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Weldon’s Dice, 

W
alter Frank Raphael Weldon’s 
data on 26,306 rolls of 12 
dice have been a source of 

fascination since their publication in 
Karl Pearson’s seminal paper intro-
ducing the �

2 goodness-of-fit statis-
tic in 1900. A. W. Kemp and C. D. 

Kemp also wrote about the historical 
data in 1991, including methods of 

analysis beyond Pearson’s good-
ness-of-fit test.

Although modern ran-
dom number generators 

have come a long way 
in terms of periodicity 
and correlation, there 
is still a certain cachet 
in the apparent 

randomness of rolling dice, even if this 
appearance is ill-founded. As Pierre-
Simon Laplace said, “The word ‘chance’ 
then expresses only our ignorance 
of the causes of the phenomena that 
we observe.”

Weldon’s Dice Data

In a letter to Francis Galton—dated 
February 2, 1894—Weldon reported 
the results of 26,306 rolls of 12 dice, 
where he considered fi ve or six dots 
(pips) showing to be a success and all 
other pip counts as failures. The data 
were presented in tabular form, with 
the number of successes per roll tallied 
as in Table 1. Weldon was motivated to 
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collect the data, in part, to “judge whether 
the differences between a series of group 
frequencies and a theoretical law, taken 
as a whole, were or were not more than 
might be attributed to the chance fl uc-
tuations of random sampling.”

 The simplest assumption about dice 
as random-number generators is that 
each face is equally likely, and there-
fore the event “fi ve or six” will occur 
with probability 1/3 and the number of 
successes out of 12 will be distributed 
according to the binomial distribution. 
When the data are compared to this “fair 
binomial” hypothesis using Pearson’s �2 
test without any binning, Pearson found 
a p-value of 0.000016, or “the odds are 
62,499 to 1 against such a system of 
deviations on a random selection.”

The modern application of the good-
ness-of-fi t test requires binning such that 
each theoretical bin has at least approxi-
mately four counts, and for the data in 
Table 1, this results in the bins 10, 11, 
and 12 grouped into one “10+” bin. With 
the appropriate binning, the p-value for 
the original data becomes 0.00030, a 
larger but still signifi cant result.

Number of 
Successes 

Observed 
Frequency 

Theoretical 
Frequency, 

p = 1/3 Deviation

0 185 203 -18

1 1149 1216 -67

2 3265 3345 -80

3 5475 5576 -101

4 6114 6273 -159

5 5194 5018 176

6 3067 2927 140

7 1331 1255 76

8 403 392 11

9 105 87 18

10 14 13 1

11 4 1 3

12 0 0 0

Total 26,306 26,306   = 32.7

Table I—Weldon’s Data on Dice: 26,306 Throws of 12 Dice

Note: A die was considered a success if fi ve or six pips were showing.

Walter F. R. Weldon (1860–1906), an English 

biologist and biometrician

The conclusion is that the dice show 
a clear bias toward fi ves and sixes, which 
Pearson estimated was probably due to 
the construction of the dice. Most inex-
pensive dice have hollowed-out pips, 
and since opposite sides add to seven, 
the face with six pips is lighter than its 
opposing face, which has only one pip.

While the dice may not follow the 
fair binomial hypothesis, they still may 
follow a binomial hypothesis with bias 
toward fi ves and sixes. The overall prob-
ability of a fi ve or six is estimated as 
0.3377 from the data, and Pearson out-
lines the comparison of the dice data 
to this alternate theoretical distribution 
in his illustration II of the 1900 paper. 
Correcting errors in his arithmetic, �2 = 

17.0 for the unbinned data and  = 

8.20 for the binned data (with binning 
performed as outlined above).

As many university students learn 
in introductory statistics courses, the 
estimation of one variable by maximum 
likelihood must be ‘repaid’ by dropping 
one degree of freedom in the goodness-
of-fi t test, hence the nine degrees of free-
dom for the “biased binomial” test. The 

resulting p-value is 0.51, meaning there 
is not suffi cient evidence to refute the 
claim that, although biased, the dice still 
follow the binomial distribution. These 
two applications of the original dice data 
have served as examples, introducing the 
�

2 goodness-of-fi t statistic to many.

Design of Apparatus

While it is possible to repeat Weldon’s 
experiment by hand, such an endeavor 
would be dull and prone to error. 
Here, we will use an automatic process 
consisting of a physical box that rolls 
the dice, electronics that control the 
timing of the dice-rolling, a webcam 
that captures an image of the dice, and 
a laptop that coordinates the processes 
and analyzes the images.

 The idea behind the dice-rolling 
is as follows: A thin plate of metal 
is covered in felt and placed between 
metal U-channel brackets on opposing 
faces of a plastic box. Solenoids with 
return springs (like electronic pinball 
plungers) are mounted under the four 
corners of the metal plate and the 12 
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dice are placed on top of it. The dice 
are inexpensive, standard white plastic 
dice with hollowed-out pips and a drop 
of black paint inside each pip. The 

dice have rounded corners and edges. 
The front panel of the plastic box is 
removable for easy access to the sole-
noids and dice. Once assembled, the 

inside of the box is lined with black felt 
to suppress refl ections from the inside 
surface of the plastic (Figure 1). 

The solenoids are controlled through 
an Arduino USB board, which can be 
programmed using a computer. The USB 
board listens on the serial port, and when 
it receives an appropriate signal, it sends a 
series of digital on/off pulses to four inde-
pendent relay switches, which control 
the solenoids’ access to electricity. When 
the relay is placed in the on position, 
current fl ows to the solenoid, thereby 
depressing the plunger against the force 
of the return spring, due to magnetic 
inductance. When the relay returns to 
the off position, the plunger is allowed 
to freely accelerate under the force of 
the return spring until it hits the metal 
plate, transferring its momentum to the 
(limited) motion of the plate and the 
(unlimited) motion of the dice. 

The solenoids operate indepen-
dently, and their power is supplied from 
a standard DC power supply. If the 
four solenoids are numbered clockwise 
one through four, three solenoids at a 
time are depressed, initially leaving out 
number four. Then, the solenoids 
spring back, and 0.25 seconds later, 

Figure 1. Apparatus for the rolling of dice. (a) shows the locations of the solenoids in the box without the metal plate in place, along with 

the return spring plungers in place. (b) is a close-up view of the metal plate in bracket design. (c) shows the apparatus fully assembled in 

the midst of a rolling sequence.

(a) (b) (c)

Zacariah Labby beside his homemade dice-throwing, pip-counting machine
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Figure 2. Image analysis procedure. The raw grayscale image in (a) is thresholded in a con-

sistent manner with the aid of controlled lighting, leading to (b). After the holes in the image 

have been fi lled, (c), the edges are identifi ed and dilated to ensure complete separation of 

touching dice (d). Once the edges have been removed from (c), the centers of the dice, (e), 

are identifi ed and a unique mask is placed over the center of each die (f). The pips are identi-

fi ed from the subtraction of (c) and (b), and the results are eroded to ensure the pips on a 

six-face do not bleed together (g). Finally, the number of unique pips beneath each mask is 

counted and stored in memory. The results are displayed for the user to monitor (h).

(a)

(c)

(e)

(g) (h)

(f)

(d)

(b)

three solenoids are depressed, leaving 
out number three. The pattern continues, 
leaving out two, then leaving out one, 
then repeating the entire pattern. When 
only one solenoid is left unaltered at a 
time, the metal plate tilts away from that 
solenoid, and the dice roll on the plate. 
When the other three solenoids return 
to their standard positions, the dice pop 
into the air.

After the dice have come to rest for 
a few seconds, a laptop connected to a 
webcam captures a grayscale image of 
the dice. The acquisition and process-
ing of the image, along with the entire 
automation process, is controlled from 
the computer. The lighting in the experi-
ment room is carefully controlled using 
radiography light boxes (for viewing 
X-ray fi lms), which provide uniform and 
diffuse lighting to reduce glare on the 
surfaces of the dice.

Because the lighting is carefully 
controlled, a simple threshold can be 
applied to the grayscale image, resulting 
in an array of ones and zeros. The ‘holes’ 
in the image, which represent the pips of 
the dice, are fi lled in, and the resulting 
image shows the dice as white squares on 
a black background. When two dice are 
in close contact, the thresholding pro-
cess often fails to completely separate 
the dice and an edge-fi nding algorithm 
is used to fi nd any transition regions in 
the original image.

The edges are dilated (infl ated) to 
ensure the shared border between any 
two touching dice is entirely encom-
passed within the detected edges, and 
any regions labeled as edges are subse-
quently removed from the thresholded 
image. This leaves the center of each die 
as an independent region. The uniquely 
connected components are identifi ed 
and a mask is placed at the centroid of 
each to serve as a search space for pips.

Pips are identifi ed from the original 
thresholded image, again through the 
identification of uniquely connected 
components. These initial components 
are eroded (i.e., a few pixels along the 
identifi ed perimeters are removed) to 
prevent any pips from ‘bleeding’ together, 
which is common with dice showing six 
pips. The number of pips under each die 
mask is counted and the results are both 
stored in an array in the computer and 
displayed to the user to ensure proper 
operation. The image analysis steps are 
shown in Figure 2. 
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There are numerous opportunities for 
error in this sequence, and error-catch-
ing steps are taken during the image 
analysis. For instance, if any uniquely 
labeled die is not within a tight size 
range—as is possible if two dice are 
perfectly fl ush and not separated—the 
image is considered to be an error. If 12 
dice are not found in the image, which 
happens when one die lands on top of 

another during the tossing sequence, 
the image is an error. If any die does not 
land on a face, but rather on an edge 
or corner, the lighting is such that the 
whole die will not be found and the 
image is an error. Also, whenever any pip 
is too oblong, as is the case when pips 
bleed together, the image is an error. A 
few images that lead to errors are shown 
in Figure 3.

Any time an error occurs (approxi-
mately 4% of the time), the image is 
saved externally and, when possible, the 
numbers on the 12 dice are entered man-
ually. Unfortunately, some images are 
impossible to count manually (see Figure 
3a). Those that are possible to count 
manually have a bias toward showing 
a large number of sixes, as the pips on 
sixes can bleed together, and therefore 

Figure 3. Images leading to errors during analysis. In (a), a die has landed perfectly on one corner. In (b), one die has landed atop another, 

leading to the software only identifying 11 dice. Finally, in (c), one die has come to rest against the felt-covered wall of the apparatus, leading 

to an improper lighting situation identifi ed as an error.

(a) (b) (c)

Figure 4. Lack of correlation between dice-rolling iterations. (a) shows the autocorrelation of the sequence of the number of successes 

per roll (central portion). The only point above the noise fl oor is at zero lag. (b) shows the corresponding power spectrum, which has the 

characteristic appearance of white noise.

(a) (b)
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ignoring error images would possibly 
lead to bias in the results. With the entire 
rolling-imaging process repeating every 
20 seconds, there are just more than 
150 error images to process manually 
each complete day of operation. At the 
previously mentioned rate of operation, 
Weldon’s experiment can be repeated in 
a little more than six full days.

Results

After all 26,306 runs were completed, all 
error images were processed to remove 
potential bias from the following analy-
sis. (There were 27 ‘uncountable’ error 
images.) Initially, a “success” will hold 
the same meaning as it did for Weldon: 
a fi ve or six showing on the up-face of a 
die. To assess any correlation (or inad-
equacy) in the dice-rolling procedure, 
it is useful to look at the autocorrela-
tion of the sequence of successes per 
iteration.

 If a high number of successes in one 
iteration leads, for example, to a cor-
related number of successes in the next 
iteration or the iteration following, this 

will appear as an identifi able peak in the 
sequence autocorrelation. However, if 
the sequence is largely uncorrelated, 
the only identifi able peak in the auto-
correlation will be at zero lag between 
iterations, and the Fourier transform of 
the autocorrelation will be a uniform 
(white noise) spectrum. These are pre-
cisely the results seen in Figure 4, lead-
ing to the conclusion that the number 
of successes per roll forms an uncor-
related sequence.

The distribution of successes per 
iteration is shown in Table 2, where it 
can be seen that the �2 values are not 
large enough to reliably reject either 
the fair or biased binomial hypotheses. 

Number of 
Successes

Observed 
Frequency

Theoretical 
Frequency

p = 1/3

Theoretical 
Frequency
p = 0.3343

0 216 203 199

1 1194 1216 1201

2 3292 3345 3316

3 5624 5576 5551

4 6186 6273 6272

5 5047 5018 5040

6 2953 2927 2953

7 1288 1255 1271

8 406 392 399

9 85 87 89

10 13 13 13

11 2 1 1

12 0 0 0

Total 26,306       = 5.62
       

 = 4.32

Table 2—Current Data on Dice: 26,306 Throws of 12 Dice

Note: A die was considered a success if fi ve or six pips were showing.
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Binning is performed on the data in 
Table 2 as outlined under “Weldon’s 
Dice Data.” The overall probability 
of a fi ve or six showing is estimated to 
be 0.3343. From these results, the dice 
seem to be in accordance with the fair 
binomial hypothesis, unlike Weldon’s 
dice. This is as far as Weldon (or Pear-
son) could have gone with the original 
1894 data, but this is by no means the 
end of the story.

Besides the automation, which is a 
time-saving step, the unique aspect of this 
experiment is that the individual number 
of pips on each die is recorded with 
each iteration, and not just whether the 
die was a success or failure. This allows 
a much deeper analysis of the data. 
For  instance, instead of jointly analyz-
ing fi ves and sixes as a success, we fi nd 
some interesting results if a success is 
considered to be only one face. First, 
the probabilities for the individual faces 
are estimated to be Pr

1
 = 0.1686, Pr

2
 = 

0.1651, Pr
3
 = 0.1662, Pr

4
 = 0.1658, Pr

5
 

= 0.1655, and Pr
6
 = 0.1688, whereas 

the fair hypothesis would indicate that 
each face should have probability Pr

i
 = 

1/6 = 0.1667.
These probabilities, along with their 

uncertainties in a binomial model, are 
shown in Figure 5. The tossing apparatus 
does not seem to alter the probabilities 
of the individual die faces over time. 
Comparing the fi rst third and fi nal thirds 
of dice rolls, and adjusting for multiple 
comparisons, reveals that none of the 
face probabilities signifi cantly changed 
over time.

When comparing the observed num-
ber of counts for each pip face with the 
expected fair value (12 times 26,306/6 = 

52,612) in a �2 test, the resulting  = 

25.0 and p = 0.00014 leave little doubt 
that the dice results are biased. If the 
dice were biased in the manner Pearson 
assumed—namely due to pip-weight 
imbalance—we would expect the prob-
abilities of the individual faces to follow 
a linear trend of -5, -3, -1, 1, 3, 5 for faces 
one through six, respectively. Fitting and 
testing for this pattern yields a p-value of 

0.00005, allowing reliable rejection of 
the pip-weight-trend hypothesis.

Discussion and Conclusion

One interesting point from the data 
obtained here is the revelation of a non 
sequitur by Pearson in his biography of 
Galton. In a footnote, he writes:

Ordinary dice do not follow the 
rules usually laid down for them 
in treatises on probability, because 
the pips are cut out on the faces, 
and the fi ves and sixes are thus 
more frequent than aces or deuces. 
This point was demonstrated by 
W. F. R. Weldon in 25,000 throws 
of 12 ordinary dice. Galton had 
true cubes of hard ebony made as 
accurate dice, and these still exist 
in the Galtoniana.

Weldon’s dice were most likely 
made from wood, ivory, or bone with 
carved pips, but that fi ves and sixes 
jointly occurred more often than one 
would expect under the fair hypothesis 

Figure 5. Probability of observing each number of pips out of 12 times 26,306 total rolls. The error bars are 95% confi dence intervals 

according to binomial sampling, where �2=p(1–p)/315672 and the dashed line shows the fair probability of 1/6 for each face.
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does not automatically imply the cause 
Pearson suggests. The new data pre-
sented here show that, even though fi ves 
and sixes jointly appear slightly more 
often than would be expected under 
the fair hypothesis, fi ves and sixes do 
not both have an individual probability 
larger than 1/6.

The number of throws needed to 
observe these probability departures 
from fair is high and a testament to 
Weldon’s perseverance. In Weldon’s 
original data, the observed probability 
of a fi ve or six was 33.77%, and at least 
100,073 throws (or 8,340 throws of 12 
dice) are needed to detect this departure 
from fair with 90% power at the 5% 
signifi cance level. Here, the probability 
of throwing a six was determined to be 
16.88%. At 90% power and the 5% 
signifi cance level, 270,939 throws (or 
22,579 throws of 12 dice) were needed 
to detect a departure as extreme.

The estimated probabilities for the 
six faces seen in “Results” might be 
explained by a mold for the plastic dice 
that is not perfectly cubic, with the 
one- and six-pip faces slightly larger 
than the faces with two and fi ve pips. 
To further investigate this possibility, 
the dimensions of each of the axes of all 
12 dice (i.e., the 1–6 axis, the 2–5 axis, 
and the 3–4 axis) were measured with an 

accurate digital micrometer. The results 
are shown in Figure 6, where it is seen 
that the 1–6 axis is consistently shorter 
than the other two, thereby supporting 
the hypothesis that the faces with one 
and six pips are larger than the other 
faces. A two-way ANOVA model (axis 
length modeled on axis number and die 
number) adjusted for multiple compari-
sons also showed that the 1–6 axis was 
signifi cantly shorter than both of the 
other axes (by around 0.2%).

Pearson’s suggestion for the cause of 
biased dice would also indicate that if 
a die were considered a success when 
four, fi ve, or six pips were showing, that 
event should have a measurably higher 
probability than the complementary 
event (one, two, or three pips showing). 
However, the data obtained here indi-
cate almost perfect balance, with p

4,5,6 

= 0.5001. Perhaps with further inves-
tigation, Pearson may have unearthed 
evidence to support his claim that the 
pip-weight imbalance led to Weldon’s 
data, but current observations suggest 
minor imperfections in the individual 
cubes may overshadow any effect due 
to carved-out pips. Interestingly, dice 
used in casinos have fl ush faces, where 
the pips are fi lled in with a plastic of the 
same density as the surrounding material 
and are precisely balanced. It would be 

reasonable to assume these dice would 
produce results in accordance with all 
fair hypotheses.  
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Figure 6. Measurement of axis length, in millimeters, for all 12 dice on all three axes. (The main axes of a standard die are the 1–6 axis, the 

2–5 axis, and the 3–4 axis.) The 1–6 axis is consistently and signifi cantly shorter than the other two axes.
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