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Preface to the First Edition

AT THE TIME THE FIRST VOLUME OF THIS BOOK WAS WRITTEN (BETWEEN 1941

and 1948) the interest in probability was not yet widespread. Teaching was

on a very limited scale and topics such as Markov chains, which are now

extensively used in several disciplines, were highly specialized chapters of
pure mathematics. The first volume may therefore be likened to an all-

purpose travel guide to a strange country. To describe the nature of
probability it had to stress the mathematical content of the theory as well

as the surpnsmg varlety of potential applications. It was predicted that
the ensuing fluctuations in the level of difficulty would limit the usefulness

of the book. In reality it is widely used even today, when its novelty has
worn off and its attitude and material are available in newer books written
for special purposes. The book seems even to acquire new friends. The
fact that laymen are not deterred by passages which proved difficult to

students of mathematics shows that the level of difficulty cannot be measured

objectively; it depends on the type of information one seeks and the details

one is prepared to skip. The traveler often has the choice between climbing
a peak or using a cable car.

In view.of this success the second volume is written in the same style.
It involves harder mathematics, but most of the text can be read on different
levels. The handling of measure theory may illustrate this point. Chapter
IV contains an informal introduction to the basic ideas of measure theory
and the conceptual foundations of probability. The same chapter lists the
few facts of measure theory used in the subsequent chapters to formulate
analytical theorems in their simplest form and to avoid futile discussions of
regularity conditions. The main function of measure theory in this connection
is to justify formal operations and passages to the limit that would never be
.questioned by a non-mathematician. Readers interested primarily in practical
results will therefore not feel any need for measure theory.

To facilitate access to the individual topics the chapters are rendered as
self-contained as possible, and sometimes special cases are treated separately
ahead of the general theory. Various topics (such as stable distributions and
renewal theory) are discussed at several places from different angles. To
avoid repetitions, the definitions and illustrative examples are collected in
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chapter VI, which may be described as a collection of introductions to the
subsequent chapters. The skeleton of the book consists of chapters V, VIII,
and XV. The reader will decide for himself how much of the preparatory
chapters to read and which excursicns to take.

Experts will find new results and proofs, but more important is the attempt
to consolidate and unify the general methodology. Indeed, certain parts of
probability suffer from a lack of coherence because the usual grouping and
treatment of problems depend largely on accidents of the historical develop-
ment. In the resulting confusion closely related problems are not recognized
as such and simple things are obscured by complicated methods. Consider-
able simplifications were obtained by a systematic exploitation and develop-
ment of the best available techniques. This is true in particular for the
proverbially messy field of limit theorems (chapters XVI-XVII). At other
places simplifications were achieved by treating problems in their natural
context. For example, an elementary consideration of a particular random
walk led to a generalization of an asymptotic estimate which had been
derived by hard and laborious methods in risk theory (and under more
restrictive conditions independently in queuing).

I have tried to achieve mathematical rigor without pedantry in style. For
example, the statement that 1/(1 + &%) is the characteristic function of
10-17l scems to me a desirable and legitimate abbreviation for the logically
correct version that the function which at the point & assumes the value
1/(1 + &) is the characteristic function of the function which at the point
z assumes the value }e~'%l. |

I fear that the brief historical remarks and citations do not render justice
to the many authors who contributed to probability, but I have tried to give
credit wherever possible. The original work is now in many cases superseded
by newer research, and as a rule full references are given only to papers to
which the reader may want to turn for additional information. For example,
no reference is given to my own work on limit theorems, whereas a paper
describing observations or theories underlying an example is cited even if it
contains no mathematics.! Under these circumstances the index of authors
gives no indication of their importance for probability theory. Another
difficulty is to do justice to the pioneer work to which we owe new directions
of research, new approaches, and new methods. Some theorems which were
considered strikingly original and deep now appear with simple proofs
among more refined results. It is difficult to view such a’theorem in its
historical perspective and to realize that here as elsewhere it is the first step
that counts.

1 This system was used also in the first volume but was misunderstood by some subsequent
writers; they now attribute the methods used in the book to earlier scientists who could
not have known them.
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Introduction

THE CHARACTER AND ORGANIZATION OF THE BOOK REMAIN UNCHANGED, BUT
the entire text has undergone a thorough revision. Many parts (Chapter
XVII, in particular) have been completely rewritten and a few new sections
have been added. At a number of places the exposition was simplified by
streamlined (and sometimes new) arguments. Some new material has been
incorporated into the text.

While writing the first edition I was haunted by the fear of an excessively
long volume. Unfortunately, this led me to spend futile months in shortening
the original text and economizing on displays. This damage has now been
repaired, and a great effort has been spent to make the reading easier.
Occasional repetitions will also facilitate a direct access to the individual
chapters and make it possible to read certain parts of this book in con-
junction with Volume 1.

Concerning the organization of the material, see the introduction to the
first edition (repeated here), starting with the seconld paragraph.

I am grateful to many readers for pointing out errors or omissions. I
especially thank D. A. Hejhal, of Chicago, for an exhaustive and penetrating
list of errata and for suggestions covering the entire book.

January 1970 WILLIAM FELLER
Princeton, N.J.
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Abbreviations and Conventions

Iff is an abbreviation for if and only if.

Epoch.

Intervals

RI, R, RT
1

>
nand N

0, o, and ~.

f(z) U{dz}.

This term is used for points on the time axis, while time is
reserved for intervals and durations. (In discussions of
stochastic processes the word “times” carries too heavy a
burden. The systematic use of “epoch,” introduced by
J. Riordan, seems preferable to varying substitutes such as
moment, instant, or point.)

are denoted by bars: a, a, b isanopen, a, b aclosed interval;

half-open intervals are denoted by a,b and a,b. This
notation is used also in higher dimensions. The pertinent
conventions for vector notations and order relations are
found in V,1 (and also in IV,2). The symbol (a, )
reserved for pairs and for points.

stand for the line, the plane, and the r-dimensional Cartesian
space.

refers to volume one, Roman numerals to chapters. Thus
1; XI,(3.6) refers to section 3 of chapter XI of volume 1.
indicates the end of a proof or of a collection of examples.
denote, respectively, the normal density and dlstrxbutlon
function with zero expectation and unit variance.

Let u and v depend on a parameter z which tends, say,
to a. Assuming that v is positive we write

u= 0(v)1 u remains bounded
= o(v) if . —0
U~Yv J — 1.

"F or this abbreviation see V,3.

Regarding Borel sets and Baire functions, see the introduction to chapter V.
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CHAPTER I

The Exponential and

~ the Uniform Densities

1. INTRODUCTION

In the course of volume 1 we had repeatedly to deal with probabilities
defined by sums of many small terms,-and we used approximations of the
form

(L.1) | P{a < X < b} gfbf(x) dz.

The prime example is the normal approximation to the binomial distribution.?
An approvimation of: this kind is usually formulated in the form of a limit
theorem involving a succession of more and more refined discrete probability
models. In many cases this passage to the limit leads conceptually to a new
sample space, and the latter may be mtuttlvely s1mpler than the orlgmal ,
dnscrete model. -

Examples. (a) Exponential waztmg ttmes To describe wamng ‘times by
a discrete mod=l we had to quantize the time and pretend that. changesl
can. occur only at epochs® 9, 29, .... The simplest waiting time T is the
waiting time for the first success in a sequence- of Bernoulli trials with
probability p,. for success. - Then P{T > nd} = (1—p,)* and the expected
waiting time is E(T) = é/p,. Refinements of this model are-obtained by -

letting & grow smaller in such a way that the expectation d/p;, = « remains -

1 Further examples from volume 1: The arc sine distribution, chapter III section 4;
the distributions for the number of returns to the origin and first passage times in I11,7; the
limit theorems for random walks in XIV; the uniform distribution in problem 20 of XI,7.

2 Concerning the use of the term epoch see the list of abbreviations at the front of the
book:




2 THE EXPONENTIAL AND THE UNIFORM DENSITIES I.1

fixed. To a time interval of duration t there correspond n ~ t[d trials,
and hence for small ¢

(1.2) P{T >t} ~ (1 — 8ja)? v et/

approximately, as can be seen by taking logarithms. This model considers
the waiting time as a geometrically distributed discrete random variable,
and (1.2) states that “in the limit”’ one gets an exponential distribution.
From the point of view of intuition it would seem more natural to start
from the sample space whose points are real numbers and to introduce
the exponential distribution directly.

(b) Random choices. To ‘““choose a point at random” in the interval®

0, 1 is a conceptual experiment with an obvious intuitive meaning. It can
be described by discrete approximations, but it is easier to use the whole
interval as sample space and to assign to each interval its length as prob-
ability. The conceptual experiment of making two independent random

choices of points in 0, 1 results in a pair of real numbers, and so the natural
sample space is a unit square. In this sample space one equates, almost
instinctively, “‘probability’” with “area.” This is quite satisfactory for some

elementary purposes, but sooner or later the question arises as to what the
word ‘““area’’ really means. >

As these examples show, a continuous sample space may be conceptually
simpler than a discrete model, but the definition of probabilities in it depends
on tools such as integration and measure theory. In denumerable sample
. spaces it was possible to assign probabilities to a// imaginable events,
whereas in. general spaces this naive procedure leads to logical contra-
dictions, and our intuition has to adjust itself to the exigencies of formal logic.
We shall soon see that the naive approach can Jead to trouble even in relatively
simple problems, but it is only fair to say that many probabilistically
significant problems do not require a clean definition of probabilities. Some-
times they are of an analytic character and the probabilistic background
serves primarily as a support for our intuition. More to the point is the
fact that compfe,:x stochastic processes with intricate sample spaces may lead
to significant and comprehensible problems which do not depend on the
delicate tools used-in the analysis of the whole process. A typical reasoning
may run as follows: if the process can be described at all, the random
variable Z must have such and such properties, and its distribution must
therefore satisfy such and such an integral equation. Although probabilistic
arguments can greatly influence the analytical treatment of the equation in
question, the lattér is in principle independent of the axioms of probability.

3 Intervals are denoted by bars to preserve the symbol (a, b) for the coordinate notation
of points in the plane. Se~ the list of abbreviations at the front of the book.




12 DENSITIES. - CONVOLUTIONS 3

Specialists in various fields are sometimes so familiar with problems of
this type that they deny the need for measure theory because they are unac-.
quainted with problems of other types and with situations where vague
reasoning did lead to wrong results.*

This situation will become clearer in the course of this chapter, which
serves as an informal introduction to the whole theory. It describes some
analytic properties of two important distributions which will be used
throughout this book. Special topics are covered partly because of significant
applications, partly to illustrate the new problems confronting us and the
need for appropriate tools. It is not necessary to study them systematically
or in the order in'which they appear.

Throughout this chapter probabilities are defined by elementary integrals,
and the limitations of this definition are accepted. The use of a probabilistic
jargon, and of terms such as random variable or expectation, may be justified
in two ways. They may be interpreted as technical aids to intuition based on
the formal analogy with similar situations in volume 1. Alternatively, every-
thing in this chapter may be interpreted in a logically impeccable manner
by a passage to the limit from the discrete model described in example 2(a).

Although neither necessary nor desirable in principle, the latter procedure
has the merit of a good exercise for beginners.

2. DENSITIES. CONVOLUTIONS

A probability density on the line (or R?!) is a function f such that
-+ o0 -
(2.1) f(z) 20, f(x)dz = 1.

For the present we consider only piecewise continuous densities (see V,3

for the general notion). To each density f we let correspond its distribution
Sfunction® F defined by

22) Fo = | sy

4 The roles of rigor and intuition are subject to misconceptions. As was pomted out in
volume 1, natural intuition and natural thinking are a poor affair, but they gain strength
with the development of mathematical theory. Today’s intuition and applications depend
on the most sophisticated theories of yesterday. Furthermore, strict theory represents
economy of thought rather than luxury. Indeed. experience shows that in applications
most people rely on lengthy calculations rather than simple arguments because these
appear risky. [The nearest illustration is in example 5(a).]

" 5 We recall that by ‘‘distribution function” is meant a right continuous non-decreasing
function with limits 0 and 1 at . Volume 1 was concerned mainly with distributions
whose growth is due entirely to jumps. Now we focus our attention on distribution functlons
defined as mtegrals General dlstnbutlon functions will be studied in chapter V.




4 THE EXPONENTIAL AND THE UNIFORM DENSITIES 1.2

It is a monotone continuous function increasing from 0 to 1. We say that
f and F are concentrated on the interval a < x < b if f vanishes outside
this interval. The density f will be considered as an assignment of prob-

abilities to the intervals of the line, the interval a, b = {a < = < b} having
probability

(2.3) F(b) — F(a) = f () de.

Sometimes this probability will be denoted by P{a, b}. Under this assign-
ment an individual point carries probability zero, and the closed interval

a < x < b has the same probability as a, b.

In the simplest situation the real line serves as “‘sample space,” that is,
the outcome of a conceptual experiment is represented by a number. (Just
as in volume 1, this is only the first step in the construction of sample spaces
representing sequences of experiments.) Random variables are functions
defined on the sample space. For simplicity we shall for the time being
accept as random variable only a function U such that for each ¢ the event
{U < 1} consists of finitely many intervals. Then

(2.4) G(t) = P{U < 1}

-is well defined as the integral of f over these intervals. The function G
defined by (2.4) is called the distribution function of U. If G is the integral
of a function g, then g is called the densiry of the distribution G or (inter-
changeably) the density of the variable U.

. The basic random variable is, of course, the coordinate variable® X as
such, and all other random variables are functions of X. The distribution
function of X is identical with the distribution F by which probabilities
are defined. Needless to say, any random variable Y = g(X) can be taken
as coordinate variable on a new line.

As stated above, these terms may be justified by mere analogy with the
situation in volume 1, but the following example shows that our model
may be obtained by a passage to the limit from discrete models.

Examples. (d) Grouping of data. Let F be a given distribution function.
Choose a fixed 6 > 0 and consider the discrete random variable X; which
for (n—1)6 < z < nd assumes the constant value nd. Here n =0, %I,
+2,.... 'In volume 1 we would have used the multiples of & as sample

8 As far as possible we shall denote random variables (that is, functions on the sample
space) by capltal boldface letters, reserving small letters for numbers or location parameters.
This holds in partlcular for the coordinate variable X, namely the function defined by
X(x) ==z,
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space, and described the probability distribution of X, by saying that
(2.5) P{X;=nd} = F(nd) — F((n—1)J).

Now X, becomes a random variable in an enlarged sample space, and its
dlstrlbutlon function is the function that for nd < z < (n+1)6 equals
F(nd). In the continuous model, X; serves as an approximation to X
obtained by identifying our intervals with their right-hand endpoints (a proce-
dure known to statisticians as grouping of data). In the spirit of volume 1 we
should treat X; as the basic random variable and & as a free parameter.
Letting 6 — 0 we would obtain limit theorems stating, for example, that
F is the limit distribution of X;.

(b) For z > 0, the event {X? < z} is the same as {—\/x <XKL \/x}
the random 'variable X2 has a distribution concentrated on 0, oo and

given there by F(\/;) — F(—\/;). By differentiation it is seen that the
density g of X? is given by |

g@) = HfWZ) + f(=Vz))Nz for z>0 | gx)=0 for z<0.

The distribution function of X*® is given for all z by F(Vz) and has
density %f(\/ x)/\/ x2,

The expectation of X is defined by
_ -
(2.6) ' E(X) =f zf(z) dz, ~

provided the integral converges absolutely. The expectations of the approxi-
mating discrete variables X; of example (a) coincide with Riemann sums
for this integral, and so E(X;)—E(X). If u is a bounded continuous
function the same argument applies to the random variable u(X), and the
relation E(u(X‘,)) — E(u(X)) 1mphes

@7 E(u(X)) = f " w(@) f () dz;

the point here is that this formula makes no explicit use of the distribution of
u(X). Thus the knowledge of the distribution of a random variable X
suffices to calculate the expectatlon of functions of it.

The second moment of X is defined by

+00

(2.8) E(X?) = f xzf(x) dz,

—0Q0

provided the integral converges. Putting u = E(X), the variance of X 1is
again defined by

@9 Var (X) = E(X—w)?) = E(X?) — 4
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Note. If the variable X is positive (that is, if the density f is concen-

trated on 0, oc) and if the integral in (2.6) diverges, it is harmless and
convenient to say that X Aas an infinite expectation and write E(X) =

By the same token one says that X has an infinite variance when the integral
in (2.8) diverges. For variables assuming positive and negative values the
expectatlon remains undefined when the integral (2.6) diverges. A typical
example is provided by the density #=1(1422)"1. >

The notion of density carries over to higher dimensions, but the general
discussion is postponed to chapter III. Until then we shall consider only
the analogue to the product probabilities introduced in definition 2 of 1;
V,4 to describe combinations of independent experiments. In other words,
in this chapter we shall be concerned only with product densities of the form
f() gly), f(x)g(y) h(z), etc., where f, g,... are densities on the line.
Giving a density of the form f(z)g(y) in the plane R* means identifying
““probabilities” with integrals:

(2.10) P{4} =ﬁf(7_c) g(y) dz dy.

Speaking of “‘two independent random variables X and Y with densities
f and g is an abbreviation for saying that probabilities in the (X, Y)-plane
are assigned in accordance with (2.10). This implies the multiplication
rule for intervals, for example P{X > a,Y > b} = P{X > a}P{Y > b}.
The analogy with the discrete case is so obvious that no further explanations
are required.

Many new random variables may be defined as functions of X and Y,
but the most important role is played by the sum S =X + Y. The event
A = {S < s} is represented by the half-plane of points (z,y) such that
z 4+ y < s. Denote the distribution function of Y by G so that one has
g() = G'(y). To obtain the distribution function of X + Y we integrate
in (2.10) over y < s — z.with the result

(2.11) P{X+Y < s} =f+wG(s——x)f(x) dz.

For reasons of symmetry the roles of F and G can be interchanged without
affecting the result. By differentiation it is then seen that the density of
X + Y is given by either of the two integrals

=+ o0 + o

(2.12) fG—y) g(y) dy = ] f(y) g(s—y) dy.

The operation defined in (2.12) is a special case of the convolutions to
be introduced in V,4. For the time being we use the term convolution
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only for densities: The convolution of two densities f and g is the function
defined by (2.12). It will be denoted by f*g.

Throughout volume 1 we dealt with convolutions of discrete dlstrxbutlons
and the rules are the same. According to (2.12) we have fxg=g=*f.
Given a third density 4 we can form (f *g) * & and this is the density of
asum X + Y + Z of three independent variables with densities fig h
The fact that summation of random variables is commutative and associative
implies the same properties for convolutions, and so f* g * & is independent
of the order of the operations.

Positive random variables play an important role, and it is therefore

useful to note that if f and g are concentrated on 0, co the convolution
f*g of (2.12) reduces to '

@.13) fogls) = f f(s—9) g(y) dy = f f(2) gls—) dx.

Example. (c) Let f and g be concentrated on 0, co and defined there |
by f(z) = ae™** and g(x) = Be~?*. Then
. e—aix: _ e—ﬂx
(2.14) - frxg(x) =0af T——— x> 0.
—

(Continued in problem 12.) : >

Note on the notion of random variable. The use of the line or the Cartesian
spaces R" as sample spaces sometimes blurs the distinction between random
variables and “‘ordinary’’ functions of one or more variables. ‘In volume 1
arandom variable X could assume only denumerably many values and it was -

"then obvious whether we were talking about a function (such as the square
or the exponential) defined on the line, or the random variable X? or eX
defined in the sample space. Even the outer appearance of these functions
was entirely different inasmuch as the “ordinary”” exponential assumes all
positive values whereas ¢* had a denumerable range. To see the change in
this situation, consider now ‘“‘two independent random variables X and Y
with a common density f.”” In other words, the plane R? serves as sample
space, and probabilities are defined as integrals of f(z)f(y). Now every
function of two variables can be defined in the sample space, and then it
becomes a random variable, but it must be borne in mind that a function of
two variables can be defined also without reference to our sample space. For
example, certain statistical problems compel one to introduce the random
variable f(X)f(Y) [seeexample VI, 12(d)]. On the other hand, inintroducing
our sample space R? we have evidently referred to the ‘‘ordinary” function f
defined independently of the sample space. This “ordinary” function induces
many random variables, namely f(X), f(Y), f(XxY), etc. Thus the
same f may serve either as a random variable or as an ordinary function.
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As a rule (and in each individual case) it will be clear whether or not
we are concerned with a random variable. Nevertheless, in the general
theory there arise situations in which functions (such as conditional prob-
abilities and expectations) can be considered either as free functions dr as
random variables, and this is somewhat confusing if the freedom of choice
is not properly understood.

Note on terminology and notations. To avoid overburdening of sentences it is customary
to call E(X), intcrchangcably, expectation of the variable X, or of the density f, or of
the distribution F. Similar liberties will be taken for other terms: For example, convolution
really signifies an operatlon but the term is applied also to the result of the operation and
the function f* g is referred to as ‘“‘the convolution.” ,

In the older literature the terms distribution and frequency.function were applied to
what we call densities; our distribution functions were described as ‘‘cumulative,” and the
abbreviation c.d.f. is still in use.

3. THE EXPONENTIAL DENSITY
For arbitrary but fixed « > 0 put
(3.1 f(x) =ae®, F@)=1—¢e% for 2>0

and F(z) = f(x) =0 for x < 0. Then f is an exponential density, F its
distribution funcnon A trite calculatlon shows that the expectatzon equals
o}, the variance o~

In example 1(a) the exponential distribution was derived as the limit
of geometric distributions, and the method of example 2(a) leads to the
same result. We recall that in stochastic processes the geometric distribution
frequently governs waiting times or lifetimes, and that this is due to its
“lack of memory,” described. in 1; XIII,9: whatever the present age, the
residual lifetime is unaffected by the past and has the same distribution as the
Ilfetlme itself. It will now be shown that this property carries over to
the exponential limit and to no other distribution.

Let T be an arbitrary positive variable to be interpreted as life- or

waiting time. It is convenient to replace the distribution function of T
by its zail

(3.2) U(t) = P{T > ¢).

Intuitively, U() is the “probability at birth of a lifetime exceeding ¢’
Given an age s, the event that the residual lifetime exceeds #-is the same
as {T > s+¢} and the conditional probability of this event (given age s)
equals the ratio U(s+1)/U(s). This is the residual lifetime distribution, and it
coincides with the total lifetime distribution iff

(3.3 U(s+1) = U@s) U(D), 5,¢t> 0.
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It was shown in 1; XVI11,6 thata positive solution of this equation is necessarily
of the form U(t) =.e~*, and hence the lack of aging described above in
italics holds true if the lifetime distribution is exponential.

We shall refer to this lack of memory as the Markov property of thc
exponential distribution. Analytically it reduces to the statement ‘that
only for the exponential distribution F do the tails' U = 1—F satisfy
(3.3), but this explains the constant occurrence of the exponential dis-
tribution in Markov processes. (A stronger vedsion of the Markov property.
will be described in section 6.) Our description referred to temporal processes,
but the argument is general and the Markov property remains meanmgful
when time is replaced by some other parameter.

Examples. (a) Tensile strength. To obtain a continuous analogue to
the proverbial finite chain whose strength is that of its weakest link denote
by U(r) the probability that a thread of length t (of a given material) can
sustain a certain fixed load. A thread of length s+¢ does not snap iff the
two segments individually sustain the given load. Assuming that there is no
interaction, the two events must be considered independent and U must
satisfy (3.3). .Here the length of the thread takes over the role of the time
parameter, and the length at which the thread will break is an exponentially
distributed random variable. o N

(b) Random ensembles of points in space play a role in many connections
so that it is important to have an appropriate definition for this concept. -
Speaking intuitively, the first property that perfect randomness should have
'is a lack of interaction between different regions: the observed configuration
within region 4, should not permit conclusions concerning the ensemble
in a non-oveérlapping region A4,. Specifically, the probability p that both
4, and A, are empty should equal the product of the probabilities p, and
p. that 4, and A4, be empty. Itis plausible that this product rule cannot
hold for all partitions unless the probability p depends only on the volume
of the region 4 but not on its shape. Assuming this to be so, we denote
by U(z) the probability that a region of volume ¢ be empty. These prob-
abilities then satisfy (3,3) and hence U(f) = e=**; the constant « depends
on the density of the ensemble or, what amounts to the same, on the unit of
length. It will be shown in the next section that the knowledge of U(r)
permits us to calculate the probabilities p,(¢) that a region of volume ¢
contains exactly n points of the ensemble; they are given by the Poisson dis-
tribution p,(r) = e—=*(at)"/n!. We speak accordingly of Poisson ensembles
of points, this term being less ambiguous than the term random' ensemble
‘which may have other connotations. ’ _

(t) Ensembles of circles ‘and spheres. Random ensembles of particles
present a more intricate problem. For simplicity we assume that the particles
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are of a spherical or circular shape, the radius p being fixed. The con-
figuration is then completely determined by the centers and it is tempting to
assume that these centers form a Poisson ensemble. This, however, is
impossible in the strict sense since the mutual distances of centers necessarily
exceed 2p. One feels nevertheless that for small radii p the effect of the
finite size should be negligible in practice and hence the model of a Poisson
ensemble of centers should be usable as an approximation.

For a mathematical model we postulate accordingly that the centers form
a Poisson ensemble and accept the implied possibility that the circles or
spheres intersect. This idealization will have no practical consequences if the
radii p are small, because then the theoretical frequency of intersections
will be negligible. Thus astronomers treat the stellar system as a Poisson
ensemble and the approximation to reality seems excellent. The next two
examples show how the model works in practice.

(d) Nearest neighbors. We consider a Poisson ensemble of spheres (stars)
with density «. The probability that a domain of volume ¢ contains no
center equals e~*'. Saying that the nearest neighbor to the origin has a
distance >r amounts to saying that a sphere of radius r contains no star
~center in its interior. The volume of such a ball equals $nr%, and hence in a
Poisson ensemble of stars the probability that the nearest nelghbor has a
distance >r is given by e~7e”, The fact that this expression is independent
of the radius p of the stars shows the approximative character of the model
and its limitations.!

In the plane, spheres are replaced by circles and the dxstrxbutxon function
for the distance of nearest neighbors is given by 1 — =",

(e) Continuation: free paths. For ease of description we begin with the
two-dimensional model. The random ensemble of circular disks may be
interpreted as the cross section of a thin forest. I stand at the origin, which
is not contained in any disk, and look in the direction of the positive z-axis.
The longest interval 0, not intersecting any disk represents the visibility

or free path in-the x-direction. It is a random variable and we denote
it by L. :

Denote by 4 the reglon formed by the pomts at a distance <p from a
pomt of the interval 0, ¢ on the z-axis. The boundary of 4 consists of the

segments 0 < < ¢ on the lines y = £p and two semicircles of radii p
about the origin and ‘the point (z, 0) on the z-axis. Thus the area of A
equals 2pt + mp?, The event {L > ¢} occurs iff no disk center is con-
tained within . 4, but it is- known in advance that the circle of radius p
about the origin is empty. The remaining domain has area 2pt and we
conclude that the distribution of the visibility L is exponential:

P(L > 1} = 2",
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In'space the same argument applies and the relevant region is formed by
rotating our A about the z-axis. The rectangle 0<z <1, |y| <p is
replaced by a cylinder of volume wp%. We conclude that in a Poisson en-
semble of spherical stars the free path L .in any direction has an exponentzal
distribution: P{L >t} =e ", The mean free path is given by

EQL) = 1/(mapd). -~ >
The next theorem will be used repeatedly.

Theorem. If X,,...,X, are mutually independent random varlables
with the exponential dlstrlbutlon (3.1), then the sum X, +---+ X, has a
density g, and distribution function G, given by

@

(n—1)!

(3.5) | Gn(x)=1_e—¢x(1+°_‘3’+...+

G4 g@=a 250

-(“—x):i) z>0.

(n—1)!

Proof For n=1 the assertion reduces to the definition . 1) ‘The
density g,., is defined by the convolution .

Ge gral) = [ 8.6~ 8.(2) d,

and assuming the validity of (3.4) this reduces to

n+l t n
3.7 () = e [x"‘l dxr = ()" et
3.7 gnra(t) ¢ z=a—
Thus (3.4) holds by induction for all n. The validity of (3.5) is seen by
differentiation. >

‘The densities g, are among the gamma densities to be introduced in
I1,2. They represent the continuous analogue of the negative binomial
distribution found in 1; VI,8 for the sum of n variables with a common
geometric distribution. (See problem 6.)

4. WAITING TIME PARADOXES. THE POISSON PROCESS

Denote by X, X,,... mutually independent random variables with the
common exponential distribution (3.1), and put’ S, = 0, |
4.1) S, =X+ +X, n=1,2,....

We introduce a family of new random variables N(t) as follows: N(?) is
the number of indices k>1 such that S, <t The event {N(t) = n}




12 THE EXPONENTIAL AND THE UNIFORM DENSITIES 1.4

occurs iff S, <t but S, >¢ As S, has the distribution G, the
probability of this event equals G,(f) — G,,,(¢) or
et (2D)"

4.2) PIN@t) =n) = e
n!

In words, the random variable N(t) has a Poisson distribution with ex-
pectation at.

.This argument looks like a new derivation of the Poisson distribution
but in reality it merely rephrases the original derivation of 1; V1,6 in terms
of random variables. For an intuitive description consider chance occurrences
(such as cosmic ray bursts or telephone calls), which we call “arrivals.”
Suppose that there is no aftereffect in the sense that the past history permits
no conctusions as to the future. As we have seen, this condition requires
that the waiting time X, to the first arrival be exponentially distributed.
But at each arrival the process starts from scratch as a probabilistic replica of
the whole process: the successive waiting times X, between arrivals must
be independent and must have the same distribution. The sum S,, represents
the epoch of the nth arrival and N(#) the number of arrivals within the

interval 0, £. In this form the argument differs from the original derivation
of the Poisson distribution only by the use of better technical terms. .
(In the terminology of stochastic processes the sequence {S,} constitutes
a renewal process with exponential interarrival times X,; for the general
notion see VI,6.)
Even this simple situation leads to apparent contradictions which illustrate
the need for a sophisticated approach. We begin by a naive formulation.

Example. Waiting time paradox. Buses arrive in accordance with a
Poisson process, the expected time between consecutive buses being o1,
I arrive at an epoch. . What is the expectation E(W,) of my waiting time
W, for the next bus? (It is understood that the epoch ¢ of my arrival is
- independent of the buses, say noontime sharp.) Two contradictory answers
stand to reason: :

(@) The lack of memory of the Poisson process implies that the distribution
of my waiting time should not depend on the epoch of my arrival. In this
case E(W,) = E(W,) = oL

(b) The epoch of my arrival is “chosen at random’ in the interval.
between two consecutive buses, and for reasons of symmetry my expected
waiting time should be half the expected time between two consecutive
buses, that is E(W,) = %ol

Both arguments appear reasonable and both have been used in practice.
What to do about the contradiction? The easiest way out is that of the
formalist, who refuses to see a problem if it is not formulated in an
impeccable manner. But problems are not solved by ignoring them.
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We now show that bork arguments are substantially,'if not formally,
correct. The fallacy lies at an unexpected place and we now proceed to
explain it.” : >

We are dealing with interarrival times X, =S,, X, =S, — S,,.... By
assumption the X, have a common exponential distribution with expectation
~1. Picking out “any’ particular X, yields a random variable, and one has
the intuitive feeling that its expectation should be «~! provided the choice
is done without knowledge of the sample sequence X;, X,,.... But this
is not true. In the example we chose that element X, for which

Sk—l < t S Sk9

where ¢ is fixed. This choice is made without regard to the actual process,
but it turns out that the X, so chosen has the double expectation 2a~%.
Given this fact, the argument (b) of the example postulates an expected
waiting time «~! and the contradiction disappears.

This solution of the paradox came as a shock to experlenced workers,
but it becomes intuitively clear once our mode of thinking is properly
adjusted. Roughly speaking, a long interval has a better chance to cover
the point ¢ than a shortone. This vague feeling is supported by the following

Proposition. Let X, X,,... be mutually independent with a common
exponential distribution with expectation «™'. Let t >0 be fixed, but
arbitrary. The element X, satisfying the condition S,_; <t < S, has the
density

a’ze " for 0.<z<t

4.3 ‘ (z) = .
“3) v) a(1+at)e™® for x>t

The point is that the density (4.3) is not the common density of the X,.
Its explicit form is of minor interest. [The analogue for arbitrary waiting
time distributions 1s contained in XI,(4.16).]

Proof. Let k be the (chance-dependent) index such that S,_, <t < S,
and put L, equal to S, —S,_,. We have to prove that L, has density
(4.3). Suppose first z < ¢t. The event {L, <z} occurs iff 'S, =y and
t—y < X,,; < z for some combination n,y. This necessitates

t—x<y<t
Summing over all possible n and y we obtain

t

(4.4) PIL< o} =3 | 8@ [ = e=dy.

-

? For a variant of the paradox see example VI,7(a). The paradox occurs also in general
renewal theory where it caused serious trouble and contradictions before it was properly
understood. For the underlying theory see XI,4.
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But g,(¥) + g.(y) + - - - = « identically, and so
4.5) P(L, < 2} = 1 — % — qze—=®

By differentiation we get (4.3) for z < r. For z >t a similar argument
applies except that y ranges from 0 to ¢ and we must add to the right side
in (4.4) the probability e~*' — e=** that 0 < ¢ < S, < z. This completes
the proof. >

"The break in the formula (4.3) at = = r is due to the special role of the
origin as the starting epoch of the process. Obviously

(4.6) limv,(z) = a’ze™*,

v t—* o0
which shows that the special role of the origin wears out, and for an “old”
process the distoibution of L, is nearly independent-of f. One expresses
this conveniently by saying that the *“steady state” density of L, is given
by the right side in (4.6).

- With the notations of the proof, the waiting time W, considered in the
example is the random variable W, = S, — . The argument of the proof
shows also that

@ t
P{Wt < x} = %! — e—a(a:+t) + z gn(y)[e—a(t_—v) — e—a(a:+t—v)] djl/
(4.7) “ 1 |

p— 1 —_ e—aa:
Thus W, has the same exponential distribution as the X, in accordance
with the reasoning (@). (See problem 7.) _
Finally, a word about the Poisson process. The Poisson variables N(7)
were introduced as functions on the sample space of the infinite sequence
of random variables X;, X,,.... This procedure is satisfactory for many
purposes, but a different sample space is more natural. The conceptual
experiment ‘“‘observing the number of incoming calls up to epoch ¢ yields
for each positive ¢ an intéger, and the result is therefore a step function with
unit jumps. The appropriate sample space has these step functions as sample
points; the sample space is a function space—the space of all conceivable
“paths.”” In this space N(¢) is defined as the value of the ordinate at epoch
tand S, asthecoordinate of the nth jump, etc. Events can now be considered
that are not easily expressible in terms of the original variables X,. A typical
example of practical interest (see the ruin problem in VI,5) is the event that
N() > a + br for some t. The individual path (just as the individual
infinite sequence of 41 in binomial trials) represents the natural and un-
avoidable object of probabilistic inquiry. Once one gets used to the new
phraseology, the space of paths becomes most intuitive.
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Unfortunately the introduction of probabilities in spaces of sample
paths is far from simple. By comparison, the step from discrete sample
spaces to the line, plane, etc., and even to infinite sequences of random
variables, is neither conceptually nor technically difficult. Problems of a
new type arise in connection with function spaces, and the reader is warned
that we shall not deal with them in this volume. We shall be satisfied with’
an honest treatment of sample spaces of sequences (denumerably many
coordinate variables). Reference to stochastic processes in general, and to
the Poisson process in particular, will be made freely, but only to provide
an intuitive background or to enhance interest in our problems.

Poisson Ensembles of Points

As shown in 1; VI,6, the Poisson law governs not only ‘“points dis-
tributed randomly along the time axis,”” but also ensembles of points (such
as flaws in materials or raisins in a cake) distributed randomly in plane or
space, prqvided ¢ is interpreted as area or volume. The basic assumption
was that the probability of finding k points in a specified domain depends
only on the area or volume of the domain, but not on its shape,”and that
occurrences in non-overlapping -domains are independent.. In example
3(b) we used the same assumption to show that the probability that a domain
of volume ¢ be empty is given by e~*!. This corresponds to the exponential
distribution for the waiting time for the first event, and we see now that the
Poisson distribution for the number of events is a simple consequence of it.
The same argument applies to random ensembles of points in space, and we
have thus a new proof for the fact that the number of points of the ensemble
contained in a given domain is a Poisson variable. Easy formal calculations
may lead to interesting results concerning such random ensembles of points,
but the remarks about the Poisson process: apply equally to Poisson en-
sembles; a complete probabilistic description is complex and beyond the
scope of the present volume

5. THE PERSISTENCE OF BAD LUCK

As everyone knows, he who joins a waiting line is sure to wait for an
abnormally long time, and similar.bad luck follows us on all occasions.
How much can probability theory contribute towards an explanation?
For a partial answer we consider three examples typical of a variety of
situations. They 111ustrate unexpected general features of chance fluctuations.

Examples. (a) Record values. Denote by X, my waiting time (or financial
loss) at some chance event. Suppose that friends of mine expose themselves
to the same type of experience, and denote the results by X X, ...
To exclude bias we assume that X,, X;,... are mutually independent
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random variables with a common distribution. The nature of -the latter
really does not matter but, since the exponential distribution serves as a
model for randomness, we assume the X; exponentially distributed in
accordance with (3.1). For simplicity of descrlptlon we treat the sequence
{X,} as infinite.

To find a measure for my ill luck 1 ask how long it will take before a
friend experiences worse luck (we neglect the event of probability zero that
X; = X,)- More formally, we introduce the waiting time N as the value of
the first subscript n such that X, > X,. The event {N > n—1} occurs
iff the maximal term of the n-tuple X,, X,, ..., X,,_; appears at the initial
place; for reasons of symmetry the probability of this event is n~'. The
event {N = n} is the same as {N > n—1} — {N > n}, and hence for
n=1,2, :

G.1) P(N=n)=1__L1 __1 -
n n+1 n(n+1)

This result fully confirms that 1 have indeed very bad luck: The random
variable N has infinite expectation! It would be bad enough if it took on the
average 1000 trials to beat the record of my ill luck, but the actual waiting
time has infinite expectation.

It will be noted that the argument does not depend on the.condition that
the X, are exponentially distributed. It follows that whenever the variables
X, are independent and have a common continuous distribution function
F the first record value has the distribution (5.1). The fact that this
distribution is independent of F is used by statisticians for tests of mdepend-
ence. (See also problems 8-11.) ‘ y

The striking and general nature of the result (5.1) combined with the
simplicity of the proof are apt to arouse suspicion. The argument is really
impeccable (except for the informal presentation), but those who prefer to
rely on brute calculation can easily verify the truth of (5.1) from the direct
definition of the probability in question as the (n41)-tuple integral of
antlgTal@t+an) gver the region defined by the inequalities 0 < 7y < z,
and 0 < 2, <z, for j=1,...,n—1.

An alternative derivation of (5.1) is an instructive exercise in conditional probabilities;
it is less simple, but leads to additional results (problem 8). Given that X, =z, the
probability of a greater value at later trials is p = e~2%, and we are concerned with the
waiting time for the first ‘‘succéss™ in Bernoulli trials with probability p. 'The conditional
probability that N = n given X, =« is therefore p(1—p)n—1. To obtain PN = n}
we have to multiply by the density ae—2= of the hypothesis X, =z and integrate with
respect to . The substitution 1 — e~ 22 =t reduces the integrand to 7»~1(1 —¢), the
integral of which equals n~1 — (n+1)~1 in agreement with (5.1).

(b) Ratios. If X and Y are two independent variables with a common
exponential distribution, the ratio Y/X is a new random variable. Its
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distribution function is obtained by integrating a?¢~*=*" over 0 <y <tz
0<=z < 0. Integratlon with respect to y leads to

: ll = ® —0x -atz ____t__
,'(5.2). _ P!XSt.} _J;oce fl )dc: 1+t

The corresponding density is given by (1+¢)~2 It is noteworthy that the
variable Y[X has infinite expectation.

We find here a new confirmation for the persistence of bad luck. Assuredly
Peter has reason for complaintif he has to wait three times as long as Paul,
but the distribution (5.2) attributes to this event probability . It follows’
that, on the average, in one out of two cases either Paul or Peter has reason
for complaint. The observed frequency increases in practlce because very
short waiting times naturally pass unnoticed.

(c) Parallel waiting lines. 1 arrive in my car at the car inspection station
(or-at a tunnel entrance, car ferry, etc.). There are two waiting lines to
choose from, but once I have joined a line 1 have to stay in it. Mr. Smith,
who drove behind me, occupies the place that 1 might have chosen and I
keep watching whether he is ahead of or behind ‘me. Most of the time we
stand still, but occasionally one line or the other moves one car-length.
forward. To maximize the influence of pure chance we assume the two
lines stochastically independent; also, the time intervals between successive
moves are independent variables with a common exponential distribution,
Under thesc circumstances the successive moves constitute Bernoulli trials
in which ‘“‘success’ means that I move ahead, “failure” that Mr. Smith
moves. The probability of success being #, we are, in substance, dealing with
a symmetric random walk, and the curious properties of fiuctuations in
random walks find a striking. interpretation. (For simplicity of description
we disregard the fact that only finitely many cars are present.) Am I ever
going to be ahead of Mr. Smith? In the random walk interpretation the
question is whether a first-passage through 41 will ever take place. As we
know, this event has probability one, but the expected waiting time for it is
infinite. Such waiting gives ample apportunity to bemoan my bad luck, and
this only grows more irritating by the fact that Mr. Smith argues ir the same
way. >

6. WAITING TIMES AND ORDER STATISTICS

An ordered n-tuple (z,,...,z,) of real numbers, may be reordered in
increasing order of magnitude to obtain the new n-tuple

®w, Ty - T(m) where zg) < %@ <00 < Tw-
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This operation applied to all points of the space &" induces n well-defined
functions, which will be denoted by X,),...,X,. If probabilities are
defined in R" these functions become random variables. We say that
X5 - - - s X(my)) s obtained by reordering (X,,...,X,) according to
increasing magnitude. The variable X, is called kth-order statistic® of
the given sample X,, ..., X,. In particular, X;, and X, are the sample
extremes; when n =2y 4+ 1 is odd, X,,,, is the sample median.

We apply this notion to the particular case of independent random
variables X, ..., X, with the common exponential density «e=*=.

Examples. (a) Parallel waiting lines. Interpret X,,...,X, as the lengths
of n service times commencing at epoch 0 at a post office with n counters.
The order statistics represent the successive epochs of terminations or, as
one might say, the epochs of the successive discharges (the “output process™).
In particular, X, is the waiting time for the first discharge. Now if the
assumed lack of aftereffect is meaningful, the waiting time X,,, must have
the Markoy property, that is, X;, must be exponentially distributed. As
a matter of fact, the event {X(, > t} is the simultaneous realization of
the n events {X;.> t}, each of which has probability e~**; because of the
assumed independence the probabilities multiply and we have indeed

(6.1) P{X, > 1} = e

We can now proceed a step further and consider the situation at epoch
X1). The assumed lack of memory seems to imply that the original situation
is restored except that now only n — 1 counters are in operation; the
continuation of the process should be independent of X, and a replica of the
whole process. In particular, the waiting time for the next dlscharge,
namely X, — Xy, should have the distribution

(6.2) | P{x(z)"x(1) > 1} = g (n—1at

analogous to (6.1). This reasoning leads to the following general proposition
concerning the order statistics for independent variables with a common
exponential distribution.

8 Strictly speaking the term ‘‘sample statistic” is synonymous with *‘function of the
sample variables,” that is, with random variable. It is used to emphasize linguistically the
different role played in a given context by the. pnmary variable (the sample) and some
derived variables. For example, the “‘sample mean” (X;+- - -+X,)/n is called a statistic.
Order statistics occur frequently in the statistical literature. We conform to the standard
terminology except that the extremes are usually called extreme “‘values.”
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PTOPOSition” The n variables X(l)’ X(2) -~ X(l)’ ooy X(n) - X(n—-l) are
independent and the density of X1 — X, is given by (n—k)ae™ (v,

Before verifying this proposition formally let us consider its implications.
When n = 2 the difference X3 — Xy, is the residual waiting time after the
expiration of the shorter of two waiting times. The proposition asserts that
this residual waiting time has the same exponential distribution as the original
waiting time and is :ndependent of X;,. This is an extension of the Markov
property enunciated for fixed epochs t to the chance-dependent stopping
time X,. Itis called the strong Markov property. (As we are dealing with
only finitely many variables we are in a position to derive the strong Markov
property from the weak one, but in more compiicated stochastic processes the
distinction is essential.) ' ~

The proof of the proposition serves as an example of formal manipulations
with integrals. For typographical simplicity we let n = 3. As in many
similar situations we use a symmetry argument. With probability one, no
two among the variables X; are equal. Neglecting an event of probability
zero the six possible orderings of X, X,, X, according to magnitude there-
fore iepresent six mutually exclusive events of equal probability. To cal-
culate the distribution of the order statistics it suffices therefore to consider
the contingency: X, < X, < X;. Thus

P{Xy) > t1, Xio)— Xy > 1o, X=X > ty} =

(6.3) . '
= 6P{X1 > tl’ X2—'X1 > t2, x:,"x, > ts}.

(Purely analytically, the space R2 is partitioned into six parts congruent to the
region defined by z, < , < %3, each contributing the same amount to the
integral. The boundaries where two or more coordinates are equal have
probability zero and play no role.) To evaluate the right side in (6.3) we
have to integrate a’e~*=1*#27%) over the region defined by the inequalities

:tl > tl’ .’E2 — zl > t2, Ia — zz > ts;

. A simple integration with respect to z; leaus to

-] ‘*o0
6e_“3f oe ot dxl,J ae 2% dx, =
ty T1+ts

(6.4)

= 3 e—:zt;-—-2atg « e-—-&q; d:rl —_ e-«ta—ht;-:&tl.

131

® This proposition has been discovered repeatedly for purposes of statistical estimation
but the usual pr ofs are computational instead of appealing to the Markov property. See
also problem 13. :
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Thus the joint distribution of the three variables Xy, X(2)—X(1), X(3—X(2)
is a product of three exponential distributions, and this proves the proposition.

It follows in particular that E(X,..,)—Xy)) = 1/(n—k)x. Summing over
k=0,1,...,v—1 we obtain

(6:5) B = (T4 = 4+ ——),

a\n n-—1 - n—v+1
Note that this expectation was calculated without knowledge of the distri-
bution of X(,) and we have here another example of the advantage to be
derived from the representation of a random variable as a sum of other
variables. (See 1; 1X,3.) ' ' .

(b) Use of the strong Markov property. For picturesque language suppose
that at epoch O three persons 4, B, and C arrive at a post office and find
two counters free. The three service times are independent random variables
X, Y, Z with the same exponential distribution. The service times of A.
and B commence 1mmed1ately, but that of C starts at the epoch X,
when either 4 or B is dlscharged We show -that the Markov property
leads to s1mple answers Lo various questions.

(1) What is the probablhty that C will not be the last to leave the post
office? The answer is §, because epoch X;, of the first departure establishes
symmetry between C and the other person being served.

(i) What is the distribution of the time T spent by C at the post office?
Clearly T =X;) + Z is the sum of two independent variables whose
distributions are exponential with parameters 2« and «. The convolution
of two exponential distributions is given by (2:14), and it is seen that T has
density u(t) = 2a(e™*' — e~***) and E(T), = 3/(2).

(iii) What is the distribution of the epoch of the /ast departure? Denote
the epochs of the successive departures by X, Xz, X(5. The difference
X3 — X1y is the sum of the two variables X5 — X3 and X — Xq).
We saw in the preceding example that these variables are independent and
have exponential distributions with parameters 2« and «. It follows that
X — X5 has.the same density u as the variable T. Now X is
independent of X — X(;) and has density 2«e~**. The convolution
formula used in (ii) shows therefore that X3, has density -

4oc[e"°‘t-—e"2°‘t——octe‘2“t]
and E(X() = 2/a.

The advantage of this method becomes clear on comparlson with direct
calculations, but the latter apply to arbitrary service time distributions
(problem 19). :

(¢c) Distribution of order statistics. As a final exercise we derive the
distribution of X,,. The event {X, <t} signifies that at least k among
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the n variables X; are <t This represents at least k ‘‘successes’ in n
independent trials, and hence

(66) ' P{X(k) S t} z ( ) ]\_e—at)je—(n—j)ét.

J=k

By differentiation it is seen that the density of X, is given by

n—
k—1

This result may be obtained directly by the following loose argument.
We require (up to terms negligible in the limit as 4 — 0) the probability
of the joint event that one among. the variables X, lies between ¢ and
t + h and that k — 1 amorig the remaining n — 1" variables are <¢, while
the other n — k variables are >t + h. Multiplying the number of choices
and the corresponding probabilities leads to (6.7). Beginners are advised to
formalize this argument, and also to derive (6.7) from the dlscrete model.
(Continued in problems 13, 17.) . ‘ >

)(] —at)k--le.-,-(r-l--k)af . ae_-at.

(6.7) | n(

7. THE UNIFORM' DISTRIBUTION

The random varlable X is dlstrlbuted umformly in the interval a,b if
its densnty is constant = (b—a)™ for a<z<b and vanishes outside
thls interval. In thls case the variable (X—a)(b—a)™. is distributed uniformly

in 0,1, and we shall usually use this interval as standard. Because of the
appearance of their graphs the densities of the uniform distribution function
are called “‘rectangular.”

With the uniform distribution the interval 0,1 becomes a sample space
in which probabilities of intervals are identical with their lengths. The
sample space corresponding to two independent variables X and Y- that

are uniformly distributed over 0, 0, 1 isthe unit square in R2, and probabilities
in it are defined by their area. The same idea applies to trlples and n-tuples.

A umformly distributed random variable is often called a “point X chosen
at random.” The result of the conceptual experiment “n independent

random ch01ces of a point in 0, 1" requires an n-dimensional hypercube
for its probablhstlc description, but the experiment as such yields »n points
X,, ..., X, in the same interval. With unit probability no two of them are
equal, and hence they partition 0,1 into n + 1 subintervals. Reordering
the n points X, ..., X, in their natural order from left to right we get n
new random variables which will be denoted by Xu),--.» X(n. These are
the order statistics defined in the last section. The subinterva_ls of the

partition are now 0, X;), then X;,, Xy, etc.
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The notion of a point chosen at random on a circle is self-explanatory. To
visualize the result of n independent choices on the circle we imagine the
circle oriented anticlockwise, so that intervals have left and right endpoints

and may be represented in the form a, 5. Two points X, and X, chosen
independently and at random divide the circle into the two intervals X,, X,
and X,, X;. (We disregard again the zero-probability event that X, = X,.)

Examples. (a) Empirical interpretations. The roulette wheel is generally
thought of as a means to effect a “random choice’’ on the circle. In numerical
calculations to six decimals the rounding error is usually treated as a random
variable distributed uniformly over an interval of length 10-%. (For the error
committed by dropping the last two decimals, the discrete model with 100
possible values is more appropriate, though less convenient in practice.)
The waiting time of a passenger arriving at the bus station without regard to
the schedule may be regarded as uniformly distributed over the interval
between successive departures. Of wider theoretical interest are the appli-
cations to random splittings discussed in section 8. In many problems of
mathematical statistics (such as non-parametric tests) the uniform distri-
bution enters in an indirect way: given an arbitrary random variable X
with a continuous distribution F the random variable F(X) is distributed

uniformly over 0, 1. (See section 12.)
(b) The induced partition. We prove the following proposmon n in-

dependently and randomly chosen points X,,...,X, partition 0,1 into
n + 1 intervals whose lengths have the common dlstrlbutlon given by

.1 PL>t}=(1-0)", 0<t<l.

This result is surprising, because intuitively one might expect that at least the
two end intervals should have different distributions. That all n <+ 1
intervals have the same distribution becomes clear on considering the
equivalent situation on the (oriented) circle of unit length.'® Here n + 1
points X,,...,X,,; chosen independently and at random partition the
circle into n + 1 intervals, and for reasons of symmetry these intervals
must have the same distribution. Imagine now the circle cut at the point
X,,, to obtain an interval in which X, ..., X, are chosen independently

10 For a computational verification note that the probability of the event
Xoesr) = Xy > 1)

equals the integral of the constant function 1 over the union of the »! congruent regions
defined either by the string of mequalltus 2, < <5, <% +1 <72, < - <zZor
by similar strings obtained by permutmg the subscnpts A more streamlined calculation
leading to a stronger result is contained in example III, 3(c).
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and at random. The lengths of the n 4 1 intervals of the induced partition
are the same, and they have a common distribution. That this distribution is

given by (7.1) may be seen by considering the leftmost interval 0, X;,. Its

length exceeds ¢ iffall » points X;, ..., X, arein 1,1, and the probability
of this event is (1 —¢)™.

It is a good exercise to verify the proposmon in the special case n = 2 by
inspection of the three events in the unit square representing the sample
space. (Continued in problems 22-26.)

(¢) A paradox (related to the waiting time paradox of section 4). Let two
points X; and X, be chosen independently and at random on the circle of

unit length. Then the lengths of the two intervals X, X, X, and X,, X, are
uniformly distributed, but the length A of the one containing the arbitrary
point P has a different distribution (with density 2z).

In particular, each of the two intervals has expected length %, but the
one containing P has expected length 3. The point P being fixed, but
arbitrary, one has the feeling that the interval covering P is chosen “without
advance knowledge of its properties” (to borrow a phrase from the philos-
ophers of probability). Certainly naive intuition is not prepared for the
great difference between covering or not covering an arbitrary point, but after
due reflection this difference becomes “intuitively obvious.” In fact, how-
ever, rather experienced writers have fallen into the trap.

For a proof imagine the circle cut at P leaving ug with two points chosen

independently and at random in 0, I. Using the same notation as before the
event {A <t} occurs iff X — Xy > 1 — ¢ and by (7.1) the probability
for this equals ¢ The variable A has therefore density 2, as asserted.
(Beginners are advised to try a direct computational verification.)

(d) Distribution of order statistics. If X,,...,X, are independent and-
distributed uniformly in 0,1, the number of variables satisfying the in-
equality 0 < X; < ¢ <1 has a binomial distribution with probability of
“success” equal to . Now the event {X) < 7} occursiff atleast k among
the variables are <¢ and hence
.2) P{X < 1) = Z( ) F(1—1.

i=k
This gives us the distribution function of the kth-order statistics. By
differentiation it is found that the density of X, is given by

(7.3) n(z—i) (1 — )" *,

This may be seen directly as follows: The probability that one among the
X, lies between ¢ and ¢ + h, and that k — 1 among the remaining ones




24 THE EXPONENTIAL AND THE UNIFORM DENSITIES L7

are less than ¢ while n — k are greater than f+ h, equals

n—1\ ., -
n (1 —t—h)""*h.
(joy)a—=n
Divide by 4 and let A — 0 to obtain (7.3).

(e) Limit theorems. To see the nature of the distribution of X, wten
n islarge it is best to introduce E(X(;,) = (n+1)~! asa new unit of measure-
ment. As n— o0 we get then for the tail of the distribution function

(7.49) P{nX,, > 1} = (l ——’t—) — et

, n
It is customary to describe this relation by saying that in the limit. X, is
exponentially distributed with expectation n~'. Similarly |

t\ n\t Nt

(7.5) Hdm>ﬁ=0—ﬂ+(yphﬂ-»w+wa
. n 1/n n

and on the right one recognizes the tail of the gamma distribution G, of
(3.5). In like manner it is eaSily'veriﬁedAthat for every fixed £k as n— o©
the distribution of nX, tends to the gamma distribution G, (see problem 33).
- Now G, is the distribution of the sum of k independent exponentially
distributed variables while X, is the sum of the first k intervals considered -
in example (). We can therefore say that the lengths of the successive
intervals of our partition behave in the limit as if they were mutually in-
dependent exponentially distributed variables.

[In view of the obvious relation of (7.2) with the binomial distribution
the central limit theorem may be used to obtain appreximations to the
distribution of X, when both n and k are large. See problem 34.]

(f) Ratios. Let X be chosen at random in 0,1 and denote by U the
length of the shorter of the intervals 0,X and X,1 and by V=1-U
the length of the longer. The random variable U is uniformly distributed
between 0 and } because the event {U < ¢ < 4} .occurs iff either X < ¢ or
1 — X < ¢ and therefore has probability 2r. For reasons of symmetry V
is uniformly distributed between {4 and I, and so E(U) =}, E(V)={.
What can we say about the ratio. V/U? It necessarily exceeds I and it lies
between 1 and 7 >'1 iff either |

1 .  ~ t
— < X< or <XL—.
1+t_S =t is¥s< 1+t

For ¢ > 1 it follows thzit'

v t—1
7.6 Pl— <t =——,
76) {US } 1+1
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and the density of this distribution is given by 2(¢z4-1)~2. It is seen that
V/U has infinite expectation. This example shows how little information
is contained in the observation that E(V)/E(U) = 3. >

8. RANDOM SPLITTINGS .

The problem of this section concludes the preceding parade of examples
and is separated from them partly because of its importance in physics,
and partly because it will serve as a prototype for general Markov chains.

Formally we are concerned with products of the form Z, = XX, -- - X,
where X;,. ., X, are mutually independent variables distributed uni-

formly in 0, 1.

Examples for applications. In certain collision. processes a physical
particle is spllt into two and its mass m divided between them. Different
laws of partition may fit different processes, but it is frequently assumed
that the fraction of parental mass received by each descendant particle is

distributed uniformly in 0, 1. If one of the two particles is chosen at random
and subject to a new collision then (assuiing that there is no interaction
so that the collisions are independent) the masses of the two second-generation
particles are given by products mX;X,, and so'on. (See problem 21.) With
trite verbal changes this model applies also to splittings of. mineral grains or
pebbles, etc. Instead of masses one considers also energy losses under
collisions, and the description simplifies somewhat if one is concerned with
changes of energy of the same particle in successive collisions. As a last
example consider the changes in the intensity of light when passing through
- matter. Exarn'ple 10(a) shows that when a light ray passes through a sphere
of radius R “in a random direction” the distance traveled through the
sphere is distributed uniformly between 0 and 2R. In the presence of uniform
absorption such a passage would reduce the intensity of the incident ray by a
factor that is uniformly distributed in an interval 0,a (where a <1

depends on ‘the strength of absorption). The scale factor does not seriousfy . -
affect our model and it is seen that n independent passages would reduce

the intensity of the light by a factor of the form Z,. >

To find the distribution of Z, we can proceed in two ways.

(i) Reduction to exponential distributions. Since sums are -generally .
preferable to products we pass to logarithms putting Y, = —log X;. The
Y, are mutually mdependent and for t >0 -

) PG >=PX <ch=ct

‘Now.the distribution function G, of the sum S, =Y, +--- + Y, of a
independent exponentially dlstnbutgd variabigs - was calculated in (3‘,5)
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and the distribution function of Z, = e=S» is given by 1 — G,(logt))
where 0 < ¢t < 1. The density of this distribution function is r-'g,(log 1)
or

n—1
(8.2). fa(t) = —l—l(log 1) , 0<t< 1.
n—

Our problem is solved explicitly. This method reveals the advantages
to be derived from an appropriate transformation, but the success depends
on the accidental equivalence of our problem with one previously solved.

(ii) A recursive procedure has the advantage that it lends itself also to
related problems and generalizations. Let - F,(t) = P{Z, <t} and
0 <t < 1. By definition F,(¢) =t. Suppose F,_, known and note that
Z,=12Z,,X, is the product of two independent variables. Given X, = z
the event {Z, <t} occurs iff Z, , < tfx and has probabili’ F,_,(t/).
Summing over all possible * we obtainfor 0 < < 1

(8.3) F. (1) = 1F,,_l(t/:z:) dz =f1Fn_1(t/x) dx + t.

This formula permits us in principle to calculate successively F,, Fs,. ...
In practice it is preferable to operate with the corresponding densities f,.
By assumption f; exists. Assume by induction the existence of f,_,.
Recalhng that f,_,(s) =0 for s > 1 we get by differentiation from (8.3)

(8.4) so=[nab)E, 0<r<t,

and trite calculations show that f, is indeed given by (8.2).

9. CONVOLUTIONS AND COVEEING THEOREMS

The results of this section have a mild amusement value in themselves
and some obvious-applications. Furthermore, they turn up rather un-
expectedly in connection with seemingly unrelated topics, such as significance
tests in harmonic analysis [example IIT,3( j)] Poisson processes [X1V,2(a)],
and random flights [example 10(e)]. It is therefore not surprising that all
formulas, as well as variants of them, have been derived repeatedly by
different methods. The method used in the sequel is distinguished by its
simplicity and applicability to related problems.

let a > 0 be fixed, and denote by X, X,,... mutually independent
random variables distributed uniformlyover 0, 2. Let S, = X, + -+ + X,.
Our first problem consists in finding the distribution U, of S, and its
density u, = U’
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- By definition u(x) =a? for 0 <x<a and u(x) =0 elsewhere
(rectangular density). The higher u,, are defined by the convolution formula
(2.13) which in the present situation reads

1 (e 1
0D @ =1 [ue-n v =110, - v,@-ar
It is easily seen that
' ra~? 0<Lz<a
9.2) uy(2) = 2 -
E Ra—z)a” a<z<2a,

and, of course, uz‘(x) = 0 for all other z. The graph of u, appears as an
isosceles triangle with basis 0, 2a, and hence u, is called triangular density.
Similarly wu; is concentrated on 0, 3a and is defined by three- different

quadratic polynomials in the three thirds of this interval. For a general
formula we introduce the following

Notation. We write
z + |z
2

for the positive part of the real number z. In the following the ambiguous
symbol z7 stands for (z,)", namely the function that vanishes for z < 0
and equals z" when z > 0. Note that (x—a), is zero for x < a and a
linear function when z > a. With this notation the uniform distribution
may be written in the form :

9.3) z, =

(9-4) Ul(x) = (z, ~ (x_é)+)a—1~

Theorem 1. Let S, be the sum of n independent vdriables distributed
uniformly over 0,a. Let U,(z) = P{S, < z} and denote by u, = U’ the

density of this distribution. Then forn=1,2,... and 2 20
©.5) U@) = 2= 31" )(x )2

! v=0
0.6) () = = L 20 (T e

(These formulas remain true also for # <0 and for n =0 provided
% is defined to equal O on the negative half-axis, and 1 on the positive.)
Note that for a point z between (k—1)a and ka only k terms of the
sum are different from zero. In practical calculations it is convenient to
disregard the limits of summation and to pretend that » varies from —o0
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to co. This is possible, because with the standard convention the binomial
coefficients in (9.5) vanish for » < 0 and v > n (see 1; II,8).

Proof. For n =1 the assertion (9.5) reduces to (9.4) and is obviously
true. We now prove the two assertions simultaneously by induction.
Assume (9.5) to be true for some n > 1. Substituting into (9.1) we get
u,.1 as the difference of two sums. Changing the summation index » in
the second sum to v — 1 we get

hoia(®) = = 3 (= 1)[(”) + (f I)J(x—va):

which is identical with (9.6). Integrating this relation leads to (9.5) with n
replaced by n + 1, and this completes the proof. >

(An alternative proof using a passage to the limit from the discrete model
is contained in problem 20 of 1; XI,7.)

Let a = 2b. The variables X, — b are then distributed uniformly over
the symmetric interval —b, b, and hence the sum of n such variables has
the same distribution as S, — nb. It is given by U,(z+nb). Our theorem
may therefore be reformulated in the following equivalent form.

Theorem 1a. The density of the sum of n independent variables dlstrlbuted
uniformly over —b,b is glven by

— 1 S n1
O uatnb) = —— S -1 (") e + (n—29)b"

We turn to a theorem which admits of two equivalent formulations both of
which are useful in many special probiems arising in applications. By
unexpected good luck the required probability can be expressed simply in
terms of the density u,. We prove this analytically by a method of wide
applicability. For a proof based on geometric arguments see problem 23.

Theorem 2. On a circle of length t there are given n > 2 arcs of length a
whose centers are chosen independently and at random. The probability
@,(t) that these n arcs cover the whole circle is

©.8) @) = a(n—1)lu, (1) 71? ,

which is the same as

9.9) e =3(- 1)“( )( —vf)"'l |

v=0 +

Before proving it, we reformulate the theorem in a form to be used later.
Choose one of the n centers as origin and open the circle into an interval of
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length ¢. The remaining n — 1 centers are randomly distributed in 0, ¢
and theorem 2 obviously expresses the same thing as

Theorem 3. Let the interval 0,t be partitioned into n subintervals by
choosing independently at random n — 1 points X,,...,X,_; of division.
The probability ¢,(t) that none of these subintervals is of length exceeding a
equals (9.9).

Note that ¢,(¢), considered for fixed ¢ asa function of a, represents the
distribution function of the maximal length among the n intervals into which

0, ¢ is partitioned. For related questions see problems 22-27.

‘Proof. It suffices to prove theorem 3. We prove the recursion formula

x)n—z 42
. .

Its truth follows directly from the definition of ¢, as an (n—1)-tuple
‘integral, but it is preferable to read (9.10) probabilistically as follows. The
smallest among X;,...,X,_; must be less than a4, and there are n — 1
choices for it. Given that X; =z, the probability that X; is leftmost
equals [(#—=z)/t]*~2. The remaining variables are distributed uniformly over
z, ¢ and the conditional probability that they satisfy the conditions of the

theorem is @,_;(t—2). Summing over all possibilities we get (9.10).1
Let us for the moment define u, by (9.8). Then (5.10) reduces to

(9.10) 7ul®) = =) [ pu (e 9=

9.11) u (t)=a“fa U, l(t—x)dx -
_o

‘which is exactly the recursion formula (9 1) Wthh served to define u, It
suffices therefore to prove the theorem for n =2. But it is obvious that
@a(t) =1 for 0<t<a and g@,(t) = QRa—1)/t for a <t <2a, in

agreement with (9.8). . - : >

10. RANDOM DIRECTIONS

Choosing a random direction in the plane R? is the same as choosing
‘at random a point on the circle. If one wishes to specify the direction by
its angle with the right z-axis, the circle should be referred to its arc length
6 with 0 <6 <27. For random directions in the space R?® the unit
sphere serves as sample space; each domain has a probablllty equal to its
‘area divided by 4w. Choosing a random direction in R? is equivalent to

11 Readers who feel uneasy about the use of conditional probabxhtxes in connection with
densities should replace the hypothesis X; =z by the hypothesis z — & < X, < z, which
has positive probability, and pass to the hmxt as h— 0.
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choosing at random a point on this unit sphere. As this involves a pair of
random variables (the longitude and latitude), consistency would require
postponing the discussion to chapter III, but it appears more naturally in
the present context.

Propositions. (i) Denote by L the length of the projection of a unit vector
with random direction in R*® on a fixed line, say the z-axis. Then L is
uniformly distributed over 0,1, and E(L) = 1.

(i) Let U be the length of the projection of the same vector on a fixed
plane, say the x,y-plane. Then U has density t/\/ 1—12 for 0<t <1,
and E(U) = }=.

The important point is that the two projections have different distributions.
That the first is uniform is not an attribute of randomness, but depends on
the number of dimensions. The counterpart to (i) in R? is contained in

Proposition. (iii) Let L be the length of the projection of a random unit

vector in R?* on the z-axis. Then L has density 2[(w\/1—2%), and
E(L) = 2/n.

Proofs. (iii) If 6 is the angle between our random direction and the
y-axis, then L = |sin 6] and hence for 0 < z < 1 we get by symmetry

(10.1) P{L<L 2} =P{0 <0 <arcsinz}= 2 arc sin z.

™

The assertion now follows by differentiation.

(i), (ii). Recall the elementary theorem that the area of a spherical zone
between two parallel planes is proportional to the height of the zone. For
0<t<1 the event {L <t} is represented by the zone |z,) <t of

height 2¢, whereas {U <.t} corresponds to the zones |z;] > +/1—12% of

total height 2 — 24/ 1'—¢2. This determines the two distribution functions
up to numerical factors, and these follow easily from the condition that both
distributions equal 1 at ¢t =1 >

Examples. (a) Passage through spheres. Let % be a sphere of radius r
and N a point on it. A line drawn through N in a random direction
intersects = in P. Then: The length of the segment NP is a random variable
distributed uniformly between O and 2r.
~ To see this consider the axis NS of the sphere and the triangle NPS

which has a right angle at P and an angle @ at N. The length of NP is
then 2rcos ®. But cos @ is also the projection of a unit vector in the
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line NP into the diameter NS, and therefore cos © is uniformly distributed
in (_),—l_

In physics this model is used to describe the passage of light through
“randomly distributed spheres.”” The resulting absorption of light was
used as one example for the random-splitting process in the last section.
(See problem 28.)- |

(b) Circular objects under the microscope. Through a microscope. one
observes the projection of a cell on the z,;, z,-plane rather than its actual
shape. In certain biological experiments the cells are lens-shaped and
may be treated as circular disks. Only the horizontal diameter of the disk
projects in its natural length, and the whole disk projects into an ellipse
whose minor axis is the projection of the steepest radius. Now it is generally
assumed that the orientation of the disk is random, meaning that the direction
- of its normal is chosen at random. In this case the projection of the unit

normal on the z-axis is distributed uniformlyin 0, 1. But the angle between
this normal and the z;-axis equals the angle between the steepest radius and
the z;, z,-plane and hence the ratio of the minor to the major axis is dis-

tributed uniformly in 0,1. Occasionally the evaluation of experiments was
based on the erroneous belief that the angle between the steepest radius
and the z,, z,-plane should be distributed uniformly.

(c) Why are two violins twice as loud as one? (The question is serious
because the loudness is proportional to the square of the amplitude of the
vibration.) The incoming waves may be represented by random unit vectors,
and the superposition effect of two violins corresponds to the addition
of two independent random vectors. By the law of the cosines the square
of the length of the resulting vector is 2 4+ 2cos ®. Here © is the angle
between the two random vectors, and hence cos ®. is uniformly distributed

in —1I,1 and has zero expectation. The expectation of the square of the
resultant length is therefore indeed 2.

In the plane cos 6 is not uniformly distributed, but for reasons of symmetry
its expectation is still zero. Our result therefore holds in any number of
dimensions. See also example V,4(e). ‘ >

By a random vector in R® is meant a vector drawn in a random direction
with a length L which is a random variable independent of its direction.
The probabilistic properties of a random vector are completely determined
by those of its projection on the z-axis, and using the latter it is frequently
possible to avoid analysis in three dimensions. For this purpose it is impor-
tant to know the relationship between the distribution function V of the
true length L and the distribution F of the length L, of the projection on
the z-axis. Now L, = XL, where # is the length of the projection of a
unit vector in the given direction. Accordingly, X is distributed uniformly
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over 0, 1 and is independent of L. Given X =z, the event {L_< ¢}
occurs iff L < t/z, and sc_J12 '

.
(10.2) . 140 =f V(t/z) dz t>0.
0
For the corresponding densities we get by differentiation |
1\ [* . d,
(10.3) 70 =[o(1)2 = [“un %,
o \z/ x t Yy
and differentiation leads to _
(10.4) v(t) = —1f'(1), . t>0.

We have thus found the analytic relationship between the density v of the
length of a random vector in P3. and the density f of the length of its pro-
jection on a fixed direction. The relation (10.3) is used to find f when v
is known, and (10.4) in the opposite direction. (The asymmetry between
the two formulas is due to the fact that the direction is not independent of
the length of the projection.)

Examples. (d) Maxwell distribution for velocities. Consider random
vectors in space whose projections on the z-axis have the normal density
with zero expéctation and unit variance. Since length is taken positive we
have |

(10.5) 1) = 2n(t) = N2 e, >0,
From (10.4) then |
(10.6) | C w)=Vomrett, 1>0.

This is the Maxwell density. for velocities in- statistical mecnanics. The
usual derivation combines the preceding argument with a proof that f must
be of the form (10.5). (For an alternative derivation see 111,4.)

‘(e) Lord Rayleigh’s random flights in R3. Consider n -unit vectors whose
directions are chosen independently and at random. We seek the distribution
of the length L, of their resultant (or vector sum). Instead of studying this
resultant directly we consider its projection on the z-axis. This projection is
obv;ously the sum of . independent random variables distributed uniformly

over —1,1. The density of this sum is given by (9.7) with b =1. Sub-
stituting into (10.4) one sees that the denszty of the length L, is given by'®

10.7 - (x) = ( ) x4+n—2» ""2, x> 0.
(10.7) (%) 2,,_,( 2), zo( ', )C ) A
12 This argument repeats the proof of (8.3).
13 The standard reference is to a paper by S. Chandrasekhar {:eprmted in Wax (1954)]
who calculated v, v,,.v4 and the Fourier transformof v,:- Because he uscd polar coordi-
nates, his W,,(z) must be mulnphed by 4mz® to obtain our z,.
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This problem occurs in physics and chemistry (the vectors representing,
for example, plane waves or molecular links). The reduction to one dimension
‘seems to render this famous problem trivial.

The same method applies to random vectors with arbitrary length and
thus (10.4) enables us to reduce random-walk problems in R® to simpler
problems-in. R!. Even when explicit solutions are hard to get, the central
limit theorem provides valuable information [see example VIIL4(b)].  »

Random vectors in R2 are defined in like manner. The distribution V¥ of the true :ength
and. the distribution F of the projection are related by the obvious analogue to (10.2), -
namely

. . 2 =2 z \
(10.8) S F(x) =;f .V(Eﬂ)do'
0

However the inversion formula (10.4) has no simple analogue, and to express V in terms
of F we must depend on the relatively deep theory of Abel’s integral equation. '* We state
without proof that if F has a continuous density f, then.

9 Lo v =z (=)
(10.9) N =VE) == o N\sim G)Sinzﬂ :
(See problems 29-30.)

Example. (f) Binary orbits. In observing a spectroscopic binary orbit astronomers
can measure only the projections of vectors onto a plane perpendlcular to the line of sight.
An elhpse in space projects into an ellipse in this plane. The major axis of the true ellipse
lies in the plane determined by the line of sight and its projection, and it is theréfore
reasonable to assume that the angle between the major axis and its projection is uniformly
“distributed. Measurements determine (in prmcxple) the distribution of the projection. The
distribution of the true major axis is then given by the solution (10.9) of Abel’s integral
equation. - >

- 11. THE USE OF .LEBESGUE' MEASURE

Ifaset A in 0,1 is the union of finitely many non-oveilapping intervals .

L, I,, ... of lengths A1, A5, .., the uniform distribution attributes to it
probability | "
(11.1) P{A}=ll+12+“'

The following examples will show that some simple, but significant, problems

14 The transformation to Abel’s integral equation is by means of the change of variables

1 1 ap
Fl(x)=F(7;), _ Vl(x)_V(\/x), and zsin" 0 =y.

Then (10.8) takes on the form
R A0)

Ry

dy,




34 THE EXPONENTIAL AND THE UNIFORM DENSITIES L11

lead to unions of infinitely many non-overlapping intervals. The definition
(11.1) is still applicable and identifies P{4} with the Lebesgue measure of
A. Itis consistent with our program to identify probabilities with the integral
of the density f(z) = 1, except that we use the Lebesgue integral rather than
the Riemann integral (which need not exist). Of the Lebesgue theory we
require only the fact that if 4 is the union of possibly overlapping intervals
I,,1,, ... themeasure P{A4} exists and does not exceed thesum 4; + 4, + - - -
of the lengths. For non-overlapping intervals the equality (11.1) holds. The
use of Lebesgue measure conforms to uninhibited intuition and simplifies
matters inasmuch as many formal passages to the limit are justified. A set N
is called a null set if it is contained in sets of arbitrarily small measure, that is,
to each € there exists a set 4 © N such that P{4} < e. In this case
P{N} = 0. .

In the following X stands for a random variable distributed uniformly

D

in 0, 1.

Examples. (a) What is the probability of X being rational? The sequence

3,4, %, 1 %, %, ... contains all the rationals in 0,1 (ordered according to
increasing denominators). Choose € < 4 and.denote by J, an interval of
length €**! centered at the kth point of the sequcnce. The sum of the
lengths of the J, is € + € + - - - < ¢, and their union covers the rationals.
Therefore by our definition the set of all rationals has probability zero, and
so, X is irrational with probability one.

It is pertinent to ask why such sets should be considered in probability
theory. One answer is that nothing can be gained by excluding them and that
the use of Lebesgue theory actually simplifies matters without requiring new
techniques. A second answer may be more convincing to beginners and
non-mathematicians; the following variants lead to problems of un-
doubted probabilistic nature. '

(b) With what probability does the digit T occur in the decimal expansion
of X? In the decimal expansion of each z in the open interval between 0.7
and 0.8 the digit 7 appears at the first place. For each n there are 9!
intervals of lenggth 10~ containing only numbers such that the digit 7 appears
at the nth place but not before. (For n = 2 their endpoints are 0.07 and
0.08, next 0.17 and 0.18, etc.) These intervals are non-overlapping, and
their total length is ¥5(1 + % + (%)* + ---) = 1. Thus our event has
probability 1.

Notice that certain numbers have two expansions, for example 0.7 =
= 0.6999 .... To make our question unequivocal we should therefore
specify whether the digit 7 must or may occur in the expansion, but our
argument is mdependent of the difference.. The reason is that only rationals
can have two expansions, and the set of all rationals has probability zero.
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(¢c) Coin tossing and random choice. Let us now see how a “random
choice of a point X between 0 and 1’ can be described in terms of discrete
random variables. Denote by X,(z) the kth decimal of z. (To avoid
ambiguities let us use terminating expansions when possible.) The random
variable X, assumes the values 0, 1, » 9, each with probability 1%, and
the X, are mutually independent. By the deﬁmtxon of a decimal expansion,
we have the identity

(11.2) X =>107%X,.
k=1
This formula reduces thé random choice of a point X to successive choices
of its decimals. _
For further discussion we switch from decimal to dyadic expansions, that
is, we replace the basis 10 by 2. Instead of (11.2) we have now

(11.3) : X=32"X,

k=1
where the X, are mutually independént random variables assuming the
values 0 and 1 with probability 4. These variables are defined on the interval

0, 1 on which probability is equated with Lebesgue measure (length). This
formulation brings to mind the coin-tossing game of volume 1, in which the
sample space consists of infinite sequences of heads and tails, or zeros and
ones. A new interpretation of (11.3) is now possible in this sample space.
Init, the X, are coordinate variables, and X is a random variable defined by
them; its distribution function is, of ‘course, uniform. Note that the second
formulation contains two distinct sample points 0111111 and 1000000 even

though the corresponding dyadic expansions represent the same point }. |
Nevertheless, the notion of zero probability enables us to zdentzfy the two
~ sample spaces. Stated in more intuitive terms, neglecting an ‘event of prob-
ability zero the random choice of a point X between 0 and 1 can be eﬂected
by a sequence of coin tossings; conversely, the result of an infinite coin-

tossing game may be represented by a point z of 0, 1. Every random variable

of the coin-tossing game may be represented by a function on 0,1, etc.
This convenient and intuitive device has been used since the beginning of
probability theory, but it depends on neglecting events of zero probability.
(d) Cantor-type distributions. A distribution with unexpected properties
is found by considering in (11.3) the contribution of the even-numbered
terms or, what amounts to the same, by considering the random variable

2

(11.4) Y =3347X,.

vl

(The factor 3 is introduced to simplify the discussion. The contribution
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of the odd-numbered terms has the same distribution as %Y.) The distri-
bution function F(r) =P{Y < 2} will serve as example for so-called
singular distributions.

In the calct lation we refer to Y as the gain of a gambler who receives
the amount 3 -47* if the kth toss of a fair coin results in tails. This gain
lies between 0 and 3(47'+44-2+4-.-) = 1. If the first trial results in 1 the
gain is >}, while in the contrary case Y < 3(4-244734 -::) =41,
Thus the inequality } <Y < £ cannot be realized under any circumstances,
and so F(z) = § in this interval of length 4. It follows that F can have no
jump exceeding 4.

Next notice that up to a factor } the contribution of the trials number
2, 3, ... constitute a replica of the whole sequence, and so the graph of F

in the interval 0, } differs from the whole graph only by a similarity
transformation -

(11.5) F(z) = }F(4z), 0<z< 4

It follows that F(z) = { throughout an interval of length { centered at
x = 4. For reasons of symmetry, F(z) =$ throughout an interval of
length § centered at =z = }. We have now found three intervals of total
length } + % = § in each of which F assumes a constant value, namely
1, 4, or §. Consequently, F can have no jump exceeding . There remain
four intervals of length {'; each, and in each of them the graph of F differs
from the whole graph only by a similarity transformation. Each of the
four intervals therefore contains a subinterval of half its length in which
F assumes a constant value (namely &, 2, &, §, respectively). Continuing
in like manner we find in n ‘steps 1 + 2 4 22 4 - -+ 4 271 intervals of
total length 21 + 22 4 23 4 -+ 4 2-7" = | — 2-* in each of which F
assumes a constant value.

Thus F is a continuous function increasing from F(0) =0 to F(1) =1
in such a way that the intervals of constancy add up to length 1. Roughly
speaking. the whole increase of F takes place on a set of measure 0. We
have here a continuous distribution function F without density f. >

12. EMPIRICAL DISTRIBUTIONS

The “‘empirical distribution function” F, of n points a,,...,a, on the

line is the step function with jumps 1/n at a,,...,a,. In other words,
) . ’ - —-——-{ . - - -
n F,(x) equals the number of points a, in —oo, z, and F, isa distribution

function. Given n random variables X,, ..., X, their values at a particu-
lar point of the sample space form an n-tuple of numbers and its empirical
distribution function is called the empirical sample distribution. For each
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z, the value F,(z) of the empirical sample distribution defines a new
random variable, and the empirical distribution of (X,, ..., X,) represents
a whole family of random variables depending on the parameter z. (In
technical language we are concerned with a stochastic process with z as
time parameter.) No attempt will be made here to develop the theory of
~empirical distributions, but the notion may be used to illustrate the occurrence
of complicated random variables in simple applications. Furthermore, the
uniform distribution will appear in a new light.

Let X,,...,X, stand for mutually independent random variables with
a common continuous distribution F. The probability that any two variables
assume the same value is zero, and we can therefore restrict our attention
to samples of » distinct values. For fixed = the number of variables X,
such that X, < = has a binomial distribution with probability of “success”
p = F(z), and so the random variable F,(z) has a binomial distribution with
possible values O, 1/n, ..., 1. Forlarge n and z fixed, F,(z) is therefore
likely to be close to F(z) and the central limit theorem tells us more about
the probable deviations. More interesting is the (chance-dependent) graph
~ of F, as a whole and how close it is to F. A measure for this closeness is
the maximum discrepancy, that is,

(12.1) D, = sup |F,(x) — F(z)|.
—O < ®
This is a new random variable of great interest to statisticians because of
the following property. The probability distribution of the random variable
D, is independent of F (provided, of course, that F is continuous). -
For the proof it suffices to verify that the distribution of D, remains
unchanged when F is replaced by a uniform distribution. We begin by

showing that the variables Y, = F(X,) are distributed uniformly in 0, L.

For that purpose we restrict ¢ to the interval 0, 1, and in this interval we
define v astheinversefunction of F. Theevent {F(X,) < t} is thenidentical
with the event {X, < v(f)} which has probability F(v(t)) =t Thus
P{Y, <t} =1t as asserted.

The variables Y,,...,Y, are mutually independent, and we denote
their empirical distribution by G,. The argument just used shows also that
for fixed ¢ the random variable G,(¢) is identical with F,(v(?)). Since
t = F(v(¢)) this implies that at every point of the sample space R"

sup |G, (#) — 7| = sup [F,(v(?)) — F(v(1))| = D,.

This proves the proposition. |
The fact that the distribution of D, is independent of the underlying dis-
tribution F enables statisticians to devise tests and estimation procedures
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applicable in situations when the underlying distribution is unknown. In
this connection other variables related to D,, are of even greater practical use.

Let X;,...,X, X#, ..., X7 be 2n mutually independent random
variables with the common continuous distribution F, and denote the
empirical distributions of (X,,...,X,) and (X7,...,X¥) by F, and
F#, respectively. Put
(12.2) D, = sup [F,(2) — Fy(2)|

This is the maximum discrepancy between the two empirical distributions.
It shares with D, the property that it does not depend on the distribution
F. For this reason it serves in statistical tests of ‘“the hypothesis that
X1, -.-,X,) and (Xf,...,X#) are random samples from the same
population.”

The distribution of D, , was the object of cumbersome calculations
and investigations but in 1951 B. V. Gnedenko and V. S. Koroljuk showed
that the whole question reduces to a random-walk problem with a well-known
solution. Their -argument is pleasing by its elegance and we use it as
illustration of the power of simple combinatorial methods.

Theorem. P{D,., < r/n} equals the probability in a symmetric random .

walk that a path of length 2n starting and terminating at the origin does not

reach the points *r.

Proof It suffices to consider integral r. Order the 2n va,rxablcs ) CTIRNE
X# in order of increasing magmtude andput ¢, =1 or ¢, = —1, accordmg
to whether the kth place is occupied by an X, or an X?. The resulting

: , : n ,
arrangemerit contains »n plusonesand » minus ones, and all ( ) orderings
n

are equally likely. The resulting 2n-tuples (e, ..., €,,) are therefore in a
one-to-one correspondence with the paths of length 2n starting and termin-
ating at the origin. Now if € + -+ ¢, =k the first j places contain
(j+k)/2 unsuperscripted and (j—k)/2 “superscripted variables, and so
there exists a pomt z such that F,(z) = (j+k)/2n and F#(z) = (j—k)/2n.
But then |F, (:v) F#(z)| = |k|/n and hence D, , > |k|/n. The same
argument in reverse completes the proof. >

An explicit expression for the probability in question is contained in 1, XIV,(9.1). Infact
P{D, , < r/n} =w,

is the probability that a particle starting at the origin returns at epoch 2n to the origin
without touching +r. The last condition can be realized by putting absorbing barriers at
+r, and so w, , is the probability of a return to the origin at epoch 2n when +r are

absorbing barriers. [In 1; XIV,(9.1) the interval is 0, a rather than —r,r. Our w, , is
identical with u, o,(r).]
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It was shown in 1; XIV that a lifniting procedure leads from random walks to diffusion

processes, and in this way it is not difficult to see that the distribution of vV nD,, ,, tends to
a limit. Actually this limit was discovered by N. V. Smirnov as early as 1939 and the

similar limit for V/nD,, by A. Kolmogorov in 1933. Their calculations are very intricate
and do not explain the connection with diffusion processes, which is inherent in the
Gnedenko-Koroljuk approach. On the other hand, they have given impetus to fruitful
work on the convergence of stochastic processes (P. Billingsley, M. F. Donsker, Yu. V.
Prohorov, A. V. Skorohod, and others).

It may be mentioned that the Smirnov theorems apply equally to discrepancies D,, , of
the empirical distributions of samples of different sizes m and n. The random-walk
approach carries over, but loses much of its elegance and simplicity (B. V. Gnedenko,
E. L. Rvateva). A great many variants of D, , have been investigated by statisticians.
(See problem 36.)

13. PROBLEMS FOR SOLUTION

In all problems it is understood' that the given variables are mutually independent.

1. Let X and Y have densities e~z concentrated on 0, «. Find the densities

of R '
i) x3 . (i) 3 +2X .

(i) X — Y . (iv) IX - Y|

(v) The smaller of X and Y* (vi) The larger of X and Y°.

2. Do the same: problem if the densities of X and .Y equal }in =1,1 and 0
elsewhere.

3. Find the densitiesfor X + Y and X — Y if X has density ae™2z(x > 0) and
the density-of Y equals 4™ for 0 <z < A.

4. Find the probability that 22 — 2ai + b has complex roots if the ooeﬂicnents
a and b are random variables whose common density is

- (i) uniform, that is, B for 0 <x <h
(ii) exponential, that is, ( aeTez for = >0.

5. Find the distribution functions of X+Y/X and X+Y/Z if the variables X, -
Y, and 'Z have a common exponential distribution.

6. Derive the convolution formula (3.6) for the exponential dlstrlbutlon by a
direct passage to the limit from the convolution formula for the ‘‘negative
_binomial” distribution of 1; VIL,(8.1).

. 7. In the Poisson process of section 4, denote by Z the time between epoch ¢
- and the last precedmg arrival or 0 (the *“‘age” of the current interarrival time). Find
the distribution of and show that it tends to the exponential distribution as
{— 0.

8. In example 5(a) show that the probablhty of the first record value occurring’
at the nth place and being <z equals

-1
n(n+1) .
"Conclude that the probability distribution of the first record valueis 1 — (1 + ax)e™
[More generally, if the X; are positive and subject to an arbitrary contmuous :

distribution F, the first probability equals [n(n+1)]"?F*+}(z) and the dxstrlbutlon
of the ﬁrst record value is F — (1 —F) log (l F)‘1 ]

.(l —emaz)ntl,
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9. Downward runs., The random variable N is defined as the unique index
such that X; > X, 2 * 2 Xn-1 < XN. If the X; have a common continuous
distribution F prove that PN =n} = (n—1)/n! and E(N) = e.

Hint: Use the method of-example 5(a) concerning record values.

10. Platoon formation in traffic.'> Cars start successively at the origin and travel
at different but constant speeds along an infinite road on which no passing is possible.
When a car reaches a slower car it is compelled to trail it at the same speed. In this
way platoons will be formed whose ultimate size depends on the speeds of the cars
but not on the times between successive departures.

. Consider the speeds of the cars as independent random variables with a common
continuous distribution. Choose a car at random, say the next car to depart
Using the combinatorial method of example 5(a) show that:

(a) The probability that the given car does not trail any other car tends to i

(b) The probability that it leads a platoon of total size n (with exactly n — 1
cars trailing it) tends to 1/(n+1)(n+2).

(¢) The probability that the given car is the last in a platoon of size n tends to
the same limit.”

11. Generalization'® of the record value example 5(a). Instead of takinig the single
preliminary observation X, we start from a sample (X, . . ., X,,) with order statistics . -

Xay - -+ » Xm)). (The common distribution F plays no role as long as it is
- contmuous)

(@) If N is the first index 'n such that X,, ., > X, show that P{N > n} =
=m/(m+n). (In example 5(a) we had m = 1.]
(b) If N is the first index -n such that X,, ., > X(,,_,,;) show that

o> =(7)/(71)
r, r
For r > 2 'we have E(N) < o and |

1

(1 +2y’ e

P{N < m=x} '—»1 -

(c) If N is the first index such that X, , falls outsxde the interval between
X(l) and X(m) then

m(m —1) o
P N = - .
{N > n} CTOCTT Rk and E(N) < o
12. (Convolutzons of exponential distributions). For j =0,...,n let X, have

density A;e~%= ‘for z > 0 where 4; % A, unless j = k. Put

Yen = [(Ao =) - (A —}*k)(lk.;-l . (ln—lm“-
Show that X, + : -- + X, has a density given by
*) Po(t) = by hp sl e ™0 + - + gp pehnt]

Hint: Use induction, a symmetry argument, and (2.14). No calculations are
necessary. '

15 G. F. Newell, Operations Research, vol. 7 (1959), pp. 589-598.
16 S, S. Wilks, J. Australian Math. Soc., vol. 1 (1959) pp. 106-112.




1.13 . PROBLEMS FOR SOLUTION 41

13. (Continuation). 'If Y; has the density | je™#=, the density of the 'sum
Y, + -+ Y, is given by

i .
fa(x)=n z ( —l)"“( e k=, z >0,

k=1 k-1 .
Using the proposition of example 6(b) conclude that Jfa—1 is the density of the
spread X, —X(l) of a sample X,,..., X,, if the X, have the. common
density e™%.

14.- Pure birth processes In the pure bxrth process of 1; XVII,3 the system passes |
through a sequence of states £, —~ E, — - - -, staying at E,c for a sojourn time X,
with density A, %= Thus S, =X, + - + X,, is the epoch of the transition
E, — E, ;. Denote by ,,(t) the probablhty of E, at epoch s Show that.

,,(t) =P{S, >t} — P{S, ; > t} and hencethat P, is given by formula *) of
problem 12. The differential equations of the process, namely

Py(r) = —A,Py(2), P, (1) = —A,P,(t) + A 1 Pp (1), n>1,

should be derived (a) from (1), and (b) from the properties of the sums_S,,.
Hint: Using inductively a symmetry argument it suffices to consider the
factor of e~4o?,

15. In example 6(a) for parallel waiting lines we say that the system is in state
k if k counters are free. Show that the birth process model of the last example
apphes with 4, = (n—k)x. Conclude that

P1) = (:)( | —emat)ke—(n—kat,

From this derive the distribution of X;,.

16. Consider two independent queues of m and n > m persons respectlvely
assuming the same exponential distribution for the service times. Show that the
probability of the longer queue finishing first equals the probability of obtaining n
heads before m tails in a fair coin-tossing game. Find the same probability also
by considering the ratio X/Y of two variables with gamma distributions G,, and
G, given in (3.5). .

17. Example of statistical estimation. It is assumed that the lifetimes of electric
bulbs have an exponential distribution with an unknown expectation a. To
estimate « a sample of n bulbs is taken and one observes the lifetimes

Xay <X < <Xy

of the first » bulbs to fail. The “best unbiased estimator” of o™ is a linear
combination U = 4,X;, + -+ + 4X,,, such that E(U) =« and Var (U)
is the smallest possible. Show that

' 1 1 1
U=Xqy+ - '+X(,)) - + Xp(n —r)— , and then Var(U) = - a‘z.

Hint: Do the calculations in terms of the independent variables X(k, — X k1)
(see example 6(b)).

18. If the variables X, ..., X, are distributed uniformly in 0, 1 show that the
spread X(n) — X(1) has densnty n(n—1)x"2(1 —z) and expectation_(n —1)/(n+1).
What is the probablhty that all »n points li¢e within an interval of length ¢?
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19. Answer the questions of example 6(b) when the three service times are

distributed uniformly in 0, 1. (Nofe: The problem involves tedious calculations,
but may provide a useful exercise in technical manipulations.)

20. Four points are chosen independently and at random on a circle. Find the
probability that the chords X;X, and XX, intersect: (a) without calculation
using a symmetry argument; (b) from the definition by an integral.

21. In the random-splitting process of section 8 denote by X;;, X;s, Xo;1. X5
the masses of the four fragments of the sécond generation, the subscript 1 referring
to the smaller and 2 to the larger part. Find the densities and expectations of these
variables.

Note. The next few problems contain new theorems concerning random par-
titions of an interval [see example 7(b)]. The variables X,, ..., X, are supposed

independent and uniformly distributed over -0, #. They induce a partition of this
interval into 7 + 1 subintervals whose lengths, taken in proper order, will be
denoted by L,,...,L,,;. [In the notation of order statistics we have

L; = Xq)s Ly, = X9 — X135+ -+ Loy =t — X

22. Denote by p,(¢) the probablhty that all' » 4+ 1 intervals are longer than A.
[In other words, p,(t) =P{minL; > h}, which is the tail of the distribution
function of the shortest among the intervals.] Prove the recurrepce relation

n ’t"h
™ Pa(t) = o J x*1p, 1 (x) dx.
0
Conclude that p,(¢) =t"(t — (n+1)h)7.
23. From a recurrence relation analogous to (*) prove without calculations that
Sfor arbitrary 2, 20,...,2,,;, 20

(**) PlLi>,..., Ly >z, =t -2, — - — Zp1)E

[This elegant result was derived by B. de Finetti!? from geometrical considerations.
It contains many interesting special cases. When z; = h forall j we get the preced-
ing problem. Example 7(b) corresponds to the special case where exactly one among
the z; is different from zero. The covering theorem 3 of section 9 follows from
(**) and the formula 1; 1V,(1.5) for the realization of at least one among n + 1
events.]

24. Denote by g,(¢) the probability that all mutual distances of the X, exceed
h. (This differs from problem 22 in that no restrictions are imposed on the end
intervals L, and L,,,.) Find a relation analogous to (*) and hence derive gn(?).

'25. Continuation. Without using the solution of the preceding problems show a
prlorl that p,(t) = (¢t —2h)"t™"q,(t —2h).

26. Formulate the analogue to problem 24 for a circle and show that problem
23 furnishes its solution. :

27. An isosceles triangle is formed by a urit vector in the z-direction and another
in a random direction. Find the distribution of the.length of the third side (i) in
R? and (i) in RS,

17 Giornale Istituto Italiano degli Attuari, vol. 27 (1964) pp. 151-173, in Italian.
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28. A unit circle (sphere) about 0 has the north pole on the positive z-axis. A
ray enters at the north pole and its angle with the z-axis is distributed uniformly
over —zw, ; Find the distribution of the length of the chord within the circle
sphere
( pNote) In R? the ray has a random direction and we are concerned with the
analogue to example 10(a@). In R?® the problem is new.

29. The ratio of the expected lengths of a random vector and of its projection
on the z-axis equals 2 in ®% and #»/2 in R% Hint: Use (10.2) and (10.8).

30. The length of a random vector is distributed uniformly over 0, 1. Find the
density of the length of its projection on the z-axis (a) in ®3, and (b) in R2.
Hint: Use (10.4) and (10.9).

. 31. Find the distribution function of the projection on the z-axis of a randomly
chosen direction in R4

32. Find the analogue in R* to the relation (10.2) between the distributions of
the lengths of a random vector and that of its projection on the z-axis. Specialize
to a unit vector to verify the result of problem 31. )

33. A limit theorem for order statistics. (a) Let X,,...,X, be distributed
uniformly in 0, I. Prove that for k fixed and n —

X
P{x(lc) < r—z} - Ga(®), 2>0,

where G, is the gamma distribution (3.5) [see example 7(e)].
(b) If the X, have an arbitrary continuous distribution function F, the same
limit exists for P{X;, < ®(x/n)} where @ isthe inverse function of F. (Smirnov.)
34. A4 limit theorem for the sample median. The nth-order statistic X, of
(X, ..., X,,1) is called the sample median. If the X; are independent and

uniformly distributed over 0, 1 show that
P{X(, — 3 < 1/V8n} - ()

where ® stands for the standard normal distribution.

35. Continuation. Let the X; have a common distribution F with a con-
tinuous density f. Let m be the theoretical median, that is, let F(m) = §. Show
that
2n=2\ (= )
CPX(n <7} = @n—1) 1) Fr=1g)[l —~F@)™ f(9) dy

-— Q0

whence, using the preceding problem,

!
{ m <f(m)\/8‘n} ®

36. Prove the following variant of the Gnedenko-Koroljuk theorem in section 12:

P{SUP [F,(x)—F ()] > } - ( 2 ) / (2”),
z n n—r n

where r =1,2,.:.,n. (In contrast to the original formulation the absolute
values on the left are omitted and so only one absorbing barrier at » occurs in the
associated random walk.)

— —
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37. Generation of exponentially distributed variables from uniform ones.® Let

Xy, Xs, . . . be independent and uniformly distributed in 0, 1. Define the random
variable N as the index such that X; > X, > - -~ > Xn_; < Xn (see problem 9).
Prove that

xn-1 xn

whence P{X; <z, Neven} =1 —¢=.

Define Y as follows: A “‘trial” is a sequence X,,...,Xn; it is a “failure”
if N is odd. We repeat independent trials as long as necessary to produce a
“success.” Let Y equal the number of failures plus the first variable in the
successful trial. Prove that P{Y <z} =1 —¢™=.

18 J. von Neumann, National Bureau of Standards, Appl. Math. Series, No. 12 (1951)
pp. 36-38.




CHAPTER II

Special Densities.

Randomization

The main purpose of this chapter is to list for reference the densities
that will occur most frequently in the following chapters. The randomization
procedure described in the second part is of general use. Its scope is
illustrated by deriving certain distributions connected with Bessel functions
which occur in various applications. It turns out that this simple probabilistic
approach replaces involved calculations and hard analysis.

1. NOTATIONS AND CONVENTIONS

We say that a density f and its distribution F are concentrated' on an
interval I =a,b if f(@) =0 for all z outside I. Then F(z) =0 for
x <a and F(x) =1 for > b. Two distributions F and G, and also
their densities f and g, are said to be of the same type if they stand in the
relationship

(1.1) G(_x)' = F(ax+b), g(x) = af (az+b),

where a > 0. We shall frequently refer to b as a centering parameter, to
a as a scale parameter. These terms are readily understood from the fact
that when F serves as distribution function of a random variable X then
G is the distribution function of

(1.2) '_ Y=

In many contexts only the type of a distribution really matters.

! According to common usage the closed interval I should be called the support of f.
A new term is introduced because it will be used in the more general sense that a distribution
may be ‘concentrated on the set of integers or rationals.

45
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The expectation m and variance o® of f (or of F) are defined by

(1.3)
m=|"e@dn, o= [ ammps@ar = [ e an—m

—0 -0

provided the integrals converge absolutely. It is clear from (1.2) that in
this case g has expectation (m—b)/a and variance o2/a?. It follows that
for each type there exists at most one density with zero expectation and unit

variance.
We recall from I,(2.12) that the convolution f=fi*f, of two densities
J1 and f; is the probability density defined by

(14) &= wfl(x—y)fz(y) dy.

When f, and f, are concentrated on 0, co this formula reduces to

(1.5) f@) = j:fl'(x—y)fz(y) d, 2> 0,

The former represents the density of the sum-of two independent random var-
iables with densities f; and f,. Note that for gi(z) = fi(x+b,)- the con-
volution g = g, * g, is given by g(x) = f(x+b,+b,) asis obvious from (1.2).

Finally we recall the standard normal distribution function and its density
defined by ‘

(1.6) n(x) = L__ e, N(z) = — f 4y,

2m \/ T J—oo
Our old acquaintance, the normal density with expectation m and variance
o?, Is given by

1n("”“”") >0,
o o »

-

Implicit in. the central limit theorem is the basic fact that the family of
normal densities is closed under convolutions; in other words, the convolution
of two normal densities with expectations m,, m, and variances o2, o2 is
- the normal density with expectation m, + m, and variance ¢* = o? 4 o}.
In view of what has been said it suffices to prove 1t for m, = m, = O It 1s
asserted that

2 oo a2 2
17 - 1 exp |:— x2:| = 1 J exp |:— (z 23/) — y2:| dy
N2mo 20 270,05 J-w 207 20,1
and the truth of this assertion becomes obvious by the change of variables
z = y(0/0,0,) — ®(0,/c0,) where z is fixed. (See problem 1.)
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2. GAMMA DISTRIBUTIONS

The gam)ﬁa Sfunction T' is defined by

(2.1) | , 'y = f x“ie"'dx, A o - t> 0.
0 : . !
[See 1; II,(12.22).] It interpolates the factorials in the sense that
C'(n+1)=n! for n=0,1,....

Integration by parts shows that F(t)= (t—l) F(t—l) for all ¢ > 0.
(Problem 2.) '

The gamma densities concentrated on 0, « are defined: by

—_ v v—l —ax ’
2.2) f”()—P(v)ax e, v>0, z>0.
Here « > 0 isthe trivial scale parameter, but » > 0 is essential. The special
case f, , represents the exponential density, and the densities g, of I1,(3,4)
coincide with Som m=1,2,..). A trite calculation shows that the
expectation of f, , equals v[a, the variance v[«2.
The family of gamma densities is closed under convolutions:

(23) fau*fav=fau+v :u>0 1’>0
This important property generalizes the theorem of I,3 and will be in constant
use; the proof is exceedingly simple. By (1. 5) the left side equals

ey e[y ay
- L Te) o |
After the substitution y = z¢ this expression differs from f,, . ,(z) by a
numerical factor only, and this equals unity since both f, ., and (2.4) are
probability densities.
The value of the last integral for x ==1 is the so-called beta integral
B(u, v), and as a by-product of the proof we have found that

_I'wI'e
D)

for all © >0, v > 0. [For integral x and » thlS formula is used in 1;
VI,(10.8) and (10.9). See also problem 3 of the present chapter.]

As to the graph of fi,,, it is clearly monotone if v <1, and unbounded
near the origin when » < 1. For » > 1 the graph of f;, is bell- shaped
attaining at z =» — 1 its maximum (y—1)""e="-P[T'(») which is close
to [2m(v—1)]t (Stirling’s formula, problem 12 of 1; II, 12). It follows from

. 1
2.5) B, ¥) = f (1—yy~ " dy
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the central limit theorem that

(2.6) :f(——tl:f) — (@), y o> o0,

*3. RELATED DISTRIBUTIONS OF STATISTICS

The gamma densities play a crucial, though sometimes disguised, role in
mathematical statistics. To begin with, in the classical (now somewhat
outdated) system of densities introduced by K. Pearson (1894) the gamma
densities appear as ‘“type III.” A more frequent appearance is due to the
fact that for a random variable X with normal density n the square X?
has density z~#n(z?) = f; ;(2). In view of the convolution property (2.3)
it follows that:

If X,,...,X, are mutually independent normal variables with expectation
0 and variance o®, then X2+ - + X2 has density f,,.2 /-

To statisticians y? = X2+ --- 4 X% is the ‘“sample variance from a
normal population’ and its distribution is in constant use. For reasons of
tradition (going back to K. Pearson) in this connection f; ;, is called chi-
square density with n degrees of freedom. ‘

In statistical mechanics X2 4 X2 4 X2 appears as the square of the speed
of particles. Hence v(z) = 2zf} ;3(2*) represents the density of the speed
itself. This is the Maxwell density found by other methods in I,(10.6). (See
also the example in II1,4.) ,

In queuing theory the gamma distribution is sometimes called Erlangian.

Several random variables (or “statistics”) of importance to statisticians
are of the form T = X/Y, where X and Y are independent random vari-
ables, Y > 0. Denote their distributions by F and G, respectively. and
their densities by f and g. As Y is supposed positive, g is concentrated
on 0, o and so '

(.1) P(T < 1} = PIX < 1Y) = [ "Flt9) g(0) o

By differentiation it is found that the ratio T = X/Y has density

(3.2) wt) = | fyyy g(w) dy.

Jo

Examples. (a) If X and Y have densities f,,, and f,,, then X[Y
has density

' (hm—1
(3.3) w(t) = —amdn) LT

I'(ym) D@n) (14027

* This section treats special topics and is not used in the sequel.

t > 0.
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In fact, the integral in (3.2) equals
ti‘m—l
247 D(4m) T(3m) Jo

and the substitution }(1+t)y = s reduces it to (3.3).
In the analysis of variance one considers the special case

X=X+ -+X% and Y=Y+ -+ Y2

(3.4 ® i(m+n)—1e—}(1+t)v dy

where X;,...,X,, Yi,...,Y, are mutually independent variables with

the common normal density n. The random variable F = (nX/mY/) is called.
Snedecor’s statistic and its density (m/n) w((m/n) ) is Snedecor’s density, or the
F-density. The variable Z = log 4F is Fisher’s Z-statistic, and its density
Fisher’s Z-density. The two statistics are, of course, merely notational
variants of each other.

(b) Student’s T-density. Let X,Y,,...,Y, be independent with the
common normal density n. The variable

X+/n
VYi4: 4V

is known to statisticians as Student’s T-statistic. We show that its-density is
given by

(3.6) w(t) =

(3.5) T=

S b ¢, LIEED)
(143 n)¥'nt Jmm [(in)
In fact, the numerator in (3.5) has a normal density with zero expectation and

variance n, while the density of the denominator is given by 2zf} 31a(2%).
Thus (3.2) takes on the form

(3.7)

o0
~3a¥nnd, 0

— s ’ d -
Jm 2""1A”“I‘(n/2).£ vy

The substitution s = §(1+4%/n)y* reduces the integral to a gamma integral
and yields (3.6). >

4. SOME COMMON DENSITIES

In the following it is understood that all densities vanish identically outside
the indicated interval.
(a) The bilateral exponential is defined by 3ae="#! where « is a scale
parameter. It has zero expectaticn and variance 2«~2. This density is
" the convolution of the exponential density «e™** (x > 0) with the mirrored
density «e*® (z < 0). In other words, the bilateral exponential is the density
of X, — X, when X, and X, are independent and have the common
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cxponentlal density ae** (.c > 0). In the French literature it is usually
referred to as the “second law of Laplace,” the first being the normal
distribution. o ‘

(b) The uniform (or rectangular) density p, and the triangular density 7,
concentrated on —a, a are defined by

(4.1) @ =5 m@=-(1-8) 2] < a.
_ 2a : a a :
It is easily seen that p, * p, = 75,. In words: the sum of two uniformly
~ distributed variables in —a, a has a triangular density in —2a, 2a. [The
repeated convolutions p, * -+ * p, are described in I,(9.7).]
(¢c) Beta densities in 0,1 are defined by’

' ‘ L(p+v) ~1 -1 '
4.2 x C
(42) .4_ _@A)_n)R)( 2) 0<z<1,
~'where x> 0 and » > 0 are free parameters. That (4.2) indeed defines a
- probability density follows from (2.5}. By the same formula it is seen that
B, has expectation »/(u-+»), and variance wy/[(u+v)*(u-+v+1)] If
p<1,v <1, the graph of B, , is U-shaped, tending to oo at the.limits.
For 4> 1, »>1 the graph is bell-shaped. ‘For p=v= 1 we get the
uniform density as a special case. '
A simple variant of the beta den51ty is defined by

8. ( 1 ) _ Dty et
(1+t)2 N41) T@TIE) (Lo
If the variable X has density (4.2) then Y = X' — 1 has density (4.3).

(4.3)

0<t< .

In the Pearson system the densities (4.2) and (4.3) appear as types I and VI. The
Snedecor density (3.3) is a special case of (4.3). The densities (4.3) are sometimes called
after the economist Pareto. It was thought (rather naively from a modern statistical
standpoint) that income distributions should have a tail with a density ~ 4z~ as  — o,
and (4.3) fulfills this requirement.

(d) The so-called arc sine density
T
W\/Q—fz 1—2) ,
is actually the same as the beta density fy ;, but deserves special mention
because of its repeated occurrence in fiuctuation theory. (It was introduced

in 1; III,4 in connection with the unexpected behavior of sojourn times.)
The misleading name is unfortunately in general use; actvally the distribu-

tion functionis given by 271 arc sin \/z. (The beta densities with x + v = 1
are sometimes referred to as “‘generalized arc sine densities.”)

(4.4) 0<x<1
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(¢) The Cauchy density centered at the origin is defined by

1 t
4.5 () = —- y — 0,
(4.5) 74=) a4 2 <z<
where ¢ > 0 is a scale parameter. The corresponding distribution function
i1s 4 4+ =!arc tan (zft). The'graph of y, resembles that of the normal
density but’approaches the axis so slowly that an expectation does not exist.
The importance of the Cauchy densities is due to the convolution formula

(4.6) Vs * V= Ve

It states that the family of Cauchy densities (4.5) is closed under convolutions.
Formula (4.6) can be proved in an elementary (but tedious) fashion by
.a routine decomposition of the integrand into partial fractions. A simpler
proof depends on Fourier analysis.

The convolution formula (4.6) has the amazing consequence that for
independent variables X,,...,X, with the common density (4.5) the
average (X, + - -+ + X,)[n has the same density as the X;.

Example. Consider a laboratory experiment in which a vertical mirror
projects a horizontal light ray on a wall. The mirror is free to rotate about
a vertical axis through 4. We assume that the direction of the reflected
ray is chosen “at random,” that is, the angle ¢ between it and the perpen-
dicular 4O to the wall is distributed uniformly between —iw and .
The light ray intersects the wall at a point at a distance

X=t-tang

from O (where t is the distance AO of the center A4 from the wall). It
is now obvious that the random variable X has density (4.5).2 If the
experiment is repeated n times the average (X;+---+X,)/n has the same
density and so the averages do not cluster around 0 as one should expect by
analogy with the law of large numbers. ' >

The Cauchy density has the curious property that if X has density y, then 2X has
density y,, = y; *¥,. Thus 2X = X + X is the sum of two dependent variables, but its
density is given by the convolution formula. More generally, if U and V are two independ-
ent variables with common density y, and X = aU + bV, Y =cU + dV, then X +Y
has density Y(g+p+c+q); Which is the convolution of the densities Y44, Of X and Y(g.q),

2 A simple reformulation of this experiment leads to physical interpretation of the
convolution formula (4.6). Our argument shows that if a unit light source is situated
at the origin then y, represents the distribution of the intensity of light along the line
y =1t of the z,y-plane. Then (4.6) expresses Huygens' principle, according to which the
intensity of light along ¥ = s + ¢ is the same as if the source were distributed along the
line y = ¢t following the density y,. (I owe this remark to J. W. Walsh.)
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of Y; nevertheless, X and Y are not independent. (For a related example see problem
1in IIL,9.)

[The Cauchy density corresponds to the special case n =1 of the family (3.5) of
Student’s T- densities. In other words, if X and Y are independent random variat'es
with the normal density n, then X/|Y| has the Cauchy density (4.5) with ¢ = 1. For
some related densities see problems 5-6.]

The convolution’ property (2.3) of the gamma densities looks exactly
like (4.6) but there is an important difference in that the parameter v of
the gamma densities is essential whereas (4.6) contains only a scale parameter.
With the Cauchy density the zype is stable. This stability under convolutions
is shared by the normal and the Cauchy densities; the difference is that
the scale parameters compose according to the ruless o? = 02 + o2 and
t =1 + £, respectively. There exist other stable densities with similar
properties, and with a systematic terminology we should call the normal and
Cauchy densities “symmetric, stable of exponent 2 and 1.”” (See VI,1.)

(f) One-sided stable distribution of index }. If M is the normal distribution
of (1.6), then

(4.7) F ) = 2[1 — N(a/v2)], >0,

defines a distribution function with density

, « 1 —-i‘ 2/.1: | ‘
(4.8) fl@) = 2= ek z > 0.
\/27r \/x3
Obviously no expectation exists. This distribution was found in 1; IIL,(7.7)
and again in 1; X,I as limit of the distribution of recurrence times, and
this derivation implies the composition rule

4.9) fe*fs =f, where y=oa+t B.

(A verification by elementary, but rather cumbersome, integrations is
possible. The Fourier analytic proof is simpler.) If X,,...,X, are
independent random variables with the distribution (4.7), then (4.9) implies
that (X;+---+X,)n"? has the same distribution, and so the averages
'}(X‘1+- -+ ++X,)n ! are likely to be of the order of magnitude of n; instead of
converging they increase over all bounds. (See problems 7 and 8.)

(g) Distributions of the form e~* *(x > 0, > C) appear in connection with order

statistics {(see problem 8). Together with the variant 1 — e=2* they appear (rather
nysteriously) under the name of Weibull distributions in statistical reliability theory.
(h) The logistic distribution function

1
(4.10) Fi) = ———, a>0
14 e—%t—§

may serve as a warning. An unbelievably huge literature tried to establish a transcendental
“law of logistic growth™; measured in appropriate units, practically all growth processes
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were supposed to be represented by a function of the form (4.10) with ¢ representing
time. Lengthy tables, complete with chi-square tests, supported this thesis for human
populations, for bacterial colonies, development of railroads, etc. Both height and weight
of plants and animals were found to follow the logistic law even though it is theoretically
clear that these two variables cannot be subject to the same distribution. Laboratory
experiments ori bacteria showed that not even systematic disturbances can produce other
results. Population theory relied on logistic extrapolations (even though they were
- demonstrably unreliable). The only trouble with the theory is that not only the logistic
distribution but also the normal, the Cauchy, and other distributions can be fitted to the
same material with the same or better goodness of fit3 In this competition the logistic
distribution plays no distinguished role whatever; most contradictory theoretical models
can be supported by the same observational material.

Theories of this nature are short-lived because they open no new ways, and new con-
firmations of the same old thing soon grow boring. But the naive reasoning as such has not
been superseded by common sense, and so it may be useful to have an explicit demonstration
of how misleading a mere goodness of fit can be.

5. RANDOMIZATION AND MIXTURES

Let F be a distribution function depending on a parameter 6, and u a
_probability density. Then

+00 |
<1 W(z) =f F(z, 0) u(6) d6
is a monotone function of z increasing from Q to 1 and hence a distribution
function. If F has a continuous density f, then W has a density w given
by ' ‘

(5.2) w(xj = L:of(x, ) u(6) do.

Instead of integrating with respect to a density u we can sum with respect
to a discrete probability distribution: if _61, 0., ... are chosen arbitrarily
and if p, > 0, Zp, = 1, then .

(5.3) | w(z) = gf(x, 0:) pr

defines a new probability density. The process may be described proba-
bilistically as randomization; the parameter 6 is treated as random variable
and a new probability distribution is defined in the z, 6-plane, which serves
as sample space. - Densities of the form (5.3) are called mixtures, and the term
_is now used generally for distributions and densities of the form (5.1) and
(5.2).

We do not propose at this juncture to develop a general theory. Our
aim is rather to illustrate by a few examples the scope of the method and its

3 W. Feller, On the logistic law of grow:h and its empirical verifications in biology, Acta
Biotheoretica, vol. 5 (1940) pp. 51-66. -
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probabilistic content. The examples serve also as preparation for the notion
of conditional probabilities. The next section is devoted to examples of
discrete distributions obtained by randomization of a continuous parameter.
Finally, section 7 illustrates the construction of continuous processes out of
random walks; as a by-product we shall obtain distributions occurring in
many applications and otherwise requiring hard calculations.

Examples. (a) Ratios. If X is a random variable with density f, then
for fixed ¥ > O the variable X[y has den51ty f(zy)y. Treating the parameter
y as random variable with density g we get the new density

-+

(3:4) w(z) = U (zy)y 8(¥) dy.
This is the same as formula (3.2) on which the discussion in section 3 was
based.

In probabilistic language randomizing the denominator ¥ in X[y means
consideririg the random variable X/Y, and we have merely rephrased the
derivation of the density (3.2) of X/Y. In this particular case the terminology
is a matter of taste. .

(b) Random -sums. Let X,,X,,... be mutually independent random

variables with a common density f." The sum S, =X, + -+ 4+ X, has

the density f™*, namely the n«fold convolution of f with itself. [See I,2.]
The number n of terms is a parameter which we now randomize by a prob-
ability distribution P{N = n} =p,. The density of the resulting sum
Sy with the random number N of terms is

«©

(5.5) w=Yp.

1

As an example take for { p,} the geometric distribution p, = gp™!, and
for f an exponential density. Then f"* = g, is given by (2.2) and

..—’MGS

= gqae

n~—1

(5.6) . W) = qae-“zp"'l (x2)
n=1 (n 1)'
(c) Application to queuing. Consider a single server with exponential
servicing time distribution (density f(f) = ue~**) and assume the incoming
traffic to be Poisson, that is, the inter-arrival times are'independent with
density Ae™*, 4 < u. The model is described in 1; XVIL,7(d). Arrlvmg
customers join a (possibly empty) ‘waiting line”” and are served in order

“of arrival without interruption.

Consider a customer who on his arrival finds » > 0 other customers in
the line. The total time that he spends at the server is the sum of the service
times of these n customers plus his own service time. This is a yandom
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variable with density f"**V*  We saw in 1; XVII,(7.10) that in the steady
state the probability of finding exactly n customers in the waiting line equals
gp" with p = Alu. Assuming this steady state we see that the total time T
spent by a customer at the server is a random variable with density

'z qpnf(n+l)*(t) = qu e““Z(p,ut)"/n! — (,u—l) e-—(p-—l)t.
n=0 n=0 ' ’

Thus E(T) = 1/(u—A). (See also problem 10.)

(d) Waiting lines for buses. A bus is supposed to appear every hour
on the hour, but is subject to delays. We treat the successive delays X, as
independent random variables with a common distrit. ation F and density f.
For simplicity we assume 0 < X, < 1. Denote by T, the waiting time of
a person arriving at epoch = < 1 after noon. The probability that the bus
scheduled for noon has already departed is F(z), and it is easily seen that

F(t+2z) — F(z) for 0<t<l—xz

(5.7) P{T. <t}= -
1 — F(z) + F(z) Ft+x—1) Jor 1—z<t<2—2x

and, of course, P{T, <t} =1 for all greater t. The corresponding
density is given by | ' .
f(t+=) , for 0<tl1l—2=

F@)f(t+z—1) for 1—x <t < 2—x.

Here the epoch z of arrival is a free parameter and it is natural to randomize
it. For example, for a person arriving *“at random’ the epoch of arrival is a

random variable distributed uniformly in ‘0, 1. The expected waiting time
~ in this case equals % + o% ‘where ‘o? is the variance of the delay. In other
words, the expected waiting time is smallest if the buses are punctual and
increases with the variance of the delay. - (See problems 11-12.) »

(5.8)

6. DISCRETE DISTRIBUTIONS

This section is devoted to a quick glance at some results of randomizing

binomial and Poisson distributions.
The number'S,, of successes in Bernoulli trials has a distribution depending

~ on the probability p of success. Treating p as a random variable with
density u leads to the new distribution

(6.1) P(S, = k} = (Z) J;lpk(l——p)"—k up)dp  k=0....n

Example. (2) When u(p) = 1 an integration by parts shows (6.1) to be
independent of k, and (6.1) reduces to the discrete uniform distribution
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P{S, = k} = (n+1)"*. More illuminating is an_'argument due to- Bayes.

Consider n + 1 independent variables X,, ..., X, distributed uniformly
between 0 and 1. The integral in (6.1) (with w = 1) equals the probablllty
that exactly k among the variables X,,...,X, will be <X, or, in other
words, that in an enumeration of the pomts Xo, ..., X, in order of magni-
tude X, appears at the (k+1)st place. But for reasons of symmetry all
positions are equally likely, and so the integral equals (n+1). >

In gambling language (6.1) corresponds to the situation when a skew coin
is picked by a chance mechanism and then trials are performed with this coin
of unknown structure. To a gambler the trials do not look independent;
indeed, if a long sequence of heads is observed it becomes likely that for our
coin p is close to 1 and so it is safe to bet on further occurrences of heads.
Two formal examples may illustrate estimation and prediction problems of
this type.

. Examples. (b) Given that n trials resulted in k successes (= hypothesis
H), what is the probability of the event that p < «? By the definition of
conditional probabilities

P{AH} B J:.pk(l —p)"*u(p) dp

P{H) [) P(1—p)"*u(p)dp

(6.2) P{4|H} =

This type of estimation with u(p) = 1 was used by Bayes. Within the
framework of our model (that is, if we are really concerned with a mixed
population of coins with known density u) there can be no objection to
the procedure. The trouble is that it used to be applied indiscriminately to
judge “probabilities of causes’’ when there was no randomization in sight;
this point was fully discussed in example 2(e) of 1; V in connection with a
so-called probability that the sun will rise tomorrow.

(¢) A variant may be formulated as follows. Given that n trials resulted
~in k successes, what is the probability that the next. m trials will result

in j successes? The preceding argument leads to the answer

(7) L,IP’“‘(I —p™ T u(p) dp

(6.3) T
[ ra—prrupap
(See problem 13.) >

Turning to the Poisson distribution let us interpret it as regulating the
number of “arrivals’” during a time interval of duration . The expected
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number of arrivals is «f. We illustrate two conceptually different ran-
domization procedures.

Examples. (d) Randomized time. If the duration of the time interval is a
random variable with density u, the probability p, of exactly k arrivals
becomes

k-
6.4) Py = f | ‘"(k’ w(t) dt.

For example, if the time interval is exponentially distributed, the probability
of k=0,1,... new arrivals equals

69 e[l Cipan t 5 ()

which is a geometric distribution.

‘(e) Stratification. Suppose there are -several independent sources for
random arrivals, each source having a Poisson output, but with different
parameters. For example, accidents in a plant during a fixed exposure time
¢t may be assumed to represent Poisson variables, but the parameter will vary
from plant to plant. Similarly, telephone calls-originating at an individual
unit may be Poissonian with the expected number of calls varying from unit
to unit. In such processes the parameter « appears as random variable with
a density u, and the probability of exactly n arrivals during time ¢ is
given by

(6.6) P.(1) = f et )" u(e) da.

0 n'

For the special case of a gamma density u = f; ,,, we get
v+1 n

@ (DG G

n/\B+t/] B+t
which is the limiting form of the Polya distribution as given in problem 24 of
1; V,8and 1; XVII,(10.2) (setting f =a ',y =a 1 — 1). >

Note on spurious contagion. A curious and instructive history attaches to the distribution
(6.7) and its dual nature.

The Polya urn model and the Polya process which lead to (6.7) are models for true
contagion where every accident effectively increases the probability of future accidents.
This model enjoyed great popularity, and (6.7) was fitted empirically to a variety of
phenomena, a good fit being taken as an indication of true contagion.

By. coincidence, the same distribution (6. 7) has been derwed previously (in 1920) by
M. Greenwood and G. U. Yule with the intent that a good fit should disprove presence of
contagion. Their derivation is roughly equivalent to our.stratification model, which starts
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from the assumption underlying the Poisson process, namely, that there is no aftereffect
whatever. We have thus the curious fact that a good fit of the same distribution may be
interpreted in two ways diametrically opposite in their nature as well as in their practical
implications. This should serve as a warning against too hasty interpretations of statistical
data.

The explanation lies in the phenomenon of spurious contagion, described in 1; V,2(d)
and above in connection with (6.1). In the present situation, having observed m accidents
during a time interval of length s one may estimate the probability of n accidents during
a future exposure of duration ¢ by a formula analogous to (6.3). The result will depend
on m, but this dependence is due to the method of sampling rather than to nature itself,
the information concerning the past enables us to make better predictions concerning the
future behavior of our sample, and this should not be confused with the future of the whole
population.

7. BESSEL FUNCTIONS AND RANDOM WALKS

Surprisingly many explicit solutions in diffusion theory, queuing theory,
and other applications involve Bessel functions. It is usually far from obvious
that the solutions represent probability distributions, and the analytic theory
required to derive their Laplace transforms and other relations is rather
complex. Fortunately, the distributions in question (and many more) may be
obtained by simple randomization procedures. In this way many relations
lose their accidental character, and much hard analysis can be avoided.

By the Bessel function of order p > —1 we shall understand the function
I, defined for all real z by*

7.1) () =3 —— 2™

(7 ? k= k!F(k+p+1)(2) '

We proceed to describe three procedures leading to three different types
of distributions involving Bessel functions.

(a) Randomized Gamma Densities

For fixed p > —1 consider the gamma density f; ,,:41 of (2.2). Taking
the parameter k as an integral-valued random variable subject to a Poisson
distribution we get in accordance with (5.3) the new density

A 2 thaPt®
(7.2) wo(z) = e—t;'czo ;'fl +et1(Z) = e‘t"k=o KT (p+ k+1) .
Comparing terms in (7.1) and (7.2) one sees that
(7.3) wy(2) = e~ (z/ty L2V 1), z > 0.

4 According to standard usage I, is the “modified” Bessel function or Bessel function
“with imaginary argument.” The *“‘ordinary” Bessel iunction, always denoted by J,, 1s
defined by inserting (—1)* on the right in (7.1). Our use of the term Bessel function
should be understood as abbreviation rather than innovation.
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If p> —1 then w, is a probability density concentrated on 0, co. (For
p = —1- the right side is not integrable with respect to z.) Note that ¢ is
not a scale parameter, so that these densities are of different types.

Incidentally, from this construction and the convolution formula (2.3)
for the gamma densities it is clear that

(7.49) w,xfi, =w
(b) Randomized Random Walks

In discussing random walks one pretends usually that the successive
jumps occur at epochs 1,2,.... It should be clear, however, that this
convention merely lends color to the description and that the model is entirely
independent of time. An honest continuous-time stochastic process is
obtained from the ordinary random walk by postulating that the time
intervals between successive jumps correspond to independent random variables
with the common density e~*. In other words, the epochs of the jumps are
regulated by a Poisson process, but the jumps themselves are random
variables assuming the values 41 and —1 with probabilities p and ¢
independent of each other and of the Poisson process.

To each distribution connected with the random walk there corresponds
a distribution for the continuous-time process, which is obtained formally
by randomization of the number of jumps. To see the ‘procedure in detail
concider the position at a given epoch f. In the basic random walk the nth
step leads to the position r > 0 iff among the first n jumps #(n+4r) are
positive and #(n—r) negative. This is impossible unless n —r = 2» is.
even. In this case the probability of the position r just after the nth jump is -

- _ 2y
7..5 n ) ‘L(n-}-r) Y (n—r — (r+ ) r-v v
(7.5) (%(’H_r) p q ri p'q

In our Poisson process the probability that up to epoch ¢ exactly n =
= 2» + y jumps occur is e~*¢"/n! and so in our time-dependent process the
probability of the position r > 0 at epoch ¢ equals

_too tr+2v‘ r+27 r—f—v v r,—t
B T (I LA IR (R D

and we reach two conclusions. A
(i) If we define I_, =1, for r=1,2,3,... then for fixed t. > 0, p, q,

(1.7 a(t) =\ (plgye,2Vpgr), r=0,%1, £2,...,

represents a probability distribution (that is, a, > 0, 3 a, = 1).
(ii) In our time-dependent random walk a,(f) equals the probabzltty of
the position r at epoch t.
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Two famous formulas for Bessel functions are immediate corollaries of this result.
First, with the change of notations 2Vpgt =2 and pjg = u?, the identity > a (1) =1

becomes
+ 00

(1.8) etztut™) = 3y ().
-
This is the so-called generating function for Bessel functions or Schlsmilck’s formula (which
sometimes serves as definition for I,).
Second, it is clear from the nature of our process that the probabilities a,(r) must satisfy
the Chapman-Kolmogorov equation
o]

(7.9) a(t+7) = > ada, i (7),

k=—~o0

which expresses the fact that at epoch ¢ the particle must be at some position k4 and that
a transition from k to r is equivalent to a transition from 0 to r — k. We shall return
to this relation in XVII,3. [It is easily verified directly from the representation (7.6) and
the analogous formula for the probabilities in the random walk.] The Chapman-
Kolmogorov relation (7.9) is equivalent to

(7.10) L(+7) = 3 L()I,_(7)
k=—mx

which is known as K. Neumann’s identity.

(c) First Passages

For simplicity let us restrict our attention to symmetric randem walks,
P =9 =% According to 1; IIL,(7.5), the probability that the first passage
through the point r > 0 occurs at the jump number 2n — r is

(7.11) : A (2n—r)2—2n+r n>r.
2n —r\ n )

The random walk being recurrent, such a first passage occurs with probability
one, that is, for fixed r the quantities (7.11) add up to unity. ‘In our time-
dependent process the epoch of the kth jump has the gamma density f£; , of
(2.2). It follows that the epoch of the first passage through .r > 0 has density

r ffﬂﬁWﬁ%m=

: n 2n —
(7.12) .
n—r—1 — )\
— 'S t ( r ) _(2n—n)! =tnbr _ e“-':li(t).
@n—r—1)"\2n—r/ nl(n—r)! t
Thus: (i) for fixed r =1,2,... _
(7.13) wlt) = €2 10D

defines a probability density concentrated on 0, co.
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(i) The epoch of the first passage through r > 0 has density v,. (See
problem 15.)

This derivation permlts another interesting conclusion. A first passage
through r + p at epoch ¢ presupposes a previous first passage through r
at some epoch s < t. Because of the independence of the jumps in the time

intervals 0,s and s, and the lack of memory of the exponential waiting
times we must have

(7.14) U,k Up = U, p.

[A computatlonal verification of this relation from (7.12) is easy if one
uses the corrCSpondmg convolution property for the probabilities (7.11).]

Actually the proposition (i) and the relation (7.14) are true for all positive
values of the parameters r and p.5

8. DISTRIBUTIONS ON A CIRCLE

The half-open interval l(I-_l may be taken as representing the points of
a circle of unit length, but it is preferable to wrap the whole line around the
circle. The circle then receives an orientation, and the arc length runs from
—o0to oo but z, z+ 1, z £ 2,... are interpreted as the same point.
Addition is modulo 1 just as addition of angles is modulo 27. A4 probability
density on the circle is a periodic function @ > 0 such that

(8.1) J‘Itp(x) dx = 1.

Examples. (@) Buffon’s needle problem (1777). The traditional formu-
lation is as follows. A plane is partitioned into strips of unit width parallel
to the y-axis. A needle of unit length is-thrown at random. What is the prob-
ability' that it lies athwart two strips? To state the problem formally
consider first the center of the needle. Its position is determined by two
coordinates, but y is disregarded and z is reduced modulo 1. In this way
“the center of the needle’” becomes a random variable X on the circle
with a uniform distribution. The direction of the needle may be described
by the angle (measured clockwise) between the needle and the y-axis. A
turn through = restores the position of the needle and hence the angle is
determined only up to a multiple of 7. We denote it by Zz. In Buffon’s
needle problem it is implied that X and Z are independent and uniformly
distributed variables® on the circle with unit length.

5 W. Feller, Infinitely divisible disiributions and Bessel functions associated with random
walks, J. Soc. Indust. Appl. Math., vol. 14 (1966), pp. 864-875.
8 The sample space of the pair (X,Z) is a torus.
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If we choose to represent X by values between 0 and 1 and Z by values
between —% and % the needle crosses a boundary iff 4cosZm > X or
3cosZm>1—X. Fora glven value z between —} and } the probability
that X < }coszm is the same as the probability that 1 — X < } cos z7;
namely % coszm. Thus the required probability is

% 5
(8.2) f cos zm - dz = — . I <

-3 T

A random variable X on the line may be reduced modulo 1 to obtain a
variable °X on the circle. Rounding errors in numerical calculations are
random variables of this kind. If X has dens1ty f the density of °X is
given by?

#3) @ =3 ftn)

Every density on the line thus induces a density on the circle. [It will be
seen in XIX,5 that the same ¢ admits of an entirely different representation
in terms of Fourier series. For the special case of normal densities see
example XIX,5(e).] |

Examples. (b) Poincaré’s roulette problem. Consider the number of
rotations of a roulette wheel as a random variable X with a density f
concentrated on the positive half-axis. The observed net result, namely
the point °X at which the wheel comes to rest, is the variable X reduced
modulo.1. Its density is given by (8.3).

One feels instinctively that ‘““under ordinary circumstances’ the density
of °X should be nearly uniform. In 1912 H. Poincaré put this vague feeling
on the solid basis of a limit theorem. We shall not repeat this analysis
because ‘a similar result follows easily from (8.3).. The tacit assumption
is, of course, that the given density f is spréad out effectively over a long
interval so that its maximum m is small. Assume for simplicity that f
increases up to a point a where it assumes its maximum m = f(a), and
that f decreases for x > a. For the density ¢ of the reduced variable °X
we have then

(8.4) #@) = 1= Sftn - 10 ds

For fixed = denote by z, the unique point of the form z+n such that

7 Readers worried about convergence should consider only densities f concentrated on
a finite interval. The uniform convergence is obvious if f is monotone for # and -2z
sufficiently large. Without any conditions on f the series may diverge at some points, but
@ always represents a density because the partial sums in (8.2) represent a monotone
sequence of functions whose integrals tend to 1. (See IV,2.)
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a+k < z, < a+k+1. Then (8.4) may be rewritten in the form

a+k+1

©5 e —1=3 [ e~

k=—o0 Ja+t+k

For k < 0 the infegrand is <0, and so

#2) = 1 <3 [f@+k) — fla+k+1)] = f(@) = m.

k=0

A similar argument shows that ¢(z) — 1 > — m. Thus |p(@)—1] < m
and so ¢ is indeed nearly constant.

‘The monotonicity conditions were imposed only for the sake of exposition
and can be weakened in many ways. [Neat sufficient conditions can be
obtaingd using Poisson’s summation formula, XIX,5(2).]

(¢) Distribution of first significant digits. A distinguished applied mathe-
matician was extremely successful in bets that a number chosen at random in
the Farmer’s Almanac, or the Census Report or a similar compendium, would
have the first significant digit less than 5. One expects naively that all 9
digits are equally likely, in which case the probability of a digit <4 would be
% In practice® it is close to 0.7.

Consider the discrete probability distribution attributing to the digit k
probability p, = Log (k+1) — Logk (where Log denotes the logarithm
to the basis 10 and k£ = 1,...,9). These probabilities are approximately

P =03010 p,=0.1761 p,=01249 p, = 0.0969
ps =00792 Py=00669 p,=00580 pg=00512 p, = 0.0458,

and it is seen that the distribution {p,} differs markedly from the uniform
distribution with weights + = 0.111 - - -, .

We now show (following R. S. Pinkham) that {p,} is plausible for the
empirical distribution of the first significant digit for numbers taken at
random from a large body of physical or observational data. Indeed, such
a number may be considered as a random variable Y > 0 with some
unknown distribution. The first significant digit of Y equals k iff
10"k < Y < 10"(k+1) for some n. For the variable X = Log Y this
means

(8.6) n+ Logk < X< n+ Log (k+1).

If the spread of Y is very large the reduced variable °X will be approxi-
mately uniformly distributed, and the probability of (8.6) is then close to
Log (k+1) — Log k = p,. '

8 For empirical material see F. Benford, The law of anomalous numbers, Proc, Amer,
Philos. Soc., vol. 78 (1938) pp. 351-572.
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The convolution formula (1.5) and the argument leading to it remain
valid when addition is taken modulo 1. Accordingly, the convolution of
1wo densities on the circle of length 1 is the density defined by

(8.7) w(z) = f =) fuly) dy.

If X, and X, are independent variables with densities f; and f, then
X, + X, has the density w. Since these densities are periodic, the con-
volution of the uniform density with any other density is uniform. (See
problem 16.)

9. PROBLEMS FOR SOLUTION

1. Show that the normal approximation to the binomial distribution established
in 1; VII implies the convolution formula (1.7) for the normal densities.

2. Using the substitution = = }y® prove that T'(}) = ~/m.
3. Legendre's duplication formula. From (2.5) for x4 = » conclude that

r'(2v) = _l: 221 (v +3).
Va7
Hint: Use the substitution 4(y —~y?) =s in 0 <y < 3.

4. If g(x) = 4e712l find the convolutions g * g and g * g * g as well as gt*.

5. Let X and Y be independent with the common Cauchy density »,(z) of
(4.5). Prove that the product XY has density 2272 (= — 1)~ g|z|
Hint: No calculations are required beyond the observation that

a—1 _ 1 1
(I +s)a+s) 1+s a+s’

6. Prove that if
2
f@ =3

et + e %

then f:i:f(at):i z

et — e%

(@) by considering the variables log IX] and loglY| of the preceding problem;
(b) directly by the substitution e* =t and a partial fraction decomposition.
(See problem 8 of XV.,9.)

7. If X has the normal density n then obviously X~2 has the stable density
(4.8). From this conclude that if X and Y are independent and normal with zero
expectations and variances o} and of, then Z = XY/VX2+Y? is normal with
variance o3 such that 1fo; = 1/oy + 1/g, (L. Shepp).

8. Let X,,..., X, beindependent and X, the largest among them. Show that
if the X; have:

(a) the Cauchy density (4.5), then

P{n—lx(m < x} — e—t/(zrz)’ z>0
(b) the stable density (4.8), then

P(n X () < 7} — eeV¥/02), z > 0.
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9. Let X and Y be independent with densities f/ and g concentrated on 0, «.
If E(X) < o theratio X/Y has a finite expectation iff

1
fy‘g(y) dy < o.

0

10. In example 5(c) find the density of the waiting time to the next discharge (a)
if at epoch O the server is empty, (b) under steady-state conditions.

11. In example 5(d) show that

E(T,) = Fi)u+1—=x) + f tf (t +x) dt,
0

where u is the expectation of F. From this verify the assertion concerning E(T)
when z is uniformly distributed.

12. In example 5(d) find the waiting time distribution when f(®)=1 for
0 <<l

13. In example 6(c) assume that « is the beta density given by (4.2). Evaluate
the conditional probability (6.3) in terms of binomial coefficients.

14. Let X and Y be independent with the common Poisson distribution
P{X = n} = e '"/n! Show that

P{X-Y =r} = e %I,(2¢), r=0, £1, +2,.

[See prdblem 9 of V,11.]

15. The results of section 7.c remain valid for unsymmetric random walks
provided the probability of a first passage through r > 0 equals one, that is,
provided p >g. Show that the only change in (7.11) is that 2-%#+" is replaced by
p"q™", and the conclusion is that for p > ¢ and r =1, 2,.

'\/—(p/q)"e‘:f : L(2Vpqt)

defines a probability density concentrated on # > 0.

16. Let X and Y be independent variables and °X and °Y be the same
variables reduced modulo 1. Show that °X+°Y is obtained by reducing X+Y
modulo 1. Verify the corresponding formula for convolutions by direct calculation.




CHAPTER III

Densities in Higher Dimensions.

Normal Densities and Processes

For obvious reasons multivariate distributions occur less frequently than
one-dimensional distributions, and the material of this chapter will play
almost no role in the following chapters. On the other hand, it covers
important material, for example, a famous characterization of the normal
distribution and tools used in the theory of stochastic processes. Their true

nature is best-understood when divorced from the sophisticated problems
with which they are sometimes connected.

1. DENSITIES

For typographical convenience we refer explicitly to the Cartesian plane
R2, but it will be evident that the number of dimensions is immaterial. We
refer the plane to a fixed coordinate system with coordinate variables
X;, X;. (A more convenient single-letter notation will be introduced in
section 5.)

A non-negative integrable function f defined in R? and such that its
integral equals one is called a probability density, or density for short. (All
the densities occurring in the chapter are piecewise continuous, and so the
concept of integration requires no comment.) The density f attributes to
the region {2 the probability

(1.1) | P{Q} = f f f (@1, 25) day da
Q

provided, of course, that Q is sufficiently regular for the integral to exist.
All such probabilities are uniquely determined by the probabilities of
rectangles parallel to the axes, that is, by the knowledge of

(1.2)  Pla, <X, < by, a, <X, < by} = f f 1@y, 25) dz, d,
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for all combinations a; < b,. Letting a, = a, = — 20 we get the distribution
function F of f, namely
(1.3) F(xl, zy) = P{X; < 2;, X; < x5},

Obviously F(b,, z;) — Fla,, z;) is the probability of a semi-finite strip of
width b, — a, and, the rectangle appearing in (1.2) being the difference of
two such strips, the probability (1.2) equals the so-called mixed difference

F(b,, by) — F(ay, b,) - F(b,, a;) + F(a,, a,).-

It follows that the knowledge of the distribution function F uniquely
determines all probabilities (1.1). Despite the formal analogy with the situa-
tion on the line, the concept of distribution function F is much less useful
in the plane and it is best to concentrate on the assignment of probabilities
(1.1) in terms of the density itself. This assignment differs from the joint
probability distribution of two discrete random \_/afiables (1; IX,1) in two
respects. * First, integration replaces summation and, second, probabilities
are now assigned only to “sufficiently regular regions” whereas in discrete
sample spaces all sets had probabilities. As the present chapter treats only -
simple examples in which the difference is hardly noticeable, the notions and
terms of the discrete theory carry over in a self-explanatory manner. Just as
in. the preceding chapters we employ therefore a probabilistic language’
without any attempt at a general theory (Wthh wili be supplied in chapter V).
. It is apparent from (1.3) that'

(.4) P, < =) = Flay, ).

Thus Fi(z) = F(z, «0) deﬂnes the dlstrlbutlon function of X,, and its
density f, is given by

(15) i@ =| 7 @ dy:

When it is desirable to emphasize the connection between X; and the pair
(X;, X;) we again speak of F; asmarginaldistribution®and of f; as marginal
density. :

Theé expectation u, and variance o} of X,—if they exist—are given by

. : +o [+
(16) i =B = [ [ s o) da, e,
and
+o 4+ o .
an o= var) = [ [l w) de da,

1 Here and in the followmg U(w) = lim U(z) as * — o and the use of the symbol
U(oo) implies the existence of the limit.
2 Projection on the axes is another accepted term.
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By symmetry these definitions apply also to X,. Finally, the covariance
of X, and X, 1s

+o (f+x

(18)  Cov (X, Xy) = f (@y— ) (Ea—tts) (s 3) iy .

—0 J -~

The normalized variables X,07! are dimensionless and their covariance,
namely p = Cov (X, X,)o Y0, !, isthe correlation coefficient of X, and X,
(see 1; IX,8).

A random variable U is a function of the coordinate variables X, and
X,; again we consider for the present only functions such that the prob-
abilities P{U < ¢} can be evaluated by integrals of the form (1.1). Thus
each random variable will have a unique distribution function, each pair
will have a joint distribution, etc.

In many situations it is expedient to change the coordinate variables,
that is, to let two variables Y,, Y, play the role previously assigned to
X,, X,. In the simplest case the Y, are defined by a linear transformation

(1.9) X, = ‘_711Y1 + a,,Y,, Xo =auY; + anY,,

with determinant A = a;,a,, — a,,a,; > 0. Generally a transformation
of the form (1.9) may be described either as a mapping from one plane
to another or as a change of coordinates in the same plane. Introducing
the change of variables (1.9) into the integral (1.1) we get

(1.10) P{Q} =Jff(a11y1+a12y2’ anY,+azy,) - A dy, dy,
Oy '

the region {2, containing all points (y,, y,) whose image (,, z,) isin €.
Since the events (X;, X,) € Q and (Y,, Y,) € Q, are identical it is seen that
the joint density of (Y, Y,) is given by

(L.11). g1, Y2) = f(auy1+aisy., any+azy,) * A.

All this applies equally to higher dimensions.

A similar argument applies to more general transformations, except
that the determinant A is replaced by the Jacobian. We shall use explicitly
only the change to polar coordinates

(1.12) . X;=Rcos O, X, = Rsin ©

with (R, ®) restricted to R>0, —7w < © < 7. Here the density of
(R, O©) is given by

(1.13) g(r,0) = f(rcos 0, rsin O)r.

In three dimensions one uses the geographic longitude ¢ and latitude 6
(with —7 < ¢ < 7 and —}nm < 0 < #7). The coordinate variables in the
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polar system are then defined by |

(1.14) X, =Rcos<l>cos o, X, = R sin ® cos O, X; = R sin O.
For their joint density one gets

(1.15)  g(r, o, 0) = f(rcos ¢ cos 0, r sin ¢ cos 6, r sin 6)r2cos 6.

In the transformation (1.14) the “planes” © =.—J‘;1r and © = }7 corre-
spond to the half axes in the z;-direction, but this singularity plays no role
since these half axes have zero probability. A similar remark applies to the
origin for polar coordinates in the plane.

Examples. (a) Independent variables. In the last chapters we considered
independent variables X, and X, with densities f; and f;. This amounts
to defining a bivariate density by f(z,,z,) = f1(x1) Sfo(x2), and the f;
represent the marginal densities.

(b) “Random choice.”” Let T' be a bounded region; for simplicity we
assume I' convex. Denote the area-of I' by y and put f equal to y—!
within T' and equal to O outside I'. Then f is a density, and the probability
of any region Q < T' equals the ratio of the areas of Q and T. By obvious
analogy with the one-dimensional situation we say that the pair (X, X,)
is distributed uniformly over T. The marginal density of X, at the abscissa
-~ x, equals the width of I' at z, in the obvious sense of the word. (See
problem 1.)

(¢) Uniform distribution on a sphere. The unit sphere X in three dimen-
sions may be represented in terms of the geographic longitude ¢ and
latitude 6 by the equations

(1.16) x, = cos @ cos 0, x, = sin @ cos 0, Z; = sin 6.

To each pair (g, §) such that —7 < ¢ < =, —im < 0 < }= there cor-
responds exactly one point on the sphere and, except for the two poles,
each point of X is obtained in this way. The exceptional role of the poles
need not concern us since they will have probability 0. A region 2 on the
sphere is defined by its image in the g, 6-plane, and the area of Q equals
the integral of cos 0 dp df over this image [see (1.15)]. For the conceptual
experiment “random choice of a point on Z*’ we should put 47P{{2} = area
of Q. This is equivalent to defining in the @, 6-plane a density

(4m) cos 6 for —m << |0]<im
(1.17) gl 0) =
_ elsewhere.
With this definition the coordinate variables are independent, the longitude

S
being distributed uniformly over —m, 7.
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The device of referring the sphere X to the ¢, f-plane is familiar from
geographic maps and useful for probability theory. Note, however, that
the coordinate variables are largely arbitrary and their expectations and
variances meaningless for the original conceptual experiment.

(d) The bivariate normal density. Normal densities in higher dimensions
will be introduced systematically in section 6. The excuse for anticipating
the bivariate case is to provide an easy access to it. An obvious analogue
to the normal density n of II,(2.1) is provided by densities of the form
¢ e ¥ where g(x, 1) = a,x? + 2bz,x, + a,x2 It is easily seen that
e~ will be integrable iff the a; are positive and aya, — % > 0. For pur-
poses of probability theory.it is preferable to express the coefficients a; and
b in terms of these variances and to define the bivariate normal density
centered at the origin by

(1.18)

_ 1 1 x? %5 :z:g)]
xy, Tp) = ——¢eXp| — ——— =S — 2p— 4+ —
P ) 2170'10'2\/1—p26 p[ 2(1—/02)(012 2 010, * A
where o, > 0, 0, >0, and —1 < p < 1. The integration with respect to
z, is easily performed by the substitution ¢ = z,/0, — p z,/0, (completing
squares), and it is seen that ¢ indeed represents a density in R2 Further-
more, it becomes obvious that the marginal distributions for X, and X,
are again normal® and that E(X,) =0, Var(X,) =o0? Cov(X;,X,) =
= po,0,. In other words, p is the correlation coefficient of X, and X,.
Replacing z; by z; — c; in (1.18) leads to a normal density centered at the
point (cy, ¢5).

It is important that linear transformations (1.9) change a normal distribution
into another normal distribution. This is obvious from the definition and (1.11).
[Continued in example 2(a).]

(e) The symmetric Cauchy distribution in R®. Put

1 1
1.19 u(zy, ) = — ————
(1.19) (71, 2,) 27 Jatet e

To see that this is a density note?* that

+ o0 1 1 y , + 1 1
(1.20) u(:z:l, y)dy = —_— =" .
217 1423 \/1+x1+y 7 14 x;

3 Contrary to a widespread belief there exist non-normal bivariate densities with normal
marginal densities (two types are described in problems 2, 3; two more in problems 5
and 7 of V,12). In the desire to deal with normal densities, statisticians sometimes introduce
a pair of new coordinate variables Y, =g,(X;), Y, =g,(X,) which are normally
distributed. Alas, this does nor make the joint distribution of (Y;,Y,) normal.

4 THe substitution ¥ = V1 + 22 tan 7 makes the calculation easy.
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It follows that u is a density and that the marginal density of X, is the
Cauchy density y, of 11,(4.5). Obviously X; has no expectation.

Switching to polar coordinates [as in (1.12)] R ‘gets a density independent
of 6 and so the variables R and © are stochastically independent. In
the terminology of 1,10 we can therefore say that with the symmetric Cauchy
distribution (X,, X,) represents a vector in a randomly chosen direction with a,
length R _ whose. density is given by r\/ (14r%)~2, whence PIRL r} =
=1-+ (14+r3)1 [Contmued in example 2(c).]

(f) The symmetric Cauchy distribution in R3. Put

1 1
2 (l+xl+x2+x3)2

It is easily seen® that the marginal density of (X, X,) is the symmetric
Cauchy density u of (1.19). The marginal density of X, is therefore the
Cauchy density ;. (Continued in problem 5.) - _ >

(1'21) v(xl’ 352, 353) =

Although it will not play an explicit role in the sequel it should be mentioned
that we can define convolutions just as in one dimension. Consider two
pairs (X;, X;) and (Y,, Y,) with joint densities f and g, respectively..
Saying that the two pairs are independent means that we take-the four--
dimensional space with coordinate variables X;, X,, Y;, Y, as sample space
and define in it a density glven by the product f(z,, z,) g(¥1, ¥2). Just-as in
R? it is then easily seen that the joint density v of the sum (X +Y, X;+Y,)
is given by the convolution formula

+ o
(1.22) (2, 25) f f(zl—xl’ ) g(‘”b z,) dz, dz,
which is the obvious analogue to I,(2.12). (See problems 15-17.)

2. CONDITIONAL DISTRIBUTIONS

Suppose that the pair (X, X;) has a continuous density f and that the
marginal density f; of X, is strlctly positive. Consider . the conditional
probability of the event X, < 7 given that § < X; < & + A, namely

§+h ’ {n
| : f dxf f(z,y)dy
21 PX, <n|é<X, <E+h}="* 2 .

§+h

fi(z) dz
.

Dividing numerator and denominator by h, one sees that as hA—0 the

ituti = Vit 52
5 Use the substitution z = VI + 2 + 23 tant.
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right side tends to

1 n
2.2 Uin) = f &, y)dy.
22) ) = | e dy
For fixed & this is'a distribution function in # with density
1
(2:3) ug(n) = £, ).
Ay fl(E)f( U

We call u, the conditional density of X, given that X, = &. The conditional
expectation of X, given that X, = & ds defined by

1
Si(§) .

provided that the integral converges absolutely. With & considered as a
variable the right side becomes a function of it. In particular, we may
identify & with the coordinate variable X, to obtain a random variable
called the regression of X, on X, and denoted by E(X, |X,). The appear-
ance of X, should not obscure the fact that this random variable is a function
of the single variable X, [its values being given by (2.4)].

So far we have assumed that f;(§) > O for all & The expression (2.4)
is meaningless at any place where f,(£) = 0, but the set of such points has
probability zero and we agree to interpret (2.4) as zero at all points where f;
-vanishes. Then E(X, | X;) is defined whenever the density is continuous.
(In_ V,9-11 conditional probabilities will be introduced for arbitrary
distributions.) _

. Needless to say, the regression E(X, ] X,) of X, on X, is defined in like
manner. Furthermore, a conditional variance Var (X, |X,) is defined by
obvious analogy with (2.4).

These definitions carry over to higher dimensions, except that a density
in R3¥ gives rise to three bivariate and three univariate conditional densities
(See problem 6.)

(2.4) EX,| X, =¢§) =

[_ +:yf(§, y) dy

Examples. (a) The normal density. For the density (1.18) obviously
[ (y—p(02/01)5)2]
—————xp | — P~
V2m(1—ph)e? 2(1—p%)a;
which is a normal density with expectation p(o,/0;)é and variance
(1—p?)o2. Thus
(2.6) E(X,; | X)) = p(os/0)X,,  Var(X; | X,) = (1—p°)as.

It is one of the pleasing properties of the normal distribution that the
regressions are /inear functions.

25) uy) =
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Perhaps the earliest application of these relations is due to Galton, and
one of his examples may illustrate their empirical meaning. Imagine that
X, and X, represent the heights (measured in inches from their respective
expectations) of fathers and sons in a human population. The height of a
randomly chosen son is then a normal variable with expectation 0 and
variance o}. However, in the subpopulatlon of sons whose fathers have a
fixed hexght £, the height of the sons is a normal variable with expectation
p(ox/01)§ and variance o%(1—p?) < o2. Thus the regression of X, on X,
indicates how much statistical mformatlon about X, 1is contained in
observation of X;.

" (b) Let X, and X, be independent and uniformly distributed in 0, 1.
Denote by X(;, the smaller and by X, the larger among these variables.
The pair (X, X(3)) -has a density equal to the constant 2 within the triangle
0 <z, <z, <1, and vanishing elsewhere. Integration over z, shows that
the marginal density of X, is given by 2(1—=z,). The conditional density
of Xy for given X, = =, therefore equals the constant 1/1—z, within
the interval z,,1 and zero elsewhere. - In other words, given the value z;

of X, the variable X, is uniformly distributed over z,, 1.

(¢) Cauchy distribution in R®. For the bivariate density (1.19) the marginal
density for X, is given in (1.20), and so the conditional density of X, for
given X, is

1 14 &

2 Ja+E+yr
Note that u, differs only by the scale factor J1 + & from the density

uy(y) and so all the densities u, are of the same type. Conditional expecta-
tions do not exist in this example. (See problem 6.)- >

(2.7 “g(?/)

In terms of the conditional densities (2.3) the distribution function of

‘X, takes on the form
+c0 -

.8 P, <uh =] [ um p@dsan

in other words, the distribution of X, is obtained by randomization of the
parameter & in the conditional densities u,, and so every® distribution may
be represented as mixture. Despite this theoretical universality there is a
great difference in emphasis. In some situations [such as example (a)]
one starts from a bivariate distribution for (X,, X,) and derives conditional
distributions, whereas in true randomization the conditional probabilities

8 We have so far considered only continuous densities, but the general case will be covered
in V,9. The notion of randomization was discussed in IL,5.
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u, are the primary notion and the density f(z, y) is actually defined by
u,(y) /1(x). (This procedure of defining probabilities in terms of conditional
probabilities was explained in an elementary way in 1; V,2.)

3. RETURN TO THE EXPONENTIAL AND THE
UNIFORM DISTRIBUTIONS

‘The object of this section is to provide illustrative examples to the
. preceding sections and at the same time to supplement the theory of the
" first chapter.

Examples. (a) A characteristic property of the exponential distribution.
Let X; and X, be two independent random variables with densiti¢cs /; and
Jf:, and denote the density of their sum S = X;+X, by g. The pairs
(X;,S) and (X, X;) are related by the linear transformation X, = X,
Xy =S — X; with determinant 1 and by (1.11) the joint density of the
pair (X;, S) is given by fi(z)fo(s—x). Integrating over all x we obtain the
marginal density g of S. The conditional density u, of X, giventhat S = s

satisfies £ )
G.1) uz) ="
) g(s)

In the special case of exponc;htial densities fi(z) = fy(x) = ae™** (where
x> 0) we get u(r)=s1 for 0 <z <s. In other words, given that
X, + X, = s, the variable X, is uniformly distributed over the interval
0, s. Intuitively speaking, the knowledge that S = s gives us no clue as

to the possible position of the random point X, within the interval 0, s.
This result conforms with the notion of complete randomness inherent in
the exponential distribution. (A stronger version is contained in example
(d). See also problem 12.) ‘ |

(b) Random partitions of an interval. Let X;,...,X, be n points
chosen independently and at random in the (one-dimensional) interval

0,1. As before we denote by Xg), X(), ..., X(n the random points
X,,...,X, rearranged in increasing order. These points divide the
interval 0,1 into »n'+ 1 subintervals which we denote by I, I,, . .. , I,
numbering them from left to right so that X, is the right endpoint of 1.
Our first aim is to calculate the joint density of (X, ..., X(m)- |

The sample space corresponding to- (X, ..., X,) is the n-dimensional
hypercube I defined by 0 <z, <1, and probabilities equal the »-
dimensional volume. The natural sample space with the' X(;, as coordinate
variables is the subset Q of I' containing all points such that

0<z < <2, < 1.
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The volume of Q is 1/n! Evidently the hypercube I contains n! con-
gruent replicas of the set  and in each the ordered n-tuple (X, ..., X(n)
coincides with a fixed permutation of Xl, «o.» X,. (Within T, in partlcular,
X = X;.) The probability that X, = X, for some pair j 5% k equals zero,
and only this event causes overlaps among the various replicas. It follows
that for any subset 4 < £ the probability that (Xu), veos Xm) liesin A4
equals the probability that (X, ..., X,) liesin one of the n! replicas of 4,
and this probability in turn equa]s n! times the volume of 4. Thus
P{X1), - - . » X(m) € A} equials the ratio of the volumes of 4 and of Q,
which means that the n-tuple (X, - .., X)) is distributed uniformly over
‘the set Q. The joint density of our n-tuple equals n! within Q and 0
outside.

From the joint density of (X, ..., X)) the-den51ty of X may be
calculated by keeping z, fixed and integrating over the remaining variables.
The result is easily seen to agree with the density calculated by other methods
in 1,(7.2). .

This example was treated in detail as-an exercise in kandling and com-
puting multivariate densities.

(¢) The distribution of the lengths. In the random partition of the preceding
example denote the length of the kth interval I, by U,. Then

(3.2) U, = Xq), Up=Xp— Xp-ny Jor k=2,3,...,n

This is a linear transformation of the form (1.9) with determinant 1. The
set Q of points 0 <z <-+- <=, <1 is mapped into the set Q* of
points such that u; >0, #; + -+ u, <1, and hence (U,,...,U,)
is distributed uniformly over this region. This result is stronger than the
previously established fact that the U, have a common distribution function
[example I ,7(b) and problem in 1,13.]

(d) Once more the randomness of the exponential distribution. Let
X;, ..., X, beindependent with the common density «e~** for z > 0.
Put S;=X;+ -+ X, Then (5,,8,,...,8S,,,) is obtained from
(Xy,...,X,,1) by a linear transformation of the form (1.9) with deter-.
minant 1. Denote by € the “octant” of points z; > 0. The density of
(X;, ..., X,,.1) Is concentrated on £ and is given by

an+1e—a(cr+ st 4 +1)

if z; > 0. The variables S,,...,S,,; map { onto the region Q* defined
by 0< 51 <5< vt 81 < 00, and [see (1.11)] within Q* the density
of (Sy,.:.,S,,1) is given by o”*le~*+1, The marginal density of S,
is known to be the gamma density «"*!s"e~**/n! and hence the conditional
density of the n-tuple (S,,...,S,) given that S,; =s equals nls™" for
0<s5 < - <s,<s (and zero elsewhere). In other words, given that
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S,+1 =5 the variables (S4,...,S,) are uniformly distributed over their
possible range. Comparing this with example (b) we may say that given
S.+1 =5, thevariables (S,, ... ,S,) represent n points chosen independently

and at random in the interval 0, s numbered in their natural order from left
to right.

(e) Another distribution connected with the exponentzal With a view to
a surprising application we give a further example of a transformation.
Let again X,, ..., X, be independent variables with a common exponential
distribution and S, = X, + - -+ 4+ X,,. Consider the variables U, ..., U,
defined by |

(3.3) Uk'= Xk/Sn for k = 1, . ey n_l, Un = Sn,
or, what amounts to the same,
G4 X=UU, for k<n, X,=U,(1-U— -—U,,)

The Jacobian of (3.4) equals UZ~1. The joint density of (X;,:..,X,) is
concentrated on the region Q defined by z, > 0, and in it this density is
given by a"e—*(®1t*2n) Tt follows that the joint density of (Ui, ..., U,)
is given by «"u7"le~*¥~ in the region Q* defined by

Uyttt U < u, >0 k=1,...,n

and that it vanishes outside *. An integration with respect to- u, shows
that the joint density for (U,,...,U,_;) equals (r—1)}! in Q* and O
‘elsewhere. Comparing with example (c¢) we see that (U, ..., U,_;) has
the same distribution as if U, were the length of the kth interval in'a random
partition of 0,1 by n — 1 points.

(f) A significance test in periodogram analysis and the covering theorem.
In practice, any continuous function of time ¢ can be approximated by a
trigonometric polynomial. If the function is a sample function of a stochastic
process the coefficients become random variables, and the approx1matmg
polynomial may be written in the form

(3.5) Z(X cos w,t+Y, sin w,t) —ZR cos (w,t—®P)

v=1

where R2 X2+ Y? and tan®,= Y,/X,. Conversely, reasonable
assumptions on the random variables X,, Y, lead to a stochastic process
with sample functions given by (3.5). For a time it was fashionable to
introduce models of this form and to detect “hidden periodicities” for
sunspots, wheat prices, poetic creativity, etc. Such hidden periodicities
used to be discovered as easily as witches in medieval times, but even strong
faith must be fortified by a statistical test. The method is roughly as follows.
A trlgonometrlc polynomial of the form (3.5) with well-chosen frequencies
wy, ..., w, Is fitted to some observational data, and a particularly large
amplitude R, is observed. One wishes to prove that this cannot be due to
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chance and hence that w, is a true period. To test this conjecture one asks
whether the large observed value of R, is plausibly compatible with the
hypothesis that all n components play the same role. For a test one
assumes, accordingly, that the coefficients X;,..., Y, are mutually
independent with a common normal distribution with zero expectation and
variance o® In this case (see II,3) the R? are mutually independent and
have a common exponential distribution with expectation 2¢2. If an
observed value R} deviated “significantly” from this predicted expectation
it was customary to jump to -the conclusion that the hypothesis of equal
weights was untenable, and R, represented a ““hidden periodicity.”

 The fallacy of this reasoning was exposed by R. A. Fisher (1929) who
pointed out that the maximum among n independent observations does
not obey the same probability distribution as each variable taken' separately.
The error of treating the worst case statistically as if it had been chosen at
random is still common in medical statistics, but the reason for discussing
the matter here is the surprising and amusing connection of Fisher’s test of
significance with covering theorems.

As only the ratios of the several components are significant we normalize

the coefficients by letting

3.6 V= R, j =1
(3.6) j_Rf+"'+Rf, | j=1,...,n
Since the R? have a common exponential distribution we can use the
preceding example with X; = R% Then V,=U,,...,V,, =1, ,;, but
V,=1—-U, —--+—=U,_;. Accordingly, the n-tuple (V;,...,V,) is
distributed as the length of the n intervals into which 0,1 is partitioned by
a random distribution of n—1 points. The probability that all V; be less
than a is therefore given by formula 1,(9.9) of the covering theorem. This
result illustrates the occurrence of unexpected relations between apparently
unconnected problems.? ' >

*4. A CHARACTERIZATION OF THE NORMAL
DISTRIBUTION

Consider a non-degenerate linear transformation of coordinate variables

(4.1) Y, = auX; + a:.X,, Y, = ax X, + aX,,

7 Fisher derived the distribution of the maximal term among the V; in 1929 without
knowledge of the covering theorem, and explained in 1940 the equivalence with the
covering theorem after W. L. Stevens had proved the latter. [See papers No. 16 and 37 in
Fisher’s Contributions to Mathematical Statistics, John Wiley, New York (1950).] For
an alternative derivation using Fourier analysis see U. Grenander and M. Rosenblatt
(1957).

* This section treats a special topic and is not used in the sequel.
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and suppose (without loss of generality) that the determinant A = 1. If
X, and X, are independent normal variables with variances ¢ and o2
the distribution of the pair (Y,, Y,) is normal with covariance

z . 2
1102105 + Q1505507

[see example 1(d)]. In this case there exist non-trivial choices of the coeffi-
cients aj;, such that Y, and Y, are independent. The following theorem
‘shows that this property of the univariate normal distribution is not shared
by any other distribution. We shall here prove it only for distributions with
continuous densities, in which case it reduces to a lemma concerning the
functional equation (4.3). By the use of characteristic functions the most
general case is reduced to the same equation, and so our proof will really
yield the theorem in its greatest generality (see XV,8). The elementary
treatment of densities reveals better the basis of the theorem.

The transformation (4.1) is meaningful only if no coefficient a,, vanishes.
Indeed, suppose for example that a;; = 0. Without loss of generality we may
* choose the scale parameters so that a;, = 1. Then Y; = X,, and a glance
at (4.4) shows that in this case Y, must have the same density as X;. In
other words, such a transformation amounts to a mere renaming of the
variables, and need not be considered.

Theorem. Suppose that X, and X, are independent of each other, and
that the same is true of the pair Y,, Y,. If no coefficient a;, vanishes then
all four variables are normal.

The most interesting special case of (4.1) is presented by rotations, namely
transformations of the form

(42) Y, =X,cosw + X,sinw, Y, = -X;sinw + X, coS

where w is not a multiple of 4w. Applying the theorem to them we get

Corollary. If X, and X, are independent and there exists one rotation
(4.2) such that Y, and Y, are also independent, then X, and X, have normal
distributions with the same variance. In this case Y, and Y, are independent

for every w.

Example. Maxwell distribution of velocities. In his study of the velocity
distributions of molecules in R* Maxwell assumed that in every Cartesian
coordinate system the three components of the velocity are mutually
independent random variables with zero expectation. Applied to rotations
leaving one axis fixed our corollary shows immediately that the three com-
ponents are normally distributed with the same variance. As we saw in
11,3 this implies the Maxwell distribution for velocities. >
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The theorem has a long history going back to Maxwell’s investigations. Purely prob-
abilistic studies were initiated by M. Kac (1940) and S. Bernstein (1941), who proved
our corollary assuming finite variances. An impressive number of authors contributed
improvements and variants, sometimes by rather deep methods. The development -
culminates in a result proved by V. P. Skitovi¢.?

Now to the proof in the case of continuous densities. We denote the
densities of X; and Y, respectively by u; and f;. For abbreviation we put
(4.3) Y1 = an® + a19%, Y = An%) + %,

Under the conditions of the theorem we must have

(4.4) S1(@) fo(y2) = (1) (o).
We shall show that this relation implies that

(4.5) fiy) = £, u (%) = £e®
where the exponents are polynomials of degree 2 or lower. The only .

probability densities of this fcrm are the normal densities. For distributions
with continuous densities the theorem is therefore contained in the following

Lemma. Suppose that four continuous.functions f; and u; are connected
by the functional equation (4.4), and that no coefficient a;, vanishes. The
Sfunctions are then of the form (4.5) where the exponents are polynomials of
degree <2.

(It is, of course, assumed that none of the functions vanishes identically.)

Proof. We note first that none of our functions can have a zero. Indeed,
otherwise there would exist a domain Q in the z,, x,-plane in which the
two members of (4.4) have no zeros and on whose boundary they vanish.
But the two sides require on the one hand that the boundary consists of
segments parallel to the axes, on the other hand of segments parallel to the
lines y; = const. This contradiction shows that no such boundary exists.

We may therefore assume our functions to be strictly positive. Passing to
logarithms we can rewrite (4.4) in the form

(4.6) P1(¥1) + Po(¥2) = 01(2) + wy(22).
For fixed 4, and A, define the mixed difference operator A by
(4.7) Av(zy, z,) = v(@x,+hy, To+-hy) — v(@+7y, 2o —hy) —
— v(xy—hy, Tathy) + v(X,— Ay, T— ).

8 Izvestia Acad. Nauk SSSR, vol. 18 (1954) pp. 185-200. The theorem: Let X,,...,
be mutually independent, Y¥; = Za;X;, and Y, = Zb X, where no coefficient is 0. If
and Y, are independent the X; are normally distributed.

X,
Y

1
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Because each w; depends on the single variable z; it follows that Aw,; = 0.
Also

(4.8) Agi(y) = g1 +8) — (1 +1,) — 9”1(3/1_’2) + o1 —11)
where we put for abbreviation

(4.9) = anh, + ayh,, Iy = anhy — azh,.

We have thus A¢g, + Ap, = 0 with ¢; depending on the single variable
y;- Keeping y, fixed one sees that Ag,(y,) is a constant depending only on
h, and h;. We now choose /4, and 4, sothat ¢, =t and t, =0, where
t 1s arbitrary, but fixed. The relation Ag, = const. thep takes on the form

(4.10) "o+t + oy —1) — 29,(y1) = A2).

Near a point y, at which ¢, assumes a minimum the left side is >0, and
hence such a point can exist only if A(t) > 0 for all ¢ in some neighborhood
of the origin. But in this case ¢, cannot assume 4 maximum. Now a
continuous function vanishing at three points assumes both a maximum and a
minimum. We conclude that if a continuous solution of (4.10) vamshes at
three distinct points, then it is identically zero.

Every quadratlc polynomial ¢(y;) = ay? + By, + v satisfies an equat;on
of the form (4.10) (with a different right side), and hence the same is true of
the difference ¢,(¥;) — ¢q(y;). But ¢ can be chosen such that this difference
vanishes at three prescribed points, and then ¢,(y,) is identical with gq.
The same argument applies to ¢,, and this proves the assertion concerning
/1 and f;. Since the variables X; and Y, play the same role, the same
argument applies to the densities ;. >

5. MATRIX NOTATION. THE COVARIANCE MATRIX

The notation employed in section 1 is messy and becomes more so in
higher dimensions. Elegance and economy of thought may be achieved by
the use of matrix notation.

For ease of reference we summarize the few facts of matrix theory and the notations
used in the sequel. The basic rule is: first rows, then columns. Thusan « by 3 matrix A4
has « rows and f§ columns; its elements are denoted by aj;, the first index indicating the
row. If B isa f byy matrix with elements b the product 4B isthe a byy matrix with
elements a;,64; + @900, + * -+ a;pbg. No product is defined if the number of columns
of A does not agree with the number of rows-of B. The associative law (4B)C = A(BC)
holds, whereas in general AB 3 BA. The transpose AT s the B by « matrix with elements
aT = a,;. Obviously (4BT) = BTAZ.

A one by « matrix with a single row is called a row vector; a matrix with a single
column, a column vector.® A row vector r = (ry, ..., r,) is easily printed, but a column

® This is really an abuse of language. In a concrete case x; may represent pounds and
Zy cows: then (z,,%,) is no **vector” in the strict sense.
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vector is better indicated by its transpose ¢ = (¢;,...,¢,). Note that cr is an a by «
matrix (of the “‘multiplication table™ type) whereas rc is a one by one matrix, or scalar. -

In the case & = 2
€1r €1rs
cr = ( , rc = (rycy+rycy).

Caly  Coly
The zero vector has all components equal to 0.

Matrices with the same number of rows and columns are called square matrices. With
a square matrix A there is associated its determinant, a number which will be denoted by
|A|. For our purposes it suffices to know that the determinants are multiplicative: if A
and B are square matrices and C = AB, then |C| =|A4| - |B|. The transpose A7 has
the same determinant as A. '

By identity matrix is meant a square matrix with ones in the main diagonal and zeros
at all other places. If [ is the identity matrix with r rows and columnsand A4 an r by r
matrix, obviously /4 = Al = A. By inverse of A is meant a matrix A1 such that
AA-! = A'4 = I. [Only square matrices can have inverses. The inverse is unique, for
if B isanyinverseof 4 wehave AB = [ and by the associative law A~! = (4-14)B = B.]
A square matrix without inverse is called singular. The multiplicative property of deter-
minants implies that'a matrix with zero determinant is singular. The converse is also true
if |4l £ 0 then A is non-singular. In other words, a matrix A is singular iff there exists
a non-zero vector 2 such that x4 = 0.

A square matrix A4 is symmetric if ay = a,;, thatis, if A" = A. The quadratic form
associated with a symmetric r by r matrix A is defined by

-
xAxT = Z e
Prk=1

where x, . . ., x, are indeterminates. The matrix is positive definite if xAxT > 0 for all
non-zero vectors . It follows from the last criterion that a positive definite matrix is non-
singular. i

Rotations in R*. For completeness we mention briefly a geometric application of matrix
calculus although it will not be used in the sequel.

The inner product oftwp row vectors = (x;,....%,) andy = (y,,...,y,) is defined

by

X
et =T = 3 oy,
i=1
The length L of x is given by L2 = xxT. If x and y are vectors of uxit iength the angle
§ between them is given by cos § = xyT.

An o« by « matrix 4 induces a transformation mapping z intc § = wA4; for the
transpose one has §7 = ATxT. The matrix A is orthogoral if the induced transformation
preserves lengths and angles, that is to say, if any two rov: vecters have the same mner
preduct as their images: Thus A is orthogonal iff for apv pair of row vectors x, y

zAATYT = ayT,

v

This implies that AA4T is the identity matrix I as can be seen by cheosing for x and ¥
vectors with « -- 1 vanishing components. We have thus fouad that < is orthagonal if
AAT = 1. Since A and AT have the same determinant it follows that it equals +1 or
—1. An orthogonal matrix with determinant 1 is called a rotation matrix and the induced
transformation is a rotation.
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From now on we denote a point of the r-dimensional space R" by a
single letter to be interpreted as a row vector. Thus z = (z,,...,%,) and
f(x) = f(z,,...,2,), etc. Inequalities are to be interpreted coordinatewise:
z<y ifil ¢ <y, for k=1,...,r and similarly for other inequalities.
In the plane R* the relation # <y may be read as “xz lies southwest of
y.” A novel feature of this notation is that two points need not stand in
either of the relations « <y or y < z, thatis, in higher dimensions the
inequality < introduces only a partial ordering.

We write X = (X,,...,X,) for the row vector of the coordinate variables
and use this notation for random variables in general (mainly for normally
distributed variables).

If the variables X, ..., X, have expectations E(X;) we write E(X) for
the row vector with components E(X,). The vector X — E(X) has zero
expectation. More generally, if M is a matrix whose elements M, are
random variables we write E(M) for the matrix of e]ements E(M,k)
assuming that it exists.

Definition. If E(X) = 0 the covariance matrix Var (X) of X is the sym-

metric r by r matrix with elements E(X,X;) (provided they all exist). In
other words ‘

(5.1) Var (X) E(XTX).
For arbitrary X we define Var (X) to be the same as Var (X—E(X)).

The use of row vectors necessitates writing a linear transformation from
RT to R™ in the form

(5.2) Y = X4,
that is,
(5.3) A .yk =§la,kx, k = 1, P (A

where 4 is an r by m matrix. Obviously E(Y) = E(X)4 whenever E(X)
exists. To find the variances we assume w1thout loss of generality E(X) = 0.
Then E(Y) =0 and

(5.9 E(YTY) = E(47XTXA4) = ATE(XTX)A4.
We thus have the important result that
(5.5) Var (Y) = AT Var (Y)A.

Of particular interest is the special case m = 1 when

(5.6) Y =aX, + " +aX,
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is an ordinary random variable. Here Var (Y) is the (scalar) quadratic form

(5.7 Var (Y) = > E(X,X))a,q,.
dk=1

The linear form (5.6) vanishes with probability one if Var (Y) =0 and
in this case every region outside the hyperplane ¥ a2, = 0 carries zero
probability. The probability distribution is then concentrated on an
(r—1)-dimensional manifold and is degenerate when considered in r
dimensions. We have now proved that the covariance matrix of any non-
degenerate probability distribution is positive definite. Conversely, every
such matrix may serve as covariance matrix of a normal density (see theorem
4 of the next section).

6. NORMAL DENSITIES AND DISTRIBUTIONS

Throughout this section . Q stands for a symmetric r by r matrix, and
g(x) for the associated quadratic form

(6.1) gq(z) = 2 21255 = 2QxT

i k=1
where = (2,,...,z,) is a row vector. Densities in R" defined by an
exponential with a quadratic form in the exponent are a natural counterpart
of the normal density on the line, and we start therefore from the following

Definition. 4 density @ in r dimensions is called normal*® and centered at
the origin of it is of the form

(6.2) p(z) =y - H

where y is a constant. A normal density centered at a = (a;,a,, ... ,a,)
is given by @(x—a). '

The special case of two dimensions was discussed in examples 1(d)
and 2(a).

We take %" with the probability distribution of (6.2) as sample space
and denote by X = (X, ..., X,) the row vector formed by the coordinate
variables. Its covariance matrix will be denoted by Af:

(6.3) M = Var (X) = E(XTX).

Our problem consists in investigating the nature of the matrices Q and M,
and the relationship between them.

First we observe that no diagonal element of Q can vanish. Indeed, if we
had g,, = 0, then for fixed values of #,,...,x,; the density (6.2) would

10 ¢ Degenerate™ normal distributions will be introduced at the end of this section.
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take on the form p~le=®*r** and the integral with respect to =z, would
diverge. We now introduce the substitution y = zA4 defined by

(6'4) yl = xl, ceey yﬁ—l = xr-l’ yr = qlrxl + o + qrrxr'

It is seen by inspection that ¢(z) — y?/g,, is a quadratic formin z;,...,x
not involving z,. Thus

: 1 .
(6.5) q(z) = o yr + q(y).
where §(y) is a quadratic formin y,,...,y,_,. This shows that the vector
Y = XA has a normal density that factors into two normal densities for Y,
and (Y,,..., Y, ), respectively. The first conclusion to be drawn is the
simple but important

Theorem 1. A/l marginal densities of a normal density are again normal.
Less expected is

Theorem 2. There exists a matrix C with positive determinant such that
Z = XC is a row vector whose components 7L, are mutually independent
normal variables. '

The matrix C is not unique; in 'faéf, the theorem can be strengthened
to the effect that C can be chosen as a rotation matrix (see problem 19).

Proof. We proceed by induction. When r = 2 the assertion is contained
in the factorization (6.5). If the theorem is true in r — 1 dimensions, the
variables Y,,..., Y, , are linear combinations of independent normal
variables Z,,...,Z,.; while Y, itself is normal and independent of the
remaining variables. Since X = YA~! it follows also that the X; are
linear combinations of Z,,...,Z, , and Y, The determinant of A
equals ¢,, and (6.5) implies that it is positive. The determinant of the
transformation X — Z is the product of the determinants of 4 and the
transformation Y — Z and hence it is positive. >

- Theorem 3. The matrices Q-and M are inverses of each other and
(6.6) = Qm)y- M|
where |M| = |Q|™! is the determinant of M.
Proof. With the notations of the preceding theorem put
(6.7) D = E(ZTZ) = CTMC.

This is a matrix with -diagonal elements E(Z%) = 0% and zero elements
outside the diagonal. The density of Z is the product of normal densities
n(zo;')o; ! and hence induced by the matrix D~! with diagonal elements
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o;2 Now the density of Z is obtained from the density (6.2) of X by
the substitution z = zC~! and multiplication by the determinant [C-1|.
Accordingly

(6.8) 2D727 = xQaT

and

(6.9) (7Y |D| = »*- [CI*

From (6.8) it is seen that

(6.10) Q =CD'CT,

and in view of (6.7) this implies Q = M~ F‘rom (6.7) it follows also that
| D] = |M]-|C|* and hence (6.9) is equivalent to (6.6). >

The theorem implies in particular that a factorization of M corresponds
to an analogous factorization of Q and hence we have the

Corollary. If (X,, X,) is normally distributed then X, and X, are indepeh-
dent iff Cov (X, X,) =0, that is, iff X, and X, are uncorrelated.

More generally, if (X,,...,X,) hasa normal density then (X,,...,X,)
and (X,,1,...,X,) areindependentiff Cov (X;, X;) =0 for j < n,k > n.

Warning. The corollary depends on the joint density of (X,;,X,) being
normal and does not apply if it is only known that the marginal densities of
X, and X, are normal. In the latter case the density of (X,, X;) need not
be normal and, in fact, need not exist. This fact is frequently misunderstood
(see problems 2-3).

Theorem 4. A matrix M is the covariance matrix of a normal density iff
it is positive definite.

Since the density is induced by the matrix Q = M~! an equivalent
formulation is: A matrix Q induces a normal density (6.2) iff it is positive
definite. _

Proof. We saw at the end of section 5 that every covariance matrix of
a density is positive definite. The converse is trivial when r =1 and we
proceed by induction. Assume @ positive definite. For z,='--=
=z, ; = 0 we get ¢g(xr) =¢_z? and hence ¢,, > 0. Under this hypothesis
we saw that ¢ may be reduced to the form (6.5). Choosing z, such that
y, = 0 we see that the positive definiteness of Q implies g(z) > 0 for all
choices of =z,,...,z,_;. By the induction hypothesis therefore § corre-
sponds to a normal density in'r — 1 dimensions. From (6.5) it is now obvious
that ¢ corresponds to a normal density in r dimensions, and this completes
the proof. >
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We conclude this general theory by an interpretation of (6.5) in terms of
conditional densities which leads to a general formulation of the regression
theory explained for the two-dimensional case in example 2(a).

Put for abbreviation a, = —¢,,/q,,, so that
(61 1) Y, = qrr(xr_alxl_' : '_ar—lxr—l)'
For a probabilistic interpretation of the coefficients a, we recall that Y,
was found to be independent of X,,..., X, ;. In other words, the a; are
numbers such that
(612) T= Xr - alxl -t r—le—l
is independent of (X,, ..., X, ,), and this property uniquely characterizes
the coefficients a;. '
. To obtain the conditional density of X, for given X, =z,,...,X,; =
= z,_, wemustdivide thedensity of (X,, ..., X,) bythemarginal density for
(X, ..., X,;). In view of (6.5) we get an exponential with exponent
—3y?%/q... Tt follows that the conditional density of X, for given X, =
=2,,...,X,; =z, is normal with expectation ayz, 4+ - - + a,,%,,
and variance 1/g,,. Accordingly
(6.13) E(X, | X oo X)) =Xy + - + a, X _

We have thus proved the following generalization of the two-dimensional
regression theory embodied in (2.6).

Theorem S. If (X,,...,X,) has a normal density, the conditional density
of X, for given X,,...,X,_, isagain normal. Furthermore, the conditional
expectation (6.13) is the unique linear function of X,, ..., X, making T
independent of (X,, ..., X,.,). The conditional variance equals Var (T) =
=4,

Example. Sample mean and variance. In statistics the random variables

A 1 A 1 4 -~
(6.14) X =-X++X,), & =->2X—%)’

) r rE=1
are called the sample mean and sample variance of X = (X;,...,X,).
It is a curious fact that if X, ..., X, are independent normal varidples with

E(X,) = 0, E(X2) = o?, the random variables X and &® are independent.*

The proof illustrates the applicability of the preceding results. We put
Y, =X, — X for k<r—1 but Y, =X The transformation from X
to Y= (Y,,...,Y,) being linear and non-singular, Y has a normal
density. Now E(Y.Y,) =0 for ¥ <r—1 and so Y, is independent of

11 That this fact characterizes the normal distribution in ®! was shown by R. C. Geary
and by E. Lukacs.
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(Y, ...,Y,_,). But

(6.15) ré® =Yy 4+ -+ Y, + (Y4 +Y, )
depends only on Y,,...,Y,,;, and thus &% is indeed independent of
Y, =X _ >

General Norma! Distributions

It follows from the lemma that if X = (X,,...,X,) has a normal
density, every non-zero linear combination Y, = ¢,X, + ‘- + a,X, also
has a normal density. The same is true of every pair (Y;, Y,;) provided
that no linear relationship ¢, Y, 4+ ¢,Y, = 0 "holds. In this exceptional
case the probability distribution of (Y,, Y,) is concentrated on the line
with the equation ¢y, + ¢y, = 0 and hence it is singular if viewed as a
two-dimensional distribution. For many purposes it is desirable to preserve
the term normal distribution also for degenerate distributions concentrated
on a lower-dimensional manifold, say on a particular axis. The simplest
general definition is as follows: The distribution of Y = (Y,,...,Y,) is
normal if there exists a vector X = (X,, ..., X,) with normal r-dimensional
density such that Y = a 4+ XA where A4 is a (constant) r by p matrix and
a=(a,...,a,). If p>r the distribution of Y is degenerate in p
dimensions. For p < r it is non-degenerate iff the p forms defining Y,
are linearly independe~*

*7. STATIONARY NORMAL PROCESSES

The purpose of this section is partly to supply examples of normal distri-
butions, partly to derive some relations of considerable use in the theory of
discrete stochastic processes and time series. They are of an analytic character
and easily separaied from the deeper stochastic analysis. In fact, we shall
be concerned only with finite-dimensional normal densities or, what amounts
to the same, their covariance matrices. The reference to random variables is
essential for probabilistic intuition and as a preparation for applications, but
at the present stage we are concerned only with their joint distribntions;
the random variables themselves are used merely as a convenient way of
describing all marginal densities by indicating the corresponding coliections
(X,,».--,X,). By the same token a reference to an infinite sequence
{X,} implies merely that the number of terms in (X,,...,X,) may be
taken arbitrarily large. '

We shall, in fact, consider a doubly infinite sequence {...,X 5, X_;, ...}
By this we mean simply that corresponding to each finite collection

* Not used in the sequel. In particular, section 8 can be read independently. (See
also XIX,8.)
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(X, - .-, X,,) we are given a normal density with the obvious consistency
rules. The sequence is stationary if these distributions are invariant under
time shifts, that is, if all r-tuples of the form (X, v oo - X py) with
fixed n,,...,n, have a common distribution mdependent of ». For
r =1 this implies that the expectations and variances are constant, and
hence there is no loss in generality in assuming that E(X,) = 0. The joint
distributions are completely determined by the covariances p;, = E(X;X,),
and the stationarity requires that p; depends only on the difference lk — j|.
Accordingly we put p; ;. , =r,. Thus

(7.1) r. = E(X, X, = EX,_,. X)),

whence r, = r_,. In effect we are dealing only with sequences of numbers
r, that can serve as covariances for a stationary process.

Throughout this section {Z,} stands for a doubly infinite sequence of
mutually independent normal variables normed by

(7.2) EZ,) =0 EZ})=1.

Three methods of constructing stationary sequences in terms of a given
sequence {Z,} will be described. They are in constant use in time series
analysis and may serve as an exercise i_n routine manipulations.

n

Examples. (a) Generalized moving average processes. With arbitrary
constants bg, by, ..., b, put

(7 3) X = bOZ + bIZn—l +- -+ bNZn—N

In the special case of equal coefficients b, = 1/(N+1) the variable X,
is an arithmetic average of the type used in time series analysis to “smooth
data” (that is, to eliminate local irregularities). In the general case (7.3)
represents a linear operator taking the stationary sequence {Z,} into a
new stationary sequence {X,}. The fashionable term for such operations 1s
“filters.”” The sequence {X,} has covariances

(7.4) r.=r_.=EX,X,,,) = Z bvbv+le (k2 0)

the serie$ having finitely many terms only.

Since 2 |bb, | < b2+ b2, the expression (7.4) makes sense also for
infinite sequences such that Y b2 < co.- It is easily seen that the limit of
a sequence of covariance matrices is again a covariance matrix and, letting
N— o0, we conclude that for any sequence by, by, by, ... such that
D> b% < oo the numbers r, of (7.4) may serve as covariances of a stationary
. process {X,}. Formally we get for the new process

(1.5) X, =3 bZy,

k=0
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It can be shown without difficulty that every stationary process with co-
variances (7.4) is of this form, but the relation (7.5) involves infinitely many
coordinates and we cannot justify it at present. (See XIX,8.)

.(b) The auto-regression process. Since the inception of time series analysis
various theoretical models have been proposed to explain empirical phe-
nomena such as.economic time series, sunspots, and observed (or imagined)
periodiciiies. The most popular model assumes that the variables X, of
the process are related to our sequence Z, of independent normal variables
of (7.2) by an auto-regression equation of the form

(1.6) 03X, + @, X, 1+ + ayX, y =Z,

This model is based on the empirical assumption that the value of the
variable X, at epoch n (price, supply, or intensity) depends on its past
development superimposed on a ‘“random disturbance’’ Z, which is not
related to the past. As is frequently the case, the assumption of linear
dependence serves to simplify (or make possible) a theoretical analysis.
More general models may be obtained by letting N — oo or by letting the -
Z, be the variables of another stationary process.

If a9 # 0 one may chosse (X, ..., Xy_;) inan arbitrary way and then
calculate Xy, Xy,1,... and X_;, X_,, ... recursively. In this sense (7.6)
determines a process, but we ask whether there exists a stationary solution.

To answer this question we rewrite (7.6) in a form not involving the
immediate predecessors of X,. Consider (7.6) with n replaced successively
by n—1, n—2,...,n—v. Multiply these equations by b,,b,,..., b'v,
respectively, and add to (7.6). The variables X, ,,...,X,_, will not
appear in the new equation iff the b; are such that

(7.7) aobl + albo = 0, o« . ey aobv + albv_l + A + aybo = 0
with b, = 1. The resulting identity is then of the form
(78) aoxn _=Jb0Zn + blzn—l + T + van—;v + Yn.v

where Y, , is a linear combination of X, ,,,...,X,_n_, (with co-
efficients that are of no interest). In (7.8) we have expressed the variable
X, as a resultant of the chance contributions at epochs n, n—1,...,n—v
and a variable Y, , representing the influence of the time before epoch
n—v». As v— oo this time becomes the “infinitely remote past” and
in most situations it will have no influence. In passing to the limit we shall
(at least temporarily) assume this to be the case, that is, we are looking
for a process satisfying a limiting relation of the form

(79) aoXn = z kan—k° .

k=0
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[Roughly speaking we assume that the residual variables Y, , tend to zero.
Other possible limits will be indicated in example (d).]

Processes of the form (7.9) are the object of example (a) and we saw
that a stationary solution exists whenever > b2 < oo. (If the series diverges,
not even the expressions for the covariances make sense.) To solve the
equations (7.7) for b, we use the formal generating functions

(7.10) AGs) =S aps*,  B(s) =3 bys*.

The equations (7.7) hold iffl A(s) B(s) = ayb, and, A4 being a polynomial,
B is rational. We can therefore use the theory of partial fractions developed
in 1; XI,4. If the polynomial A(s) has distinct roots s,,..., sy we get

A A
(7.11), B(s) = —2— 4. 42X
$§ — S SN — S
and hence
(7.12) ‘ b, = A;s7" 4+ - + Apnsy™ L

Obviously > b2 < oo iff all roots satisfy |s;) > 1, and it is easily verified
that this remains true also in tne presence of multiple roots. We have
thus shown that a stationary solution of the auto regression model (7.6)
exists whenever all roots of the polynomial A(s) lie outside the unit disk.
The covariances of our process are given by (7.4) and in the process the
“infinitely remote past’ plays no role.

Our solution {X,} of the auto-regression equation (7.6) is unique. Indeed,
the difference of two solutions would satisfy the homogeneous equation
(7.13) and we shall now show that the condition |s;| > 1 precludes the
existence of a probabilistically meaningful solution of this equation.

(c) Degenerate processes. We turn to stationary sequences {Y,} satisfying
the stochastic difference equation |

(7.13) @Y, + @Yo+ +ay¥, y=0.

They represent an interesting counterpart to the auto-regressiocn processes
governed by (7.6). Typical examples are

(7.14) Y, = A(Z, cos nw + Z_, sin nw)
and
(7.15) Y, =oZ + (—H"e,Z_,

where the coefficients and w are constants, and Z, and Z_; independent
normal variables normed by (7.2). These processes satisfy (7.13), the first
with gy=4g, =1 and aq, = —2cos w, the second with gy = —a, =1
and a, = 0. They are degenerate in the sense that the whole process is




111.7 STATIONARY NORMAL PROCESSES 91

completely determined by two observations, say Y,_, and Y, These two
observations can be taken as far back in the past as we please, and in this
sense the process is completely determined by its “infinitely remote past.”
The same remark applies to any process satisfying a difference equation
of the form (7.13), and hence these processes form the counterpart to
example (b) where the infinitely remote past had no influence at all. S

These examples explain the general interest attaching to the stochastic
difference equation (7.13). Before passing to its theory we observe that any
process {Y,} satisfying (7.13) satisfies also various difference equations of
higher order, for example

ayY, + (@,—a))Y,y + -+ (ay—ay_ )Y,y — ayY, ns.

To render the problem meaningful we must suppose that (7.13) represents
the difference equation of lowest order satisfied by {Y,}. This amounts to
saying that the N-tuple (Y,,...,Y,) is non-degenerate with a normal
density in N dimensions. It implies that g, # 0 and ay # 0.

It will now be shown that the theory of stationary solutions of the difference
equation (7.13) is intimately related to the “‘characteristic equation”

(7.16) apty + a4 -+ ay=0.

To each quadratic factor of the polynomial on the left there corresponds
a second-order stochastic difference equation, and through it a process of
the form (7.14) or (7.15). Corresponding to the factorization of the character-
istic polynomial we shall thus represent the general solutlon of (7.13) as a
sum of components of the form (7.14) and (7.15).

As before we assume the centering E(Y,) = 0. The whole theory depends
on the following

Lemma 1. A stationary sequence with E(Y,Y,,.) =r, satisfies the
stochastic difference equation (7.13) iff

(7.17) g, + qyfpy + -+ ayr,_y = 0.

Proof. Multiplying (7.13) by Y, and taking expectations leads to (7.17).
Squaring the left side in (7.13) and taking expectations yields > a;(3 ayri_;),
and so (7.17) implies that the left side in (7.13) has zero variance. This
proves the lemma. >

We proceed to derive a canonical form for r,. Itis, of course, real, but it
involves the roots of the characteristic equation (7.16), and we must therefore
resort to a temporary use of complex numberc.

Lemma 2. If ~{Yn} satisfies (7.13), but no difference’ equation of lower
order, then the characteristic equation (7.16) possesses N distinct roots
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£, ..., &y of unit modulus. In this case

(7.18) ro==0cé1 + - + cnéi
with ¢; >0 for j=1,...,N.

Proof. Suppose first that the characteristic equation (7.16) has N distinct
roots &,..., &y. We solve (7.17) by the method of particular solutions
which was used for similar purposes in volume 1. Inspection shows that
(7.18) represents a formal solution depending on N free parameters
€, -..,Cy. Now the r, are completely determined by the N values
ry, ...,ry, and to show that every solution of (7.17) is of the form (7.18)
it suffices therefore to show that the ¢; can be chosen so that the relations
(7.18) yield prescribed values for ry,...,ry. This means that the ¢, must
satisfy N linear equations whose matrix 4 has elements a; = & (j,
k=1,...,N). The determinant of 4 does not vanish,!? and hence the
desired solution exists.

We have thus established that (in the case of distinct roots) r, is indeed
of the form (7.18). Next we show that only roots of unit modulus can
effectively appear in it. We know that a, # 0, and hence 0 is not a root of
the characteristic equation. Next we note that the covariances r, are
bounded by the common variance r, of the Y,. Butif £; is not of unit
modulus then [&;[* — oo either as n— oo or as n— —oo. It follows
that for each j either |£;/ =1 orelse ¢; = 0.

Suppose now that &, and &, are a pair of conjugate roots and ¢; # 0.
Then &, is of unit modulus and hence &, = £!. The symmetry relation
r, = r_, thereforerequiresthat ¢, = ¢,. Again, &% 4 £7 is real, and there-
fore ¢, must be real. Thus the complex roots appear in (7.18) in conjugate
pairs with real coefficients, and if some coefficient ¢; vanished, r, would
satisfy a difference equation of order less than N. Accordingly all roots
are of unit modulus, all ¢; are real and ¢; # 0.

To show that the ¢; are actually positive we introduce the covariance
matrix R of (Y,,...,Yy). Its elements are given by r,_,, and it is
easily verified from (7.18) that

(7.19) R = ACA

where C isthe diagonal matrix with elements c;, 4 isthe matrix introduced

12 The determinant is usually called after Vandermonde. To show that it does not vanish
replace £, by a free variable z. Inspection then shows that the determinant is of the form
ZP(z) where P is a polynomial of degree N — 1. Now P(x) =0 for x = &,,..., &,
because for these values of z two columns of the determinant become identical. The
determinant can therefore not vanish for any other value of z, and in particular not for
z = §,.
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above, and A is its conjugate (that is, it is obtained from A4 by replacing
5,- by £;1). Now R is real and positive definite, and therefore for any
complex N-dimensional non-zero row vector =z = u + iv

(7.20) zRZT = yRuT + vRvT > 0.
Letting y = xA4 this reduces to
N _
(7.21) yCg" =2 c;lyI* > 0.
i=1

Since the determinant of 4 does not vanish this inequality holds for
arbitrary y, and thus ¢; > 0 as asserted.

To complete the proof we have to show that the characteristic equation
can not have multiple roots. Assume that & = £, but the other roots are
distinct. We get again a representation of the form (7.18) except that the
term ¢, &}, is replaced by ¢,;né7. The boundedness of r, again necessitates
that ¢, = 0. In the case of one double root we would therefore get a
representation of the form (7.18) with fewer than N non-zero terms, and we
have seen that this is impossible. The same argument shows more generally
that no multiple roots are possible. >

We now state the final result for the case that N is an odd integer. The
modifications required for even N should be obvious.

Theorem. Suppose that the stationary sequence {Y,} satisfies the differ-
ence equation (7.13) with N =2y + 1, but no difference equation of lower
order. The characteristic equation (7.16) possesses v pairs of complex roots
£, =cosw; & isinw; (with w; real), and one real root wy= +1. The
sequence {Y,} is of the form

v
(7.22) Y, = AZ, oy + D A[Z;cos nw; + Z_; sin nw,],
. =1
where the Z; are mutually independent normal variables with zero expectations
and unit variances, and the A; are constants. For this sequence

(7.23) r, = Aoy + 2 A3 cos nw;.
j=1
Conversely, choose real A,# 0 arbitrary and w,= xl, and let
w,, ..., w; bedistinct real numbers with 0 < w; < m. Then (1.22) defines a

stationary process with covariances (7.23) and satisfying a difference equation of
order 2v + 1_but no difference equation of a lower order.

Proof. Let the 4; and w; be numbers, and the Z; normal variables
satisfying the conditions of the theorem. Define the variables Y, by (7.22).
A trite calculation shows that the covariances r, of {Y,} are given by
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(7.23). There exists a real algebraic equation of the form (7.16) with the
roots &; described in the theorem. The r; then satisfy the difference equation
(7.17), and by lemma | this implies that the Y, satisfy the stochastic
difference equation (7.13). By construction this is the equation of lowest
degree satisfied by the Y,.

Conversely, let {Y,} stand for the solution of a given difference equation
(7.13). The covariances r, of {Y,} determine the numbers 4; and w;

appearing in (7.22). Consider these equations for n =10, 1,...,2» as a
linear transformation of an arbitrary N-tuple of normal variables
(Z_,,...,Z,) into (Y,,...,Yy). This transformation is non-singular,

and hence the covariance matrices of the two N-tuples determine each other
uniquely. We have just shown that if the covariance matrix of the Z;
reduces to the identity matrix the Y, will have the prescribed covariances
r,. The converse is therefore also true, and so there exist normal variables
Z; satisfying the conditions of the theorem and such that (7.22) holds for
n=0,...,N. But both sides of these equations represent solutions of the
stochastic difference equation (7.13),.and since they agree for 0 < n < N
they are necessarily identical. >

8. MARKOVIAN NORMAL DENSITIES

We turn to a discussion of the particalar class of normal densities occurring
in Markov processes. Without loss of generality we consider only densities
centered at the origin. Then E(X;) = 0 and we use the usual abbreviations

(8.1) E(X}) = o;, E(X,X) = 0,01p5-
The p;. are the correlation coefficients and py;, = 1.

Definition. The r-dimensional normal density of (X,,...,X,) is Marko-
vian if for k < r the conditional dersity of X, for given X,, ..., X, is
identical with the conditional density of X, for given X, _,.

Roughly speaking, if we know X, , (the “present”) then the additional
knowledge of the “past” X,,...,X,_, does not contribute any relevant
information about the “future,” that is, about any X; with j > k.

As usualin similar situations, we apply theterm Markovian interchangeably
to (X, ...,X,) and its density.

Theorem 1. For (X,,...,X,) to be Markovian each of the following
two conditions is necessary and sufficient:

(i) For k <r
(8.2) EX:| Xy, ..., X)) = EX, | Xa)-
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(i) For j<v<k<r

(83) Pit = PjivPvk-
For (8.3) to hold it suffices that

8.4) ‘ Pik = Pix—1Pk—1.k> J < k.

“Proof. Identity of densities implies equality of expectations and so (8.2)
is trivially necessary. On the other-hand, if (8.2) is true, theorem 5 of section
6 shows that the conditional density of X, for given X, ..., X;_; depends
only on X,_;, but not on the preceding variables. Now the conditional
density of X, for given X, is obtained by integrating out the variables
X,...., X;_s, and hence the two conditional densities are identical. Thus
(8.2) is necessary and sufficient.

Referring again to theorem 5 of section 6 it is clear that the variable

(8.9) T =X, — EX, | X))
is identical with
) o
8.6) T=X, — —- Pr—1,6X%—1-
’ ' Op—1

because this is the only variable of the form X; — c¢X,_, uncorrelated to
X,_;. By the same theorem therefore (8.2) holds iff T is uncorrelated also to
X, ..., X, 5, thatis, iff (8.4) holds. Thus (8.4) is necessary and sufficient.
As it is a special case of (8.3) the latter condition is sufficient. It is also
necessary, for repeated application of (8.4) shows that for j <v < k <r

8.7) Pik _ Pik—1 _ Pik—2 _ Piv _ .
ka Rv,k—l Pv,k—2. va .
and so (8.4) implies (8.3). >

Corollary. If (X,,...,X,) is Markovian, so is every subset (X, . ... X,,)
with oy < ag <+ < a,ﬁ(.’

This is obvious since (8.3) automatically extends to all subsets. >

Examples. (@) Independent increments. A (finite or infinite) sequence
{X,} of normal random variables with E(X,) = 0 is said to be a process
with independent increments if for j < k the increment X, — X, is
independent of (Xy, ..., X;). This implies, in particular, E(X,;(X;—X;)) =
=0 or

(8:8) pix = — j< k.

Comparing this with (8.3) one sees that a normal process with independent
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increments is automatically Markovian. Its structure is rather trite: X, 1is
the sum of the & mutually independent normal variables

Xl’ X2_X1, o 0.y Xk_Xk-—l'

(b) Autoregressive models. Consider a normal Markovian sequence
X;, X;, ... with E(X;) = 0. There exists a'unique constant a, making
X, — a,X,_, independent.of X, ,, and hence of X,,..., X,_;. Put

and, recursively,

Xl = }»IZI

(8.9) .
X, = 0,X,_; + ALZ, k=2,3,...

The variables Z, thus defined are easily seen to be independent and
(8.10) E(Z)=0, EZ)=1.

Now the converse is also true. If the Z, are normal and satisfy (8.10),
then (8.9) defines a sequence {X,} and the very structure of (8.9) shows
that {X,} is Markovian. As an exercise we verify it computationally.
Multiply (8.9) by X; and take expectations. As Z, is independent of
Xy, ..., Xy wegetfor j <k

(8.11) g, = —& Pix
Ok—-1 Pj,k—1

Now (8.4) is a simple consequence of this, and we know that it implies
the Markovian character of the X,. Thus (X,,...,X,) is Markovian iff
relations of the form (8.9) hold with normal variables Z; satisfying (8.10).
[This is a special case of example 7().] >

So far we have considered only finite sequences (X, ..., X,), but the
number r plays no role and we may as well speak of infinite sequences
{X,.j. This does not involve infinite sequence spaces or any new theory,
but is merely an indication that a distribution for (Xy, ..., X,) is defined
for all r. Similarly, we speak of a Markovian family {X(¢)} when any
Jinite collection X, = X(,), ..., X, = X(s,) is Markovian. The description
depends on the functions

(8.12) EX:(t) = o¥(1),  EX(9)X(0) = o(s) o(1) p(s, 1).

In view of the criterion (8.3) it is obvious that the family is Markovian iff
for s<t <~

(8.13) p(s, 1) p(t, 7) = p(s, 7).
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Despite the fancy language we are really dealing only with families of
finite-dimensional normal distributions with covariances satisfying (8.13).

As explained in greater detail at the beginning of section 7, the sequence
{X,} is stationary if for each fixed n-tuple («,,..., «,) the distribution of
(Xapivs - - - » Xo ) is independent of ». A finite section of such a sequence
may be extended to both sides, and hence it is natural to consider only
doubly infinite sequences {...,X —2» X_;, Xo, X;,...}. These notions
carry over trivially to families {X(t)}

For a stationary sequence {X,} the variance o% is independent of n
and in the Markovian case (8.3) implies that p,, = plt~il. Thus for a
stationary Markovian sequence

(8.14) - E(X,X,) = o*pl*7!

where ¢* and p are constants, [p| < 1. Conversely, a sequence with
normal distributions satisfying (8.14) is Markovian and stationary.

In the case of a stationary family {X(t)} the correlation p(s, ) depends
only on the difference |z—s| and (8.13) takes on the form

p(?) p(r) = p(t+7) \ ‘ for ¢, 7> 0.

Obviously p(r) =0 would imply p(t) =0 for all +>+ and also
p(37) =0, and so p can have no zeros except if p(z) =0 for all 1> 0.
Hence p(?) = e by the repeatedly used result of 1; XVII, 6. Accordingly,
for a stationary Markovian family

- (8.15) ‘ E(X(s) X(s+1)) = d*e*, t>0
except if X(s) and X(t) are uncorrelated for all s 5 ¢.

Example. (c) Stationary sequences may be constructed by the scheme
of the last example Because of (8.11) we must have

(8.16) X, = pX,, + o/ 1—p Z,.

For each k it is possible to express X, as a linear combination of Z,,
Z, 1 ...,Z,,, and X,_,. A formal passage to the limit would lead to the
representation

’ @
(8.17) X, = ov1—p? > P
i=
of {X,} in terms of a doubly infinite sequence of independeat normal
variables Z; normed by (8.10). Since |p| < 1 the convergence of the series
is plausible, but the formula as such involves an infinite sequence space.
[See the remarks concerning (7.5) of which (8.17) is a special case.]
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It may be useful to discuss the relation of theorem 1 to the direct description
of Markovian sequences in terms of densities. Denote by g; the density
of X; and by g,(z,y) the value at 7 of the conditional density of X,
given that X; = z. (In stochastic processes g, is called a transition density
from X; to X;.) For normal Markovian sequences g; is the normal density
with zero expectation and variance o2 As for the transition probabilities,
it was shown in example 2(a) that

(8.18) Bl ) = —=n(

2
o 1—py

¥y — O'i—IPiko'kx)
O'k\/l _bizk
where n stands for the standard normal density. However, we shall not
use this result and proceed to analyze the properties of g,; by anindependent-
method. As usual we interpret the subscripts as time parameters.
The joint density of (X, X;) is given by g.(x) g,;(z, y). The joint density
for (X;, X;, X,,) is the product of this with the conditional density for X,

for given X; and X;, butin view of the Markovian character the index i
drops out if i <j < k and the density of (X;. X;, X;) is given by

(8.19) £:*) g5, ¥) gy, 2).

In the Markovian case the density of every n-tuple (X, ,...,X, ) is given
by a product of the form (8.19), but the densities g;, cannot be chosen
arbitrarily. Indeed, integration of (8.19) with respect to y  yields the
marginal density for (X, X,) and so we have the consistency condition .

-+ o0

g:{2, ¥) g4y, 2) dy

(8.20) gal(, 2) =f

forali i <j < k. This is a special case of the Chapman-Kolmaogorov identity
for Markov processes.’* Very roughly, it expresses tha. a transition from z
at epoch i to z atepoch k takes place via an arbitrary intermediate position
y, the transition from y to z being independent of the past. It is
obvious that with any system of transition probabilities g;, satisfying the
Chapman-Kolmogorov identity the multiplication scheme (8.19) leads to a
consistent sysﬁem of densities for (X;, X;,...,X,) and the sequence is
Markovian. We have thus the following analytic counterpart to theorem 1.

Theorem 2. A family {g;) can serve for transition densities in a normal
Markovian process iff it satisfies- the Chapman-Kolmogorov identity and
g Z, y) represents for each fixed x a normal density in y.

13 Other special cases were encountered in 1; XV,(13.3) and XVIL,(9.1). Note that the
system (8.19) is the analogue to the definition I; XV,(1.1) of probabilities for Markov
chains, except that there summation replaces the integration and that only stationary
transition probabilities were considered.
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Both theorems contain necessary and sufficient conditions and they are
therefore, in a sense, equivalent. They are, nevertheless, of different natures.
The second is really not restricted to normal processes; applied to families
{X(#)} it leads to differential and integral equations for the transition
probabilities and in this way it serves to introduce new classes of Markovian
processes. On the other’hand, from theorem 2 one would not guess that the
8 are necessarily of the form (8.18), a result implicit in the more special
theorem 1.

For reference and later comparisons we list here the two most important
Markovian families {X(¢)}.

Example. (d) Brownian motion or Wiener-Bachelier process. It is defined
by the condition that X(0) =0, and that for 7> s the variable
X(t) — X(s) be independent of X(s) with a variance depending only on
t — 5. In other words, the process has independent increments [example
(a)] and stationary transition probabilities [but it is not stationary since
X(0) = 0]. Obviously E(X%*(t)) = 0% and E(X(5)X(?)) = 0% for s <1t
For 7 > t the transition densities from (¢, 2) to (r,y) are normal with
expectation z and variance o%(r—t). They depend only on (y—2)/(t—1),
and the Chapman-Kolmogorov identity reduces to a convolution.

(e) Ornstein-Uhlenbeck process. By this is meant the most general normal
stationary Markovian process with zero expectations. Its covariances are
given by (8.15). In other words, for 7> ¢ the transition density from
(t,z) to (7,y) is normal with expectation e—*"~¥z and variance
a?(1—e~#t"1). As 7— oo the expectation tends to 0 and the variance to
o2 This process was considered by Ornstein and Uhlenbeck from an entirely
different point of view. Its connection with diffusion will be discussed
in X,4. >

9. PROBLEMS FOR SOLUTION

1. Let Q be the region of the plane (of area {) bounded by the quadrilateral
with vertices (0, 0), (1, 1), (0, 1), (3, 1) and the triangle with vertices (3, 0),;(1, 0),
(1, }). (The unit square is the union of Q and the region symmetric to Q with
respect to the bisector.) Let (X, Y) be distributed uniformiy in Q. Prove that the
marginal distributions are uniform and the X + Y has the same density as if
X and Y were independent.14

Hinr: A diagram rende:s calculations unnecessary.
2. Densities with normal marginal densities. Let u be an odd continuous function
on the line, vanishing outside =1, 1. If [u| < {(2me)~% then
n@n(y) + u(x)u(y)
14 In other words, the distribution of a sum may be given by the convolution even if the

variables are dependent. This intuitive example is due to H. E. Robbins. For another
freak of the same type see I1,4(c).
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represents a bivariate density which is not normal, but whose marginal densities are
both normal. (E. Nelson.)

3. A second example. Let ¢, and ¢, be two bivariate normal densities with
unit variances but different correlation coefficients. The mixture (@, +@®s) is
not normal, but its two marginal densities coincide with n. _

Note. In the sequel all random variables are in R'. Vector variables are indicated
by pairs X, XY, etc.

4. Let X,,..., X, beindependent random variables with the common density

f and dnstrnbutIOn functlon F. If X isthesmallestand Y the largest among them,
the joint density of the pair (X, Y) is given by

n(n 1) f(x) f(y)[F(y) — Fx)]" 2, y >z

5. Show that the symmetric Cauchy distribution in ®* [defined in (1.21)]
corresponds to a random vector whose length has the density v(r) = 4=~1r%(14r%)-2
for r > 0. [Hint: Use polar coordinates and either (1. 15) or else the general
relation 1,(10.4) for projections.]

6. For the Cauchy distribution (1.21) the conditional density of Xj for given
X, X, is
2 V(I+E+E)7

n (I +E+ 22
and the bivariate conditional density of X,, X; for given X, = ¢

1 142
ve(y, 2) = 7 A+ tye 1208
7. Let 0 <a <1l and f(z,¥y) =I[(1+azx)(1 +ay) — ale~*v=9¥ for z > 0,
y >0 and f(z,y) = 0 elsewhere.
(a) Prove that f is a density of a pair (X, Y). Find the marginal densities and
the distribution functton.
. (b) Find the conditional density u,(y) and E(Y [X), Var (Y | X).

8. Let f be a density concentrated on 0, «. Put u(z, y’)' f(= +y)/(x+y) for
z >0,y >0 and u(z,y) =0 otherwise. Prove that u is a a density in K2 and
find its covariance matrix.

9. Let X,;, X,, X3 be mutually independent and distributed uniformly over

0,1. Let Xy, X(z,, X(3) be the corresponding order statistics. Find the density of
the pair

051,52(2) =

and show that the two ratios are independent. Generalize to n dimensions.

10. Let X;, X;, X; be independent with a common exponential distribution.
Find the density of (X,—X,, X;—X)).

11. A particle of unit mass is split into two fragments with masses X and
1 — X. The density f of X is concentrated on 0, 1 and for reasons of symmetry
f(x) = f(1 — z). Denote the smaller fragment by X, the larger by X,. The two
fragments are split independently in like manner resulting in four fragments with
masses X1, X;2, Xo1, Xgp. Find (a) the density of X,,. (b) The joint density of X,
and X,,. Use (b) to verify the result in (a).
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ETER
12}1‘1” X, X, ... be independent with the common normal density n, and
S, =1; ,I+§ + Xk If m<n find the joint density of (S,,S,) and the
condrb qq&kdensnty for S,, giventhat S, =t
13 precedmg problem find the conditional density of X% + --- + X2
give -+ X2
14. X, Y) have a bivariate normal density centered at the origin with
E(X?) —E(Yz) 1, and E(XY) = p. In polar coordinates (X,Y) becomes
(R,®) where R? = X% 4+ Y2 Prove that @ has a density given by
V1 — p?
£ 0<p<2n

22(1 —2p sin ¢ cos @)
and is uniformly distributed iff p = 0. Conclude
P{XY >0} =1 +»larcsin p and P{XY <0} = »!arccos p.

15. Let f be the uniform density for the triangle with vertices (0, 0), (0, 1),
(1,0) and g the uniform density for the symmetric triangle in the third quadrant.

Find f*f, and f*g.
Warning. A tedious separate consnderatnon of individual intervals is required.

16. Let f be the uniform density in the unit disk. Find f* f in polar coordinates.
17. Let u and v be densities in R? of the form '

wz,y) = (Va2 +48),  ox,y) =g(Vat +y7).
Find u * v in polar coordinates.

18. Let X =(X,,...,X,) have a normal density in r dimensions. There
exists a unit vector a = (a,, ..., a,) such that

Var (alx1+' ° '+a,.X,.) 2 Var (C1X1+' ° ‘+C,._X,.)

for all unit vectors ¢ = (¢y, ..., ¢,). If a=(1,0,...,0) is such a vector then
X, is independent of the remaining X;.

19. Prove the

Theorem. Given a normal density in R™ the coordinate axes can be rotated in
such a way that the new coordinate variables are mutually independent normal
variables.

In other words: in theorem 2 of section 6 the matrix C may be taken as a
rotation matrix.

Hint: Let Y = XC and choose a rotation matrix C such that
Y, =aX, + - +aX,

where a = (a,, ..., a,) is the maximizing vector of the preceding example. The
rest is easy.

20. Find the general normal stationary process satisfying
(@) Xpio + X = 0

® Xpi2 — X, = 0 ,

(© X1z+3 - X'n+2 + X'n+1 - X, =0.

21. A servo-stochastic process. (H. D. Mills.) A servomechanism is exposed
to random shocks, but corrections may be introduced at any time. Thus the
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error Y, at time n is (ip proper -units) of the form Y,,, =Y, —-C, + X,
where C, is the correction and the X, are independent normal variables,
2(X,) =0, E(X2) = 1. The C, are, in principle, arbitrary functions of the past
observations, that is, of Y, and X, for k& < n. One wishes to choose them so as
to minimize Var (Y,) (which is a measure of how well the mechanism works),
and Var (C,) (which is a measure of how hard it works).

(a) Discuss the covariance function of {Y,} and show that Var (Y,) > 1.

(b) Assuming that Var (C,) — «?, Var(Y,) — ¢ (tendency to stationarity)
show that o > 4(a+a™1). :

(c) Consider, in particular, the linear device C, =a + p(Y,—b), 0 <p < 1.
Find the covariance function and a representation of the form (7.8) for Y,.

22. Continuation. If there is a time lag in information or adjustment the model
is essentially the same except that C, is to be replaced by C,.x. Discuss this
situation.




CHAPTER IV

Probability Measures and Spaces

As stated in the introduction, very little of the technical apparatus of
measure theory is required in this volume, and most of the book should
be readable without the present chapter.! [t is nevertheless desirable to
give a brief account of the basic concepts which form the theoretical back-
ground for this book and, for reference, to record the main theorems.
The underlying ideas and facts are not difficult, but proofs in measure
theory depend ‘on messy technical details. For the beginner and outsider
access is made difficult also by the many facets and uses of measure theory;
excellent introductions exist, but of necessity they dwell on great generality
and on aspects which are not impofttant in the present context. The following
survey concentrates on the needs of this volume and omits many proofs
and technical details.? (It is fair to say that the simplicity of the theory is
deceptive in that much more difficult measure theoretic problems arise in
connection with stochastic processes depending on a continuous time
parameter. The treatment of conditional expectations is deferred to V,
10-11; that of the Radon-Nikodym theorem to V,3.)

Formulas relating to Cartesian (or Euclidean) spaces R’ are independent
of the number of dimensions provided z is read as abbrevnatlon for

(z,...,2,).

! This applies to readers acquainted with the rudiments of measure theory as well as
to readers interested primarily in results and facts. For the benefit of the latter the definition
of integrals is repeated in V,1. Beyond this they may rely on their intuition, because in
effect measure theory justifies simple formal manipulations.

2 An excellent source for Baire functions and Lebesgue-Stieltjes integration is found
in E. J. McShane and T. A. Botts, Rea/ analysis, D. Van Nostrand, Princeton, 1959.
Wldely used are presentations of general measure theory in P. R. Halmos, Measure theory,
D. Van Nostrand, Princeton, 1950 and in N. Bourbaki, Eléments de mathématiques [livre
VI, chapters 3-5] .Hermann, Paris, 1952 and 1956. For presentations for the specific
purposes of probability see the books of Doob, Krickeberg, Loéve, Neveu, and
Hennequin-Tortrat.
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1. BAIRE FUNCTIONS

We shall have to decide on a class of sets for which probabilities are

defined and on a class of functions acceptable as random variables. The
two problems are not only related but their treatment is unified by a stream-
lined modern notation. . We begin by introducing it and by recalling the
definition of convergence in terms of monotone limits.
T The indicator® of a set A is the function which assumes the value 1 at
all points of 4 and the value 0 at all points of the complement A’. It will
be denoted by 1,: thus 1, (z)=1 if ze 4 and 1,(x) =0 otherwise.
Every set has an indicator, and every function assuming only the values
1 and O 1s the indicator of some set. If f is an arbitrary function, the
product 1,/ is the function that equals f on A and vanishes elsewhere.

Consider now the intersection C = A4 N B of two sets. Its indicator

1. equals O wherever either 1, or 1y vanishes, thatis, 1, = inf (14, 1p)
equals the smaller of the two functions. To exploit- this parallelism one
writes f N g instead of inf (f, g) for the function which 4t each point z
equals the smaller of the values of f(z) and g(z). Similarly fUg =
= sup (f, g) denotes the larger of the two values.* The operators N and

U are called cap and cup respectlvely They apply to arbitrary numbers of
functions, and one writes

(1.1) fn-nfi=0f fiv---un=Urs

k=1

To repeat, at each point z these functions equal, respectively, the minimum
and the maximum among the n values f,(z),...,f. (). If f, is the indi-
cator of a set A, then (1.1) exhibits the indicators of the intersection
A; N --- N A4, and of the union 4, U - U 4,.

Consider now an infinite sequence {f,}. The functions defined in (1.1)
depend monotonically on n, and hence the limits >, f, and Ui /e
are well defined though possibly infinite. For fixed j

@
(1.2) w, =M f
k=i
is the limit of the monotone sequence of functions f; N --- N fi4n» and
the sequence {w;} itself is again monotone, that is, w, = w; U - Uw,

With our notations w, — J=.,w,. By definition w,(2) is the greatest
lower bound (the infimum) of the numerical sequence f,(%), fri1(%), .. ..

3 This term was introduced by Loéve. The older term ‘“characteristic function’ is
confusing in probability theory.

4 Many writers prefer the symbols v and A for functions and reserve N and U for
sets. Within our context there is no advantage in the dual notation.
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Hence the limit of w, is the same as liminf f, and thus

: @ o
(1.3) ~ liminff, =UN f.
fmlk=f

In this way the lim inf is obtained by a succession of two passages to the
limit in monotone sequences. For limsup f, one gets (1.3) with N and
U interchanged. ‘

All these considerations carry over to sets. - In particular, we write
A=1imd, iff 1,=1im1, . In words, the sequence {4 } of sets con-
verges to the set A iff each point of 4 belongs to all A, with finitely many
exceptions, and each point of the complement A’ belongs at most to
finitely many A4

Example. (a) The set {4,i.0.}. As a probabilistically significant example
of limiting operations among sets consider the event A defined as ‘“the
realization of infinitely many among a given sequence of events A4;, 4,,....”
[Special cases were considered in 1; VIII,3 (Borel-Cantelli lemmas) and in
1; XIII (recurrent events).] More formally, given a sequence {A4,} of sets,
a point z belongs to A iff it belongs to infinitely many A,. Since 0 and 1
are the only possible values of indicators this definition is equivalent to
saying that 1, =Ilimsup1,. In standard notation therefore A4 =
lim sup 4,, but the notation {4,i.0.} (read “A, infinitely often”) is
more suggestive. It is due to K. L. Chung.

Our next problem is to delimit the class of functions® in R" with which
we propose to deal. The notion of an arbitrary function is far too broad
to be useful for our purposes, and a modernized version of Euler’s notion
of a function is more appropriate. Taking continuous functions as given,
the only effective way of constructing new functions depends on taking limits.
As it turns out, all our needs will be satisfied if we know how to deal with
functions that are limits of sequences {f,} of continuous functions, or
limits of sequences where each f,, is such a limit, and so on. In other words,
we are interested in a class B of functions with the following properties:
(1) every continuous function belongs to B, and (2) if f;, f, ... belong to
B and a limit f(z) = lim f,(x) exists for all z, then f belongs to B.

3 We are, in principle, interested only in finite-valued functions, but it is sometimes
convenient to permit + o as values. For example, the simple theorem that every mono-
tone sequence has a limit is false for finite-valued functions and without it many for-
mulations become clumsy. For this reason we adhere to the usual convention that all
functions are to the extended real line, that is, their values are numbers of £ . In
practice the values = oo will play no role. To make sure that the sum and product of two
-functions are again functions one introduces for their values the conventions © + «© = o,
w — 0 =000 =0w,0-0 =0, etc.
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Such a class is said to be closed under pointwise limits. There is no doubt
that such classes exist, the class of a/l functions being one. The intersection
of all such classes is itself a closed family, and obviously is the smallest such
class. Prudence requires us to limit our considerations to this smallest class.

The smallest closed class of functions containing all continuous functions
is called the Baire class and will be denoted by B. The functions in- B are
called Baire functions.®

We shall use this notion not only for functions defined in the whole

space but also for functions defined-only on a subset (for example, \/:r
or logz in R1). -
- It is obvious from the definition that the sum and the product of two
Baire functions are again Baire functions, but much more is true. If w is
a continuous function in r variables and f1, ..., fr are Baire functions,
then w(fi,...,f;) is again a Baire function. Replacing w by w, and
passing to a limit it can be shown that more generally every Baire function
of "Baire functions is again a Baire function. Fixing the value of one or
more variables leads again to a Baire function, and so on. In short, none
of the usual operations on Baire functions will lead outside the class, and
therefore the class B is a natural object for our analysis. It will turn
out that no simplifications are possible by considering smaller classes.

2. INTERVAL FUNCTIONS AND INTEGRALS IN Rr

We shall use the word in{erval? and the indicated notation, for sets of
points satisfying a double inequality of one of the following four types:
—_

a,b: _a<¢<b' : a,b: a<z<b

l—T| I

a,b: aLz<b . : a,b: a<z<b.

In one dimension this covers all possible intervals, including the degenerate
interval of length zero. In two dimensions the inequalities are interpreted
coordinate-wise, and intervals are (possibly degenerate) rectangles parallel
to the axes. Other types of partial closure are possible but are herewith
- excluded. The limiting case where one or more coordinates of either a or b
are replaced by + oo is admitted; in particular, the whole space is interval the
— 0, 0.

A point function f assigns a value f(z) to individual points. A sef
function F assigns values to sets or regions of the space. The volume in

8 This definition depends on the notion of continuity but not on other propcrtics of
Cartesian spaces. It s therefore applicable to arbitrary topological spaces.
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R3, area in R?, or length in R' are typical examples but there are many
more, probabilities representing ‘a special case of primary concern to us.
We shall be interested only in set functions with the property that if a set
A is partitioned into two sets 4, and A,, then F{4} = F{4,} + F{4,}
Such functions are called additive.”

As we have seen, it occurs frequently that probabilities F{I} are assigned
to all intervals of the r-dimensional space R’ and it is desired to extend
this assignment to more general sets. The same problem occurs in elementary
calculus, where the area (content) is originally defined only for rectangles
and it is desired to define the area of a more general domain 4. The simplest
procedure is first to define integrals for functions of two variables and then
to equate “the area of 4’ with the integral of the indicator 1, (that is the
function that equals 1 in A4 and vanishes outside A). In like manner we
shall define the integral

2.1 E(u) =J‘5{" u(x) F{dz}

of a point function -u with respect to the interval function F. The prob-
ability of 4 will then be defined by E(1,). In the construction of the
integral (2.1) the interpretation of F plays no role, and we shall actually
describe the general notion of a Lebesgue-Stieltjes integral. With this pro-
gram in mind we now start anew.

Let F be afunction assigning to each interval 7 a finite value F{I}. Sucha
function is called (finitely) additive if for every partition of an interval [
into finitely many non-overlapping intervals I, ..., [,.

ey FiI} = F(l} + - + F{L,}.

Examples. (a) Distributions in R!'. In volume 1 we considered discrete
probability distributions attributing probabilities p;, p,, ... to the points
a, a,, . ... Here F{I} is the sum of the weights p, of all points a, con-
tained in I, and E(u) = Y u(a,)p,.

(b) If G is any continuous monotone function increasing from 0 at — oo
to 1 at co one may define F{a, b} = G(b) — G(a).

(¢c) Random vectorsin R*. A vector of unit length issues from the origin in
a randem direction. The probability that its endpoint lies in a two-
dimensional interval [ is proportional to the length of the intersection of
I with the unit circle. This defines a continuous probability distribution
without density. The distribution is singular in the sense that the whole

7 Empirical examples for additive functions are the mass and amount of heat in a region,
the land value, the wheat acreage and the number of inhabitants of a geographical region,
the yearly coal production, the passenger miles flown or the kilowatt hours consumed
during a period, the number of telephone calls, etc.
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probability is carried by a circle. One may think that such distributions are
artificial and that the circle rather than the plane should serve as natural
sample space. The objection is untenable because the sum of two independent
random vectors is capable of all lengths between 0 and 2 and has a positive
density within the disk of radius 2 [see example V,4(e)]. For some problems
involving random unit vectors the plane 1s therefore the natural sample
space. Anyhow, the intention was only to show by a simple example what
happens in more complicated situations.

(d) We conclude with an example illustrating the contingency that will
be excluded in the sequel. In R' put F{I} = 0 for any interval I = a, a, b

with b < oo and F{I})=1 when I =a, co. This interval function is
additive but weird because it violates the natural continuity requirement

that F{a, b} should tend to F{a, o} as b.— co. . >

The last example shows the desirability of strengthening the requirement
(2.2) of finite additivity. We shall say that an interval function F is countably

additive, or o-additive, if for every partitioning of an mterval I into countably
many intervals I, I, . . ., :

(2.3) F{I} = 3 F{L,}.

[““Countably many”’ means finitely or denumerably many. The term
completely additive is synonymous with countably additive. The condition
(2.3) is manifestly violated in the last example.]

We shall restrict our attention entirely to countably additive set functions.
This is justified by the success of the theory, but the restriction can be
defended a priori on heuristic or pragmatic grounds. In fact, if 4, =
I, U---UI, is the union of the first n intervals, then 4, — /1. One
could argue that “for n sufficiently large A, is practically indistinguishable
from I’ If F{I} can be found by experiments, F{4,} must be “practically
indistinguishable” from F{I}, that is, F{4,} must tend to F{/}. The
countable additivity (2.3) expresses precisely this requirement

Being interested principally in probabilities we shall consider only non-

negative interval functions ¥ normed by the condition that F{- o, oo} = 1.

This norming imposes no serious restriction when F{—o0, o0} < oo, but
it excludes interval functions such as length in R! or area in R? To make
use of the following theory in such cases it suffices to partition the line
or the plane into unit intexvals and treat them separately. This procedure
is so obvious and so well known that it requires no further explanation.

A function on R7 is called a step function if it assumes only finitely
many values, each on an interval. For a step function u assuming the
values a,,...,a, on intervals I,.

., 1, (that is, with probabilities -
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F{li}, ..., F{l,}), respectively we put
(2.4) E() =a, F{I;} + - +a, F{l,}

in analogy with the definition of expectation of discrete random variables.
(It 1s true that the partioning of the space into intervals on which u is
constant is not unique, but just as in the discrete case the definition (2.4)

is easily seen to be independent of the partition.] This expectation E(u)
satisfies the following conditions:

(a) Additivity for linear combinations:

(2.5) E(ayu; +a0tp) = 0, E(uy) + oE(u,).
(b) Positivity:

(2.6)  u20 implies E(u) > 0.
(¢) Norming: For the constant function

2.7) E(l) = 1.

The last two conditions are equivalent to the mean value thoerem:
a <u<f implies « < E(u) < B and so the function E(u) represents a
sort of average.®

The problem is to extend the definition of E(u) to larger classes of

functions preserving the properties (a)-(c). The classical Riemann integration

}———-
utilizes the fact that to each continuous function » on 0,1 there exists a

—
sequence of step functions u, such that u, —u uniformly on 0,1. By

definition then E(u) = lim E(u,). It turns out that the uniformity of the
convergence is unnecessary .and the same definition for E(u) can be used
whenever u, — u pointwise. In this way it is possible to extend E{(u) to
all bounded Baire functions, and the extension is uniqgue. When it comes to
unbounded functions divergent integrals are unavoidable, but at least for
positive Baire functions it is possible to define E(u) either as a number or as

8 When F represents probabilities E(x) may be interpreted as the expected gain of a
gambler who can gain the amounts a;, a;,.... To grasp the intuitive meaning in other
situations consider three examples in which u(x) represents, respectively, the temperature
at time z, the number of telephone conversations at time z, the distance of a mass poini
from the origin, while F represents, respectively, the duration of a time interval, the
value (cost of conversation) of a time interval, and mechanical mass. In each case integra-
tion will be extended over a finite interval only, and E(w) will represent the accumulated
“temperature hours.”” the accumulated gain, and a static moinent. These examples will
show our integration with respect to arbitrary set functions to be simpler and more
intuitive than Rismann integration where the independent variable plays more than one
role and the “‘area under the curve’’ is of no help to the beginner. One should beware of
the idea that the concept of expectation occurs only in probability theory.
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the symbol <« (indicating divergence). No trouble arises in this respect
because the Lebesgue theory considers only absolute integrability. Roughly
speaking, starting from the definition (2.4) for expectations of simple functions
it is possible to define E(u) for general Baire functions by obvious approxi-
mations and passages to the limit. The number E(u) so defined is the
Lebesgue-Stieltjes integral of » with respect to F. (The term expectation
is preferable when the underlying function F remains fixed so that no
ambiguity arises.) We state here without proof® the basic fact of the
Lebesgue theory; its nature and scope will be analyzed in the following
sections. [A constructive definition of E(u) is given in seclion 4.]

Main theorem. Ler F be a countably additive interval functions in R" with

F{—oc0, oo} = 1. There exists a unique Lebesgue-Stieltjes integral E(u) on
the class of Baire Jfunctions such that:

If u>0 then E(u) is a non-negative number or co. Otherwise E(u)
exists iff either E(u*) or E(y™) is finite; in this case E(u) = E(ut) — E(u").
A function u is called integrable if E(u) is finite. then

(i) If u is a step function, E(u) is given by (2.4).

(i) Conditions (2.5)-(2.7) hold for all integrable functions. A

(iti) (Monotone convergence principle.) Let u; < uy, < - -—u where
uy, is integrable. Then E(u,)— E(u).

The change of variables v, = u,,; — u, leads to a restatement of the last
principle in terms of series:

If v, isintegrable and v, > 9, then
(2.8) 2 E(v,) = E(% v,)

in the sense that both sides are meaningful (finite) or neither 1s. It follows
in particular that if v > u > 0 and E(u) = oo then also E(v) = co.

What happens if in (iii) the condition of monotonicity is dropped?
The answer depends on an important lemma of wide applicability.

~ Fatou’s lemma. If u, >0 and u, is integrable, then
(2.9) E(lim inf ) < lim,_inf E(u,).
In particular, if u, — u then lim inf E(u,) > E(w).
Proof. Put v, = u, 'r\ Up.p M+, Then b,,- g' u, and hence
E(v,) < E(uy).

¥ The method of proof is indicated in section 5. Asusual, u* and u~ denote the positive
and negative parts of u, thatis, ut =u U0 and ~u~ =u 0. Thus u = u*t —u",
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But (as we saw in section 1) v, tends monotonically to lim inf u,, and so
E(v,) tends to the left side in (2.9) and the lemma is proved. [Note that
each side in (2.9) can represent co.] b

As example (e) will show, the condition of positivity cannot be dropped,
but it can be replaced by the formally milder condition that there exists
an integrable function U such that u, > U. (It suffices to replace u, by
u, — U.) Changing u, into —u, we see thatif u, < U and E(U) < o,
then

(2.10) lim sup E(u,) < E(lim sup u,,).

For convergent sequences the extreme members in (2.9) and (2.10) coincide
and the two relations together yield the important

Dominated convergence principle. Let u, be integrable and u,— u
pointwise. If there exists an integrable U such that \|u,) < U for all n,
then u is integrable and E(u,) — E(u).

This theorem relates to the only place in the Lebesgue theory where a
naive formal manipulation may lead to a wrong result. The necessity of the
condition lu,’,l < U is illustrated by

. Lt
Example. (¢) We take 0, 1 as basic interval and define expectations by
the ordinary integral (with respect to length). Let

U (®) = (n + (n + 2)z™(1 — 2).

These functions tend pointwise to zero, but nevertheless 1 = E(u,)— 1.
Replacing u, by —u, it is seen that Fatou’s inequality (2.9) does not
necessarily hold for non-positive functions. | >

We mention without proof a rule.ot ordinary calculus applicable more
generally.

Fubini’s theorem for repeated integrals. If u > 0 is a Baire function and
F and G are probability distributions then

+00 +00 -0 -+
(2.11) f F{dx}f u(z, y) G{dy} =f G{dy}f u(z, y) F{dz}

~~Q0 —00 — -0
with the obvious interpretation in case of divergence. Here x and y may be
interpreted as pointsin R™ and K", and the theorem includes the assertion
that the two inner integrals are Baire functions. (This theorem applies to
arbitrary product spaces and a better version is given in section 6.)

Mean approximation theorem. To each integrable u and € >0 it is
possible to find a step function v such that E(ju—v]) < e.
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Instead of step functions one may use approximation by continuous
functions, or by functions with arbitrarily many derivatives and vanishing

outside some finite interval. [Compare the approximation theorem of
example VIII,3(a).]

Note on Notations. The notation E(u) emphasizes the dependence on u
and is practical in contexts where the interval function F is fixed. When
F varies or the dependence on F is to be emphasized, the integral notation
(2.1) is preferable. It applies also tc integrals extended over a subset 4, for
the integral of u extended over ‘4 is (by definition) the same as the integral

of the product 1_,u extended over the whole space. We write

Lu(x) F{dz} = E(1 u)

(assuming, of course, that the indicator 1, is a Baire function). The two
sides mean exactly the same thing, the left side emphasizing the dependence

on F. When 4 = Ez_,7) is an interval the notation j > is sometimes pre-
ferred, but to render it unambiguous it is necessary to indicate whether
the endpoints belong to the interval. This may be done by writing a+
or a—. ‘ ' >

In accordance with the. program outlined at the beginning of this section
we now define the probability of a set 4 to equal E(1,) whenever 1, isa
Baire function; for other sets no probabilities are defined. The consequences
of this definition will now be discussed in the more general context of
arbitrary sample spaces.

3. o-ALGEBRAS. MEASURABILITY

In discrete sample spaces it was possible to assign probabilities to all
subsets of the sample space, but in general this is neither possible nor desir-
able. In the preceding chapters we have considered the special case of
Cartesian spaces R" and started by assigning probabilities to- all intervals.
It was shown in the preceding section that such an assignment of probabilities
can be extended in a natural way to a larger class U of sets. The principal
properties of this class are: '

(i) faset 4 isin A sois its complement 4" = S — A.

(i1) If {4, is any countable collection of sets in U, then also their
union {J 4, and intersection {7} 4, belongto .

In short, U is a system closed under complementation and the formation
of countable unions and intersections. As was shown in section 1 this implies
that also the upper and lower limit of any sequence {4,} of setsin U again
belongs to . In other words. none of the familiar operations on sets in A
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will lead us to sets outside A, and therefore no nced will arise to consider
other sets. Thissituation is typical inasmuch as in general probabilities will
be assigned only to a class of sets with the properties (i) and (ii). We there-
fore introduce the following definition which applies to arbitrary spaces.

Definition 1. 4 o-algebra'® is a family W of subsets of a given set &
enjoying the properties (i} and (it).

Given any family § of sets in S, the smallest o-algebra containing all
sets in & is called the o-algebra generated by .

In particular, the sets generated by the intervals of R’ are called the Borel
sets of R". |

That a smallest o-algebra containing § exists is seen by the argument used
in the definition of Baire functions in section 1. Note that, & being the

union of any set 4 and its complement, every o-algebra contains the space
.

Examples. The /argest g-algebra consists of all subsets of S. This algebra
served us well in discrete spaces, but is too large to be useful in general. The
other extreme is represented by the trivial algebra containing only the whole
space and the empty set. For a non-trivial example consider the sets on the
line R! with the property that if x€ 4 then all points * + 1,2+ 2, ...
belong to A (periodic sets). Obviously the family of such sets forms a
o-algebra. : >

Our experience so far shows that a principal object of probability theory
is random variables, that is, certain functions in sample space. With a
random variable X we wish to associate a distribution function, and for
that purpose it is necessary that the event {X < r} has a probability assigned
to it. This consideration leads us-to

Definition 2. Ler U be an arbitrary a-algebra of setsin S. A real-valued
function u on S is called U-measurabie' if for each t the set of all points
x where u(x) <t belongs to U.

The set where u(x) < ¢ is the union of the countable sequence of sets
where u(z) <t —n~', and therefore it belongs to U. Since A is closed
under complementation it follows that in the above definition the sign <
may be replaced by <, >, or >.

10 An algebra of sets is defined similarly on repiacing the work “‘countable” in (ii) by
finite. A o-algebra is often called “*Bore! ajgebra,” but this leads to a confusion with the
last part of the definition. (In il intervals may be replaced by open sets, and then this
definition applies to arbitrary topological spaces.)

11 This term is a bad misnomer since no mcasure is yet defined.
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It follows from the definition that the U-measurable Sfunctions form a
closed family in the sense introduced in section 1.

The following simple lemma is frequently useful.

Lemma 1. A4 function u is U-measurable iff it is the uniform limif of a

sequence of simple functions, that is of functions assuming only countably many
values, each on a set in U.

Proof. By the very definition each simple function is %-measurable, and
because of the closure property of U-measurable functions every limit of
simple functions is again U-measurable.

Conversely, let v be U-measurable. For fixed € > 0 define the set 4,
as the set of all points z at which (n — 1)e < u(x) < ne. Here the integer
n runs from —oo to . The sets A4, are mutually exclusive and their
union is the whole space &. On the set A4, we define g,(z) = (n—1)e and

6(z) = ne. In this way we obtain two functions o, and &, defined on
© and such that

3.1 g <uxa, G, — 0, = €

at all points. Obviously u is the uniform limit of o, and &, as e—0.

Lemma 2. In R" the class of Baire functions is identical with the class of
Jfunctions measurable with respecf to the o-algebra W of Borel sets.

Proof. (a) Itis obvious that every continuous function is Borel measurable.
Now these functions form a closed class, while the Baire functions form the
smallest class containing all continuous functions. Accordingly, every Baire
function is Borel measurable.

(b) The preceding lemma shows that for the converse it suffices to show
that every simple Borel-measurable function is a Baire function. This amounts
to the assertion that for every Borelset 4 theindicator 1 is a Baire function.
Now Borel sets may be defined by saying that A4 is a Borel set if and only if
its indicator 1, belongs to the smallest closed class containing all indicators
of intervals. Since Baire functionsform a closed class containing all indicators
of intervals?? it follows that 1, is a Baire function for every Borel set 4. »

We apply this result to the special case of the Cartesian space R". In
section 2 we started from a completely additive interval function and defined
P{4} = E(1,) for every set A whose indicator 1, is a Baire function. The
present setup shows that under this procedure, the probability P{A} is
defined iff A is a Borel set.

12 To see this for an open interval I, let v be a continuous function vanishing outside
I and such that 0 < v(x) <1 for z€ 1. Then Vv —1p.
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Approximation of Borel sets by intervals. In view of the last remark, probabilities in
K" are as a rule defined on the c-algebra of Borel sets, and it is therefore interesting that
any Borel set A can be approximated by a set B consisting of finitely many intervals in the
following sense: To each ¢ > 0 there exists a set C such that P{C} < ¢ and such that
outside C thesets 4 and B are identical (that is, a point in the complement C’ belongs
either to both A4 and B, or to neither. One may take for C the union of 4 — 4B and
B — AB). :

Proof. By the mean approximation theorem of section 2 there exists a step
function » > 0 such that E(|1 ,—v|) < }e. Let B be the set of those points z at
which v(z) > §. Since v is a step function, B .consists of finitely many intervals. It is
easily verified that

E[,@)—15@| < 2E[1,@)—0@)| < ¢

for all z. But |1,—1,| is the indicator of the set C consisting of all points that belong
to either 4 or B but not to both. The last inequality states that P{C} < ¢, and this
completes the proof. >

4. PROBABILITY SPACES. RANDOM VARIABLES

We are now in a position to describe the general setup used in probability.
Whatever the sample space & probabilities will be assigned only to the sets
of an appropriate o-algebra U. We therefore start with '

Definition 1. 4 probability measure P on a o-algebra U of sets in &
is a function assigning a value P{A} > 0 to each set A in U such that.

P{G} = 1 and that for every countable collection of non- overlappmg sets
A, in A '

@1y . C P{U4,) =3 P4}

This property is called complete additivity and a probability measure may .
be described as a completely additive non-negative set function on % subject
to the norming®® P{S} = 1

In individual cases it is necessary to choose an appropriate g-algebra and
construct a probability measure on it. The procedure varies from case to
case, and it is impossible to describe a general method. Often it is possible
to adapt the approach used in section 2 to construct a probability measure
on the Borel sets of R". A typical example is provided by sequences of
independent random variables (section 6). The starting point for any

13 The condition P{S} = | serves norming purposes only and nothing essential changes
if it is replaced by P{S} < . One speaks in this case of a finite measure space. In prob-
ability theory the case P{S} < | occurs in various connections and in this case we speak
of a defective probability measure. Even the condition P{S} < o may be weakened by
requiring only that & be the union of countably many parts S, such that P{S,} < «.
(Length and area are typical examples.) One speaks then of o~ﬁmte measures.
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probabilistic -problem is a sample space in which a og-algebra with an
appropriate probability measure has been selected. This leads us to

Definition 2. A probability space is a triple (S, U, P) of a sample space
a o-algebra W of sets in it, and a probability measure P on U.

To be sure, not every imaginable probability space is an interesting object,
but the definition embodies all that is required for the formal setting of a
theory following the pattern of the first volume, and it would be sterile to
discuss in advance the types of probability spaces that may turn up in practice.

Random variables are functions on the sample space, but for purpeses of
probability theory we can use only functions for which a distribution function
can be defined. Definition 2 of section 3 was introduced to cope with this
situation, and leads to

Definition 3. 4 random variable X is a real function which is measurable
with ‘respect to the underlying c-algebra U. The Junction F defined by
F(r) = P{X < 7} us called the distribution function of X.

The elimination of functions that are not random variables is possible
because, as we shall presently see, all usual operations, such as taking sums
or other functions, passages to the limit, etc., can be performed within the
class of random variables without ever leaving it. Before rendering this point
more precise let us.-remark that a random variable X maps the sample
space & into the real line R' in such a way that the set in & in which

a <X <b is mapped into the interval a,b’, with corresponding prob-
ability F(b) — F(a). In this way every interval I in R! receives a prob-
ability F{I}. Instead of an interval / we may take an arbitrary Borel set
I' on R! and consider the set 4 of those points in & at which X assumes
avaluein I'. Insymbols: 4 = {X € I'}. Itis clear that the collection of all
such sets forms a o-algebra U; which may be identical with U, but is
usually smaller. We say that U, is the g-algebra generated by the random
varigable X. It may be characterized as the smallest o-algebra in © with
respect to which. X is measurable. The random variable X maps each set
of A, into a Borel set I' of R!, and hence the relation F{I'} = P{4}
defines uniquely a probability measure on the g-algebra of Borel sets on R*.
——]

For aninterval I = a, b we have F{I} = F(b) — F(a) and so F isidentical
with the unique probability measure in R?! associated with the distribution
function F by the procedure uescribed in section 2.

This discussion shows that as long as we are concerned with only one par-
ticular random variable X we may forget about the original sample space and
pretend that the probability space is the line R! with the o-algebra of Borel
sets on it and the measure induced by the distribution function F. We saw
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that in R! the class of Baire functions coincides with the Borel measureable
functions. Taking R!' as sample space this means that the class of random
variables coincides with the class of Borel measurable functions. Interpreted
in the original sample space this means that the family of Baire functions of
the random variable X coincides with the family of all functions that are
measurable with respect to the o-algebra A, generated by X. Since A, < A
this implies that any Baire function of X is again a random variable.

This argument carries over without change to finite collections of random
variables. Thus an r-tuple (X;,...,X,) maps & into R" so that to an
open interval in R” there corresponds the set in S at which r relations of
the torm a, < X, < b, are satisfied. This set is %-measurable because it is
the intersection of r such sets. As in the case of one single variable we may
- now define the o-algebra U, generated by X,,...,X, as the smallest
o-algebra of sets in & with respect to which the r variables are measurable.
We have then the basic

'Theorem. Any Baire function of finitely many random variables is again a
random variable.

A random variable U is a Baire function of X,, ..., X, ifit is measurable
with respect to the c-algebra generated by X,, ..., X..

Examples. (a) On theline R! with X' as coordinate variable, the function
X2 generates the o-algebra of Borel sets that are symmetric with respect to
the origin (in the sense that if x € 4 then also —z € 4).

{b) Consider R* with X,, X,, X; as coordinate variables, and the o-
algebra of Borel sets. The pair (X, X,) generates the family of all cylindrical
sets with generators parallel to the third axis and whose basis are Borel sets
of the (X,, X,) plane. >

Expectations

In section 2 we started from an interval function in R” and used it to
construct a probability space. There we found it convenient firsi to define
expectations (integrals) of functions and then to define the probability of a
Borel set A4 equal to the expectation E(1,) of its indicator. If one siarts
from a provability space the procedure must be reversed: the probabilities
are given and it is necessary to define the expectations of random variables in
terms of the given probabilities. Fortunately the procedure is exirawely
simple.

As in the preceding section we say that 2 randoin ‘/ar%abie oir gymole i
oassumes oniw co;,ntabl Many vaiues @, vy, .. . each on & 53t A
T0g 10 1Ak basic o 'ii_f“u 2. To such variables the discrete wneory ol voiuing

‘l‘,r l.“,/-
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1 applies and we define the expectation of U by .
(4.2) ' ' EU) = z akP{Ak}

provided the series converges absolutely; otherwise we say that U has no
expectation.

Given an arbitrary random variable and an arbitrary € > 0 we defined in
(3.1) two .szmple random variable g, and &, such that &, = o, 4+ ¢ and
g, < U < G,. With any reasonable deﬁnmon of E(U) we must have

4.3) J E(c,) < EU) < E@.)
whenever the variables ¢, and &, have expectatxons."S’incc' these functions
differ only by € the same is-true of their expectations, or else neither

expectation exists. In the latter case we say that U has no expectation,
whereas in the former case E{U) is uniquely defined by (4.3) letting € — 0.

In brief, since every random variable U is the uniform limit of a sequence -

of simple random variables o, the expectation 0 U can be defined as the
limit of E(s,). For example, in terms of &, we have

(4.4) E(U) = lim Z ne P{(n— l)e <U < ne}

€0 —o0
provided the series converges absolutely (for some, and therefore all € > 0).
Now the probabilities occurring in (4.4) coincide with the probabilities
attributed by the distribution function F of U to the intervals

———_——{ - - - . .
(n — 1), ne. It follows that with this change of notations our definition of

E(U) reduces to that given in section 2 for

o ~+ 00
(4.5) E(U) = f t F{dr}.

Accordingly, E(U) may be defined consistently either in the original prob-
ability space or in terms of its distribution function. (The same remark was
made in 1; IX for discrete variables). For this reason it is superfluous to
emphasize that in arbitrary probability spaces expectations share the basic
properties of expectations in R” discussed in section 2.

5. THE EXTENSION THEOREM

The usual starting point in the construction of probability spaces is that
probabilities are assigned a priori to a restricted class of sets, and the domain
of definition must be suitably extended. For example, in dealing with
unending sequences of trials and recurrent events in volume 1 we were given
the probabilities of all events depending on finitely many trials, but this
domain of definition has to be enlarged to include events such as ruin,
recurrence, and ultimate extinction. Again, the construction of measures in
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R in section 2 proceeded from an assignment of probabilities F{I} to
intervals, and this domain of definition was extended to the class of all Borel
sets. The possibility of such an extension is due to a theorem of much wider
applicability, and many constructions of probability spaces depend on it
The procedure is as follows. _

The additivity of F permits us to define without ambiguity

(5.1) F{4} = I F{I,}

for every set 4 which is the union of finitely many non-overlapping intervals
I,. Now these sets form an a_lgebra. A, (that is, unions, intersections, and
complements of finitely many sets in U, belong again to ;). From here
on the nature of the underlying space R" plays no role, and we may consider
an arbitrary algebra U, of sets in an arbitrary space &. There exists
always a smallest algebra U of sets containing A, which is closed also
under countable unions and intersections. In other words, there exists a
smallest g-algebra A containing A, (see definition 1 of section 2. In the
construction of measuresin R" the o-algebra 9 coincided with the o-algebra
of all Borel sets. The extension of the domain of definition of probabilities
from %A, to A is based on the general |

Extension theorem. Let U, be an algebra of sets in some space S. Let F
be a set function defined on W, such that F{A} > 0 for every set A €U, that
F{S} = 1, and that the addition rule (5.1) holds for any partition of A into
countably many non-overlapping sets I, € U,.

There exists then a unique extension of F to a countably additive set
function (that is, to a probability measure) on the smallest c-algebra U
containing U,

A typical application will be given in the next section. Here we give
a more general and more flexible version of the extension theorem which
is more in line with the development in sections 2 and 3. We started from
the expectation (2.4) for step functions (that is, functions assuming only
finitely many values, each on an interval). The domain of definition of this
expectation was then extended from the restricted class of step functions
to a wider class including all bounded Baire functions. This extension leads
directly te the Lebesgue-Stieltjes integral, and the measure of a set A4 is
obtained as the expectation of its indicator 1. The corresponding abstract
setup is as follows.

Instead of the algebra A, of sets we consider a class B, of functions
closed under linear combinations and the operations M and U. In other
words, we suppose that if u; and u, are in B, so are the functions'

(5.2) ity + oolls, uy N uy, u; \J u.

14 Qur postulates amount to requiring that B, be a linear lattice.
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This implies in particular that every function u of B, can be written in the
form u = u™ — u~ as the difference of two non-negative functions, namely

ut=u U0 and u~ = u N 0. By a linear functional on B, is meant an
assignment of values E{u) to all functions of B, satisfying the addition rule
(5.3) E(oquy +oauy) = oy E(uy) + o Elus,).

The functional is positive if u > 0 implies E(u) > 0. The norm of E is
the least upper bound of E(|u[) for all functions u € B, such that |u| < 1.
If the constant function 1 belongs to B, the norm of E equals E(1).
Finally, we say that E is countably additive on B, if

(5.4) , E (; uk) = ; :avf(uk)

whenever > u, happens to be in B,. An equivalent condition is: if {v,}
is a-sequence of functions in B,  converging monotonically to zero, thenl5

(5.5) | _ E(v,) — 0.

Given the class B, of functions there exists a smallest class B containing
By and closed under pointwise passages to the limit. [It is automatically
closed under the operations (5.2).] An alternative formulation of the
extension theorem is as follows.® Every positive countably additive linear
functional of norm 1 on B, can be uniquely extended to a positive countably
additive linear functional of norm 1 on all bounded (and many unbounded)
functions of B.

As an example for the-applicability of this theorem we prove the following
important result.

F. Riesz representation theorem.!” Let E be a positive linear functional
of norm 1 on the class of continuous functions on. R™ vanishing at infinity.1®

15 To prove the equivalence of (5.4) and (5.5) it suffices to consider the case u; > 0,
vy = 0. Then (5.4) follows from (5.5) with v, = upy; + Uyee + - -+ and (5.5) follows
from (5.4) on putting u;, = v, — vy, (that is, Zuk = v,).

16 The basic idea of the proof (going back to Lebesgue) is simple and ingenious. It is
not difficult to see that if two sequences {u,} and {u } of functions in B, converge
monotonicaily to the same limit « then E(x,) and E(u ) tend to the same limit. For such
monotone limits «# we can therefore define E(u) = lim E(u,). Consider now the class
B, of functions u such that to each ¢ > 0 there exist two functions ¥ and & which are
either in B, or are monotone limits of sequences B, and such that ¥ <u < and
E(7) — E(u) < . The class B, is closed under limits and for functions in B, the defini-
tion of E(u) is obvious since we must have E(x) < E(w) < E(d).

The tour de force in this argument is that the class B, is usually greater than B and the
simple proof is made possible by proving more than is required. (For a comparison
between B and B, see section 7.)

17 valid for arbitrary locally compact spaces. For an alternative proof see V,1.

18 ), vanishes at infinity if for given ¢ > 0 there exists a sphere (compact set) outside
which |u(z)] < e.
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There exists a measure P on the o-algebra of Borel sets with P{R"} = |
such that E(u) coincides with the integral of u with respect to P.

In other words, our integrals represent the most general positive linear
functionals.

Proof. The crucial point is that if a sequence {v,} of continuous func-
tions vanishing at infinity converges monotonically to zero, the convergence
[is .automatically uniform. Assume v, >0 and put v, = maxv,(z).
Then E(v,) < |lv,ll, and so the countable additivity condition (5.5) is
satisfied. By the extension theorem X can be extended to all bounded
Baire functions and putting P{4} = E(1,} we get a measure on the o-
algebra of Borel sets. Given the measures P{4} we saw that the Lebesgue-
Stieltjes integral is uniquely characterized by the double inequality (4.3)
and this shows that for u continuous and vanishing at infinity this integral
coincides with the given functional E(u). >

6. PRODUCT SPACES. SEQUENCES OF INDEPENDENT
VARIABLES

The notion of combinatorial product spaces (1; V,4) is basic for prob-
ability theory and is used every time one speaks of repeated trials. Describing
a point in the plane R? by two coordinates means that R? is taken as the
combinatorial product of its two axes. Denote the two coordinate variables
by X and Y. Considered as functions in the plane they are Baire
functions, and if a probability measure P is defined on the o-algebra of
Borel sets in R? the two distribution functions P{X < z} and P{Y < y}
exist. They induce probability measures on the two axes called the marginal
distributions {or projections). In this description the plane appears as the
primary notion, but frequently the inverse procedure is more natural. For
example, when we speak of two independent random variables with given
distributions, the two marginal distributions are the primary notion and
probabilities in the plane are derived from it by “the product rule.” The
procedure is not more complicated in the general setup than for the plane.

Consider then two arbitrary probability spaces, that is, we are given
two sample spaces S and S, two o-algebras UM and U® of sets in
SW and S®, respectively, and probability measures P and P® defined
on them. The combinatorial product (S, G®} is the set of all ordered
pairs (zV, z'®) where 2V isapointin S”. Among the sets in this product
space we consider the “rectangles,” that is, the combinatorial products
(AV, A®) of sets A € U, With sets of this form we wish to associate
probabilities by the product rule

(6.1) P{(AD, 4} = PO{4D} PR{4D)}
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Now sets which are unions of finitely many non overlapping rectangles
form an algebra U,, and (6.1) defines in a unique way a countably additive
function on it. Accordingly, by the extension theorem there exists a unique
probability ‘measure P defined on the smallest o-algebra containing all
rectangles and such that the probabilities of rectangles are given by the produci
rule (6.1). This smallest -algebra containing all rectangles will be denoted by
UL x UP and the measure will be called product measure.

Of course, other probability measures can be defined on the product
space, for example in terms of conditional probabilities. Under any
circumstances the underlying o-algebra U of sets wili be at least as large
as UY x UP, and it is rarely necessary to go beyond this algebra. The
following discussion of random variables is valid whenever the underlying
algebra U Is given gy U = UD x U@,

The notion of random variable (measurable function) is relative to the
underlying o-algebra and with our setup for product spaces we must dis-
tinguish between random variables in the product space and those on
SW and S®. The relationship between these three classes is fortunately
extremely simple. If ¥ and v are random variables on S and &% we
consider in the product space the function w which at the point (z, 2?)
takes on the value

(6.2) w(x(l), x(z)) = u(x(l)) . U(x(z)).

We show that the class of random variables in the product space (S, S®)
is the smallest class of finite-valued functions closed under pointwise passages
to the limit and containing all linear combinations of functions of the form (6.2).

To begin with, it is clear that each factor on the right in (6.2) is a random
variable even when considered as a function on the product space. It follows
that w is a random variable, and hence the class of random variables in
(8, S@) is at least as extensive as claimed. On the other hand, the
random variables form the smallest class of functions that is closed under
passages to the limit and contains all linear combinations of indicators of
rectangles. Such indicators are of the form (6.2) and therefore the class of
‘random variables cannot be larger than claimed.

The special case of the product of two spaces ®™ and R* with probability
measures F and G occurred indirectly in connection with Fubini’s theorem
(2.11) concerning repeated integrals. We can now state the more general
theorem, which 1s not restricted to R'.

Fubini’s theorem for product measures. For arbitrary non-negative Baire
Sunctions u, the integral of u with respect to the product measure equals the
repeated integrals in (2.11).
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(It is understood that the integrals may diverge. The theorem is obvious
for simple functions and follows in general by the approximation procedure
employed repeatedly.) The generalization to product spaces with three or
more factors is too obvious to require comment.

We turn to the problem of infinite sequences of random variables, which we
encountered in volume 1 in conpection with unlimited sequences of Bernoulli
trials, random walks, recurrent events, etc., and again in-chapter III in
connection with normal stochastic processes. Nothing need be said when
infinitely many random variables are defined on a given probability space.
For example, the real line with the normal distribution is a probability space
and {sin nx} is an infinite sequence of random variables on it. We are here
concerned with the situation when the probabilities are to be defined in terms
of the given random variables. More precisely, our problem is as follows.

Let R™ denote the space whose points are- infinite sequences of real
numbers (z,, %,, . ..), (thatis, R® is a denumerable combinatorial product
or real lines). We denote the nth coordinate variable by X, (thatis, X, is
the function in R® which at the point =z = (z, z,, ...) assumes the value
- z,). We suppose that we are given the probability distributions for X,
X, X)), Xy, X,,X5),... and wish to define appropriate probabilities
in R®. Needless to say, the given distributions must be mutually consistent
in the sense that the distributions of (X,,...,X,) appear as marginal
distributions for (X,,...,X,,;), andsoon.

Let us now formalize the intuitive notion of an “event determined by the
outcome of finitely many trials.” We agree to say that a set 4 in R
depends only on“the first r coordinates i there exists a Borel set A, in
R* such that x = (x,,2,,...) belongsto A iff (z,,...,z,) belongsto A,.
The standard situation in probability is that the probabilities for such sets-
are prescribed, and we face the problem of extending this domain of definition.
We state without proof the basic theorem derived (in slightly greater
generality) by A. Kolmogorov in his now classical axiomatic foundation of
probability theory (1933). It anticipated and stimulated the development of
modern measure theory.

Theorem 1. A consistent system of probability distributions for X,
X;, X,), Xy, X, Xa), . .. admits of a unique extension to a probability
measure on U, the smallest c-algebra of sets in R® containing all sets
depending only on finitely many coordinates.*®

The important point is that all probabilities are.defined by successive
passages to the limit starting with finite-dimensional sets. Every set A

19 The theorem applies more generally to products of locally compact spaces; for
example, the variables X, may be interpreted as vector variables (points in R”).
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in U can be approximated by finite-dimensional sets in the following sense.
Given € > 0 there exists an n and a set A4, depending only on the first
n coordinates and such that

(6.3) PA—ANA}<e P4, —ANA)}<e

In other words, the set of those points that belong to either 4 or A4, but
not to both has probability < 2e. It follows that the sets 4, can be . nsen
such that

(6.4) _ P{4,} — P{4}.

Theorem 1 enables us to speak of an infinite sequence of mutually independent
random variables with arbitrarily prescribed distributions. Such sequences
did in fact occur in volume 1, but we had to be careful to define the prob-
abilities in question by specific passages to the limit, whereas theorem 1
provides the desirable freedom of moion. This point is well illustrated by
the following two important theorems dug, respectively, to A. Kolmogorov
(1933) and to E. Hewitt and L. J. Savage (1955). They are typical for
probabilistic arguments and play a central role in many contexts.

Theorem 2. (Zero-or-one law for tail events.) Suppose that the variables
X, are mutually independent and that for each n the event A is independent
of® Xy, ..., X,. Then either P{A} =0 or P{4} = 1.

Proof. In principle the variables X, can be defined in an arbitrary
probability space, but they map this space into the product space R in
which they serve as coordinate variables. There is therefore no loss
of generality in departing from the setup described in this section.
With the notations used in (6.3) the sets 4 and A, are independent
and so the first inequality implies P{4} — P{4}P{A4,} < e. Therefore
P{A4} = P?{4}. >

Example. (a) The series XX, converges with probability zero or one.
Similarly, the set of those points where lim sup X, = co has either prob-
ability zero or one. >

Theorem 3. (Zero-or-one law for symmetric events.) Suppose that the
variables X, are mutually independent and have a common distribution.
If the set A is invariant under finite permutations of the coordinates?* then
either P{A} = 0 or P{4} = 1.

2 iore precisely, A is independent of every eve:r. defined in terms of X, ..., X
In other words, the indicator of A4 is a random variable independent of X,, ..., X,.
2 More precisely, if {ay, a,,...) is a point of 4 and n, and n. are two arbitrary

integers it is supposed that A4 contains also the point obtained by exchanging a,, and an,
while leaving all other coordinates fixed. This condition extends autcmatically to permuta-
tions mvelving & coordinates.
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Proof. As in the last proof we use the X, as coordinate variables and
refer to the sets A, occurring in (6.3). Let B, be the set obtained from
A, by reversing the first 2n coordinates and leaving the others fixed. By
hypothe51s then (6.3) remains valid also when A, is replaced by B,. It
follows that the set of points belonging to either A or A, N B, but not to
both has probability < 4e, and therefore

(6.5) P{4, N B,} - P{4}.
Furthermore A, depends only on the first n coordinates and hence B,
depends only on the coordinates number n + 1,...,2n. Thus A4, and

B, are independent and from (6.5) we conclude again that P{4} = P2{4}. »

Example. (b)) Put S, =X, +---+ X, and let 4 be the event
{S,€li.o0.} where I is an arbitrary interval on the line. Then A is in-
variant under finite permutations. [For the notation see example 1(a).] »

7. NULL SETS. COMPLETION

Usually a set of probability zero is negligible and two random variables
differing only on such a null set are “practically the same.”” More formally
they are called equivalent. This means that all probability relations remain
unchanged if the definition of a random variable is changed on a null set,
and hence we can permi* a random variable not to be defined on a null set.
A typical example is the epoch of the first occurrence of a recurrent event:
with unit probablhty it is a number, but with probability zero it remains
- undefined (or is called ). Thus we are frequently dealing with classes of
equivalent random variables rather than with individual variables, but it is
usually simplest to choose a convenient representative rather than to speak
of equivalence classes.

Null sets give rise to the only point where our probabilistic setup goes
against intuition. The situation is the same in all probability spaces, but it
suffices to describe it on the line. With our setup, probabilities are defined
only for Borel sets, and in general a Borel set contains many subsets that are
not Borel sets. Consequently, a null set may contain sets for which no
probability is defined, contrary to the natural expectation that every subset
of a null set should be a null set. The discrepancy has no sericus effects and
't is easily remedied. In fact, suppose we introduce the postulate: if A < B
and P{B) = 0, then P{4} = 0. It compels us to enlarge the o-algebra U
of Borel sets {(at least) to the smallest o-algebra U; containing all sets of
i and all subsets of nuil sets. A direct description is as follows. A sst
A belongs to U, iff it differs oaly by a null set® from some Borel set A°.

22 More precisely, it is required that both 4 — A4 n 4° and 4% — 4 N A° be contained
in a null set.
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The domain of definition can be extended from U to U, simply by putting
P{A4} = P{A°}. Itisalmost trivial that this definition is unique and leads to a
completely additive measure on U,. By this device we have obtained a
probability space satisfying our postulate and in which the probabilities of
Borel sets remain unchanged.

The construction so described is called the Lebesgue completion (of the
given probability space). This completion is natural in problems concerned
with a unique basic probability distribution. For this reason the length of
intervals on R is usually completed to a Lebesgue measure which is not
restricted to Borel sets. But the completion would invite trouble when one
deals with families of distributions (for example with infinite sequences of
Bernoulli trials with unspecified probability p). In fact, U; depends on the
underlying distribution, and so a random variable with respect to U; may
stop being a random variable when the probabilities are changed.

Example. Let 4, a,, ... be a sequence of points on R! carrying prob-
abilities p;, ps, ... where X p, = 1. The complement of {a,} has prob-
ability zero and so U, contains all sets of R!. Every bounded function u
is now a random variable with expectation 3 p,u(a,) but it would be
dangerous to deal with ““arbitrary functions’ when the underlying distribution
is not discrete. >




CHAPTER V

Probability Distributions in R’

This chapter develops the notion of probability distribution in the r-
dimensional space R’. Conceptually the notion is based on the integration
theory outlined in the last chapter, but in fact no sophistication is required
to follow the development because the notions and formulas are intuitively
close to those familiar from volume 1 and from the first three chapters.

"The novel feature of the theory is that (in contrast to discrete sample
~ spaces) not every set carries a probability and not every function serves as
random variable. Fortunately this theoretical complication is not noticeable
in practice because we can’start from intervals and continuous functions,
respectively, and restrict our attention to sets and functions that can be
derived from them by elementary operations and (possibly infinitely many)
passages to the limit. This delimits the classes of Borel sets and Baire
functions: Readers interested in facts rather than logical connections need
not worry about the precise definitions (given in chapter IV). Rather they
should rely on their intuition and assume that all sets and functions are
“nice.”” The theorems are so simple! that elementary calculus should suffice
for an understanding. The exposition is rigorous under the convention that
the words set and function serve as abbreviations for Borel set and Baire
Sfunction.

An initial reading should be restricted to sections 1-4 and 9. Sections
5-8 contain tools and inequalities to which one may refer when occasion
arises. The last sections develop the theory of conditional distributions
and expectations more fully than required for the present volume where
the results are used only incidentally for martingales in VI,11 and VIL,9.

1 It should be understood that this simplicity cannot be achieved by any theory restricted
to the use of continuous functions or any other class of *“nice’’ functions. For example,
in II1,(8.3) we defined a density @ by an infinite series. To establish conditions for ¢ to
be nice would be fedious and pointless, but the formula is obvious in simple cases and the
use of Baire functions amounts to a substitute for a vague “‘goes through generally.”’—
Incidentally, the few occasions where the restriction to Baire functions is not trivial will
be pointed out. (The theory of convex functions in 8.6 is’an example.)

127
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1. DISTRIBUTIONS AND EXPECTATIONS

Even the most innocuous use of the term random variable may contain
an indirect reference to a complicated probability space or a complex
conceptual experiment. For example, the theoretical model may involve
the positions and velocities of 10% particles, but we concentrate our attention
on the temperature and energy. These two random variables map the original
sample space into the plane R?, carrying with them their probability distri-
butions. In effect we are dealing with a problem in twé dimensions and the
original sample space looms dimly in the background. The finite-dimensional
Cartesian spaces R" therefore represent the most important sample spaces,
and we turn to a systematic study of the appropriate probability distributions.

Let us begin with the line R'. The intervals defined by ¢ < x < b and

—_— —
a<x<b wil be denoted by a,b and a,b. (We do not exclude the

limiting case of a closed interval reducing to a single point. Hali-open

—_—] —— :
intervals are denoted by a,b and a,b. In one dimension all random
variables are functions of the coordinate variable X (that is, the function
which at the point z assumes the value x). All probabilities are therefore
expressible in terms of the distribution function

(1.1) F(z) = P{X < =}, —w0 <<z < .

In particular, I=;:—b‘ carries the probability P{I} = F(b) — F(a).
The flexible standard notation P{ } is impractical when we are dealing
with varying distributions. A new letter would be uneconomical, and the
notation Px{ } to indicate the dependence on F is too clumsy. It is by
far the simplest to use the same letter F both for the point function (1.1)
and the corresponding interval function, and we shall write F{/} instead
of P{I/}. In other words, the use of braces { } will indicate that the
argument in F{4} is an interval or set, and that F appears as a function
of intervals (or measure). When parentheses are used the argument in
F(a) is a point. The relationship between the point function F( ) and
the interval function F{ } is indicated by

" —
(1.2) F(®) = F{—,z}, Fla, b} = F(b) — F(a).

Actually the notion of the point function F(z) is redundant and serves
merely for the convenience of analytical and graphical repreSentation.
The primary notion is the assignment of probabilities to intervals. The
point function £( ) is called the distribution function of the intervai
function F{ }. The symbols F( ) and F{ } refer to the same thing
and no confusion can arise by references to “‘the probability distribution
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F.”’ One should get used to thinking in terms of interval functions or measures
and using the distribution function only for graphical descriptions.?

Definitien. A point function F on the line is a distribution function if
(i) F is non-decreasing, that is, a < b implies F(a) < F(b)
(i1) F is right continuous,® that is, F(a) = F(a+)
(ii1) F(—o0) =0 and F() < . ,
F is a probability distribution function if it is a distribution function and
F(©) = 1. .Furthermore, F is defective if F(c0) < 1.

We proceed to show that every distribution function induces an assignment
of probabilities to all sets on the line. The first step consists in assigning
probabilities to intervals. Since F is monotone, a left limit F(a—) exists
for each point a. We define an interval function F{I} by

l-_._l ——
F{a,b} = F(b) — F(a—), F{a, b} = F(b—) — F(a)

(1.3) —_ —
F{a, b} = F(b) — F{(a), F{a, b} = F(b—) — F(af—).

For the interval a, a reducing to the single point F{a,a} = F(a) = F(a—),
which is the jump of F at the point a. (It will be seen presently that F is
continuous “‘almost everywhere.”)

To show that the assignment of values (1.3) to intervals satisfies the
requirements of probability theory we prove a simple lemma (which readers
may accept as being intuitively obvious).

Lemma 1. (Countable additivity.) If an interval I is the union of countably

many non-overlapping intervals I, I,, ..., then
(1.4) F{I} =3 F{I}.
_ . — —
Proof. The assertion is trivial in the special case I = a,b and I, = a, a,,
| —_— —
I, =a,,a,...,I,=a,,,b. The most general finite partition of I =a, b

is obtained from this by redistributing the endpoints a, from one sub-
interval to another, and so .the addition rule (1.4) holds for finite partitions.
[n considering the case of infinitely many intervals I, it suffices to assume

2 Pedantic care in the use of notations seems advisable for an introductory book, but it is
hoped that readers will not indulge in this sort of consistency and will ﬁnd the courage to
write F(I) and F(x) indiscriminately. No confusion will result and it is (fortunately)
quite customary in the best mathematics to use the same symbol (in particular 1 and =)
on the same page in several meanings.

3 As usual we denote by f(a+) the limit, if it exists, of f(z) as z — a in such a way
that £ > a, and by f(c) thelimit of f(z) as £ — co. Similarly for f(a—) and f(—).
This notation carries over to higher dimensions.
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I closed. In consequence of the right continuity of the given distribution
function F' it is possible to find an open interval I# containing I, and such
that 0 < F{I#} — F{I,} < e-2* for preassigned ¢ > 0. Now there exists
a finite collection [k’i, e, [,ffl covering I and hence

(15) F{I} S FULY + -+ FULY S F{LY + - + F{I} + <
Thus

(1.6) : F{I} < > F{I.}.
But the reversed inequality is also true since to each n there exists a finite
partition of I containing I, ..., I,. This concludes the proof. >

As explained in IV,2 it is now possible to define

(1.7) F{A} = 2 F{4,}

for every set A consisting of finitely or denumerably many disjoint intervals
A;. Intuitionleads one to expect that every set can be approximated by such
unions of intervals, and measure theory justifies this feeling.* Using the
natural approximations and passages to the limit it is possible to extend
the definition of F to all sets in such a way that the countable additivity
property (1.7) is preserved. This extension is unique, and the resulting
assignment is called a probability distribution or measure.

Note on terminology. In the literature the term distribution is used loosely
in various meanings, and so it is appropriate here to establish the usage to
which we shall adhere. _

" A probability distribution, or probability measure, is an assignment of
numbers F{4} > 0 to sets subject to condition (1.7) of countable additivity

and the norming F{—0, oo} = 1. More general measures (or mass distri-
butions) are defined by dropping the norming condition; the Lebesgue
~ measure (or ordinary length) is the most notable example.

As will be recalled from the theory of recurrent events in volume 1, we
have sometimes to deal with measures attributing to the line a total mass

p = F{—o0, o8} < 1. Such a measure will be called defective probability
measure with defect 1 — p. For stylistic clarity and emphasis we shall
occasionally speak of proper probability distributions, but the adjective
proper is redundant. ‘
The argument of a measure m{A4} is a set and is indicated by braces.
With every bounded measure m there is associated its distribution function,

—
that is, a point function defined by m(x) = m{—o0, x }. It will be denoted
by the same letter with the argument in parentheses. The dual use of the

4 The convention that the words set and function serve as abbreviations for Borel set
~ and Baire function should be borne in mind.
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same letter can cause no confusion, and by the same token the term distri-
bution may stand as abbreviation both for a probability distribution and its
distribution function.

In 1; IX a random variable was defined as a real function on the sample
space, and we continue this usage. When the line serves as sample space
every real function becomes a random variable. The coordinate variable
X is basic, and all other random variables can be expressed as functions of it. -
The distribution function of the random variable u is defined by
P{u(X) < z} and can be expressed in terms of the distribution F of the
coordinate variable X. For example, X® has the distribution function
given by F(Vz). ‘

A function u is called simple if it assumes only countably many values

a, a,, .... If A, denotes the set on which u equals a, we define the
expectation E(u) by '
(1.8) E(u) = a, F{4,}

provided the series converges absolutely. In the contrary case u is said not
to be integrable with respect to F. Thus u has an expectation iff E(|u|)
exists. Starting from the definition (1.8) we define the expectation for any
arbitrary bounded function u as follows. Choose € > 0, and denote by
A, the set of those points = at which (n—1)e < u(z) < ne. With any
reasonable definition of E(«) we must have

(1.9) > (n—1)e- F{A4,} < E(u) _<_ > ne - F{A4,}.

(The extreme members represent the expectations of two approximating
simple functions ¢ and & suchthat ¢ <u <G and 6 — o = ¢.) Because
of the assumed boundedness of u the two series in (1.9) contain only finitely
many non-zero terms, and their difference equals € X F{4,} = e. Re-
placing ¢ by }e will increase the first term in (1.9) and decrease the last.
It is therefore not difficult to see that as € — 0 the two extreme members
in (1.9) tend to the same limit, and this limit defines E{u). For unbounded
u the same procedure applies provided the two series in {1.9) converge
absolutely; otherwise E(u) remains undefined.

The expectation defined in this simple way is called the Lebesgue-Stielijes
integral of u with respect to F. When it is” desirable to emphasize the
dependence of the expectatian on F the integral notation is preferable and
we write alternatively

(1.10) E(u) =f+mu(x) F{dz}

with z appearing as dummy variable. Except on rare occasions we shall
be concerned only with piecewise continuous or monotone integrands
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such that the sets A4, will reduce to unions of finitely many intervals. The
sums in (1.9) are then simple rearrangements of the upper and lower sums
used in the elementary definition of ordinary integrals. The general
Lebesgue-Stieltjes integral shares the basic properties of the- ordinary
integral and has the additional advantage that formal operations and
passages to the limit require less care. Our use of expectations will be limited
to situations so simple that no general theory will be required to follow the
individual steps. The reader interested in the theoretical background and
the basic facts is referred to chapter IV.

Examples. (a) Let F be a discrete distribution attributing weights
P1> P2> .- - to the points .a;,a,,.... Then clearly E(u) = X u(a,)p;
whenever the series converges absolutely. This is in agreement with the
definition in 1; IX.

(b) For a distribution defined by a continuous density

+ o0 :
(1.11) E(u) =f u(z) f(x) dx
provided the integral converges absolutely. For the general notion of
density see section 3. >

The generalization to higher dimensions can be described in a few words.
In R? a point z is a pair of real numbers, z = (,, x,). Inequalities
are to be interpreted coordinate-wise;® thus a < b means a; < b, and
a, < b, (or “a lies southwest of 5°’). This induces only a partial ordering,
that is, two points a and b need not stand in either of the two relations
a<b or a>b. We reserve the word interval for the sets defined by the
four possible types of double inequalities a < z < b, etc. They are
rectangles parallel to the axes which may degenerate into segments or points.

The orily novel feature is that the two-dimensional interval a, ¢ with

—t

a < b < c is not the union of a,b and b, c. Corresponding to an interval
function assigning the value F{I} to the interval / we may introduce its

distribution ft\mction defined as before by F{x} = F{-~oo,x}, but an
—

expression of F{a,b} in terms of this distribution function involves all four
vertices of the interval. In fact, considering the two infinite strips parallel

to the z,-axis and with the sides of the rectangle a, b as bases one sees

—
immediately that F{a, b} is given by the so-calied mixed difference

S
(1.12) Fl{a, b} = F(by, by) — F(ay, by) — F(by, a) + F(a,, as).

5 This notation was introduced in I11.5.
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For a distribution function the right side is non-negative. This implies that
F(%;, 73) depends monotonically on =z, and =,, but such monotonicity
does not guarantee the positivity of (1.12). (See problem 4.)

The limited value of the use of distribution functions in higher dimensions
is apparent: were it not for the analogy with R! all considerations would
probably be restricted to interval functions. Formally the definition of
distribution functions in R! carries over to R? if the condition of mono-
tonicity (i) is replaced by the condition that for a < b the mixed diff.rence
in (1.12) be non-negative. Such a distribution function induces an interval
function as in (1.3) except that again the mixed differences take over the role
of the simple differences in R!. Lemma | and its proof remain valid.®

A simple, but conceptually important, property of expectations is sometimes taken
for granted. Any function u(X) = u(X,, X,) of the two coordinate variables is a random
variable and as such it has a distribution function G. The expectation E(u(X)) is now

defined in two ways; namely, as the integral of u(z;,z,) with respect to the given
probability in the plane, but also by

(1.13) E(u) = f y G{dy}

—0

in terms of the distribution function G of u. The two definitions are equivalent by the
very definition of the former integral by the approximating sums IV,(4.3).” The point
is that the expectation of a random variable Z (if it exists) has an intrinsic meaning
although Z may be considered as a function either on the original probability space &

or on a space obtained by an appropriate mapping of &; in particular, Z itself maps &
on the line where it becomes the coordinate variable.

From this point on there is no difference between the setups in R! and
R2. In particular, the definition of expectations is independent of the number
of dimensions.

To summarize formally, any distribution function induces a probability
measure on the g-algebra of Borel sets in. R, and thus defines a probability
space. Restated more informally, we have shown that the probabilistic
setup of discrete sample spaces carries over without formal changes just as in
the case of densities, and we have justified the probabilistic terminology
employed in the first three chapters. If we speak of r random variables

8 The proof utilized the fact that in a finite partition of a one-dimensional interval
the subintervals appear in a natural order from left to rlght An equally neat arrangement

characterizes the checkerboard partitions of a two-dimensional interval a, b, that E;
partitions into mn subintervals obtained by subdividing separately the two sides of a, b
and drawing parallels to the axes through all points of the subdivisions. The proof of the
finite additivity requires no change for such checkerboard partitions, and to an arbitrary
partition there corresponds a checkerboard refinement. The passage from finite to
denumerable partitions is independent of the number of dimensions.

7 A special case is covered by theorem 1 in 1; IX,2.
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X,, ..., X, it is understood that they are defined in the same prdbability
space so that a joint probability distribution of (X, ..., X,) exists. We are
then free to interpret the X, as coordinate variables io the sample space R'.

It is hardly necessary to explain the continued use of terms such as
marginal distribution (see III,1 and 1; IX,l), or independent variables.
The basic facts concerning such variables are the same as in the discrete
case, namely:

(i) Saying that X and Y are independent random variables with (one-
dimensional) distributions F and G means that the joint distribution function
of (X,Y) is given by the products F(x,) G(x,). This statement may refer to
two variables in a given probability space or may be an abbreviation for the
statement that we introduce a plane with X and Y as coordinate variables
and define probabilities by the product rule. This remark applies equally
to pairs or triples of random variables, etc.

(ii) If the m-tuple (X,,...,X,) is independent of the n-tuple
(Yy,...,Y,) then u(X;,...,X,) and v(Y,,...,Y,) are independent
(for any pair of functions » and v).

(iii) If X and Y are independent, then E(XY) = E(X) E(Y) whenever
the expectations of X and Y exist (that is, if the integrals converge
absolutely).

The following simple result is frequently useful.

Lemma 2. A probability distribution F is uniquely determined by the
knowledge of E(u) for every continuous function u vanishing outside some
finite interval.

Proof. Let I be a finite open interval and v a continuous function that is
positive in I and zero outside I. Then Vv(x)—1 at each point z¢€l,

and hence E(V/ 5) — F{I}. Thus the knowledge of the expectations of our
continuous functions uniquely determines the values F{I} for all open
intervals, and these uniquely determme F. >

Note 1.2 The F. Riesz representation theorem. In the preceding lemma the expectations
were defined in terms of a given probability distribution. Often (for example, in the moment
problem of VII,3) we start from a given functional, that is, from an assignment of values
E(u) to certain functions. We inquire whether there exists a probability distribution F
such that ' '

| + 00
(1.14) E(u) ==f u(x) F{dz}.

— a0

It turns out that three evidently necessary conditions are also sufficient.

8 This note treats a topic of conceptual interest but will not be used in the sequel. For an
alternative approach see IV,5.
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Theorem. Suppose that to each continuous function u vanishing outside a finite interval

there corresponds a number E(u) with the Jollowing properties; (i) The functional is linear,
that is, for all linear combinations

E(cjuy + cyup) = c;E(uy) + c,E(u,);

(ii) it is positive, that is, u > 0 implies E(u) > 0; (iii) it has norm 1, that is, 0 < u < 1
lmphes E(u) < 1, but for each € > 0 there exists u such that 0 < u <1 and

E(u) >1—e

Then there exists a unique probability distribution F for which (1.14) is true.

Proof. For arbitrary ¢t and # > 0 denote by z, , the continuous function of z that
equals 1 when z < ¢, vanishes for = > ¢ + h, and is linear in the intermediate interval
t <z <t + h. This function does not vanish at infinity, but we can define E(z;,) by
simple approximations. Choose a function |u,| <1 such that E(u,) is defined and
U, (x) = z; () for |z[ < n. If m > n the difference u,, — u, vanishes identically within
the interval —n,n and from the fact that E has norm 1 one concludes easily that
E(u,—u,) —0. It follows that E(x,) converges. to a finite limit, and this limit is obviously
independent of the particular choice of the approximating u,. It is therefore legitimate to
define E(z4,) = lim E(u,,). It is easily seen that even within this extended domain of
definition the functional E enjoys the three properties postulated in the theorem.

Now put F,(t) = E(z, ;). For tixed & this is a monotone function going from O to 1.
It is continuous, because when 0 < & < & the difference z,,5 5, — 24, has a triangular
graph with height 6/, and hence F), has difference ratios bounded by 1/hA. As A —0
the functions F, decreases monotonically to a limit which we denote by F. We show that
F is a probability distribution. Obviously F 1s monotone and F(— ) = 0. Furthermore
F(t) > F,(t—h) which lmphes that F(x) = 1. It remains to show that F is continuous
from the right. For given t and ¢ > 0 choose h so small that F(t) > Fh(t)— €.
Because of the continuity of F, we have then for J sufficiently small

F(t) > Fy(t) — € > FR(t+90) — 2¢ > F(t+6) - Ze
which proves the right-continuity.

Let u bea contmuous function vanishing outside a finite interval a, a, b. Choose a=

=gy <@ < < a, = b such that within each subinterval a;_,, a; the oscillation
of u isless than . If A is smaller that the smallest among these intervals, then

(1.15) up= 3 u(@lza, .p — %a;_, .4l

k=1

is.a piecewise linear function with vertices at the points a, and a, + h. Since u(ay) =
= u,(ay) it follows that [u—u,| < 2¢, and hence |E(u)—E(uy)| < 2¢. 'Butas A —0

n —_—
(1.16) E(,) — D ula)F{ayy, ax)
k=1

and this sum differs from the integral in (1.14) by less than e. Thus the two sides in (1.14)
differ by less than 3e, and hence (1.14) is true. >

Note II. On independence and correlation. Statistical correlation theory goes back to a
time when a formalization of the theory was impossible and the notion of stochastic
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independence was necessarily tinged with mystery. It was understood that the independ-
ence of two bounded random variables with zero expectation implies E(XY) = 0, but
this condition was at first thought also to be sufficient for the independence of X and Y.
The discovery that this was not so led to a long search for conditions under which the
vanishing of correlations would imply stochastic independence. As frequently happens,
the history of the problem and the luster of partial results easily obscured the fact that
the solution is extremely simple by modern methods. The following theorem contains
various results proved in the literature by laborious methods.

Theorem. The random variables X and Y are independent iff
(1.17) E@(X) - v(Y)) = E(u(X)) - E(v(Y))
for all continuous functions u and v vanishing outside a finite interval.

Proof. The necessity of the condition is obvious. To prove the sufficiency it suffices
to show that for every bounded continuous function E(w) agrees with the expectation
of w with respect to a pair of independent variables distributed as X and Y. Now (1.17)
states this to be the case whenever w is of the form w(X, Y) = u«(X) v(Y). Every bounded
continuous function w can be uniformly approximated® by linear combinations of the
form X cpup(X) v, (Y), and by passing to the limit we see the assertion to be true for arbi-
trary bounded continuous w. >

2. PRELIMINARIES

This section is devoted largely to the introduction of a terminology for
familiar or obvious things concerning distribution functions in R1.

Just as in the case of discrete variables we define the kth moment of a
random variable X by E(X*), provided the integral exists. By this we mean
that the integral
(2.1) E(X*) = f

z* F{dz}
converges absolutely, and so E(X*) exists iff E(|X|¥) < oo. The last
quantity is called the kth absolute moment of X (and is defiried also for
non-integral k > 0). Since |z|®* < |z|* + 1 when 0 < a < b, the existence
of an absolute mement of order b implies the existence of all absolute
moments of orders a < b.

“If X has an expectation m, the second moment of X — m is called the
variance of X: |

(2.2) Var (X) = E((X—m)?) = E(X2) — m?.

Its properties and significance are the same as in the discrete case. -In
particular, if X and Y are independent

(2.3) Var (X+Y) = Var (X) + Var (Y)

whenever the variances on the right exist.

9 See problem 10 in VIII,10.
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[Two variables satisfying (2:3) are said to be uncorrelated. It was shown
in 1; IX,8 that two dependent variables may be uncorrelated.] ‘

It will be recalled how often we have replaced a random variable X by
the “reduced variable” X* = (X—m)/¢ where m = E(X) and o¢%=
Var (X). The physicist would say that X* is “expressed in dimensionless
units.”” More generally a change from X to (X—f)/x with « > 0 amounts
to a change of the origin and the unit of measurement. The distribution
function of the new variable is given by F(ax+pf), and in many situations
we are actually dealing with the whole class of distributions of this form
rather than with an individual representative. For convenience of expression
we introduce therefore

Definition 1. Two distributions F, dnd F, in R1 afe said to be of the same .
type'® if Fy(x) = Fi(ax+pB) with « > 0. We refer to o as scale factor, f
as centering (or location) constant.

This definition permit$ the use of clauses such as “F is centered to zero
expectation” or “‘centering does not affect the variance.’

A median & of a distribution F is defined as a number such that F(§) > J;
but F({—-)< 4. It is not nécessarily defined uniquely; if F(x) =% for

all = of an interval a, b then every such z is a median. ‘It is possible
to center a distribution so that 0 becomes a median.

Except for the median these notions carry over to higher dimensions
or vector variables of the form X = (X, ..., X,); the appropriate vector
notation was introduced in IILS5, and requires no modification. The
expectation of X is now a vector, the variance a matrix.

The first things one notices looking at the graph of a distribution function
are the discontinuities and the intervals of constancy. It is frequently
necessary to say that a point is not in an interval of constancy. We introduce
the following convenient terminology applicable in all dimensions.

Definition 2. A point x is an atom if it carries a positive mass. ‘It is a
point of increase of F iff F{I} > O for every open interval I containing z.

The distribution F is concentrated on the set A if the complement A’
has probability F{A'} = 0.

The distribution F is atomic if it is concentrated on the set of its atoms.

Example. Order the rationals in 0,1 in a sequence ry,ry, ... with
increasing denominators. Let F attribute probability 27* to r,. Then F

is purely atomic. Note, however, that every point of the closed interval
—
0, 1 is a point of increase of F. >

10 The notion was introduced by Khintchine who used the German term Klasse, but
in English ““a class of functions’’ has an established meaning.
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Because of the countable additivity (1.7) the sum of the weights of the
atoms cannot exceed unity and so at most one atom ‘carries a weight >1, at
most two atoms carry weights >34, etc. It is therefore possible to arrange
the atoms in a simple sequence 4a,, a,, ... such that the corresponding
weights decrease: p; > p, > - -. In other words, there exist at most
denumerably many atoms.

A distribution without atoms is called continuous. If there are atoms,
denote their weights by p,, p,, ... andlet p = X p, > 0 be their sum. Put

(2.4) Fo(x) =p~" 3 ps

ak<z

—

the summation extending over all atoms in the interval —oco, z. Obviously
F, is again a distribution function, and it is called the atomic component
of F. If p=1 the distribution F is atomic. Otherwise let ¢ =1 — p.
It is easily seen that [F—pF,l/q = F, is a continuous distribution, and so

(2.5) F = pF, +qF,

is a linear combination of two distribution functions of which F, is atomic,
F, continuous. If F is atomic (2.5) is true with p =1 and F, arbitrary;
in the absence of atoms (2.5) holds with p = 0. We have thus the

Jordan decomposition theorem. Every probability distribution is a mixture
of the form (2.5) of an atomic and a continuous distribution; here p >0,
320, p+g=1

Among the atomic distributions there is a class which sometimes encumbers
simple formulation by trite exceptions. Its members differ only by an
arbitrary scale factor from distributions of integral-valued random variables,
but they occur so often that they deserve a name for reference.

Definition 3. A distribution F in R is arithmetic!! if it is concentrated on a
set of points of the form 0, &4, £24,.... The largest A with this property
is called the span of F. ' _

3. DENSITIES

The first two chapters were devoted to probability distributions in R*
such that .

3.1 F{A4} =Lgv(x)'dx

11 The term /lattice distribution is, perhaps, more usual but its usage varies: according
to some authors a lattice distribution may be concentrated on a set of points a, ati,
a+2A4,... with a arbitrary. (The binomial distribution with atoms at *1 is arithmetic
‘with span 1 in our terminology, but a lattice distribution with span 2 according to the
alternative definition,)
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for all intervals (and therefore all sets). The distributions of chapter III
are of the same form, the integration being with respect to the Lebesgue
measure (area or volume) in R7. If the density ¢ in (3.1) is concentrated on

the interval 0,1 then (3.1) takes on the form
(3.2) F{A} =L(p(:c) U{dz}

where U stands for the uniform distribution in 0, 1. The last formula
makes sense for an arbitrary probability distribution U, and whenever

F{—o0, o0} =1 it defines a new probability distribution F. In thlS case we
shall say that ¢ is the density of F with respect to U.

In (3.1) the measure U is infinite whereas in (3.2) we have U{—o0, 0} =
= 1. The difference is not essential since the integral in (3.1) can be broken
up into integrals of the form (3.2) extended over finite intervals. We shall
use (3.2) only when U is either a probability distribution or ‘the Lebesgue
measure as in (3.1) but the following definition is general.

Deﬁnition The distribution F is absolutely continuous with respect to the

measure U if it .is of the form (3.2). In this case g is called a density'® of
F with respect to U.

The special case (3.1) where U is the Lebesgue measure is of course the
most important and we say in this case that ¢ is an “ordinary” density.
We now introduce the abbreviation

(3.3) F{dz} = ¢(z) U{dz}.
This is merely a shorthand notation to indicate the validity of (3.2) for all
sets and no meaning must be attached to the symbol dz. With this notation

we would abbreviate (3.1) to F{dr} = ¢(x)dx and if U has an ordinary
density u then (3.2) is the same as F{dz} = ¢(z) u(z) dz.

Examples. (a) Let U be a probability distribution in R! with second
moment m,. Then

F{dz} = LA U{dx}
my

is a new probability distribution. In particular, if U is the uniform
distribution in 0,1 then F(z) = 2® for 0 < z <1, and if U has density
e* (x> 0) then F is the gamma distribution with ordinary density
ix2e—=.

(b) Let U beatomic, attaching weights p,, p,, . . . totheatoms a,, a,, - . -
(where X p, = 1). A distribution F has a density ¢ with respect to U iff

12 Jn measure theory ¢ is called a Radon-Nikodym derivative of F with respect to U.
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it is purely atomic and its atoms are among a;, a,,.... If F attributes
weight g; to a; the density ¢ is given by ¢(a,) = 9x/Px- The value of ¢

at other points plays no role and it is best to leave ¢ undefined except at
the atoms. >

In theory the integrand ¢ in (3.2) is not uniquely determined, for if N
is a set such that U{N} = 0 then ¢ may be redefined on N in an arbitrary
manner without affecting (3.2). However, this is the only indeterminacy
and a density is uniquely determined up to values on a null set® In practice
a unique choice is usually dictated by continuity conditions, and for this
reason one speaks usually of “the” density although “a’ density would be
more correct. '

For any bounded function v the relation (3.3) implies obviously!*
(3.4) v(zx) F{dz} = v(x)(p(x.) H{dx}.

In particular, if ¢ is bounded away from O we can choose v = ¢! to
obtain the inversion formula for (3.2):

3.5) U{dz} = —— F{dz}.
| ~ ¢(z)

A useful criterion for absolute continuity is contained in a basic theorem
of measure theory which we accept without proof.

Randofi-Nikodym theorem. 5 F is absolutely continuous with respect to U
3.6) - F{4} =0 whenever U{4} =0.

131n fact, if both @ and @, are densities of F with respect to .U consider the set A
of all points z such that.@(z) > @,(z) + ¢. From '

F{d} = L é(x) U{dz} = Lq:l(x) U{dz}

it follows that U{A4} = 0, and since this holds for every € > 0 we see that @(z) = @,(2)
except on a set N such that U{N}=0.

14 Readers who feel uneasy about the new integrals should notice that in the case of
continuous densities (3.4) reduces to the familiar substitution rule for integrals. The
following proof in the general case uses a standard argument applicable in more general
situations. Formula (3.4) is trivial when v is simple, that is, assumes only finitely many
values. For every bounded v there exist two simple functions of this nature such that
v <v<vand 7 - v <e and so the validity of (3.4) for all simple functions implies its
truth in general.

15 Often called Lebesgue-Nikodym theorem. The relation (3.6) may be taken as a
definition of absolute continuity, in which case the theorem asserts the existence of a density.
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This expression may be rephrased by the statement that U-null sets

are also F-null sets. We give an important corollary although it will not be
used explicitly in this book.

Criterion. F is absolutely continuous with respect to U iff to each € > 0
there corresponds a 6 > 0 such that for any collection of non-overlapping

intervals I, ..., I,
(3.7) QU{IL} <8 implies > F{I,} <e.
1 1
An important special case arises when
(3.8) F{I} < a- U{l}

for all intervals. Then (3.7) is trivially true with 8 = efa, and it is easily
seen that in this case F hasa density ¢ with respect to U such that ¢ < a.

*3a. Singular Distributions

The condition (3.6) of the Radon-Nikodym theorem leads one to the
study of the extreme counterpart of absolutely continuous distributions.

Definition. The probability distribution F is singular with respect to U if
it is concentrated on a set N such that U{N} = 0.

The Lebesgue measure Uf{dx} = dz plays a special role and the word
“singular’’ without further qualification refers to it. Every atomic distribution
is singular with respect to dz, but the Cantor distribution of example I,11(d)
shows that there exist continuous distributions in R! that are singular with
respect to dz. Such distributions are not tractable by the methods of calculus .
and explicit representations are in practice impossible. For analytic purposes
one is therefore forced to choose a framework which leads to absolutely
continuous or atomic distributions. Conceptually, however, singular
distributions play an important role and many statistical tests depend on their
existence. This situation is obscured by the cliché that “in practice” singular
distributions do not occur.

Examples. (¢) Bernoulli trials. It was shown in example I,11(c) that
the sample space of sequences SS---F--- can be mapped onto the unit
interval by the simple device of replacing the symbols S and £ by | and 0,
respectively. The unit interval then becomes the sample space, and the
outcome of an infinite sequence of trials is represented by the random
variable Y = Q 27*X, where the X, are independent variables assuming
the values 1 and O with probabilities p and g. Denote the distribution of
Y by F,. For symmetric trials F, is the uniform distribution and the
model becomes attractive because of its simplicity. In fact, the equivalence

* Although conceptually of great importance, singular distributions appear in this
book only incidertally.
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—_—

of symmetric Bernoulli trials with “a random choice of a point in 0, I
has been utilized since the beginnings of probability theory. Now by the law
of large numbers the distribution F, is concentrated on the set N, consistin g
of points in whose dyadic expansion the frequency of the digit 1 tends to p.
When p # « the set N, has probability zero and hence the distributions F )
are singular with respect to each other; for p # } the distribution F, is
singular with respect to the uniform distribution dz. An explicit representa-
tion of F, is impractical and, accordingly, the model is not in common use
when p 7% }. Two points deserve attention.

First, consider what would happen if the special value p = } presented
a particular interest or occurred frequently in applications. We would
replace the dyadic representation of numbers by triadic expansions and
introduce a new scale such that iow F; would coincide with the uniform
distribution. “In practice”” we would again deal only with absolutely
continuous distributions, but the reason for this lies in our choice of tools
rather than in the nature of things.

Second, whether a coin is, or is not, biased can be tested statistically
and practical certainty can be reached after finitely many trials. This is
possible only because what is likely under the hypothesis p = 4 is extremely
unlikely under the hypothesis p = 4. A little reflection along these lines
reveals that the possibility of a decision after finitely many trials is due to
the fact that F, is singular with respect to Fy (provided p 7 }). The
existence of singular distributions is therefore essential to statistical practice.

(d) Random directions. The notion of a unit vector in R2 with random
direction was introduced in I,10. The distribution of such a vector is
concentrated on the unit circle and is therefore singular with respect to the
Lebesgue measure (area) in the plane. One might object that in this case the
circle should serve as sample space, but practical problems sometimeés
render this choice impossible. [See example 4(e).] >

Lebesgue decomposition theorem. Every probabil}'ty distribution F is a
mixture of the form

(3.9) F=p-F,+q'F,

(where p >0, ¢ >0, p+q=1) of two probability distributions such that
F, is singular and F,, absolutely continuous with respect to a given
measure U. '

The Jordan decomposition (2.5) applies to F, and hence F can be
written as a mixture of three probability distributions of which the first
is atomic, the second absolutely continuous with respect to U{dz}, the

third continuous but singular.
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Proof. To simplify the language a set N with U{N} =0 will be called
nullset. Let p be the least upper bound (the sup) of F{N} for all nullsets

N. To each n there exists a nullset N, such that F{N,} >p — l . Then
1 : "
F{A4} g; for any nullset 4 in the complement N,. For the union

N = |J N, this implies U{N} =0 and F{N} = p, and hence no nullset
in the complement N’ can carry positive probability.
If p=1 it follows that F .is singular, whereas p = 0 means that F

is absolutely continuous. When 0 < p <1 the assertion holds with the
two probability distributions defined by

(3.10) p- F{A} = F{AN}, q-F,{A} = F{AN'}. >

4. CONVOLUTIONS

It is difficult to exaggerate the importance of convolutions in many
branches of mathematics. We shall have to deal with convolution in two
ways: as an operation between distributions and as an operation between
a distribution and a continuous function.

For definiteness we refer explicitly to distributions in R!, but with the.
vector notation of section 1 the formulas are independent of the number of
dimensions. The definition of convolutions on a circle follows the pattern
described in IL,8 and requires no comment. (More general convolutions
can be defined on arbitrary groups.)

Let F be a probability distribution and ¢ a bounded point function.
(In our applications ¢ will be either continuous or a distribution function.)
A new function u is then defined by

+ o0
@41 u@) = | plz—y) Fldy}
If F has a density f (with respect to dx) this reduces to
+ 0 . i
(42 @) = [ pe—) ) dy

Definition 1. The convolution of a function @ with a probability distri-
bution F is the function defined by (4.1). It will be denoted by u = F¥% ¢.
When F has a density f we write alternatively f = f * ¢.

Note that the order of the terms is important: the symbol ¢ % F is
in general meaningless. On the other hand, (4.2) makes sense for arbitrary
integrable f and ¢ (also if f is not non-negative), and the symbol * is
used in this generalized sense. Needless to say, the boundedness of ¢ was
assumed only for simplicity and is not necessary.
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Examples. (a) When F is the uniform distribution in 0, @ then

(4.3) u(x) =a'| os)ds.
It follows that u is continuous; if ¢ is continuous u has a continuous
derivative, etc. Generally speaking u will behave better than ¢, and so
the convolution serves as smoothing operator.

-(b) The convolution formulas for the exponential and the uniform
distributions [I,(3.6) and I,(9.1)] are special cases. For examples in R? see
III,(1.22) and problems 15-17 of chapter III. ' >

- Theorem 1. If ¢ .is bounded and continuous, so is u = F% @, if ¢ isa
probability distribution function, so is u.

Proof. If ¢ is bounded and continuous then wu(xr4-h)— u(z) by the
dominated convergence principle. For the same reason right-continuity
of ¢ implies right-continuity of u. Finally, if ¢ goes monotonically from
0 to 1 tiis same is obviously true of u. : >

The next theorem gives an interpretation of F% ¢ when ¢ is a distribu-
tion function. ‘ '

Theorem 2. Let X and Y be independent random variables with distri-
butions F and G. Then '

(4.4) PX+Y<1)= f -+°°G(t—x) F{dz}.

Proof.’ Choose € > 0 and denote by I, the interval ne < z < (n+1)e;
here n=0, 41,.... The event {X 4+ Y <t} occurs if Xel,
Y <t — ne} for some n. The latter events are mutually exclusive, and as
X and Y are independent we have therefore

(4.5) O PX 4+ Y <1} <3 G(t—ne) - F{L,).

On the right we have the integral of the step function G, assumingin I, the
value G(t—ne). Since G.(y) < G (t+€—y) we have

+ oo

(4.6)  PX+Y<HL f G(t+e—z) F{dz).

The same argument i_éads to the reversed inequality with e replaced by
—e. Letting € — 0 we get (4.4). >

16 (4.4) is a special case of Fubini’s theorem IV,(2.11). The converse of theorem 2 is false:
we saw in 11,4(e), and in problem 1 of I11,9, that in exceptional cases formula (4.4) may hold
for a pair of dependent variables X, Y.
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Example. (c¢) Let F and G be concentrated on the integers 0, 1,2, ...
and denote the weights of k by p, and g¢,. The integral in (4.4) then reduces
to the sum 3 G(¢—k)p,. This is a function vanishing for < 0 and
constant in each interval n—1 < ¢ < n. The jump at ¢t = n equals

4.7) kzoqfu—kpk = quPo + gnaP1 + -+ 4oPn

in agreement with the convolution formula 1; XI,(2.1) for integral-valued
random variables. >

Each of the preceding theorems shows that for two distribution functions
the convolution operation F G yields a new distribution function U.
The commutativity of the addition X + Y implies that F% G = G % F.
A perfect system might introduce a new symbol for such convolutions
among distribution functions, but this would hardly be helpful.}” Of course,
one should think of U as an interval function or measure: for each interval

I = a, b obviously
‘ +c .
(4.8) u{r} =f G{I—y} F{dy}

where, as usual, I —y denotes the interval a—y, b—y. (This formula
automatically carries over to arbitrary sets.) Because of the commutativity
the roles of F and G in (4.8) may be interchanged.

Consider now three distributions F,, F,, F,. The associative law of
addition for random variables implies that (F, % F,) % F; = F, % (¥, % Fs)
so that we can dispense with the parentheses and write F, % F, % Fs. We
summarize this in theorems 3 and 4.

Theorem 3. Among distributions the convolition operation % is com-
mutative and associative.

! In other words, the symbol 4 * B is used when the integration is with respect to the
measure A. This convolution is a point function or measure according as B is a point
function [as in (4.1)] or a measure [as in (4.6)]. The asterisk * is used for an operation
between two functions, the integration being with respect to Lebespue measure. In our
context this type of convolution is restricted almost exclusively to probability deusitics.

A more general definition of a convolution between two functions may be defined by

-+ o0
frg@) = J [x—y)g(e) midy}
-
where m stands for an arbitrary measure. Sums of the form (4.7) represent the special
case when m is concentrated on the positive integers and attributes unit weight to each.
In this sense the use of the asterisk for the convolutions between sequences in 1; XI,2
is consistent with our present usage.
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Theorem 4. If G is continuous (= free of atoms), sois U =F % G. If G
has the ordinary density @, then U has the ordinary density u given by (4.1)

Proof The first assertion is contained in theorem 1. If ¢ is the density

of G then an integration of (4.1) over the interval I leads to (4.8), and so

u is indeed the density of the distribution U defined by (4.8). >

It follows in particular that if F and G have densities f and g, then
the convolution F% G has a density h = f* g given by

4.9) h(z) = f " fa—y) 5(3) dy.

In general A will have much better smoothness properties than either f or g.
(See problem 14.)

Sums S, =X, + -+ + X, of n mutually independent random vari-
ables with a common distribution F occur so frequently that a special

notation is in order. The distribution of S, is the n-fold convolution of F
with itself. It will be denoted by F»*. Thus

(4.10) F1* = F, FD* — fni g |

A sum with no terms is conventionally interpreted as 0, and for consistency

we define F°* as the atomic distribution concentrated at the origin. Then
(4.9) holds also for n = 0.

J¢ F has a density f then F** has the density f*f*---*f (n times).

We denote it by fn*. These notations are consistent with the notation
introduced in I,2.

Note. The following examples show that the convolution of two singular distributions can

have a continuous density. They show also that an effective calculation of convolutions
need not be based on the defining formula.

Examples. (d) The uniform distribution in 0,1 1 is the convolution of two Cantor-type
smgular distributions. In fact, let X;,X,,... be muu.ally independent random. variables
assuming the values @ and 1 with probability é We saw in example I,11(c) that the variable
X = Z 2-kX,. has a uniform distribution. Denote the contributions of the even and odd
terms by U and V, respectively. Obviously U and V are independent and X =
= U + V. The uniform distribution is therefore the convolution of the distributions of
U and V. But obviously U has the same distribution as 2V, and the variable V differs
only notationally from the variable 1Y of example 1,11(d). In other words, the dis-
tributions of U and V differ only by scale factors from the Cantor distribution of that
example.

(e) Random v -tors in R2. The distribution of a unit vector with random direction (see
1,10) is concentrated on the unit circle and therefore singular with respect to the Lebesguc
measure in the plane. Nevertheless, the resultant of two independent vectors has a Iength

2
L which 15 a random variable with the denslry - concentrated on 0, 2. In fact,

4—r2
by the law of the cosines L = V2 — 2cos w = {2sin 0| where w is the angle between
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the two vectors. As 3w is distributcd,uniformly in 0, 7 we have
: 2
(4.11) P{L < r} = P{|25sin }u| < r} = ~arcsin }r, 0<r<2
™

which proves the assertion. (See problem 12.) >

4a. Concerning the Points’ of Increase

It is necessary here to interrupt the exposition in order to record some elementary facts
concerning the points of increase of F % G. The first lemma is intuitively obvious, whereas
the second is of a technical nature. It will be used only in renewal theory, and hence
indirectly in the theory of random walks.

Lemma 1. If a and b are points of increase for the distributions F and G, then a + b

is a point of increuse for F * G. If a and b are atoms, the same is true of a+ b. Further-
more, all atoms of F+ G are of this form.

Proof. If X and Y are independent then
P{iX+Y—a—b| < ¢} > P{|X—a| < e} - P{|Y—b| < }e}.

The right side is [« sitive for every ¢ > 0 if a and b are points of increase, and so
a + b is again a point of increase.

Denote by F, and G, the atomic components of F and G in the Jordan decom-
position (2.5). The atomic component of F % G is obviously identical with the convolution
Fy % G,, and hence all atoms of Fx G are of the form a + b, where a and b are
atoms of F and G, respectively. >

The intrinsic simplicity of the next lemma suffers by the special role played on one hand
by arithmetic distributions, on the other hand by distributions of positive variables.

Lemma 2. Let F be a distribution in R} and X the set formed by the points of increase
of F,F?* F3*_ . ..

(a) If F is not concentrated on a half-axis then X is dense in —oc, for .F not
arithmetic, and = = {0, £, +24, ...} for F arithmetic with span 1.

(b) Let F be concentrated on 0, o but not at the origin. If F is not arithmetic then
% is “asymptotically dense at o’ in the sense that for given € > 0 and =z sufficiently

large the interval z,z+e contains points of Z. If F is arithmetic with span A then X
contains all points ni for n sufficiently large.

Proof. Let 0 < a < b be two points in the set = and put h = b — a. We distinguish
two cases: ~

(i) For each € > 0 it is possible to choose a, b such -hat & < e.

(ii) There exists a 4 > 0 such that # > & for ali possible choices.

Let 7, denote the interval na <z < nb. If n(b — a) > a this interval contains
na, (n + 1)a as proper subinterval, and hence every point z > xr, = a?/(b — a) belongs
to at least one among the intervals /;,I,,.... Bylemma 1 the n + 1 points na + kh,
k=0,...,n, belong to £, and they partition I, into n subintervals of length A.
Thus every point z > z, is at a distance <h/2 from a point of I.

In the situation of case (i) this implies that X is asymptotically dense at +oco. If then
\
F is concentrated on 0, o there is nothing to be proved. Otherwise let —c <0 be a
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point of increase of F. For arbitrary ¥ and n sufficiently large the interval
nct+y<z<nc+y-+e

contains a point s of X. Since s — nc again belongs to I it follows that every interval
of length € contains some points of X, and thus £ is everywhere dense.

In the situation of case (ii) we may suppose that a and 4 were chosen such that # < 20.
It follows then that the points na + kh exhaust all points of £ within 7,. Since (n+1)a
is among these points this means that all points of £ within I, are multiples of h. Now
let ¢ be an arbitrary (positive or negative) point of increase of F. For n sufficiently large
the interval 7, contains a point of the form kh + ¢, and as this belongs to Z it follows
that ¢ is a multiple of A. Thus in case (ii) the distribution F is arithmetic. >

A special case of this theorem commands interest. Every number z > 0 can be
represented uniquely in the form = m + £ as the sum of an integer m and a number
0 < & <1. This & is called the fractional part of z. Consider now a distribution F
concentrated on the two points —1 and « > 0. Theset £ contains all points of the form
no — m and hence the fractional parts of «, 2a,.... This F is arithmetic if a = p/g
where p and ¢ are positive integers without common divisors, and in this case the span
of F equals 1/g. We have thus the following corollary (to be sharpened in the equi-
distribution theorem 3 of VIII, 7).

Corollary. If « > 0 is an irrational number the set formed by the fractional parts of
a, 2a, 3o, ... is densein O, 1. -

5. SYMMETRIZATION

If the random variable X has the distribution F we shall denote the
distribution of —X by ~F. At points of continuity we have

(5.1) ~F(@z) = 1 — F(—x)

and this defines —F uniquely.. The distribution F is called symmetric if
—F = F. [When a density f exists this means that f(—z) = f().]

Let X; and X, be independent with the common distribution F. Then
X, — X, has the symmetric distribution °F given by

5.2) °F = F% —F.
Using the symmetry property °F(z) = 1 — °F(—z) it is readily seen that

(5.3) °F(a) = [ Fle+y) Fldy).

- 00

We shall say that °F is obtained by symmetrization of F.

Examples. (¢) Symmetrization of the exponential leads to the bilateral
exponential [I[,4(a)]; the uniform distribution on 0,1 leads to the triangular

distribution 1, of II,(4.1).
(b) The distribution with atoms of weight } at 1 is symmetric, but not
the result of a symmetrization procedure.
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(c) Let F be atomic, attributing weights po, py,... to 0,1,.... The
symmetrized distribution °F is atomic and the points 4n carry the weight

(5.4) 4 =};§‘pkpk+m 9-»=49q,

When F is the Poisson distribution we get for » > 0

[ ] n+-2k

5.5 ) L 0
(>3) 1 2 Kt ¢ G
where I, is the Bessel function defined in II,(7.1). (See problem 9.) >

Many messy arguments can be avoided by symmetrization. In this
connection it is important that the tails of F and °F are of comparable
magnitude, a statement made more precise by the following inequalities.
Their meaning appears clearer when expressed in terms of random variables
rather than the dlstrlbutlon itself.

Lemma 1. Symmetrization inequalities. If X, and X, are independent
and identically distributed, then for t > 0

(5.6) O P{X, =Xl > 1} < 2P{X,| > M)

If a> 0 is chosen so that P{X; < a} > p and also P{X; > —a} 2 D>
then

(5.7) P{X;—Xo| > 1} > p P{IX,| > 1 + a}.
In particular, if O is a median for X;
68 P(X,— Xyl > 1} > P{X;| > 1}.

‘Proof. The event on the left in (5.6) cannot occur unless either |X,| > 3¢
or |X,| > 4# and hence (5.6) is true. The event on the left in (5.7) occurs
if X, >t+a,X,<a, and also if X, < —t—a and X, > —a. This
implies (5.7). >

Symmetrization is frequently used for the estimation of sums of independ-
ent random variables. In this connection the following inequality is
particularly useful.

Lemma 2. If X,,...,X, are independent and have symmetric distri-
butions then S, = X, + - -+ + X, has a symmetric distribution and
(5.9) P{X,+ - +X,| > 1} > {P{Max |X;| > 1}.

If the X; have a common distribution F then

(5.10) P{X,+ - +X,| > t} > I(l—e-FF-nly
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Proof. Let the random variable M equal the first term among X, ..., X,
that is greatest in absolute value and put T =S, — M. The pair (M, T) is
symmetrically distributed in the sense that the four combinations (£M, +T)
have the same distribution. Clearly '

(5.11) PM>#}<PM>:T>0+PM>:,T<LO0}
The two terms on the right have equal probabilities, and so
(5.12) PS>t} =PM+T>t} >PM>1, T>0} > PM >t}

which is the same as (5.9).
(b) To prove (5.10) note that at points of continuity

(5.13) P{Max |X,| < t} = (F(t) — F(—1))" < e~ "-FtI+F(-0]
This implies (5.10) because 1 —xr < e® when 0 < z < 1. >

6. INTEGRATION BY PARTS. EXISTENCE OF MOMENTS

The familiar formula for integration by parts can be used also for arbitrary
expectations in RY. If u is bounded and has a continuous derivative u’, then

b+ b
(6.1) f u(x) F{dz} = u(b) F(b) — u(a) F(a) —f u'(z) F(zx) d=.

a .

Proof. A simple rearrangement reduces (6.1) to the form

6 [ w®)-u@iFds) - [ v@IF@-F@ld =0

- —
Suppose |u'| < M .and partition a,b into congruent intervals I, of

length h. It is easily seen that the contribution of I, to the left side in (6.2)
is in absolute value less than 2MAF{l,}. Summing over k we find that the
left side is in magnitude <2Mh, which can be made as small as we please.
Thus the left side in (6.2) is indeed zero. .

As an application we derive a frequently used formula [generalizing
1; XI,(1.8)].

Lemma 1. Forany « > 0
(6.3) f " Fldz) = « f " 21— F(z)] de
0 Jo

in the sense that if one side converges so does the other.

Proof. Because of the infinite interval of integration (6.1) does not apply
directly, but for every b < oo we have after a trivial rearrangement

(6.4) f - F{dz} = —b[L—F(b)] + « L " A1 — F(2)] da.
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Suppose first that the integral on the left converges as b — co. The contri-
bution of b, oo to the infinite integral is >b%[1 —F(b)], and this quantity
therefore tends to zero. In this case the passage to the limit & — oo leads
from (6.4) to (6.3). On the other hand, the intégral on the left is smaller
than the integral on the right and hence the convergence of the second entails
the convergence of the former, and hence (6.3). ' >

An analogue to (6.3) holds for the left tail. Combining the two formulas
we get

Lemma 2. The distribution F possesses an absolute moment of order
a >0 iff |x|*1 — F(x) + F(—=x)] is integrable over 0, co.
As an application we prove

Lemma 3. Let X and Y be independent random variables, and S = X+Y.
Then E(IS|%) exists iff both E(1X|*) and E(1Y|*) exist.

Proof. Since the variables X and X—c possess exactly the same moments
“ there is no loss of generality in assuming that 0 is a median for both X and
Y. But then P{|S|> ¢} > 4P{|X|> ¢}, and by the last lemma
E(IS]*) < o implies E(|X|*) < co. This proves the *“‘only if” part of the
assertion. The “if” p u* follows from the inequality |S|* < 2*(|X|* + |Y|%)
which is valid, beca. » wt no point can |[S| exceed the larger of 2|X|
and 2|Y].

7. CHEBYSHEV’S INEQUALITY

Chebyshev’s inequality is among the most frequently used tools in prob-
ability. Both the inequality and its proof* are the same as in the discrete
case (1; IX,6)and we repeat it mainly for reference. Interesting applications
will be given in VILL1.

Chebyshev’s inequality. If E(X?) exists
(71.1) P{X| > 1} < 12E(X?) | £> 0.
In particular, if E(X) =m and Var (X) = %,
(7.2) PUX — m| > 1} < o?fr2.

Proof. If F stands for the distribution of X,

E(X?) > f
Jlx| =

which is the same as (7.1). >

2 Fldz) > ¢ f F{dz)

|z|=t
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The usefulness of Chebyshev’s inequality depends (not on sharp numerical estimates
but) on its simplicity and the fact that it is specially adapted to sums of random variables.
Many generalizations are possrble but they do not share these desirable. -properties. (Most
of them are so simple that it is better to derive them as occasion arises. For example, a

useful combination of Chebyshev’s mequallty with truncation procedures is described in
VIL7.)

A fairly general method for derwmg non-trivial mequalmes may be described as follows.

If u > 0 everywhere and u(z) > a > 0 for all z in an interval I then

(1.3) | F{I} < a"Eu(X)).

On the other hand, if u <0 outside I and u <1 in I we get the reversed inequality
F{I} > Eu(X)). Choosing for u polynomlals we obtain mequahues depending only on
the moments of F. . i

.Examples. (@) Let u(z) = (:c:-{-c)2 with ¢ > 0- Then u(zr) >0 for all '« and
u(z) > (t+¢c)? for = > t > 0. Therefore

(7.4) P >t}< 1 E((X+c)"’)

If E(X) =0 and E(X?) = o? the right side assumes its minimum for ¢ = o%/r and hence

- . - ol
. - P ——, - ' .
(7.5) K> <m0 >0

‘This interesting inequality was discovered independently by many authors.

(b) Let X be positive (that is, F(0) =0)and E(X) =1, E(X? = b. The polynomial
u(x) = h-%(z—a)(a+2h—x) is positive only for a <z <a + 2k, and u(z) <1 every-
where. When 0 < a < 1 it is readily seen that E(u(X)) > [24(1—a) — b)h~2. Choosing

= b(1—a)~! we get by the remark preceding these examples

(7.6) , P{X > a} > (1—a)®-1.
(c) If E(X2) =1 and E(X% = M, the last inequality applied to X2 shows that
@.7) U PXI > > (- if 0<r<1. »

For Kolmogorov’s gencralizatio.rl of Chebyshev’s inequality sce section 8(e).

8. FURTHER INEQUALITIES. CONVEX FUNCTIONS

The inequalities collected in this section are of widespread use and are by
no means typical for probability. Most common is Schwarz’ inequality.
The others are given mainly because of their use in stochastic processes and
statistics. (This section is meant for reference rather than for reading.)

(a) Schwarz’ Inequality

In its probabilistic version this inequality states that for two arbitrary
random variables ¢ and y defined on the same space

(8.1) (E(py))* < E(¢?) E(y?)
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whenever these expectations exist. Furthermore, the equality sign holds
only if a linear combination ag + by is zero with probability one. More
generally, if F is an arbitrary measure on the set 4 then

62 ([ o Fld=)) < [ ¢ Fld) - [ o) Flas)

for arbitrary functions for which the integrals on the right exist. Taking
for F the purely atomic measure attaching unit weight to integers we get
Schwarz’ inequality for sums in the form

- (8.3) Qew) <39I 2 v

In view of the importance of (8.1) we give two proofs pointing to different
generalizations. The same proofs apply to (8.2) and (8.3).

First proof. We may assume E(y%) > 0. Then
(8.4) E(p+1y)? = E(¢?) + 21 E(py) + 12 E(y?)

is a quadratic polynomial in ¢ which, being non-negative, has either two
complex roots or a double root A. The standard solution for quadratic
equations shows in the first case that (8.1) holds with strict inequality. In
the second case E(p+ty)2=0 and so ¢ + ty =0 except on a set of
probability zero.

Second proof. As we are free to replace  and y by constant multiples
ap and by it suffices to consider the case E(¢?) = E(y?) = 1. Then (8.1)
follows trivially taking expectations in the inequality 2 [gy| < @* + w2 »

(b) Convex Functions. Jensen’s inequality

Let u be a function defined on an open interval I, and P = (&, u(%))
a point on its graph. A line L passing through P is said to support u at
& if the graph of u lies entirely above or on L. (This excludes vertical lines.)
In analytical terms it is required that

(8.5) U@ 2 u® + 1 @—d)

forall « in I, where 1 is the slope of L. The function u is called convex
in I if a supporting line exists at each point x of I. (The function u is
concave, if —u is convex.)

We proceed to show that this definition implies the various properties
intuitively associated with convexity as exemplified by convex polygonal lines.

Let F be an arbitrary probability distribution concentrated on I and
suppose that the expectation E(X) exists. Choosing .§ = E(X) and taking
expectations in (8.5) we get

(8.6) E(u) > u(E(X))
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whenever the expectation on the left exists. This statement is known as
Jensen’s inequality. ‘

By far the most important is the case where F is concentrated at two
points z; and %, and attributes weights 1 — ¢ and ¢ to them. Then
(8.6) takes on the form

(8.7) (I=t)ulzy) + t u(zy) > u((1—1)x; + ).

This inequality admits of a simple geometric interpretation which we state
in the following.

Theorem 1. The function u is convex iff all its chords lie above or on the
graph of u.

Proof. (i) Necessity. Let u be convex and consider the chord over an
arbitrary interval x,, . As t runs from O to 1 the point (1—1t)x, + tz,
runs through the interval z,, 2, and the left side in (8.7) is the ordinate of the
corresponding point on the chord. Thus (8.7) states that the points of the
chord lie above or on the graph.

(ii) Sufficiency~ Assume that u has the stated property and consider
the triangle formed by three points P,, P,, P; on the graph of u with
abscissas z; < 7z < ;. Then P, lies below the chord P,P;, and among
the three sides of the triangle P,P, has the smallest slope, P,P, the largest.

Outside the interval z,, z; the graph of u therefore lies above the line
P,P;. Now consider z; as a variable and let z;— x,4+. The slope of
P,P; decreases monotonically but is bounded from below by the slope
of P,P,. Thus the lines P,P; tend to a line L through P,. Outside z,, 7,
the graph of u is above the line P,P;, and hence the whole graph lies
above or on L. Thus L supports u at z,, and as =z, is arbitrary, this
proves the convexity of u. >

Being the limit of chords, the line L is a right tangent. In the limiting
process the abscissa z; of P, tends to z,, and Pg to a point on L. Thus
P;— P, The same argument applies for an approach from the left, and
we conclude that the graph of u is continuous and possesses right and left
tangents at each point. Furthermore, these tangents are supporting lines
and their slopes vary monotonically. Since a monotone function has at
most denumerably many discontinuities we have proved

Theorem 2. A convex function possesses right and left derivatives at all
points, and these are non-decreasing functions. They are the same except
possibly at countably many points.

Obviously this theorem again expresses necessary and sufficient conditions
for convexity. In particular, if a second derivative exists, u is convex
iff ¥ > 0.
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Usually (8.7) is taken as definition of convexity. For t =} we get the
inequality

(8.8)

2 - 2
stating that the midpoint of the chord lies above or on the graph of u. If
u is continuous this property guarantees that the graph can never cross a
chord and hence that u« is convex. It can be shown more generally that any
Baire function®® satisfying (8.8) is convex.

u (x1+x2) < u(z,) +u(zy)

(c) Moment Inequalities
We prove that for any random variable X

38.9) u(t) = log E(IX|"), t>0,

is a convex function of t in every interval in which the integral exists. In
fact, by Schwarz’ inequality (8.1)

(8.10) EX(IX]) < E(IX]*) E(IX]*), 0<h<y,

provided the integrals converge. Putting z;, =t — A and z, =t +h we
see that (8.8) holds and so u is convex as asserted.

Since u(0) < 0 the slope ¢~ u(t) of the line joining the originto (¢, u(z))
varies monotonically and hence (E(|X|)))¥* is a non-decreasing function
of t > 0.

(d) Holder’s Inequality
Let p>1,9>1 and p? +q1=1. Thenfor ¢ 20, »y >0

(8.11) E(py) < (E(p”)V/? (E(y")V

whenever the integrals exist.
(Schwarz’ inequality (8.1) is the special case p =¢ = 4, and (8.2) and
(8.3) generalize similarly.)

Proof. For > 0 the function u = logz is conéave, that 1s, it satisfies
(8.7) with the inequality reversed. Taking antilogarithms we get for
xl’ xz > 0

(8.12) ol < (1 — Dz, + tx,

As in the second proof of Schwarz’ inequality it suffices to consider integrands
normed by E(¢?)=E(@?) =1. Let t=¢g! and | —t=p'. The
assertion E(@y) <1 then follows directly taking expectations in (8.12)
with z; = ¢? and =z, = y°, >

18 Every u satisfying (8.8) is either convex, or else its oscillations in every interval range
from — oo to . See G. H. Hardy, J. E. Littlewood, and G. Pl6ya, Inequalities, Cambridge,
England, 1934, in particular p. 91.
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(e) Kolmogorov’s Inequality

Let X,, ..., X, be independent random variables with finite variances and
E(X,) = 0. Then for any x> 0
(8.13) P{max [[S,], ..., S,l] > «} < > E(S})

This important strengthening of Chebyshev’s inequality was derived for
discrete variables in 1; IX, 7. The proof carries over without change, but
we rephrase it in a form whick will make it evident that Kolmogorov’s
inequality applies more generally to submartingales. We shall return to this
point in VII, 9. ‘

Proof. Put z2 = t. For fixed ¢t and j=1,2,...,n denote by 4, the
event that S2 > ¢, but S2 <t for all subscripts » < j. In words, 4; is
the event that j is the smallest among the subscripts k& for which 82 > ¢.
Of course, such an index j need not exist, and the union of the events A; is
precisely the event occurring on the left side of Kolmogorov’s inequality.
Since the events A; are mutually exclusive this inequality may be restated in
the form

(8.14) S P4} < U ESY

Denote by 1,4, the indicator of the event 4,, thatis, 1, is a random
variable which equals 1 on A4; and equals 0 on the compliment of A4;. Then
214 <1 andso

(8.15) E(SH) > SE(SM.,).
y=1
We shall show that ’
(8.16) E(S21,) > E(S2,).

.Sincp S2 > t whenever A4; occurs, the right side is >¢P{4,}, and so (8.15)
reduces to the assertion (8.14).
To prove (8.16) we note that S, = S, + (S,—S;) and hence

(8.17) E(S31,4) > E(S31,,) + 2E((S,—S,)S/).

The second term on the right vanishes because the variables S, —S; =
= X;u + -+ + X, and S;j1, are independent and so the multiplication
rule applies to their expectat’ons. Thus (8.17) reduces to the assertion
(8.16). ' >

9. SIMPLE CONDITIONAL DISTRIBUTIONS. MIXTURES

In II1,2 we introduced a “conditional density of a random variable Y
for a given value of another variable X in the case where .the joint dis-
tribution of X and Y has a continuous density. Without any attempt
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at generality we proceed to define an analogous concept for a wider class
of distributions. (A systematic theory is developed in sections 10 and 11a.)
For any pair of intervals 4 and B on the line put

9.1) Q(4,B) =P{XeA,YeB}.
With this notation the marginal distribution for X is given by
(9.2) A} = Q(4, RY).

If u{4} > 0 the conditional probability of the event {Y € B} given {X € 4}
is

9(4, B)

u{A}

(If u{d} =0 this conditional probability is not defined.) We use this

formula when A is the interval 4, =z, + h and let A —0+. Under.
appropriate regularity conditions the limit

(9.4 4@, B) = lim ZB)
no p{d,}

will exist for all choices of x and B. Following the procedure and reasoning
used in IIL,2 we write in this case

(9.5) g(z, B) = P(Y € B| X = 2}

(9.3) P{(YeB|Xe4} =

and call ¢ “the conditional probability of the event {Y € B} given that
X = 2.” This constitutes an extension of the notion of conditional prob-
ahilities to situations in which the “hypothesis” has zero probability. No
difficulties arise when ¢ is insufficiently regular, but we shall not analyze
the appropriate regularity conditions’ because a general procedure will be
discussed in the next section. This naive approach usually suffices in
individual cases, and the form of the conditional distribution can frequently
be derived by intuitive reasoning.

Examples. (a) Suppose that the pair X, Y has a joint density given by
f(x,y). For simplicity we assume that f is continuous and strictly positive.
Then :

. B) = = | ) dy
(=)
where f;(x) = g(z, — 0, ) is the marginal density of X. In other words,
for fixed = the set function ¢ has a density given by f(z, y)/f,().
(b) Let X and Y be independent random variables with distributions
F and G, respectively. For simplicity we assume that X > 0 [that is,



158 PROBABILITY DISTRIBUTIONS IN R’ V.9

F(0) = 0]. Consider the product Z = XY. Then
(9.6) P(Z < t|X =2} = G(t/x)

and the distribution function U of Z is obtained by integrating (9.6) with
respect to F. [See II,(3.1). The assertion is a special case of formula (9.8)

below.] In particular, when X is distributed uniformly over 0, 1

9.7) U(t) = fo 1G(z/aa) dz.

This formula can be used as a convenient starting point for the theory
of unimodal distributions.1?
For a further example see problems 18-19. >

The following theorem (due to L. Shepp) is a probabilistic version of a formal criterion
found by A. Khintchine.

Theorem. U is unimodal iff it is of the form (9.7), that is, iff it is the distribution of the
product Z = XY of two independent variables such that X is distributed uniformly in 0, 1.

Proof. Choose # > 0 and denote by U, the distribution function whose graph is the
polygonal line agreeing with U at the points 0, +4,.... [In other words, U,(nh) =
= U(nh) and U, is linear in the interval between nk and (n+1)A.] It is obvious from the
definition that U is unimodal iff all U, are unimodal. Now U, has a density u, which is
a step furiction, and every step function with discontinuities at the points nA can be written
in the form

&) . 1 z
*) 2 P l—n-l—,,f(ﬂ)

where f(z) =1 for 0 <z <1 and.f(x) = 0 elsewhere. The function (*) is monotone
in 0, © andin —,0 iff p, > 0 forall n, and it is a density if an = 1. But in this
case (*) is the density of the product Z, = XY, of two independent variables such that

X is distributed uniformly in 0,1 and P{Y, = nk} = p,. We have thus proved that
U, is unimodal iff it is of the form (9.7) with G replaced by an arithmetic distribution G,

concentrated on the points 0, +4,.... Letting 2 —0 we get the theorem by monotone
convergence.
(See problems 25-26 and problem 10 in XV,9.) >

Under appropriate regularity conditions g(x, B) will for fixed z represent
a probability distribution in B and for fixed B a continuous function in z.
Then

(9.8) Q(4, B) = L q(z, B) u{dz}.

19 A distribution function U is called unimodal with the mode at the 6rigin iff the graph

of U is convexin — 0,0 and concave in 0, © [see 8(b)]. The origin may be a point of
discontinuity, but apart from this unimodality requires that there exist a density u which

is monotone in — 0,0 and in 0, o, (Intervals of constancy are not excluded.)
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In fact, the right side obviously represents a probability distribution in
the plane, and the differentiation described in (9.4) leads to g¢(z, B)
Formula (9.8) shows how a given distribution in R? can be expressed in
terms of a.conditional and a marginal distribution. In the terminology
of II,5 it represents the given distribution as a mixture of the family of
distributions ¢(z, B) depending on the parameter = with y serving as the
distribution of the randomized parameter.

In practice the procedure is frequently reversed. One starts from a
“stochastic kernel” ¢, thatis a function g(x, B) of a point * and a set B
such that for fixed z it is a probability distribution and for fixed B a Baire
function. Given an arbitrary probability distribution ux the integral in
(9.8) defines probabilities for plane sets of the form (4, B) and hence a
probability distribution in the plane. Usually- (9.8) is expressed in terms of
point functions. Consider a family of distribution functions G(0,y)
depending on a parameter 6, and a probability distribution x. A new
'distribution function is then defined by

+ o0
(9.9) Uy) = f G(z, y) u{d=}.

[This formula represents the special case of (9.8) when 4 = —o0, o0 and
 — )

qg(x, —oo0,y) = G(x,y).] Such mixtures occur .in 1; V and are discussed
in I1,5. In the next section it will be shown that ¢ can always be interpreted
as a conditional probability distribution.

Examples. (c) If F, and F, are distributions pF, + (1—p)F, is a
mixture (0 < p < 1) and represents a special case of (9.9) when u is
concentrated on two atoms.

(d) Random sums. Let X, X,,... be independent random variables
with a common distribution F. Let N be a random variable independent
of the X; and assuming the values 0, 1,... with positive probabilities
Po> P1» - - - - Weare interested in the random variable Sy = X, + - - - + X,
The conditional distribution of Sy given that N =n is F**, and so the
distribution of Sy Is given by

(9.10) U= p,F*,

n=0

which is a special case-of (9.9). In this case each hypothesis N = » carries
a positive probability p, and so we have conditional probability distributions
In the strict sense. Other examples are found in II,5-7. (See problems 21
and 24.)
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*10. CONDITIONAL DISTRIBUTIONS

[t would be pointless to investigate the precise conditions under which
conditional - probabilities ¢ can be defined by the differentiation” process
in (9.4). The main properties of conditional probabilities are embodied in
the relation (9.8) expressing probabilities of sets in terms of conditional
probabilities, and it is simplest to use (9.8) as definition of conditional
probabilities. It does not determine ¢ uniquely because if for each set B
we have g(z, B) = §(x, B) except on a set of u-measure zero, then (9.8)
will remain true-with-¢ replaced by §. This indeterminacy is unavoidable,
however. For example, if u is concentrated on an interval I no natural
definition of ¢ is possible for = outside I. By the very nature of things
we are really dealing with the whole class of equivalent conditional prob-
abilities and should refer to a rather than the conditional probability
distribution ¢. In individual cases there usually exists a natural choice
dictated by regularity requirements.

For definiteness we consider only events specified by conditions of the
form Xe€e A4 and Ye B, where X and Y are given random variables and
A, B are Borel sets on the line. Let us begin by examining the different
meanings that may be attached to the phrase “conditional probatility
of the event {Y € B} for given X.”” The given value of X may be cither a
fixed number or indeterminate. -With the second interpretation we have
a function of X, thatis, a random variable. It will be denoted by P{B | X}
or ¢(X, B), etc. For the value at a fixed point * we write for emphasis
P{YeB | X =z} or q(x, B).

Definition 1. Let the set B be fixed. By P{Y € B|X} (in words, “a
conditional probability of the event {Y € B} for given X) is meant a function
q(X, B) such that for every set A in R}

(10.1) P{XeA4,Y € B) =f q(x, B) u{dx}
: o Ja

where w is the marginal distribution of X.

When = happens to be an atom the hypothesis X = z has positive
probability and P{Y € B|X =2} is already defined by (9.3) with A
consisting of the Single point x. But in this case (10.1) reduces to (9.3) and
our definitions and notations are consistent. '

We show that a conditional probability P{Y € B | X} always exists. In
fact, clearly

(10.2) P{X €4, Y e B} < u(A).

* This section should be omitted at first reading.
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Considered for fixed B as a function of A4 the left side defines a finite
measure, and (10.2) implies that this measure is absolutely continuous with
respect to u (see the Radon-Nikodym theorem in section 3). This means
that our measure is defined by a density g, and so (10.1) is true.

So far the set B was fixed, but the notation g(z, B) was chosen with a
view to vary B. In other words, we wish to consider ¢ as a function of
two variables, a point * and a set B on the line. It is desired that for
fixed x the set-function ¢ be a probability measure, which requires that
g(z, RY) = 1 and that for any sequence of non-overlapping sets B,, B,, . . .
with union B o

(10.3) " gq(z,B) =Y q(=, B,).

Now if the terms on the right represent conditional probabilities for B,
this sum yields a conditional probability for B, but there is an additional
consistency requirement that (10.3) be true for our choice of ¢ and a/l z.
[Note that definition 1 does not exclude the absurd choice ¢(x, B) = 17
at an individual point x.] Itis not difficult to see that it is possible to choose
q(z, B) so as to satisfy these conditions.? This means that there exists a
conditional probability distribution of Y for given X in the sense of the
following. '

Definition 2. By a conditional probability distribution of Y for given X is
meant a function q of two variables, a point x and a set B, such that

(i) for a fixed set B.
(10.4) ¢(X, B) = P{Y € B| X}
is a conditional probability of the event {X € B} for given X.

(i) g is for each = a probability distribution.

In effect a conditional probability distribution is a family of ordinary
probability distributions and so the whole theory carries over without

20 1t is easiest to choose directly only the values g(x, B) when B is an interval in a dyadic

— ]
subdivision of R!. For example, let B, =0, © and B, = —,0. Choose for g(z, B,)
any conditional probability for B, such that 0 < gz, B)) < 1. Then ¢(z, B,) =
=1 — g(z, B;) is automatically a legitimate choice, Partition B, into By, and B,, and
choose ¢(z, By;) subject to 0 < g(z, By,) < ¢g(z, B,). Put q(z, Byy) = q(=, B,) — g(z, B,;)
and proceed in like manner refining the subdivision indefinitely. The additivity require-
ment (10.3) then defines g(z, B) for all open sets B and hence for all Borel sets.

This construction depends only on the existence of a so-called net, namely a partition
of the space into finitely many non-overlapping sets each of which is partitioned in like
manner and each point of the space is the unique limit of a contracting sequence of sets
appearing in the successive partitions. The assertion is therefore true in R” and in many
other spaces.
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change. Thus when g is given* the following definition introduces a new
notation rather than a new concept.

Definition 3. A conditional- expectation E(Y|X) is a function of X

assuming at x the value
+

(10.5) E(Y | x) =f y q(z, dy)

provided the integral converges (except possibly on an x-set of probability zero).

E(Y|X) is a function of X, that is a random variable. For clarity it is_
occasionally preferable to denote its value at an individual point = by
E(Y|X = z). From the very definition we get

(10.6)  E(Y) = f +°°E(Y|x) p{dz} or E(Y)= E(E(Y |X)).

*11. CONDITIONAL EXPECTATIONS

We have now defined a conditional expectation E(Y|X) in terms of a
conditional distribution, and this is quite satisfactory as long as one deals
only with one fixed pair of random variables X, Y. However, when one
deals with whole families of random variables the non-uniqueness of the
individual conditional probabilities leads to serious difficulties, and it is
therefore fortunate that it is in practice possible to dispense with this un-
wieldy theory. Indeed, it turns out that a surprisingly simple and flexible
theory of conditional expectation can be developed without any reference to
conditional distributions. To understand this theory it is best to begin with a
closer scrutiny of the identity (10.5).-

Let A be a Borel set on the line and denote by 1,(X) the random variable
that equals one whenever X € 4 and zero otherwise. We integrate the two
sides in (10.5) with respect to the marginal distribution x4 of X, taking the
set 4 as domain of integration. The result may be written in the form

(11.1)  E(Y14X)) =LE(Y | r) u{dz} =f+w1 4(x) E(Y | x) u(dzx).

The variable X maps the sample space S on a real line, and the last
integral refers only to functions and measures on this line. The random
variable Y1_,(X), however, is defined in the original sample space, and
therefore a better. notation is indicated. Obviously 1,(X) is the indicator
of a set B in &, namely the set of all those points in & at which X

2l For a more flexible general definition see section 11.

* The theory of this section will be used only .in connection with martingales in VI,12
and V1I,9.
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assumes a value in 4. As we saw in IV, 3, the sets B that in this manner
correspond to arbitrary Borel sets 4 on the line form a o-algebra of sets
in & which is called the algebra generated by X. Thus (11.1) states that
U = E(Y | X) is a function of X that satisfies the identity

(11.2) E(Y1;) = E(Uly)

for every set B in the o-algebra generated by X. We shall see that this
relation may be used as a definition of conditional expectations, and it is
therefore important to understand it properly. A simple example will
explain its nature. '

Examples. (a) We take the plane with coordinate variables X and Y as
sample space and suppose for simplicity that the probabilities are defined by
a strictly positive continuous density f(x,y). The random variable X
assumes a constant value along any line parallel to the y-axis. If 4 isa
set on the z-axis, the corresponding plane set B consists of all such lines
passing through a point of 4. The left side of (11.2) is the ordinary integral
of y f(x, y) over this set, and this can be written as an iterated integral. Thus

+ o

(11.3) E(Y1)) = J;dx f y f=, y) dy.

The right side of (11.2) is the ordinary integral of a function U(z)f,(x),
where f, is the marginal density of X. Thus in this case (11.2) states that

1
A=)
in accordance with the definition (10.5) of conditional expectation and in
accordance with intuition.

(b) (Continuation.) We show now that (11.2) defines a conditional expecta-
tion U even when no densities exist and the probability distribution in the
plane is arbitrary. Given a Borel set 4 on the z-axis, the left side in (11.2)
defines a number u,{A4}. Obviously x, is a measure on the Borel sets of the
z-axis. Another such measure is given by the marginal distribution x4 of X,
which is defined by u{4} = E(1y). It is therefore obvious that if u{4} =0
then also u,{d} = 0. In other words, @, 1s absolutely continuous with
respect to u, and by the Radon-Nikodym theorem of section 3 there exists a
function U such that

(11.5) (4} = [ U@ u(d),

This differs only notationally from (11.2). Of course, (11.5) remains valid
if U is changed on a set of u-measure 0, but this non-uniqueness is inherent
in the notion of conditional expectation. >

+ o0
(11.4) U(z) = f_ y f(z, y) dy,
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This example shows that (11.2) may be used to define a conditional
expectation U(X) = E(Y ] X) for an arbitrary pair of random variables
X, Y in an arbitrary probability space [provided, of course, that E(Y)
exists]. But this approach leads much further. For example, to define a
conditional « pectation E(Y |X,, X;) with respect to a pair X;,X, of
random variables we can use (11.2) unchanged except that B will now be an
arbitrary set in the o-algebra B generated by X; and X, (see 1V,3). Of
course, U will be a function of X,, X,, but we saw in IV 4 that the class of
Baire functions of the pair (X, X,) coincides with the class of all B-
measurable functions. Thus we may cover all imaginable cases by the
following definition first proposed by Doob.

Definition. Ler (S, U, P) be a probability space, and B a o-algebra of
setsin U (thatis, B < ). Let Y be a random variable with expectation.

A random variable U is called conditional expectation of Y with respect to
B if it is B-measureable and (11.2) holds for all sets B of B. In this case we
write. U = E(Y | B).

In the particular case that B is the o-algebra generated by the random
variables X, ...,X, the variable U reduces to a Baire function of
Xis .. X, and will be denoted by E(Y | X, X0

The existence of E(Y | B) isestablished by the method indicated in example
(b) using an abstract Radon-Nikodym theorem.

To sec the main properties of the conditional expectation U = E(Y | B)
note that (11.2) holds trivially when 15 is replaced by a linear combination
of indicators of sets B; in B. But we saw in IV,3 that every B-measurable
function' can be uniformly approximated by such linear combinations.
Passing to the limit we see that (11.2) implies that more generally E(YZ) =
= E(UZ) for any B-measurable function Z. Replacing Z by Z1; and
comparing with the definition (11.2) we see that

(11.6) | E(YZ|B) = ZE(Y|B)

Sfor any B-measurable function Z. This is a relation of great importance.

Finally, condider a o-algebra 8, < B and let U, = E(Y|%B,). For a
set B in B, we can interpret (11.2) relative to B, as well as relative to B,
and thus we find that for B in B,

E(Y1p) = E(Uly) = E(U,l ).
Thus by the very definition U, = E(U| B,), and so
(11.7) E(Y| B, = E(E(Y | B)B,) if B, < B.

For example, B may be the algebra generated by the two variables X;, X,
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while 9B, stands for the algebra generated by X; alone. Then (11.7)
reduces to E(Y | X,) = E(E(Y | X, X,) | X)).

Finally we note that (11.2) implies that for the constant function 1 the
conditional expectation equals 1, no matter how B is chosen. Thus (11.6)
implies that E(Z |B) = Z for all B-measurable variables Z

It is hardly necessary to say that the basic properties of expectation carry
over to conditional expectation.

12. PROBLEMS FOR SOLUTION

1. Let X and Y be independent variables with distribution functions F and
G. Find the distribution functions of?2 (@) XV Y, b)) X NY, (¢) 2X VY, (d)
X3UY.

2. Mixtures. Let X, Y, Z be independent; X and Y have distributions F
and G, while P{Z =1} =p, P{Z =0} =¢q (p + g =1). Find the distribution
functions of (@) ZX + (1 —-2)Y, (b) ZX+ (N1 -Z)XVY), () ZX +
A -Z)XnY).

3. If F is a continuous distribution function show that

-+ a0 1 .
f F@)F{ds} = f ydy = }
0

—a0

(a) from the very definition of the first integral (partitioning — o, o into sub-
intervals) and (b) from the interpretation of the left side as E(F(X)) where F(X)
has a uniform distribution. More generally, putting G(x) = F"(z),

n
n+k’

+mo
f Fr2)G{dz} =

2]

4. Let F(z,y) stand for a probability distribution in the plane. Put U(z,y) =0
when z <0 and ¥y <0, and U(z,y) = F(z,y) at all other points. Show that
U is monotone in each variable but is not a probability distribution. [Hint:
Consider the mixed differences.]

5. Prescribed marginal distributions*® Let F and G be distribution functions
in X! and _
Uz, y) = F@)G[l + «(l — F@)(1 — G(y))]

where |«| < 1. Prove that U is a distribution function in ®? with marginal
distributions F, G and that U has a density iff F and G have densities.

Hint: -If w(z,y) = u(x)v(y), the mixed differences of w [defined in.(1.12)]
are of the form Au Av. Note also that A(F?) <2 AF.

22If g and b are numbers, a U b = max (a, b) denotes the larger of the two,
a N b = min (a, b) the smaller. For functions fU g denotes the function which at the
point x assumes the value [@ N g(x) (seelV,1). Thus X UY and X N'Y are random
variables.

23 This problem contains a new example for a non-normal distribution with normal
marginal distributions (see problems 2 and 3 in II1,9). It is due to E. J. Gumbel.
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6. Within the unit square put U(x,y) =z if z <y and Uk,y) =y if
x > y. Show that U is a distribution function concentrated at the bisector (hence
singular).

7. Fréchet’s maximal distribution with given marginal distributions. Let F and
G be distribution functions in ®! and U(z,y) = F(z) N G(y). Prove: (a) U is
a distribution function with marginal distributions F and G. (b) If V 1is any
other distribution function with this property, then ¥V < U. (¢) U is concentrated
on the curve defined by F(x) = G(y), and hence singular. (Problem 5 contains a
special case.)

8. Denote by U the uniform distribution in —#4,0 and by T the triangular
distribution in —A, & [see II, 4(b)]. Then F% U and F+ T have the densities

hY{F(x + h) — F(x)] and h‘th[F(x +y) — F(x — y)]dy.
0

9. The independent variables X and Y have Poisson distributions with ex-
pectations pt and gr. If I is the Bessel function defined in II, (7.1) show that

P{X — Y =k} = etV {p/g)* Ij(21Vpq).

10. For a distribution function F such that

+ o
@) =f exxF{dx}
—a0
exists for —a < « < a we define a new distribution F# by ¢@(«)F#{dr} =
= eazF{dx}. Let F; and F, be two distributions with this property and F =
= F;% F,. Prove that (with obvious notations) ¢(x) = ¢,(«) p,(a) and F# =

= F# % F§. ‘

11. Let F have atoms aj,a,, ... with weights p;,p,,... . Denote by p
the maximum of p,, p,, ... . Using lemma 1 of section 4a prove .

(a) The atoms of F¥ F have weights strictly less than p except if F is con-
centrated at finitely many atoms of equal weight.

(b) For the symmetrized distribution °F the origin is ‘an atom of weight
p' = pi The weights of the other atoms are strictly less than p’.

12. Random vectors in R3. Let L be the resultant of two independent unit
vectors with random directions (that is, the endpoints are distributed uniformly
over the unit sphere). Show that P{L <t} =1¢2/2 for 0 <t < 2. [See example
4(e).]

13. Let the X; be mutually independent variables assuming the values 0 and
1 with probability } each. In example 4(d) it was shown that X = > 27*X, is
uniformly distributed over 0, 1. Show that > 273X, has a singular distribution.

14. (a) If F has a density f such that f? is integrable, then the density f;
of F% F is bounded.

(6) Using the mean approximation theorem of IV,2 show that if f is bounded
then f, is continuous.

[If f is unbounded near a single point it can happen that f™* is unbounded for
every n. See example XI,3(a).]

15. Using Schwarz’ inequality show that if X is a positive variable then
E(X™7?) > (E(X?)71 forall p > 0.
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16. Let X and Y have densities f and g such that f(z) > g(x) for z <a
and f(z) < g(x) for z > a. Prove that E(X) < E(Y). Furthermore, if f(x) =
=g(x) =0 for z <0 then E(X*) < E(Y*) forall &.

17. Let X, X,, ... be mutually independent with the common distribution F.
Let N be a positive integral-valued random variable with generating function
P(s). If N isindependent of the X; then max [X}, ..., Xy] has the distribution
P(F). '

18. Let X;,...,X, be mutually independent with a continuous distribution
F. Let X =max [X,,...,X,] and Y =min [X,,..., X,]. Then

PX <z, Y >y} =(F@) —Fy)" for y <z
and _
P{Y >y | X ==z} = [(F(x) —F@)/F @)L

19. Using the same notations one has for each fixed k < n

n—1F@)
. —— for =z <¢
PX,<z|X=1}= 1" FO
o 1 for = >t

Derive this (a) by an intuitive argument considering the event {X; = X}, and

(b) formally from (9.4).
20. Continuation. Prove that
n—1 1 t t
X=f)=—__ ___ Z.
E(xkl t) n F(I) _wyF{dy} + n

21. Random sums. In example 9(c) let X, equal 1 and —1 with probabilities
p and ¢ =1 — p. If N is a Poisson variable with expectation ¢ the distribution
of Sy is identical with the distribution occurring in problem 9.

22. Mixtures. Let the distribution G in (9.9) have expectation m(x) and
variance ¢*(z). Prove that the mixture U has expectation and variance

+ 0 +- 00 )
a = [ Cmewia. b - [ oremtan + [ ot - atnutan)

—0 —a0

23. With obvious notations E(E(Y | X)) = E(Y) but
Var (Y) = E(Var (Y | X)) + Var (E(Y | X)).

Problem 22 is a special case. : :
24. Random sums. In example 9(c), E(Sy) = E(N)E(X),

Var (Sy) = E(N) Var (X) + (E(X))? Var (N).

Prove this directly and show that it is contained in the last two problems.

Note. The following problems refer to convolutions of unimodal distributions
defined in footnote 19 of section 9. It has been conjectured that the convolution
of two such distributions is again unimodal. One counterexample is due to K. L.
Chung, and problem 25 contains another. Problem 26 shows the conjecture to
be valid for symmetric** distributions. This result is due to A. Wintner.

4 For the difficulties arising in the unsymmetric case see I. A. Ibragimov, Theory of
Probability and Its Applications, vol. 1 (1956) pp. 225-260. [Translations.]
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25. Let u(z) =1 for 0 <z <1 and u(x) =0 elsewhere. Put

a3+ 54

where 0 <a <b. If € and a are small and b large, then w = v % v is not
unimodal although v is.

Hint to avoid calculations: The convolution of two uniform densities is the
triangular density and hence w(a) > ¢?a=! and w(b) > %! and the integral of
w from b to 2b is >3(1 —e)® It follows that w must have a minimum between
a and b.

26. Let F be a uniform distribution and G unimodal. If both F and G are
symmetric show by simple differentiation that the convolution F+ G is uni-
modal. Conclude (without further calculations) that the statement remains true
when F is any mixture of symmetric uniform distributions, and hence that the
convolution of symmetric unimodal distributions is unimodal.



CHAPTER VI ~

A Survey of Some Iniportant'

Distributions and Processes:

This chapter is the product of the deplorable need to avoid repetition and
cross references between chapters intended for independent reading. For
example the theory of stable distributions will be developed independently
by semi-group methods (IX), by Fourier analysis (XVII), and—at least
partly—by Laplace transforms (XIII). Giving the definitions and examples
at a neutral place is economical and makes it possible to scrutinize some
basic relations without regard to purlty of methods.

The miscellaneous topics covered in this chapter are not necessarlly
logically connected: the queuing process. has little to do with martingale
theory or stable distributions. The chapter is not intended for consecutive
reading; the individual sections should be taken up as occasion arises or
when their turn comes up. Sections 6-9 are somewhat interrelated, but
independent of the rest. They treat some important material not covered
elsewhere in the book.

1. STABLE DISTRIBUTIONS IN a1

Stable distributions play a constantly increasing role as a natural general-
ization of the normal distribution. For their description it is convenient to
introduce the short-hand notation

(1.1) uiv

to indicate that the random variables U and V have the same distribution.
Thus U = aV + b means that the distributions of U and V differ only by
location and scale parameters. (See definition 1 in V,2.) Throughout this
section X, Xy, X,, . .. denote mutually independent random variables with a
common dlStrlbutlon R and S, =X, +--- +X,.

169
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‘Definition 1. The distribution R is stable (in the broad sense) if for each n
there exist constants c, > 0, y,. such that!

(1.2) S, = ¢.X + v,

and R is not concentrated at one point. R is stable in the strict sense if (1.2)
holds with vy, = 0.

Examples will be found in section 2. An elementary derivation of some
basic properties of stable- distributions is so instructive that we proceed
with it at the cost of some repetition. The systematic theory developed
in chapters IX and XVII does not depend on the following discussion.

Theorem . 1. The norming constants are of the form c, = n'* with
0 < « < 2. The constant o will be called the characteristic exponent of R.

Proof. The argument. is greatly simplified by symnfetrization. If R is
~ stable so is the distribution °R of X; — X, and the norming constants c,
are the same. It suffices therefore to prove the assertion for.a symmetric
stable R.

We start from the simple remark that S, , is the sum of the independent
variables S,, and S,,., —S,, distributed, respectively, as ¢, X and ¢, X
Thus for symmetric stable distributions

(1.3) cm+,,X < cX; + . Xe.

Similarly, the sum S,, can be broken up into r independent blocks of k
terms each, whence ¢, = c.c, forall r and k. For subscripts of the form
n = r* we conclude by induction that '

(1.4) if n=r" then c,=c

Next put » =m 4+ n and note that because of the symmetry of the
variables in (1.3) we have for ¢t > 0

(1.5) P{X > 1} > IP{X, > tc,/c,}.

It follows that for » > n the ratios c,/c, remain bounded.
To any integer r there exists a unique « such that ¢, = r/«. To prove
that ¢, = n'/* it suffices to show that if c,= p!/# then f = «. Now by

(1.4)
if n=r"  then c,=n""
. if v="1p" then e, —
But for each ¥ = p* there exists an n = r? such that n < v < rn. Then
c, = v"? < (rn)P = P8,

1 For an alternative form see problem 1.




VI.1 - STABLE DISTRIBUTIONS IN R! 171

Since the ratios ¢ /cv remain bounded this implies that § < «. Inter-
changing the roles of r and p- we find similarly that ﬂ > o and hence
g =

To prove that a <2 we remark that the normal distribution is stable
with « = 2. For it (1.3) reduces to the addition rule for variances, and the
latter implies that any stable distribution with finite variances necessarily
corresponds to « = 2. To conclude the proof it suffices therefore to show
that any stable distribution with « > 2 would have a finite variance.

For symmetric distributions (1.2) holds with y, = 0, and hence we can
choose a ¢ such that P{|S,| > tc,} < } forall n. For reasons of symmetry
this implies that n{l1 —R(¢c,)] remains bounded [see V,(5.10)]." It follows
that 2%[1 — R(z)] < M for all >t and an appropriate constant M.
- Thus the contribution of the interval 2! < z < 2% to the integral for
E(X?) is bounded by M22-®* and for « > 2 thls would be the general
term of a convergent series. . >

The theory of stable distributions simplifies greatly by the gratlfymg fact
that the centering constants y, may be disregarded in practice. This is so
because we are free to center the distribution R in an arbitrary manner,
that is, we may replace R(x) by R(z+b). The next theorem shows that,
except when o = 1, we can use this freedom to eliminate y, from (1.2).

Theorem 2. If R is stable with an exponent a 7% 1 the centering constant
b may be chosen so that R(z + b) is strictly stable.

Proof. S,,, is the sum of m iridependen't variables each distributed as .
¢, X + .. Accordingly

(1.6) Smn = CaSm + My, S CrX + Caym + My,
Since m and n play the same role this means that we have identically
(17) (cn_n)ym = (cm_m)yn

When a.= 1 this statement is'e:m'pty,2 but when « # 1 it implies that
Vs = b(c,—n) for all n. From (1.2) one sees finally that the sum S! of n
variables distributed as X' — b satisfies the condition 'S/ <X >

- The relation (1.3) was derived from (1.2) under the sole assumption that
¥» = 0 and holds therefore for all strictly stable distributions. It implies that

(1.8) sY7X, + 17X, = (s+-1)M*X

whenever the ratio s/ is rational A simple continuity argument® leads to

2 For the case « = 1 see problem 4.
3 Concerning the continuity of stable distributions see problem 2.
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Theorem 3. If R s strictly stable with exponent o then (1.8) holds for
all s> 0 and t > 0.

For the normal distribution (1.8) merely restates the addition rule for the
variances. In general (1.8) implies that all linear combinations a,X, + a,X.
belong to the same type.

The importance of the normal distribution R is due largely to the
central limit theorem. Let X,,..., X, be mutually independent variables
with a common distribution F having zero expectation and unit variance.
Put S, =X, +---+X,. The central limit theorem?* asserts that the
distribution of *S,n*? tends to M. For distributions without variance
similar limit theorems-may be formulated, but the norming constants must
be chosen differently. The interesting point is that all stable distributions
and no others occur as such limits. The following terminology will facilitate
the discussion of this problem.

Definition 2. The distribution F of the independent random variables X,
belongs to the domain of attraction of a distribution R if there exist norming
constants a, > 0, b, such that the distribution of a;(S,—b,) tends to R.

Our last statement can now be reformulated to the effect that a distribution
R possesses a domain of attraction iff it is stable. Indeed, by the very definition
each stable R belongs to its own domain of attraction. That no other
distribution appears as limit becomes plausible by the argument used in
theorem 1.

Our results have important and surprising consequences. Consider,
for example, a stable distribution satisfying (1.8) with o < 1. The average
(X;+: - -+X,;)/n has the same distribution as  X;n~1+1/2z, and the last
factor tends to co. Roughly speaking we can say that the average of n
variables is likely to be considerably larger than any given component X,.
This is possible only if the maximal term -M,, = max [X,, ..., X,] is likely
to grow exceedingly large and to receive a preponderating influence on the
sum S,. A closer analysis bears out this conclusion. In the case of positive
variables the expectation of the ratio S,/M,, tends to (1—«)l, and this is
true also for any sequence {X,} whose distribution belongs to the domain of
attraction of our stable distribution. (See problem 26 of XIII,11.)

Note on history. . The general theory of stable distributions was initiated® by P. Lévy
(1924), who found the Fourier transforms of all strictly stable distributions. (The others

4 The central limit theorem proves that the normal distribution is the only stable distri-
bution with' variance. .

8 The Fourier transforms of symmetric stable distributions were mentioned by Cauchy,
but it was not clear that they.really corresponded to probability distributions. This point
was settled by G. Polya for the case « < 1. The Holtsmark distribution of example 2(c)
was known to astronomers, but not to mathematicians. .
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were originally called quasi-stable. As we have seen, they play a role only when « == 1,
and this case was analyzed jointly by P. Lévy and H. Khintchine.) A new and simpler
approach to the whole theory was made possible by the discovery of infinitely divisible
distributions. This new approach (stilf based on Fourier analysis) is also due to P. Lévy
(1937). The interest in the theory was stimulated by W. Doblin’s masterful analysis of
the domains of attraction (1939). His criteria were the first to involve regularly varying
functions. The modern theory still carries the imprint of this pioneer work although
many authors have contributed improvements and new results. Chapter XVIII contains
a streamlined treatment of the theory by the now classical Fourier methods, while chapter
IX presents the same theory by a direct approach which is more in line with modern
methods in Markov processes. Great simplifications and a unification of many criteria
were made possible by the systematic exploitation of J. Karamata’s theory of regularly
varying functions. An improved version of this theory is presented in VIII,8-9.

2. EXAMPLES

(a) The normal distribution centered to zero expectation is strictly stable
with ¢, = Jn.
(b) The Cauchy distribution with arbitrary location parameters has density
1 c
wl (=)
The convolution property II,(4.6) shows that it is stable with « = 1.
(¢) Stable distribution with « = 4. The distribution

(2.1) F(z) = 2[1 — RANV)], £>0
with density
(2.2) f(@) = —== 2®, z>0

\/277.’1:

[and f(x) = 0 for « < 0] s strictly stable with norming constants ¢, = n2.

This can be shown to be elementary integrations, but it is preferable to
take the assertion as a consequence of the fact that F has a domain of
attraction. Indeed, in a symmetric random walk let S, be the epoch of the
rth return to the origin. Obviously S, isthe sum of r independent identically
distributed random variables (the waiting times between successive returns).
Now it was shown at the end of 1; III,(7.7) that

(2.3) P{S. < rit} — F(r) r — co.

Thus F has a damain of attraction and is therefore stable. [Continued
in example (e).]

(d) The gravitational field of stars (Holtsmark distribution). In astro-
nomical terms the problem is to calculate the z-component of the gravi-
tational force exercised by the stellar system at a randomly chosen point O.
The underlying idea is that the stellar system appears as a “random aggregate™
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of points with “randomly varying masses.”” These notions could be made
_ precise in terms of Poisson distributions, etc., but fortunately no subtleties
are required for the problem at hand.’ '

Let us agree to treat the density of the stellar system as a free parameter
and to let X, stand for the z-component of the gravitational force of a
stellar system with density A. We seek the conceivable types of such
distributions. Now the intuitive notion of a “random aggregate of stars™
presupposes that two independent aggregates with densities s and ¢ may be
combined into a single aggregate of density s + t+ Probabilistically this
amounts to the postulate that the sum of two independent variables
distributed as X, and X, should have the same distribution as X1 We
indicate this symbolically by

(2.4) X, + X £X,,,

Considering that a change of density from 1 to 4 amounts to a change of

the unit of length from 1 to 1/¥/4 and that the gravitational force varies
inversely with the square of the distanceé we see that X, must have the
same distribution as r¥X;. This means that the distributions of X, differ
only by a scale parameter and (2.4) reduces to (1.8) with « = 2. In other
words, X, has a symmetric stable distribution with exponent 3. It will turn
out that (up to the trivial scale parameter) there exists exactly one such
distribution, and so we have solved our problem without appeal to deeper
theory. The astronomer Holtsmark obtained an equivalent answer by
other methods (see problem 7) and, remarkably, before P. Lévy’s work.

(e) First-passage times in Brownian motion. We start from the notion
of a one-dimensional diffusion process, that is, we suppose that the in-
crements X(s+1) — X(s) for non-overlapping time intervals are inde-
pendent and have a symmetric normal distribution with variance . We
assume as known that the paths depend continuously on time. If X(0) =0
there exists an epoch T, ar which the particle reaches the position a > 0
for the first time. To derive the distribution function F,(¢) = P{T, < ¢}
we observe that the notion of an additive process presupposes a complete
lack of after-effect (the strong Markov property). This means that the incre-
ment X(74-T,) — a of the abscissa between epochs T, and T, + ¢ is
independent of the process before T,. Now to reach a position a+b > a
the particle must first reach 2, and we conclude that the residual waiting
time T,,, — T, before reaching a + b is independent of T, and has the
same distribution as T,. In other words, F, % F, = F,_,. But the transition
probabilities depend only on the ratio #%/r and therefore T, must have the
same' distribution as a®T,. This means that the distributions F, differ
only by a scale parameter and hence they are stable with exponent o = }.
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This argument, based on dimensional analysis, proves the stability of
the first-passage distribution but does not lead to an explicit form. To
show that F coincides with the distribution of example (c) we use a reasoning
based on symmetry (the so-called reflection principle). Because of the
assumed continuity of paths the event {X(z) > a} can occur only if the level
a has been crosséd at some epoch T, < z. Given that T, = 7 <t we have
X(7) = a, and for reasons of symmetry the probability that X(z) — X(7) > 0
is 3. We conclude that

(2.5)  P{T, <t} = 2P{X(t) > a} = 2[1 — R(a/\/1)]

which is equivalent to (2.1).

(f) Hitting pomts in two-dimensional Brownian motion. A two-dimensional
Brownian motion is formed by a pair (X(z), Y(z)) of independent one-
dimensional Brownian motions. We are interested in the point (a, Z,) at
which the path first reaches the line = @ > 0. As in the preceding example
we note that the path can reach the line z = a+b > a only after crossing
the liné z = a; taking (a,Z,) as new origin we conclude that Z,,, has
the same distribution as the sum of two independent variables distributed
as Z, and Z,. Now an obvious similarity consideration shows that Z, has
the same distribution as aZ, and we conclude that Z, has a symmetric
stable distribution with exponent « = 1. Only the Cauchy distribution fits
this description, and so the hitting point Z_, has a Cauchy distribution.

This instructive dimensional analysis does not determine the scale param-
eter. For an explicit calculation note that Z, = Y(T,) where T, is the
epoch when the line z = a is first reached. Its distribution is given in (2.5)
while Y(t) has normal density with variance ¢. It follows that Z, has a
density given by®

(2.6) f et ae“‘}az/‘ _ a
)

cdt = ———— .
1t /271' t%\/27r ‘w(a+z?)

(We have here an example for the subordination of processes to which we
shall return in X,7.)

(g) Stable distributions in economics. Arguments related to the dimen-
sional analysis in the last two examples have been used by B. Mandelbrot
to show that various economic processes (in particular income distributions)
should be subject to stable (or “Lévy-Pareto”) distributions. So far the
strength of this 1nterest1ng theory, which has attracted attention among
economists, resides in the theoretical argument rather than observations.
[For the apparent fit of the tails of the distribution to many empirical
phenomena from city size to word frequency see II,4(h).]

% The substitution y = }(x2+a?)/t reduces the integrand to e,
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(h) Products. There exist many curious reletions between stable distri-
butions of different exponents. The most interesting may be stated in the
form of the following proposition. Let X and Y be 1ndependent stricily
stable variables with characteristic exponents « and f respectively.
Assume Y to be a positive variable (w hf—*xce B < 1). The product XY'/°
has a stable distribution with expone»:i «f. In particular, the product cf a
normal variable and the square root of the stable variable of example (<)is a
Cauchy variable.

The assertion follows as a simple coroliary to a theorem concerning
subordinated processes’ [example X,7(c)]. Furthermore, it is easily verified
by Fourier analysis (problem 9 of XVil,12) and, for positive variables, also
by Laplace transforms [XIII,7(e) and problem 10 of XIII,11].

3. INFINITELY DIVIS{BLE DISTRIBUTIONS IN R!

Defirition 1. A distribution F is infinitely divisible if for every n there
exists a distribution F, such that F = F™*.

In other words ®- F is infinitely divisible iff for each n it can be represented
as the distribution of the sum S, =X, ,+ -+ +X,, of n independent
random variables with a common distribution F,.

This definition is valid in any number of dimensions, but for the present
we shall limit our attention to one-dimensional distributions. It should be
noted that infinite divisibility is a property of the type, that is, together
with F all distributions differing from F only by location parameters are
infinitely divisible. Stable distributions are infinitely divisible and dis-
tinguished by the fact that F, differs from F only by location parameters.

Examples. (a) On account of the convolution property I1,(2,3) all gamma
distributions (including the exponential) are infinitely divisible. That the
same is true of their discrete counterpart, the “negative binomial” (including
the geometric) distributions was shown in 1; XII,2(e).

(b) The Poisson and the compound Poisson distributions are infinitely
divisible. It will turn out thai all infinitely divisible dlstrlbutlons are [imits
of compound Poisson distributions.

7 For a direct verification requiring a minimum of calculations find the distribution of

Z =X,3/Y; + X,3/Y, by first calculating the conditional distribution of Z given that
Y, =¥, and Y, = y,. The distribution of Z is a function of y; + ¥, and the change of
variables 4 = y; + ¥,, v = y; — y, shows that it differs only by a scale factor from that
of the two summands. The same calculation works for suras of » similar terms.

81t should be understood that the random variables X, serve merely to render
notations simpler and more intuiiive. For fixed n the variables X, ,,...,X,, are
supposed to be mutually independent, but the variabies X, ,, and X, , with m  n need
not be defined on the same probability space. (Iz other words, a joint distribution for
X..m and X; , need not exist.) This remark applies to triangular arrays in general.
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(¢) The distribution IL,(7.13) connected with Bessel functions is infinitely
divisible but this is by no means obvious. See example XIIL,7(d).

(d) A distribution F carried by a finite interval is not infinitely divisible
except if it is concentrated at one point. Indeed, if |S,| < a with probability
one then |X, . < an~! and so Var (X, ,) < a?n~2. The variance of F is
therefore <a®n~! and hence zero. >

Returning to definition 1 let us consider what happens if we drop-the
requireraent that the X, , have the same distribution and require only
that for each r there exist » distributions £, ,,..., F, , such that

(3.1) F=F ,% "% F,,
Such generality leads te a new plienomenon best illustrated by examples.

Examples. (e) If F is infinitely divisible and U arbitrary, G = U%k F
can be written in the form (3.1) with G, , = U and all other G, , equal
to F,_;. Here the first component plays an entirely different role from all
other components.

(f) Consider a convergent series X = > X, of mutually independent
random variables. The distribution F of X is the convolution of the
distributions of X, X,,..., X, ; and the remainder (X,+X, .1+ ")
and so F is of the form (3.1). Such distributions will be studied under the
name of infinite convolutions. Example I,11(c) shows the uniform distri-
bution to be among them. >

The distinguishing feature of these examples is that the contribution of
an individual component X, , to S, is essential, whereas in the case of
equally distributed components the contribution of each tends to zero.
We wish to connect infinitely divisible distributions to the typical limit
theorems involving *“‘many small components.” It is then necessary to
supplement our scheme by the requirement that the individual components
X, » become asymptotically negligible in the sense that for each ¢ > 0,

(3.2) P{X, .| > € < ¢ C k=1,...,n)

for n sufficiently large. In the terminciogy of VIIL,2 this means that the
X,.» tend in probability to zero uniformly in k =1,...,n Systems of

variables of this type appear so often that it is convenient to give them a
name.

Definition 2. By a trlangu ar-array is meant a double sequernce of random
variables X, , (k=1,2,...,n; n=1,2,...) such that the variables
Xins oo s Xp, Of the nth row are mutually independent.

The array is a null array (or has asymptotically negligible components) if
(3.2) holds.
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More generally one may consider arrays with r, variables in the nth
row with r, — co. The gain in generality is slight. (See problem 10.)

Example. (g) Let {X,} be a sequence of identically distributed independ-
ent random variables and S, = X, + - -- 4+ X,. The normalized sequence
S.a,! represent the nth row sum of a triangular array in which X, , =
= X;a,!. Thisarray is a null array if 4, — c0. An array of a different sort
was considered in the derivation of the Poisson distribution in 1; VL,6. p»

In chapters IX and XVII we shall prove the remarkable fact that a /imit
distribution of the row sums S, of a triangular null array (if it exists) is
infinitely divisible. As long as the asymptotic negligibility condition (3.2)
holds it does not matter whether or not the components X, , have aicommon
distribution, and in (3.1) we may replace the equality sign by a-limit: the
class of infinitely divisible distributions coincides. with the class of limit
distributions of the row sums of triangular null arrays. : f

Examples for applications. (h) The shot effect in vacuum tubes. Variants
and generalizations of the following stochastic process occur in physics
and in communication engineering.

We propose to analyze the fluctuations in electrical currents due to the
chance fluctuations of the numbers of electrons arriving at an anode. It is
assumed that the arrivals form a Poisson process, and that an arriving
electron produces a current whose intensity z time unit later equals I(z).
The intensity of the current at epoch ¢ is then formally a random variable

oo
(3.3) X(® '=k21 I(1=T,),

where the T, represent the epochs of past electron arrivais. (In other words,
the variables ¢t—T,, T,—T;, T;—T,,... are mutually independent and
have a common exponential distribution.)

A direct analysis of the sum (3.3) by the methods of stochastic processes
is not difficult, but the simple-minded approach by triangular arrays may
serve as an aid to intuition. Partition the interval —oo,t into small
subintervals with endpoints #, =1t — kh (where kK =0,1,...). By the
very definition of the Poisson process the contribution of the interval
Iy, t,_, to the sum in (3.3) is comparable to a binomial random variable
assuming the value O with probability 1 — A and I(t—,) with probability
wh. Theexpectation of this variableis ah I(k/), its variance ah(1 —ah) I2(kh).

We take # = 1//n and counstruct the triangular array in which X, , Is

the contribution of the interval 7, £, ;. The row sums have then expectation
oh > I(kh) and variance oh(1—~xh) > I*(kh). If any meaning can be attached
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to the series (3.3) the distributions of the row sums must tend to the distri-
bution of X(¢) and so we must have

(3.4) E(X(1) = af I(s)ds, Var(X(t)) =« f I%(s) ds.
0 g ’ 0

These conclusions are easily confirmed by the theory of triangular arrays.
The relations (3.4) are known as Campbell’s theorem. At present it does
not appear deep, but it was proved in 1909 decades ahead of a systematic
theory. At that time it appeared remarkable and various proofs have been
given for it. (Cf. problems 22 in VIIL,10 and 5 in XVII,12.) |

(i) Busy trunklines. A variant of the preceding example may illustrate
the types of possible generalizations. Consider a telephone exchange with
infinitely many trunklines. The incoming calls form a Poisson process, and
an arriving call is directed to a free trunkline. The ensuing holding times have
a common distribution F; as usual, they are assumed independent of the
arrival process and of each other. The number of busy lines at epoch ¢ isa’
random variable X(z) whose distribution can be derived by the method of

triangular arrays. As in the preceding example we partition 0, into n
intervals of length A = t/n and denote by X, , the number of conversations
that originated between n — kh and n — (k—1)h “and are still going on at
epoch f. When n is large the variable X, , assumes in practice only the
values 0 and 1, the latter with probability ah{l —F(kh)].” The expectation of
S, 1s then the sum of these probabilities, and passing to the limit we conclude
that the number of busy lines has expectation

(3.5) - E(X() = « ﬁ “[—F(s)] ds.

Note that the integral equals the expectation of the holding times. >

Historical note. The notion of infinite divisibility goes back to B. de Finetti (1929).
The Fourier transforms of infinitely divisible distributions with finite variance were
found by A. Kolmogorov (1932), and those of the general infinitely divisible distributions
by P. Lévy (1934), who also treated the problem from the point of view of stochastic
processes. All subsequent investigations were strongly influenced by his pioneer work.
The first purely analytical derivations of the general formula were given in 1937 inde-

pendently by Feller and Khintchine. These authors proved also that the limit distributions
of null arrays are infinitely divisible.

4. PROCESSES WITH INDEPENDENT INCREMENTS

Infinitely divisible distributions are intimately connected with stochastic
_processes with independent increments. By this we mean a family of random
variables X(t) depending on the continuous time parameter t and such that
the in--ements X(t,.,) — X(t,) are mutually independent for any finite set
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t < 1y < -+ < t,. At this juncture we require no theory of stochastic
processes; we argue simply that if certain phenomena can be described
probabilistically, the theory will lead to infinitely divisible distributions. In
this sense we have considered special processes with independent increments
in 1; XVIIL,1 and in example II[,8(a). We limit our attention to numerical
variables X(¢) although the theory carries over to vector variables.

The process has stationary increments if the distribution ot X(s+1¢) — X(s)
depends only on the length ¢ of the interval but not on s.

Let us partition the interval s,s+t by n +'1 equidistant points
s=t<H < <t,=s5+¢t and put X,,=X() — X(#_,). The
variable X(s+t) — X(s) of a process with stationary independent increments
is the sum of the n independent variables X, , with a common distribution
and hence X(s+t) — X(5) has an infinitely divisible distribution. We- shall
see that the converse is” also true. In fact, a one-parametric family of
probability distributions @, defined for ¢ > 0 can serve as the distribution
of X(s+¢) —X(s) ‘n a process with stationary independent increments iff

4.1) ' Qi = 0% O, s, t > 0.

A family of distributions satisfying (4.1) is said to form a semi-group <ee
IX,2). Every infinitely divisible distribution can be taken as element Q,
(with ¢ > 0 arbitrary) of such a semi-group.

Before passing to the non-statlonary case let us consider typical examples.

Examples. (a) The compound Poisson process. With an arbitrary prob-
ability distribution F and « > 0

—at “‘ (at)k

4.2) | Q. =e z~_o x

defines a compound P01sson dlStI‘ibutlon and it is easﬂy verified that (4.1)
holds. Suppose now that Q, represents the distribution of X(¢) — X(0)
in a stochastic process with stationary independent increments. When F
is concentrated at the point 1 this process reduces to an ordinary Poisson
process and (4.2) to

43) - P{X(f) —.X(O) = n} - e-““-‘i’?—”.
n!

F**

The general model (4.2) may be interpreted in terms of this special
Poisson process as follows. Let Y, Y,,... be independent variables with
the common distribution F, and let N(r} be the variable of a pure Poisson
process with P{N(7) = n} = e~=*!(az)"/n!, and independent of the Y,. Then
(4.2) represents the distribution of the random sum Y, + --- + Yneo-
In other words, with the nth jump of the Poisson process there is assoc1ated
an effect Y,, and X(r) — X(0) represents the sum of the effects occurring
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during 0, t. The randomized random walk studied in I1,7 is a compound
Poisson process with Y, assuming the values +1 only. Empirical applica-
tions are illustrated at the end of this section.

(b) Brownian motion or the Wiener-Bachelier process. Here X(0) =0
(the process starts at the origin) and the increments X(z+s) — X(s) have
a normal distribution with zero expectation and variance z. Wiener and
Lévy have shown that the sample functions of this process are continuous
with probability one, and this property characterizes the normal distribution
among all infinitely divisible distributions.

(c) Stable processes. The relation (1.8) for a strictly stable distribution
merely paraphrases (4.1) with Q,(x) = R(r-!/*z). Thus this distribution
defines transition probabilities in a process with stationary independent
increments; for « = 2 it reduces to Brownian motion. >

The main theorem of the theory (see chapters IX and XVII) states that the
most general solution of (4.1)—and hence the most general infinitely divisible
distribution—may be represented as a limit of an appropriate sequence of
compound Poisson distributions. This result is surprising in view of the
great formal difference between examples (a) and (b).

Even in non-stationary processes with independent . increments the
distribution of X(r+s) — X(¢) appears as the distribution -of the row
sums of our triangular array {X, ,}, but a slight continuity condition
must be imposed on the process to assure that (3.2) holds. Example (e) will
explain this necessity. Under .a slight restriction only infinitely divisible
distributions appear as distributions of X(t-+s) — X(¢).

Examples. (d) Operational time. A simple change of the time scale will
frequently reduce a general process to a more tractable stationary process.
Given any continuous increasing function ¢ we may switch from the
variable X(t) to Y(¢) = X(¢(t)). The property. of independent increments
is obviously preserved, and with an appropriate choice: of ¢ the new
process may also have stationary increments. In practice the choice is
‘usually dictated by the nature of things. For example, at a telephone
exchange nobody would compare an hour at night with the busy hour
of the day, while it is natural to measure time in variable units such that the
expected number of calls per unit remains constant. Again, in a growing
insurance business claims will occur at an accelerated rate but this departure
from stationarity is removed by the simple expedient of introducing an
operational time measuring the frequency of claims.

(e) Empirical applications. An unending variety of practical problems
can be reduced to compound Poisson processes. Here are a few typical
examples. (i) The accumulated damage due to automobile accidents, fire,
lightning, etc. For applications to collective risk theory see example 5(a).



182 SOME IMPORTANT DISTRIBUTIONS AND PROCESSES VL5

(ii) The total catch by a fishery boat in search of schools of fish (J. Neyman).
(iii) The content of water reservoirs due to rainfall and demand. Other
storage facilities are treated in like manner. (iv) A stone at the bottom of a
river lies at rest for such long periods that its successive displacements are

practically instantaneous. The total displacement within time 0,7 may be
treated as a compound Poisson process. (First treated by different methods
by Albert Einstein Jr. and G. Polya.) (v) Telephone calls, or customers,
arriving at a server require service. Under appropriate conditions the total

.

service time caused by arrivals within the time interval 0,¢ represents a
compound Poisson process. The remarkable feature of this process is that
the value of X(z) is not observable at epoch t because it depends on service
times that still lie in the future. (vi) For energy changes of physical particles
due to collisions see example X, 1(b). >

*5. RUIN PROBLEMS IN COMPOUND POISSON
. PROCESSES

Let X(z) be the variable of a compound Poisson process, that is, the
increment ' X(z4-s5) — X(s) over any time interval of duration ¢ has. the
.probability distribution’ @, of (4.2). Let ¢ >0 and z > 0 be fixed. By
ruin we mean the event . o .

(.1) X@O)>z+ect}

We regard ¢ as a constant and z > 0 as a free parameter, and we denote
by R(z) the probability that no ruin will ever occur. We shall argue formally
- that if the ,problem makes sense R(z) must be a.non-increasing solution of
the functional equation (5.2). First a few examples may indicate the variety
of practical situations to which our problem is applicable.

Examples. (a) Collective risk theory.® Here X(t) stands for the accumu-
lated amount of claims within the time interval 0, f against an insurance
company. Itis assumed that the occurrence of claims is subject to a Poisson
process and that.the individual claims have the distribution F. In principle
these “claims” may be positive or negative. (For example, a death may free
the company of an obligation and increase the reserves.) In practice a grow-
ing company will measure time in operational. units proportional to the

* This section treats a special topic. It is of great practical interest, but will not be
referred to in the present book except for examples where it will be treated by new methods.

? A huge literature is devoted to this theory (inaugurated by F. Lundberg). For a
relatively recent survey see H. Cramér, On some questions connected with mathematical risk,
Univ. Calif. Publications in Statistics, vol. 2, no. 5 (1954) pp- 99-125. Cramér’s asymptotic
festimat&s (obtained by deep Wiener—Hopf techniques) are obtained in an elementary manner
in examples XI,7(a) and XII1,5(d).
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total incoming premiums [see example 4(d)]. It may then be assumed
that in the absence of claims the reserves increase at a constant rate .c.
If z stands for the initial reserves at epoch 0, the company’s total reserve at
epoch t is represented by the random variable z + ¢t — X(?), and “ruin”
stands for a negative reserve, that is, failure.

(b) Strong facilities. An idealized water reservioir is being filled by
rivers and rainfall at a constant rate ¢. At random intervals the reservoir
is tapped by amounts X,,X,,.... The compound Poisson model applies
and if z stands for the initial content at epoch O then z + cz — X(2)
represents the content at epoch ¢ provided that no ruin occurs before .
For the huge literature on related problems see the monographs listed at the
end of the book.

(¢) Scheduling of patients.'® We agree to treat the times devoted by a
doctor to his patients as independent random variables with an exponential
distribution and mean duration o~. As long as treatments continue without
interruption the departures of treated patients are subject to an ordinary
Poisson process. Let X(¢) stand for the number of such departures within

0, 2. Suppose that z patients are waiting at epoch 0 (the beginning of the
office hours) and that thereafter new patients arrive at epochs ¢, 2c™%,
3c¢7%,.... The doctor will _not be idle as long as X(¢) < z + ct. >

The following formal argument leads to an equation determining the
probability of ruin R. Suppose that the first jump of the sample function -
occurs at epoch = and has magnitude z. For no ruin ever to occur it is.
necessary that = < z + c7 and that for all ¢ > 7 the increments X(z) — x
be <z — z + ct. Such increments being independent of the past the latter
event has probablllty R(z—z+c7). Summing over all possible 7 and z we
get | |

o) . zter
(5.2) R(2) =f ae..ar.drf R(z+cr—2z) F{dz}.
0 -~

This is the desired equation, but it can be 51mp11ﬁed The change of variable
=z 4 c¢7 leads to

(5.3) R(z) = o—t J g (@l e=2) 'dsfs R_(s—x) F{d.x}.
) C Jz -

Consequently R.is differentiable, and a simple differentiation leads to the
final integro-differential equation

2

5.4 R'(z) = - R(z) — %f R(z — x)F{dx}.

Y0 R, Pyke, The supremum and mﬁmum of the Poisson process, Ann. Math. Statist., vol.

30 (1959) pp. 568-576. Pyke treats only the pure Poisson process but obtains more precise
results (by different rnethods).
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Note that by definition R(s) =0 for s < 0 so that the integral on the
right is the convolution F % R. We shall return to (5.4) in examples 9(d);
X1,7(a); and XIL,5(d).

6. RENEWAL PROCESSES

The basic notions of renewal theory were introduced in 1; XIII in
connection with recurrent events. It will be seen that the introduction of a
continuous time parameter depends on notational, rather than conceptual
changes. The salient feature of recurrent events is that the successive waiting
times T, are mutually independent random varlables with a common
distribution F; the epoch of the nth occurrence is given by the sum

(6.1) S,=T,+ - +T,

By convention S, = 0 and 0 counts as occurrence number zero.

Even in stochastic processes depending on a continuous tirhe parameter
it is frequently possible to discover one or more sequences of epochs of
the form (6.1). In such cases surprisingly sharp results are obtainable by
simple methods. Analytically we are concerned merely with sums of
independent positive variables, and the only excuse for introducing the term
“renewal process” is its frequent occurrence in. connection' with other
processes and the tacit implication that the powerful tool of the renewal
equation is used.!

Definition 1. A se'qdence of random variables S, constitutes a renewal
process if it is of the form (6.1) where the T, are mutually independent
variables with a common distribution F such that?* F(0) = 0.

The variables being &)osmve there is no dan ¢l m W l H

(o
«
)

even if the integral diverges (in which case we write u = oo). The expectation

u will be called mean recurrence time. As usual in similar situations, it is

irrelevant for our present analysis whether the variables T, occur in some

stochastic process or whether the sequence {T,} itself defines our probability
space. _

In most (but not all) applications the T, can be interpreted as “waiting

times” and the S, are then referred to as renewal (or regeneration) epochs.
—

It seems intuitively obvious that for a fixed finite interval I =a, b the
number of renewal epochs S, falling within I is finite with probability

1! For a more sophisticated generalization of the recurrent events see J. F. C. Kingman,
The stochastic theory of regenerative events, Zeitschrift Wahrscheinlichkeitstheorie, yol. 2
(1964) pp. 180-224.

12 An atom of weight p <1 at the origin would have no serious effect.
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one and hence is a well-defined random variable N. If the event {S, I}
is called “success” then N is the total number of successes in infinitely many
trials and its expectation equals

(6.2) ' U{I} = Z P{S, € 1} = i F{I}.

For the study of this measure we introduce, as usual, its distribution function
defined by

63) U(z) = 3 F"(2)

n=0

It is understood that U(z) =0 for z < 0, but U has an atom of unit
weight at the origin.

In the discrete case studied in 1; XIII the measure U was concentrated
at the integers: u, stood for the probability that one among the S, equals
k. Since this event can occur only once, u, can also be interpreted as the
expected number of n for which S, = k. In the present situation U{l}
must be interpreted as-an expectation rather than as a probablhty because
the event {S, €I} can occur for many n.

It is necessary to prove that U(z) < co. From the definition of con-

volutions for distributions concentrated on 0, co it is clear that
F**(z) < F*(z), and hence the series in (6.3) converges at least geometrically
at each point where F(r) < 1. There remains the case of distributions
concentrated on a finite interval, but then there exists an integer r such that
FT*(z) < 1. The terms with n = r, 2r, 3r, ... form a convergent subseries,
and this implies the convergence of the whole series in (6. 3) because its terms
depend monotonically on 7.

As in the discrete case the renewal measure U is intimately connected with
the renewal equation

(6.4) | Z=2+FkZ

Spelled out it reads

(6.5) 2(e) = o) + | 2= Fld, >0,
0

where the interval of integration is considered closed. Actually the limits of
integration may be replaced by —co and co provided it is understood that
z(x) = Z(x) = 0 for = < 0. We shall adhere to this convention.

The basic fact concerning the renewal equation is contained in

Theorem 1. If 2z is bounded and vanishes for x < 0 the convolution
Z = U 2z defined by

6.6) 2(z) = f “a—y) Uldy)
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represents a solution of the renewal equation (6.5). There exists no other
solution vanishing on —o0, 0 and bounded on finite intervals.

Proof. We know alréady that the series (6.3) defining U con-
verges for all z. Taking the convolution with z it is seen that Z is
bounded on finite intervals and satisfies the renewal equation. The difference
of two such solutions would satisfy ¥V = F% V, and hence also V =
= Fr»* % V forall n. But F**(zx) —0 forall z, and if V is bounded this
implies that V(zx) = 0 for all . >

We shall return to the renewal equation in XI,1 where we shall study the
asymptotic properties of U and Z. (For a generalized version of the renewal
equation see section 10.) '

It should be noticed that U itself satisfies

(6.7) . U(z) = | +L1U(x—y) F{dy}, x> 0,

which is the special case of the renewal cquation with z = 1. This can be
seen directly by a probabilistic reasoning known as ‘“‘renewal argument”

which is of frequent use. Since O counts as a renewal epoch the expected
—

number of renewal epochs in the closed interval 0, z is one plus the expected

number in the half-open interval 0,x. This interval contains renewal

epochs only if T, < z; given that T, =y < z, the expected number of
-

renewal epochs in 0, z equals U(zr—y). Summing cver y we get (6.7).

Two simpie generalizations of the renewal process are useful. First, by
analogy with transient recurrent events we may permit defective distributions.
The defect g = 1 — F(o0) is then interpreted as probability of termination.
Abstractly speaking, the real line is enlarged by a point Q called ““death,”
and T, is either a positive number or €. For ease of reference we introduce
the informal

Definition 2.13 A terminating or transient renewal process is an ordinary
renewal process except that F is defective. The defect g =1 — F(o0) is
interpreted as probability of termination.

For consistency, 0 is counted as renewal epoch number zero. The prob-
ability that the process effectively survives the renewal epoch number n
equals (!—¢)* and tends to 0 as »— co. Thus with probability one a
terminaiino process terminates at a finite time. The tctal mass of F7* is
(1—g)* and sc the expected number of renewal epochs is U(o0) = g7 < 0.
This is, so to speak, the expected number of generations attained by the

13 See example 7(f) for an illustration and problem 4 for a generalization.
! J t g
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process. The probability that S, < « and the process dies with this nth
renewal epoch is gF™*(x). We have thus the

Theorem 2. In a terminéting renewal process, qU is the proper prob-
ability distribution of the duration of the process (age at time of death).

The second generalization corresponds to delayed recurrent events and
consists in permitting the initial waiting time to have a different distribution.

In such cases we begin the numbering of the T; with j =0 so that now
S = To # 0.

Definition 3. A4 sequence S, S,, ... forms a delayed renewal process if it
is of the form (6.1) where the T, are mutually independent strictly positive
(proper or defective) variables and T,, T,, ... (but not T,) have a common
distribution. -

7. EXAMPLES AND PROBLEMS

Examples such as self-renewing aggregates, counters, and population
growth carry over from the discrete case in an obvious manner. A special
problem, however, will lead to interesting questions to be treated later on.

Example. (a) An inspection paradox. In the theory of self-renewing
aggregates a piece of equipment, say an electric battery, is installed and
serves until it breaks down. Upon failure it is instantly replaced by a like
battery and the process continues without interruption. The epochs of
renewal form a renewal process in which - T, is the lifetime of the kth battery.

Suppose now that the actual lifetimes are to be tested by inspection:
we take a sample of batteries in operation at epoch ¢ > 0 and observe their
lifetimes. Since F is the distribution of the lifetimes for al/ batteries one
expects that this applies also to the inspected specimen. But this is not so. In
fact, for an exponential distribution F the situation differs only verbally from
the waiting time paradox in I,4 where the lifetime of the inspected item has
an entirely different distribution. The fact that the_item was inspected at
epoch t changes its lifetime distribution and doubles its expected duration.
We shall see in XI,(4.6) that this situation is typical of all renewal processes.
The practical implications are serious. We see that an apparently unbiased
inspection plan may lead to false conclusions because what we actually
observe need not be typical of the population as a whole. Once noticed the
phenomenon is readily understood (see I,4), but it reveals nevertheless
possible pitfalls and the necessary interplay between theory and practice.
Incidentally, no trouble arises if one decides to test the first item installed
after epoch . >

"This is a good occasion to introduce three random variables of interest in
renewal theory. In the preceding example all three refer to the item in
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operation at epoch ¢> 0 and may be described by the self-explanatory
terms: residual lifetime, spent lifetime, and total lifetime. The formal
definition is as follows.

To given 't > 0 there corresponds a unique (chance-dependent) subscript
N, such that Sy <1 < Sy ;. Then:

(a) The residual waiting time-is Sy, —t, the time from ¢ to the next
renewal epoch.

(b) The spent waiting time is t — Sy, the time elapsed since the last
renewal epoch.

(¢) Their sum Sy, — Sy, = Tna is the length of the recurrence
interval covering the epoch ¢.

The terminology is not unique and varies with the context. For example,
in random walk our residual waiting time is called point of first entry or

hitting point for the interval t, co. In the preceding example the word
lifetime was used for waiting time. We shall investigate the three variables
in XI,4.and XIV,3.

The Poisson process was defined as a renewal process with an exponential
distribution for the recurrence times T, In many server and counter
problems it is natural to assume that the incoming traffic forms a Poisson
process. In certain other processes the interarrival times are constant. To
combine these two cases it has become fashionable in queuing theory to
admit general renewal processes with arbitrary interarrival times.4

We turn to problems of a fairly general character connected with renewal
processes. The distribution underlying the process is again denoted by F.

We begin with- what could be described roughly as the “waiting time W
for a large gap.” Here a renewal process with recurrence times T; is
stopped at the first occurrence of a time interval of duration & free of
renewal epochs, whereupon the process stops. We derive a renewal equation
for the distribution V of the waiting time W. As the latter necessarily
exceeds & we have V(1) =0 for r < & For t > & consider the mutually
exclusive possibilities that T, > & or T, =y < & In the first case the
waiting time W equals £ In the second case the process starts from
scratch and, given that T, =y, the (conditional) probability of {W < ¢}
is V(t—y). Summing over all possibilities we get '

&+ :
(7.1) V(t)=1— F(§) +f V(t—y) F{dy}, t > ¢,

and, of course, V(t) =0 for ¢t < & This equation reduces to the standard

14 The generality is'somewhat deceptive because it is hard to find practical examples
besides the bus running without schedule along a circular route. The illusion of generality
detracts from the sad fact that a non-Poissonian input is usually also non-Markovian.
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renewal equation
(7.2) V=z2+4+GxkV
with the defective distribution G defined by

(13) G@=F@) if 2<& G =FF if z>¢
and
(7.4) 2@)=0 if v<§& 2x)=1—F(¢) if > ¢&
The most important special case is that of gaps in a Poisson process
where F(f) =1 — e and the solution V is related to the covering

theorems of 1,9 [see problem 15 and example XIV,2(a). For a different
approach see problem 16.]

Examples for empirical applications. (b) Crossing a stream of traffic.!®
Cars move in a single lane at constant speed, the successive passages forming
a sample from a Poisson process (or some other renewal process). A
pedestrian arriving at the curb—or a car arriving at an intersection—will
start crossing as soon as he observes that no car will pass during the next &
seconds, namely the time required for his crossing. Denote by W the time
required to effect the crossing, that is, the waiting time at the curb plus &.
The distribution ¥ of W satisfies (7.1) with F(f) =1 — e=*. [Continued
in examples X1,7(b) and XIV,2(a).] ‘ |

(¢) Type II Geiger counters. Arriving particles constitute a Poisson
process and each arriving particle (whether registered or not) locks the
counter for a fixed time &. If a particle is registered, the counter remains
“dead” until the occurrence of an interval of duration & without new
arrivals. "Our theory now applies to the distribution ¥V of the duration of
the dead period. (See 1; XIII, 11, problem 14.) - '

(d) Maximal observed recurrence time. In a primary renewal process
denote by Z, the maximum of T; observed!® up to epoch r. The event
{Z, < &} occurs iff up to epoch ¢ no time interval of duration & was free
of renewal epochs, and so in our notations P{Z, > &} = ¥(¢). >

A great many renewal processes occurring in applications may be described
as alternating or two stage processes. Depending on the context the two stages
may be called active or passive, free or dead, excited or normal. Active and
passive periods alternate; their durations are independent random variables,
each type being subject to a common distribution.

15 For the older literature and variants (treated by different methods) see J. C. Tanner,
The delay to pedestrians crossing a road, Biometrika, vol. 38 (1951) pp. 383-392,

16 More precisely, if n is the (chance-dependent) index for which S,_; < ¢ < S, then
Z, =max [T,...,T,_;, . Variables of -this nature were studied systematically by
A. Lamperti.




190 SOME IMPORTANT DISTRIBUTIONS AND PROCESSES VI.8

Examples. (e) Failures followed by delays. The simplest example is given
by actual replacements of a piece of equipment if each failure is followed by
a delay (to be interpreted as time for discovery or repair). The successive
service timeés T;, T,, ... alternate with the successive dead periods Y,
Y,, ... and we get a proper rengwal process with recurrence times T; + Y.
The same process may. be viewed as delayed renewal process with the first
renewal epoch at T;, and recurrence times Y; + T,,;.

(f) Lost calls. Consider a single telephone trunkline such that the
incoming calls form a Poisson process with interarrival distribution
G(t) =1 — e while the durations of the ensuing conversations are
independent random variables with the common distribution F. The
trunkline is free or dead, and calls arriving during dead periods are lost and
have no influence on the process. We have here a two stage process in which
the distribution of the recurrence times is F+% G. (See problem 17 as well
as problems 3-4 in X1IV,10.)

(g) Last come first served. Sometimes the distributions of the alternating
waiting times are not known a priori but must be calculated from other data.
As an example consider a data processing machine in which new information
arrives in accordance with a Poisson process so that the free periods have an
exponential distribution. The time required to process the new information
arriving at any epoch has a probability distribution G.

Busy and free periods alternate, but the duration of busy periods depends
on the manner in which information arriving during a busy period is treated.
In certain situations only the latest information is of interest; a new arrival
is then processed immediately and all previous information is discarded.
The distribution ¥V of the duration of the busy periods must be calculated
from a renewal equation (see problem 18).

(h) Geiger counters. In type I counters each registration is followed by
a dead period of fixed duration £ and arrivals within the dead period
have no effect. The process is the same as described in example (e), the
T, having an exponential distribution, the Y; being equal to £. In type
II counters also the unregistered arrivals produce locking and the situation
is the same except that the distributions of the Y; depend on the primary
process and must be calculated from the renewal equation (7.1) fexample

1 | | >
8. RANDOM WAILKS

Let X,,X,,... be mutually independent random variables with a
common distribution F and, as usual,
(8.1) S,=0, S,=X,+ " +X,

We say that S, is the position, at epoch n, of a particle performing a
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general random walk. No new theoretical concepts are introduced,!’ but
merely a terminology for a short and intuitive description of the process
{S.}. For example, if I is any interval (or other set), the event {S, e[}
is called a visit to I, and the study of the successive visits to a given interval
I reveals important characteristics of the fluctuations of S,,S,,.... The
index n will be interpreted as time parameter and we shall speak of the
“epoch n.”’ In this section we describe some striking features of random
walks in terms of the successive record values. The usefulness of the results
will be shown by the applications in section 9. A second (independent)
approach is outlined in section 10.

Imbedded Renewal Processes

A record value occurs at epoch n > 0 if
(8.2) S, > S, j=0,1,..., n—1.

Such indices may not exist for a given sample path; if they do exist they
form a finite or infinite ordered sequence. It is therefore legitimate to speak
of the first, second, ... . , occurrence of (8.2). Their epochs are again random
variables, but possibly defective. With these preparations we are now in a
position to introduce the important random variables on which much of the
analysis of random walks will be based.

Definition. The kth (ascending) ladder index is the epoch of th¢ kth
occurrence of (8.2). The kth ladder height is the value of S, at the kth
ladder epoch. (Both random variables are possibly defective.)

The descending ladder variables are defined in like manner with the inequality
in (8.2) reversed.'®

The term ascending will be treated as redundant and used only for emphasis
or clarity. .

In the graph of a sample path (S,, S;,...) the ladder points appear as
the points where the graph reaches an unprecedented height (record vajue).
Figure 1 represents a random walk {S,} drifting to —oo with the last
positive term at n = 31. The 5 ascending and 18 descending ladder points
are indicated by ® and O, respectively. For a random walk with Cauchy
variables see figure 2. (page 204)

17 Sarnple spaces of infinite random walks were considered. also in volume 1, but there
we had to be careful to justify notions such as “probability of ruin’’ by the obvious limiting
processes. Now these obvious passages to the limit are justified by measure theory.
(Sec 1V,6.)

18 Replacing the defining strict inequalities by > and < one gets the weak ladder
indices. This troublesome distinction is unnecessary when the underlying distribution is
continuous. In figure 1 weak ladder points are indicated by the letter w.
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Figure 1. Random Walk and the Associated Queuing Process. The variables X, of the
random walk {S,} have expectation — 1 and variance 16. Ascendingand descending ladder
points are indicated by @ and O, respectively. The seventh ladder point is (26, 16) and
represents with high probability the maximum of the entire random walk.

[The letter w indicates where a record value is assumed for a second or third time;
these are the weak ladder points defined by (8.2) when the strict inequality is replaced
by >.]

Throughout the graph S, exceeds its expected value —n. In fact, n = 135 is the first

index such that S, < —n (namely S, = —137) This accords with the fact that the
expectation of such # is infinite.
The variables X,, are of the form X, — &, where the variables #, and &/, are

mutually independent and umformly dlstrlbuted over 1, 3,5, 7,9 and 2, 4, 6, &, 10,
respectively. In example 9(a) the variable W, represents the total waiting time of the nth
customer if the interarrival times assume the values 2, 4, 6, 8, 10 with equal probabilities
while the service times equal 1, 3, 5, 7, or 9, each with probability 3. The distribution of X,
attributes probability (5 — k)/25 to the points +2k — 1, where k =0, 1, 2,3, 4.

Example. (@) In the ““ordinary” random walk F has the atoms 1 and —1
with weights p and ¢. The ascending ladder variables are defective if
q > p, the defect plq [see 1; XI,(3.9)]. The kth ladder height necessarily
equals k and for this reason volume 1 mentions only ladder epochs. The
kth ladder index is the epoch of the first visit to the point k. Its distribution
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was found in 1; XI,4(d) and in the special case p = } already in theorem
2 of 1; IIL,4.

The first ladder index "7, is the epoch of the first entry into 0, oo, and the
first ladder height 5#°; equals Sg . The continuation of the random walk
beyond epoch J, is a probabilistic replica of the entire random walk.
Given that ', = n, the occurrence of a second ladder index a an epoch
k > n depends only on X,.;,...,X;, and hence the number of trials
between the first ladder index and the second is a random variable .77, which
is independent of 77, and has the same distribution. In this way it is seen

more generally that the kth ladder index and the kth ladder height may be
written in the form

9*1+...+9*k’ %1++‘%ﬂk

where the J ; and ; are mutually independent random variables distributed,
respectively, as J | and 7#,. In other words, the ladder indices and heights
form (possibly terminating) renewal processes.

For terminating processes it is intuitively obvious that S, drifts to
—oo0, and with probability one S, reaches a finite' maximium. The next
section will show that the ladder variables provide a powerful tool for the
analysis of a class of processes of considerable practical interest.

Example. (b) Explicit expressions. Let F have the density defined by

abe®® if z <0 abe
a+b a+b
This random walk has the rare distinction that all pertinent distributions
can be calculated explicitly. It is of great interest in queuing theory because
f is the convolution of two exponential densities concentrated on 0, o
and —o0,0, respectively. This means that X; may be written as the
difference X, = #; — &Z; of two positive exponentially distributed random
variables. Without loss of generality we assume a < b.

The ascending ladder height H°, has the density ae®; this variable is
defective and its defect equals (b—a)/b. The ascending ladder epoch T,
has the generating function b~!p(s) where

(8.4) 2p(s) = a + b — </ (a+b): — dabs.

The defect is again (b—a)/b.
The descending ladder height 5 has density ae** for z <0, the
descending ladder epoch 7 has the generating function a 'p(s). In

—bz

(8.3)

if «>0.

the special casc a = b it reduces to 1 — J1—s, and this generating
function is familiar from ordinary random walks (or coin tossing). [For
proofs and other results see XII,4-5 and XVIII,3. See also example 4 e).]
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9. THE QUEUING PROCESS

An incredibly voluminous literature!® has been devoted to a variety of
problems connected with servers, storage facilities, waiting times, etc.
Much progress has been made towards a unification, but the abundance
of small variants obscures the view so that it is difficult to see the forest for
the trees. The power of new and general methods is still underrated. We
begin by a formal introduction of a stochastic process defined by 2 recursive
scheme that at first sight appears artificial. Examples will illustrate the wide
applicability of the scheme; later on we shall see that sharp results can be
obtained by surprisingly simple methods. (See XII,5.)

Definition 1. Let X, X,,... be mutually independent random variables
with a common (proper) distribution F. The induced queuing process is the
sequence of random variables Wy, W, . . . defined recursively by W, = 0 and

wn + X-n+1 I,f wn + Xn+1 2 0

0 l,f wn+.Xn+1.§.0

In short, W,,, = (W,+X,.,) UO.
For an illustration see figure 1.

(9.1) Wai =

Examples. (@) The one-server queue. Suppose that ‘‘customers™ arrive
at a “server” the arrivals forming a proper renewal process with inter-
arrival times® &/, & ,, . .". (the epochs of arrivals are 0, ,, &, + A, . ..
and the customers are labeled 0,1, 2, .. .). With the nth customer there
is associated a service time % ,, and we assume that the %, are independent
of the arrivals and of each other and subject to a common distribution.
The server is either “free’” or “busy’’; it is free at the initial epoch 0. The

1% For references consult the specialized books listed in the bibliography. It would be
difficult to give a brief outline of the development of the subject with a proper assignment
of credits. The most meritorious papers responsible for new methods are now rendered
obsolete by the progress which they initiated. [D. V. Lindley’s integral equation of queuing
theory (1952) is an example.] Other papers are noteworthy by their treatment of (some-
times very intricate) special problems, but they find no place in a skeleton survey of the
general theory. On the whole, the prodigal literature on the several subjects emphasizes
examples and variants at the expense of general methods.  An assignment of priorities is
made difficult also by the.many duplications. [For example, the solution of a certain
integral equation occurs in a Stockholm thesis of 1939 where it is credited to unpublished
lectures by Feller in 1934. This solution is now known under several names.] For the
history see two survey papers by D. G. Kendall of independent interest: Some problems in
the theory of queues, and Some problems in the theory of dams, J. Roy. Statist. Soc. Series
B vol. 13 (1951) pp. 151-185, and vol. 19 (1957) pp. 207-233.

20 Normally the interarrival times will be constant or exponentially distributed but it is
fashionable to permit arbitrary renewal processes; sec foctnote 14 to section 7.
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sequel is regulated by the following rule. If a customer arrives at an epoch
where the server is free, his service commences without delay. Otherwise
he joins a waiting line (queue) and the server continues uninterruptedly to
serve customers in the order of their arrival®® until the waiting line dis-
appears and the server becomes “free.”” By queue length we mean the number
of customers present mcludmg the customer being served. The waiting time
W, of the nth customer is the time from his arrival to the epoch where his
service commences; the total time spent by the customer at the server is
W, + #,. (For example, if the first few service times are 4,4, 1, 3,

and the interarrival times are 2, 3, 2, 3, ..., customers number 1, 2,
join queues of length 1, 1, 2, 1,..., respectively, and have waiting times
2,3,2,2,...).

To avond trite ambiguities such as when a customer arrives at the epoch
of another’s departure we shall assume that the distributions 4 and B of
the variables &7, and %, are continuous. Then the queue length at any
epoch is well defined.

We proceed to devise a scheme for calculating the waiting times W,
recursively. By definition customer number 0 arrives at epoch 0 at a free
server and so his waiting time is W, = 0. Suppose now that the nth
customer arrives at epoch ¢ and that we know his waiting time W,. His
service time commences at epoch ¢+ W, and terminates at epoch
t + W, + %, The next customer arrives at time ¢ + &7,,,. He finds
the server free if W, + %, <&,,; and has a waiting time W,
=W, + #, — &, if this quantity is > 0. In other words, the sequence

{W.,} of waiting times coincides with the queuing process induced by the
independent random variables

(9.2) X, =%, — A, n=12,...

(b) Storage and inventories. For an intuitive description we use water
reservoirs (and dams), but the model applies equally to other storage
facilities or inventories. The content depends on the input and the output.
The input is due to supplies by rivers and rainfall, the output is regulated
by demand except that this demand can be satisfied only when the reservoir
is not empty.

Consider now the water contents?? 0, W,, W2, ... at selected epochs
0, 74, 79, . - . . Denote by X, the actual supply minus the theoretical (ideal)

21 This “queue discipline’” is totally irrelevant to queue length, duration of busy periods,
and similar problems. Only the individual customer feels the effect of the several dis-
ciplines, among which “first come first served,”” “first come last served >’ and *‘random
choice’’ are the extremes. The whole picture would change if departures were permitted.

22 For simplicity we start with an empty reservoir. An adjustment to arbitrary initial
conditions causes no difficulties [see example (¢)].
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demand during 7,_;, 7, and let us pretend that all changes are instantaneous
and concentrated at the epochs 7,,7,,.... We start with W, =10 at
epoch 0. In general the change W, ., — W, should equal X, ,, except
when the demar 1 exceeds the contents. For this reason the W, must satisfy
(9.1) and so the successive contents are subject to the queuing process induced by
{X.} provided the theoretical net changes X, are independent random
variables with a common distribution.

The problem (for the mathematician if not for the user) is to find conditions
under which the X, will appear as independent variables with a common
distribution F and to find plausible forms for F. Usually the =, will be
equidistant or else a sample from a Poisson process, but it suffices for our
purposes to assume that the 7, form a renewal process with interarrival times
&y, o, . ... The most frequently used models fall into one of the following
two categories: |

(i) The input is at a constant rate ¢, the demand &%, arbitrary. Then
X, =c, — %, We must suppose this X, to be independent of the .
“past” X,,...,X, ;. (The usual assumption that «/, and #, be in-
dependent is superfluous: there is no reason why the demand %, should
not be correlated with the duration .7,.)

(i) The output is at a constant rate, the input arbitrary. The description
is the same with the roles of ./, and %, reversed.

(¢) Queues for a shuttle train.?® A shuttle train with r places for passengers
leaves a station every hour on the hour. Prospective passengers appear
at the station and wait in line. At each departure the first r passengers in
line board the train, and the others remain in the waiting line. We suppose
that the number of passengers arriving between successive departures are
independent random variables &,, &7,, ... with a common distribution.
Let W, be the number of passengers in line just after the nth departure,
and assume for simplicity Wo=10. Then W, , =W, +&,,, —r if
this quantity is positive, and W, ., = 0 otherwise. Thus W, is the variable
of a queuing process (9.1) generated by the random walk with variables
X, =%, —r. >

We turn to a description of the queuing process {W,} in terms of the
random walk generated by the variables X,. As in section 8 we put S, = 0,
S. =X, +---+ X, and adhere to the notation for the ladder variables.
For ease of description we use the terminology appropriate for the server
of example (a).

~23p. E. Boudreau, J. S. Griffin Jr., and Mark Kac, An elementary queuing problem,
Amer. Math. Monthly, vol. 69 (1962) pp. 713-724. The purpose of this paper is didactic,
that is, it is written for outsiders without knowledge of the subject. Although a different
mode of description is used, the calculations are covered by those in example XII,4(c).
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Define » as the subscript for which S, >0,S,>0, ..., S,_, >0, but
S, < 0. In this situation customers number 1,2,...,v—1 had positive
waiting times W, =S,,...,W,_, =S _ , and customer number » was

the first to find the server free (the first lucky customer). At the epoch of
his arrival the process starts from scratch as a replica of the whole process.
Now v is simply the index of the first negative sum, that is, » is the first
descending ladder index, and we denote it consistently by 7. We have
thus reached the first conclusion: The descending ladder indices correspond
to the lucky customers who find the server free. Put differently, the epochs of
arrival of the lucky customers constitute a renewal process with recurrence
times distributed as J .

In practical cases the variable .7~ must not be defective, for its defect
p would equal the probability that a customer never finds the server free
and with probability one there would be a last lucky customer followed by
an unending queue. It will turn out that J  is proper whenever
E(4,) < E(H)). :

Suppose now that customer number ¥ —'1 arrives at epoch 7. His
waiting time. was W _, =S | and so the epoch of his departure is
T+ W,_, + %,_,. The first lucky customer (number ») arrives at epoch
T + 7, when the server was free for

MV _— wv_l -_ ‘@v—l = —Sv—l _— XV = —‘S

v

time units. But by definition S, is the first descending ladder height
S . As the process starts from scratch we have reached the second con-
clusion: The durations of the free periods are independent random variables
with the same distribution as —3#] (the recurrence time for the descending
ladder heights). In other words, customer number J [ + -+ + 7 is
the rth customer who finds the server free. At the epoch of his arrival the
server has been free for —5#° time units.

It should now be cléar that between successive ladder epochs the segments
of the graph for the queuing process {W,} are congruent to those for the random
walk but displayed vertically so as to start at a point of the time axis (figure 1).
To describe this analytically denote for the moment by [n] the /ast descending
ladder index < n; in other words, [n] isa (random) index such that [#n] < n
and

(9.3) St < S, j=0,,...,n

‘This defines [n] uniquely with probability 1 (the distribution of X; being
continuous). Clearly

9.4) W, =S, — St

This_ relation leads to the most important conclusion if we look at the
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variables X,,...,X, in reverse order. Put for abbreviation X =
X,, ..., X, = X,. The partial sums of these variables are

S;:X;_‘_-.._‘_x;c:sn—sn_k,

and (9.4) shows that the maximal term of the sequence 0, S, . , S, has
subscript n — [#] and equals W,. But the distribution of X, ..., X)) s
identical with that of (X,,..., X,). We have thus the basic

Theorena.?* The distribution of the queuing variable W, is identical with
the distribution of the random variable

9.5) M, =max [0, S,,...,S,]
in the underlying random walk {X,}.

The consequences of this theorem will be discussed in chapter XII.
Here we show that it permits us to reduce certain ruin problems to queuing
processes despite the dissimilarity of the appearance.

Example. (d) Ruin problems. In section 5 ruin was defined as the event
that X(r) >z + ct for some ¢ where X(¢) is the variable of a compound
Poisson process with distribution (4.2). Denote the epochs of the successive
jumps in this process by 7, 75, .... If ruin occurs at all it occurs also at
some epoch 7, and it suffices therefore to consider the probability that
S, = X(7,) — ¢7, > 2 for some n. But by the definition of a compound
Poisson process X(7,) is the sum of n independent variables Y, with
the common distribution F, while 7, is the sum of n independent expo-
nentially distributed variables ./;. Accordingly we are in effect dealing with
the random walk generated by the variables X, =Y, — cof, whose
probability density is given by the convolution |

C Jz

(96) . gf ea(.z—v)/cF{dy}. :

Ruin occurs iff in ‘the random walk the event {S, > z} takes place for some n.
To find the prqbability of ruin amounts therefore to finding the distributions
of the variables W, in the associated queuing process.

(e) A numerical illustration. The most -important queuing process arises
when the interarrival and service times are exponentially distributed with
expectations 1/a and 1/b, respectively, where a < b. From the character-
istics of this process described in example 8(b), one can conclude that the
waiting time of the nth customer has a limit distribution W with an atom of

24 Apparently first noticed by F. Pollaczek in 1952 and eiploited (in a different context)
by F. Spit;er, The Wiener-Hopf equation whose kernel is a probability density, Duke
Math. J., vol. 24 (1957) pp. 327-344. For Spitzer’s proof see problem 21.
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weight 1 — a/b at the origin and density b_b—_a ae=®=®= for z > 0. The

a
expectation equals b(o—a)
density as the first descending ladder height, that is, ae=**. In this case the
free perlods and the interarrival times have the same distribution (but this is
not so in other queumg processes).

The number N of the first customer to find the counter empty has the
generating function p(s)/a with p defined in (8.4). Consider now the busy
period commencing at epoch 0, that is, the time interval to the first epoch
when the server becomes free. This period being initiated by customer
number 0, the random variable N also equals the number of customers during
the initial busy period. An easy calculation shows that its expectation equals
b/(b—a) its variance ab(a+b)/(b—a)d.

Finally, let T be the duration of the busy period. Its density is given
explicitly by XIV, (6.16) with ¢p = a and cq = b. This formula involving
a Bessel function does not lend itself to easy calculations, but the moments
of T can be calculated from its Laplace transform derived by different
methods in examples XIV,4(a) and XIV,6(b). The result is

The free periods of the counter have the same

énd Var (T) = (a+b)

ET) =
® (b—a) (b a)*

In the queuing process busy periods alternate with free periods, and their
expectations are 1(b—a) and 1/a, respectively. Thus (b--a)/a is a measure
of the fraction of the time during which the server is idle. More precisely: if
U(?) is the idle time up to epoch ¢, then t~EU(t) — (b—a)/a.

TABLE 1
b=1
a—05a—06a—07a_08a—09a—095
Waiting time | Expectation 1 1.5 23 4 9 19
(steady Variance 3 53 10 24 99 399
state)
Busy period | Expectation 2 2.5 3.3 5 10 399
Variance 12 25 63 225 1900 16,000
No. of cus- | Expectation | 2 2.5 3.3 5 10 399
tomers per | Variance 6 15 4 200 1700 15,200
busy period
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In the table the expected service time is taken as unit, and so a represents
the expected number of customers arriving during one service time. The
table shows the huge variances of the busy periods. It follows that fantastic
Suctuations of the busy period must be expected. One sees that the customary
reliance on expectations is very dangerous in practical apphcauons For a_
busy period with variance 225 the fact that the expectation is 5 has little
practical significance.

The multidimensional analogue to our queuing process is more intricate. The founda-
tions for its theory were laid by J. Kiefer and J. Wolfowitz [On the theory of queues with
many servers, Trans, Amer. Math. Soc., vol. 78 (1955) pp. 1-18].

10. PERSISTENT AND TRANSIENT RANDOM WALKS

We proceed to a classification of random walks which is independent of
section 8 and closely related to the renewal theory of section 6. Given a

distribution function F on the line we introduce formally an interval function
defined by

(10.1) U{I} =§)F"*{I}.

The series is the same as in (6.2), but when F is not concentrated on a
halif-line the series may diverge even when I is a finite interval. It will be
shown that the convergence or divergence of (10.1) has a deep significance.
The basic facts are simple, but the formulations suffer from the unfortunate
necessity of a special treatment for arithmetic distributions.25

For abbreviation we let I, stand for the interval —h <z < h and
I, +1t for t—h <z < t+h '

Theorem 1. (i) If F is non-arithmetic either U{I} < oo for every finite
interval or else U{I} = oo for all intervals. '

(ii) If F is arithmetic with span A either U{I} < o for every finite
interval or else U{I} = oo for every interval containing a point of the form nA.

(iii) If U{l,} < oo then forall t and h > 0

(10.2) U, + 1} < U{ly).

For ease of reference to the two cases we introduce a definition (in which
F receives an adjective rightfully belonging to the corresponding random
walk).

Definition. F is transient if U{I} < c for all finite intervals, and per-
sistent otherwise.

25 F is arithmetic if all its points of increase are among the points of the form 0, +4,
+24,.... The largest 4 with this property is called the spah of F. (See V,2.)
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Besides its probabilistic significance the theorem has a bearing on the
integral equation

(10.3) Z=z+F%Z

which is the analogue to the renewal equation (6.4). We use this integral
equation as starting point and prove theorem 1 together with

Theorem 2. Let z be continuous, and O,g z(x) < po for |z| < h and
z(z) = 0 outside I,. If F is transient then

400
(10.4) Z(z) = f 2(z—y) U{dy}

—00

is a uniformly continuous solution of (10.3) with
(10.5) 0 < Z(@) < po - Ui}
Z assumes its maximum at a point in I,.

Proof of the two theorems. (i) Assume that U{I,} < o for some a > 0.
Choose h < 4= and let z vanish outside I, but not identically. We try to
solve (10.3) by successive approximations putting Z, = z and, recursively,

(10.6) 2@ = e + | Zosa—0) Fldu).
With U, defined by

(10.7) U} = FOXI} + - + Fo*(D)
we have obviously ‘
(10.8) 2,0 = Ha—i)0,idn),

(the integration extending in effect over an interval of length < 24). The
function Z, so defined is continuous, and we prove by induction that it
assumes its maximum g, at a point &, such that z(£,) > 0. This is
trivially true for Z, =z If it is true for Z,_; one sees from (10.6) that
z(x) = O lmphes Zn(x) S ;u‘n—l Whereas lun 2 Zn(En—l) > Zn—l(sn—].) =

Mp—1-
It follows that the interval I, + £, is contained in I,, and so by (10.8)

(10.9) Un < o U{ly,;

which proves that the functions Z, remain uniformly bounded. Since
Z,<Z, < itfollows that Z, — Z with Z satisfying (10.5).

By monotone convergence it follows from (10.6) and (10.8) that the limit
Z satisfies the integral equation (10.3) and is of the form (10.4). The in-
equality (10.5) holds because of (10.9). The upper bound depends only on
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the maximum g, of z, and we are free to let 2(xz) = u, for all z wit