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Does Your iPod Really Play Favorites?

Amy G. FROELICH, William M. DUCKWORTH, and Jessica CULHANE

Since the introduction of the first iPod portable music player
(MP3 player) by Apple, Inc., users have questioned the ran-
domness of the shuffle feature. Most evidence cited by users
claiming to show nonrandom behavior in the shuffle feature is
anecdotal in nature and not based on any systematic analysis of
its randomness. This article reports on our attempt to investi-
gate the shuffle feature on the iPod and to test its randomness
through the use of probability and statistical modeling. We be-
gin by reviewing the research on people’s inability to perceive
and understand both random and nonrandom behavior. Prob-
ability models are then developed, under the assumption of a
random shuffle, for several of the most common types of events
cited as evidence of a nonrandom shuffle. Under this null hy-
pothesis of a random shuffle, several goodness-of-fit tests of
one of the probability models are conducted using data col-
lected from real iPods. No evidence to support user claims of a
nonrandom shuffle was found. Finally, we conclude with some
reflections on and ideas for incorporating these examples into
undergraduate probability and statistics courses.

KEY WORDS: Goodness-of-fit test; Probability models; Ran-
domness.

1. INTRODUCTION

Since the introduction of the first iPod portable music player
by Apple, Inc. in October 2001, the small device has become a
huge social phenomenon. At the original iPod product launch,
Steve Jobs, CEO of Apple, Inc. stated “. . . iPod, a thousand
songs in your pocket. This is a major, major breakthrough.”
(Levy 2006, p. 9). One of the amazing aspects about storing
1000 songs in your pocket is the ability to become your own
disc jockey. This aspect is further enhanced by a feature built
into the iPod software called “shuffle.” The shuffle feature takes

Amy G. Froelich is Associate Professor, Department of Statistics, Iowa
State University, 3109 Snedecor Hall, Ames, IA 50011-1210 (E-mail:
amyf@iastate.edu). William M. Duckworth is Associate Professor of Decision
Sciences, Creighton University, College of Business, 2500 California Plaza,
Omaha, NE 68178 (E-mail: wmd@creighton.edu). Jessica Culhane is Actuarial
Analyst, Milliman, 1301 Fifth Avenue, Suite 3800, Seattle, WA 98101 (E-mail:
jessica.culhane@milliman.com). Portions of this manuscript were completed
as part of the third author’s senior honors project under the direction of the
first author at Iowa State University. The authors wish to thank Dr. W. Robert
Stephenson for his assistance on the probabilities in Section 3.3 and the Editor,
Associate Editor, and two anonymous reviewers for their helpful comments on
earlier versions of this manuscript.

a list of songs, called a playlist, and rearranges them in a ran-
dom order.

Since its introduction, users have questioned the randomness
of the shuffle on the iPod. Most notable is an article by Steven
Levy from Newsweek magazine titled “Does Your iPod Play Fa-
vorites?” (Levy 2005). In his article and subsequent book (Levy
2006), he reported anecdotal evidence of potential nonrandom
behavior in the shuffle feature when using his iPod. A study of
many iPod and technology related websites shows the same re-
sults; people believe the random shuffle feature on the iPod is
not really random. Adding to the controversy is the refusal of
Apple, Inc. to release the code used to produce these random
permutations. On some websites, this controversy has become
a full-blown conspiracy.

After reading the Newsweek article and other sources, we
were very skeptical of the reported evidence of nonrandom be-
havior of the shuffle feature. As statisticians, we are very famil-
iar with people’s inability to understand randomness. There are
many examples in the literature of how people’s intuitive ideas
of probabilities do not match reality. Songs also evoke emo-
tions, which play a role in our inability to recognize random
behavior.

With this background, we decided to look specifically at
some of the reported evidence of nonrandom behavior and de-
velop probability models for these events under the assumption
of a random shuffle. We then used data collected from our own
iPods to conduct goodness-of-fit tests under the null hypothe-
sis of a random shuffle for one of these probability models. In
Section 2 of this article, we provide a summary of the current
research on the psychology of understanding random and non-
random events. In Section 3, we report on the development of
the probability models and then study some of the probabili-
ties for events reported in the Newsweek article and book by
Steven Levy. The results of several goodness-of-fit tests for one
of these probability models are included in Section 4 of this ar-
ticle, along with the collected data. In Section 5 below, we show
how these examples can be used and incorporated into under-
graduate probability and statistics courses, and in Section 6, we
offer final conclusions.

2. THE PSYCHOLOGY OF UNDERSTANDING
RANDOMNESS

The concept of randomness is not easily understood. Most
people feel that any randomly produced series should contain
very few, if any, extended runs of the same event and should
represent the long run expected frequencies of events. In actu-
ality, randomly generated series may not display either of these
properties in the short run. When iPod users notice that their
shuffle feature seems to violate these properties by choosing

© 2009 American Statistical Association DOI: 10.1198/tast.2009.07073 The American Statistician, August 2009, Vol. 63, No. 3 263

mailto:amyf@iastate.edu
mailto:wmd@creighton.edu
mailto:jessica.culhane@milliman.com
http://www.amstat.org
http://dx.doi.org/10.1198/tast.2009.07073
http://pubs.amstat.org/loi/tas


three songs in a row from the same album or five songs out of
ten from the same artist, they conclude the shuffle is not ran-
dom.

An aversion to runs is shown in studies where participants
are asked to generate random binary series, like coin tosses.
The series they create tend to have too many alterations and
too few runs of two or three successes than what would be ex-
pected from a random process (Bakan 1960; Orr, Federspiel,
and Maxwell 1972; Diener and Thompson 1985). For an infinite
number of coin tosses, the limiting proportion of heads equals
the limiting proportion of tails. Many people also expect this to
be true over the short run, that is, over relatively few tosses of
a coin. The belief is that occurrences in the short run different
from this expectation should quickly correct themselves. This is
an example of the gambler’s fallacy, the belief that past occur-
rences of a random event will influence its future occurrences.
So, if a gambler has tossed ten heads in a row, he may believe
that tails are “due,” or conversely, he may feel that heads are
“hot.”

When a few series do not represent the expected frequen-
cies of events, people tend to label the event a “coincidence.”
The more personally meaningful or seemingly improbable a co-
incidence is, the more surprising it will seem (Falk 1989). With
music, “personally meaningful” could mean anything from the
first song at your wedding to the least favorite song in your li-
brary. So when a personally meaningful song is played in the
first ten songs of a shuffle, it is more surprising than if the song
had no personal meaning. If an event is more surprising, we
have a better chance of remembering it, and, therefore, these
surprising events will seem to occur too often to be random.

One example of the relative surprise of coincidences is com-
monly referred to as the birthday paradox. When asked, “What
is the probability that two or more people out of a group of 25
will share the same birthday?” most people find it hard to be-
lieve the answer is more than 50%. This is so surprising because
we tend to focus on our own birthday, which has personal mean-
ing. Therefore, the question becomes “What is the probability
that someone in a group of 25 people will share my birthday?”
In this case, the chance is much smaller–less than 7% (Bennett
1998).

Because randomness and probability are counterintuitive to
many people, it is a very difficult concept to teach. People can-
not help but remember surprising coincidences, such as a shuf-
fle with six songs in a row that begin with the letter “D.” As
Paul Kocher, CEO of Cryptography Research, notes in Levy’s
book, “Our brains aren’t wired to understand randomness–
there’s even a huge industry that takes advantage of people’s in-
ability to deal with random distributions. It’s called gambling.”
(Levy 2006, p. 191).

3. PROBABILITY MODELS FROM A RANDOM
SHUFFLE

In this section, we develop several probability models for dif-
ferent outcomes from a shuffle under the assumption the shuf-
fle feature is truly random. Most of the probability models can
be found in standard textbooks like Ross (2006) and Wackerly,
Mendenhall, and Scheaffer (2007).

The shuffle feature of any digital music player works by tak-
ing a collection of songs, called a playlist, and producing a ran-
dom permutation. Each song will appear in the shuffled playlist
only once and each shuffle of a playlist is independent from all
others. This type of shuffle contrasts with a physical shuffling
of objects (like a riffle shuffle of a deck of cards). See Baker
and Diaconis (1992) for results on the randomness of the riffle
shuffle.

Let N denote the number of songs in a playlist. The number
of songs in the shuffled playlist the user listens to before se-
lecting a different playlist or reshuffling the same playlist will
be denoted as n. While n ≤ N , n is almost always strictly less
than N for longer playlists. Each song in a N song playlist can
be classified according to one of several groupings, including
Artist, Album, Date When Song was Added to iTunes, whether
or not Song was purchased from the iTunes Store, etc. For a par-
ticular grouping (Artist, Album, etc.), let Gi denote the number
of songs in the playlist belonging to the ith group and g denote
the number of groups.

Assuming a random shuffle, the probability that any of the N !
shuffles will occur is 1/N !. However, if the user only listens to
the first n songs in the shuffled playlist, the probability that any
of the N !/(N − n)! shuffles will occur is equal to (N − n)!/N !.
3.1 Length of Time in One Shuffle Before a Particular

Group Occurs

Both in the Newsweek article and in his book, Steven Levy
describes a phenomenon he calls the Length of Time Before
Steely Dan (LTBSD) Factor. At the time, Levy’s iPod con-
tained approximately 3,000 songs with approximately 50 of
these songs belonging to the artist Steely Dan. To him, his first
iPod seemed to prefer this musical group over other artists. He
noted this by observing the first Steely Dan song appeared to
occur very early in a shuffle, much earlier than he would have
expected.

Assuming a random shuffle, the probability the first song of
a shuffle would belong to the ith artist is equal to Gi/N . Let
Xj = 1 indicate the j th song in the shuffle is from the ith artist
and 0 otherwise and let T be defined as the minimum value of
j so that Xj = 1. Then the distribution of T is negative hyper-
geometric (with r = 1) (Miller and Fridell 2007) so that

P(T = t) =
(

N−t
Gi−1

)
(

N
Gi

) , t = 1,2, . . . ,N − Gi + 1. (1)

Assuming 50 songs from Steely Dan in a playlist of
N = 3,000 songs, in approximately 11% of all shuffles, the
first Steely Dan song will occur at or before the seventh song in
the shuffled playlist and in approximately 50% of all shuffles,
the first Steely Dan song will occur at or before the 41st song
in the shuffled playlist. Contrary to Levy’s first impressions,
the first song from Steely Dan will occur fairly early in a large
percentage of shuffles.

3.2 Number of Songs From One Group in One Shuffle

Many comments from Levy and from other users of the iPod
claim nonrandomness in the shuffle feature based on the num-
ber of songs from a particular grouping, such as Artist or Al-
bum, that occur during the first n songs in a shuffled playlist.
Assuming a random shuffle, for a particular grouping, the num-
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Table 1. Probabilities of hearing 0, 1, 2, or 3 songs from Steely Dan in
the first 20, 40, or 60 songs in a shuffled playlist of N = 3,000 songs.

n P (Yi = 0) P (Yi = 1) P (Yi = 2) P (Yi = 3)

20 0.7138 0.2435 0.0387 0.0038
40 0.5083 0.3492 0.1146 0.0239
60 0.3611 0.3747 0.1873 0.0601

ber of songs Yi from the ith group that appears in the first n

songs of a N song playlist has a hypergeometric distribution
with probability distribution function

P(Yi = y) =
(
Gi

y

)(
N−Gi

n−y

)
(
N
n

)

y = max(0,Gi + n − N), . . . ,min(Gi, n). (2)

In the Newsweek article, Levy points again to the overrep-
resentation of songs from Steely Dan “whose songs always
seemed to pop up two or three times in the first hour of play.”
Assuming Gi = 50 songs from Steely Dan out of a playlist of
N = 3,000, the probabilities of getting zero, one, two, or three
songs from Steely Dan in the first n = 20,40, and 60 songs
(corresponding to roughly 1, 2, and 3 hours of play) in the shuf-
fled playlist are summarized in Table 1. For each value of n,
the probabilities of hearing two or three songs from Steely Dan
are all fairly low. In repeated shuffles, this outcome should not
happen with any great regularity. Unfortunately, Levy did not
perform a systematic study of this outcome, making it possible
these “coincidences” did not occur as often as stated. This pos-
sibility is further reinforced by Levy’s own description of the
group’s music as “terse, jazzy, and sometimes lyrically incom-
prehensible” (Levy 2006, p. 177). Although Levy’s conclusions
may have been influenced by a combination of “coincidences”
and personally meaningful music, we cannot immediately re-
fute his claims based on the probabilities.

3.3 Numbers of Songs From All Groups in One Shuffle

In 2004, Apple, Inc. introduced a new low-priced iPod called
Shuffle, built entirely around the shuffle feature. The first Shuf-
fle held approximately 120 songs. Since most users have many
more than 120 songs in their digital music libraries, Apple uses
a feature called Autofill to randomly select enough songs from
a user’s digital library to fill the capacity of the Shuffle. In his
Newsweek article and book, Levy tested the Autofill feature and
reported “The first few times. . . , I found some disturbing clus-
ters in the songs chosen. More than once the ‘random’ playlist
included three tracks from the same album! Since there are
more than 3,000 tunes in my library, this seemed to defy the
odds.”

One way to look at this statement is to choose an album,
look at the 120 songs selected to fill the Shuffle, and count
how many songs are selected from the chosen album. The num-
ber of songs selected from this album follows the hyperge-
ometric distribution of Equation (2). From a Gi = 12 song
album with a total library of N = 3,000 songs, the probabil-
ity of obtaining three or more songs from this particular al-
bum out of the n = 120 songs selected to fill the Shuffle is

indeed small, approximately 1%. Looking at Levy’s statement
in this manner is equivalent to looking at the probability that
someone in a room will share your birthday. Focusing on one
possible outcome makes the probability of this event fairly
small.

However, this is not the event Levy is describing. The event
he describes is the event where there are three or more songs
from any album in the n = 120 songs selected by the Autofill
feature. This is the same as grouping the library of N = 3,000
songs by Album and looking at the maximum number of songs
from any one album in the n = 120 songs selected to fill the
Shuffle. In terms of the birthday example, his statement is the
equivalent of looking at the probability that someone in a room
will share any birthday.

Define random variables Y1, Y2, . . . , Yg to be the numbers of
songs selected to fill the n = 120 song Shuffle from each of the
g Albums in the playlist. The joint distribution of Y1, Y2, . . . , Yg

follows a multivariate hypergeometric distribution (Johnson
and Kotz 1969) with probabilities

P(Y1 = y1, Y2 = y2, . . . , Yg = yg) =
(
G1
y1

)(
G2
y2

) · · · (Gg

yg

)

(
N
n

) . (3)

The random variable described in Levy’s statement is the max-
imum observation from a multivariate hypergeometric distribu-
tion (max(Y1, Y2, . . . , Yg)) and the event described is the prob-
ability this maximum value will be three or more.

Published research on the multivariate hypergeometric dis-
tribution is focused on the values of (Y1, Y2, . . . , Yg) produc-
ing the largest probability value, the mode of the distribution.
A survey of the literature failed to produce any results for the
probability distribution of the maximum observation from this
distribution. The reason could be tied to the difficulty of directly
calculating probabilities for the maximum observation from this
distribution. Looking at a simplified case, assume the number
of songs in the playlist is N = 3,000 and each album in the li-
brary contains Gi = 12 songs for a total of g = 250 albums. In
this case, the maximum number of songs from any one album
can range from 1 to 12. To calculate the desired probability that
the maximum number of songs from any one album is three or
more, we calculate the complement event; the probability the
maximum number of songs selected from any one album is one
or two.

For the maximum number of songs to be one, each of the
n = 120 songs selected must each come from only one of the
different g = 250 albums. This probability is

P(max(Y1, Y2, . . . , Y250) = 1) =
(250

120

)(12
1

)120

(3000
120

)

= 9.856 × 10−15. (4)

For the maximum number of songs to be two, two songs could
come from one album, or two songs could be selected from
each of two albums, or two songs could be selected from
each of three albums, etc. ending with two songs could come
from each of 60 albums. The remaining songs must each come
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from a different album not already selected. This probabil-
ity is

P(max(Y1, Y2, . . . , Y250) = 2)

=
∑60

x=1

(250
x

)( 250−x
120−2x

)(12
2

)x(12
1

)120−2x

(3000
120

)

= 0.05554727. (5)

This makes the desired probability

P(max(Y1, Y2, . . . , Y250) ≥ 3)

= 1 − P(max(Y1, Y2, . . . , Y250) ≤ 2)

= 0.9445. (6)

Using this simplified example, the situation described in Levy’s
article would happen in 94.45% of all Autofills of the iPod
Shuffle. Far from defying the odds, the event of observing a
cluster of three of more songs from any album when using the
Autofill feature is very much expected to occur. Just as in the
birthday example, going from one particular outcome to any
possible outcome leads to a much larger probability than ex-
pected.

Determining the probabilities of other maximum values be-
comes very difficult for even this simplified case, requiring
more knowledge in combinatorics than most students in un-
dergraduate probability and statistics courses generally possess.
Instead of calculating these probabilities directly, a simulation
program was written to estimate the probability distribution of
the maximum observation from a multivariate hypergeometric
distribution. The estimated probabilities based on 100,000 trials
are listed in Table 2 below.

In reality, the digital music libraries of iPod users will not
contain equal numbers of songs per albums or artists. This is
especially true given the option of purchasing through iTunes
a few favorite songs from a given album instead of owning the
entire album. To determine how much the probability distrib-
ution of the maximum observation from the multivariate hy-
pergeometric distribution would vary in more realistic settings,
another simulation program was written to estimate this proba-
bility distribution function for a general user’s library. For ex-
ample, using the first author’s library of g = 81 albums and
N = 1017 songs, the estimated probability of getting three or
more songs from any one album is approximately 1, the es-
timated probability of getting 8 or more songs from any one
album is 0.06817, and the estimated probability of getting 9
or more songs from any one album is 0.01825. If you group
songs by Artist instead of Album, the effect becomes more dra-
matic. Using the second author’s library of g = 109 artists and

Table 2. Estimated probabilities for the maximum observation of
simplified multivariate hypergeometric distribution.

x P (max Yi ≥ x) x P (max Yi ≥ x)

1 1.0000 5 0.0142
2 1.0000 6 0.0006
3 0.9453 7 0.0003
4 0.2116 8 0.0000

N = 856 songs, the estimated probability of getting 3 or more
songs from any one artist is approximately 1, the estimated
probability of getting 17 or more songs from any one artist is
0.05996 and the estimated probability of getting 18 or more
songs from any one artist is 0.02977.

3.4 Number of Shuffles Required in Order to Hear One
Particular Song

In his article in Newsweek, Levy contrasted the perceived fa-
voritism shown by his iPod to Steely Dan songs versus the lack
of favoritism for a particular song he purchased online. “Months
after I bought Wild Thing from the iTunes store, I’m still wait-
ing for my iPod to cue it up.”

Clearly, if you listen to an entire shuffled playlist, you will
hear each song on the playlist just once. However, this sce-
nario almost never happens since users will listen only to the
first n songs in an N song playlist before reshuffling the same
playlist or choosing another. Assuming a random shuffle, the
probability a particular song occurs in the first n songs of a
N song playlist is n/N . Assuming each shuffle is independent,
the number of shuffles S that occur until a particular song ap-
pears in the first n songs of the shuffle has a geometric distrib-
ution with probability n/N . Table 3 gives the 10th, 25th, 50th,
75th, and 90th percentiles for the random variable S assuming
a N = 3,000 song playlist with varying values of n (30, 60, 90,
120). Depending on his listening habits, it would be entirely
possible under a random shuffle to need many shuffles in order
to hear Wild Thing.

4. GOODNESS–OF–FIT TESTS FOR NUMBER OF
SONGS FROM ONE GROUP IN ONE SHUFFLE

Using several probability models, we are able to explain
much of the anecdotal evidence of a nonrandom shuffle men-
tioned in Levy’s Newsweek article and book. However, the
seeming overrepresentation of a particular Artist early in the
shuffled playlist cannot be refuted based on the probabilities
alone. This perceived overrepresentation of certain groups early
in a shuffled playlist has been reported not only by Levy, but by
iPod users on several different websites. Usually, the groupings
are by Artist or Album, but some users have claimed the shuffle
favors songs more recently added to their iPods or songs pur-
chased through Apple’s iTunes store over songs from their CD
collection.

To determine if there is any merit to these claims, we devel-
oped several goodness-of-fit tests for the number of songs from

Table 3. Percentiles from the distribution of the number of shuffles
required to hear one song when listening to the first n = 30,60,90, or
120 songs from a N = 3,000 song playlist.

Percentile

n 10th 25th 50th 75th 90th

30 10 28 68 137 229
60 5 14 34 68 113
90 3 9 22 45 75

120 2 7 16 33 56
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one group appearing in the first n songs of a N song playlist. We
then conducted each test using real data collected from iPods
purchased by the authors. In order to develop and conduct these
test, we assumed (a) the software on all computers and iPods
tested have no defects and are no different than any other iPods
available for purchase, and (b) to avoid listening to each song
in its entirety and to complete the tests in a reasonable amount
of time, the playlist must be shuffled as soon as the user selects
it. The act of clicking past a song in the shuffled playlist with-
out listening to the entire song does not change the order of the
songs in the current shuffled playlist.

Under the null hypothesis of a random shuffle, the number of
songs Yi from a particular group appearing in the first n songs of
a N song playlist has the hypergeometric distribution in Equa-
tion (2). Under this hypothesis, in s shuffles of the playlist, the
expected number of times y songs will appear in the first n

songs of the playlist is Ei = s ∗P(Yi = y). Pearson’s chi-square
goodness-of-fit test statistic is:

X2 =
c∑

i=1

(Oi − Ei)
2

Ei

. (7)

Several outcomes y are combined in Equation (7) above so
that the expected number Ei for each outcome i is at least 5.
The p-value of the test is P(χ2

c−1 > X2) and we will reject the
null hypothesis when the p-value is less than α = 5%.

We conducted five separate goodness-of-fit tests. The first
three tests were all conducted using the same N = 240 song
playlist on the first author’s iPod. For each of the three tests,
the number of songs by a particular artist out of the first n = 60
songs in the playlist was recorded. The artists were selected
based on the number of songs on the playlist. There were
Gi = 3 songs in the playlist by Faith Hill, Gi = 14 songs by
Queen and Gi = 31 songs by Jimmy Buffett, the most of any
artist in the playlist. For each of the three tests, s = 100 shuffles
were performed. The data collected in each of these three tests
are given in Table 4. Combined outcomes are marked with one
asterisk or with two asterisks. Included in the table are the test
statistic Equation (7) and p-value for each test. In each case, we

will fail to reject the null hypothesis and conclude the shuffle is
random.

To test the perception of favoritism of recently added songs
or songs purchased through Apple, the third author’s iPod was
used. For the first test, a playlist of N = 40 songs was created.
Twenty of these songs were chosen randomly from a large num-
ber that were added on a single day shortly after the iPod was
purchased, and the remaining 20 were chosen randomly from a
large number that were added on a single day over a year later.
For the second test, a different playlist of N = 40 songs was cre-
ated, with 20 songs randomly chosen from all songs purchased
from Apple’s iTunes Store and 20 songs randomly chosen from
all songs from the third author’s CD collection. For each test,
the number of songs appearing in the first n = 10 songs in the
two groups (recently added songs for the first test and purchased
songs for the second test) was recorded for s = 200 shuffles.
The data collected in each of these two tests are given in Ta-
ble 5. Combined outcomes are marked with one asterisk or with
two asterisks. Included in the table are the test statistic found in
Equation (7) and p-value for each test. In each case, we again
fail to reject the null hypothesis and conclude the shuffle is ran-
dom.

Thus, we failed to find any evidence to support the claim of
users like Steven Levy of favoritism of certain groups in the
shuffle.

5. CLASSROOM USES

Several of these examples have been used in the undergrad-
uate probability and statistics courses at Iowa State University.
These examples were well received by students, and several of
them stayed after class or visited office hours to discuss ideas
related to testing the shuffle feature or their personal impres-
sions of the randomness of the shuffle. After teaching these
courses for many years, the first author can state without reser-
vation that no other examples or material has elicited this kind
of response from students in these courses. (See Stefanski 2007
for thought-provoking examples to teach variable selection in
linear regression courses.)

Table 4. Number of songs appearing in the first n = 60 songs of a N = 240 song playlist from three different artists in each of s = 100 shuffles.

Faith Hill (Gi = 3 songs) Queen (Gi = 14 songs) Jimmy Buffett (Gi = 31 songs)

# of songs # of shuffles # of songs # of shuffles # of songs # of shuffles

0 51 0* 1 0, 1, or 2* 0
1 32 1* 7 3* 1
2* 12 2 20 4* 6
3* 5 3 20 5 9

4 23 6 14
5 20 7 20
6** 7 8 16
7** 2 9 17
8 or more** 0 10 11

11 3
12** 2
13** 1
14 or more** 0

X2 = 4.6539 X2 = 3.31200 X2 = 3.57408
p-value = 0.0976 p-value = 0.6520 p-value = 0.8934
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Table 5. Number of songs appearing in the first n = 10 songs of
two N = 40 song playlists (songs recently added and songs purchased
through iTunes) in each of s = 100 shuffles.

Recently added Purchased

# of songs # of trials # of trials

0* 0 0
1* 1 2
2* 4 7
3 19 18
4 40 47
5 61 52
6 43 42
7 24 25
8** 6 6
9** 2 1

10** 0 0

X2 2.1154 2.9092
p-value 0.9088 0.8202

If the examples in this article are to be used in the class-
room, the general idea of a random shuffle feature should be
discussed first, so that all students have a general understand-
ing of the topic. The statistical tests could be used directly from
this article, or students could be asked to design and perform
their own tests on a particular aspect of the random shuffle fea-
ture. If iPods are not available, the same type of study could be
conducted using the shuffling code of a statistical package.

Finally, the analyses in this article could be used to start a dis-
cussion of several aspects of hypothesis tests. Setting the α level
of a hypothesis test is based on prior belief in the truth of the
null hypothesis, and is open to interpretation. From our view-
point, there is no reason to think the software engineers at Ap-
ple, Inc. made an error in the shuffle code. Further, people are
notoriously poor at detecting random and nonrandom patterns
and determining probabilities of events intuitively. These rea-
sons, coupled with the fact that music can be personally mean-
ingful and cause a emotional response in the listener, would
lead us to discuss setting the α level of any test of the random
shuffle feature very low, at most 1%. One could also use these
results to discuss the power of a hypothesis test. The statisti-
cal tests presented in this article are, of course, not a definitive
proof of the randomness of the shuffle. Using a statistical pack-
age, students could estimate the power of a statistical test to
detect a nonrandom shuffle by simulating using probabilities
different than what is indicated by a random shuffle.

6. CONCLUSIONS

Random behavior is a difficult concept. The lack of under-
standing of random behavior often leads to misconceptions
about what constitutes nonrandom behavior. Music also evokes
strong emotions. Songs on a person’s iPod are personally mean-
ingful to them; they own the songs. The controversy about the
shuffle feature combines a difficult and often misunderstood
concept with personally meaningful events. Consequently, the
existence of this controversy is not at all surprising.

Much of the evidence of nonrandom behavior reported by
Steven Levy and others does not hold up when the probability
models of the events are determined. Our results show the prob-
ability models for a random shuffle in many cases do not match
the intuition of users. In addition, our statistical tests show the
long-term occurrences of these events are within expectations
under the assumption of a random shuffle.

[Received April 2007. Revised April 2009.]
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