If we consider waves having field components H.; , Ep , E. in a
homogeneous, isotropic shell bounded by coaxial cylindrical surfaces,
and assume a propagation factor e-r·, Maxwell's equations (27) and (28)
may be written

and

E; = h/(g + iWE)]H.; , (66)

(67)
iJ(- pH.;)jiJp = - (g + iWE)pEz ,

iJEz/iJp = _[K
2
/ (g + iWE)p] (

If desired, we might identify E. with "voltage" and - with "current"
and regard equations (67) as describing a nonuniform radial transmis­
sian line, having series impedance i/(g + iWE)p per unit length and shunt
admittance (g + iWE)p per unit length. Since, however, in equations (34)
we have already defined the radial wave impedance to be a field ratio
without the extra factor of p, we shall carry out the analysis of the
present paper directly in terms of the field components E. and .
From the general expressions (33) for the fields in cylindrical co­

ordinates, we can show that the matrix relation between the tangential
field components E., at two radii PI and P2 is given by
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where

901

2 2!1](1 - 'YIlT), (69)

and we have used the abbreviations

(70)

It may be verified that the determinant M of the square matrix ap­
pearing in (68) is simply

M=p2/Pl. (71)

In principle equation (68) permits us to determine by matrix multi­
plication the relation between the tangential fields at the inner and outer
surfaces of a coaxial double layer, 01' of a laminated stack of any number
of double layers, such as is shown in Fig, 4. The difficulty is that the
elements of the matrix of a single layer are not functions only of the
electrical properties of the layer and its thickness, but depend in a more
complicated wayan the inner and outer radii separately. Whereas in

the plane case we had merely to take the nth power of a single matrix,
we are now faced with the problem of multiplying together n matrices,
each of which differs more 01' less from all the others. An exact expres­
sion for the result is practically out of the question; but we can make
some reasonable approximations if we assume that each individual layer
is thin compared to its mean radius, so that the matrix elements do not
change much from one layer to the next,
If the thickness t (= P2 - PI) of a single layer is small compared to PI ,

then the Bessel function combinations appearing in (68) may be ex­
panded in series, as shown in Appendix I, and the circuit parameter
matrix takes the following approximate form,

where terms of the order of t/PI represent the first-order curvature cor­
rections. If we use the same value of PI, say p, for both parts of a double
layer, then up to first order the elements of the matrix of the double
layer become
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As in the analogous equations (58) fOI' a plane double layer, the sub­
scripts 1 and 2 refer to the first and second layers respectively.
If we have a stack of double layers in which all the layers of the same

kind have the same thickness and same electrical constants, then the
only term in (73) which varies from one double layer to the next is the
mean radius p. Depending on the circumstances, we may wish to use a
single value of p for the whole stack, or a few different values, or even,
if high-speed computing machinery is available to carry out the matrix
multiplications, a different value of p for each double layer. The matrix
of the whole stack then becomes a product of powers of as many different
matrices as we have chosen values of p. Obviously this method is better
adapted to the numerical analysis of special cases than to the general
theoretical treatment of a stack whose ratio of outer radius to inner
radius is unspecified.
In principle we are now able to compute the normal surface impedance

of any laminated plane or coaxial stack at a given frequency provided
that we know the electrical constants and the thickness of each layer,
the number of layers, the propagation constant 'Y in the z-direction, and
the normal impedance Z.. of the material behind the last layer. Since the
general formulas even for plane stacks are quite complicated, however,
we shall introduce at this point some very good approximations which
will be valid for all of the following work.
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(74)

Henceforth we shall take the layers of thickness t1 to be such good

conductors that the ratio wEd(/1 of displacement current to conduction
current is negligible in comparison with unity. For metals like copper
this is an excellent approximation at even the highest engineering fre­
quencies. Then on introducing the characteristic skin thickness lh , we
have for the conducting layers,

0"1 = ViW}J.I(J1 = (l +
'71 = ViW}J.l/(/1 = (l +

where

= V2/W}J.lgl'

For pure copper the permeability and conductivity are

}J.l = 1.257 X 10-
6
henrys·meter'",

(/1 = 5.800 X 10
7
mhos-meter?",

from which we obtain the numerical values

0"1 = 1.513 X 10
4
(1 + i)V&e meters'",

'71 = 2.609 X 10-4 (1 + i)v1:, ohms,
and

(75)

(76)

(77)

(79)

6.609 X 10-5 2.602
01 = yJ;;. meters = yJ;;. mils, (78)

where fM8 is the frequency in Mc-see'". Referring to equations (56)
and (69) and bearing in mind the above numerical values, we see that
for the conducting layers we have

«: tTl = (1 + i)/Ol,

'71/1 = '7lp '71 = (1 + i)/gI01 ,

to a very good approximation, since in our applications the quantity v
will always be of the order of 2m/A. , where the vacuum wavelength
A. is at least a few meters, while the skin thickness 01 will be at most a
small fraction of a centimeter.

For the insulating layers of thickness t2 we shall set the conductivity
(/2 equal to zero, so that

0'2 = 1/2= (80)

We denote the relative dielectric constant and permeability by E2r and
}J.2r respectively; dissipation in the insulating layers may be included
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if necessary by making E2r and/or 1J.2r complex. In MKS units we have

1J.2 = 1J.2rfJ.. , (81)

where the electrical constants of vacuum are

E. = 8.854 X 10-12 farads' meter"",

fJ.. = 1.257 X 10-5 henrys -meter'".

It follows that

. /-- 2mv';;;:;': 21TifMo-v;;:;. t -1
0"2 = O".V fJ.2r Etr = = 299.8 me ers ,

(82)

(83)

(84)

7]2 = 'l/vv'JJ.2r/E2r = 376.7VJJ.2r/E2r ohms,

where as usual the subscript v refers to vacuum. It is clear that unless
we deal with ferromagnetics, the quantities 0"2 and '1/2 will be of roughly
the same order of magnitude as 0". and '1/ •• From (56) and (69) we have

K2 = 0"2(1 -

2 2!
'l/2y = 'l/2p = '1/2(1 - 'Y /0"2) ,

where since CT2 and 'Yare both of the same order of magnitude as ,

in general no further approximations can be made.
In all of what follows we shall assume that the thickness t2 of each

insulating layer is very small compared to the vacuum wavelength at
the highest operating frequency; in practice t2 will be at most a few mils
and at least a few meters. Then the quantity I K2t2 I. which is of the
order of , will be so small that to an excellent approximation we
may set sh K2t2 = K2t2 and ch K2t2 = 1. Using this simplification, together
with the fact that '1/111 « 'l/2y for all frequencies which may conceivably
be of interest, it is not difficult to show from (58) that the matrix ele­
ments of the plane double layer reduce to

a = ch K1t1,

ill = 'l/2yK2t2 ch K1tl + 7]ly sh Kltl ,

(85)

The determinant of the matrix is unity, and from (61) the propagation
constant per section is defined by
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(86)

(87)

while from (63) the iterative impedances are

K, = - h2yK2t 2 + V (!?12yK2t2F + ?11y?12yK2t 2 coth K1t l + ?1ry J

K 2 = +h2yK2t2 + V (!7I2yK2t2)2 + ?1ly?12yK2t2 coth Klt l + •

If we make the same simplifications in the approximate expressions
(73) for the matrix elements of a coaxial double layer, we obtain

a=

m= [1 + t
l

t
2

J712PK2t2 ch Kltl

+ [1 + + (2 - :::::) sh Klt l J

e

:1)=

(88)

[
tl + 2t2J+ 1 + 213 ch Kltl .

In the' preceding equations no restrictions have been laid on the
thicknesses t1 and (2 except the trivial requirement that 12 shall be small
compared to a wavelength. We shall now consider the limiting case in
which both tl and t2 are infinitesimally small. When we make this last
and most drastic approximation we do not expect that the idealized
structure thus obtained will show all of the features which are of interest
in a physical transmission line with finite layers; but the results of the
simplified analysis will be useful in some cases nevertheless. It need
scarcely be pointed out that we are dealing here only with a mathematical
limiting process, in which we assume that each layer, no matter how
thin, always exhibits the same electrical properties as the hulk material.
If this assumption he regarded as unrealistic, it may be observed that
the quantity which we actunlly allow to tend to zero is the ratio of layer
thickness to skin depth. The skin depth may he made as large as desired
by lowering the frequency, so that the formulas which we derive by
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letting ti and approach zero at a finite frequency will also hold for finite
thicknesses if the frequency is sufficiently low.
We shall let fJ denote the fraction of the stack which is occupied by

conducting material, so that

(89)

(90)

(91)

where at present ti and t2 are both infinitesimal. Then the stack may be
regarded as a homogeneous, anisotropic medium, characterized by an
average dielectric constant E perpendicular to the layers, an average
permeability ji. parallel to the layers, and an average conductivity {j

parallel to the layers. SakuraiII has treated such an artificial anisotropic
medium, and from his formulas we find that when the layers are al­
ternately conductors and insulators, the average electrical constants are,
to a very good approximation,

E = E2/(1 - (}),

ji. = 8Pi + (1 - 8)p2,

g = 8rl1 •

Sakurai has also shown that the average values of the electrical con­
stants may be used in Maxwell's equations for the average (macroscopic)
fields, due regard being paid to the orientations of the field vectors with
respect to the laminae.
For the plane stack, these equations read

ati.jaz =

ati.jay = -ss.,
aEII/az - aE.jay = iWji.tt.,

where the bars denote average values. By analysis exactly similar to that
carried out at the beginning of this section for a homogeneous, isotropic
medium, we may find the relation between the tangential field compo­
nents E. , Hz at the two surfaces of a stack of infinitesimally thin layers.
(The bars representing average values may be omitted, since the tan­
gential components of E and H are continuous across the boundaries of
the layers.) We obtain a matrix relation analogous to (55), namely

(
E(O») = (:h r,
H(O) Kshres

K sh res) (E(S») ,
ch res H(s)

(92)

11 T. Sakurai, J. Phys. Soc. Japan, 6, 394 (1950), especially Section 3.
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(97)

where s is the thickness of the stack. The propagation constant I', per
unit distance normal to the stack and the characteristic impedance K
of the stack are given by

r, = (W
2
jJ.E + i)J, (93)

/( = rely = [ (W
2
jJ.E+ i)Jl. (9·j)

WEg

r t and K may also be derived from equations (86) and (87) by limiting
processes; we have

r t = lim r/(ll + (2), (95)
,.+t:!-O

K = lim K 1 = lim K 2 . (96)
t.+t:!-O t.+t!-+o

It should perhaps be noted that terms of the order of WEllgl and WEdgl

compared to unity were omitted in the expressions (90) for E and y,
and in the derivutious of r t and K. Since, however, under all practical
circumstances the omitted terms appeal' to be insignificant, we shall
not take space to write out the formally more complicated results which
would be obtained by keeping them."
In a cylindrical stack of infinitesimal layers, the average fields satisfy

fJH¢lfJz = -iwEEp,

fJ(pH¢)lfJp = ypEz,

fJEzlfJp - fJEplfJz = iwp.Hq,.

The relation between the tangential field components Ez , - Hq, at two
radii po and Pn is expressed hy a matrix equation analogous to (68),
namely

lZ In Reference 1, equations (II-H) through (II-26) give examples of equations
in which these small terms have been retained.


