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he Internet has provided IS researchers with the opportunity to conduct studies with extremely large sam-

ples, frequently well over 10,000 observations. There are many advantages to large samples, but researchers
using statistical inference must be aware of the p-value problem associated with them. In very large samples,
p-values go quickly to zero, and solely relying on p-values can lead the researcher to claim support for results of
no practical significance. In a survey of large sample IS research, we found that a significant number of papers
rely on a low p-value and the sign of a regression coefficient alone to support their hypotheses. This research
commentary recommends a series of actions the researcher can take to mitigate the p-value problem in large
samples and illustrates them with an example of over 300,000 camera sales on eBay. We believe that addressing
the p-value problem will increase the credibility of large sample IS research as well as provide more insights

for readers.
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Introduction

Advances in technology have brought us the ability
to collect, transfer, and store large data sets. Thanks
to this, a growing number of empirical studies pub-
lished in the information systems and related fields
now rely on very large samples. Some samples include
tens of thousands of observations, for example, Pavlou
and Dimoka (2006, p. 393) use “over 10,000 publicly
available feedback text comments...in eBay”; Overby
and Jap (2009) use 108,333 used vehicles offered in
the wholesale automotive market; Forman et al. (2008)
collected data on...[175,714] reviews from Amazon;
Goldfarb and Lu (2006, p. 248) report “For our anal-
ysis, we have...784,882 [portal visits],” and finally,
Ghose and Yao (2011, p. 270) use “3.7 million records,
encompassing transactions for the Federal Supply Ser-
vice (FSS) of the U.S. Federal government in fiscal year
2000.”

With such large samples, some approaching the
population itself, conclusions based on small-sample
statistical inferences can be ineffective at best and
misleading at worst. In this paper we try to answer
a few important questions that researchers and con-
sumers of large sample studies should be aware of.

These include how do large-sample studies approach
statistical modeling and inference? What are the
advantages of large samples and what are the prob-
lems of using small-sample inference in this realm?
A key issue with applying small-sample statistical
inference to large samples is that even minuscule
effects can become statistically significant. The in-
creased power leads to a dangerous pitfall as well as
to a huge opportunity. The issue is one that statis-
ticians have long been aware of: “the p-value prob-
lem.” Chatfield (1995, p. 70) comments, “The ques-
tion is not whether differences are ‘significant” (they
nearly always are in large samples), but whether they
are interesting. Forget statistical significance, what is
the practical significance of the results?” The increased
power of large samples means that researchers can
detect smaller, subtler, and more complex effects, but
relying on p-values alone can lead to claims of support
for hypotheses of little or no practical significance.
This paper is organized as follows: We start by
explaining how and why p-values quickly approach
zero as sample sizes increase, and discuss the poten-
tial pitfalls when relying solely on p-values and coef-
ficient signs in large-sample studies. Next, we survey
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the IS literature for current practices employed in
large-sample studies. We examine the extent of the
p-value problem as well as identify practices that take
advantage of large samples for improving inference.
We continue by describing practices from other disci-
plines as well as introducing methods for mitigating
the deflated p-value problem. Finally, we discuss
ways to take advantage of large samples.

The p-Value Problem in Large Samples

Statistical inference is based on the notion of the
null hypothesis. Under the null hypothesis, a param-
eter of interest is set to a particular value,' typically
zero, which represents the “no effect” relative to the
effect the researcher is testing for. For example, a
hypothesis of a positive regression coefficient requires
defining the null hypothesis that the coefficient is 0
for “no effect” or negative for the “opposite effect.”
A nondirectional hypothesis requires defining the null
hypothesis that the coefficient is zero. The large sam-
ple challenge arises from representing “no effect” by
a particular number (such as zero); when our esti-
mate becomes so precise, even deviations such as 3E-
052 from the null value are identified as statistically
significant. More formally, p-values that are based
on consistent estimators have the following limiting
behavior under Hy: 8 =0:

. . A 0 if B#0
%1_13)10;7 value_lgr;PﬂB Bl<e)= {1 ifp=0"

In other words, the limiting distribution of the esti-
mator 3 has all its mass on the population param-
eter 8. Hence, unless the population parameter
is exactly equal to the null value with an infinite
number of decimals (in which case the p-value will
approach 1), the p-value will approach 0. Because in
real studies the population parameter is typically not
a round figure, a large sample will yield p-values that
are near zero. The appendix illustrates this property
for a linear regression coefficient.

A p-value measures the distance between the data
and the null hypothesis using an estimate of the
parameter of interest. The distance is typically mea-
sured in units of standard deviations of that estimate
(standard errors). For example, tests for a regression
coefficient B, are based on the distance of B; from
zero in units of standard errors. Consistent estima-
tors have standard errors that shrink as the sample
size increases. With a very large sample, the standard
error becomes extremely small, so that even minuscule
distances between the estimate and the null hypoth-
esis become statistically significant. As Tukey (1991)

! Or a range of values.
2 The result holds for any value k specified in Hy: B =k.

put it, in the context of comparing groups A and
B: “The effects of A and B are always different—in
some decimal place—for any A and B.” Cohen (1990,
p- 1308) says

A little thought reveals a fact widely understood
among statisticians: The null hypothesis, taken liter-
ally (and that’s the only way you can take it in for-
mal hypothesis testing), is always false in the real
world... . If it is false, even to a tiny degree, it must
be the case that a large enough sample will produce a
significant result and lead to its rejection. So if the null
hypothesis is always false, what’s the big deal about
rejecting it?

We are not suggesting that IS researchers aban-
don hypothesis testing altogether; after all, in any
given context, there is no guarantee that we always
have “a large enough sample” to produce statisti-
cally significant results. The foregoing observations
on the null hypothesis are intended to move our
focus from relying solely on statistical significance
to consideration of practical significance and effect
size. In other words, with extremely large samples,
we should go beyond rejecting a null hypothesis
based on the sign of the coefficient (positive or neg-
ative) and the p-value. Rather, researchers should be
cautious in assessing whether the small p-value is
just an artifact of the large sample size, and care-
fully quantify the magnitude and sensitivity of the
effect. In other words, conclusions based on signifi-
cance and sign alone, claiming that the null hypoth-
esis is rejected, are meaningless unless interpreted in
light of the actual magnitude of the effect size.®> The
leap from statistical significance to managerial and
policy implications is therefore not warranted.

In what follows, we conduct a brief survey of how
other fields have tried or are trying to deal with this
problem. We then examine the current practice in our
own field, and propose actionable recommendations
for IS researchers, illustrating them using a large sam-
ple of camera sales on eBay.

The p-Value Problem in Other Fields

Statisticians have long been divided in their views on
using p-values, regardless of sample size. One stream
in statistics rejects the use of hypothesis testing alto-
gether and advocates moving to estimation, where

®With a sufficiently large sample, tests of model assumptions will
tend to indicate a violation even for very small deviations. Com-
mon tests for heteroscedasticity include the Breusch-Pagan and
White tests. The Durbin-Watson is often used to test for serial
correlation. Pairwise correlations are examined for checking mul-
ticollinearity. In these tests, the null hypothesis states that the
assumption is met (no violation).. A researcher relying only on sta-
tistical significance will tend to perform various model and data
modifications to address the assumption violations that may be
unwarranted.
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one reports point estimates and confidence intervals
(Hubbard and Armstrong 2006). Those who are not
opposed to hypothesis testing stress the need to focus
on practical significance rather than statistical signif-
icance. When more complex models are constructed,
marginal analysis can be used for identifying and
illustrating practical magnitude.

In empirical economics, a common practice is to
report confidence intervals, or, depending on the con-
text, to be more conservative and report only one of
its bounds (Cannon and Cipriani 2006, Disdier and
Head 2008, Goolsbee and Guryan 2006). Whereas the
p-value only describes the probability that the null
hypothesis can be rejected given a true effect, the con-
fidence interval (CI) gives a range for the actual mag-
nitude of the parameter of interest. As the sample size
increases, a typical CI will become narrower. In other
words, while the information that p-values convey
does not scale up to large samples, the information
contained in confidence intervals does, as the range
estimate becomes more precise. This property means
that even if the researcher is unsure whether the sam-
ple is too large for using p-values, relying on a CI is
always safe.

Some econometricians have a different suggestion
about ever-decreasing p-values: adjust the threshold
p-value downward as the sample size grows (Greene
2003, Leamer 1978). The argument is that instead of
claiming significance when p < 5%, for instance, with
very large samples the threshold should be 1%, 0.1%,
or even smaller. However, to our knowledge, this
approach has not been used and there have been no
proposed rules of thumb in terms of how such adjust-
ments should be made.

Large-Sample Studies in IS:

A Survey of Current Practice

At a recent seminar at one of our universities,
a researcher presented a paper with nearly 10,000
observations and discussed the regression results
solely on the basis of statistical significance; there was
no mention of effect sizes or caveats relating
to the sample size. This approach appears to be
common practice. We reviewed articles in MIS Quar-
terly (MISQ), Information Systems Research (ISR), and
Management Science (MNSC) between 2004-2010 along
with abstracts from the Workshop on Information
Systems and Economics and symposia on Statistical
Challenges in Electronic Commerce Research to see
to what extent IS researchers recognized the issues
in analyzing large samples.* Our overall conclusion
is that information systems research that is based on
large samples might be overrelying on p-values to
interpret findings.

*Only abstracts are available for the two conference series so we
have more confidence in the results for the two journals.

3
Table 1 Large-Sample Papers (n > 10,000) in Leading IS Journals
and Conferences 2004-2010
Conclusions rely on Total
practical significance reviewed
MISQ Smith and Telang (2009) 4
ISR Ghose et al.(2006),
Forman et al. (2008) 8
MNSC Mithas and Krishnan (2008),
Brynjolfsson et al. (2009),
Dellarocas and Wood (2008), 9
Ghose and Yang (2009),
Yao et al. (2009),
Mithas and Lucas (2010)
Boh et al. (2007)
Forman et al. (2009)
Overby and Jap (2009)
WISE (abstracts) 21 50
SCECR (abstracts) 12 27

In Table 1 we find that about half of the recent
papers with large samples rely almost exclusively on
low p-values and the sign of the coefficient. More
specifically, this percentage is 50% for recent papers
with sample sizes over 10,000 in the two leading
IS journals, MIS Quarterly and Information Systems
Research; and 57% of large-sample papers in two IS
conferences (Workshop on Information Systems and
Economics (WISE) and Statistical Challenges in Elec-
tronic Commerce Research (SCECR)). It is interest-
ing to note that compared to ISR and MISQ, all
reviewed papers in Management Science—a more gen-
eral publication—report practical significance.

In reviewing the literature, we found only a few
mentions of the large-sample issue and its effect
on p-values; we also saw little recognition that
the authors” low p-values might be an artifact of
their large-sample sizes. Authors who recognized the
“large-sample, small p-values” issue addressed it by
one of the following approaches: reducing the signif-
icance level threshold® (which does not really help),
by recomputing the p-value for a small sample (Gefen
and Carmel 2008), or by focusing on practical signif-
icance and commenting about the uselessness of sta-
tistical significance (Mithas and Lucas 2010).

In some cases, authors report confidence intervals
(Dellarocas and Wood 2008, Overby and Jap 2009), and
marginal effects charts appear in a few papers (Moon
and Sproull 2008). Authors of several of the papers

® “The significance level deemed appropriate was the smallest value
reported by the SPSS package for the analysis in question. For large-
scale analysis this was p < 0.0000, and for analysis with hundreds
of variables this was p < 0.000.” (Jones et al. 2004, p. 201); “because
we have a very large number of observations, we adopt a conser-
vative approach and report results as statistically significant only
when they are significant at the 5% level or better.” (Forman et al.
2008, p. 307).
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conducted robustness/sensitivity analysis, modifying
the independent measures (Forman et al. 2008), or
the variable structure (Brynjolfsson et al. 2009, Ghose
2009). Others include new variables (Ghose and Yang
2009), or rerun the model on random subsets of the
data (Yao et al. 2009). Ghose et al. (2006) further com-
pare their model to another model with additional
control variables for assessing collinearity. Similarity
of the coefficient values across the two models is used
to show robustness.

What to Do with Large Samples?

We suggest guidelines for avoiding the problems
that arise when testing hypotheses with very large
samples, which should substantially improve the
quality of IS research. Our recommendations are
intended to address the p-value problem, provide
readers with better evidence than the sign and direc-
tion of a regression coefficient, and encourage a sound
presentation of the practical significance of findings.

Presenting Effect Size. We suggest that in addition
to the traditional statistical tests, researchers should,
as much as possible, be objective and clear in help-
ing readers understand the meaning of the coefficient
estimates within the study context, i.e., effect size.
That is, researchers should report the sensitivity of
their dependent variable to changes in the indepen-
dent variable, as illustrated in Table 2, which shows
how to interpret effect sizes for a few of the most
popular transformations in regression analysis.

Marginal analysis further extends our discussion of
effect sizes beyond the above special cases. In our
ordinary least squares (OLS) example that follows, the
marginal effect is the same for any X value. However,
when dealing with models like the probit, one has
to specify whether an effect size is being calculated

Table 2 Interpreting Effect Sizes for Common Regression Models

(Vittinghoff et al. 2005)

Functional form Effect size interpretation (where g is the coefficient)

Linear f
y=f(x) A unit change in x is associated with an average
change of B units in y.
In(y) =f(x) For a unit increase in x, y increases on average by
the percentage 100(e® — 1) (=100 g when
1Bl <0.1).
y =f(In(x)) For a 1% increase in x, y increases on average by

In(1.01) x B(=p/100).
For a 1% increase in x, y increases on average by
the percentage 100(e#*"(0 — 1) (=2 g when

18] <0.1).
Logistic f
Numerical x A unit change in x is associated with an average
change in the odds of Y =1 by a factor of 8.
Binary x The odds of Y =1 at x =1 are higher than at x =0

by a factor of 8.

at the mean of X or some other value such as the
median. For example, assume one conducted a probit
analysis and wanted to interpret the coefficient for a
variable X;. The researcher would hold all of the other
Xs at a certain value such as their median, and then
measure the change in Y as a function of increasing
X; by a unit. Marginal analysis is especially useful
and flexible to assess the magnitude of the effect.

For nonlinear models, which are quite common in
IS research, marginal analysis is a more robust way—
and sometimes the only way—to interpret effect size,
compared to looking at the p-value or magnitude of
the coefficient. As an example, if we have X; and
X? as the explanatory variables for Y, it is incorrect
to directly interpret the marginal effect of X, solely
based on its coefficients, because we cannot hold X?
constant and at the same time increase X; by one unit.

Reporting the effect size does not have to be done
strictly in terms of 1 unit/percentage change in X
leading to a certain unit/percentage change in Y.
In fact for the general reader, it would be especially
useful if the researcher can translate effects into some-
thing that is easy to understand. Suppose a researcher
finds that eating an apple a day reduces the chance of
falling ill from 3% to 2%. One could say “each addi-
tional apple consumed per day reduces the chances
of going to the doctor on average by 33%,” and that
“including an apple a day in your diet is likely to
reduce your risk of becoming ill from 3% to 2%.”
This interpretation is much more informative because
(1) it shows the point of comparison (X = 0,no apple);
(2) the traditional sense of the effect size ((3% —
2%)/3% = 33%); and (3) the relative magnitude of the
effect size (going from 3% to 2%).

This hypothetical example also illustrates that the
practical significance of a research finding depends
on the domain and the point of view of the reader.
A change in the chance of falling ill from 3% to 2%
may be very significant for policy makers when they
look at the whole population, and it may be also
significant for someone who is highly health con-
scious, but not so much for someone who is not that
concerned about health. Such interpretations are not
only more straightforward, but they also facilitate the
transfer of research results from researchers to the
general readership.

Reporting Confidence Intervals. We recommend
that IS researchers working with large samples report
effect sizes using confidence intervals, an approach
often used in empirical economics research as dis-
cussed previously. There are a number of major ben-
efits to reporting confidence intervals over p-values
and coefficient signs. First, confidence intervals
address the problem that motivated this paper: the
tendency of large-sample IS research to rely on low
p-values and the direction of a regression coefficient to
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support the researcher’s propositions. Second, when
researchers report the confidence intervals for a par-
ticular variable across different studies, it becomes
much easier to conduct meta-analysis, synthesize
prior studies, and help advance scientific knowledge
of the relevant IS field. This is particularly true when
the Cl is for elasticities (that is, the percentage change
in Y for each 1% change in X). An example can be
found in de Leeuw (1971) from the labor economics
literature.

When the researcher has a particular parameter
value of interest k, such as based on prior research,
then a confidence interval for the coefficient will give
an indication of the closeness of the coefficient not
only to k but also to other values in the vicinity of k.°
Because a large sample results in tighter confidence
interval, the CI’s thresholds are especially informative
of the (unknown) parameter’s magnitude and range.

Last but not least, empirical IS researchers tend
to conduct multiple robustness checks for their
models by comparing multiple model specifications.
With CIs, one can go beyond the argument that
“results are qualitatively similar,” and quantitatively
compare the range of estimates. Examples of the use
of a CI or one of its bounds can be found in many
papers in different empirical fields (Black and Strahan
2002, Goolsbee 2000, Goolsbee and Guryan 2006,
Iglesias and Riboud 1988, Vissing-Jergensen 2002).

We advocate using the most conservative bound
of the confidence interval and reporting that the
researchers are, for example, 95% confident that
the independent variable has the calculated impact on
the dependent variable. This kind of statement is easy
for the reader to interpret and corresponds to the fre-
quent use across a variety of fields of the probability
of a type I error of 5% without falling into the p-value
pitfall.

Using Charts. Given the importance of statistical
inference in IS research, we present an approach that
helps avoid the p-value problem that arises in large-
sample studies, while maintaining the framework that
researchers are familiar with. We build on a few intu-
itive notions. First, drawing a smaller sample will
yield “familiar” significance levels. Second, drawing
multiple samples gives additional information about
variability in those results. Third, samples of increas-
ing size will display the p-value deflation problem.
We integrate these notions into four charts:

A confidence interval chart displays the confidence
interval as a function of the sample size, ranging from

¢ Alternatively, the researcher may use a series of values for k =
(ky, ky, ks, ...), and sequentially test hypotheses B=k,; B=k,;....
This is akin to a series of sensitivity tests around k, and will yield
similar results as the confidence interval approach. We thank an
anonymous reviewer for this insight.

Table 3 Algorithm for Generating CPS Chart

For a sample of size n, and a CPS chart based on k increasing sample sizes:

1. choose the minimum sample size n, that is reasonable for fitting the
model;

2. randomly draw a sample of size n, from the large data set;

3. fit the model of interest to this sample, and retain the estimated
coefficients, their standard errors, and the p-values;

4. increase the last sample size by adding round(n/k) more observations,
drawn randomly from the remaining data set;

5. repeat steps (3)—(4) until the full original data set is used;

6. finally, create a line plot of the coefficients vs. the sample size
(on the x-axis), and in another panel the p-value(s) vs. the sample size.

very small to the maximal large-sample size itself.
This plot emphasizes the magnitude of the coefficient
and its shrinking standard error.

The coefficient/p-value/sample-size (CPS) chart dis-
plays curves of the coefficient of interest and its
associated p-value for different samples sizes, rang-
ing from very small to the maximal large-sample
size itself. This chart is based on repeatedly draw-
ing samples of increasing sizes, rerunning the statisti-
cal model on each sample, computing the coefficient
and p-values of interest, and plotting them on a chart.
An algorithm for generating this chart is given in
Table 3 (Stata code is available online as supplemental
material at http://dx.doi.org/10.1287 /isre.2013.0480).

A 1% significance threshold chart that shows the sam-
ple size at which each variable’s coefficient becomes
significant at the 1% level. It can be used to determine
subsample sizes for checking robustness.

The Monte-Carlo CPS chart expands the CPS chart
by drawing multiple samples from each sample size.
Although this chart can be more computationally
intensive, it gives the added information about the
distribution of the coefficients and the p-values as the
sample size increases (Stata code is available online as
supplemental material at http://dx.doi.org/10.1287/
isre.2013.0480).

It should be noted, however, that producing these
charts can be computationally intensive, so they are
most appropriate for models that are straightforward
and easy to estimate. We illustrate some of these pro-
posals using a real data set from eBay auctions.

Table 4 Variable Descriptions and Summary Statistics
Standard

Variables Descriptions Mean deviation
MinimumBid Minimum bid of the auction. 409 79
Reserve One if seller set a reserve price 0.035 0.183

for the auction; zero otherwise.
SellerFeedback  Sellers’ feedback score at time 44,074.8 93,126.7

of listing.
Duration Duration of auctions in days. 412 2.6

Control variables Dummies for camera type, brand, condition, and
product lines.
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Table 5 OLS Regression Model Estimated Using Entire Sample (y = log(Price))

Standard 95% confidence Interpretation for the conservative bound of the
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Variable Coefficient error p-value interval® confidence interval for directional hypotheses

In(minimum bid) 0.1006 0.000825 0.000 (0.0990, 0.1023) 1% increase in the minimum bid is associated with an average 0.09%
increase in final price, all else constant.

Reserve 0.7375 0.00675 0.000 (0.7240,0.7510) Items with a reserve price sell for a price that is on average 106%
(=100(e%* —1)%) higher, all else constant.

In(seller feedback) 0.0438 0.00065 0.000 (0.0425, 0.0451) 1% increase in the seller’s feedback score is associated with an average
of 0.04% higher price, all else constant.

Duration —0.0405 0.0007 0.000 (—0.0419, —0.0391)  Each extra day for auction listing is associated with an average 4%

decrease in price, all else constant.

Control variables. Dummies for camera type, brand, condition, and product lines.

2]t should be noted that although we use 95% for the confidence intervals, this is as subjective as the 5% cutoff for p-values. Also, for our directional
hypotheses it would be more adequate to use one-sided confidence intervals (with a single lower or upper value); we present two-sided intervals because of

their easier interpretation and popularity in IS.

Example: Camera Sales on eBay
To illustrate the p-value issue that arises in large sam-
ples, and the different proposed solutions (includ-
ing our CPS and Monte Carlo CPS charts), we use a
large sample (n = 341,136) of eBay auctions for digi-
tal cameras between August 2007 and January 2008.
Summary statistics for the main variables of interest
are in Table 4.

For illustration purposes, we draw on a simple
model from earlier studies of auction data such as the
one by Lucking-Reiley et al. (2007):”

In(price) = By + By In(minimumBid)
+ B,reserve + B In(sellerFeedback)
+ Byduration + y'controls + e.

Suppose we have the following four hypotheses
regarding price determinants:

Hyrornesis 1 (H1). Higher minimum bids lead to
higher final prices (B, > 0).

HyrotuEsis 2 (H2). Auctions with reserve price will
sell for higher prices (3, > 0).

HyrotHesis 3 (H3). Duration affects price (8, # 0).

HyrotHEsis 4 (H4). The higher the seller feedback, the
higher the price (85 > 0).

We start by estimating the regression equation
using the full sample (n = 341,136). Results are shown
in Table 5. The approach of considering only the coef-
ficient sign and the significance level would lead to
the rejection of all four hypotheses, which is not nec-
essarily warranted given the magnitude of the coeffi-
cients. Of course, whether a coefficient magnitude is
practically significant depends on the context and on

7 This model is for illustration purpose only. All hypotheses and
tests are conditional on the fact that the auction is actually
successful—i.e., the product is actually sold.

the stakeholder (e.g., for a seller interested in a sin-
gle auction, or the auction house interested in large
volumes of auctions).

Effect Sizes. In addition to the frequently reported
coefficient, p-value, and standard errors, we also
report the 95% confidence intervals, as well as a state-
ment translating the magnitude of the conservative
confident interval bound into statements about prac-
tical significance. In this example, the dependent vari-
able (price) is log transformed, and so are minimum
bid and seller feedback. Hence, the interpretation
for some of the variables is in terms of percent-
ages (see Table 2 for interpreting coefficient magni-
tudes in linear and logistic regression with various
transformations).

Confidence Interval Charts (CI-Chart). Charts can
help researchers develop a better understanding of
their data, both visually and intuitively. Figure 1
presents the confidence interval chart for the duration
parameter for increasing sample sizes. For each sam-
ple size the confidence interval was computed as the
coefficient +1.96 times the standard error. The chart
is coupled with the p-value chart to show how the
sample size affects the p-value much more drastically
than it affects the CL

CPS Chart. Figures 2 and 3 illustrate the use of CPS
charts for the duration variable and for (log) seller
feedback score. For reference, we plotted a horizon-
tal line at the significance threshold of 1%. To gener-
ate these charts, we used the algorithm described in
Table 3, running 5,000 iterations.

The CI chart and the CPS chart highlight the
p-value problem. They show that once the sample size
increases beyond some point, the p-value drops to
near zero values and remains there. In this particu-
lar example, the p-value for (log) seller feedback falls
below 1% once the sample size is greater than 200;
when the sample is larger than 500, the p-value is
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Figure 1

Two-Sided 95% Confidence Interval (Top) and p-Value (Bottom) for Duration vs. Sample Size

Duration: Two-sided 95% Cl and p-value vs. sample size

95% Cl—2-sided

0 500

1,000

1,500 2,000

0.25

0.20

0.15

0.10

p-value, 2-sided

0.05

T
0 500

T
1,000

T T
1,500 2,000

Sample size (n)

Notes. Zoomed in to n < 2,000 for illustration. Horizontal dashed line in lower panel: p = 0.01.

almost always less than 0.000001. The CPS chart high-
lights the results from the large-sample regression
model in the context of effect magnitude, and helps
avoid attributing importance to the p-value beyond a
certain sample size.

What is the sample size threshold for which the
p-value problem becomes an issue? There is no gen-

Figure 2

CPS Chart for Duration: Coefficient and p-Value vs. Sample Size

eral answer to this question, but the researcher may
want to determine the sample size at which variables
become significant, for example, for the purpose of
drawing subsamples to check robustness. Figure 4
is a plot of the sample size at which each variable
in Equation (4) becomes significant at the 1% level,
which we call a 1% significance threshold plot. Note that

CPS plot for variable “duration”

—-0.04 A

—0.06 -

—0.08

—-0.10 7

Coefficient for “duration”

0 500

1,000 1,500 2,000

p-value, 2-sided

0 500

1,000

2,000

Sample size (n)

Notes. Zoomed in to n < 2,000 for illustration. Horizontal dashed line corresponds to p = 0.01.
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Figure 3

CPS Chart for In(Feedback): Coefficient and p-Value vs. Sample Size

CPS plot for variable “In(feedback)”

0.08 A
5; 0.06
0.04

0.02 A

Coefficient for
“In(feedbacl

—-0.02

0 500

1,000 1,500 2,000

p-value, one-sided

T
0 500

T T T
1,000 1,500 2,000

Sample size (n)

Notes. Zoomed in to n < 2,000 for illustration. Horizontal dashed line corresponds to p = 0.01.

by an n of 300, all of the T values for testing the
hypothesis that the coefficients are positive or differ-
ent from 0 are in the rejection region. Beyond a sam-
ple size of 300, additional data drive down p-values
and increase power. Given the size of our sample,
there is little doubt that the results are statistically
significant.

Monte-Carlo CPS Chart. The two CPS charts are
based on just one random draw at each sample size.
To further study the p-value distribution as a func-
tion of sample size, we use a Monte Carlo simula-
tion to generate 400 samples for each sample size,
for a set of increasing sample sizes. We then fit the
same regression model, and compute the p-value for

Figure 4 Significance Threshold Chart Showing p-Values for Four

Variables as Compared with p* = 0.01 (Horizontal Line)

p-values for all variables, compared to threshold p = 0.01

0.4 - X

) —=— Duration (2-sided)
\ ------- Reserve—Dummy (1-sided)

\
\
031 S N Minimum bid (1-sided)
§ \ \ — &— Feedback score (1-sided)
T 02- S
3 v
\ \
0.1 e \
N \
0 100 200 300 400
Sample size

Note. Zoomed in to n < 500 for illustration.

seller feedback. For example, we randomly sampled
100 data points from the full sample of camera auc-
tions 400 times, ran the regression model on each
of these subsamples, and plotted the resulting coef-
ficients and p-values. Figure 5 shows the estimated
distribution of coefficients and p-values as a function
of sample size. The top and middle panels are a
more general view of the CPS chart (compare this
to the bottom panel in Figure 5). The median coeffi-
cient value is stable across the different sample sizes,
and its variability decreases in a meaningful way; for
samples below n = 500 the distribution covers the
value zero, yielding statistical insignificance at tradi-
tional significance levels. The plots show decreasing
noise in the coefficient estimation reflecting the power
of an increasing sample size. We see that not only do
levels of p-values decrease rapidly with sample size,
but so does the variability in the p-value distribution.
In other words, with a large sample we expect to con-
sistently see very small p-values. The bottom panel of
Figure 5 displays the same p-value information on a
logarithmic scale, better showing the minuscule mag-
nitude of p-values at n > 700.

Taking Advantage of Large Samples
Large samples provide opportunities to conduct more
powerful data analysis and inference compared to
small samples. In this section, we highlight some ways
of exploiting large samples, with reference to some
published papers that already do so.

One major opportunity with large samples is the
detection and quantification of small or complex
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Figure 5

Monte Carlo CPS Chart: Coefficient and p-Value as a Function of Sample Size

Seller
feedback coef.

p-value
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Notes. The bottom panel displays the same p-value data on a logarithmic scale; the apparently increasing variability is in fact decreasing because of the log

scale. The white line within each box denotes the median.

effects. Examples include nonlinear relationships, such
as higher-order polynomials and interaction terms
(Asvanund et al. 2004, Forman et al. 2008, Ghose and
Yang 2009). In such cases the interpretation of effects
must take into account the additional coefficients
(e.g., X? or X;*X,). Moreover, with a large sample,
interactions that involve a categorical variable can be
studied by splitting the data into the separate cate-
gories and fitting separate models (Asvanund et al.
2004, Forman et al. 2008, Gefen and Carmel 2008,
Ghose 2009, Gordon et al. 2010, Li and Hitt 2008,
Mithas and Lucas 2010, Overby and Jap 2009, Yao et al.
2009). In general, a large sample often provides suf-
ficient data for conducting analyses on subsamples
of interest while maintaining sufficient power in each
subsample. For example, a researcher might analyze
subsamples by geographic area or by product type,
with special interest in particular categories.

A large sample also enables the researcher to incor-
porate many control variables into the model with-
out worrying about power loss (Forman et al. 2008,
Ghose 2009, Mithas and Lucas 2010), thereby reducing
concerns for alternative explanations and strengthen
the main arguments if results remain consistent.

If a researcher would like to validate the predictive
power of her causal model, it is easier to do so with
a large sample (Shmueli 2010, Shmueli and Koppius
2011). The researcher would remove a random por-
tion of the sample before analysis begins, estimate the

causal model (on the reduced sample), and then gen-
erate predictions of the dependent variable for the
excluded “holdout set” of observations. The closeness
of the predictions to the actual dependent variable
values gives an indication of the predictive power of
her model.

Some effects are so rare that they are encountered
only with a very large sample. This is one of the
main uses of large samples in industry in applica-
tions such as fraud detection. Although research tends
to focus on the “average behavior,” with large sam-
ples we can expand scientific endeavors into the “rare
events” realm, which are often important. One exam-
ple is Dellarocas and Wood (2008). In addition to their
main analysis, the authors look more carefully at neg-
ative and neutral ratings on eBay, which account for
a small percentage of ratings on the site.

Conclusions

The purpose of this commentary is to highlight a
significant challenge in IS research that may reduce
the credibility of our findings. Larger samples pro-
vide great opportunities for empirical researchers, but
also create potential problems in interpreting statis-
tical significance. The challenge is to take advan-
tage of these large samples without falling victim
to deflating p-values. In particular we recommend
that IS researchers modeling large samples should not
simply rely on the direction of a regression coefficient
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and a low p-value to support their hypotheses.
Instead, we suggest several approaches to the p-value
problem: reporting effect sizes and confidence inter-
vals, reporting conservatively using, for example, the
minimum point of the confidence interval, and using
various plots for interpreting the data along with
Monte Carlo simulations. As IS researchers increas-
ingly gain access to large data sets, we hope that this
commentary will stimulate an ongoing discussion on
the advantages and challenges of conducting large
sample research in information systems.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287 /isre.2013.0480.
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Appendix. Why the p-Value Approaches 0

for Large Samples

Traditionally, empirical research papers in IS explicitly dis-
cuss and elaborate on what a statistician would call the
alternative hypothesis, for example, that females use smart
phones for texting more than males or that a higher starting
bid in an online auction is associated with a higher final
price for the goods being auctioned, implicitly implying that
the null hypothesis is the “opposite” scenario. Underlying
all statistical testing is the null hypothesis, which always
includes the case of “no effect,” for example, that there are
no differences between groups or that there is no association
among variables.

The null hypothesis either contains only the non-
directional no effect scenario or it contains both the no
effect scenario and the opposite directional scenario. The
researcher hypothesizing that a coefficient in a regression
equation is positive is trying to reject the null hypothesis
that the coefficient is 0 or negative, i.e., rejecting the no
effect and negative coefficient scenarios. When a researcher
reports that the coefficient of the regression equation is pos-
itive and statistically significant at the 0.05 level, there is
only a 5% chance that she would have observed this result
or one more extreme (i.e., a larger positive coefficient) if in
fact the coefficient is 0 or negative.

Consider a researcher who conducts an online survey
of college students to test the alternative hypothesis that
female students use their smart phones for texting more
than male students. The implied null hypothesis is that
either there is no gender effect or that male students use
their smart phones for texting more than female students.
The researcher’s survey displays a line on the respondent’s
computer anchored by 0% and 100% on either end, and
asks the respondent to click at the percentage of their smart
phone use that is for texting. If male and females actually
text the same amount, the first problem is accurately mea-
suring the responses from the continuous line where the
respondents click on their responses. As Tukey (1991, p. 100)

put it “The effects of A and B are always different—in some
decimal place—for any A and B.” Cohen (1990, p. 1308) says
“A little thought reveals a fact widely understood among
statisticians: The null hypothesis, taken literally (and that’s
the only way you can take it in formal hypothesis testing),
is always false in the real world... . If it is false, even to a
tiny degree, it must be the case that a large enough sam-
ple will produce a significant result and lead to its rejec-
tion. So if the null hypothesis is always false, what’s the
big deal about rejecting it?” We are not suggesting that IS
researchers abandon hypothesis testing; these observations
on the null hypothesis are intended to move our focus from
relying solely on statistical significance to consideration of
practical significance and effect size.

Large samples are advantageous because of the statistical
power that they provide. Yet researchers should also realize
that a by-product of increasing the sample size is that the
p-value itself will easily go to zero. The p-value for testing
a nondirectional hypothesis regarding a linear regression
coefficient is calculated by

p-value =2x(1 — ®(df, |T])), (1)

where @ is the cumulative student’s f-distribution, df is the
residual degrees of freedom, and |T| is the absolute value
of the observed t-statistic (Buis 2007), given by |T| = (,é —
0)/65.

This T statistic is an increasing function of the sam-
ple size n, because the standard error in the denominator
decreases in 7. In the case of a single independent variable,
it is straightforward to see the effect of the sample size on
the standard error:

N MSE
0p= —F—=,
P Svn—1
where MSE (mean squared error) is the estimate of the error
variance and s, is the standard deviation of the independent
variable (S2 = (1/(n—1)) X1, (x; — ¥)?). Hence, in the single
independent variable case we can write

30 3| x S
i) = BMSE _ JiTIBIXS:
DEE MSE

What happens to p-value as 7, the sample size, increases?
Consider the null hypothesis Hy: 8 = 0. Unless the null
hypothesis is exactly true (to an infinite number of deci-
mals), the p-value will go to 0 as n becomes infinitely large,
because the value of |T| will approach infinity, and therefore
the cumulative t distribution until |T| (which becomes effec-
tively a standard normal distribution) approaches 1. Equa-
tion (2) shows the limit of the p-value for the cumulative ¢
distribution used to determine the statistical significance of
a regression coefficient in the case of a single independent
variable:

lim p-value = rlgr0102 x (1—®df,|T]))

=2 (1~ lim ®(df, |T)))
—2x <1—c1><df,nlgn vﬂ—l%» (2)

2x (1—®(df,0) =1, ifB=0
2x (1—-®(df,0)=0 if B#£0"
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Note that unless B is exactly equal to 0 with an infi-
nite number of decimals (in which case the p-value will
approach 1), the p-value will approach 0. A similar mathe-
matical relationship exists between the test statistic and the
sample size in all statistical tests, including regression mod-
els with multiple independent variables, t-tests, ANOVA,
etc. It is easy to understand this if we think of the sam-
ple size approaching the entire population. If we know the
exact value of B (or another parameter of interest) in the
population, we also know whether it is exactly equal to 0
(or a different value of interest) or not with no uncertainty.

Many IS papers utilizing regression models, test that a
coefficient is either positive or negative (directional hypoth-
esis) and evaluate statistical significance with a one-sided
test. The illustration above is for two-sided tests and can be
modified for a one-sided test by eliminating the 2’s in Equa-
tions (1) and (2), replacing |T| with T, and for a negative
coefficient hypothesis (H1: 8 < 0), replacing 1 — ¢ with ¢.
At the limit, these changes have no effect on the p-value
approaching 0 or 1 in large samples.

This artificial deflation of the p-value as sample size
increases is well known in statistics (e.g., Chatfield 1995).
When one has 500,000 observations, the p-values associated
with the coefficients from modeling this data set are almost
always going to be 0, so that a statistical test is close to use-
less at best, and misleading at worst. Econometricians have
also long realized this issue and suggest that the threshold
p-value should be adjusted downward as the sample size
grows (Leamer 1978, Greene 2003), however to our knowl-
edge there have been no proposed rules of thumb in terms
of how such adjustments should be made.

This fascination with p-values comes because researchers
too often confuse p-value with effect size. In a conventional
test of a hypothesis, a researcher establishes the criterion for
accepting or rejecting the null hypothesis before collecting
a sample. If she chooses the 5% level, it means that if her
test statistic is in the rejection region, there is only a 5%
chance she would obtain this test statistic if the null hypoth-
esis is true. If, instead, she chose the 1% level and the test
statistic is in the rejection region, then there is only a 1%
chance she would get this result if the null hypothesis is
true. The p-value indicates the probability that one would
observe the test statistic (or a more extreme value) given the
null hypothesis is true. The p-value says nothing about the
strength of the effect under investigation. A p-value < 0.001
does not imply a stronger relationship between variables
than a p-value < 0.01.

As an example, Thompson (1989) presents a table of
results with fixed effect sizes showing increasing levels
of statistical significance as the sample size increases. The
level of statistical significance increases, but the strength
of the relationship in the table remains constant. The
result becomes statistically significant somewhere between
13 and 23 observations in the sample, but the effect size
is fixed.

Researchers in many fields seem to regard a test statistic
that allows them to reject the null hypothesis at the 5% level
as magical proof of the relationship they believe exists
between independent and dependent variables. A focus
on a particular level of significance has led to sugges-
tions that we have become so obsessed with 5% that we

have forgotten to look at the practical significance of our
findings (Carver 1978, Sawyer and Peter 1983, Ziliak and
McCloskey 2008).
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