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Preface to the First Edition 

AT THE TIME THE FIRST VOLUME OF THIS BOOK WAS WRITTEN (BETWEEN 1941 

and 1948) the interest in probability was not yet widespread. Teaching was 
on a very limited scale and topics such as Markov chains, which are now 

extensively used in several disciplines, were highly specialized chapters of 

pure mathematics. The first volume may therefore be likened to an all- 
purpose travel guide to a strange country. To describe the nature of 

probability it had to stress the mathematical content of the theory as well 
as the surprising variety of potential applications. It was predicted that 
the ensuing fluctuations in the level of difficulty would limit the usefulness 

of the book. In reality it is widely used even today, when its novelty has 
worn off and its attitude and material are available in newer books written 
for special purposes. The book seems even to acquire new friends. The 

fact that laymen are not deterred by passages which proved difficult to 
students of mathematics shows that the level of difficulty cannot be measured 

objectively; it depends on the type of information one seeks and the details 

one is prepared to skip. The traveler often has the choice between climbing 

a peak or using a cable car. 
In view.of this success the second volume is written in the same style. 

It involves harder mathematics, but most of the text can be read on different 

levels. The handling of measure theory may illustrate this point. Chapter 
IV contains an informal introduction to the basic ideas of measure theory 

and the conceptual foundations of probability. The same chapter lists the 
few facts of measure theory used in the subsequent chapters to formulate 
analytical theorems in their simplest form and to avoid futile discussions of 
regularity conditions. The main function of measure theory in this connection 
is to justify formal operations and passages to the limit that would never be 

. questioned by a non-mathematician. Readers interested primarily in practical 

results will therefore not feel any need for measure theory. 
To facilitate access to the individual topics the chapters are rendered as 

self-contained as possible, and sometimes special cases are treated separately 
ahead of the general theory. Various topics (such as stable distributions and 
renewal theory) are discussed at several places from different angles. To 
avoid repetitions, the definitions and illustrative examples are collected in 

vii 

 



viii PREFACE 

chapter VI, which may be described as a collection of introductions to the 
subsequent chapters. The skeleton of the book consists of chapters V, VIII, 
and XV. The reader will decide for himself how much of the preparatory 
chapters to read and which excursions to take. 

Experts will find new results and proofs, but more important is the attempt 
to consolidate and unify the general methodology. Indeed, certain parts of 
probability suffer from a lack of coherence because the usual grouping and 

treatment of problems depend largely on accidents of the historical develop- 

ment. In the resulting confusion closely related problems are not recognized 
as such and simple things are obscured by complicated methods. Consider- 

able simplifications were obtained by a systematic exploitation and develop- 
ment of the best available techniques. This is true in particular for the 
proverbially messy field of limit theorems (chapters XVI-XVII). At other 
places simplifications were achieved by treating problems in their natural 
context. For example, an elementary consideration of a particular random 
walk led to a generalization of an asymptotic estimate which had been 

derived by hard and laborious methods in risk theory (and under more 
restrictive conditions independently in queuing). 

I have tried to achieve mathematical rigor without pedantry in style. For 
example, the statement that 1/(1 + &) is the characteristic function of 

4e~'7| seems to me a desirable and legitimate abbreviation for the logically 
correct version that the function which at the point & assumes the value 

1/(1 + &) is the characteristic function of the function which at the point 

a assumes the value }e7!*!. | 
I fear that the brief historical remarks and citations do not render justice 

to the many authors who contributed to probability, but I have tried to give 
credit wherever possible. The original work is now in many cases superseded 
by newer research, and as a rule full references are given only to papers to 
which the reader may want to turn for additional information. For example, 
no reference is given to my Own work on limit theorems, whereas a paper 

describing observations or theories underlying an example is cited even if it 
contains no mathematics.’ Under these circumstances the index of authors 
gives no indication of their importance for probability theory. Another 

difficulty is to do justice to the pioneer work to which we owe new directions 
of research, new approaches, and new methods. Some theorems which were 

considered strikingly original and deep now appear with simple proofs 
among more refined results. It is difficult to view such a’theorem in its 

historical perspective and to realize that here as elsewhere it is the first step 

that counts. 

  

1 This system was used also in the first volume but was misunderstood by some subsequent 

writers; they now attribute the methods used in the book to earlier scientists who could 

not have known them. 
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Introduction 

THE CHARACTER AND ORGANIZATION OF THE BOOK REMAIN UNCHANGED, BUT 
the entire text has undergone a thorough revision. Many parts (Chapter 
XVII, in particular) have been completely rewritten and a few new sections 
have been added. At a number of places the exposition was simplified by 
streamlined (and sometimes new) arguments. Some new material has been 
incorporated into the text. 

While writing the first edition I was haunted by the fear of an excessively 
long volume. Unfortunately, this led me to spend futile months in shortening 
the original text and economizing on displays. This damage has now been 
repaired, and a great effort has been spent to make the reading easier. 
Occasional repetitions will also facilitate a direct access to the individual 
chapters and make it possible to read certain parts of this book in con- 
junction with Volume 1. 

Concerning the organization of the material, see the introduction to the 
first edition (repeated here), starting with the secorld paragraph. 

I am grateful to many readers for pointing out errors or omissions. I 

especially thank D. A. Hejhal, of Chicago, for an exhaustive and penetrating 
list of errata and for suggestions covering the entire book. 

January 1970 WILLIAM FELLER 
Princeton, N.J. 
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Abbreviations and Conventions 

Iff is an abbreviation for if and only if. 

Epoch. 

Intervals 

RI, R2, Rr 

1 

> 
nand N 

O, 0, and~. 

f (2) U{dr}. 

This term is used for points on the time axis, while time is 
reserved for intervals and durations. (In discussions of 

stochastic processes the word “‘times” carries too heavy a 
burden. The systematic use of “epoch,” introduced by 
J. Riordan, seems preferable to varying substitutes such as 
moment, instant, or point.) 

are denoted by bars: a, a,b isan open, a, b a closed interval; 

half-open intervals are denoted by a,b and a,b. This 

notation is used also in higher dimensions. The pertinent 
conventions for vector notations and order relations are 
found in V,I (and also in IV,2). The symbol (a, 5) 

reserved for pairs and for points. 
stand for the line, the plane, and the r-dimensional Cartesian 

space. 
refers to volume one, Roman numerals to chapters. Thus 

1; XI,(3.6) refers to section 3 of chapter XI of volume 1. 

indicates the end of a proof or of a collection of examples. 

denote, respectively, the normal density and distribution 
function with zero expectation and unit variance. 

Let u and v depend on a parameter x which tends, say, 
to a. Assuming that v is positive we write 

u= O)) u remains bounded 
= o(v) if 5 +0 

un~muwv | —> i. 

F or this abbreviation see V,3. 

Regarding Borel sets and Baire functions, see the introduction to chapter V. 
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CHAPTER I 

The Exponential and 

the Uniform Densities 

1. INTRODUCTION 

In the course of volume 1 we had repeatedly to deal with probabilities 
defined by sums of many small terms, and we used approximations of the 
form 

(1.1) | Pla < X< b} ~[F@ de. 

The prime example is the normal approximation to the binomial distribution. 
An approximation of: this kind is usually formulated i in the form of a limit 
theorem involving a succession of more and more refined discrete probability 
models. In many cases this passage to the limit leads conceptually to.a new 
sample space, and the latter may be. intuitively Simpler than the original . 
discrete model. . 

Examples. (a) Exponential waiting t times: To describe waiting ‘times by 
a discrete model we had to quantize the time and pretend that. changes 
can. occur only at epochs? 6, 26,.... The simplest waiting time T is the 
waiting time for the first success ‘in a sequence. of Bernoulli trials with 
probability p,;. for success.. Then P{T > nd} = (1—p,)" and the expected | 
waiting time is E(T) = é/p,. Refinements of this model are-obtained by - 
letting 6 grow smaller in such a way that the expectation 6/p, = « remains 

1 Further examples from volume 1: The arc sine distribution, chapter Il, section 4; 
the distributions for the number of returns to the origin and first passage times in III,7; the 
limit theorems for random walks in XIV; the uniform distribution in problem 20 of XI,7. 

2 Concerning the use of the term epoch, see the list of abbreviations at the front of the 
book: 

 



2 THE EXPONENTIAL AND THE UNIFORM DENSITIES L.1 

fixed. To a time interval of duration ¢ there correspond n ~ ¢/6 trials, 
and hence for small 6 

(1.2) P{T > 1} © (1 — 6/0)" w& ent’ 

approximately, as can be seen by taking logarithms. This model considers 
the waiting time as a geometrically distributed discrete random variable, 
and (1.2) states that ‘in the limit’? one gets an exponential distribution. 
From the point of view of intuition it would seem more natural to start 
from the sample space whose points are real numbers and to introduce 

the exponential distribution directly. 
(b) Random choices. To ‘“‘choose a point at random’”’ in the interval® 

0, 1 is a conceptual experiment with an obvious intuitive meaning. It can 
be described by discrete approximations, but it is easier to use the whole 
interval as sample space and to assign to each interval its length as prob- 

ability. The conceptual experiment of making two independent random 

choices of points in 0, 1 results in a pair of real numbers, and so the natural 
sample space is a unit square. In this sample space one equates, almost 
instinctively, ‘“‘probability”’ with ‘“‘area.”” This is quite satisfactory for some 
elementary purposes, but sooner or later the question arises as to what the 

word ‘‘area’’ really means. > 

As these examples show, a continuous sample space may be conceptually 
simpler than a discrete model, but the definition of probabilities in it depends 

on tools such as integration and measure theory. In denumerable sample 
_ Spaces it was possible to assign probabilities to a// imaginable events, 
whereas in. general spaces this naive procedure leads to logical contra- 
dictions, and our intuition has to adjust itself to the exigencies of formal logic. 
We shall soon see that the naive approach can Jead to trouble even in relatively 
simple problems, but it is only fair to say that many probabilistically 
significant problems do not require a clean definition of probabilities. Some- 
times they are of an analytic character and the probabilistic background 

serves primarily as a support for our intuition. More to the point is the 
fact that complex stochastic processes with intricate sample spaces may lead 
to significant and comprehensible problems which do not depend on the 
delicate tools used-in the analysis of the whole process. A typical reasoning 
may run as follows: if the process can be described at all, the random 
variable Z must have such and such properties, and its distribution must 
therefore satisfy such and such an integral equation. Although probabilistic 
arguments can greatly influence the analytical treatment of the equation in 
question, the latter is in principle independent of the axioms of probability. 

3 Intervals are denoted by bars to preserve the symbol (a, 5) for the coordinate notation 
of points in the plane. See the list of abbreviations at the-front of the book. 

 



2. DENSITIES. .CONVOLUTIONS 3 

Specialists in various fields are sometimes so familiar with problems of 
this. type that they deny the need for measure theory because they are unac-. 
quainted with problems of other types and with situations where vague 
reasoning did lead to wrong results.4 

This situation will become clearer in the course of this chapter, which 
serves as an informal introduction to the whole theory. It describes some 
analytic properties of two important distributions which will be used 
throughout this book. Special topics are covered partly because of significant 
applications, partly to illustrate the new problems confronting us and the 
need for appropriate tools. It is not necessary to study them systematically 
or in the order in which they appear. 

Throughout this chapter probabilities are defined by elementary integrals, 
and the limitations of this definition are accepted. The use of a probabilistic 
jargon, and of terms such as random variable or expectation, may be justified 
in two ways. They may be interpreted as technical aids to intuition based on 
the formal analogy with similar situations in volume 1. Alternatively, every- 
thing in this chapter may be interpreted in a logically impeccable manner 
by a passage to the limit from the discrete model! described in example 2(a). 
Although neither necessary nor desirable in principle, the latter procedure 
has the merit of a good exercise for beginners. 

2. DENSITIES. CONVOLUTIONS 

A probability density on the line (or K+) is a function f such that 

+ 00 . 

(2.1) f(x) 2 9, f(x) dz = 1. 

For the present we consider only piecewise continuous densities (see V,3 
for the general notion). To each density f we let correspond its distribution 
function? F defined by 

(2.2) Fe) =[" fay 
  

4 The roles of rigor and intuition are subject to misconceptions. As was pointed out in 
volume 1, natural intuition and natural thinking are a poor affair, but they gain strength 
with the development of mathematical theory. Today’s intuition and applications depend 
on the most sophisticated theories of yesterday. Furthermore, strict theory represents 
economy of thought rather than luxury. Indeed, experience shows that in applications 
most people rely on lengthy calculations rather than simple arguments because these 
appear risky. [The nearest illustration is in example 5(a).] 

"5 We recall that by ‘‘distribution function” is meant a right continuous non-decreasing 

function with limits 0 and 1 at +00. Volume 1 was concerned mainly with distributions 

whose growth i is due entirely to jumps. Now we focus our attention on distribution functions 

defined as integrals. General distribution functions will be studied in chapter V. 

   



4 THE EXPONENTIAL AND THE UNIFORM DENSITIES [.2 

It is a Monotone continuous function increasing from 0 to 1. We say that 
f and F are concentrated on the interval ag x <b if f vanishes outside 
this interval. The density f will be considered as an assignment of prob- 

abilities to the intervals of the line, the interval a, b = {a < x < 5} having 
probability 

(2.3) F(b) — F(a) = { F(a) de. 

Sometimes this probability will be denoted by P{a, 6}. Under this assign- 

ment an individual point carries probability zero, and the closed interval 

a< x <b has the same probability as a, 5. 
In the simplest situation the real line serves as ‘‘sample space,”’ that is, 

the outcome of a conceptual experiment is represented by a number. (Just 
as in volume 1, this is only the first step in the construction of sample spaces 
representing sequences of experiments.) Random variables are functions 

defined on the sample space. For simplicity we shall for the time being 

accept as random variable only a function U such that for each ¢ the event 

{U < ¢} consists of finitely many intervals. Then 

(2.4) G(t) = P{U <4} 

‘is well defined as the integral of f over these intervals. The function G 
defined by (2.4) is called the distribution function of U. If G is the integral 
ofafunction g, then g is called the density of the distribution G or (inter- 

changeably) the density of the variable U. 
. The basic random variable is, of course, the coordinate variable® X as 

such, and all other random variables are functions of X. The distribution 
function of X is identical with the distribution F by which probabilities 
are defined. Needless to say, any random variable Y = g(X) can be taken 

as Coordinate variable on a new line. 
As stated above, these terms may be justified by mere analogy with the 

situation in volume 1, but the following example shows that our model 
may be obtained by a passage to the limit from discrete models. 

Examples. (4) Grouping of data. Let F be a given distribution function. 
Choose a fixed 6 > 0 and consider the discrete random variable X, which 

for (n—1)6 <x < nd assumes the constant value nd. Here n= 0, +1, 
+2,.... In volume 1 we would have used the multiples of 6 as sample 

  

® As far as possible we shall denote random variables (that is, functions on the sample 

space) by capital boldface letters, reserving small letters for numbers or location parameters. 

This holds in particular for the coordinate variable X, namely the function defined by 

X(x) = x. 
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space, and described the probability distribution of X, by saying that 

(2.5) P{X,=nd} = F(nd) — F((n—1)6). 

Now X, becomes a random variable in an enlarged sample space, and its 
distribution function is the function that for nd <x < (n+1)d equals 
F(n6). In the continuous model, X, serves as an approximation to X 
obtained by identifying our intervals with their right-hand endpoints (a proce- 
dure known to statisticians as grouping of data). In the spirit of volume 1 we 
should treat X,- as the basic random variable and 6 as a free parameter. 
Letting 6-0 we would obtain limit theorems stating, for example, that 
F is the limit distribution of X;,. 

(6) For x > 0, the event {X? < x} is the same as (Jz <xX< V2}; 

the random variable X?. has a distribution concentrated on 0,0 and 

given there by F(./z) —_ F(—V2z). By differentiation it is seen that the 

density g of X? is given by | 

g(x) = LU (V2) + f(—Va)I/V2 for z>0 | g(z)=0 for «<0. 

The distribution function of X® is given for all x by F(Wz) and has 

density Lf (Wx x) W x2 x, 

The expectation of X is defined by 
| i 

(2.6) . E(x) -| af(x) dz, ~ 

provided the integral converges absolutely. The expectations of the approxi- 
mating discrete variables X, of example (a) coincide with Riemann sums 

for this integral, and so E(X,;)—> E(X). If u is a bounded continuous 
function the same argument applies to the random variable u(X), and the 
relation E(u(X,)) — E(u(X)) implies 

(2.7) E(u(X)) = { (a) f(a) dx; 

the point here is that this formula makes no explicit use of the distribution of 
u(X). Thus the knowledge of the distribution of a random variable X 
suffices to calculate the expectation of functions of it. 

The second moment of X is defined by 

+00 

(2.8) E(X2) = { xflx) dz, 
—o0 

provided the integral converges. Putting « = E(X), the variance of X is 

again defined by 

(2.9) Var (X) = E((X—y)*) = E(X’) — 
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Note. If the variable X is positive (that is, if the density f is concen- 

trated on 0, oc) and if the integral in (2.6) diverges, it is harmless and 
convenient to say that X Aas an infinite expectation and write E(X) = 
By the same token one says that X has an infinite variance when the integral 
in (2.8) diverges. For variables assuming positive and negative values the 
expectation remains undefined when the integral (2.6) diverges. A typical 
example is provided by the density 7—1(1+2?)-). > 

The notion of density carries over to higher dimensions, but the general 
discussion is postponed to chapter III. Until then we shall consider only 

the analogue to the product probabilities introduced in definition 2 of 1; 
V,4 to describe combinations of independent experiments. In other words, 
in this chapter we shall be concerned only with product densities of the form 
Sx)gety), f(z) gly) A), etc., where f, g,... are densities on the line. 

Giving a density of the form f(z) g(y) in the plane R? means identifying 

“probabilities” with integrals: 

(2.10) P{A} ={[ g(y) dx dy. 

Speaking of “‘two independent random variables KX and Y with densities 
f and g” isan abbreviation for saying that probabilities in the (X, Y)-plane 
are assigned in accordance with (2.10). This implies the multiplication 
rule for intervals, for example P{X > a, Y > b} = P{X > a}P{Y > 5}. 

The analogy with the discrete case is so obvious that no further explanations 

are required. 

Many new random variables may be defined as functions of X and Y, 
but the most important role is played by the sum S = X + Y. The event 
A = {S < s} is represented by the half-plane of points (z,y) such that 

z-+y<s. Denote the distribution function of Y by G so that one has 
g(y) = G’(y). To obtain the distribution function of X + Y we integrate 
in (2.10) over y < s — x with the result 

(2.11) P{X+Y < s} = [66-2 dz. 

For reasons of symmetry the roles of F and G can be interchanged without 
affecting the result. By differentiation it is then seen that the density of 

X + Y is given by either of the two integrals 

+ 20 + 00 

(2.12) f(s—y) g(y) dy = - f(y) g(s—y) dy. 

The operation defined in (2.12) is a special case of the convolutions to 

be introduced in V,4. For the time being we use the term convolution 
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only for densities: The convolution of two densities f and g is the function 
defined by (2.12). It will be denoted by fx g. 

Throughout volume 1 we dealt with convolutions of discrete distributions, 
and the rules are the same. According to (2.12) we have feg=gpe/f, 
Given a third density 4 we can form (f *g)+*h/ and this is the density an 
asum X+ Y + Z of three independent variables with densities I, g,h 

The fact that summation of random variables is commutative and associative 
implies the same properties for convolutions, and so f * g * A is independent 
of the order of the operations. 

Positive random variables play an important role, and it is therefore 

useful to note that if f and g are concentrated on 0, © the convolution’ 
f*g of (2.12) reduces to . 

  

(2.13) fe o(s) = { "f(s—y) ely) dy = [ "f(2) g(s—2) de. 
Example. (c) Let f and: g be concentrated on 0, oo and defined there | 

by f(x) = ae~** and g(x) = Be-**. Then 
. ene _ e bt 

(2.14) _  f* 2(x) = a8 Boa x>0. 
—< 

(Continued in problem 12.) > 

Note on the notion of random variable. The use of the line or the Cartesian 
spaces R” as sample spaces sometimes blurs the distinction between random 
variables and “‘ordinary”’ functions of one or more variables. In volume 1 
arandom variable X could assume only denumerably many values and it was - 
‘then obvious whether we were talking about a function (such as the square 
or the exponential) defined on the line, or the random variable X? or ex 

defined in the sample space. Even the outer appearance of these functions 
was entirely different inasmuch as the “ordinary” exponential assumes all 
positive values whereas e* had a denumerable range. To see the change in 

this situation, consider now “two independent random variables X and Y 
with a common density f.”’ In other words, the plane R? serves as sample 
space, and probabilities are defined as integrals of f(x) f(y). Now every 
function of two variables can be defined in the sample space, and then it 
becomes a random variable, but it must be borne in mind that a function of 

two variables can be defined also without reference to our sample space. For 
example, certain statistical problems compel one to introduce the random 
variable {(X)f(Y) [see example VI,12(d)]. On the other hand, in introducing 
our sample space R? we have evidently referred to the ‘‘ordinary”’ function f 
defined independently of the sample space. This “ordinary” function induces 

many random variables, namely f(X), f(¥), f(X+Y), etc. Thus the 
same f may serve either as a random variable or as an ordinary function. 

 



8 THE EXPONENTIAL AND THE, UNIFORM DENSITIES 1.3 

As a rule (and in each individual case) it will be clear whether or not 
we are concerned with a random variable. Nevertheless, in the general 
theory there arise situations in which functions (such.as conditional prob- 
abilities and expectations) can be considered either as free functions dr as 
random variables, and this is somewhat confusing if the freedom of choice 

is not properly understood. 

Note on terminology and notations. To avoid overburdening of sentences it is customary 
to call E(X), interchangeably, expectation of the variable X, or of the density fi or of 

the distribution F. Similar liberties will be taken for other terms: For example, convolution 

really signifies an operation, but the term is applied also to the result of the operation and 
the function f+ g is referred to as ‘‘the convolution.” 

In the older literature the terms distribution and frequency function were applied to 
what we call densities; our distribution functions were described as ‘‘cumulative,” and the 
abbreviation c.d.f. is still in use. 

3. THE EXPONENTIAL DENSITY 

For arbitrary but fixed « > 0 put 

(3.1) f(z) =ae, = =9F(z) = 1 —~ eo, for x>0 

and F(x) = f(x) =0 for x <0. Then f is an exponential density, F its 

distribution function. A trite calculation shows that the expectation equals 
a}, the variance o- 

In example 1(a) the exponential distribution was derived as the limit 
of geometric distributions, and the method of example 2(a) leads to the 
same result. We recall that in stochastic processes the geometric distribution 
frequently governs waiting times or lifetimes, and that this. is due to its 
“lack of memory,’’ described. in 1; XIII,9: whatever the present age, the 
residual lifetime is unaffected by the past and has the same distribution as the 

lifetime itself. It will now be shown that this property carries over to 

the exponential limit and to no other distribution. _ 
Let T be an arbitrary positive variable to be interpreted as life- or 

waiting time. It is convenient to replace the distribution function of T 
by its tail 

(3.2) U(t) = P{T > #}. 

Intuitively, U(t) is the “‘probability at birth of a lifetime exceeding ¢.’ 

Given an age s, the event that the residual lifetime exceeds ¢. is the same 

as {T > s+1} and the conditional probability of this event (given age s) 
equals the ratio U(s+1)/U(s). This is the residual lifetime distribution, and it 

coincides with the total lifetime distribution iff 

(3.3) U(s+t) = U(s) U(t), s,t>0. 
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It was shown in 1; XVII,6 that a positive solution of this equation is necessarily 
of the form U(t) =-e~*', and hence the lack of aging described above in 
italics holds. true if the lifetime distribution is exponential. 

We shall refer to. this lack of memory as the Markov property of the 
exponential distribution. Analytically it reduces to the statement ‘that 
only for the exponential distribution F do the tails’: U = 1—F satisfy 
(3.3), but this explains the constant occurrence of the exponential dis- 
tribution in Markov processes. (A stronger version of the Markov property. 
will be described in section 6.) Our description referred to temporal processes, 
but the argument rs general and the Markov property remains meaningful 
when time is replaced by some other parameter. 

Examples. (a) Tensile strength To obtain a continuous analogue to 
the proverbial finite chain whose strength is that of its weakest link denote 
by U(t) the probability that a thread of /ength t (of a given material) can 
sustain a certain fixed load. A thread of length s+z¢ does not snap iff the 
two segments individually sustain the given load. Assuming that there is no 
interaction, the two events must be considered independent and U must 
satisfy (3.3). Here the length of the thread takes over the role of the time 
parameter, and the length at which the thread will break is an exponentially 
distributed random variable. - ' 

(6) Random ensembles of points in space play a role in many connections 
so that it is important to have an appropriate definition for this concept. ° 
Speaking intuitively, the first property that perfect randomness should have 
‘is a lack of interaction between different regions: the observed configuration 
within region A, should not permit conclusions concerning the ensemble 
in a-non-overlapping region A,. Specifically, the probability p that both 

A, and A, are empty should equal the product of the probabilities p, and 
P2 that A, and A, be empty. It is plausible that this product rule.cannot 
hold for all partitions unless the probability p depends only on the volume 
of the region 4 but not on its shape. Assuming this to be so, we denote 
by U(t): the probability that a region of volume ¢ be empty. These prob- 
abilities then satisfy (3,3) and hence U(t) = e—; the constant a depends 

on the density of the ensemble or, what amounts to the same, on the unit of 
length. It will be shown in the next section that the knowledge of U(t) 
permits us to calculate the probabilities p,(¢) that a region of volume ¢ 
contains exactly m points of the ensemble; they are given by the Poisson dis- 
tribution p,(t) = e**(at)"/n!. We speak accordingly of Poisson ensembles 
of points, this term being less ambiguous than the term random ensemble 
which may have other connotations. . . 

(c) Ensembles of circles and spheres. Random ensembles of particles 

present a more intricate problem. For simplicity we assume that the particles — 
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are of a spherical or circular shape, the radius p being fixed. The con- 

figuration is then completely determined by the centers and it is tempting to 
assume that these centers form a Poisson ensemble. This, however, is 

impossible in the strict sense since the mutual distances of centers necessarily 
exceed 2p. One feels nevertheless that for small radii p the effect of the 

finite size should be negligible in practice and hence the model of a Poisson 
ensemble of centers should be usable as an approximation. 

For a mathematical model we postulate accordingly that the centers form 
a Poisson ensemble and accept the implied possibility that the circles or 
spheres intersect. This idealization will have no practical consequences if the 
radii p are small, because then the theoretical frequency of intersections 
will be negligible. Thus astronomers treat the stellar system as a Poisson 
ensemble and the approximation to reality seems excellent. The next two 
examples show how the model works in practice. 

(d) Nearest neighbors. We consider a Poisson ensemble of spheres: (stars) 

with density a. The probability that a domain of volume ¢ contains no 
center equals e—*’. Saying that the nearest neighbor to the origin has a 

distance >r amounts to saying that a sphere of radius r contains no star 
_center in its interior. The volume of such a ball equals $7r?, and hence in a 
Poisson ensemble of stars the probability that the nearest neighbor has a 
distance >r is given by eta” The fact that this expression is independent 

of the radius p of the stars shows the approximative character of the model 
and its limitations.' 

In the plane, spheres are replaced by circles and the distribution function 
for the distance of nearest neighbors is given by 1 — e777”. 

(e) Continuation: free paths. For ease of description we begin with the 
two-dimensional model. The random ensemble of circular disks may be 
interpreted as the cross section of a thin forest. I stand at the origin, which 
is not contained in any disk, and look in the direction of the positive x-axis. 

The longest interval 0,7 not intersecting any disk represents the visibility 
or free path in the x-direction. It is a random variable and we denote 

‘it.by L. 
Denote by A the region formed by the points at adistance <p froma 

point of the interval 0, ¢ on the z-axis, The boundary of A consists of the 

segments 0 <x <¢ on the lines y = +p and two semicircles of radii. p 

about the origin and ‘the point (t, 0) on the z-axis, Thus the area of A 

equals 2pt + mp?, The event {L > ¢} occurs iff no disk center is con- 

tained. within A, but it is known in advance that the circle of radius p 

about the origin is empty. The remaining domain has area 2pf and we 
conclude that the distribution of the visibility L is exponential: 

PIL > 1} = eet, 
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In’space the same argument applies and the relevant region is formed by 
rotating our A about the z-axis. The rectangle O0<a<t, ly| <p is 
replaced by a cylinder of volume zp?t. We conclude that in a Poisson en- 
semble of spherical stars the free path L in any direction has an exponential 
distribution: PL >t}= er" The mean free path is given by 
EL) =lf(rap), > 

The next theorem will be used repeatedly. 

Theorem. If X,...,X, are mutually independent random ‘variables 
with the exponential distribution (3.1), then the sum X, +--++X, has a 
density g, and distribution function G,, given by 

Oma 
(n—1)! 

(3.5) | Gam —emLeT t ot 

34) a, (a) =a 2>0- 

eer | xz>0. 
(n—1)! 

Proof. For n= 1 the assertion: reduces to the definition (3. 1). ‘The 

density g,4: is defined by the convolution . 

B65 great) = [ gnlt—2) ex(2) de, 
and assuming the validity of (3.4) this reduces to 

  

n+l t n 

3.7 ni(t) = ett [2 da mg EOD et 
G7) Bil = ae de” te 
Thus (3.4) holds by induction for all n. The validity of (3.5) is seen by 
differentiation. > 

The densities g, are among the gamma densities to be introduced in 
Ii,2. They represent the continuous analogue of the negative binomial 
distribution found in 1; VI,8 for the sum of n variables with a common 

geometric distribution. (See problem 6.) 

4. WAITING TIME PARADOXES. THE POISSON PROCESS 

Denote by X,, X2,... mutually independent random variables with the 
common exponential distribution (3.1), and put S, = 0, | 

(4.1) S, = X, +°'' + X,, n=1,2,.... 

We introduce a family of new random variables N(t) as follows: N(t) is 

the number of indices k21 such that 8,<t. The event {N(t) =n} 
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occurs iff S, <7 but S,,,>¢. As S, has the distribution G, the 

probability of this event equals G,(t) — G,,,(t) or 

pean 
(4.2) P{N(t) = n} = ee 

n! 

In words, the random variable N(t) has a Poisson distribution with ex- 
pectation at. 

.This argument looks like a new derivation of the Poisson distribution 
but in reality it merely rephrases the original derivation of 1; VI1,6 in terms 
of random variables. For an intuitive description consider chance occurrences 
(such as cosmic ray bursts or telephone calls), which we call “arrivals.” 
Suppose that there is no aftereffect in the sense that the past history permits 
no conclusions as to the future. As we have seen, this condition requires 

that the waiting time X, to the first arrival be exponentially distributed. 
But at each arrival the process starts from scratch as a probabilistic replica of 
the whole process: the successive waiting times X, between arrivals must 
be independent and must have the same distribution. Thesum S,, represents 
the epoch of the nth arrival and N(¢t) the number of arrivals’within the 

interval 0, ¢. In this form the argument differs from the original derivation 

of the Poisson distribution only by the use of better technical terms. 
(In the terminology of stochastic processes the sequence {S,,} constitutes 

a renewal process with exponential interarrival times X,; for the general 
notion see VI,6.) 

Even this simple situation leads to apparent contradictions which illustrate 
the need for a sophisticated approach. We begin by a naive formulation. 

Example. Waiting time paradox. Buses arrive in accordance with a 

Poisson process, the expected time between consecutive buses being «1. 
I arrive at an epoch. ¢. What is the expectation E(W,) of my waiting time 
W, for the next bus? (It is understood that the epoch ¢ of my arrival is 

. independent of the buses, say noontime sharp.) Two contradictory answers 
stand to reason: 

(a) The lack of memory of the Poisson process implies that the distribution 
of my waiting time should not depend on the epoch of my arrival. In this 
case E(W,) = E(W,) = «1. 

(6) The epoch of my arrival is “chosen at random’? in the interval. 
between two consecutive buses, and for reasons of symmetry my expected 

waiting time should be half the expected time between two consecutive 

buses, that is E(W,) = $a77. 

Both arguments appear reasonable and both have been used in practice. 

What to do about the contradiction? The easiest way out is that of the 

formalist, who refuses to see a problem if it is not formulated in an 

impeccable manner. But problems are not solved by ignoring them. 
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We now show that both arguments are substantially, if not formally, 

correct. The fallacy lies at an unexpected place and we now proceed to 
explain it.’ > 

We are dealing with interarrival times X, =S,, X,=S,—S,,.... By 
assumption the X, have a common exponential distribution with expectation 
—. Picking out “‘any”’ particular X, yields a random variable, and one has 

the intuitive feeling that its expectation should be «! provided the choice. 
is done without knowledge of the sample sequence X,, X2,.... But this 

is not true. In the example we chose that element X, for which 

Sy < t < S,, 

where ¢ is fixed. This choice is made without regard to the actual process, 
but it turns out that the X, so. chosen has the double expectation 2a71. 
Given this fact, the argument (5) of the example postulates an expected 
waiting time «7? and the contradiction disappears. 

This solution of the paradox came as a shock to experienced workers, 
but it becomes intuitively clear once our mode of thinking is properly 

adjusted. Roughly speaking, a long interval has a better chance to cover 
the point ¢ thanashortone. This vague feeling is supported by the following 

Proposition. Let X,,X.,... be mutually independent with a common 

exponential distribution with expectation «1. Let t>0O be fixed, but 
arbitrary. The element X, satisfying the condition S,_,<t <S, has the 

density 

axe ** for 0<a<t 
4.3 (x) = ; 

G3) vl), a(1+at)e* for x>t. 

The point is that the density (4.3) is not the common density of the X,. 
Its explicit form is of minor interest. [The analogue for arbitrary waiting 
time distributions 1s contained in XI,(4.16).] 

Proof. Let k be the (chance-dependent) index such that S,_,<?t< 8S, 

and put L, equal to S,—S,_,. We have to prove that L, has density 
(4.3). Suppose first «< +r. The event {L, <2} occurs iff S, =y and 

t—y < X,,, <2 for some combination n, y. This necessitates 

t—-x<y<st.. 

Summing over all possible n and y we obtain 

t 

(4.4) P< 2} = | sly) [ete — ody. 
i~z 

? For a variant of the paradox see example VI,7(a). The paradox occurs also in general 
renewal thcory where it caused serious trouble and contradictions before it was properly 
understood. For the underlying theory see XI,4. 
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But g,(y) + go(y) + °-* = @ identically, and so 

(4.5) PIL, <2} =1 —e** — axe 

By differentiation we get (4.3) for «<¢t. For «>? a similar argument 
applies except that y ranges from 0 to ¢ and we must add to the right side 
in (4.4) the probability e~*' — e-** that 0<1t<S, <x. This completes 
the proof. > 

‘The break in the formula (4.3) at 2 = 1 is due to the special role of the 
origin as the starting epoch of the process. Obviously 

(4.6) lim v,(z) = a®xe**, 
“ to 

which shows that the special role of the origin wears out, and for an “‘old”’ 
process the distzibution of L, is nearly independent-of ¢. One expresses 
this conveniently by saying that the “steady state” density of L, is given 
by the right side in (4.6). 

_ With the notations of the proof, the waiting time W, considered in the 
example is the random variable -W, = S, — ¢. The argument of the proof 
shows also that 

a t 

P{W, Sz} eh — NEY | aay lee — eet] dy 
(4.7) m= So | 

= ] — et” 

Thus W, has the same exponential distribution as the X, in accordance 
with the reasoning (a). (See problem 7.) . 

Finally, a word about the Poisson process. The Poisson variables N(¢) 

were introduced as functions on the sample space of the infinite sequence 
of random variables X,, X2,.... This procedure is satisfactory for many 
purposes, but a different sample space is more natural. The conceptual 
experiment “observing the number of incoming calls up to epoch ¢”’ yields 
for each positive ¢ an intéger, and the result is therefore a step function with 
unit jumps. The appropriate sample space has these step functions as sample 
points; the sample space is a function space—the space of all conceivable 

“‘paths.’’ In this space N(f) is defined as the value of the ordinate at epoch 
tand S,, asthe coordinate of the nth jump, etc. Events can now be considered 
that are not easily expressible in terms of the original variables X,. A typical 
example of practical interest (see the ruin problem in VI,5) is the event that 
N(t)> a+ 5t for some ¢t. The individual path (just as the individual 
infinite sequence of +1 in binomial trials) represents the natural and un- 

avoidable object of probabilistic inquiry. Once one gets used to the new 

phraseology, the space of paths becomes most intuitive. 
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Unfortunately the introduction of probabilities in spaces of sample 
paths is far from simple. By comparison, the step from discrete sample 
spaces to the line, plane, etc., and even to infinite sequences of random 

variables, is neither conceptually nor technically difficult. Problems of a 

new type arise in connection with function spaces, and the reader is warned 
that we shall not deal with them in this volume. We shall be satisfied with 
an honest treatment of sample spaces of sequences (denumerably many 
coordinate variables). Reference to stochastic processes in general, and to 
the Poisson process in particular, will be made freely, but only to provide 
an intuitive background or to enhance interest in our problems. 

Poisson Ensembles of Points 

As shown in 1; VI,6, the Poisson law governs not only “points dis- 
tributed randomly along the time axis,’ but also ensembles of points (such 
as flaws in materials or raisins in a cake) distributed randomly in plane or 
space, previded ¢ is interpreted as area or volume. The basic assumption 
was that the probability of finding k points in a specified domain depends 
only on the area or volume of the domain, but not on its shape, and that 
occurrences in non-overlapping -domains are independent.. In example 
3(b) we used the same assumption to show that the probability that a domain 
of volume ¢ be empty is given by e—*#. This corresponds to the exponential 
distribution for the waiting time for the first event, and we see now that the 
Poisson distribution for the number of events is a simple consequence of it. 
The same argument applies to random ensembles of points in space, and we 

have thus a new proof for the fact that the number of points of the ensemble 
contained in a given domain is a Poisson variable. Easy formal calculations 
may lead to interesting results concerning such random ensembles of points, 
but the remarks about the Poisson process: apply equally to Poisson en- 
sembles; a complete probabilistic description is complex and beyond the 

scope of the present volume. 

5, THE PERSISTENCE OF BAD LUCK 

As everyone knows, he who joins a waiting line is sure to wait for an 

abnormally long time, and similar. bad luck follows us on all occasions. 
How much can probability theory contribute towards an explanation? 
For a partial answer we consider three examples typical of a variety of 
situations. They illustrate unexpected general features of chance fluctuations. 

Examples. (a) Record values. Denote by X» my waiting time (or financial 
loss) at some chance event. Suppose that friends of mine expose themselves 
to the same type of experience, and denote the results by X,, X2,.... 

To exclude bias we assume that Xp, X,,... are mutually independent 
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random variables with a common distribution. The nature of -the latter 
really does not matter but, since the exponential distribution serves as a 
model for randomness, we assume the X, exponentially distributed in 
accordance with (3.1). For simplicity of description we treat the sequence 
{X,} as infinite. 

To find a measure for my ill luck 1 ask how long i it will take: before a 
friend experiences worse luck (we neglect the event of probability zero that 
X;, = = X,). More formally, we introduce the waiting time N as the value of 

the first subscript n such that X, > Xp». The event {N>n—1} occurs 
iff the maximal term of the n-tuple Xo, X,,..., X,_, appears at the initial 
place; for reasons of symmetry the probability of this event is nm’. The 
event N= = a is the same as {N >n—1} —{N> 7}, and hence for 
n= 1,2, 

1 1. 
(5.1) PiN=n}=i-_—t. ; 

no ont+l1— n(n+1) 

This result fully confirms that I have indeed very bad luck: The random 
variable N has infinite expectation! It would be bad enough if it took on the 
average 1000 trials to beat the record of my ill luck, but the actual waiting 
time has infinite expectation. 

It will be noted that the argument does not depend on the.condition that 
the X, are exponentially distributed. It follows that whenever the variables 
X,; are independent and have a common continuous distribution function 
F the first record value has the distribution (5.1). The fact that this 

distribution is independent of F is used by statisticians for tests of independ- 
ence. (See also problems 8-11.) . . 

The striking and general nature of the result (5.1) combined with the 
simplicity of the proof are apt to arouse suspicion. The argument is really 
impeccable (except for the informal presentation), but those who prefer to 
rely on brute calculation can easily verify the truth of (5.1) from the direct 
definition of the probability in question as the (n+1)-tuple integral of 
anttealzot+an) over the region defined by the inequalities 0 < 1% < 2, 
and 0 <a, < 2% for j=1,...,n—1. 

  

An alternative derivation of (5.1) is an instructive exercise in conditional probabilities; 

it is less simple, but leads to additional results (problem 8). Given that X») =, the 
probability of a greater value at later trials is p = e~*2, and we are concerned with the 
waiting time for the first ‘‘success” in Bernoulli trials with probability p. The conditional 
probability that N=» given X) = is therefore p(1—p)"~1. To obtain P{N =n} 

we have to multiply by the density «e—** of the hypothesis X) = and integrate with 
respect to 2. The substitution 1 — e—%* =f reducés the integrand to t™—1(1—1r), the 

integral of which equals n~1 — (n+1)~1 in agreement with (5.1). 

(b) Ratios. If X and Y are two independent variables with a common 
exponential distribution, the ratio Y/X is a new random variable. Its 
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distribution function is obtained by integrating «e~***” over 0 <y<&, 
0O<2 < oO. Integration with respect to y leads to 

: = —_ ” 2x, erate a= (5.2) . re S| a Ure ‘)de = 4h 

The corresponding density is given by (1+t)-*. It is noteworthy that the 
variable ¥/X has infinite expectation. 

We find here a new confirmation for the persistence of bad luck. Assuredly 
Peter has reason for complaint if he has to wait three times as long as Paul, 
but the distribution (5.2) attributes to this event probability }. It follows 
that, on the average, in one out of two cases either Paul or Peter has reason 
for complaint. The observed frequency increases in practice because very 
short waiting times naturally pass unnoticed. 

(c) Parallel waiting lines. | arrive in my car at the car inspection station 
(or at a tunnel entrance, car ferry, etc.). There are two waiting lines to 

choose from, but once I have joined a line I have to stay in it. Mr. Smith, 

who drove behind me, occupies thé place that 1 might have chosen and I 
keep watching whether he is ahead of or behind me. Most of the time we 
stand still, but occasionally one line or the other moves one car-length. 
forward. To maximize the influence of pure chance we assume the two 
lines stochastically independent; also, the time intervals between successive 

moves are independent variables with a common exponential distribution. 

Under these circumstances the successive moves constitute Bernoulli trials 
in which ‘success’? means that I move ahead, “‘failure’’ that Mr. Smith 
moves. The probability of success being }, we are, in substance, dealing with 
a symmetric random walk, and the curious properties of fluctuations in 
random walks find a striking. interpretation. (For simplicity of description 
we disregard the fact that only finitely many cars are present.) Am I ever 
going to be ahead of Mr. Smith? In the random walk interpretation the 
question is whether a first- passage through +1 will ever take place. As we 
know, this event has probability one, but the expected waiting time for it is 
infinite. Such waiting gives ample apportunity to bemoan my bad luck, and 
this only grows more irritating by the fact that Mr. Smith argues iri the same 
way. - > 

6. WAITING TIMES AND ORDER STATISTICS 

An ordered n-tuple (%,...,2,) of real numbers, may be reordered in 

increasing order of magnitude to obtain the new n-tuple 

(1), (20+ +s tin) where 2) $2) Se** S Mn. 
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This operation applied to all points of the space R” induces n well-defined 
functions, which will be denoted by X,.,...,X,,). If probabilities are 
defined in KR” these functions become random variables. We say that 
(Xi1),...5 X(n)) is obtained by reordering (X,,...,X,) according to 

increasing magnitude. The variable X,,) is called kth-order statistic? of 
the given sample X,,...,X,. In particular, X,,) and X;,) are the sample 

extremes; when n = 2y + 1 is odd, X;,,,) is the sample median. 
We apply this notion to the particular case of independent random 

variables X,,..., X, with the common exponential density «e~**. 

Examples. (a) Parallel waiting lines. Interpret X,,...,X,, as the lengths 

of n service times commencing at epoch 0 at a post office with n counters. 
The order statistics represent the successive epochs of terminations or, as 
one might say, the epochs of the successive discharges (the “‘output process’’). 
In particular, X(,) is the waiting time for the first discharge. Now if the 
assumed lack of aftereffect is meaningful, the waiting time X,,) must have 
the Markoy property, that is, X,,, must be exponentially distributed. As 

a matter of fact, the event {X,, > 7} is the simultaneous realization of 
the m events {X,.> ¢}, each of which has probability e~**; because of the 
assumed independence the probabilities multiply and we have indeed 

(6.1) P{X,,) > th = em 

We can now proceed a step further and consider the situation at epoch 

Xi). The assumed lack of memory seems to imply that the original situation 
is restored except that now only m— 1 counters are in operation; the 
continuation of the process should be independent of X\,, and a replica of the 
whole process. In particular, the waiting time for the next discharge, 
namely Xi) — Xi), should have the distribution 

(6.2) | P{X(.,—X (1) > 1} = ge in-lat 

analogous to (6.1). This reasoning leads to the following genera! proposition 

concerning the order statistics for independent variables with a common 

exponential distribution. 

8 Strictly speaking the term ‘‘sample statistic” is synonymous with *‘function of the 

sample variables,” that is, with random variable. It is used to emphasize linguistically the 

different role played in a given context by the. primary variable (the sample) and some 

derived variables. For example, the ‘sample mean” (X,+---+X,,)/n is called a statistic. 

Order statistics occur frequently in the statistical literature. We conform to the standard 

terminology except that the extremes are usually called extreme “‘values.” 
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Proposition® The n variables Xi), Xi2) — Xq,---, Xia) — Xin) Gre 
independent and the density of X41) — Xi) is given by (n—k)ae™'##, 

Before verifying this proposition formally let us consider its implications. 
When n = 2 the difference Xi.) — Xi.) is the residual waiting time after the 

expiration of the shorter of two waiting times. The proposition asserts that 
this residual waiting time has the same exponential distribution as the original 
waiting time and is :ndependent of X,,). This is an extension of the Markov 
property enunciated for fixed epochs t to the chance-dependent stopping 
time X,,). It is called the strong Markov property. (As we are dealing with 
only finitely many variables we are in a position to derive the strong Markov 
property from the weak one, but in more compiicated stochastic processes the 
distinction is essential.) . 

The proof of the proposition serves as an example of formal manipulations 
with integrals. For typographical simplicity we let m = 3. As in many 
similar situations we use a symmetry argument. With probability one, no 
two among the variables X, are equal. Neglecting an event of probability 
zero the six possible orderings of X,, X,, X; according to magnitude there- 
fore ,epresent six mutually exclusive events of equal probability. To cal- 
culate the distribution of the order statistics it suffices therefore to consider 

the contingency: X, < X, < X3. Thus 

P{X) > ts X(2)—Xy > te, X(3)— Xia) > tz} = 
(6.3) . 

= 6P{X, > th X,—X, > to, X3,—X, > ts}. 

(Purely analytically, the space R is partitioned into six parts congruent to the 
region defined by +, < «, < x3, each contributing the same amount to the 

integral. The boundaries where two or more coordinates are equal have 
probability zero and play no role.) To evaluate the right side in (6.3) we 
have to integrate a3e~*'*1**2=s) over the region defined by the inequalities 

vy > his XY _— a > bos ts _— Xo > ts. 

. A.simple integration with respect to 23 leaus to 

00 fa 

ee ae 77h dx, | ae 2872 dry = 
ty ryt+ts 

(6.4) 
—2t3-—2ate sary dz, = eo tts 2ata—Saty 

= 3e ae 
1 

® This proposition has been discovered repeatedly for purposes of statistical estimation 

but the usual pr ofs are computational instead of appealing to the Markov property. See 

also problem 13. 
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Thus the joint distribution of the three variables X(1), X(2)—Xy, X(3) — Xia) 
is a product of three exponential distributions, and this proves the proposition. 

It follows in particular that E(X,,.41)—X(.)) = 1/(n—k)a. Summing over 

k=0,1,...,»—I we obtain 

  

(6:5) BK) = I(t + +). 
a\n n—l  n—vt+i 

Note that this expectation was calculated without knowledge of the distri- 

bution of X,,. and we have here another example of the advantage to be 
derived from the representation of a random variable as a sum of other 
variables. (See 1; IX,3.) . . | 

(b) Use of the strong Markov property. For picturesque language suppose 
that at epoch 0 three persons A, B, and. C arrive at a post office and find 
two counters free. The three service times are independent random variables 
X, Y, Z with the same exponential distribution. The service times of A. 

and B commence immediately, but that of C starts at the epoch Xv) 
when either A or B is discharged. We show that the Markov property 
leads to simple answers to various questions. 

(i)’ What is the probability that C will not be the last to leave the post 

office? The answer is 4, because epoch X,,) of the first departure establishes 

symmetry between C and the other person being served. 
(ii) What is the distribution of the time T spent by C at the post office? 

Clearly T =X) + Z is the sum of two independent variables whose 

distributions are exponential with parameters 2% and «. The convolution 
of two exponential distributions is given by (2.14), and it is seen that T has 
density u(t) = 2a(e-*' — e~***) and E(T), = 3/(2a). 

(iii) What is the distribution of the epoch of the /ast departure? Denote 
the epochs of the successive departures by Xi), Xi2), X (3). The difference 

Xi) — Xa): is the sum. of the two variables X(3) — Xi2, and Xi) — Xi). 
We saw in the preceding example that these variables are independent and 
have exponential distributions with parameters 2% and «. It follows that 
Xi3, — Xq) has.the same density wu as the variable T. Now Xv is 
independent of X,3)— Xi) and has density 2ae~**‘. The convolution 
formula used in (ii) shows therefore that X,3, has density © 

Saleen ae] 
and E(Xj3)) = 2/a. 

The advantage of this method becomes clear on comparison with direct 
calculations, but the latter apply to arbitrary service time distributions 

(problem 19). 
(c) Distribution of order statistics. As a final exercise we derive the 

distribution of X,,. The event {X(,) < ¢} signifies that at least kK among 
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the n variables X, are <t. This represents at least k “successes” in n 
independent trials, and hence 

(6.6) (Xe) s th= s (; ) (me tyigtn-dat 

J=k 

By differentiation it is seen that the density of Xi) is given by 

n— 

k—1 

This result may be obtained directly by the following loose argument. 
We require (up to terms negligible in the limit as A-»0) the probability 
of the joint event that-one among. the variables X, lies between f¢ and 
t+ and that k — 1 among the remaining n — 1 variables are <?, while 
the other » — k variables are >t + h. Multiplying the number of choices 
and the corresponding probabilities leads to (6.7). Beginners are advised to 
formalize this argument, and also to derive (6.7) from the discrete model. 

(Continued in problems 13,17.). : > 

)a- enttyk-lp~( nat . aertt (6.7) | n( 

7. THE UNIFORM: DISTRIBUTION. 

The random variable X is distributed uniformly in the interval a,b if 
its density | is constant = (b—a)" for a<x<b and vanishes outside 
this interval. In this case the variable (X—a)(b—a)-1, is distributed uniformly 

in 0,1, and we shall usually use this interval as standard. Because of the 
appearance of their graphs the densities of the uniform distribution function 
are called “‘rectangular.”’ 

With the uniform distribution the interval 0,1 becomes a sample space 
in which probabilities of intervals are identical with their lengths. The 

sample space corresponding to two independent variables X and Y° that. 

are uniformly distributed over 0, 0, 1 isthe unit squarein R*, and probabilities 
in it are defined by their area. The same idea applies to triples and n-tuples. 
A uniformly distributed random variable is often called a “point X chosen 

at random.” The result of the € conceptual experiment “nm independent 

random choices of a point in 0,1” requires an n-dimensional hypercube 

for its probabilistic description, but the experiment as such yields n points 
X,,...,X, in the same interval. With unit probability no two of them are 

equal, and hence they partition 0,1 into n+ 1 subintervals. Reordering 
the » points X,,...,X, in their natural order from left to right we get 1 

new random variables which will be denoted by Xi),..., Xin). These are 

the order statistics defined in the last section. The subintervals of the 

partition are now 0, Xq), then Xi), X(2), ete. 
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The notion of a point chosen at random on a circle is self-explanatory. To 
visualize the result of m independent choices on the circle we imagine the 
circle oriented anticlockwise, so that intervals have left and right endpoints 

and may be represented in the form a,b. Two points X, and X, chosen 

independently and at random divide the circle into the two intervals X,, X, 

and X,, X,. (We disregard again the zero-probability event that X, = X,.) 

Examples. (a) Empirical interpretations. The roulette wheel is generally 
thought of as a means to effect a “‘random choice”’ on the circle. In numerical 

calculations to six decimals the rounding error is usually treated as a random 
variable distributed uniformly over an interval of length 10-*. (For the error 

committed by dropping the last two decimals, the discrete model with 100° 
possible values is more appropriate, though less convenient in practice.) 
The waiting time of a passenger. arriving at the bus station without regard to 
the schedule may be regarded as uniformly distributed over the interval 
between successive departures. Of wider theoretical interest are the appli- 
cations to random splittings discussed in section 8. In many problems of 
mathematical statistics (such as non-parametric tests) the uniform distri- 
bution enters in an indirect way: given an arbitrary random variable X 
with a continuous distribution F the random variable F(X) is distributed 

uniformly over 0,1. (See section 12.) 
(5) The induced partition. We prove the following proposition: n in- 

dependently and randomly chosen points X,,...,X, partition 0,1 into 
n+i1 intervals whose lengths have the common distribution given by 

(7.1) PL> = (1-1), O0<t<l. 

This result is surprising, because intuitively one might expect that at least the 
two end intervals should have different distributions. That all n+ 1 
intervals have the same distribution becomes clear on considering the 

equivalent situation on the (oriented) circle of unit length.1° Here n+ 1 
points X,,...,X,,,; chosen independently and at random partition the 
circle into n+ 1 intervals, and for reasons of symmetry these intervals 
must have the same distribution. Imagine now the circle cut at the point 
X,,,1 to obtain an interval in which X,,...,X, are chosen independently 

10 For a computational verification note that the probability of the event 

Kies) — Xa) > 8 

equals the integral of the constant function 1 over the union of the 2! congruent regions 
defined either by the string of inequalities By <a tt < yy, <°°' <a,or 
by similar strings obtained by permuting the subscripts: A more streamlined calculation 
leading to a stronger result is contained in example III, 3(c). 
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and at random. The lengths of the m + 1 intervals of the induced partition 
are the same, and they have a common distribution. That this distribution is 

given by (7.1) may be seen by considering the leftmost interval 0, X(,). Its 

length exceeds ¢ iffall m points X,,..., X, arein t, 1, and the probability 

of this event is (1—7¢)”. 

It is a good exercise to verify the proposition in the special case n = 2 by 

inspection of the three events in the unit square representing the sample 
space. (Continued in problems 22-26.) 

(c) A paradox (related to the waiting time paradox of section 4). Let two 
points X, and X, be chosen independently and at random on the circle of 

unit length. Then the lengths of the two intervals X,, X; X, and X,, X, are 
uniformly distributed, but the length X of the one containing the arbitrary 
point P has a different distribution (with density 22). 

In particular, each of the two intervals has expected length 4, but the 
one containing P has expected length 3. The point P being fixed, but 
arbitrary, one has the feeling that the interval covering P is chosen “without 
advance knowledge of its properties’ (to borrow a phrase from the philos- 
ophers of probability). Certainly naive intuition is not prepared for the 
great difference between covering or not covering an arbitrary point, but after 
due reflection this difference becomes “intuitively obvious.” In fact, how- 
ever, rather experienced writers have fallen into the trap. 

For a proof imagine the circle cut at P leaving ug with two points chosen 

independently and at random in 0, 1. Using the same notation as before the 
event {A < ¢} occurs iff X(2) — Xq) > 1 — ¢ and by (7.1) the probability 
for this equals t?. The variable A has therefore density 2, as asserted. 
(Beginners are advised to try a direct computational verification.) 

(d) Distribution of order statistics. If X,,...,X, are independent and 

distributed uniformly in 0,1, the. number of variables satisfying the in- 

equality 0 < X,;<t<1 has a binomial distribution with probability of 

“success” equal to t. Now the event {X.,)-< ¢} occurs iffat least kK among 

the variables are <¢ and hence 

(7.2) P(X) < t}= (" ): rao, 
j=k 

This gives us the distribution function of the kth-order statistics. By 

differentiation it is found that the density of Xi) is given by 

(7.3) "(i 4) 41 — 2)". 

This may be seen directly as follows: The probability that one among the 

X, lies between ¢ and¢ +4, and that k — 1 among the remaining ones 
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are less than ¢ while n — k are greater than t+ h, equals 

n—l\ 44 _ n m1 —t—h)" *h. (j_,) am) 
Divide by A and let 4-0 to obtain (7.3). 

(e) Limit theorems. To see the nature of the distribution of X,,) when 

n is large it is best to introduce E(X(.)) = (n+1)"! asa new unit of measure- 
ment. As n-> co we get then for the tail of the distribution function 

(7.4) P{nXQ) > t} = ( -*) — et, 
n 

It is customary to describe this relation by saying that in the limit. Xq) is 
exponentially distributed with expectation n~. Similarly | 

t\" n\t tYr oo 
(7.5) P{nXi) >t} = ( — "| + ( rt _ "| —>e + tet, 

on 1/n n 

and on the right one recognizes the tail of the gamma distribution G, of 
(3.5). In like manner it is easily verified that for every fixed kK as n—> 00 

the distribution of nX\,) tends to the gamma distribution G, (see problem 33). 
_ Now G, is the distribution of the sum of k independent exponentially 
distributed variables while X(,) is the sum of the first k intervals considered - 
in example (b). We can therefore say that the lengths of the successive 
intervals of our partition behave in the limit as if they were mutually in- 
dependent exponentially distributed variables. 

[In view of the obvious relation of (7.2) with the binomial distribution 

the central limit theorem may be used to obtain approximations to the 
distribution of Xj.) when both n and k are large. See problem 34.] 

(f) Ratios. Let X be chosen at random in 0,1 and denote by U. the 
length of the shorter of the intervals 0,X and X,1 and by V=1—-U. 

the length of the longer.. The random variable U is uniformly distributed 
between 0 and 3 because the event {U < t < 4} occurs iff either X <¢ or 
1 — X <¢ and therefore has probability 2. For reasons of symmetry V 
is uniformly distributed between 4 and 1, and so E(U) =}, E(V) = }. 

What can we say about the ratio. V/U? It necessarily exceeds 1 and it lies 
between 1 and ¢ > 1 iff either | 

1 . _ t 
—<Xxe or <x<s-—. 
41> St _4S%s 1+t 

For t > 1 it follows that’ 

Vv t—1 
7.6 Pi—-<t)}=-—, 

(7.8) bs t+1 

 



1.8 RANDOM SPLITTINGS 25 

and the density of this distribution is given by 2(t+1)-*. It is seen that 
V/U has infinite expectation. This example shows how little information 
is contained in the observation that E(V)/E(U) = 3. > 

8. RANDOM SPLITTINGS ._ 

The problem of this section concludes the preceding parade of examples 
and is separated from them partly because of its importance in physics, 
and partly because it will serve as a prototype for generat Markov chains. 

Formally we are concerned with products of the form Z, = X,X,°-- X, 

where X,,. .,X, are mutually independent variables distributed uni- 

formly in 0, 1. 

Examples. for applications. In certain collision. processes a physical 
particle is split into two and its mass m divided between them. Different 
laws of partition may fit different processes, but it is frequently assumed 
that. the fraction of parental mass received by each descendant particle is 

distributed uniformly in 0, 1. If one of the two particles is chosen at random 
and subject to a new collision then (assuming that there is no interaction 
so that the collisions are independent) the masses of the two second-generation 
particles are given by products mX,X2, and soon. (See problem 21.) With 
trite verbal changes this model applies also to splittings of. mineral grains or 
pebbles, etc. Instead of masses one considers also energy losses under 
collisions, and the description simplifies somewhat if one is.concerned with 
changes of energy of the same particle in successive collisions. As a last 

example consider the changes in the intensity of light when passing through 
- matter. Example 10(a) shows that when a light ray passes through a sphere 
of radius R “in a random direction” the distance traveled through the 
sphere is distributed uniformly between 0 and 2R. In the presence of uniform 
absorption such a passage would reduce the intensity of the incident ray by a 

factor. that. is uniformly. distributed in an interval 0,a (where a <1 
depends on ‘the strength of absorption). The scale factor does not seriously _ - 
affect our model and it is seen that m independent passages would reduce 
the intensity of the light by a factor of the form Z,,. > 

To find the distribution of Z, we can proceed in two ways. 

(i) Reduction to exponential distributions. Since sums are generally . 
preferable to products we pass to logarithms putting Y, = —log X,. The 
Y, are mutually independent, and for t>0 — 

8 PLD HHP Sep aet 
‘Now. the distribution function G,, of the sum S, = Y, +°-: + Y, of a 

independent exponentially distributed variabl¢s - was calculated | in (3.5), 
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and the distribution function of Z, = e-» is given by 1 — G,(log t7) 
where 0<¢< 1. The density of this distribution function is t~1g,(log t—) 
or 

n-1 

(8.2). f(t) = 5 (ioe ‘) , O<t<l. n— 

Our problem is solved explicitly. This method reveals the advantages 
to be derived from an appropriate transformation, but the success depends 
on the accidental equivalence of our problem with one previously solved. 

(il) A recursive procedure has the advantage that it lends itself also to 
related problems and generalizations. Let - F,(t) = P{Z, <t} and 
0<t< 1. By definition F,(¢)= 4% Suppose F,_, known and note that 

Z, = Z,_,1X%, is the product of two independent variables. Given X, = x 

the event {Z, <1} occurs iff Z,_, < t/x and has probabili' F,,_,(t/z). 
Summing over all possible z we obtain for 0 < t < 1 

(8.3) F,,(t): = [ Featls) dx = [ Fate) dx +t. 

This formula permits us in principle to calculate successively F,, F3,.... 
In practice it is preferable to operate with the corresponding densities /f,. 
By assumption f, exists. Assume by induction the existence of f,_1. 
Recalling that f,_,(s) = 0 for 5 > 1 we get by differentiation from (8.3) 

(8.4) A= [hal)®, O<tK<l, 
and trite calculations show that f,, is indeed given by (8.2). 

9. CONVOLUTIONS AND COVERING THEOREMS 

The results of this section have a mild amusement value in themselves 
and some obvious applications. Furthermore, they turn up rather un- 
expectedly in connection with seemingly unrelated topics, such as significance 
tests in harmonic analysis [example IIT,3( SI], Poisson processes [XIV,2(a)], 
and random flights [example 10(e)]. It is therefore not surprising that all 

formulas, as well as variants of them, have been derived repeatedly by 

different methods. The method used in the sequel is distinguished by its 
simplicity and applicability to related problems. 

let a>O be fixed, and denote by X,, X,,... mutually independent 

random variables distributed uniformly over 0, a. Let S, = X, +++: + X,. 

Our first problem consists in finding the distribution U, of S, and its 
density u, =U". 
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_ By definition u,(@z)=a! for 0<x<a and u,(z)=0 elsewhere 
(rectangular density), The higher wu, are defined by the convolution formula 
(2.13) which in the present situation reads 

1 (2 1 0.1) ante) =4 [Puge—w dy = 2 (0,02) — Us@—a)} 
It is easily seen that 

xa~* O0<x<a 
(9.2) ue(2) = . 

: (2a—2z)a~ a<ux< 2a, 

and, of course, p(x) = 0 forall other x. The graph of u, appears as an 

isosceles triangle with basis 0, 2a, and hence wuz is called triangular density. 

Similarly ug is concentrated on 0, 3a and is defined by three different 
quadratic polynomials in the three thirds of this interval. For a general 
formula we introduce the following 

Notation. We write 

«+ || 
2 

for the positive part of the real number x. In the following the ambiguous 
symbol x” stands for (x,)", namely the function that vanishes for x < 0 
and equals x” when +> 0. Note that (z—a), is zero for «<a anda 

linear function when x >a. With this notation the uniform distribution 
may be written in the form 

(9.3) z= 

(9.4) U,(2) = (x, — (x—a),)a7, 

Theorem 1. Let S, be the sum of n independent variables distributed 

uniformly over 0,a. Let U,(x) = P{S, <2} and denote by u, = U'. the 

  

density of this distribution. Then forn=1,2,... and x>0 

(9.5) U2) =~ S(-"(" _ va)? 
! yx0 

(9.6) Ueil®) = 5 1 Coe. 

(These formulas remain true also for x <0 and for n=0 provided 
x. is defined ‘to equal 0 on the negative half-axis, and 1 on the positive.) 

Note that for a point x between (k—1)a and ka only k terms of the 

sum are different from zero. In practical calculations it is convenient to 

disregard the limits of summation and to pretend that » varies from — oo 
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to 0. This is possible, because with the standard convention the binomial 
coefficients in (9.5) vanish for » <0 and »>n (see 1; II,8). 

Proof. For n = 1 the assertion (9.5) reduces to (9.4) and is obviously 
true. We now prove the two assertions simultaneously by induction. 
Assume (9.5) to be true for some n> 1. Substituting into (9.1) we get 
Uns aS the difference of two sums. Changing the summation index v in 
the second sum to v — 1 we get 

teal) = aD (- »"| (") + (," ,) |@-703 
which is identical with (9.6). Integrating this relation leads to (9.5) with n 
replaced by n + 1, and this completes the proof. > 

  

(An alternative proof using a passage to the limit from the discrete model 
is contained in problem 20 of 1; XI,7.) 

Let a = 2b. The variables X, — 5 are then distributed uniformly over 

the symmetric interval —b, 5, and hence the sum of n such variables has 
the same distribution as S, — nb. It is given by U,(a+nb). Our theorem 
may therefore be reformulated in the following equivalent form. 

Theorem la. The density of the sum of n independent variables distributed 
uniformly over —b, b is given by 

— 1 Sy_iy na 
(9.7) u,(z+nb) = Ob"(n yt &! 1) (" "ye + (n— 2v)b)i. 

We turn to a theorem which admits of two equivalent formulations both of 
which are useful in many special probiems arising in applications. By 
unexpected good luck the required probability can be expressed simply in 
terms of the density u,. We prove this analytically by a method of wide 
applicability. For a proof based on geometric arguments see problem 23. 

Theorem 2. On a circle of length t there are given n > 2 arcs of length a 
whose centers are chosen independently and at random. The probability 

y,(t) that these n arcs cover the whole circle is 

(9.8) ga(t) = a"(n—1)!u,(1) = . 
which is the same as 

(9.9) ge = SH y(" ")( -)" : 
v0 + 

Before proving it, we reformulate the theorem in a form to be used later. 
Choose one of the n centers as origin and open the circle into an interval of 
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length ¢t. The remaining n —1 centers are randomly distributed in 0, ¢ 
and theorem 2 obviously expresses the same thing as 

Theorem 3. Let the interval 0,t be partitioned into n subintervals by 
choosing independently at random n—1 points X,,...,X,_, of division. 
The probability ,(t) that none of these subintervals is of length exceeding a 
equals (9.9). 

Note that p,(¢), considered for fixed ¢ asa function of a, represents the 
distribution function of the maximal length among the n intervals into which 

0, ¢ is partitioned. For related questions see problems 22-27. 

Proof. It suffices to prove theorem 3. We prove the recursion formula 

“ dx 

i . 

Its truth follows directly from the definition of gy, as an (n—1)-tuple 
‘integral, but it is preferable to read (9.10) probabilistically as follows. The 
smallest among X,,..:,X,_, must be less than a, and there are n ~ 1 

choices for it. Given that X,; =, the probability that X, is leftmost 
equals [(¢—=)/t]!"-*. The remaining variables are distributed uniformly over 

2,¢ and the conditional probability that they satisfy the conditions of the 
theorem is y,_;(t—2). Summing over all possibilities we get (9.10). 

Let us for the moment define u,, by (9.8). Then (9.10) reduces to 

  (9.10) pal) = 1) [Pa ill of 

(9.11) u one's n— (02) da 
9 

which is exactly the recursion formula (9. 1) which served to define u,. It 
suffices therefore to prove the theorem for n = 2. But it is obvious that 
p(t)=1. for O<t<a and 9,(t)=(2a—N/t for a<t<2a, in 

agreement with (9.8). - > 

10. RANDOM DIRECTIONS | 

Choosing a random direction in the plane R? is the same as choosing 
‘at random a point on the circle. If one wishes to specify the direction by 
its angle with the right x-axis, the circle should be referred to its arc length 
6 with 0 <6 < 27. For random directions in the space R* the unit 

sphere serves as sample space; each domain has a probability equal to its 
‘area divided hy 47. Choosing a random direction in R* is equivalent to 

11 Readers who feel uneasy about the use of conditional probabilities i in connection with 
densities should replace the hypothesis X; = x by the hypothesis x ~h < X; <2, which 
has positive probability, and pass to the limit as h- 0. 
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choosing at random a point on this unit sphere. As this involves a pair of 

random variables (the longitude and latitude), consistency would require 
postponing the discussion to chapter III, but it appears more naturally in 
the present context. 

Propositions. (i) Denote by L the length of the projection of a unit vector 
with random direction in R® ona fixed line, say the x-axis. Then L is 

uniformly distributed over 0,1, and E(L) = 3. 

(ii) Let U be the length of the projection of the same vector on a fixed 

plane, say the x,y-plane. Then U has density t// 1—?f? for O<t<l,. 
and E(U) = jr. 

  

The important point is that the two projections have different distributions. 
That the first is uniform is not an attribute of randomness, but depends on 
the number of dimensions. “he counterpart to (i) in R? is contained in 

Proposition. (iii) Let L be the length of the projection of a random unit 

vector in R® on the x-axis. Then L has density 2/(aV1—x*), and 
E(L) = 2/z. 

Proofs. (iii) If 6 is the angle between our random direction and the 

y-axis, then L = |sin 6] and hence for 0 < x <1 we get by symmetry 

(10.1) P{L < x} = P{0 < 6 < arcsinz} = 2 arc sin x. 
7 

The assertion now follows by differentiation. 
(i), (ii). Recall the elementary theorem that the area of a spherical zone 

between two parallel planes is proportional to the height of the zone. For 
0<t<1 the event {L <7} is represented by the zone |z,| <1 of 

height 2¢, whereas {U < ft} corresponds to the zones |z,| =>V1—?* of 

total height 2 — 2/1—7?. This determines the two distribution functions 
up to numerical factors, and these follow easily from the condition that both 

distributions equal 1 at ¢= 1 > 

Examples. (a) Passage through spheres. Let & be a sphere of radius r 

and Na point on it. A line drawn through N in a random direction 
intersects & in P. Then: The length of the segment NP is arandom variable 
distributed uniformly between 0 and 2r. 

_ To see this consider the axis NS of the sphere and the triangle NPS 
which has a right angle at P and an angle @ at N. The length of NP is 
then 2rcos@. But cos @ is also the projection of a unit vector in the 
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line NP into the diameter NS, and therefore cos © is uniformly distributed’ 
in 0, 1. 

In physics this model is used to describe the passage of light through 
“randomly distributed spheres.” The resulting absorption of light was 
used as one example for the random-splitting process in the last. section. 
(See problem 28.): | 

(6) Circular objects under the microscope. Through a microscope. one 
observes the projection of a cell on the x,, 2,-plane rather than its actual 
shape. In certain biological experiments the cells are lens-shaped and 
may be treated as circular disks. Only the horizontal diameter of the disk 
projects in its natural length, and the whole disk projects into an ellipse 
whose minor axis is the projection of the steepest radius. Now it is generally 
assumed that the orientation of the disk is random, meaning that the direction 

- of its normal is chosen at random. In this case the projection of the unit 

normal on the ,-axis is distributed uniformly in 0, 1. But the angle between 
this normal and the z,-axis equals the angle between the steepest radius and 
the z,, z,-plane and hence the ratio of the minor to the major axis is dis- 

tributed uniformly in 0,1. Occasionally the evaluation of experiments was 
based on the erroneous belief that the angle between the steepest radius 
and the x,, z,-plane should be distributed uniformly. 

(c) Why are two violins twice as loud as one? (The question is serious 
because the loudness is proportional to the square of the amplitude of the 
vibration.) The incoming waves may be represented by random unit vectors, 

and the superposition effect of two violins corresponds to the addition 
of two independent random vectors. By the law of the cosines the square 
of the length of the resulting vector is 2+ 2cos @. Here © is the angle 
between the two random vectors, and hence cos @. is uniformly distributed 

in —1,1 and has zero expectation. The expectation of the square of the 
resultant length is therefore indeed 2. 

In the plane cos 6 is not uniformly distributed, but for reasons of symmetry 
its expectation is still zero. Our result therefore holds in any number of 
dimensions. See also example V,4(e). . > 

By a random vector in R*® is meant a vector drawn in a random direction 
with a length L which is a random variable independent of its direction. 
The probabilistic properties of a random vector are completely determined 

by those of its projection on the x-axis, and using the latter it is frequently 
possible to avaid analysis in three dimensions. For this purpose it is impor- 

tant to know the relationship between the distribution function V of the 

true length L and the distribution F of the length L, of the projection on 

the x-axis. Now L, = XL, where # is the length of the projection of a 

unit vector in the given direction. Accordingly, X is distributed uniformly 
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over 0,1 and is independent of L.. Given X = 2, the event {L, < ¢} 
occurs iff L < t/x, and so¥ 

(10.2) | F(t) = { V(t/2) dx t>0. 

For the corresponding densities we get by differentiation 

(10.3) f= [> (te =[" uy) 
and differentiation leads to 

(10.4) v(t)=—7f'(t), -t>0. 

We have thus found the analytic relationship between the density v of the 
length of a random vector in P* and the density f of the length of its pro- 
jection on a fixed direction. The relation (10.3) is used to find f when v- 
is known, and (10.4) in the opposite direction. (The asymmetry between 
the two formulas is due to the fact that the direction is not independent of 
the length of the projection.) 

Examples. (72) Maxwell distribution for velocities. Consider random— 
vectors in space whose projections on the x-axis have the normal density 
with zero expéctation and unit variance. Since length is taken positive we 
have | 

(10.5) f(t) = In(t) = V2/n er", 1>0. 
From (10.4) then | 

(10.6) | ot) = V2 tet, t>0. 

This is the Maxwell density. for velocities in statistical mechanics. The 
usual derivation combines the preceding argument with a proof that f must 
be of the form (10.5). (For an alternative derivation see III,4.) 

‘(e) Lord Rayleigh’s random flights in R*. Consider n ‘unit vectors whose 
directions are chosen independently and at random: We seek the distribution 
of the length L, of their resultant (or vector sum). Instead of studying this 

resultant directly we consider its projection on the a-axis. This projection is 
obviously tI the sum of .7# independent random variables distributed uniformly 

over —1,1. The density of this sum is given by (9.7) with b= 1. Sub- 
Stituting into (10.4) one sees that the density of the length L,, is given by'® 

10.7 -p,(x) = —1 r(" :) x+-n—2y n—2 z> 0. 07) el) = a, By (M\ yt 
12 This argument repeats the proof of (8.3). 
18 The standard reference is to a paper by S. Chandrasekhar {reprinted in Wax (1954)] 

who calculated. 0g, 04,.¥g and the Fourier transformof v,:: Because he used. polar coordi- 
nates, his W,(2) must be multiplied by 4az* to obtain our a. 
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This problem occurs in physics and chemistry (the vectors representing, 
for example, plane waves or molecular links). The reduction to one dimension 
‘seems to render this famous problem trivial. . 

The same method applies to random vectors with arbitrary length and 
thus (10.4) enables us to reduce random-walk problems in R* to simpler 
problems in R'. Even when explicit solutions are hard to get, the central 
limit theorem provides valuable information [see example VIII,4(5)]. ss > 

Random vectors in R* are defined in like manner. The distribution V of the true iength 
and.the distribution F of the projection are related. by the obvious analogue to (10.2), ~ 
namely 

. , . 2 Palo z \. 

10.8) ae ey = | (sro) 
0 

However, the inversion formula (10.4) has no simple analogue, and to express V in terms 

of F we must depend on the relatively deep theory of Abel’s integral equation. * We state 
without proof that if F has a continuous density /, then. 

9 1-vay=2( (=) (10.9) 1-V@j=2 5 I\ in 3) aks ° 

(See problems 29-30.) 

Example. (f) Binary orbits. In observing a spectroscopic binary orbit astronomers 
can measure only the projections of vectors onto a plane perpendicular to the line-of sight. 
An ellipse i in space projects into an ellipse in this plane. The major axis of the true ellipse 
lies in the plane determined by the line of sight and its projection, and it is therefore 
reasonable to assume that the angle between the major axis and its projection is uniformly 

‘distributed. Measurements determine (in principle) the distribution of the projection. The 
distribution of the true major axis is then given by the solution (10.9) of Abel’s integral 
equation. _ > 

11. THE USE OF LEBESGUE’ MEASURE 

Ifaset A in 0,1 is the union of finitely many non-overlapping intervals . 
I,, 1,,... of lengths Ay, 4g,..., the uniform distribution attributes to it 

probability | . 

(11.1) P{4} =A, +4.4+°°° 

The following examples will show that some simple, but significant, problems 

14 The transformation to Abel's integral equation is by means of the change of variables 

1 1 an 
Fy) = (5) iV @) = “(Z2) and xsin°-@=y. 

Then (10.8) takes on the form 

. VAY) 

O° be TR dy, 
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lead to unions of infinitely many non-overlapping intervals. The definition 
(11.1) is still applicable and identifies P{A} with the Lebesgue measure of 
A. Itis consistent with our program to identify probabilities with the integral 
of the density f(z) = 1, except that we use the Lebesgue integral rather than 

the Riemann integral (which need not exist). Of the Lebesgue theory. we 
require only the fact that if A is the union of possibly overlapping intervals 
I,,J,,... the measure P{A} exists and does not exceed the sum 4, + 42 + ° °° 

of the lengths. For non-overlapping intervals the equality (11.1) holds. The 
use of Lebesgue measure conforms to uninhibited intuition and simplifies 
matters inasmuch as many formal passages to the limit are justified. A set NV 
is called a null set if it is contained in sets of arbitrarily small measure, that is,. 

to each e¢ there exists a set A > N such that P{A} < . In this case 
P{N} = 0. , 

In the following X stands for a random variable distributed uniformly 
— 

in 0,1. 

Examples. (a) What is the probability of X being rational? The sequence 

4, 4, #,3,2,4,... contains all the rationals in 0,1 (ordered according to 
increasing denominators). Choose « < 4 and-denote by J, an interval of 
length e*+? centered at the kth h point of the sequence. The sum of the 
lengths of the J, is «2 + «? + +++ < ¢, and their union covers the rationals. 

Therefore by our definition the set of all rationals has probability zero, and 
so, X is irrational with probability one. 

It is pertinent to ask why such sets should be considered in probability 
theory. One answer is that nothing can be gained by excluding them and that 

the use of Lebesgue theory actually simplifies matters without requiring new 
techniques. A second answer may be more convincing to beginners and 
non-mathematicians; the following variants lead to problems of un- 
doubted probabilistic nature. . 

(b) With what probability does the digit 7 occur in the decimal expansion 
of X? In the decimal expansion of each x in the open interval between 0.7 
and 0.8 the digit 7 appears at the first place. For each nm there are 9"-} 
intervals of length 10-" containing only numbers such that the digit 7 appears 
at the nth place but not before. (For nm = 2 their endpoints are 0.07 and 
0.08, next 0.17 and 0.18, etc.) These intervals are non-overlapping, and 

their total length is yo(1 + 6 + Go)? +°°°) = 1. Thus our event has 
probability 1. 

Notice that certain numbers have two expansions, for example 0.7 = 

= 0.6999.... To make our question unequivocal we should therefore 
specify whether the digit 7 must or may occur in the expansion, but our 
argument is independent of the difference.. The reason is that only rationals 
can have two expansions, and the set of all rationals has probability zero. 
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(c) Coin tossing and random choice. Let us now see how a “random 
choice of a point X between 0 and 1” can be described in terms of discrete 
random variables. Denote by X,(%) the kth decimal of zx. (To avoid 
ambiguities let us use terminating expansions when possible.) The random 
variable X, assumes the values 0, 1, » 9, each with probability ;4, and 
the X, are mutually independent. By the definition of a decimal expans‘on, 
we have the identity 

(11.2) X =) 10*X,. 
kel 

This formula reduces the random choice of a point X to successive choices 
of its decimals. _ 

For further discussion we switch from decimal to dyadic expansions, that 
is, we replace the basis 10 by 2. Instead of (11.2) we have now | 

(11.3) X = ¥2°X, 
k=l 

where the X, are mutually independent random variables assuming the 

values 0 and 1 with probability 3. These variables are defined on the interval 

0,1 on which probability is equated with Lebesgue measure (length). This 
formulation brings to mind the coin-tossing game of volume 1, in which the 
sample space consists of infinite sequences of heads and tails, or zeros and 
ones. A new interpretation of (11.3) is now possible in this sample space. 
In it, the X, are coordinate variables, and X is a random variable defined by 
them; its distribution function is, of ‘course, uniform. Note that the second _ 

formulation contains two distinct sample points 0111111 and 1000000 even 
though the corresponding dyadic expansions represent the same point }. | 
Nevertheless, the notion of zero probability enables us to identify the two 

_ sample spaces. Stated in more intuitive terms, neglecting an ‘event of prob-| 
ability zero fhe random choice of a point XK between 0 and 1 can be effected 
by a sequence. of coin tossings; conversely, the result of an infinite coin- 

tossing game may be represented by a point 2 of 0, 1. Every random variable 

of the coin-tossing game may be represented by a function on 0, 1, ete. 
This convenient and intuitive device has been used since the beginning of 
probability theory, but it depends on neglecting events of zero probability. 

(d) Cantor-type distributions. A distribution with unexpected properties 
is found by considering in (11.3) the contribution of the even-numbered 

terms or, what amounts to the same, by considering the random variable 

“ 

(11.4) Y=354°X,. 
yu 

(The factor 3 is introduced to simplify the discussion. The contribution 
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of the odd-numbered terms has the same distribution as #Y.) The distri- 
bution function F(v) = P{Y < x} will serve as example for so-called 

singular distributions. 
In the calct lation we refer to Y as the gain of a gambler who receives 

the amount 3-4~ if the kth toss of a fair coin results in tails. This gain 
lies between 0 and 3(4-!+4+4-?+.---) =]. If the first trial results in 1 the 

gain is >§, while in the contrary case Y < 3(4-2+434---)= 47), 
Thus the inequality } < Y < ? cannot be realized under any circumstances, 
and so F(x) = 3 in this interval of length 4. It follows that F can have no 

jump exceeding 4. 

Next notice that up to a factor } the contribution of the trials number 
2, 3,... constitute a replica of the whole sequence, and so the graph of F 

in the interval 0,} differs from the whole graph only by a similarity 
transformation 

(11.5) F(x) = }F (42), O<rch 

It follows that F(x) =} throughout an interval of length } centered at 

x= 4%. For reasons of symmetry, F(x) =}? throughout an interval of 
length } centered at x = 3. We have now found three intervals of total 
length 4+ § = } in each of which F assumes a constant value, namely 
}, 4, or 3. Consequently, F can have no jump exceeding }. There remain 
four intervals of length 344 each, and in each of them the graph of F differs 
from the whole graph only by a similarity transformation. Each of the 

four intervals therefore contains a subinterval of half its length in which 
F assumes a constant value (namely }, 3, 3, %, respectively). Continuing 

in like manner we find in n steps 1 + 2 +2? +-+- +2"! intervals of 

total length 2-1 + 2%4+2-%4.---4+2-"=1—-—2- in each of which F 
assumes a constant value. 

Thus F is a continuous function increasing from F(0)=0 to FU)=1 
in such a way that the intervals of constancy add up to length 1. Roughly 
speaking. the whole increase of F takes place on a set of measure 0. We 

have here a continuous distribution function F without density 7. > 

12. EMPIRICAL DISTRIBUTIONS 

The ‘‘empirical distribution function” F, of n points a,,...,4, on the 
line is the step function with jumps I/n at a,...,a,. In other words, 

. . ‘ . SH . . . . 

n F,,(x) equals the number of points a, in —0oo,x, and F, isa distribution 

function. Given n random variables X,,...,X,, their values at a particu- 

lar point of the sample space form an n-tuple of numbers and its empirical 
distribution function is called the empirical sample distribution. For each 
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x, the value F,(x) of the empirical sample distribution defines a new 

random variable, and the empirical distribution of (X,,...,X,) represents 
a whole family of random variables depending oa the parameter x. (In 
technical language we are concerned with a stochastic process with x as 
time parameter.) No attempt will be made here to develop the theory of 

_empirical distributions, but the notion may be used to illustrate the occurrence 

of complicated random variables in simple applications. Furthermore, the 
uniform distribution will appear in a new light. 

Let X,,...,X, Stand for mutually independent random variables with 
a common continuous distribution F. The probability that any two variables 
assume the same value is zero, and we can therefore restrict our attention 

to samples of n distinct values. For fixed 2 the number of variables X, 
such that X, <x has a binomial distribution with probability of ‘‘success”’ 
p = F(z), and so the random variable F,,(x) has a binomial distribution with 
possible values 0, 1/n,..., 1. Forlarge n and z fixed, F,(z) is therefore 

likely to be close to F(x) and the central limit theorem tells us more about 
the probable deviations. More interesting is the (chance-dependent) graph 

_ of F,, as a whole and how close it is to F. A measure for this closeness is 
the maximum discrepancy, that is, 

(12.1) _ D, = sup ([F,(x) — F(z)|. 
—~O<z2<@ 

This is a new random variable’ of great interest to statisticians because of 
the following property. The probability distribution of the random variable 
D,, is independent of F (provided, of course, that F is continuous). — 

For the proof it suffices to verify that the distribution of D, remains 
unchanged when F is replaced by.a uniform distribution. We begin by 
showing that the variables Y, = F(X;) are distributed uniformly in 0, I. 

For that purpose we restrict ¢ to the interval 0,1, and in this interval we 
define v astheinversefunction of F. Theevent {F(X,) < ¢} is then identical 

with the event {X, <v(t)} which has probability F(v(t))=+¢. Thus 

P{Y, <¢} = 7 as asserted. 
The variables Y,,...,¥Y, are mutually independent, and we denote 

their empirical distribution by G,. The argument just used shows also that 
for fixed ¢ the random variable G,(t) is identical with F,(v(t)). Since 

t = F(v(t)) this implies that at every point of the sample space R” 

sup |G,,(¢) — ¢| = sup [F,(o(t)) — F@@)| = Dp. 

This proves the proposition. | 

The fact that the distribution of D,, is independent of the underlying dis- 

tribution F enables statisticians to devise tests and estimation procedures 
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applicable in situations when the underlying distribution is unknown. In 

this connection other variables related to D,, are of even greater practical use. 
Let X,,...,X,, X/#,...,X# be 2” mutually independent random 

variables with the common continuous distribution F, and denote the 

empirical distributions of (X,,...,X,) and (X*,...,X*) by F, and 
F*, respectively. Put 

(12.2) D,.n = sup [F,(%) — Fi(2). 
This is the maximum discrepancy between the two empirical distributions. 
It shares with D,, the property that it does not depend on the distribution 
F. For this reason it serves in statistical tests of “the hypothesis that 
(X1,...,X,) and (X/#,...,X#) are random samples from the same 
population.” 

The distribution of D,,,, was the object of cumbersome calculations 

and investigations but in 1951 B. V. Gnedenko and V. S. Koroljuk showed 
that the whole question reduces to a random-walk problem with a well-known 
solution. Their-argument is pleasing by its elegance and we use it as 
illustration of the power of simple combinatorial methods. 

Theorem. P{D,,, << rj/n} equals the probability in a symmetric random . 

walk that a path of length 2n starting and terminating at the origin does not 
reach the points +r. 

Proof. It suffices to consider integral r. Order the 2” variables Xj,-.. 

X* in order of increasing magnitude and put «, = 1 or e, = —1, according 

to whether the kth place is occupied by an X, or an X#. The resulting 

. , , n 
arrangement contains n plusonesand 7 minus ones, and all ( orderings 

n 
are equally likely. The resulting 2n-tuples (€,,...,€,) are therefore in a 

One-to-one correspondence with the paths of length 2” starting and termin- 
ating at the origin. Now if «, +--:+ ¢, =k the first j places contain 

(j+k)/2 unsuperscripted and (j—k)/2 ‘superscripted variables, and so 
there exists a point x such that F,(v) = (j+k)/2n and F#(x) = (j—k)/2n. 

But then |F,, (x) — F*(x)| = |k\/n and hence D,, > |k|/n. The same 

argument in reverse completes the proof. > 

An explicit expression for the probability in question is contained in 1, XIV,(9.1). In fact 

P{Da in < r|n} =w, 

is the probability that a particle starting at the origin returns at epoch 2” to the origin 
without touching +r. The last condition can be realized by putting absorbing barriers at 
+r, and so w,,, is the probability of a return to the origin at epoch 2n when +r are 

absorbing barriers. [In 1; XIV,(9.1) the interval is 0,a rather than —r,r. Our w,, is 

identical with u, o,(7).]
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It was shown in 1; XIV that a limiting procedure leads from random walks to diffusion 

processes, and in this way it is not difficult to see that the distribution of V nD,» tends to 
a limit. Actually this limit was discovered by N. V. Smirnov as early as 1939 and the 

similar limit for V/nD, by A. Kolmogorov in 1933. Their calculations are very intricate 
and do not explain the connection with diffusion processes, which is inherent in the 

Gnedenko-Koroljuk approach. On the other hand, they have given impetus to fruitful 
work on the convergence of stochastic processes (P. Billingsley, M. F. Donsker, Yu. V. 
Prohorov, A. V. Skorohod, and others). 

It may be mentioned that the Smirnov theorems apply equally to discrepancies D,,,, of 

the empirical distributions of samples of different sizes m and n. The random-walk 
approach carries over, but loses much of its elegance and simplicity (B. V. Gnedenko, 
E. L. Rvateva). A great many variants of D,,,, have been investigated by statisticians. 
(See problem 36.) — 

13. PROBLEMS FOR SOLUTION 

In all problems it is understood that the given variables are mutually independent. 

1, Let X and Y have densities we~¢z concentrated on 0, «©. Find the densities 

of ee 
(i) X8 . (ii) 3 + 2X . 

(iii) X -— ¥ . (iv) IX —Y| 
(v) The smaller of X and Y® (vi) The larger of X and Y?. 

2. Do the same: problem if the densities of X and .Y equal din —1,1 ando 
elsewhere. 

3. Find the densities for X + Y¥ and X — Y if X hasdensity «e~#2(x > 0) and 
the density-of Y equals A? for 0 <2 <A. 

4. Find the probability that 22 — 2a4 + b has complex roots if the coefficients 
a and 6 are random variables whose common density is 

(i) uniform, that is, ho for 0<2<h 
(ii) exponential, that is, ( wear for x>0. 

5. Find the distribution functions of X+Y/X and X+Y/Z if the variables X,~ 
Y, and Z have a common exponential distribution. 

_ 6. Derive the convolution formula (3.6) for the exponential distribution by a 
direct passage to the limit from the convolution formula for the ‘‘negative 
_binomial”’ distribution of 1; VI,(8.1). 

- 7, In the Poisson process of section 4, denote by Z the time between epoch ¢ — 
_ and the last preceding arrival or 0 (the “age’”’ of the current interarrival time). Find 
the distribution of Z and show that it tends to the exponential distribution as 
t— oo. 

8. In example 5(a) show that the probability of the first record value occurring” 
at the nth place and being <x equals 

1 

n(n +1) 

‘Conclude that the probability distribution of the first record value is 1 — (1 +ax)e~ 
{More generally, if the X; are positive and subject to an arbitrary continuous 

distribution F, the first probability equals [n(n+1))1F"+\(a) and the distribution 
of the first record value is F — (1—F) log al “A. ]. 

a —e7anyntl, 
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9. Downward runs.. The random variable N_ is defined as the unique index 
such that X, > X, > ‘> Xn-1 < Xy. If the X; have a common continuous 
distribution F prove that P{N = 7} = (n—1)/n! and E(N) = e. 

Hint: Use the method of-example 5(a) concerning record values. 

10. Platoon formation in traffic.’ Cars start successively at the origin and travel 
at different but constant speeds along an infinite road on which no passing is possible. 
When a car reaches a slower car it is compelled to trail it at the same speed. In this 
way platoons will be formed whose ultimate size depends on the speeds of the cars 
but not on the times between successive departures. 
_ Consider the speeds of the cars as independent random variables with a common 
continuous distribution. Choose a car at random, say the next car to cepa 
Using the combinatorial method of example 5(a) show that: 

(a) The probability that the given car does not trail any other car tends to 4. 
(b) The probability that it leads a platoon of total size n (with exactly 1 — 1 

cars trailing it) tends’'to 1/(+1)(1+2). 

(c) The probability that the given car is the last in a platoon of size n tends to 
the same limit. 

11. Generalization’® of the record value example 5(a). Instead of taking the single 
preliminary observation Xq we start from a sample (Xj, . . ., Xm) with order statistics . 
(Xq),-- +» Xm). (The common distribution F plays’ no role as long as it is 
continuous.) 

(a) If N is the first index such that Xpin 2 Xm) Show that P{N > n} = 
=m|(m-+n). [In example 5(a) we had m = 1,] 

{b) If N is the first index 1 such that X,4, > X(m_,41) Show that 

rosa =(7)/("") r, Tr 

For y > 2 we have E(N) < © and | 

1 

(I+2)"’ mo 
P{N < m2} +1 —- 

(c) If N_ is the first index such that X,,,, falls outside the interval between 
Xi) and Xm) then 

m(m —1) 
PIN > = GrtnXn tnt)’ and E(N) < o. 

12. (Convolutions of exponential distributions). For j =0,...,m let X; have 
density A,e74s for z > 0 where A; ¥ 4, unless j =k. Put 

Vien = [WA —Ag) - Apa An Ang —4g) + An — AT. 

Show that Xp +:-- + X, hasa density given by 

(*) P,(t) =A,--: An1[¥o,ne 40" ++ + yy nemant]. 

Hint: Use induction, a symmetry argument, and (2.14). No calculations are 
necessary. . 

15 G, F. Newell, Operations Research, vol. 7 (1959), pp. 589-598. 
16S. S. Wilks, J. Australian Math. Soc., vol. 1 (1959) pp. 106-112. 
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13. (Continuation). ‘If Y¥,; has the density | je-™, the density of the sum ~ 
Y, +--- + ¥,, is given by 4 . 

frx@) =n s ( “om? ew ka, z>0, 
kel k-1 - 

Using the proposition of example 6(b) conclude that fn-1 is the density. of the 
spread Xin) Xap of a sample X,,..., Xn if the Xs have the common 
density e7*. 

14.. Pure birth processes. In the pure birth | process of 1; XVII,3 the > system passes | 
through a sequence of states Ey > £, > --- , staying at Ey for a sojourn time X; 
with density A,e~4#. Thus S, = X) + --- + X,, is the epoch of the transition 
E, ~ En 4. Denote by P,(t) the probability of E, at epoch ¢. Show that. 
P(t) = P{S, > t} — P{S,_, > ¢} andhencethat P, is given by formula (*) of 
problem 12. The differential equations of the process, namely 

Po(t) = —AgPA(t), Prt) = —AgPp(t) + An—yPa@), n>1, 

should be derived (a) from (1), and (5) from the properties of the sums S,. 
Hint: Using inductively a symmetry argument it suffices to consider the 

factor of e740, 

15. In example 6(@) for parallel waiting lines we say that the system is in state 
k if k counters are free. Show that the birth process model of the last example 
applies with 4, = (m—k)«. Conclude that 

P,{t) = (7) | —ematykem (nba, 

From this derive the distribution of X,,). 

16. Consider two independent queues of m and n> m persons respectively, 
assuming the same exponential distribution for the service times. Show that the 
probability of the longer queue finishing first equals the probability of obtaining n 
heads before mm tails in a fair coin-tossing game. Find the same probability also 
by considering the ratio X/Y of two variables with gamma distributions G,, and 
G, given in (3.5). . 

17. Example of statistical estimation. It is assumed that the lifetimes of electric 
bulbs have an exponential distribution with an unknown expectation «7. To 
estimate « a sample of 7 bulbs is taken and one observes the lifetimes 

Xa) < Xie) < ++ < Xp) 
of the first 7 bulbs to fail. The “best unbiased estimator” of «7! is a linear 
combination U = 4X) + °-* + 4,X;,, such that E(U) = «7 and Var (U) 
is the smallest possible. Show that 

. 1 1 1 
U =(Kqt+': +X iy) = ~ + Xin —r)- , andthen Var(U) =- = a, 

Hint: Do the calculations in terms of the independent variables Kn — X(e1) 
(see example 6(d)). 

18. If the variables X,,..., X, are distributed uniformly in 0, 1 show that the 
spread Xin) — Xz) has density n(n —1)2"-2(1 —x) and expectation (7 —1)/( +1). 
What is the probability that all » points li¢ within an interval of length +? 
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19. Answer the questions of example 6(b) when the three service times are 

distributed uniformly in 0,1. (Note: The problem involves tedious calculations, 
but may provide a useful exercise in technical manipulations.) 

20. Four points are chosen independently and at random on a circle. Find the 
probability that the chords X,X, and X;X, intersect: (a) without calculation 
using a Symmetry argument; (5) from the definition by an integral. _ 

21. In the random-splitting process of section 8 denote by Xia Xy0, Xo). Xoo 

the masses of the four fragments of the sécond generation, the subscript | referring 
to the smaller and 2 to the larger part. Find the densities and expectations of these 
variables. 

Note. The next few problems contain new theorems concerning random par- 
titions of an interval [see example 7(5)]. The variables X,,..., X, are supposed 

independent and uniformly distributed over -0, ¢. They induce a partition of this 
interval into +1 subintervals whose lengths, taken in proper order, will be 
denoted by L,,...,L,,;. [In the notation of order statistics we have 

Li = Xia); L, = X12) - Xs ary ni =f-— Xiny-] 

22. Denote by p,(¢) the probability that all 7 + 1 intervals are longer than Ah. 
[In other words, p,(¢) = P{min L, > h}, which is the tail of the distribution 
function of the shortest among the intervals.] Prove the recurrence relation 

n Pt~-h 

(*) Prt) = mi | x" 1p, _ (x) dx. 
0 

Conclude that p,(f) =¢-"(t — (n+1)h)?. 

23. From a recurrence relation analogous to (*) prove without calculations that 
for arbitrary x1 >0,..., 2,4, 20 

(**) P{L, > %,.--,Laga > Sayip = OME — 2 — 0 Tnii)F. 

[This elegant result was derived by B. de Finetti*’ from geometrical considerations. 
It contains many interesting special cases. When z; =/h forall j we get the preced- 
ing problem. Example 7(5) corresponds to the special case where exactly one among 
the x, is different from zero. The covering theorem 3 of section 9. follows from 
(**) and the formula 1; IV,(1.5) for the realization of at least one among 7 + 1 
events.] 

24. Denote by 9,(t) the probability that all mutual distances of the X, exceed 
h. (This differs from problem 22 in that no restrictions are imposed on the end 
intervals L, and L,,,.) Find a relation analogous to (*) and hence derive q,(‘). 

25. Continuation. Without using the solution of the preceding problems show a 
priori that p,(t) = (¢ —2h)"t"q,(¢ —2A). 

26. Formulate the analogue to problem 24 for a circle and show that problem 
23 furnishes its solution. 

27. An isosceles triangle is formed by a unit vector in the 2-direction and another 
in a random direction. Find the distribution of the.length of the third side (i) in 
R® and (ii) in RK. 

17 Giornale Istituto Italiano degli Attuari, vol. 27 (1964) pp. 151~173, in Italian. 
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28. A unit circle (sphere) about 0 has the north pole on the positive z-axis. A 
ray enters at the north pole and its angle with the z-axis is distributed uniformly 

over —4r, dr. Find the distribution of the length of the chord within the circle 
(sphere). 
Note. In 8? the ray has a random direction and we are concerned with the 

analogue to example 10(a). In R* the problem is new. 

29. The ratio of the expected lengths of a random vector and of its projection - 
on the z-axis equals 2 in R? and 2/2 in R®. Hint: Use (10.2) and (10.8). 

30. The length of a random vector is distributed uniformly over 0, 1. Find the: 
density of the length of its projection on the z-axis (a) in R3, and (b) in R2. 
Hint: Use (10.4) and (10.9). 

. 31. Find the distribution function of the projection on the z-axis of a randomly 
chosen direction in R4. 

32. Find the analogue in 8‘ to the relation (10.2) between the distributions of 
the lengths of a random vector and that of its projection on the z-axis. Specialize 
to a unit vector to verify the result of problem 31. ; 

33. A limit theorem for order statistics. (a) Let X,,...,X, be distributed 

uniformly in 0, 1. Prove that for k fixed and n — 

aw 

PX Ss ; > G,1(), 2x >0, 

where G,, is the gamma distribution (3.5) [see example 7(e)]. 
(b) If the X; have an arbitrary continuous distribution function F, the same 

limit exists for P{X,,, < @(a/n)} where © isthe inverse function of F. (Smirnov.) 

34. A limit theorem for the sample median. The nth-order statistic X,,) of 
(X,,..., Xoy_1) iS called the sample median. If the X,; are independent and 

uniformly distributed over 0, 1 show that 

P{Xiny — 3 < V8} + Nt) 

where 9 stands for the standard normal distribution. 

35. Continuation. Let the X; have a common distribution F with a con- 
tinuous density f/ Let m be the theoretical median, that is, let Fm) = 3. Show 
that 

2n—2\ [2 1 
PX iq) <2} = Qn-1) 1) F"-Uyyfl —F(y) fy) dy 

—2 

whence, using the preceding oroblem 

t 

(n) m <aavel 2) 

36. Prove the following variant of the Gnedenko-Korol jjuk theorem in section 12: 

P sup F(z) -F#(@)] > | = ( n ) / (""). 
x n nr n 

where r =1,2,.:.,m. (In contrast to the original formulation the. absolute 

values on the left are omitted and so only one absorbing barrier at 7 occurs in the 
associated random walk.) 

- — 
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37. Generation of exponentially distributed variables from uniform ones.1® Let 

X , X2,... be independent and uniformly distributed in 0, 1. Define the random 
variable N as the index such that X, > X, >--- > Xn_1 < Xn (see problem 9). 
Prove that 

gn-l an 

  

whence P{X, < x, N even} = 1 — e*. 
Define Y as follows: A “‘trial” is a sequence X,,..., Xn; it is a “failure” 

if. N is odd. We repeat independent trials as long as necessary to produce a 
“success.”” Let Y equal the number of failures plus the first variable in the 
successful trial. Prove that P{Y < xz} =1 —e=. 

18 J, von Neumann, National Bureau of Standards, Appl. Math. Series, No. 12 (1951) 
pp. 36-38. 

 



CHAPTER II 

Special Densities. 

Randomization 

The main purpose of this chapter is to list for reference the densities 
that will occur most frequently in the following chapters. The randomization 
procedure described in the second part is of general use. Its scope is 
illustrated by deriving certain distributions connected with Bessel functions 
which occur in various applications. It turns out that this simple probabilistic 
appvoach replaces involved calculations and hard analysis. 

1. NOTATIONS AND CONVENTIONS 

We say that a density f and its distribution F are concentrated’ on an 

interval I= a,b if f(x) =0 for all x outside J. Then F(x) =0 for 
x<aand F(x)=1 for «>. Two distributions F and G, and also 

their densities f and g, are said to be of the same type if they stand in the 
relationship 

(1.1) G(x) = F(ar+b), g(x) = af (ax+b), 

where a > 0. We shall frequently refer to b as a centering parameter, to 
a as a seale parameter. These terms are readily understood from the fact 
that when F serves as distribution function of a random variable X then 
G is the distribution function of 

  (1.2) Y= 

In many contexts only the type of a distribution really matters. 

1 According to common usage the closed interval J should be called the support of f. 
A new term is introduced because it will be used in the more general sense that a distribution 
may be concentrated on the set of integers or rationals. 

45 
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The expectation m and variance o? of f (or of F) are defined by 

(1.3). 

m=| af(a)dz, ot =| (e—m) f(a) dr = [oer ae — me 
—o 

a 

provided the integrals converge absolutely. It is clear from (1.2) that in 
this case g has expectation (m—b)/a and variance o*/a®. It follows that 
for each type there exists at most one density with zero expectation and unit 
variance. 

We recall from I,(2.12) that the convolution f=fi*fz of two densities 
fi and f, is the probability density defined by 

(1.4) {=| Ae-Ahly dy. 
When f, and f, are concentrated on 0, 00 this formula reduces to 

(1.5) fle) = | fev) fa) ay, z>0. 
The former represents the density of the sum-of two independent random var- 

lables with densities f, and f,. Note that for g,(x) = f,(x+6,): the con- 
volution g = g, * gy is given by g(x) = f(x+5,+5,) as is obvious from (1.2). 

Finally we recal] the standard normal distribution function and its density 
defined by 

(1.6) n(x) = — ett Nz) = — ={e MP dy. 
2a J2a T J—o 

Our old acquaintance, the normal density with expectation m and variance 
o*, is given by 

  ==") o> 0. 
o a . 

~ 

Implicit in. the central limit theorem is the basic fact that the family of 
normal densities is closed under convolutions; in other words, the convolution 

of two normal densities with expectations m,, m, and variances o?, o? is 
the normal density with expectation m, + m, and variance o°? = of + 9}. 

In view of what has been said it suffices to prove it for m, = m, = 0. It is 
asserted that 

2 Po _ 2 2 
(1.7) - i exp | - | -—! | exp |- @ay — | dy 

V27 0 20 277010, J—w 20; 205) — 

and the truth of this assertion becomes obvious by the change of variables 
z = y(o/0,02) — 2x(o,/00,) where = is fixed. (See problem 1.) 
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2. GAMMA DISTRIBUTIONS | 

The gamma function T is defined by 

(2.1) | () = { atle-* dx, oe -t>Od0. 
0 . ; 

[See 1; I1,(12.22).] It interpolates the factorials in the sense that 

Tin+l) =n! for n=0,1,.... 

Integration by parts shows that T(t) = (t—1) P(t—1) for all ¢ > 0. 

(Problem 2.) 

The gamma densities concentrated 0 on 0, 0 are defined: by 

ae a Ve Vl ee , (2.2) faol2) = ae en y>0, z>0. 

Here « > 0 isthe trivial scale parameter, but » > 0 is essential. The special 
case f,,, represents the exponential density, and the densities g, of 1,(3,4) 
coincide with fan (1 =1,2,...). A trite calculation shows that the 

expectation of f,,, equals v/a, the variance v/a’. 
The family of gamma densities is closed under convolutions: 

(2.3) Feu *Sa59 = Sa,u+v > 0; y>0. 

This important property generalizes the theorem of I,3 and will be in constant 
use; the proof is exceedingly simple. By (1. 5) the left side equals 

8) Ee ety dy 
| Tu) To) Jo | 

After the substitution y = zt this expression differs from f,,,4,(%) by a 

numerical factor only, and this equals unity since both f,,,,, and (2.4) are 
probability densities. 

The value of the last integral for x= 1 is the so-called beta integral 
B(u, v), and as a by-product of the proof we have found that 

_T@Io) 
Tut) 

for all wu >0, » >O0. [For integral w and » ‘this formula is used in 1; 

VI,(10.8) and (10.9). See also problem 3 of the present chapter.] 

As to the graph of f,,,, it is clearly rnonotone if » < 1, and unbounded 
near the origin when » <1. For » > 1 the graph of f,,, is bell- “shaped, 

attaining at «= »—1 its maximum (y—1)’e-’-Y/T(») which is close 
to [2x(v—1)}-? (Stirling’s formula, problem.12 of 1; II, 12). It follows from 

, L 

(2.5) Bu, ») = J (l—y)" yay 
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the central limit theorem that 

(2.6) ® fa? +2) > (2), y—> 0, 

*3. RELATED DISTRIBUTIONS OF STATISTICS 

The gamma densities play a crucial, though sometimes disguised, role in 
mathematical statistics. To begin with, in the classical (now somewhat 
outdated) system of densities introduced by K. Pearson (1894) the gamma 

densities appear as “type III.” A more frequent appearance is due to the 
fact that for a random variable X with normal density n the square X? 
has density x~?n(z*) = f,.,(2). In view of the convolution property (2.3) 
it follows that: 

If X,,...,X, are mutually independent normal variables with expectation 
0 and variance oa”, then X} + +++ + XK? has density fy jog%,n/o 

To statisticians y? = X2?+4----+ X? is the “sample variance from a 

normal population” and its distribution is in constant use. For reasons of 

tradition (going back to K. Pearson) in this connection f,.4, 1s called chi- 

Square density with n degrees of freedom. 
In statistical mechanics X? + X? + X? appears as the square of the speed 

of particles. Hence v(x) = 2zxf, ,3(x*) represents the density of the speed 
itself. This is the Maxwell density found by other methods in I,(10.6). (See 

also the example in ITI,4.) . 

In queuing theory the gamma distribution is sometimes called Erlangian. 

Several random variables (or ‘“‘statistics”) of importance to statisticians 

are of the form T = X/Y, where X and Y are independent random vari- 

ables, Y > 0. Denote their distributions by F and G, respectively. and 

their densities by f and g. As Y is supposed positive, g is concentrated 

on 0, 00 and so 

3.1) PUT <1} = P(X < 1¥} = | “FUty) a(v) dy 
By differentiation it is found that the ratio T = X/Y¥ has density 

(3.2) w(t) =| Ptydy e(y) dy. 
Jt 

Examples. (a) If X and Y have densities fyym and fyyn, then X/Y¥ 

has density 
Vd pim—l 

(3.3) w(t) = amen) _f __ 
P'(3m) D(4n) +" 

* This section treats special topics and is not used in the sequel. 

  i> 0. 
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In fact, the integral in (3.2) equals 

pim-i 

atm") Pd) Pn) Jo 
and the substitution 4(1+t)y = 5 reduces it to (3.3). 

In the analysis of variance one considers the special case 

X=X?4-++4+X2 and Y= Y¥?24---+ ¥2 

eo 

d(min)—1 40) y dy (3.4) e 

where X,,...,Xm, ¥i,..., ¥, are mutually independent variables with 

the common normal density n. The random variable F = (nX/mY/) ts called. 
Snedecor’s statistic and its density (m/n) w((m/[n) x) is Snedecor’s density, or the 
F-density. The variable Z = log $F is Fisher’s Z-statistic, and its. density 
Fisher’s Z-density. The two statistics are, of course, merely notational 

variants of each other. 

(b) Student’s T-density. Let X,¥i,..., Y, be independent with the 

common normal density n. The variable 

XVn 

VY?+---+Y¥! 

is known to statisticians as Student’s T-statistic. We show that its density is 

given by 

(3.5) T= 

: Gg _1_ T+) (3.6) w(t) (Ee /nyEorn ’ vam Un)” 
In fact, the numerator in (3.5) has a normal density with zero expectation and 
variance n, while the density of the denominator is given by 2xf, yn(X*). 
Thus (3.2) takes on the form 

(3.7) 

where C, = 

am 

—}(12-/ndy?, nn 
a an d « 

Jan rapa | yey 

The substitution s = $(1+1?/n)y? reduces the integral to a gamma integral 
and yields (3.6). > 

4. SOME COMMON DENSITIES 

In the following it is understood that all densities vanish identically outside 
the indicated interval. 

(a) The bilateral exponential is defined by }ae~!#! where « is a scale 
parameter. It has zero expectation and variance 27%, This density is 

"the convolution of the exponential density xe~** (2 > 0) with the mirrored 
density «e** (x <0). In other words, the bilateral exponential is the density 

of X, — X, when X, and X, are independent and have the common 
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exponential density ae~** (e > 0). In the French literature it is usually 
referred to as the “second law of Laplace,” the first being the normal 

distribution. a . 
(6) The uniform (or rectangular) density p, and the triangular density 7, 

concentrated on —a,a are defined by: 

(4.1) p= sre) =2(1— 2), lal <a. 
. 2a a a 

It is easily seen that p, * p, = T2,- In words: the sum of two uniformly 

_ distributed variables in —a,a has a triangular density in —2a,2a. [The 
repeated convolution’ p, *-*~** p, are described in I,(9.7).] 

(c) Beta densities in 0,1 are defined by 

| D+») HL yl 4.2 x : (4.2) Fl) = Te OO z) 0<2<1, 

where « > 0 and »>O are free parameters. That (4.2) indeed defines a 
- probability density follows from (2.5}. By the same formula it is seen that 

By.» has expectation »/(u-+y), and variance po/[(utv(utv+)]. If 
#<1,» <1, the graph of 8,, is U-shaped, tending to oo at the-limits. 
For « >1, > 1 the graph is bell-shaped. For p= 1 we get the 
uniform density as a special case. . 

A simple variant of the beta density i is defined by 

2 ( 1 — Mwty) ot 
a Nit) Ta) Fo) +o” 

If the variable X has density (4.2) then ¥ = X~" — 1 has density (4.3). 

(4.3) 

  

0O<t< ow. 

In the Pearson system the densities (4.2) and (4.3) appear as types I and VI. The 
Snedecor density (3.3) is a special case of (4.3). The densities (4.3) are sometimes called 

after the economist Pareto. It was thought (rather naively from a modern statistical 

standpoint) that income distributions should have a tail with a density ~ Az—* as x + ©, 

and (4.3) fulfills this requirement. 

(d) The so-called arc. sine densit; 
4 

av 2 1—z) 

is actually the same as the beta density /;, but deserves special mention 

because of its repeated occurrence in fiuctuation theory. (It was introduced 
in 1; III,4 in connection with the unexpected behavior of sojourn times.) 
The misleading name is unfortunately in general use; actually the distribu- 

tion function is given by 27~! arc sin \/x. (The beta densities with w + » = 1 

are sometimes referred to as “generalized arc sine densities.’’) 

  

  (4.4) O0<x<l 
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(e) The Cauchy density centered at the origin is defined by 

  

1 t 
4.5 (Z) =: . — 2 ©, (4.5) yAz) 7 P+ et <w< 

where t > 0 is a scale parameter. The corresponding distribution function 
is $-++ marc tan (2/t). The graph. of y, resembles that of the normal 

density but‘ approaches the axis so slowly that an expectation does not exist. 
The importance of the Cauchy densities is due to the convolution formula 

(4.6) Vs * Vt = Vst- 

It states that the family of Cauchy densities (4.5) is closed under convolutions. 
Formula (4.6) can be proved in an elementary (but tedious) fashion by 
a routine decomposition of the integrand into partial fractions. A simpler 
proof depends on Fourier analysis. 

The convolution formula (4.6) has the amazing consequence that for 
independent variables X,,...,X, with the common density (4.5) the 

average (X, +++: + X,){/n has the same density as the X;. 

Example. Consider a laboratory experiment in which a vertical mirror 
projects a horizontal light ray on a wall. The mirror is free to rotate about 
a vertical axis through A. We assume that the direction of the reflected 
ray is chosen “at random,” that is, the angle ~p between it and the perpen- 
dicular AO to the wall is distributed uniformly between —}7 and 4. 

The light ray intersects the wall at a point at a distance 

X =f-tan@ 

from O (where ¢ is the distance AO of the center A from the wall). It 

is now obvious that the random variable X has density (4.5).2 If the 

experiment is repeated n times the average (X,+---+X,)/n has the same 

density and so the averages do not cluster around 0 as one should expect by 

analogy with the law of large numbers. > 

The Cauchy density has the curious property that if X has density y, then 2X has 
density y.,= 4, *Y,; Thus 2X =X +X is the sum of two dependent variables, burt its 

density is given by the convolution formula. More generally, if U and V are two independ- 
ent variables with common density y, and X = aU + bV, Y =cU + 4dV, then X+Y 
has density y(a+p+e+q) Which is the convolution of the densities y(g4,), Of X and Y(¢+a)¢ 

2A simple reformulation of this experiment leads to physical interpretation of the 
convolution formula (4.6). Our argument shows that if a unit light source is situated 
at the origin then y, represents the distribution of the intensity of light along the line 
y = of the x,y-plane. Then (4.6) expresses Huygens’ principle, according to which the 
intensity of light along y = s +1 is the same as if the source were distributed along the 
line y = ¢ following the density y,. (I owe this remark to J. W. Walsh.) 
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of Y; nevertheless, X and Y are not independent. (For a related example see problem 

1 in HI,9.) 

(The Cauchy density corresponds to the special case n =1 of the family (3.5) of 
Student’s T- densities. In other words, if X and Y are independent random variat'es 

with the normal density n, then X/|Y| has the Cauchy density (4.5) with t= 1. For 

some related densities see problems 5-6.] 

The convolution’ property (2.3) of the gamma densities looks exactly 
like (4.6) but there is an important difference in that the parameter » of 

the gamma densities is essential whereas (4.6) contains only a scale parameter. 
With the Cauchy density the type is stable. This stability under convolutions 

is Shared by the normal and the Cauchy densities; the difference is that 

the scale parameters compose according to the rules) o? = o? + o? and 
t=, +4, respectively. There exist other stable densities with similar 
properties, and with a systematic terminology we should call the normal and 

Cauchy densities “symmetric, stable of exponent 2 and 1.’’ (See VI,1.) 
(f) One-sided stable distribution of index }. If N is the normal distribution 

of (1.6), then 

(4.7) F(x} = 2[1 — N(a/Vz)], z>0, 

defines a distribution function with density 

% 1 —ba?/2 (4.8) if{2) == '-=e , z>0. 
J2n J x3 

Obviously no expectation exists. This distribution was found in 1; III,(7.7) 

and again in 1; X,1 as limit of the distribution of recurrence times, and 

this derivation implies the composition rule 

(4.9) . Sarfs =f, where y tat p. 

(A verification by elementary, but rather cumbersome, integrations is 

possible. The Fourier analytic proof is simpler.) If X,,...,X, are 
independent random variables with the distribution (4.7), then (4.9) implies 

that (X,+:::+X,)n-? has the same distribution, and so the averages 

(X,-+: -+-+X,)n7) are likely to be of the order of magnitude of n; instead of 

converging they increase over all bounds. (See problems 7 and 8.) 

(g) Distributions of the form e~* “(x > 0,« >) appear in connection with order 

statistics (see problem 8). Together with the variant 1 — e~?* they appear (rather 
mysteriously) under the name of Weibu// distributions in statistical reliability theory. 

(A) The logistic distribution function 

1 
(4.10) F(t) = ———_—__ , a>0d 

14+ e—~%t-B 

may serve as a warning. An unbelievably huge literature tried to establish a transcendental 
“‘law of logistic growth’’; measured in appropriate units, practically all growth processes 
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were supposed to be represented by a function of the form (4.10) with ¢ representing 
time. Lengthy tables, complete with chi-square tests, supported this thesis for human 
populations, for bacterial colonies, development of railroads, etc. Both height and weight 
of plants and animals were found to follow the logistic law even though it is theoretically 
clear that these two variables cannot be subject to the same distribution. Laboratory 
experiments on bacteria showed that not even systematic disturbances can produce other 
results. Population theory relied on logistic extrapolations (even though they were 
demonstrably unreliable). The only trouble with the theory is that not only the logistic 
distribution but also the normal, the Cauchy, and other distributions can be fitted to the 
same material with the same or better goodness of fit In this competition the logistic 
distribution plays no distinguished role whatever; most contradictory theoretical models 
can be supported by the same observational material. 

Theories of this nature are short-lived because they open no new ways, and new con- 
firmations of the same old thing soon grow boring. But the naive reasoning as such has not ° 
been superseded by common sense, and so it may be useful to have an explicit demonstration 
of how misleading a mere goodness of fit can be. 

5. RANDOMIZATION AND MIXTURES 

Let F be a distribution function depending on a parameter 6, and u a 
probability density. Then — 

+00 | 

(5.1) | W(x) -[ F(x, 0) u(6) d6 

is a monotone function of x increasing from Q to I and hence a distribution 
function. If F has a continuous density f, then W has adensity w given 
by — . . 

(5.2) w(z) = [ore 6) u(6) a6. 

Instead of integrating with respect to a density u we can sum with respect 
to a discrete probability distribution: if 6,,6,... are chosen arbitrarily 
and if p, >0, Zp, = 1, then . 

(5.3) | w(t) = dS(@, D,) De 

defines a new probability density. The process may be described proba- 
bilistically as randomization; the parameter 6 is treated as random variable 
and a new probability distribution is defined in the x, -plane, which serves 
as sample space. Densities of the form (5.3) are called mixtures, and the term 

_is now used generally for distributions and densities of the form (5.1) and 
(5.2). 

We do not propose at this juncture to develop a general theory. Our 

aim is rather to illustrate by a few examples the scope of the method and its 

3 W. Feller, On the logistic law of growth and its empirical verifications in biology, Acta 

Riotheoretica, vol. 5 (1940) pp. 51-66. - 
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probabilistic content. The examples serve also as preparation for the notion 
of conditional probabilities. The next section is devoted to examples of 
discrete distributions obtained by randomization of a continuous parameter. 
Finally, section 7 illustrates the construction of continuous processes out of 
random walks; as a by-product we shall obtain distributions occurring in 
many applications and otherwise requiring hard calculations. 

Examples. (a) Ratios. If X is a random variable with density f, then 

for fixed y > 0 the variable X/y has density J (zy)y. Treating the parameter 

y as random variable with density g we get the new density 

+00 

(5.4) w(x) = J heyy BY) ay. 

This is the same as formula (3.2) on which the discussion in section 3 was 
based. 

In probabilistic language randomizing the denominator y in X/y means 
considering the random variable X/Y, and we have merely rephrased the 
derivation of the density (3.2) of X/Y. In this particular case the terminology 

is a matter of taste. . 
(b) Random ‘sums. Let X,,X.,... be mutually: independent random 

variables with a common density f.: The sum S, = X, +°--+ X, has — 
the density f"*, namely the n-fold convolution of f with itself. [See 1,2.) 
The number n of terms is a arene which we now randomize by a prob- 
ability distribution P{N =n} = Pn The density of the resulting sum 
Sy with the random number N of terms is 

ce 

(5.5) w= >p,f. 
1 

As an example take for { Pn} the geometric distribution p, =gqp"-!, and 
for f an exponential density. Then f{"* = g, is given by (2.2) and 

-1 
(azx)” age = gue 

  

(5.6) . — w(x) = que *¥ p” 
n=l (n— 1)! 

(c) Application to queuing. Consider a single server with exponential 
servicing time distribution (density f(t) = pe“) and assume the incoming 

traffic to be Poisson, that is, the inter-arrival times are: independent with 
density Ade~*#, A <u. The model is described in 1; XVII,7(0). Arriving 
customers join a (possibly empty) ‘ ‘waiting line” and are served in order 

of arrival without interruption. 
Consider a customer who on his arrival finds » > 0 other customers in 

the line. The total time that he spends at the server is the sum of the service 
times of these n customers plus his own service time. This is a random 
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variable with density f("+!*, We saw in 1; XVII,(7.10) that in the steady 

state the probability of finding exactly n customers in the waiting line equals 
gp" with p = A/u. Assuming this steady state we see that the total time T 
spent by a customer at the server is a random variable with density 

> qp” f'™Y*(t) = gu eS (put)"/n! = (u—A) eH ANt 

n=0 n=0 ‘ . 

Thus E(T) = 1/(u—A). (See also problem 10.) 

(d) Waiting lines for buses. A bus is supposed to appear every hour 
on the hour, but is subject to delays. We treat the successive delays X;, as 
independent random variables with a common distribution F and density /f. 
For simplicity we assume 0 < X, < 1. Denote by T,, the waiting time of 

a person arriving at epoch x <1 after noon. The probability that the bus 
scheduled for noon has already departed is F(x), and it is easily seen that 

F(t+2) — F(x) for O<t<l-—z 

1 — Fe) + F(a) Ftt+2-1) 0 for law <t<2-2 

and, of course, P{T, <t}=1 for all greater ¢. The corresponding 
density is given by . 

(5.7) PIT,.<t= 

f(t+zx) for O<t<l-—z | 

F(x) f (t+2—1) for 1-x<t< 2-2, 

Here the epoch x of arrival is a free parameter and it is natural to randomize 
it. For example, for a person arriving “at random” the epoch of arrival is a 

random variable distributed uniformly in 0, 1. The expected waiting time 
in this case equals 4 + o® ‘where ‘o? is the variance of the delay. In other 
words, the expected waiting time is smallest if the buses are punctual and 
increases with the variance of the delay. (See problems 11-12.) > 

(5.8) 

6. DISCRETE DISTRIBUTIONS 

This section is devoted to a quick glance at some results of randomizing 

binomial and Poisson distributions. 

The number’ S,, of successes in Bernoulli trials has a distribution depending 

on the probability p of success. Treating p as a random variable with 

density u leads to the new distribution 

(6.1) P{S, = k} = (" [ ta-p u(p)dp k= O.-.57 

Example. (a) When u(p) = 1 an integration by parts shows (6.1) to be 

independent of k, and (6.1) reduces to the discrete uniform distribution 
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P{S, = k} = (n+1)*. More illuminating is an argument due to: Bayes. 
Consider n + 1 independent variables X,,..., X, distributed uniformly 
between 0 and 1. The integral in (6.1) (with uw = 1) equals the probability 

that exactly k among the variables X,,...,X, will be <X, or, in other 
words, that in an enumeration of the points X,, ..., X, In order of magni- 

tude X,) appears at the (k+1)st place. But for reasons of symmetry all 
positions are equally likely, and so the integral equals (n+1)7). > 

In gambling language (6.1) corresponds to the situation when a skew coin 

is picked by a chance mechanism and then trials are performed with this coin 
of unknown structure. To a gambler the trials do not look independent; 
indeed, if a long sequence of heads is observed it becomes likely that for our 
coin p is close to 1 and:so it is safe to bet.on further occurrences of heads. 
Two formal examples may illustrate estimation and prediction problems of 

this type. 

_Examples. (5) Given that 7 trials resulted in k successes (= hypothesis 

H), what is the probability of the event that p < a? By the definition of 
conditional probabilities 

P{AH} : [ra — p)”* u(p) dp 

PtH} [ p*(1—p)”* u(p).dp 

  (6.2) P{A| H} = 

This type of estimation with u(p) = 1 was used by Bayes. Within the 
framework of our model (that is, if we are really concerned with a mixed 
population of coins with known density u) there can be no objection to 
the procedure. The trouble is that it used to be applied indiscriminately to 
judge ‘probabilities of causes’’ when there was no randomization in sight; 

this point was fully discussed in example 2(e) of 1; V in connection with a 

so-called probability that the sun will rise tomorrow. 
(c) A variant may be formulated as follows. Given that n trials resulted 

in & successes, what is the probability that the next. m trials will result 
in j successes? The preceding argument leads to the answer 

m 1 

( { pet*(1—p)™*"-** u(p) dp 
(6.3) jis , 

1 

[ra—y*u ap 
(See problem 13.) > 

Turning to the Poisson distribution let us interpret it as regulating the 

number of “arrivals” during a time interval of duration ¢. The expected 
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number of arrivals is af. We illustrate two conceptually different ran- 
domization procedures. 

Examples. (d) Randomized time. If the duration of the time interval is a 
random variable with density u, the probability p, of exactly k arrivals 
becomes 

k- 

(6.4) b= tr : ee, u(t) dt. 

For example, if the time interval is exponentially distributed, the probability 
of kK =0,1,... new arrivals equals 

6a Perel pa - xen (a) 
which is a geometric distribution. 

‘(e)} Stratification. Suppose there are «several independent sources for 
random arrivals, each source having a Poisson output, but with different 

parameters. For example, accidents in a plant during a fixed exposure time 
t may be assumed to represent Poisson variables, but the parameter will vary 
from plant to plant. Similarly, telephone calls-originating at an individual 

unit may be Poissonian with the expected number of calls varying from unit 
to unit. In such processes the parameter « appears as random variable with 
a density u, and the probability of exactly n arrivals during time ¢ is 
given by 

  

(6.6) P(t) = [re -e (at) u(a) de. 
0 nti 

For the special case of a gamma density u = f,.,4, we get 

v+1 n oyna EGET GE n /\B+t/ \B+t 

which is the limiting form of the Polya distribution as given in problem 24 of 
1; V,8 and 1; XVII,(J0.2) (setting 8 = a, » = a — 1). > 

Note on spurious contagion. A curious and instructive history attaches to the distribution 
(6.7) and its dual nature. 

The Polya urn model and the Polya process which lead to (6.7) are models for true 
contagion where every accident effectively increases the probability of future accidents. 
This model enjdyed great popularity, and (6.7) was fitted empirically to a variety of 
phenomena, a good fit being taken as an indication of true contagion. 

By. coincidence, the same distribution (6. 72) has been derived previously (in 1920) by 

M. Greenwood and G. U. Yule with the intent that a good fit should disprove presence of 
contagion. Their derivation is roughly equivalent to our-stratification model, which starts 
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from the assumption underlying the Poisson process, namely, that there is no aftereffect 
whatever. We have thus the curious fact that a good fit of the same distribution may be 
interpreted in two ways diametrically opposite in their nature as well as in their practical 
implications. This should serve as a warning against too hasty interpretations of statistical 
data. 

The explanation lies in the phenomenon of spurious contagion, described in 1; V,2(d) 

and above in connection with (6.1). In the present situation, having observed m accidents 

during a time interval of length s one may estimate the probability of » accidents during 
a future exposure of duration ¢ by a formula analogous to (6.3). The result will depend 
on m, but this dependence is due to the method of sampling rather than to nature itself; 

the information concerning the past enables us to make better predictions concerning the 
future behavior of our sample, and this should not be confused with the future of the whole 
population. 

7. BESSEL FUNCTIONS AND RANDOM WALKS 

Surprisingly many explicit solutions in diffusion theory, queuing theory, 
and other applications involve Bessel functions. It is usually far from obvious 
that the solutions represent probability distributions, and the analytic theory 
required to derive their Laplace. transforms and other relations is rather 
complex. Fortunately, the distributions in question (and many more) may be 

obtained by simple randomization procedures. In this way many relations 
lose their accidental character, and much hard analysis can be avoided. _ 

By the Bessel function of order p > —1 we shall understand the function 
I, defined for all real x by* 

7.1 L,(2) = 5 —— “ee 
(7.1) ° kao anasean (a) 

We proceed to describe three procedures leading to three different types 
of distributions involv:ng Bessel functions. 

(a) Randomized Gamma Densities 

For fixed » > —1 consider the gamma density f{ p:,%41 of (2.2). Taking 
the parameter k as an integral-valued random variable subject to a Poisson 
distribution we get in accordance with (5.3) the new density _ 

co 4k 00 pkaetk 

(7.2) Wot Lr) = "2, kl Si ptices(2) = > kIV(p+k+) . 

Comparing terms in (7.1) and (7.2) one sees that 

(7.3) w(x) = et *V(a/t)? 1,(2V 12), xz > 0. 

4 According to standard usage I, is the “modified” Bessel function or Bessel function 
“‘with imaginary argument.” The “‘ordinary” Bessel iunction, always denoted by J,, !s 
defined by inserting (—1)* on the right in (7.1). Our use of the term Bessel function 

should be understood as abbreviation rather than innovation. 
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If p> —I1 then w, is a probability density concentrated on 0, 00. (For 

p = —1_ the right side is not integrable with respect to x.) Note that ¢ is 

not a scale parameter, so that these densities are of different types. 
Incidentally, from this construction and the convolution formula (2.3) 

for the gamma densities it is clear that 

(7.4) wo*fiy =W 

(b) Randomized Random Walks 

In discussing random walks one pretends usually that the successive 

Jumps occur at epochs 1,2,.... It should be clear, however, that this 
convention merely lends color to the description and that the model is entirely 
independent of time. An honest continuous-time ‘stochastic process is 
obtained from the ordinary random walk by postulating that the time 
intervals between successive jumps correspond to independent random variables 
with the common density e-'. In other words, the epochs of the jumps are 

regulated by a Poisson process, but the jumps themselves are random 
variables assuming the values +] and —1 with probabilities p and g 

independent of each other and of the Poisson process. 
To each distribution connected with the random walk there corresponds 

a distribution for the continuous-time process, which is obtained formally 
by randomization of the number of jumps. To see the ‘procedure in detail 
concider the position at a given epoch ¢. In the basic random walk the nth 
step leads to the position r > 0 iff among the first n jumps. $(n+r) are 
positive and 4(n—r) negative. This is impossible unless n — r = 2y is. 

even. In this case the probability of the position r just after the nth jump is - 

- 2y 7.5 n d(n+r) $(n—r) = ("" } rt+y v 
(7.5) (nen Pp q rte p'’q 

In our Poisson process the probability that up to epoch ¢ exactly n= 
== 2y + y jumps occur is e~'t"/n! and so in our time-dependent process the 
probability of the position r > 0 at epoch ¢ equals 

ety tee r+2y rive v T ot 16) ot (area = Viplavets2vp9 0 
and we reach two conclusions. . 

(i) If we define _, = J, for r= 1, 2,3,... then for fixed t.> 0, p,q, 

(7.7) a,(t) = V(piqyeI,(2Vpqt), r=0,41,42,..., 
represents a probability distribution (that is, a, > 0, >a, = 1). 

(ii) In our time-dependent random walk a,(t) equals the probability of 

the position r at epoch t. 
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Two famous formulas for Bessel functions are immediate corollaries of this result. 

First, with the change of notations 2Vpgt =x and pig = u2, the identity > a,(r) = 1 
becomes 

+00 

(7.8) ettlutu) = > ul (zx). 
—2 

This is the so-called generating function for Bessel functions or Sch‘émilck’s formula (which 
sometimes serves as definition for J,). 

Second, it is clear from the nature of our process that the probabilities @,(¢) must satisfy 
the Chapman-Kolmogorov equation 

a 

(7.9) a(tt+7)= > a,(ta,_.(7), 
k=—00 

which expresses the fact that at epoch ¢ the particle must be at some position & and that 
a transition from & to r is equivalent to a transition from 0 to r —k. We shall return 
to this relation in XVII,3. [It is easily verified directly from the representation (7.6) and 
the analogous formula for the probabilities in the random walk.] The Chapman- 
Kolmogorov relation (7.9) is equivalent to 

(7.10) L@+7) = ¥ L017) 
k=— 2 

which is known as K. Neumann’s identity. 

(c) First Passages 

For simplicity let us restrict our attention to symmetric random walks, 
p=4q=43. According to 1; III,(7.5), the probability that the first passage 
through the point r > 0 occurs at the jump number 2 — r is 

  (7.11) ” ("arte n> Yr. 
2n—r\ n . 

The random walk being recurrent, such a first passage occurs with probability 
one, that is, for fixed r the quantities (7.11) add up to unity. ‘In our time- 

dependent process the epoch of the kth jump has the gamma density f,, of 

(2.2). It follows that the epoch of the first passage through r > 0 has density 

2n— —2n+r r ("2 fond) =   

  

: n 2n—Fr 

(7.12) , 
n—r—-1 —_p)} =e'ty t ( r ) _Qn—r)! y-2ntr e! 164), 

(2n—r—1)!\2n—r/ n\(n—r)! t 

Thus: (i) for fixed r=1,2,... . 

(7.13) v(t) =e" Lt) 

defines a probability density concentrated on 0, ©. 
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(ii) The epoch of the first passage through r>O has density v,. (See 
problem 15.) 

This derivation permits another interesting conclusion. A first passage 

through r+ p at epoch f¢ presupposes a previous first passage through r 
at some epoch s < t. Because of the independence of the jumps in the time 

intervals 0,5 and s,?¢ and the lack of memory of the exponential waiting 
times we must have 

(7.14) V, # Up = Vz4 9. 

[A computational verification of this relation from (7.12) is easy if one 

uses the corresponding convolution property for the probabilities (7.11).] 
Actually the proposition (i) and the relation (7.14) are true for all positive 

values of the parameters r and p.® 

8. DISTRIBUTIONS ON A CIRCLE 

The half-open interval 0.1 may be taken as representing the points of 
a circle of unit length, but it is preferable to wrap the whole line around the 
circle. The circle then receives an orientation, and the arc length runs from 
—oo to oo but ,x+1,2+42,... are interpreted as the same point. 

Addition is modulo | just as addition of angles is modulo 27. A probability 
density on the circle is a periodic function » > 0 such that 

(8.1) | [ow da = 1. 

Examples. (a) Buffon’s. needle problem (1777). The traditional formu- 
lation is as follows. A plane is partitioned into strips of unit width parallel 
to the y-axis. A needle of unit length is thrown at random. What is the prob- 
ability that it lies athwart two strips? To state the problem formally 
consider first the center of the needle. Its position is determined by two 
coordinates, but y is disregarded and 2 is reduced modulo |. In this way 
“the center of the needle’? becomes a random variable X on the circle 

with a uniform distribution. The direction of the needle may be described 
by the angle (measured clockwise) between the needle and the y-axis. A 

turn through 7 restores the position of the needle and hence the angle is 
determined only up to a multiple of 7. We denote it by Zz. In Buffon’s 
needle problem it is implied that X and Z are independent and uniformly 
distributed variables® on the circle with unit length. 

5 W. Feller, Infinitely divisible distributions and Bessel functions associated with random 

walks, J. Soc. Indust. Appl. Math., vol. 14 (1966), pp. 864-875. 

6 The sample space of the pair (X, Z) is a torus. 
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If we choose to represent X by values between 0 and 1 and Z by values 

between —} and 4} the needle crosses a boundary iff }cos Zw > X or 
4cos Zr > 1 — X. Fora given value z between —} and } the probability 

that X < $coszm is the same as the probability that 1 — X < } cos zz; 

namely }4coszz. Thus the required probability is 

4 7 

4 2» 
(8.2) [ coszm-dz=—. 

A random variable X on the line may be reduced modulo 1 to obtain a 
variable °X on the circle. Rounding errors in numerical calculations are 
random variables of this kind. If X has density f the density of °X is 
given by’ 

(8.3) oe) = fetn 
Every density on the line thus induces a density on the circle. [It will be 
seen in XIX,5 that the same admits of an entirely different representation 
in terms of Fourier series. For. the special case of normal densities see 
example XIX,5(e).] | 

Examples. (5) Poincaré’s roulette problem. Consider the number of 
rotations of a roulette wheel as a random variable X with a density f 

concentrated on the positive half-axis. The observed net result, namely 
the point °X at which the wheel comes to rest, is the variable X reduced 

modulo.1. Its density is given by (8.3). 
One feels instinctively that “under ordinary circumstances” the density 

of °X should be nearly uniform. In 1912 H. Poincaré put this vague feeling 
on the solid basis of a limit:theorem. We shall not repeat this analysis 
because ‘a similar result follows easily from (8.3).. The tacit assumption 

is, of course, that the given density f is spréad out effectively over a long 
interval so that its maximum m_ is small. Assume for simplicity that f 
increases up to a point a where it assumes its maximum m = f(a), and 
that f decreases for x >a. For the density of the reduced variable °X 
we have then 

+00 
(8.4) g(x) —1 = > f(x+n) -| f(s) ds. 

For fixed x denote by x, the unique point of the form z+ such that 

? Readers worried about convergence should consider only densities f concentrated on 
a finite interval. The uniform convergence is obvious if f is monotone for x and =-x 
sufficiently large. Without any conditions on f the series may diverge at some points, but 
gy always represents a density because the partial sums in (8.2) represent a monotone 
sequence of functions whose integrals tend to 1. (See IV,2.) 
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atk <x, <a+k+1. Then (8.4) may be rewritten in the form 

a+k+1 

(5) e@)-1= 5 [ yep-sonas 
k==—oo Jatk 

For k <0 the integrand is <0, and so 

pe) — 1 <SUf(ath — flatkts)] = f(a) =m. 
4=0 

A similar argument shows that g(x)—1> —m. Thus |9(x)—1| <m 
and so is indeed nearly constant. 

‘The monotonicity conditions were imposed only for the sake of exposition 
and can be weakened in many ways. [Neat sufficient conditions can be 
obtained using Poisson’s summation formula, XIX,5(2).] 

(c) Distribution of first significant digits. A distinguished applied mathe- 

matician was extremely successful in bets that a number chosen at random in 
the Farmer’s Almanac, or the Census Report or a similar compendium, would 

have the first significant digit less than 5. One expects naively that all 9 
digits are equally likely, in which case the probability of a digit <4 would be 
$. In practice® it is close to 0.7. 

Consider the discrete probability distribution attributing to the digit k 
probability p, = Log (k+1) — Logk (where Log denotes the logarithm — 
to the basis 10 and k = 1,...,9). These probabilities are approximately 

Pri = 0.3010 p,=0.1761 ps =0.1249 —p, = 0.0969 
Ps = 0.0792 P,= 0.0669 p,= 0.0580 p,=0.0512 py = 0.0458, 
and it is seen that the distribution {p,} differs markedly from the uniform 
distribution with weights 4 = 0.111---. 

We now show (following R. S. Pinkham) that {p,} is plausible for the 

empirical distribution of the first significant digit for numbers taken at 
random from a large body of physical or observational data. Indeed, such 
a number may be considered as a random variable Y >0O with some 
unknown distribution. The first significant digit of Y equals k iff 
10% < Y < 10%kK+1) for some n. For the variable X = Log Y this 

means 

(8.6) n+Logk <X< n+ Log (K+1). 

If the spread of Y is very large the reduced variable °X will be approxi- 

mately uniformly distributed, and the probability of (8.6) is then close to 

Log (k+1) — Logk = p,. , 

8 For empirical material see F. Benford, The law of anomalous numbers, Prov, Amer. 

Philos. Soc., vol. 78 (1938) pp. 551-572. 
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The convolution formula (1.5) and the argument leading to it remain 
valid when addition is taken modulo 1. Accordingly, the convolution of 
two densities on the circle of length \ is the density defined by 

(8.1) w(2) = [ fle—y) fly) dy. 
If X, and X, are independent variables with densities f; and f, then 
X, + X, has the density w. Since these densities are periodic, the con- 
volution of the uniform density with any other density is uniform. (See 
problem 16.) 

9. PROBLEMS FOR SOLUTION 

1. Show that the normal approximation to the binomial distribution established 
in 1; VII implies the convolution formula (1.7) for the normal densities. 

2. Using the substitution x = $y? prove that I'($) = +/rz. 
3. Legendre’s duplication formula. From (2.5) for » = » conclude that 

T(2v) = a 22v-1N(v)'(v +4). 
Va 

Hint: Use the substitution 4(y~—y’?) =s in 0 <y <j. 

4. If g(x) = del?! find the convolutions g *g and g *g +g as well as g**. 
5. Let X and Y be independent with the common Cauchy density (x) of 

(4.5). Prove that the product XY has density 277? (x — 1)-1 g/z| 
Hint: No calculations are required beyond the observation that 

a—!| _ 1 1 

(l+s\at+s) 1+s ats’ 
  

6. Prove that if 

2 f@) == 
re~ +e 7 

4 x 
then f*f@) =o es 

(a) by considering the variables log |X] and log |Y¥| of the preceding problem; 

(b) directly by the substitution e*” =f and a partial fraction decomposition. 
(See problem 8 of XV,9.) 

7. If X has the normal density n then obviously X~? has the stable density 
(4.8). From this conclude that if X and Y are independent and normal with zero 

expectations and variances of and o2, then Z = XY/VX?+Y? is normal with 
variance o% such that I/o, = 1/0, + I/o, (L. Shepp). 

8. Let X,,...,X,, be independent and X,,, the largest among them. Show that 
if the X; have: 

(a) the Cauchy density (4.5), then 

P{n Xin) S 2} > ew tea), z>0 

(b) the stable density (4.8), then 

  

PEm?Xiqy Sa} > eve 32), x >0. 
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9. Let X and Y be independent with densities f and g concentrated on 0, 2, 
If E(X) < © theratio X/Y has a finite expectation iff 

1 

[sw dy < . 
0 

10. In example 5(c) find the density of the waiting time to the next discharge @) 
if at epoch 0 the server is empty, (6) under steady-state conditions. 

11. In example 5(d) show that 

E(T,) = F(@@)(ut+1—x) + { if (t+) dt, 
0 

where uw is the expectation of F. From this verify the assertion concerning E(T) 
when x is uniformly distributed. 

12. In example 5S(d) find the waiting time distribution when f(t) =1 for 

0<?t<l. 

13. In example 6(c) assume that u is the beta density given by (4.2). Evaluate 
the conditional probability (6.3) in terms of binomial. coefficients. 

14, Let X and Y be independent with the common Poisson distribution 
P{X =n} =e 't"/n! Show that 

P{X—-Y =r} =e, :(22), r=0, +1, +2,. 

[See problem 9 of V,11.] 

15. The results of section 7.c remain valid for unsymmetric random walks 
provided the probability of a first passage through r > 0 equals one, that is, 
provided p >q. Show that the only change in (7.11) is that 2-°"+” is replaced by 
p"q"-", and the conclusion is that for p >q and r = 1, 2,. 

V@playret - 1,(2V pq t) 

defines a probability density concentrated on ¢ > 0. 
16. Let X and Y be independent variables and °X and °Y be the same 

variables reduced modulo 1. Show that °X+°Y is obtained by reducing X+Y 
modulo 1. Verify the corresponding formula for convolutions by direct calculation, 

 



CHAPTERIII 

Densities in Higher Dimensions. 

Normal Densities and Processes 

For obvious reasons multivariate distributions occur less frequently than 

one-dimensional distributions, and the material of this chapter will play 
almost no role in the following chapters. On the other hand, it covers 
important material, for example, a famous characterization of the normal 

distribution and tools used in the theory of stochastic processes. Their true 

nature is best'understood when divorced from the sophisticated problems 
with which they are sometimes connected. 

1. DENSITIES 

For typographical convenience we refer explicitly to the Cartesian plane 
R*, but it will be evident that the number of dimensions is immaterial. We 

refer the plane to a fixed coordinate system with coordinate variables 
X,, X,. (A more convenient single-letter notation will be introduced in 

section 5.) 

A non-negative integrable function f defined in RR? and such that its 
integral equals one is called a probability density, or density for short. (All 
the densities occurring in the chapter are piecewise continuous, and so the 
concept of integration requires no comment.) The density f attributes to 
the region 2. the probability 

(1.1) | P{Q} = { | f(xy, 22) dx, dey 
Q 

provided, of course, that Q is sufficiently regular for the integral to exist. 
All such probabilities are uniquely determined by the probabilities of 
rectangles parallel to the axes, that is, by the knowledge of 

(1.2) Pla, <X, <b a < Xr <b} = [ I. f(y, 2») dar, dary 
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for all combinations a, < b,. Letting a, = a, = —20 we get the distribution 
function F of f, namely 

(1.3) F(a, te) = P{X, $4, Xp < x9}. 

Obviously F(b,, 22) — F(a,, 22) is the probability of a semi-finite strip of 

width 5, — a, and, the rectangle appearing in (1.2) being the difference of 
two such strips, the probability (1.2) equals the so-called mixed difference 

F(6,, bg) — F(a,, bg) - F(b,, a2) + F(a,, a2).- 

It follows that the knowledge of the distribution function F uniquely 

determines all probabilities (1.1). Despite the formal analogy with the situa- 
tion on the line, the concept of distribution function F is much less useful 
in the plane and it is best to concentrate on the assignment of probabilities 
(1.1) in terms of the density itself. This assignment differs from the joint 
probability distribution of two discrete random variables (1; IX,1) in two 

respects. First, integration replaces summation and, second, probabilities 
are now assigned only to “sufficiently regular regions” whereas in discrete 
sample spaces all sets had probabilities. As the present chapter treats only - 
simple examples in which the difference is hardly noticeable, the notions and 
terms of the discrete theory carry over in a self-explanatory manner. Just as 
in. the preceding chapters we employ therefore a probabilistic language 
without any attempt at a general theory (which wili be supplied in chapter V). 

- It is apparent from (1.3) that? 

(1.4): PAX, Say} = F(a, 00), 

Thus F,(z) = F(z, «). defines the distribution function of X,, and its 

density f, 1s given by 

(1.5) fle) =| oF (way: 
When it is desirable to emphasize the connection between X, and the pair 
(X,, X.) we again speak of F, as marginal distribution? and of f; as marginal 

density. 
Thé expectation , and variance of of X,—if they exist—are given by 

. : +00 f*-+00 

(1.6) p= BK) = [Palen dy dey 
and 

+00 (*-+00 2 . 

(of = var Ky =" [Ge myf(eh 2) de dy 
1 Here and in the following U(co) = lim U(z) as x — oo and the use of the symbol 

U(co) implies the existence of the limit. 
2 Projection on the axes is another accepted term. 
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By symmetry these definitions apply also to X,. Finally, the covariance 
of X, and X, is 

+0 f+ 

(1.8) Cov (XX) = (2, —uy)( ey —Mg) f(y, 23) dry det, 
— oO ~—- 0 

The normalized variables X,co,1 are dimensionless and their covariance, 

namely p = Cov (X,, X,)o,10,', is the correlation coefficient of X, and X, 
(see 1; I[X,8). 

A random variable U is a function of the coordinate variables X, and 
X2; again we consider for the present only functions such that the prob- 

abilities P{U < ¢} can be evaluated by integrals of the form (1.1). Thus 

each random variable will have a unique distribution function, each pair 
will have a joint distribution, etc. 

In many situations it is expedient to change the coordinate variables, 
that is, to let two variables Y,, Y, play the role previously assigned to 
X,, X,. In the simplest case the Y, are defined by a linear transformation 

(1.9) X, = an Y¥, + a2Yo, Xp = 42, + a2¥o, 

with determinant A = 4@4,@,. — a4,@,, > 0. Generally a transformation 

of the form (1.9) may be described either as a mapping from one plane 
to another or as a change of coordinates in the same plane. Introducing 

the change of variables (1.9) into the integral (1.1) we get 

(1.10) P{Q} ={[ fannbanve AY +Go24o) A dy, dy, 

Qe 

the region Q, containing all points (y,, Y,) whose image (2, 7.) isin Q. 

Since the events (X,, X,)€Q and (Y,, Y,) €Q, are identical it is seen that 

the joint density of (Yi, Y2) is given by 

(1.11). gm", Yo) = f (QyYi+GyeYo, AeYit+Aexye)* A. 

All this applies equally to higher dimensions. 
A similar argument applies to more general transformations, except 

that the determinant A 1s replaced by the Jacobian. We shall use explicitly 
only the change to polar coordinates 

(1.12) . X, = Rcos @, X, = Rsin® 

with (R,@) restricted to R>0, —7<O<z7z. Here the density of 

(R, O) is given by 

(1.13) g(r, 0) = f(r cos 6, r sin 8)r. 

In three dimensions one uses the geographic longitude and latitude 6 
(with —7 < om <7 and —}7 < 0 < 3m). The coordinate variables in the 
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polar system are then defined by | 

(1.14) X, = R cos ® cos 0, X, = Rsin ®cos 9, X; = Rsin O. 

For their joint density one gets 

(1.15) g(r, @, 9) = f(rcos my cos 8, rsin » cos 6, rsin 6)r? cos 6. 

In the transformation (1.14) the “planes”? © = —}r and © = 37 corre- 
spond to the half axes in the 25-direction, but this singularity plays no role 
since these half axes have zero probability. A similar remark applies to the 
origin for polar coordinates in the plane. 

Examples. (a) Independent variables. In the last chapters we considered 
independent variables X, and X, with densities f, and f,. This amounts 

to defining a bivariate density by f(z, 2.) = fi) fal%a), and the f; 

represent the marginal densities. 

(b) “Random choice.” Let T° be a bounded region; for simplicity we 
assume I convex. Denote the area‘of I by y and put f equal to y7} 
within [ and equal to 0 outside [. Then / is a density, and the probability 
of any region Q < I’ equals the ratio of the areas of Q and TL. By obvious 
analogy with the one-dimensional situation we say that the pair (X,, X,) 

is distributed uniformly over T. The marginal density of X, at the abscissa 
_ a, equals the width of I’. at 2, in the obvious sense of the word. (See 
problem 1.) 

(c) Uniform distribution on a sphere. The unit sphere 2 in three dimen- 
sions may be represented in terms of the geographic longitude g and 

latitude 6 by the equations 

(1.16) 2, = cos cos 8, Z_ = Sin y Cos 8, 23 = sin 0. 

To each pair (gy, 6) such that —7< mo <7, —4n <6 < 4m there cor- 

responds exactly one point on the sphere and, except for the two poles, 
each point of 2 is obtained in this way. The exceptional role of the poles 
need not concern us since they will have probability 0. A region 2 on the 
sphere is defined by its image in the y, 0-plane, and the area of Q equals” 
the integral of cos 6 dp dO over this image [see (1.15)]. For the conceptual 

experiment “‘random choice of a point on &”’ we should put 47P{Q} = area 
of Q. This is equivalent to defining in the gy, 0-plane a density 

(47r)* cos 6 for —-7<q@o<7, |0| < 47 

(1.17) g(p, 9) = 
. elsewhere. 

With this definition the coordinate variables are independent, the longitude 
—— 

being distributed uniformly over —z, 7. 
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The device of referring the sphere 2 to the », 6-plane is familiar from 
geographic maps and useful for probability theory. Note, however, that 
the coordinate variables are largely arbitrary and their expectations and 
variances meaningless for the original conceptual experiment. 

(d) The bivariate normal density. Normal densities in higher dimensions 
will be introduced systematically in section 6. The excuse for anticipating 
the bivariate case is to provide an easy access to it. An obvious analogue 
to the normal density n of II,(2.1) is provided by densities of the form 

ce eur) where (x1, X2) = ax? + 2ba,x. + apr? It is easily seen that 
e will be integrable iff the a; are positive and aa. — 6? > 0. For pur- 
poses of probability theory. it is preferable to express the coefficients a; and 
6 in terms of these variances and to define the bivariate normal density 
centered at the origin by 

(1.18) 
_ 1 1 xi Ly Xo =) | 

4, 2) = ——— exp | — ——>(|—-— 2p -—- 4+ 
Pa #2) 2n0,0V1—p? P| Me! *P 0102 * 03 

where o, > 0, og > 0, and —1 < p <1. The integration with respect to 

x, is easily performed by the substitution + = z,/o, — p x,/o, (completing 

squares), and it is seen that » indeed represents a density in R®. Further- 
more, it becomes obvious that the marginal distributions for X, and X, 

are again normal® and that E(X,;)=0, Var (X;) = 0?, Cov (X,, X2) = 
= p0,0,. In other words, p is the correlation coefficient of X, and Xz. 

Replacing x; by x; — c;, in (1.18) leads to a normal density centered at the 

point (¢,, ¢). 

It is important that linear transformations (1.9) change a normal distribution 
into another normal distribution. This is obvious from the definition and (1.11). 

[Continued in example 2(a).] 

(e) The symmetric Cauchy distribution in R?, Put 

1 1 
1.19 u(z,, 2.) = o—————_ (1.19) (2, 22) on Jaaeaaly 

To see that this is a density note* that 

  

“+ 00 

(20) [ue ndy= t-te at 

3 Contrary to a widespread belief there exist non-normal bivariate densities with normal 

marginal densities (two types are described in problems 2, 3; two more in problems 5 
and 7 of V,12). In the desire to deal with normal densities, statisticians sometimes introduce 

a pair of new coordinate variables Y, = 9,(X,), Yo =g2(X_) which are normally 
distributed. Alas, this does not make the joint distribution of (Y,;, ¥.) normal. 

4THe substitution y = V1 +2? tans makes the calculation easy. 
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It follows that u is a density and that the marginal density of X, is the 
Cauchy density y, of TI,(4.5). Obviously X, has no expectation. 

Switching to polar coordinates [as in (1.12)] R ‘gets a density independent 
of 6 and so the variables R and © are stochastically independent. In’ 
the terminology of I,10 we can therefore say that with the symmetric Cauchy 

distribution (X,, X,) represents a vector in a randomly chosen direction with a. 

length R_ whose. density is given by rJ/ (1+r?)-*, whence P{R <r} = 

=1-VJ (1+r?)-. [Continued i in example 2(c).] 

(f) The symmetric Cauchy distribution in R3. Put 

11 

a (i-atpatp at) 
It is easily seen’ that the marginal density of (X,, X,) is the symmetric 
Cauchy density u of (1.19). The marginal density of X, is therefore the 
Cauchy density y,. (Continued in problem 5.) | . > 

(1.21) v( 2, Ze, 5) = 

Although it will not play an explicit role in the sequel it should be mentioned 
that we can define convolutions just as in one dimension. Consider two 
pairs (X,, X,) and (Y,, ¥,) with joint densities f and g, respectively... 

Saying that the two pairs are independent means that we take the four-- 
dimensional space with coordinate variables X,,; X,, Y,, Y, as sample space 
and define in it a density given by the product / (2, %2) g(¥1, ¥x)- Just as in 

RK? it is then easily seen that the joint density v of the sum (Xi+ Y,, Xo+ Y2) 

is given by the convolution formula 

+a 

(22) aed = | [feama, a) olen) dey de 
which is the obvious analogue to 1,(2.12). (See problems 15-17.) 

2. CONDITIONAL DISTRIBUTIONS 

Suppose that the pair (X,, X,) has a continuous density f and that the 
marginal density f, of X, is strictly positive. Consider. the conditional 
probability of the event X, < 7 given that §<X, < + 4, namely 

E+h fa 

: . { dz | f(z, y) dy 

(2.1) PIX, <nlE<X, Sith} => 2 ,   

E+h 
fi(%) dz : 

Dividing numerator and denominator by A, one sees that as h-»0 the 

5 Use the substitution 2 = V1 +23 +23 tans. 
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right side tends to 

(2.2) Un) =— 
fil) 

For fixed € this isa distribution function in 74 with density 

  [re y) dy. 

1 

fi) 
We call u, the conditional density of X, given that X, = &. The conditional 
expectation of X, given that X, = & 4s defined by 

  (2.3) u(y) = f(é, ). 

1 

fil€) . 

provided that the integral converges absolutely. With & considered as a 
variable the right side becomes a function of it. In particular, we may 
identify & with the coordinate variable X, to obtain a random variable 
called the regression of X, on X, and denoted by E(X, | X,). The appear- 
ance of X, should not obscure the fact that this random variable is a function 

of the single variable X, [its values being given by (2.4)). 

So far we have assumed that f,(€) > 0 for all & The expression (2.4) 

is meaningless at any place where f,(£) = 0, but the set of such points has 
probability zero and we agree to interpret (2.4) as zero at all points where f, 
-vanishes. Then E(X, | X,) is defined whenever the density is. continuous. 

(In. V,9-11 conditional probabilities will be introduced for arbitrary 

distributions.) . 

. Needless to say, the regression E(X,|X.) of X, on X, is defined in like 
manner. Furthermore, a conditional variance Var (X_ |X) is defined by 
obvious analogy with (2.4). 

These definitions carry over to higher dimensions, except that a density 

in R3 gives rise to three bivariate and three univariate conditional densities 

(See problem 6.) 

(2.4) E(X, | X, = §) =   [ “yf y) dy 

Examples. (a) The normal density. For the density (1.18) obviously 

| woeee 
————=_ exp |; — rr ar 

V2n(1—p?)o? 2(1—p’)o3 

which is a normal density with expectation p(o,/o,)& and variance 

(1—p?)o2. Thus 

(2.6) E(X, |X) = p(os/o,)Xi,_ War (Xz | X1) = (1—p’)o2. 
It is one of the pleasing properties of the normal distribution that the 
regressions are /inear functions. 

(2.5) u(y) = 
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Perhaps the earliest application of these relations is due to Galton, and 
one of his examples may illustrate their empirical ‘meaning. Imagine that 

X, and X, represent the heights (measured in inches from their respective 
expectations) of fathers and sons in a human population. The height of a 
randomly chosen son is then a normal variable with expectation 0 and 
variance o?. However, in the subpopulation of sons whose fathers have a 

fixed height &, the height of the sons is a normal variable with expectation 
p(o2/0,)€ and variance o}(1—p?) < o2. Thus the-regression of X, on X, 

indicates how much statistical: information about X, 1s contained in 
observation of X,. 

(b) Let X, and X, be independent and uniformly distributed in 0, 1. 
Denote by X(,) the smaller and by Xi) the larger among these variables. _ 

The pair (Xi), X(2)) has a density equal to the constant 2 within the triangle 

0< 2% <2 <1, and vanishing elsewhere. Integration over xz, shows that 

the marginal density of Xj) is given by 2(1—2z,). The conditional density 
of X 2, for given Xj, = 2, therefore equals the constant 1/1—2, within 

the interval z,,1 and zero elsewhere. In other words, given the value 2, 

of Xq) the variable X() is uniformly distributed over 2, 1. 

(c) Cauchy distribution in R*. For the bivariate density (1.19) the marginal 

density for X, is given in (1.20), and so the conditional density of X, for 
given X, is 

114+? 

2 JatEa 

Note that u, differs only by the scale factor V1 + & from the density 
uo(y) and so all the densities u, are of the same type. Conditional expecta- 

tions do not exist in this example. (See problem 6.): _ > 

(2.7) u(y) = 

  

In terms of the conditional densities (2.3) the distribution function ‘of 
“X, takes on the form 

+00 

(2.8 PIX <u}= [| adn) AE) db ao. 
in other words, the distribution of X, is obtained by randomization of the 

parameter & in the conditional densities u,, and so every® distribution may 
be represented as mixture. Despite this theoretical universality there is a 
great difference in emphasis. In some situations [such as example (a)] 

one starts from a bivariate distribution for (X,, X,) and derives conditional 

distributions, whereas in true randomization the conditional probabilities 

5 We have so far considered only continuous densities, but the general case will be covered 
in V,9. The notion of randomization was discussed in II,5. 
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u, are the primary notion and the density f(z, y) is actually defined by 
u,(y)fi(x). (This procedure of defining probabilities in terms of conditional 
probabilities was explained in an elementary way in 1; V,2.) 

3. RETURN TO THE EXPONENTIAL AND THE 

UNIFORM DISTRIBUTIONS 

The object of this section is to provide illustrative examples to the 
_ preceding sections and at the same time to supplement the theory of the 

- fitst chapter. 

Examples. (a) A characteristic property of the exponential distribution. 
Let X, and X, be two independent random variables with densitiés f, and 
fz, and denote the density of their sum S = X,+X, by g. The pairs 
(X,,S) and (X,, X,) are related by the linear transformation X, = X,, 

X, = S — X, with determinant 1 and by (1.11) the joint density of the 
pair (X,,S) is given by f(z) f2(s—z). Integrating over all x we obtain the 
marginal density g of S. The conditional density u, of X, giventhat S=s 
satisfies Alo fd ) 

(3.1) | u(2) = 
: g(s) 

In the special case of exponential densities f(z) = fa(z) = ae~** (where 
x > 0) we get u(x) =s! for O<2<s. In other words, given that 

X, + X,=5, the variable X, is uniformly distributed over the interval 

0,8. Intuitively speaking, the knowledge that S=s gives us no clue as 

to the possible position of the random point X, within the interval 0, s. 
This result conforms with the notion of complete randomness inherent in 
the exponential distribution. (A stronger version is contained in example 
(d). See also problem 12.) \ | 

(6) Random partitions of an interval: Let X,,...,X, be n points 
chosen independently and at random in the (one-dimensional) interval 

0,1. As before we denote by Xq), Xia),---> Xin) the random points 
X,,...,X, rearranged in increasing order. These points divide the 

interval 0,1 into n’+ 1 subintervals which we denote by 4, Jg,..~5Jn41 

numbering them from left to right so that Xi) is the right endpoint of J;. 

Our first aim is to calculate the joint density of (Xi), ... , X(q))- | 
The sample space corresponding to: (X,,...,X,) is the n-dimensional 

hypercube I" defined by 0<2,<1, and’ probabilities equal the n-. 

dimensional volume. The natural sample space with the X,,, as coordinate 

variables is the subset Q of I containing all points such that 

O0<a4 S09 Sa, <1. 
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The volume of Q is 1/n! Evidently the hypercube - I. contains n! con- 
gruent replicas of the set Q and in each the orered n-tuple (X(),... , Xin) 
coincides with a fixed permutation of X., ...,X,. (Within [, in particular, 

Xz) = X;,.) The probability that X, = X, for 5 some pair j # k equals zero, 

and only this event causes overlaps among the various replicas. It follows 
that for any subset 4A < Q the probability that (Xa, - «2. Xn) lies in A 

equals the probability that (X,,..., X,,) lies in one of the ‘n! replicas of A, 

and this probability in turn equals n! times the volume of A. Thus 
P{(Xi),--- » Xq)) € A}. equals the ratio of the volumes of A and of Q, 
which means that the n-tuple (Xq),..., X(n)) is distributed uniformly over 
the set Q. The joint density of our n-tuple equals n! within Q and 0 
outside. 

From the joint density of (Xq,..-., Xn) the density of X(,) may be 

calculated by keeping x, fixed and integrating over the remaining variables. 

The result is easily seen to agree with the density calculated by other methods 
in I, (7.2). | 

This example was treated in detail as-an exercise in handling and com- 

puting multivariate densities. 
(c) The distribution of the lengths. In the random partition of the preceding 

example denote the length of the kth interval J, by U,. Then 

(3.2) U, = Xa), U, = Xu — Xuan for k=2,3,...,n 

This is a linear transformation of the form (1.9) with determinant 1. The 

set Q of points 0<2,<¢-+-< 2, <1 is mapped into the set Q* of 
points such that u;>0, m+°:'+u,<1, and hence (Uj,...,U,) 
is distributed uniformly over this region. This result is stronger than the 
previously established fact that the U,, have a common distribution function 
[example I,7(4) and problem in I,13.] 

(d) Once more the randomness of the exponential distribution. Let 
Xi,..., X,4; be independent with the common density ae~** for x > 0. 
Put S;=X,+-°°°+X,. Then (S,,8,,...,8,4,) is obtained from 

(X,,..., X,41) by a linear transformation of the form (1.9) with deter-. 

minant 1. Denote by Q the “octant’’ of points 2; > 0. The density of 
(X,,..., X,41) is concentrated on © and is given by 

gtte—alait tre +2nt1) 

if x; > 0. The variables S,,...,S,4, map Q onto the region Q* defined 
by O0< 5, S 5a S66 ' MS Sqy1 < 0, and [see (1.11)] within ©*. the density 

of (S,,.:.,Sy41) is given by a”+e~*+1, The marginal density of S,_, 
is known to be the gamma density «”*1s"e-“*/n! and hence the conditional 
density of the n-tuple (S,,...,S,) given that S,4; = s equals nis for 
0<s5, <-:: <5, <5 (and zero elsewhere). In other words, given that 
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S,41 = 5 the variables (S,,...,8,) are uniformly distributed over their 

possible range. Comparing this with example (b) we may say that given 
Sizi = 5, the variables (S,,...,8,) represent n points chosen independently 

and at random in the interval 0,5 numbered in their natural order from left 

to right. 

(e) Another distribution connected with the exponential With a view to 

a surprising application we give a further example of a transformation. 
Let again X,,..., X, be independent variables with a common exponential 
distribution and S, = X, + --- + X,. Consider the variables U,,..., U, 
defined by | 

(3.3) U,.= X,/S, for k=1,...,n—-1, U, =S,, 

or, what amounts to the same, 

(3.4) X,=U,U, for k<n,  X,=U,(1—U,—---—U,_.). 
The Jacobian of (3.4) equals U"~1. The joint density of (X,,:..,X,) is 
concentrated on the region Q defined by x, > 0, and in it this density is 

given by a"e—*(#1t+""+20) It follows that the joint density of (U,,..., U,) 
is given by a"u™~te~2¥= in the region Q* defined by 

Wyte bia <I, u;, > 0 kK=1,...,n 

and that it vanishes outside Q*. An integration with respect to. u, shows 
that the joint density for (U,,...,U,_,) equals (n—1)¥! in Q* and 0 

elsewhere. Comparing with example (c) we see that (U,,-..,U,_1) has 
the same distribution as if U, were the length of the kth interval in'a random 

partition of 0,1 by n —1 points. 

(f) A significance test in periodogram analysis and the covering theorem. 
In practice, any continuous function of time ¢ can be approximated by a 
trigonometric polynomial. If the function is a sample function of a stochastic 
process the coefficients become random variables, and the approximating 
polynomial may be written in the form 

(3.5) ya cos w,t+Y, sin w,t) =SR, cos (w,t—®,) 
vel 

where R? = X2-+ Y? and tan®,= Y,/X,. Conversely, reasonable 

assumptions on the random variables X,, Y, lead to a stochastic process 
with sample functions given by (3.5). For a time it was fashionable to 

introduce models of this form and to detect ‘hidden periodicities” for 
sunspots, wheat prices, poetic creativity, etc. Such hidden periodicities 

used to be discovered as easily as witches in medieval times, but even strong 

faith must be fortified by a statistical test. The method is roughly as follows. 
A trigonometric polynomial of the form (3.5) with well-chosen frequencies 
@,...,5@, is fitted to some observational data, and a particularly large 

amplitude R, is observed. One wishes to prove that this cannot be due to 
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chance and hence that w, is a true period. To test this conjecture one asks 
whether the large observed value of R, is plausibly compatible with the 
hypothesis that all m components play the same role. For a test one 
assumes, accordingly, that the coefficients X,,...,Y, are mutually 
independent with a common normal distribution with zero expectation and 
variance o?. In this case (see II,3) the R? are mutually independent and 

have a common exponential distribution with expectation 207. If an 
observed value Rj deviated “significantly” from this predicted expectation 
it was customary to jump to -the conclusion that the hypothesis of equal 
weights was untenable, and R, represented a “‘hidden periodicity.” 

The fallacy of this reasoning was exposed by R. A. Fisher (1929) who 
pointed out that the maximum among n independent observations does 
not obey the same probability distribution as each variable taken separately. 
The error of treating the worst case statistically as if it had been chosen at 
random is still common in medical statistics, but the reason for discussing 
the matter here is the surprising and amusing connection of Fisher’s test of 

significance with covering theorems. 
As only the ratios of the several components are significant we normalize 

the coefficients by letting 

3.6 OVS R j= (3.6) p= Ry aR? | j=il,...,n. 

Since the R? have a common exponential distribution we can use the 
preceding example with X, = R}. Then V, = U,,...,V,1= Un4, but 

V, =1—U,—°::—U,_;. Accordingly, the n-tuple (V,,.-.,V,) is 

distributed as the length of the n intervals into which 0,1 is partitioned by 
a random distribution of n—1 points. The probability that all V,; be less 
than a is therefore given by formula 1,(9.9) of the covering theorem. This 
result illustrates the occurrence of unexpected relations between apparently 

unconnected problems.’ | > 

*4. A CHARACTERIZATION OF THE NORMAL 
DISTRIBUTION 

Consider a non-degenerate linear transformation of coordinate variables 

(4.1) ¥1 = 4X, + 42Xo, Yo = dyX1 + GeeXo, 

7 Fisher derived the distribution of the maximal term among the V, in 1929 without 
knowledge of the covering theorem, and explained in 1940 the equivalence with the 
covering theorem after W. L. Stevens had proved the latter. [See papers No. 16 and 37 in 
Fisher’s Contributions to Mathematical Statistics, John Wiley, New York (1950).] For 

an alternative derivation using Fourier analysis see U. Grenander and M. Rosenblatt 
(1957). 

* This section treats a special topic and is not used in the sequel. 
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and suppose (without loss of generality) that the determinant A = 1. If 

X, and X, are independent normal variables with variances o? and o? 
the distribution of the pair (Y,, Y.) is normal with covariance 

2 . 2 
4114195 + Qj2Ao005 

[see example 1(d)]. In this case there exist non-trivial choices of the coeffi- 

cients a;, such that Y, and Y, are independent. The following theorem 

shows that this property of the univariate normal distribution is not shared 

by any other distribution. We shall here prove it only for distributions with 
continuous densities, in which case it reduces to a lemma concerning the 

functional equation (4.3). By the use of characteristic functions the most 
general case is reduced to the same equation, and so our proof will really 
yield the theorem in its greatest generality (see XV,8). The elementary 
treatment of densities reveals better the basis of the theorem. 

The transformation (4.1) is meaningful only if no coefficient a, vanishes. 
Indeed, suppose for example that a,, = 0. Without loss of generality we may 

’ choose the scale parameters so that a;, = 1. Then Y, = X2, and a glance 

at (4.4) shows that in this case Y, must have the same density as X,. In 

other words, such a transformation amounts to a mere renaming of the 

variables, and need not be considered. 

Theorem. Suppose that X, and X, are independent of each other, and 

that the same is true of the pair Y,, Y2. If no coefficient a;, vanishes then 
all four variables are normal. 

The most interesting special case of (4.1) is presented by rotations, namely 
transformations of the form 

(4.2) Y, =X, cosw + X,sinw, Y, = —X, sin w + X, cos w 

where w is not a multiple of 47. Applying the theorem to them we get 

Corollary. Jf X, and .X, are independent and there exists one rotation 

(4.2) such that Y, and Y,. are also independent, then X, and X, have normal 

distributions with the same variance. In this case Y, and Y, are independent 

for every w. 

Example. Maxwell distribution of velocities. In his study of the velocity 

distributions of molecules in R* Maxwell assumed that in every Cartesian 

coordinate system the three components of the velocity are mutually 

independent random variables with zero expectation. Applied to rotations 

leaving one axis fixed our corollary shows immediately that the three com- 

ponents are normally distributed with the same variance. As we saw in 

]I,3 this implies the Maxwell distribution for velocities. > 
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The theorem has a long history going back to Maxwell’s investigations. Purely prob- 
abilistic studies were initiated by M. Kac (1940) and S. Bernstein (1941), who proved 

our corollary assuming finite variances. An impressive number of authors contributed 
improvements and variants, sometimes by rather deep methods. The development - 
culminates in a result proved by V. P. Skitovié.§ 

Now to the proof in the case of continuous densities. We denote the 

densities of X,; and Y, respectively by u; and f;. For abbreviation we put 

(4.3) Yy = Qy%, + AyoXe, Yo = Ay X + Age%. 

Under the conditions of the theorem we must have 

(4.4) SiG) foYo) = uy (%) ue (2). 

We shall show that this relation implies that 

(4.5) Fity) = £e?™, u(x) = +e) 

where the exponents are polynomials of degree 2 or lower. The only . 

probability densities of this form are the normal densities. For distributions 
with continuous densities the theorem is therefore contained in the following 

Lemma. Suppose that four continuous functions f, and u,; are connected 
by the functional equation (4.4), and that no coefficient a;, vanishes. The 
functions are then of the form (4.5) where the exponents are polynomials of 
degree <2. 

(It is, of course, assumed that none of the functions vanishes identically.) 

Proof. We note first that none of our functions can have a zero. Indeed, 

otherwise there would exist a domain 2 in the x,, x,-plane in which the 
two members of (4.4) have no zeros and on whose boundary they vanish. 

But the two sides require on the one hand that the boundary consists of 
segments parallel to the axes, on the other hand of segments parallel to the 
lines y; = const. This contradiction shows that no such boundary exists. 

We may therefore assume our functions to be strictly positive. Passing to 

logarithms we can rewrite (4.4) in the form 

(4.6) Pi(Yr) + Ga(Y2) = 04 (%) + wo(%p). 

For fixed 4, and A, define the mixed difference operator A by 

(4.7) Av(ay, 22) = v(e,+Ay, Leth.) — v(%y +h, %—As) — 

— v(%,—hy, La+h,) + v(@,—h,, Z2—hg). 

~ 8 Yavestia Acad. Nauk SSSR, vol. 18 (1954) pp. 185-200. The theorem: Let Xj)... 
be mutually independent, Y, = Za,;X;, and Y, = 2b,;X, where no coefficient is 0. If 
and Y, are independent the X; are normally distributed. 

X,, 
Y 1 
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Because each w,; depends on the single variable x, it follows that Aw, = 0. 
Also 

(4.8) Ag) = AH+h) — AYth) — #1(Y1— 2) + (1-4) 

where we put for abbreviation 

(4.9) ty = Ah, + ayoho, as Ayyhy — Ayohs. 

We have thus Ag, + Ag, = 0 with g, depending on the single variable 
y;- Keeping ys fixed one sees that Ag,(y,) is a constant depending only on 
h, and fy. We now choose f, and fA, so that t; =?¢ and t, = 0, where 
t 1s arbitrary, but fixed. The relation Ag, = const. then takes on the form 

(4.10) AYW+t) + 1G1—-1) — 2,1) = A(t). 

Near a point y, at which , assumes a minimum the left side is >0, and 
hence such a point can exist only if A(t) > 0 for all t in some neighborhood 

of the origin. But in this case g, cannot assume 4 maximum. Now a 

continuous function vanishing at three points assumes both a maximum and a 
minimum. We conclude that if a continuous solution of (4.10) vanishes at 
three distinct points, then it is identically zero. 

Every quadratic polynomial g(y,) = ay? + by1 + y satisfies an equation 

of the form (4.10) (with a different right side), and hence the same is true of 

the difference ,(y,) — q(y,). But ¢ can be chosen such that this difference 

vanishes at three prescribed points, and then 9,(y,) is identical with g. 
The same argument applies to g,, and this proves the assertion concerning 
fi and fy. Since’the variables X; and Y; play the same role, the same 
argument applies to the densities x,. p> 

5. MATRIX NOTATION. THE COVARIANCE MATRIX 

The notation employed in section 1 is messy and becomes more so in 
higher dimensions. Elegance and economy of thought may be achieved by 
the use of matrix notation. 

For ease of reference we summarize the few facts of matrix theory and the notations 
used in the sequel. The basic rule is: first rows, then columns. Thusan « by 3 matrix A 
has « rows and f columns; its elements are denoted by a,,, the first index indicating the 
row. If B isa Bbyy matrix withelements 6,, the product AB isthe «by y matrix with 

elements @;)54; + @jobo, + °° °+ @;ggx. No product is defined if the number of columns 
of A does not agree with the number of rows-of B. The associative law (AB)C = A(BC) 

holds, whereas in general AB # BA. The transpose AT isthe B by « matrix with elements 

at =a,,;. Obviously (ABT) = BTA?. 

“A one by « matrix with a single row is called a row vector; a matrix with a single 

column, a column vector.® A row vector r = (r),...,/,) is easily printed, but a columr 

  

  

® This is really an abuse of language. In a concrete case x, may represent pounds and 
X_ cows; then (%,,2%,) is no **vector’’ in the strict sense. 
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vector is better indicated by its transpose cT =(c,,...,¢,). Note that cr is an a by « 
matrix (of the ‘‘multiplication table” type) whereas rc is a one by one matrix, or scalar. - 

In the case x = 2 

Ciry C499 
cr = ( , re = (rey trees). 

Col) Cole 

The zero vector has all components equal to 0. 

Matrices with the same number of rows and columns are called square matrices. With 

a Square matrix A there is associated its determinant, a number which will be denoted by 
|A|. For our purposes it suffices to know that the determinants are multiplicative: if A 
and B are square matrices and C = AB, then |C| =|A|-|B|. The transpose A” has 
the same determinant as A. , 

By identity matrix is meant a square matrix with ones in the main diagonal and zeros 
at all other places. If / is the identity matrix with r rowsand columnsand A an r by r 
matrix, obviously 14 = Al = A. By inverse of A is meant a matrix A~} such that 
AA-} = A-'A = 1. [Only square matrices can have inverses. The inverse is unique, for 
if B is any inverse of A wehave AB = I and by the associative law A~! = (A714)B = B.] 
A square matrix without inverse is called singular. The multiplicative property of deter- 
minants implies that'a matrix with zero determinant is singular. The converse is also true 
if |Al % 0 then A is non-singular. In other words, a matrix A is singular iff there exists 
a non-zero vector 2 such that +A = 0. 

A square matrix 4 is symmetric if aj, = a,;, that is, if A’ = A. The guadratic form 

associated with a symmetric r by r matrix A _ is defined by 

r 
xAxT = > G54 j2 4, 

Pk=1 

where x,,...,%, are indeterminates. The matrix is positive definite if xAxT > 0 for all 

non-zero vectors «, It follows from the last criterion that a positive definite matrix is non- 
singular. ; 

Rotations in R*. For completeness we mention briefly a geometric application of matrix 
calculus although it will not be used in the sequel. 

The inner product of two row vectors & = (%,...,%,) andy = (y,,..., 4%) ts defined 

by 
x 

ny? = yet = ¥ xy, 
j=l 

The length L of x is given by L2 = xxT. If x and y are vectors of unit Jength the angle 
O between them is given by cos 6 = xy?. 

An « by « matrix A induces a transformation mapping x inte § = A; for the 
transpose one has §7 = ATxT_ The matrix A is orrhogoral if the induced transformanon 
preserves lengths and angles, that is to say, if any two row vecters have the same inner 
preduct as their images: Thus A is orthogonal iff for anv pair of row vectors -v, y 

tAATyT = xyT, 
¥ 

This implies that AAT is the identity matrix / as can be seen by cheosing for x and y 

vectors with « — 1 vanishing components. We have thus found that 4 is orthogonal it 

AAT = 1, Since A and AT have the same determinant it follows that it equals +1 or 

—1, An orthogonal matrix with determinant 1 is called a rutation matrix and the induced 

transformation is a rotation. 
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From now on we denote a point of the r-dimensional space R” by a 

single letter to be interpreted as a row vector. Thus x = (%,...,2,) and 
S(z) = f(%,...,%,), etc. Inequalities are to be interpreted coordinatewise: 
a<y iff 4,<y, for k =1,...,r and similarly for other inequalities. 
In the plane R? the relation x <y may be read as “x lies southwest of 
y.’ A novel feature of this notation is that two points need not stand in 
either of the relations «<y or y <2, that is, in higher dimensions the 

inequality < introduces only a partial ordering. 
We write X = (X,,..., X,) for the row vector of the coordinate variables 

and use this notation for random variables in general (mainly for normally 
distributed variables). 

If the variables X,,...,X, have expectations E(X;) we write E(X) for 

the row vector with components E(X,). The vector XK — E(X) has zero 

expectation. More generally, if M is a matrix whose elements M,, are 
random variables we write E(M) for the matrix of elements EM) 

assuming that it exists. 

Definition. Jf E(X) = 0 the covariance matrix Var (X) of X is the sym- 
metric r by r_ matrix with elements E(X,X,) (provided they all exist). In 

other words 

(5.1) Var (X) = E(X?X). 

For arbitrary X we define War (X) to be the same as Var (X—E(X)). 

The use of row vectors necessitates writing a /inear transformation from 
R’ to R™ in the form 

(5.2) ¥ = X4, 
that is, 

(5.3) Yk = 2,4; k = 1, eee yo M 

where A isan r by m matrix. Obviously E(Y) = E(X)A whenever E(X) 

exists. To find the variances we assume without loss of generality E(X) = 0. 
Then E(Y) =0 and 

(5.4) E(¥7Y) = E(ATX?XA) = ATE(X?TX)A. 

We thus have the important result that 

(5.5) Nar (Y) = A? Var (Y)A. 

Of particular interest is the special case m == 1 when 

(5.6) Y = a,X, + °°: +4,X, 
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is an ordinary random variable. Here Var (Y) is the (scalar) quadratic form 

(5.7) Var (Y) = > E(X,X,)a,q,. 
ik=1 

The linear form (5.6) vanishes with probability one if Var (Y)=0 and 

in this case every region outside the hyperplane 3 a,x, = 0 carries zero 
probability. The probability distribution is then concentrated on an 

(r—1)-dimensional manifold and is degenerate when considered in r 
dimensions. We have now proved that the covariance matrix of any non- 
degenerate probability distribution is positive definite. Conversely, every 

such matrix may serve as covariance matrix of a ‘normal density (see theorem 
4 of the next section). 

6. NORMAL DENSITIES AND DISTRIBUTIONS 

Throughout this section. Q stands for a symmetric r by r matrix, and 
q(x) for the associated quadratic form 

(6.1) q(x) = > 4 jpk ily = Ox™ 
j,k=1 

where x = (%,,...,2,) iS a row vector. Densities in ” defined by an 

exponential with a quadratic form in the exponent are a natural counterpart 
of the normal density on the line, and we start therefore from the following 

Definition. A density in r dimensions is called normal and centered at 

the origin of it is of the form 

(6.2) p(t) = yt ee 
where y is a constant. A normal density centered at a = (a,,Q@,,...,4,) 

is given by p(a—a). , 

The special case of two dimensions was discussed in examples 1!(d) 
and 2(a). 

We take ‘” with the probability distribution of (6.2) as sample space 

and denote by X = (X,,...,X,) the row vector formed by the coordinate 

variables. Its covariance matrix will be denoted by M: 

(6.3) M = Var (X) = E(X7X). 

Our problem consists in investigating the nature of the matrices Q and M, 
and the relationship between them. 

First we observe that no diagonal element of Q can vanish. Indeed, if we 
had g,, = 0, then for fixed values of 2,...,%,, the density (6.2) would 

10 ** Degenerate” normal distributions will be introduced at the end of this section.
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take on the form y'e~%r*? and the integral with respect to x, would 
diverge. We now introduce the substitution y = xA defined by 

(6.4) Y, FX, ++ + Up = U1, Yr = Yarr% t+ A Gp. 

It is seen by inspection that g(x) — y2/q,, isa quadratic formin 2,...,%,_, 

not involving z,. Thus 

1 _ 
(6.5) q(x) = a, Y; + Gy). 

where g(y) is a quadratic form in y,,...,¥Y,_,. This shows that the vector 
Y = XA has a normal density that factors into two normal densities for Y, 

and (Y,,..., Y,.1), respectively. The first conclusion to be drawn is the 

simple but important 

Theorem 1. A// marginal densities of a normal density are again normal. 

Less expected is 

Theorem 2. There exists a matrix C with positive determinant such that 
Z = XC is a row vector whose components Z, are mutually independent 
normal variables. 

The matrix C is not unique; in fact, the theorem can be strengthened 

to the effect that C can be chosen as a rotation matrix (see problem 19). 

Proof. We proceed by induction. When r = 2 the assertion is contained 
in the factorization (6.5). If the theorem is true in r — 1 dimensions, the 

variables ¥,,..., Y,-, are linear combinations of independent normal 

variables Z,,...,2Z,:; while Y, itself is normal and independent of the 

remaining variables. Since X =-YA7 it follows also that the X, are 
linear combinations of Z,,...,Z,., and Y,. The determinant of A 

equals q,,, and (6.5) implies that it is positive. The determinant of the 
transformation X-—» Z is the product of the determinants of A and the 
transformation Y-—» Z and hence it is positive. > 

. Theorem 3. The matrices Q- and. M are inverses of each other and 

(6.6) y= (20) |M] 
where |M| = |Q|~! is the determinant of M. 

Proof. With the notations of the preceding theorem put 

(6.7) D = E(Z7Z) = CTMC. 

This is a matrix with ‘diagonal elements E(Z‘) = of and zero elements 

outside the diagonal. The density of Z is the product of normal densities 
n(zoz!)or? and hence induced by the matrix D~! with diagonal elements 
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o;*. Now the density of Z is obtained from the density (6.2) of X by 

the substitution x=2zC™! and multiplication by the determinant |C7}|. 
Accordingly 

(6.8) zD1z? = xQxT 

and 

(6.9) (Qn) |D| = y+ {CP 
From (6.8) it is seen that 

(6.10) Q=cD"'c?, 

and in view of (6.7) this implies Q = M-. From (6.7) it follows also that 

|D| = |M]|-|C|?, and hence (6.9) is equivalent to (6.6). > 

The theorem implies in particular that a factorization of M corresponds 
to an analogous factorization of Q and hence we have the 

Corollary. [f (X,, X2) is normally distributed then X, and X, are indepen- 

dent iff Cov (X,, X,) = 0, that is, iff X, and X, are uncorrelated. 

More generally, if (X,,..., X,) has a normal density then (X,,...,X,) 
and (X,41,..., X,) are independent iff Cov (X,;, X,) = 0 for j;<2n,k >A. 

Warning. The corollary depends on the joint density of (X,, X,) being 

normal and does not apply if it is only known that the marginal densities of 
X, and X, are normal. In the latter case the density of (X,, X.) need not 

be normal and, in fact, need not exist. This fact is frequently misunderstood 

(see problems 2-3). 

Theorem 4. 4 matrix M is the covariance matrix of a normal density iff 
it is positive definite. 

Since the density is induced by the matrix Q@ = M~ an equivalent 
formulation is: A matrix Q induces a normal density (6.2) iff it is positive 

definite. 

Proof. We saw at the end of section 5 that every covariance matrix of 

a density is positive definite. The converse is trivial when r = 1 and we 
proceed by induction. Assume @ positive definite. For 2,=::: = 
= 2%,_, = 0 we get g(x) = 4,22 and hence q,, > 0. Under this hypothesis 

we saw that q may be reduced ‘to the form (6.5). Choosing x, such that 
y, = 0 we see that the positive definiteness of Q implies g(x) > 0 for all 

choices of 2,,...,2,,. By the induction hypothesis therefore q corre- 
sponds to a normal density in — 1 dimensions. From (6.5) it is now obvious 
that g corresponds to a normal density in r dimensions, and this completes 

the proof. > 
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We conclude this general theory by an interpretation of (6.5) in terms of 

conditional densities which leads to a general formulation of the regression 
theory explained for the two-dimensional case in example 2(a). 

Put for abbreviation a, = —q,,/q,,, so that 

(6.1 1) y= Yrr(%p— AX —" . ‘—,_1%,_4). 

For a probabilisuc interpretation of the coefficients a, we recall that Y, 

was found to be independent of X,,...,X,_;. In other words, the a, are 

numbers such that 

(6.12) T= X, ~~ a,X, a p11 

is independent of (X,,..., X,_4), and this property uniquely characterizes 

the coefficients a,. , 

_ To obtain the conditional density of X, for given X,=%,...,X,. = 
= x,_, we must divide the density of (X,,..., X,) by the marginal density for 

(X,,...,X,,). In view of (6.5) we get an exponential with exponent 

—ty*/q,,.. It follows that the conditional density of X, for given X, = 
= 2y,...,X,_, = 2%, is normal with expectation az, + °°* + Gy 4%,4 

and variance 1/q,,. Accordingly » 

(6.13) E(X, | Xi, ee) Xp) = aX + + a, Xi. 

We have thus proved the following generalization of the two-dimensional 
regression theory embodied in (2.6). 

Theorem 5. /f (X,,..., X,) has a normal density, the conditional density 
of X, for given X,,..., X,_, is again normal. Furthermore, the conditional 
expectation (6.13) is the unique linear function of X,,...,X, making T 
independent of (X,,...,X,-,). The conditional variance equals Var (T) = 

= Fy 
Example. Sample mean and variance. In statistics the random variables 

a 1 A 1 c a (6.14) K= -(X+°°°+X,),  s =- Y(X,—R? 
or r k=l 

are called the sample mean and sample variance of X = (X,,..., X,). 
It is a curious fact that if X,,...,X, are independent normal variables with 

E(X,) = 0, E(X?) = o?, the random variables X and 6 are independent.4 

The proof illustrates the applicability of the preceding results. We put 

Y, =X, —X for k<r—1 but Y,=X. The transformation from X 
to Y=(Y,,..., Y,) being linear and non-singular, Y has a normal 

density. Now E(Y,Y,)=0 for k <r—1 and so Y, is independent of 

11 That this fact characterizes the normal distribution in R! was shown by R. C. Geary 
and by E. Lukacs. 
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(Y,,..., Y,.,). But 

(6.15) ro* = Yi+--- + Ye, + (¥i+-°-+Y,4)? 

depends only on Y,,..., Y,,, and thus 6? is indeed independent of 

Y, = X. . > 

General Norma! Distributions 

It follows from the lemma that if X = (X,,...,X,) has a normal 

density, every non-zero linear combination Y, = a,X, + °°: + a,X, also 

has a normal density. The same is true of every pair (Y,, Y2) provided 

that no linear relationship c,Y, + cg¥, =0 holds. In this exceptional 

case the probability distribution of (Y,, Y,) is concentrated on the line 

with the equation cy, + C3y¥2 = 0 and hence it is singular if viewed as a 

two-dimensional distribution. For many purposes it is desirable to preserve 
the term normal distribution also for degenerate distributions concentrated 

on a lower-dimensional manifold, say on a particular axis. The simplest 

general definition is as follows: The distribution of Y = (Y,,..., Y,) is 

normal if there exists a vector X = (X,,...,X,) with normal r-dimensional 

density such that Y = a+ XA where A isa (constant) r by p matrix and 
a=(a,,...,a,). If p>r the distribution of Y is degenerate in p 
dimensions. For p-<r it is non-degenerate iff the p forms defining Y, 

are linearly independe~* 

*7, STATIONARY NORMAL PROCESSES 

The purpose of this section is partly to supply examples of normal distri- 

butions, partly to derive some relations of considerable use in the theory of 
discrete stochastic processes and time series. They are of an analytic character 
and easily separated from the deeper, stochastic analysis. In fact, we shall 

be concerned only with finite-dimensional normal densities or, what amounts 

to the same, their covariance matrices. The reference to random variables is 

essential for probabilistic intuition and as a preparation for applications, but 
at the present stage we are concerned only with their joint distributions; 

the random variables themselves are used merely as a convenient way of 
describing all marginal densities by indicating the corresponding collections 

(X, ...,X,). By the same token a reference to an infinite sequence 

{X,} implies merely that the number of terms in (X,,...,X,) may be 

taken arbitrarily large. 
We shall, in fact, consider a doubly infinite sequence {..., X_2, X_1,..-}. 

By this we mean simply that corresponding to each finite collection 
  

* Not used in the sequel. In particular, section 8 can be read independently. (See 

also XIX,8.) 
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(X,>-+.,X,,) we are given a normal density with the obvious consistency 

rules. The sequence is stationary if these distributions are invariant under 

time shifts, that is, if all r-tuples of the form (X, wees Xnyy) With 

fixed n,,...,”, have a common distribution independent of ». For 
r= 1 this implies that the expectations and variances are constant, and 

hence there is no loss in generality in assuming that E(X,) = 0. The joint 
distributions are completely determined by the covariances p,, = E(X;X,), 

and the stationarity requires that p,, depends only on the difference |k — /]. 
Accordingly we put p;;,, =n. Thus 

(7.1) r, = E(X,X,,,) = E(X,_,X;,), 

whence r, =r_,. In effect we are dealing only with sequences of numbers 
r, that can serve as covariances for a stationary process. 

Throughout this section {Z,} stands for a doubly infinite sequence of 

mutually independent normal variables normed by 

(7.2) E(Z,)=0,  E(Zz) = 1. 
Three methods of constructing stationary sequences in terms of a given 
sequence {Z,} will be described. They are in constant use in time series 

analysis and may serve as an exercise in routine manipulations. 

n 

Examples. (a) Generalized moving average processes. With arbitrary 
constants bo, b,,...,5, put 

(7. 3) Xp, = boZn + b,Zy-4 trot byZ,_n.-. 

In the special case of equal coefficients b, = 1/(N+1) the variable X, 

is an arithmetic average of the type used in time series analysis to ‘‘smooth 

data’ (that is, to eliminate local irregularities). In the general case (7.3) 

represents a linear operator taking the stationary sequence {Z,} into a 
new Stationary sequence {X,}. The fashionable term for such operations 1s 

“filters.” The sequence {X,} has covariances 

(7.4) r, =r, = E(X,X,,,) = > byDvse (k > 0) 

the serie$ having finitely many terms only. 
Since 2 |b,b,.,| < 63 + b3,, the expression (7.4) makes sense also for 

infinite sequences such that >} b? < oo.: It is easily seen that the limit of 
a sequence of covariance matrices is again a covariance matrix and, letting 
N-»+ oo, we conclude that for any sequence bo, b,,b2,... such that 
> 52 < « the numbers r, of (7.4) may serve as covariances of a stationary 

_ process {X,}. Formally we get for the new process 

(7.5) X, =D Zn 
k=0 
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It can be shown without difficulty that every stationary process with co- 
variances (7.4) is of this form, but the relation (7.5) involves infinitély many 

coordinates and we cannot justify it at present. (See XIX,8.) 
.(b) The auto-regression process. Since the inception of time series analysis 

various theoretical models have been proposed to explain empirical phe- 
nomena such as.economic time series, sunspots, and observed (or imagined) 

periodicities. The most popular model assumes that the variables X, of 
the process are related to our sequence Z,, of independent normal variables 
of (7.2) by an auto-regression equation of the form 

(7.6) aoXq + ayXn1 + °° + ayXy,_y = Zp. 

This model is based on the empirical: assumption that the value of the 
variable X, at epoch a (price, supply, or intensity) depends on its past 
development superimposed on a “random disturbance’? Z, which is fot 
related to the past. As is.frequently the case, the assumption of /inear 
dependence serves to simplify (or make possible) a theoretical analysis. 
_More general models may be obtained by letting MN -» oo or by letting the ~ 

Z,, be the variables of another stationary process. 

If ag # 0 one may chosse (Xp,..., Xy_) in an arbitrary way and then 

calculate Ky, Xyi,,-.. amd X_,, X_2,... recursively. In this sense (7.6) 

determines a process, but we ask whether there exists a stationary solution. 
To answer this question we rewrite (7.6) in a form not involving the 

immediate predecessors of X,. Consider (7.6) with n replaced successively 
by n—l, n—2,...,n—yv. Multiply these equations by 0, d,..., b,, 

respectively, and add to (7.6). The variables X,_,,...,X,_, will not 
appear in the new equation iff the 5, are such that 

(7.7) Agb, + ayby = 0, eee y apd, + a,b, 4 + ve. + a,bo = 0 

with bj = 1. The resulting identity is then of the form 

(7.8) aX, = boL, + bZy-1 + os + b,Z,-% + Yaw 

where Y,,, is a linear combination of X,.4,...,X,-y_y (with co- 

efficients that are of no interest). In (7.8) we have expressed the variable 

X,, as a resultant of the chance contributions at epochs n,n—1,...,n—y» 

and a variable Y,., representing the influence of the time before epoch 

n—v. As v—> oo this time becomes the “infinitely remote past’? and 
in most situations it will have no influence. In passing to the limit we shall 
(at least temporarily) assume this to be the case, that is, we are looking 

for a process satisfying a limiting relation of the form 

(7.9) AX, = > bj Ly_e . 
k=0 
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[Roughly speaking we assume that the residual variables Y,,,, tend to zero. 
Other possible limits will be indicated in example (d).] 

Processes of the form (7.9) are the object of example (a) and we saw 
that a stationary solution exists whenever > b2 < oo. (If the series diverges, 
not even the expressions for the covariances make sense.) To solve the 

equations (7.7) for 6, we use the formal generating functions 

(7.10) A(s) = Yast, —B(s) = Yd, s*. 

The equations (7.7) hold iff A(s) B(s) = agb, and, A being a polynomial, 
B is rational. We can therefore use the theory of partial fractions developed 

  
  

in 1; XI,4. If the polynomial A(s) has distinct roots 5,,...,5y we get 

— A A: 
(7.11), B(s) = —*- + --- + — 

5, — S sn — S 
and hence 

(7.12) , b, = Aysy" +++ + Ansa. 

Obviously > 52 < © iffall roots satisfy |s;| > 1, and it is easily verified 

that this remains true also in tne presence of multiple roots. We have 
thus shown that a stationary solution of the auto regression model (7.6) 

exists whenever all roots of the polynomial A(s) lie outside the unit disk. 

The covariances of our process are given by (7.4) and in the process the 
“infinitely remote past” plays no role. 

Our solution {X,} of the auto-regression equation (7.6) is unique. Indeed, 
the difference of two solutions would satisfy the homogeneous equation 
(7.13) and we shall now show that the condition |s,| > 1 precludes the 

existence of a probabilistically meaningful solution of this equation. 

(c) Degenerate processes. We turn to stationary sequences {Y,} satisfying 
the stochastic difference equation | 

(7.13) aX, + aY,-1 ttt ayY,_N = 0. 

They represent an interesting counterpart to the auto-regression processes 

governed by (7.6). Typical examples are 

(7.14) Y¥, = A(Z, cos nw + Z_, sin nw) 

and 

(7.15) Y, = %Z, + (—1!)"a,Z_, 

where the coefficients and w are constants, and Z, and Z_, independent 
norma] variables normed by (7.2). These processes satisfy (7.13), the first 

with ay=a,=1 and a, = —2cosw, the second with a, = —a, = } 

and a,=0. They are degenerate in the sense that the whole process is 
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completely determined by two observations, say Y,_, and Y,. These two 

observations can be taken as far back in the past as we please, and in this 

sense the process is completely determined by its “infinitely remote past.” 
The same remark applies to any process satisfying a difference equation 

of the form (7.13), and hence these processes form the counterpart to 
example (b) where the infinitely remote past had no influence at all. > 

These examples explain the general interest attaching to the stochastic 

difference equation (7.13). Before passing to its theory we observe that any 
process {Y,} satisfying (7.13) satisfies also various difference equations of 
higher order, for example 

AX n + (4-4) Vn + °° * + (Qy—ay-a)Vn_w — AnY¥y—Nn-1- 

To render the problem meaningfu: we must suppose that (7.13) represents 

the difference equation of /owest order satisfied by {Y,}. This an.ounts to 
saying that the N-tuple (Y,,...,Y,) is non-degenerate with a normal 

density in N dimensions. It implies that aj #0 and ay # 0. 
It will now be shown that the theory of stationary solutions of the difference 

equation (7.13) is intimately related to the “‘characteristic equation” 

(7.16) apg + a,E%14---+ay=0. 
To each quadratic factor of the polynomial on the left there corresponds 
a second-order stochastic difference equation, and through it a process of 

the form (7.14) or (7.15). Corresponding to the factorization of the character- 

istic polynomial we shall thus represent the general solution of (7.13) as a 
sum of components of the form (7.14) and (7.15). 

As before we assume the centering E(Y,,) = 0. The whole theory depends 
on the following 

Lemma 1. A stationary sequence with E(Y,Yns;) =" Satisfies the 

stochastic difference equation (7.13) iff 

(7.17) Ag’ n + Qrn-1 t°'* + ayr,_-n = 0. 

Proof. Multiplying (7.13) by Y, and taking expectations leads to (7.17). 
Squaring the left side in (7.13) and taking expectations yields } a,(> a,r,_;), 
and so (7.17) implies that the left side in (7.13) has zero variance. This 

proves the lemma. > 

We proceed to derive a canonical form for r,. It is, of course, real, but it 

involves the roots of the characteristic equation (7.16), and we must therefore 

resort to a temporary use of complex numberc. 

Lemma 2. /f “{Y,,} satisfies (7.13), but no difference: equation of lower 

order, then the characteristic equation (7.16) possesses N_ distinct roots 
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E,,...,&y of unit modulus. In this case 

(7.18) r= aot +++ + eyEy 

with ¢;>0 for j=1,...,N. 

Proof. Suppose first that the characteristic equation (7.16) has N distinct 

roots ¢,,...,& y. We solve (7.17) by the method of particular solutions 
which was used for similar purposes in volume 1. Inspection shows that 
(7.18) represents a formal solution depending on WN free parameters 
C1,...,¢€y. Now the r, are completely determined by the N values 
r},-..,0y, and to show that every solution of (7.17) is of the form (7.18) 
it suffices therefore to show that the c; can be chosen so that the relations 
(7.18) yield prescribed values for r,,...,ry. This means that the c,; must 

satisfy NM linear equations whose matrix A has elements a;, = ¢/ (j, 
k=1,...,N). The determinant of A does not vanish,!2 and hence the 

desired solution exists. 

We have thus established that (in the case of distinct roots) r, is indeed 
of the form (7.18). Next we show that only roots of unit modulus can 
effectively appear in it. We know that ay # 0, and hence 0 is not a root of 
the characteristic equation. Next we note that the covariances r, are 
bounded by the common variance ry) of the Y,. But if ¢,; is not of unit 

modulus then {&;|"—> 00 either as n—» oo or as n—-—oo. It follows 

that for each 7 either [¢;{ = 1 or else c; = 0. 

Suppose now that &, and &, area pair of conjugate roots and c, # 0. 
Then é, is of unit modulus and hence & = é71. Thesymmetry relation 

r, =r_, therefore requires that cp = c,. Again, &" + &* is real, and there- 
fore c, must be real. Thus the complex roots appear in (7.18) in conjugate 

pairs with real coefficients, and if some coefficient c,; vanished, r, would 
satisfy a difference equation of order less than N. Accordingly all roots 
are of unit modulus, all c; are real and c,; ¥ 0. 

To show that the c; are actually positive we introduce the covariance 

matrix R of (¥Y,..., ¥y). Its elements are given by r,_,, and it is 

easily verified from (7.18) that 

(7.19) R= ACA 

where C isthe diagonal matrix with elements c,, A is the matrix introduced 
  

12 The determinant is usually called after Vandermonde. To show that it does not vanish 
replace &, bya free variable x. Inspection then shows that the determinant is of the form 
xP(x) where P is a polynomial of degree N —1. Now P(x) =0 for x = &,..., &, 

because for these values of x two columns of the determinant become identical. The 
determinant can therefore not vanish for any other value of x, and in particular not for 
x= §,. 
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above, and 4 is its conjugate (that is, it is obtained from A by replacing 
é, by 71). Now R is real and positive definite, and therefore for any 

complex N-dimensional non-zero row vector x = u + iv 

(7.20) tRET = yRuT + vRvT > 0. 

Letting y = 2A this reduces to 
N | 

(7.21) yCy” = de; ly,l? > 0. 
j=l 

Since the determinant of A does not vanish this inequality holds for 
arbitrary y, and thus c,; > 0 as asserted. 

To complete the proof we have to show that the characteristic equation 
can not have multiple roots. Assume that &, = é, but the other roots are 

distinct. We get again a representation of the form (7.18) except that the 

term c,é7, is replaced by c,né?. The boundedness of r, again necessitates 

that c,=0. In the case of one double root we would therefore get a 
representation of the form (7.18) with fewer than N non-zero terms, and we 

have seen that this is impossible. The same argument shows more generally 
that no multiple roots are possible. > 

We now state the final result for the case that N is an odd integer. The 
modifications required for even N should be obvious. 

Theorem. Suppose that the stationary sequence {Y,} satisfies the differ- 

ence equation (7.13) with N= 2» +1, but no difference equation of lower 
order. The characteristic equation (7.16) possesses v pairs of complex roots 
&; =cosw,;+tisinw, (with w, real), and one real root w= +1. The 
sequence {Y,} is of the form 

v 

(7.22) Y, = 4)Zo° 0) + Dd A,[Z; cos nw; + Z_; sin nw,], 
. j=l 

where the Z; are mutually independent normal variables with zero expectatians 
and unit variances, and the A, are constants. For this sequence 

(7.23) r, = Aw? + 24; cos nw,. 
j= 

Conversely, choose real A,#0 arbitrary and wy= +1, and let 
@,,...,@; be distinct real numbers with 0 < w; < m. Then (7.22) defines a 

stationary process with covariances (7.23) and satisfying a difference equation of 
order 2v + 1. but no difference equation of a lower order. 

Proof. Let the 4, and w,; be numbers, and the Z,; normal variables 
satisfying the conditions of the theorem. Define the variables Y,, by (7.22). 

A trite calculation shows that the covariances r, of {Y,} are given by 
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(7.23). There exists a real algebraic equation of the form (7.16) with the 

roots &; described inthe theorem. The r, then satisfy the difference equation 
(7.17), and by lemma | this implies that the Y,, satisfy the stochastic 
difference equation (7.13). By construction this is the equation of lowest 

degree satisfied by the Y,,. 

Conversely, let {Y,} stand for the solution of a given difference equation 

(7.13). The covariances r, of {Y,} determine the numbers A, and ao, 

appearing in (7.22). Consider these equations for n=0,1,...,2» asa 

linear transformation of an arbitrary N-tuple of normal variables 

(Z_,,...,Z,) into (¥o,..., ¥y). This transformation is non-singular, 

and hence the covariance matrices of the two N-tuples determine each other 
uniquely. We have just shown that if the covariance matrix of the Z, 
reduces to the identity matrix the Y, will have the prescribed covariances 

r,. The converse is therefore also true, and so there exist normal variables 

Z; satisfying the conditions of the theorem and such that (7.22) holds for 

n=0,...,N. But both sides of these equations represent solutions of the 

stochastic difference equation (7.13),.and since they agree for O< n<N 
they are necessarily identical. > 

8. MARKOVIAN NORMAL DENSITIES 

We turn toa discussion of the particu!ar class of normal densities occurring 

in Markov processes. Without loss of generality we consider only densities 

centered at the origin. Then E(X,) = 0 and we use the usual abbreviations 

(8.1) E(X;) = o, E(X;X,) = 0j0nP jx- 

The p,;, are the correlation coefficients and py, = 1. 

Definition. The r-dimensional normal density of (X,...,X,) is Marko- 
vian if for k <r the conditional density of X, for given X,,...,X,1 is 

identical with the conditional density of X, for given X,,. 

Roughly speaking, if we know X,_, (the “present”’) then the additional 
knowledge of the “past”? X,,...,X,-, does not contribute any relevant 

information about the “‘future,”’ that is, about any X; with j > k. 

As usual in similar situations, we apply the term Markovian interchangeably 
to (X,,...,X,) and its density. 

Theorem 1. For (X,,...,X,) to be Markovian each of the following 

two conditions is necessary and sufficient: 

(i) Fork <r 

(8.2) E(X, | Xi,-.-, X41) = E(X, | X,-1)- 

 



III.8 MARKOVIAN NORMAL DENSITIES 95 

(ii) For jgvegksr 

(8.3) Pik = PivP ve: 

For (8.3) to hold it suffices that 

(8.4) . Pik = Pj,4-1P k—-1,4 JS k. 

Proof. Identity of densities implies equality of expectations and so (8.2) 

is trivially necessary. On the other-hand, if (8.2) is true, theorem 5 of section 

6 shows that the conditional density of X, for given X,,...,X,_, depends 

only on X,_,, but not on the preceding variables. Now the conditional 
density of X, for given X,_, is obtained by integrating out the variables 
X,....,X,-2, and hence the two conditional densities are identical. Thus 

(8.2) is necessary and sufficient. 
Referring again to theorem 5 of section 6 it is clear that the variable 

(8.5) ‘T = X, — E(X, | X,_1) 

is identical with 

, o 
(8.6) T =X, - + Pre-i,¢Xe—1- 

. Op-1 

because this is the only variable of the form X, — cX,_, uncorrelated to 

X,-1. By the same theorem therefore (8.2) holds iff T is uncorrelated also to 
X,,..., X,-2, that is, iff (8.4) holds. Thus (8.4) is necessary and sufficient. 

As it is a special case of (8.3) the latter condition is sufficient. It is also 
necessary, for repeated application of (8.4) shows that for j;<»<k<r 

(8.7) Pik —_ P3, k-1 — Ps k—-2 _ Piyv _— Psy 

Prk Py,k-1 Pvk—-2, Py 

and so (8.4) implies (8.3). > 

Corollary. If (X;,..., X,) is Markovian, so is every subset (X,,,....X,,) 

with a, <a.<-°° <a, Sr. 

This is obvious since (8.3) automatically extends to all subsets. > 

Examples. (a) Independent increments. A (finite or infinite) sequence 

{X,} of normal random variables with E(X,) = 0 is said to be a process 

with independent increments if for j7<k the increment X,— X; is 

independent of (X,,..., X;). This implies, in particular, E(X,(X,—X;)) = 
= 0 or 

(8:8) Pn =— j<k. 

Comparing this with (8.3) one sees that a normal process with independent 
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increments is automatically Markovian. Its structure is rather trite: X, 1s 

the sum of the & mutually independent normal variables 

X,, X,—X,, eer yg X,—X,-1- 

(6) Autoregressive models. Consider a normal Markovian sequence 

X,, X,,... with E(X,) = 0. There exists a’unique constant a, making 

X, — a,X;_, independent.of X,_,, and hence of X,,..., X,.,. Put 

A. = Var (X,—a,X;,_1) 
and, recursively, 

X, = AZ, 

(8.9) 
X, = a,X,_, + AZ, k =2,3,... 

The variables Z, thus defined are easily seen to be independent and 

(8.10) E(Z,) = 0, E(Zi) = 1. 

Now the converse is also true. If the Z, are normal and satisfy (8.10), 

then (8.9) defines a sequence {X,} and the very structure of (8.9) shows 
that {X,} is Markovian. As an exercise we verify it computationally. 

Multiply (8.9) by X, and take expectations. As Z, is independent of 
X,,..., X,., we get for j<k 

(8.11) a, = —& Pik 
Ox—1 Pj,k-1 

Now (8.4) is a simple consequence of this, and we know that it implies 

the Markovian character of the X,. Thus (X,,...,X,) is Markovian iff 

relations of the form (8.9) hold with normal variables Z, satisfying (8.10). 

[This is a special case of example 7(6).] > 

So far we have considered only finite sequences (X,,...,X,), but the 

number r plays no role and we may as well speak of infinite sequences 
{X,j. This does not involve infinite sequence spaces or any new theory, 
but is merely an indication that a distribution for (X,,..., X,) is defined 
for all r. Similarly, we speak of a Markovian family {X(t)} when any 

finite collection X, = X(t,),..., X, = X(t,) is Markovian. The description 
depends on the functions 

(8.12) E(X2(t)) = 0°(t),  E(X(s) X(¢)) = o(s) o(2) p(s, 2). 

In view of the criterion (8.3) it is obvious that the family is Markovian iff 
for s<t<r 

(8.13) p(s, t) p(t, 7) = pls, 7). 
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Despite the fancy language we are really dealing only with families of 
finite-dimensional normal distributions with covariances satisfying (8.13). 

As explained in greater detail at the beginning of section 7, the sequence 
{X,,} is Stationary if for each fixed n-tuple («,,...,,) the distribution of 
(X,,iv.--+> Xa4y) is independent of ». A finite section of such a sequence 

may be extended to both sides, and hence it is natural to consider only 
doubly infinite sequences {...,X -2) X_,, Xo, X;,...}. These notions 
carry over trivially to families {X(2)}. 

For a stationary sequence {X,} the variance o? is independent of n 

and in the Markovian case (8.3) implies that p,, = p\t-#!. Thus for a 
stationary Markovian sequence 

(8.14) | E(X;X,) = o® pl! 

where o? and p are constants, |p| <1. Conversely, a sequence with 

normal distributions satisfying (8.14) is Markovian and stationary. 
In the case of a stationary family {X(t)} the correlation p(s, t) depends 

only on the difference |¢—s| and (8.13) takes on the form 

p(t) p(t) = p(t+7) . . for t,7> 0. 

Obviously p(r)=0O would imply p(t)=0 for all t>7 and also 
p(47) = 0, and so p can have no zeros except if p(t) =0 for all ¢> 0. 

Hence p(t) = e~*# by the repeatedly used result of 1; XVII, 6. Accordingly, 

for a stationary Markovian family 

- (8.15) E(X(s) X(s+t)) = o®e~**, t>0O- 

except if X(s) and X(t) are uncorrelated for all s # t. 

Example. (c) Stationary sequences may be constructed by the scheme 
of the last example. Because of (8.11) we must have 

  

(8.16) | X, = pX,_, + oV1—p? Z,. 

For each k it is possible to express X, as a linear combination of Z,, 
Zy-1,--->2Z,-,, and X,-,. A formal passage to the limit would lead to the 

representation 

  

, 0 

(8.17) X, = oV1—p? > pL 
j= 

of {X,} in terms of a doubly infinite sequence of independeat normal 
variables Z; normed by (8.10). Since |p| <1 the convergence of the series 

is plausible, but the formula as such involves an infinite sequence space. 

[See the remarks concerning (7.5) of which (8.17) is a special case.} 

 



98 DENSITIES IN HIGHER DIMENSIONS III.8 

It may be useful to discuss the relation of theorem | to the direct description 
of Markovian sequences in terms of densities. Denote by g; the density 
of X, and by g,,(z,y) the value at y of the conditional density of X, 

given that X; = x. (In stochastic processes g,, is called a transition density 
from X,; to X,.) For normal Markovian sequences g; is the normal density 
with zero expectation and variance o®. As for the transition probabilities, 
it was shown in example 2(a) that 

—1 

(8.18) gals 9) = pa n(* EB) 
oN 1— pi, o,V1 — Piz 

where t stands for the standard normal density. However, we shall not 

use this result and proceed to analyze the properties of g,, by an independent~ 
method. As usual we interpret the subscripts as time parameters. 

The joint density of (X,, X;) is given by 2,(x) g,,(z, y). The joint density 
for (X;, X,;, X,) is the product of this with the conditional density for X, 

for given X; and X,, but in view of the Markovian character the index 7 
drops out if i<j <k and the density of (X,. X,, X,) is given by 

    

(8.19) £:(2) gis(2, ¥) only, 2)- 
In the Markovian case the density of every n-tuple (X,,,..., X,,) is given 

by a product of the form (8.19), but the densities g;, cannot be chosen 
arbitrarily. Indeed, integration of (8.19) with respect to y- yields the 
marginal density for (X,, X,,) and so we have the consistency condition _ 

+ 00 

8:A%, Y) Buy, =) dy (8.20) Sixl 2, 2) -[ 

for ali i<j <k. This is a special case of the Chapman-Kolmogorov identity 
for Markov processes.!* Very roughly, it expresses tha. a transition from 2 
at epoch i to z atepoch & takes place via an arbitrary intermediate position 
y, the transition from y to z being independent of the past. It is 
obvious that with any system of transition probabilities g,, satisfying the 
Chapman-Kolmogorov identity the multiplication scheme (8.19) leads to a 
consistent system of densities for (X;, X2,...,X,) and the sequence is 

Markovian. We have thus the following analytic counterpart to theorem 1. 

Theorem 2. A family {g,,} can serve for transition densities in a normal 

Markovian process iff it satisfies. the Chapman-Kolmogorov identity and 
£ix(X, ¥) represents for each fixed x anormal density in y. 

13 Other special cases were encountered in 1; XV,(13.3) and XVII,(9.1). Note that the 
system (8.19) is the analogue to the definition 1; XV,(1.1) of probabilities for Markov 
chains, except that‘there summation replaces the integration and that only stationary 
transition probabilities were considered. 
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Both theorems contain necessary and sufficient conditions and they are 
therefore, in a sense, equivalent. They are, nevertheless, of different natures. 
The second is really not restricted to normal processes; applied to families 
{X(t)} it leads to differential and integral equations for the transition 
probabilities and in this way it serves to introduce new classes of Markovian 
processes. On the other hand, from theorem 2 one would not guess that the 
ix are necessarily of the form (8.18), a result implicit in the more special 
theorem 1. 

For reference and later comparisons we list here the two most important 
Markovian families {X(t)}. 

Example. (d) Brownian motion or Wiener-Bachelier process. It is defined 

by the condition that X(0)=0, and that for ¢> s the variable 

X(t) — X(s) be independent of X(s) with a variance depending only on 

t — s. In other words, the process has independent increments [example 
(a)] and stationary transition probabilities [but it is not stationary since 
X(0) = OJ. Obviously E(X?(t)) = o7t and E(X(s)X(t)) = o’s for s < t. 
For + >t the transition densities from (¢,2) to (7,y) are normal with 

expectation x and variance o*(r—1t). They depend only on (y—z)/(r—4), 
and the Chapman-Kolmogorov identity reduces to a convolution. 

(e) Ornstein-Uhlenbeck process. By this is meant the most general normal 
Stationary Markovian process with zero expectations. Its covariances are 
given by (8.15). In other words, for 7 > the transition density from 

(t,z) to (7,y) is normal with expectation e*"—-!2 and variance 

o®(1—e-**""")), As +» co the expectation tends to 0 and the variance to 
o*. This process was considered by Ornstein and Uhlenbeck from an entirely 
different point of view. Its connection with diffusion will be discussed 

in X,4. > 

9. PROBLEMS FOR SOLUTION 

1. Let Q be the region of the plane (of area 4) bounded by the quadrilateral 
with vertices (0, 0), (1, 1), (0, $), G, 1) and the triangle with vertices (4, 0), (1, 0), 
(1,4). (The unit square is the union of © and the region symmetric to Q with 
respect to the bisector.) Let (X, Y) be distributed uniformly in Q. Prove that the 
marginal! distributions are uniform and the X + Y has the same density as if 

X and Y were independent.14 

Hint: A diagram rende:s calculations unnecessary. 

2. Densities with normal marginal densities. Let u be an odd continuous function 

on the line, vanishing outside —I, 1. If |u| <(2ze)~? then 

n(x)n(y) + u(x)uly) 

14 In other words, the distribution of a sum may be given by the convolution even if the 

variables are dependent. This intuitive example is due to H. E. Robbins. For another 
freak of the same type see II,4(c). 
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represents a bivariate density which is not normal, but whose marginal densities are 
both normal. (E. Nelson.) 

3. A second example. Let y, and 9, be two bivariate normal densities with 
unit variances but different correlation coefficients. The mixture 3(9,+ 92) is 
not normal, but its two marginal densities coincide with n. 

Note. In the sequel all random variables are in 8}. Vector variables Gre indicated 
by pairs (X,, X}, ete. 

4. Let X;,...,X, be independent random variables with the common density 
f and distribution function F. If X is the smallest and Y the largest among them, 

the joint density of the pair (X, Y) is given by 

n(n 1) f(x) fF @) —F@)y*, y > x, 

5. Show that the symmetric Cauchy distribution in 8? [defined in (1.21)] 
corresponds to a random vector whose length has the density u(r) = 4074r2(1 +r?)-? 
for r >0. [Hint: Use polar coordinates and either (1. 15) or else the general 
relation J,(10.4) for projections.] 

6. For the Cauchy distribution (1.21) the conditional density of X3 for given 
X,, X_ 1s 

2 Vd+ée +e) 
a (1488 +8 4222’ 

and the bivariate conditional density of X», X3 for given X, = é 

I 1+é 

OD = OEP 
7. Let O<a<1 and f(z, y) = [C1 +az)(1 +ay) — aje~*-¥-*2" for x> 0, 

y >0 and f(x,y) = 0 elsewhere. 
(a) Prove that f is a density of a pair (X, Y). Find the marginal densities and 

the distribution function. 
. (b) Find the conditional density u,(y) and E(Y |X), Var (Y | X). 

Ve, ,89(2) = 

8. Let f be a density concentrated on 0, ©. Put u(z, y) = f(@ +yi@t+y) for 
zx >0,y>0 and u(z,y) =0 otherwise. Prove that u is a a density in R*® and 
find its covariance matrix. 

9. Let X,, Xz, X3 be mutually independent and distributed uniformly over 
0,1. Let Xq), Xa) X(3) be the corresponding order statistics. Find the density of 
the pair 

  

and show that the two ratios are independent. Generalize to dimensions. 

10. Let X,, X,, X3 be independent with a common exponential distribution. 
Find the density of (X,—X,, X3—X,). 

11. A particle of unit mass is split into two fragments with masses X and 
1 — X. The density f of X is concentrated on 0,1 and for reasons of symmetry 
f(z) =f( — x). Denote the smaller fragment by X, the larger by X,. The two 
fragments are split independently in like manner resulting in four fragments with 
masses Xj1, Xy2, X21, Xg2- Find (a) the density of X,,. (6) The joint density of Xj, 
and Xgo. Use (6) to verify the result in (a). 
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12) Let 5 5X, Xg,... be independent with the common normal density n, and 
S; =| acy + X,. If m <n find the joint density of (S,,,5S,) and the 
"iB angi pensity for S,, given that S, = ¢. 

13 ‘Preceding problem find the conditional density of X? +--- +X? 
given; > + X?. 

14. X, Y have a bivariate normal density centered at the origin with 
E(X?) = E(¥2) = 1, and E(XY) =p. In polar coordinates (X,Y) becomes 
(R,®) where R? = X? + Y®. Prove that ® has a density given by 

V1 — Pp? 
. 0<9 <2n 

2n(1 —2p sin y cos #7) 

and is uniformly distributed iff p = 0. Conclude 

P{XY > 0} =4 47 1 arcsinp and P{XY <0} =z" arc cos p. 

15. Let f be the uniform density for the triangle with vertices (0,0), (0, 1), 

(1,0) and g the uniform density for the symmetric triangle in the third quadrant. 
Find f*f, and f*g. 

Warning. A tedious separate consideration of individual intervals is required. 

16. Let f be the uniform density in the unit disk. Find f* f in polar coordinates. 
17. Let w and v be densities in ®? of the form 

uz, y) =f(Ve% +7), v(x, y) = g(V2* +.y%). 
Find uw * v in polar coordinates. 

18. Let X =(X,,...,X,) have a normal density in r dimensions. There 

exists a unit vector a = (a,,...,a,) such that 

Var (a,X, +: + -+a,X,) > Var (c,X,+° > -+0,X,) 

for all unit vectors c =(c,,...,¢,). If a =(1,0,...,0) is such a vector then 
X, is independent of the remaining X;. 

19. Prove the 

Theorem. Given a normal density in R" the coordinate axes can be rotated in 

such a way that the new coordinate variables are mutually independent normal 
variables. 

In other words: in theorem 2 of section 6 the matrix C may be taken as a 
rotation matrix. 

Hint: Let Y = XC and choose a rotation matrix C such that 

Y, =a@,X, +°°* +4,X, 

where a = (a,,...,4,) is the maximizing vector of the preceding example. The 
rest is easy. 

20. Find the general normal stationary process satisfying 

(a) Xnig + Xy = 0 

(b) Xni2 — X, = 0 

(c) Xni3 ~ Xnie + Xnit — X, = 0. 

21. A servo-stochastic process. (H. D. Mills.) A servomechanism is exposed 

to random shocks, but corrections may be introduced at any time. Thus the - 
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error Y,, at time n is (in proper units) of the form Y,,, = Y, — C, + Xnasi, 
where C, is the correction and the X, are independent normal variables, 
~(X,) = 0, E(X2) = 1. The C,, are, in principle, arbitrary functions of the past 
observations, that is, of Y, and X; for k <n. One wishes to choose them so as 
to minimize Var (Y,) (which is a measure of how well the mechanism works), 

and Var (C,,) (which is a measure of how Aard it works). 
(a) Discuss the covariance function of {Y,} and show that Var (Y,) > 1. 
(b) Assuming that Var (C,) > «*, Var(Y,) ~ 0? (tendency to stationarity) 

show that o > 4(a+a7?). 
(c) Consider, in particular, the linear device C, =a + p(Y,—6), O<p<l. 

Find the covariance function and a representation of the form (7.8) for Y,. 

22. Continuation. If there is a time lag in information or adjustment the model 
is essentially the same except that C, is to be replaced by C,.iy. Discuss this 
situation. 

 



CHAPTER IV 

Probability Measures and Spaces 

As stated in the introduction, very little of the technical apparatus of 

measure theory is required in this volume, and most of the book should 
be readable without the present chapter.1 [t is nevertheless desirable to 
give a brief account of the basic concepts which form the theoretical back- 

ground for this book and, for. reference, to record the main theorems. 
The underlying ideas and facts are not difficult, but proofs in measure 
theory depend ‘on messy technical details. For the beginner and outsider 
access is made difficult also by the many facets and uses of measure theory; 
excellent introductions exist, but of necessity they dwell on great generality 

and on aspects which are not impoftant in the present context. The following 
survey concentrates on the needs of this volume and omits many proofs 
and technical details.? (It is fair to say that the simplicity of the theory is 
deceptive in that much more difficult measure theoretic problems arise in 
connection with stochastic processes depending on a continuous time 
parameter. The treatment of conditional expectations is deferred to V, 
10-11; that of the Radon-Nikodym theorem to V,3.) 

Formulas relating to Cartesian (or Euclidean) spaces R” are independent 

of the number of dimensions provided z is read as abbreviation for 

(@,,...,2%,). 

1 This applies to readers acquainted with the rudiments of measure theory as well as 
to readers interested primarily in results and facts. For the benefit of the latter the definition 

of integrals is repeated in V,I. Beyond this they may rely on their intuition, because in 

effect measure theory justifies simple formal manipulations. 
2 An excellent source for Baire functions and Lebesgue-Stieltjes integration is found 

in E. J. McShane and T. A. Botts, Real analysis, D. Van Nostrand, Princeton, 1959. 
Widely used are presentations of general measure theory in P. R. Halmos, Measure theory, 
D. Van Nostrand, Princeton, 1950 and in N. Bourbaki, Eléments de mathématiques [livre 

VI, chapters 3-5] Hermann, Paris, 1952 and 1956. For presentations for the specific 
purposes of probability see the books of Doob, Krickeberg, Loéve, Neveu, and 
Hennequin-Tortrat. 
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1. BAIRE FUNCTIONS 

We shall have to decide on a class of sets for which probabilities are 

defined and on a class of functions acceptable as random variables. The 
two problems are not only related but their treatment is unified by a stream- 
lined modern notation. . We begin by introducing it and by recalling the 
definition of convergence in terms of monotone limits. 
~ The indicator*® of a set A is the function which assumes the value | at 

all points of A and the value 0 at all points of the complement 4’. It will 
be denoted by 1,: thus 1,(27)=1 if EA and 1,(x) =0 otherwise. 

Every set has an indicator, and every function assuming only the values 
1 and 0 is the indicator of some set. If f is an arbitrary function, the 
product 1,f is the function that equals f on A and vanishes elsewhere. 

Consider now the intersection C = AB of two sets. Its indicator 

1¢ equals 0 wherever either 1, or 1, vanishes, that is, 1, = inf (14, 13) 
equals the smaller of the two functions. To exploit this parallelism one 
writes fg instead of inf (f,g) for the function which ut each point x 

equals the smaller of the values of f(x) and g(z). Similarly fUg = 
= sup (f, g) denotes the larger of the two values. The operators and 

U are called cap and cup respectively. They apply to arbitrary numbers of 

functions, and one writes 

(1.1) far afpeNfy fur UfpeU fy 
k=1 

To repeat, at each point x these functions equal, respectively, the minimum 

and the maximum among the 7 values f{(z),...,/,(%). If f, is the indi- 

cator of a-set A, then’ (1.1) exhibits the indicators of the intersection 

A, \::+ A, and of the union A; U--- UA,,. 

Consider now an infinite sequence {f,,}. The functions’ defined in (1.1) 
depend monotonically on n, and: hence the limits U2if, and Ural 
are well defined though possibly infinite. For fixed 7 

wo 

(1.2) we =D f, 
k=i 

is the limit of the monotone sequence of functions fj N--- A Sgan> and 

the sequence {w,} itself is again monotone, that is, w, = Ww; U'->* UW,. 

With our notations w, — U1,» By definition w,(%) is the greatest 
lower bound (the infimum) of the numerical sequence /,,(), fr4i(®), - - 

3 This term was introduced by Loéve. The older term “characteristic function’ is 

confusing in probability theory. 
4 Many writers prefer the symbols v and A for functions and reserve © and U for 

sets. Within our context there is no advantage in the dual notation. 

 



IV.1 BAIRE FUNCTIONS - - 105 

Hence the limit of w, is the same as liminf f, and thus 

: ama @ 

(1.3)  liminf f, =UN ZK. 
folkenj 

In this way the lim inf is obtained. by a succession of two passages to the 
limit in monotone sequences. For limsup/, one gets (1.3) with M and 

U interchanged. 

All these considerations carry over to sets. -In particular, we write 
A=limA, iff 14 =lim1,. ‘In words, the sequence {4} of sets con- 
verges to the set A iffeach point of A belongs to all A, with finitely many 
exceptions, and each point of the complement A’ belongs at most to 
finitely many A 

Example. (a) The set {A, i. 0.}. As a probabilistically significant example 

of limiting operations among sets consider the event A defined as “‘the 
realization of infinitely many among a given sequence of events Aj, Az,....” 
[Special cases were considered in 1; VIII,3 (Borel-Cantelli lemmas) and in 

1; XIII (recurrent events).] More formally, given a sequence {A,} of sets, 
a point x belongs to A iff it belongs to infinitely many A,. Since 0 and 1 
are the only possible values of indicators this definition is equivalent to 

saying that 1,=limsup1,. In standard notation therefore A= 
lim sup A,, but the notation {A,i.0.} (read “A, infinitely often’) is 
more suggestive. It is due to K. L. Chung. 

Our next problem is to delimit the class. of functions® in R’ with which 
we propose to deal. The notion of an arbitrary function is far too broad 
to be useful for our purposes, and a modernized version of Euler’s notion 
of a function is more appropriate. Taking continuous functions as given, 

the only effective way of constructing new functions depends on taking limits. 
As it turns out, all our needs will be satisfied if we know how to deal with 

functions that are limits of sequences {f,} of continuous functions, or 
limits of sequences where each f, is such a limit, and so on. In other words, 
we are interested in a class ® of functions with the following properties: 
(1) every continuous function belongs to 8, and (2)if fi, fo,... belong to 

B® and a limit f(x) = lim/f,(x) exists for all z, then f belongs to 8. 

® We are, in principle, interested only in finite-valued functions, but it is sometimes 
convenient to permit +o as values. For example, the simple theorem that every mono- 
tone sequence has a limit is false for finite-valued functions and without it many for- 
mulations become clumsy. For this reason we adhere to the usual convention that all 
functions are to the extended real line, that is, their values are numbers of +0. In 

practice the values +00 will play no role. To make sure that the sum and product of two 

-<unctions are again functions one introduces for their values the conventions 00 + co = , 
o—-o=0,0-o = 0,0: =), etc. 

 



106 PROBABILITY MEASURES AND SPACES IV.2 

Such a class is said to be closed under pointwise limits. There is no doubt 
that such classes exist, the class of a// functions being one. The intersection 
of all such classes is itself a closed family, and’ obviously is the smallest such 
class. Prudence requires us to limit our considerations to this smallest class. 

The smallest closed class of functions containing all continuous functions 
is called the Baire class and will be denoted by 8. The functions in. 8B are 
called Baire functions.® 

We shall use this notion not only for functions defined in the whole 

space but also for functions defined: only on a subset (for example, J x 

or logz in R}), - 
_- It is obvious from the definition that the sum and the product of two 

Baire functions are again Baire functions, but much more is true. If w is 
a continuous function in r variables and ti --->f;, are Baire functions, 

then w(f,,...,f;) is again a Baire function. Replacing w by w, and 
passing to a limit it can be shown that more generally every Baire function 

of Baire functions is again a Baire function. Fixing the value of one or 
more variables leads again to a Baire function, and so on. In short, none 
of the usual operations on Baire functions will lead outside the class, and 

therefore the class ® is a natural object for our analysis. [t will turn 
out that no simplifications are possible by considering smatler classes. 

2. INTERVAL FUNCTIONS AND INTEGRALS IN &* 

We shall use the word interval, and the indicated notation, for sets of 

points satisfying a double inequality of one of the following four types: . 

—- 
a,b: acucb a, b: a<x<cb- 

|I——I 

a,b: a<ax<b . a,b: a<az<b. 

In one dimension this covers all possible intervals, including the degenerate 
interval of length zero. In two dimensions the inequalities are interpreted 
coordinate-wise, and intervals are (possibly degenerate) rectangles parallel 
to the axes. Other types of partial closure are possible but are herewith 

- excluded. The limiting case where one or more coordinates of either a or b 

are replaced by + 0 is admitted; in particular, the whole space is interval the 

— 00, 0, 
A point function f assigns a value f(x). to individual points. A set 

function F assigns values to sets or regions of the space. The volume in 

® This definition depends on the notion of continuity but not on other properties of 

Cartesian spaces. It s therefore applicable to arbitrary topological spaces. 
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K3, area in R?, or length in R* are typical examples but there are many 
more, probabilities representing a special case of primary concern to us. 
We shall be interested only in set functions with the property that if a set 

A is partitioned into two sets A, and A,, then F{A} = F{A,} + F{A,}. 
Such functions are called additive.” 

As we have seen, it occurs frequently that probabilities Fi} are assigned 
to all intervals of the r-dimensional space ‘* and it is desired to extend 
this assignment to more general sets. The same problem occurs in elementary 
calculus, where the area (content) is originally defined only for rectangles 
and it is desired to define the area of a more general domain A. The simplest 
procedure 1 is first to define integrals for functions of two variables and then 
to equate “the area of A’’ with the integral of the indicator 1, (that is the 
function that equals 1 in A and vanishes outside A). In like manner we . 

shall define the integral 

(2.1) E(u) -|. u(x) F{dz} 

of a point function uv with respect to the interval function F. The prob- 
ability of A will then be defined by E(1,). In the construction of the 
integral (2.1) the interpretation of F plays no role, and we shall actually 

describe the general notion of a Lebesgue-Stieltjes integral. With this pro- 
gram in mind we now start anew. 

Let F bea function assigning to each interval J a finite value F{7}. Sucha 
function is called (finitely) additive if for every partition of an interval J 

into finitely many non-overlapping intervals ,,..., /,. 

(22) 0 FD} = F(L} +++ + FU}. 
Examples. (a) Distributions in R'. In volume 1 we considered discrete 

probability distributions attributing probabilities p,,p:,... to the points 
@,,4,,.... Here F{J} is the sum of the weights p,, of all points a, con- 

tained in J, and E(u) = > u(a,)p,. 
(6) If G is any continuous monotone function increasing from 0 at — oo 

to 1 at co one may define F{a, 6} = G(b) — G(a). 

(c) Random vectors in R®. A vector of unit length issues from the origin in 
a random direction. The probability that its endpoint lies in a two- 

dimensional interval / is proportional to the length of the intersection of 
I with the unit circle. This defines a continuous probability distribution 
without density. The distribution is singu/ar in the sense that the whole 

’ Empirical examples for additive functions are the mass and amount of heat in a region, 

the land value, the wheat acreage and the number of inhabitants of a geographical region, 

the yearly coal production, the passenger miles flown or the kilowatt hours consumed 
during a period, the number of telephone calls, etc. 
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probability is carried by a circle. One may think that such distributions are 
artificial and that the circle rather than the plane should serve as natural 
sample space. The objection is untenable because the sum of two independent 
random vectors is capable of all lengths between 0 and 2 and has a positive 
density within the disk of radius 2 {see example V,4(e)]. For some problems 

involving random unit vectors the plane is therefore the natural sample 

space. Anyhow, the intention was only to show by a simple example what 
happens in more complicated situations. 

(2) We conclude with an example illustrating the contingency that will 

be excluded in the sequel. In R* put F{J}=0 for any interval J = a, a, b 

with b < o and F{I}=1 when J =a, o. This interval function is 

additive but weird because it violates the natural continuity requirement 

that F{a, 6} should tend to F{a, 00} as b.> o. . > 

The last example shows the desirability of strengthening the requirement 

(2.2) of finite additivity. We shall say that an interval function F is countably 
additive, or o-additive, if for every partitioning of an interval I into countably 
many intervals I,,Iz,..., 

(2.3) Fl} = 5 F{h}. 

{(“Countably many’? means finitely or denumerably many. The term 

completely additive is synonymous with countably additive. The condition 

(2.3) is manifestly violated in the last example. ] 
We shall restrict our attention entirely to countably additive set functions. 

This is justified by the success of the theory, but the restriction can be 

defended a priori on heuristic or pragmatic grounds. In fact, if A, = 
I,U-:+: UT, is the union of the first ” intervals, then A,—J. One 

could argue that “for n sufficiently large A, is practically indistinguishable 

from J.’ If F{f} can be found by experiments, F{A,} must be “practically 
indistinguishable” from F{I}, that is, F{A,} must tend to F{J}. The 

countable additivity (2.3) expresses precisely this requirement 
Being interested principally in probabilities we shall consider only non- 

negative interval functions F normed by the condition that F{- 0, co} = 1. 

This norming imposes no serious restriction when F{—0o, ©} < o, but 

it excludes interval functions such as length in R} or areain R?. To make 

use of the following theory in such cases it suffices to partition the line 
or the plane into unit intesvals and treat them separately. This procedure 

is SO obvious and so well known that it requires no further explanation. 
A function on 8" is called a step function if it assumes only finitely 

many values, each on an interval. For a step function u assuming the 
values a,,...,q4, on intervals J,,...,/7, (that is, with probabilities . 
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F{l},..., FU,}), respectively we put 

(2.4) E(u) = a, Fly} +++: +4, Fly} 

in analogy with the definition of expectation of discrete random variables. 
iIt is true that the partioning of the space into intervals on which u is 
constant is not unique, but just as in the discrete case the definition (2.4) 
is easily seen to be independent of the partition.] This expectation E(u) 
satishes the following conditions: 

(a) Additivity for linear combinations: 

(2.5) E(u, +o) = a, E(u,) + aE (u,). 

(b) Positivity: 

(2.6) _ u>O0 implies E(u) > 0. 

(c) Norming: For the constant function 

{2.7) E(1) = 1. 

The last two conditions are equivalent to the. mean value thoerem: 
a<u< 8 implies « < E(u) < PB and so the function E(u) represents a 

sort of average.® 
The problem is to extend the definition of E(u) to larger classes of 

functions preserving the properties (a)-(c}. The classical Riemann integration 
'-— 

utilizes the fact that to each continuous function uv on 0,1 there exists a 

sequence of step functions u, such that u,—u uniformly on 0,1. By 

definition then E(u) = lim E(w,). It turns out that the uniformity of the 

convergence IS unnecessary and the same definition for E(u) can be used 
whenever u, —u pointwise. In this way it is possible to extend E(u) to 

all bounded Baire functions, and the extension is umigue. When it comes to 

unbounded functions divergent integrals are unavoidable, but at least for 

Positive Baire functions it is possible to define E(u) either as a number or as 

8 When F represents probabilities E(u) may be interpreted as the expected gain of a 

gambler who can gain the amounts 4,,a,,.... To grasp the intuitive meaning in other 
situations consider three examples in which u(x) represents, respectively, the temperature 
at time 2, the number of telephone conversations at time z, the distance of a mass poin: 
from the origin, while F represents, respectively, the duration of a time interval, the 

value (cost of conversation) of a time interval, and mechanical mass. In each case integra- 

tion will be extended over a finite interval only, and E(u) will represent the accumulated 

“temperature hours.’’ the accumulated gain, and a static moinent. These examples will 
show our integration with respect to arbitrary set functions to be simpler and more 
intuitive than Riemann integration where the independent variable plays more than one 
role and the “area under the curve’’ is of no help to the beginner. One should beware of 
the idea that the concept of expectation occurs only in probability theory. 
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the symbol « (indicating divergence). No trouble arises in this respect 
because the Lebesgue theory considers only absolute integrability. Roughly 

speaking, starting from the definition (2.4) for expectations of simple functions 
it is possible to define E(u) for general Baire functions by obvious approxi- 
mations and passages to the limit. The number E(u) so defined is the 
Lebesgue-Stieltjes integral of u with respect to F. (The term expectation 
is preferable when the underlying function F remains fixed so that no 

ambiguity arises.) We state here without proof® the basic fact of the 
Lebesgue theory; its nature and scope will be analyzed in the following 

sections. [A constructive definition of E(u) is given in section 4.] 

Main theorem. Let F be a countably additive interval functions in RK" with 

F{—oo, 0} = 1. There exists a unique Lebesgue-Stieltjes integral E(u) on 
the class of Baire functions such that: 

If u>9 then E(u) is a non-negative number or ©. Otherwise E(u) 

exists iff either E(ut) or E(y-) is finite; in this case E(u) = E(u*) — E(u). 

A function u. is called integrable if E(u) is finite. then 
(i) If wu is a step function, E(u) is given by (2.4). 

(ii) Conditions (2.5)—(2.7) hold for all integrable functions. . 
(iti) (Monotone convergence principle.) Let uy <u, <*+:->u_ where 

_u, is integrable. Then E(u,) > E(u). 

The change of variables v,, = uj4, — Uy leads to a restatement of the last 

principle in terms of series: 

If v, is integrable and v,, > 9, then 

(2.8) > Elon) = ECY vn) 

in the sense that both sides are meaningful (finite) or neither is. It follows 
in particular that if v > u>0 and E(u) = oo then also E(v) = o0. 

What happens if in (iii) the condition of monotonicity is dropped? 

The answer depends on an important lemma of wide applicability. 

Fatou’s lemma. Jf u, >0 and u,, is integrable, then 

(2.9) E(lim inf wv,) < lim inf E(w,). 

In particular, if uv, u then lim inf E(u,) > E(w). 

Proof. Put v, = u, OUgy, O°'*. Then vy < u, and hence 

E(v,) < E(u,). 

® The method of proof is indicated in section 5. As usual, u* and u~ denote the positive 

and negative parts of u, thatis, uw =uUO0 and —u- =u. Thus w=ut~—u. 
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But (as we saw in section 1) v, tends monotonically to lim inf u,, and so 
E(v,) tends to the left side in (2.9) and the lemma is proved. [Note that 
each side in (2.9) can represent 00.) b> 

As example (e) will show, the condition of positivity cannot be dropped, 
but it can be replaced by the formally milder condition that there exists 
an integrable function U such that u, > U. (It suffices to replace u, by 

u, ~ U.) Changing u, into —u, we see that if u,< U and E(U) < «0, 
then 

(2.10) lim sup E(u,,) < E(lim sup u,). 

For convergent sequences the extreme members in (2.9) and (2.10) coincide 
and the two relations together yield the important 

Dominated convergence principle. Let u, be integrable and u,—>u 

pointwise. If there exists an integrable U such that \u,| < U for all n, 
then u is integrable and E(u,) > E(u). 

This theorem relates to the only place in the Lebesgue theory where a 

naive formal manipulation may lead to a wrong result. The necessity of the 
condition [unl < U is illustrated by 

; Lt 
Example. (e) We take 0,1 as basic interval and define expectations by 

the ordinary integral (with respect to length). Let 

Ug (2) = (n + I)(m + 2)z"(1 — 2). 

These functions tend pointwise to zero, but nevertheless 1 = E(u,) > 1. 

Replacing u, by —u, it is seen that Fatou’s inequality (2.9) does not 
necessarily hold for non-positive functions. . > 

We mention without proof a rule.of ordinary calculus applicable more 

generally. 

Fubini’s theorem for repeated integrals. If u > 0 is a Baire function and 
F and G are probability distributions then 

+ CO +00 + 90 + 00 

(2.11) i F{dz} | uz, y) G{dy} = G{dy} ula, y) F{dz} 

with the obvious interpretation in case of divergence. Here x and y may be 

interpreted as points in R™ and KR”, and the theorem includes the assertion 

that the two inner integrals are Baire functions. (This theorem applies to 

arbitrary product spaces and a better version is given in section 6.) 

Mean approximation theorem. To each integrable u and «€>0 it is 

possible to find a step function v such that E{\u-—v|) <«. 
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Instead of step functions one may use approximation by continuous 
functions, or by functions with arbitrarily many derivatives and vanishing 
outside some finite interval. [Compare the approximation theorem of 
example VIII,3(a).] 

Note on Notations. The notation E(u) emphasizes the dependence on u 

and is practical in contexts where the interval function F is fixed. When 

F varies or the dependence on F is to be emphasized, the integrai notation 
(2.1) is preferable. It applies also to integrals extended over a subset A, for 
the integral of u extended over -A is (by definition) the same as the integral 
of the product 1,4u extended over the whole space. We write 

[ue F{dx} = E(t,u) 

(assuming, of course, that the indicator 1, is a Baire function). The two 

sides mean exactly the same thing, the left side emphasizing the dependence 

on F. When A = a,b is an interval the notation f ® is sorhetimes pre- 

ferred, but to render it unambiguous it is necessary to indicate whether 
the endpoints belong to the interval. This may be done by writing a+ 

or a—. . . > 

In accordance with the.program outlined at the beginning of this section 
we now define the probability of a set A to equal E(1,) whenever 1, isa 
Baire function; for other sets no probabilities are defined. The consequences 
of this definition will now be discussed in the more general context of 
arbitrary sample spaces. 

3. o-ALGEBRAS. MEASURABILITY 

In discrete sample spaces it was possible to assign probabilities to all 
subsets of the sample space, but in general this is neither possible nor desir- 
able. In the preceding chapters we have considered the special case of 

Cartesian spaces " and started by assigning probabilities to- all intervals. 
It was shown in the preceding section that such an assignment of probabilities 

can be extended in a natural way to a larger class YW of sets. The principal 
properties of this class are: . 

(i) Ifa set A isin W sois its complement 4’ = © — 4. 
(ii) If {A,} is any countable collection of sets in UW, then also their 

union (J A, and intersection (} A, belong to YW. 
In short, % is a system closed under complementation and the formation 

of countable unions and intersections. As was shown in section | this implies 
that also the upper and lower limit of any sequence {A,} of setsin Y again 
belongs to &. In other words, none of the familiar operations on sets in UW 
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will lead us to sets outside %, and therefore no nced will arise to consider 

other sets. This situation is typical inasmuch as in general probabilities will 
be assigned only to a class of sets with the properties (i) and (ii). We there- 
fore introduce the following definition which applies to arbitrary spaces. 

Definition 1. A c-algebra® is a family U of subsets of a given set S 
enjoying the properties (i) and (it). 

Given any family & of sets in S, the smallest o-algebra containing all 

sets in & is called the a-algebra generated by &. 
In particular, the sets generated by the intervals of R" are called the Borel 

sets of RK’. : 

That a smallest o-algebra containing % exists is seen by the argument used 
in the definition of Baire functions in section 1., Note that, G being the 

union of any set 4 and its complement, every o-algebra contains the space 

S. 

Examples. The /argest c-algebra consists of all subsets of G. This algebra 
served us well in discrete spaces, but is too large to be useful in general. The 
other extreme is represented by the trivial algebra containing only the whole 
space and the empty set. For a non-trivial example consider the sets on the 

line 1 with the property that if 2¢A then all points x+1,24+2,... 

belong to A (periodic sets). Obviously the family of such sets forms a 
o-algebra. > 

Our experience so far shows that a principal object of probahility. theory 
is random variables, that ts, certain functions in sample space. With a 
random variable X we wish to associate a distribution function, and for 

that purpose it is necessary that the event {X < ¢} has a probability assigned 
to it. This consideration leads us.to 

Definition 2. Let YU be an arbitrary a-algebra of sets in S. A real-valued 
function u on © is called U-measurable™ if for each t the set of all points 
x where u(x) <1t belongs to Y. 

The set where u(x) <¢ is the union of the countable sequence of sets 

where u(x) <¢ —n7!, and therefore it belongs to U. Since W is closed 

under complementation it follows that in the above definition the sign < 

may be replaced by <, >, or >. 

10 An algebra of sets is defined similarly on repiacing the work “countable’’ in (ii) bv 

finite. A c-algebra is often called “Bore! algebra,’’ but this leads to a confusion with the 
last part of the definition. (in il intervals may be replaced by open sets, and then this 

definition applies to arbitrary topological spaces.) 

11 This term is a bad misnomer since no measure is yet defined. 
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It follows from the definition that the %-measurable functions form a 
closed family in the sense introduced in section 1. 

The following simple lemma is frequently useful. 

Lemma 1. A function u is U-measurable iff it is the uniform limit of a 
sequence of simple functions, that is of functions assuming only countably many 
values, each on a set in Y. 

Proof. By the very definition each simple function is U-measurable, and 
because of the closure property of %{-measurable functions every limit of 
simple functions is again 2{-measurable. 

Conversely, let u be %{-measurable. For fixed « >0 define the set A, 

as the set of all points « at which (n — l)e < u(x) < me. Here the integer 

n runs from —© to o. The sets A, are mutually exclusive and their 
union is the whole space ©. On the set A, we define o,(x) = (n—l)e and 
G(x) = ne. In this way we obtain two functions o, and &, defined on 
S and such that 

(3.1) O.Su SG, O,.—-G,=€ 

at all points. Obviously u is the uniform limit of o, and &, as «+0. 

Lemma 2. In ‘R° the class of Baire functions is identical with the class of 
functions measurable with respec? to the o-algebra U of Borel sets. 

Proof. (a) It is obvious that every continuous function is Borel measurable. 

Now these functions form a closed class, while the Baire functions form the 
smallest class containing all continuous functions. Accordingly, every Baire 
function is Borel measurable. 

(b) The preceding lemma shows that for the converse it suffices to show 
that every simple Borel-measurable function is a Baire function. This amounts 
to the assertionthat forevery Borel set A the indicator 1, is a Baire function. 

Now Borel sets may be defined by saying that A isa Borel set if and only if 
its indicator 1, belongs to the smallest closed class containing all indicators 
of intervals. Since Baire functions form a closed class containing all indicators 

of intervals}? it follows that 1, is a Baire function for every Borel set A. p> 

We apply this result to the special case of the Cartesian space R”. In 

section 2 we started from a completely additive interval function and defined 

P{A} = E(1,,) for every set A whose indicator 1, is a Baire function. The 

present setup shows that under this procedure, the probability P{A} is 

defined iff A is a Borel set. 

12 To see this for an open interval J, let v be a continuous function vanishing outside 

I and such that 0 < v(x) <1 for sel. Then Vv — ty. 

 



IV.4 PROBABILITY SPACES. RANDOM VARIABLES 115 

Approximation of Borel sets by intervals. In view of the last remark, probabilities in 
KR” are as a rule defined on the o-algebra of Borel sets, and it is therefore interesting that 
any Borel set A can be approximated by a set B consisting of finitely many intervals in the 
following sense: To each ¢« > 0 there exists a set C such that P{C} < « and such that 

outside C the sets A and B are identical (that is, a point in the complement C’ belongs 
either to both A and B, or to neither. One may take for C the union of A — AB and 
B— AB). 

Proof..By the mean approximation theorem of section 2 there exists a step 
function v >0 such that E(|1,,—v]) < te. Let B be the set of those points x at 
which v(x) > $. Since v is a step function, B consists of finitely many intervals. It is 
easily verified that 

El1 4(2)—15()| < 2 El 4@)—v@)| <e- 
for all z. But |1,—1,| is the indicator of the set C consisting of all points that belong 
to either A or B but not to both. The last inequality states that P{C} < «, and this 
completes the proof. > 

4. PROBABILITY SPACES. RANDOM VARIABLES 

We are now in a position to describe the general setup used in probability. 
Whatever the sample space G probabilities will be assigned only to the sets 
of an appropriate o-algebra W&. We therefore start with 

Definition 1. A probability measure P on a o-algebra XU of sets in © 

is a function assigning a value P{A} >0 to each set A in U such that. 
ms} = 1 and that for every countable collection of non- overlapping sets 
A, in U 

(4.1) PLU Ag} = Y PAGS. 
This property ts called complete additivity and a probability measure may _ 

be described as a completely additive non-negative set function on & subject 

to the norming!® P{S} = 1 
In individual cases it is necessary to choose an appropriate o-algebra and 

construct a probability measure on it. The procedure varies from case to 
case, and it is impossible to describe a general method. Often it is possible 
to adapt the approach used in section 2 to construct a probability measure 

on the Borel sets of ‘R’. A typical example is provided by sequences of 
independent random variables (section 6). The starting point for any 

13 The condition P{S} = | serves norming purposes only and nothing essential changes 
if it is replaced by P{G} < oo. One speaks in this case of a finite measure space. In prob- 
ability theory the case P{S} <1 occurs in various connections and in this case we speak 
of a defective probability measure. Even the condition P{S} < oo may be weakened by 
requiring only that © be the union of countably many parts S,, such that P{S,, \< oo, 
(Length and area are typical examples.) One speaks then of o-finite measures. 
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probabilistic problem is a sample space in which a o-algebra with an 
appropriate probability measure has been selected. This leads us to 

Definition 2. A probability space is a triple (S,U, P) of a sample space 

a o-algebra X of sets in it, and a probability measure P on Y. 

To be sure, not every imaginable probability space is an interesting object, 

but the definition embodies all that is required for the formal setting of a 

theory following the pattern of the first volume, and it would be sterile to 
discuss in advance the types of probability spaces that may turn up in practice. 

Random variables are functions on the sample space, but for purposes of 

probability theory we can use only functions for which a distribution function 
can be defined. Definition 2 of section 3 was introduced to cope with this 
situation, and leads to 

Definition 3. A random variable X is a real function which is measurable 
with ‘respect to the underlying o-algebra MU. The function F defined by 

F(r) = P{X < +} us called the distribution function of X. 

The elimination of functions that are not random variables is possible 

because, as we shall presently see, all usual operations, such as taking sums 
or other functions, passages to the limit, etc., can be performed within the 

class of random variables without ever leaving it. Before rendering this point 
more precise let us.remark that a random variable X maps the sample 

space © into the real line R* in such a way that the set in G in which 

a<X <b is mapped into the interval a,b, with corresponding prob- 
ability F(b) — F(a). In this way every interval J in &! receives a prob- 

ability F{7}. Instead of an interval / we may take an arbitrary Borel set 

I on R?! and consider the set A of those points in G at which X assumes 
a value in I’. Insymbols: 4 = {Xe I}. It is clear that the collection of all 

such sets forms a o-algebra YU, which may be identical with WY, but is 

usually smaller. We say that &, is the o-algebra generated by the random 

variable X. It may be characterized as the smallest o-algebra in G with 
respect to which. X is measurable. The random variable X maps each set 

of U, into a Borel set I of Rt, and hence the relation F{T} = P{A} 

defines uniquely a probability measure on the o-algebra of Borel sets on RK’. 
—— 

For an interval J = a,b wehave F{I} = F(b) — F(a) andso F is identical 
with the unique probability measure in K1 associated with the distribution 

function F by the procedure aescribed in section 2. 
This discussion shows that as long as we are concerned with only one par- 

ticular random variable X we may forget about the original sample space and 
pretend that the probability space is the line St? with the o-algebra of Borel 

sets on it and the measure induced by the distribution function F. We saw 
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that in ‘R! the class of Baire functions coincides with the Borel measureable 
functions. Taking &' as sample space this means that the class of random 
variables coincides with the class of Borel measurable functions. Interpreted 
in the original sample space this means that the family of Baire functions of 

the random variable X coincides with the family of all functions that are 

measurable with respect to the o-algebra YU, generated by X. Since U, <— A 
this implies that any Baire function of X is again a random variable. 

This argument carries over without change to finite collections of random 
variables. Thus an r-tuple (X;,...,X,) maps GS into &” so that to an 

open interval in ‘” there corresponds the set in GS at which r relations of 
the form a, < XK, < 6, are satisfied. This set is 9{-measurable because it is 

the intersection of r such sets. As in the case of one single variable we may 

now define the o-algebra YU, generated by X,,...,X, as the smallest 
g-algebra of sets in G with respect to which the r variables are measurable. 
We have then the basic 

Theorem. Any Baire function of finitely many random variables is again a 
random variable. 

A random variable U isa Baire function of X,,...,X, if it is measurable 
with respect to the o-algebra generated by X,,..., X,. 

Examples. (a) On the line R? with X as coordinate variable, the function 

X? generates the o-algebra of Borel sets that are symmetric with respect to 
the origin (in the sense that if xe A then also —ze A). 

(b) Consider ®* with X,, X,, X, as coordinate variables, and the o- 

algebra of Borel sets. The pair (X,, X2) generates the family of all cylindrical 

sets with generators parallel to the third axis and whose basis are Borel sets 
of the (X,, X,) plane. > 

Expectations 

In section 2 we started from an interval function in &” and used it to 

construct a probability space. There we found it convenient first to define 

expectations (integrals) of functions and then to define the probability of a 

Borel set A equal to the expectation E(4,) of its indicator. If one siarts 

from a provability space the procedure must be reversed: the probabilities 

are given and it is necessary to define the expectations of random variables in 

terms of the given probabilities. Fortunately the procedure 's extreively 

simple. 
As in the preceding section we say that 2 random verabie Vos gynole ie 

Sale Jhb assumes s only countably MANY VU4iUES Gy, ty,... each on & get 

ing io the basic o-aleehra YW. To such variadles the discrete weory oO. volLaine 
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1 applies and we define the expectation of U by 

(4.2) . E(U) = > a,P{A,} 

provided the series converges absolutely; otherwise we say that U has no 
expectation. 

Given an arbitrary tandom variable and an arbitrary « > 0 we defined in 
(3.1) two simple random variable o, and @, such that &, = o, + and 
o.<U<a,. With any reasonable ‘definition of E(U) we must have 

(4.3) | E(a,) < EW) < E(G.) . 

whenever the variables o, and &, have expectations. Since these functions 

differ only by e€ the sdme is-true of their expectations, or else neither 
expectation exists. In the latter case we say that U has no expectation, 
whereas in the former case E(U) is uniquely defined by (4.3) letting «+0. 

In brief, since every random variable U is the uniform limit of a sequence. 
of simple random variables o, the expectation of U can be defined as the 
limit of E(o,). For example, in terms of & we have 

(4.4) E(U) = lim s ne P{(n— I)e <U < ne} 
€~0 —o 

provided the series converges absolutely (for some, and therefore all « > 0). 

Now the probabilities occurring in (4.4) coincide with the probabilities 
attributed by the distribution function F of U to the intervals 

oT . . . ele 

(n — I)e, ne. It follows that with this change of notations our definition of _ 

E(U) reduces to that given in section 2 for 
” “+00 

(4.5) E(U) = { t F{dt}. 

Accordingly, E(U) may be defined consistently either in the original prob- 
ability space or in terms of its distribution function. (The same remark was 
made in 1; IX for discrete variables). For this reason it is superfluous to 

emphasize that in arbitrary probability spaces expectations share the basic 

properties of expectations in R" discussed in section 2. 

5. THE EXTENSION THEOREM 

The usual starting point in the construction of probability spaces is that 
probabilities are assigned a priori to a restricted class of sets, and the domain 

of definition must be suitably extended. For example, in dealing with 
unending sequences of trials and recurrent events in volume 1 we were given 
the probabilities of all events depending on finitely many trials, but this 
domain of definition has to be enlarged to include events such as ruin, 
recurrence, and ultimate extinction. Again, the construction of measures in 
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R’ in section 2 proceeded from an assignment of probabilities F{I} to 
intervals, and this domain of definition was extended to the class of all Borel 

sets. The possibility of such an extension is due to a theorem of much wider 
applicability, and many constructions of probability spaces depend on it 
The procedure is as. follows. 

The additivity of F permits us to define without ambiguity 

(5.1) F{A} = ¥ F{I,} 

for every set A which is the union of finitely many non-overlapping intervals 
[,. Now these sets form an algebra W, (that is, unions, intersections, and 

complements of finitely many sets in MW belong again to %)). From here 
on the nature of the underlying space ” plays no role, and we may consider 

an arbitrary algebra QW, of sets in an arbitrary space ©. There exists 
always a smallest algebra YW of sets. containing 1, which is closed also 
under countable unions and intersections. In other words, there exists a 

smallest c-algebra MY containing QM, (see definition | of section 3’. In the 
construction of measures in R’ the o-algebra % coincided with the o-algebra 
of all Borel sets. The extension of the domain of definition of probabilities 
from YW to W is based on the general | 

Extension theorem. Let %) be an algebra of sets in some space S. Let F 
be a set function defined on Uy such that F{A} > 0 for every set AEUy, that 

F{S} = 1, and that the addition rule (5.1) holds for any partition of A into 
countably many non-overlapping sets I, € Up. 

There exists then a unique extension of F to a countably additive set 
function (that is, to a probability measure) on the smallest o-algebra XU 
containing Up. 

A typical application will be given in the next section. Here we give 
a more general and more flexible version of the extension theorem which 
is more in line with the development in sections 2 and 3. We started from 
the expectation (2.4) for step functions (that is, functions assuming only 
finitely many values, each on an interval). The domain of definition of this 
expectation was then extended from the restricted class of step functions 
to a wider class including all bounded Baire functions. This extension leads 
directly to the Lebesgue-Stieltjes integral, and the measure of a set A is 
obtained as the expectation of its indicator 1,. The corresponding abstract 

setup is as follows. 
Instead of the algebra %, of sets we consider a class %, of functions 

closed under linear combinations and the operations M and WU. In other 

words, we suppose that if u, and u, are in Bg so are the functions 

(5.2) Kyu + lle, Uy OO Ug, u, U us. 

14 Our postulates amount to requiring that 8g be a linear lattice. 
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This implies in particular that every function u of 8, can be written in the 

form u = ut — u~ as the difference of two non-negative functions, namely 
ut =uU0 and uw =uM0. By a linear functional on By is meant an 
assignment of values E(w) to all functions of Bo satisfying the addition rule 

(5.3) E(a yu, +% U2) = a, E(u.) + a, Efu,). 

The functional is positive if u >0 implies E(u) > 0. The norm of E is 
the least upper bound of E({u|) for all functions ue By such that |u| <1. 

If the constant function 1 belongs to ®, the norm of E equals E(1). 

Finally, we say that E is countably additive on ®B, if 

(5.4) , E (> 's) = > E(u) 

whenever > u, happens tobe in ®y: An equivalent condition is: if {v,} 

is a-sequence of functions in 89 converging monotonically to zero, then’ 

(5.5) | . E(v,) > 0. 
Given the class %, of functions there exists a smallest class 8 containing 

By and closed under pointwise passages to the limit. [It is automatically 
closed under the operations (5.2).] An alternative formulation of the 
extension theorem is as follows.1® Every positive countably additive linear 
functional of norm 1 on Bq can be uniquely extended to a positive countably 
additive linear functional of norm 1 on all bounded (and many unbounded) 
functions of ®B. 

As an example for the-applicability of this theorem we prove the following 
important result. 

F. Riesz representation theorem.’’ Let E be a positive linear functional 
of norm | on the class of. continuous functions on R' vanishing at infinity.® 

15 To prove the equivalence of (5.4) and (5.5) it suffices to consider the case u;, > 0, 
vy, =O. Then (5.4) follows from (5.5) with v, = Unsy + Unsg +°°* and (5.5) follows 

from (5.4) on putting uz, = vy — Vx41 (that is, Su. = = 04). 
16 The basic idea of the proof (going back to Lebesgue) is simple and ingenious. It is 

not difficult to see that if two sequences {u,} and {u, } of functions in By converge 
monotonicaily to the same limit u then E(u,) and E(u,) tend to the same limit. For such 

monotone limits u we can therefore define E(u) = lim E(u,). Consider now the class 

%8, of functions wu such that toeach « > 0 there exist two functions uw and a which are 
either in 8, or are monotone limits of sequences 8, and such that u <u <a and 
E(a@) — E(u) < «. The class 8, is closed under limits and for functions in 8, the defini- 
tion of E(u) is obvious since we must have E(u) < E(u) < E(@). 

The tour de force in this argument is that the class 8, is usually greater than 8 and the 
simple proof is made possible by proving more than is required. (For a comparison 
between 8 and %, see section 7.) 

17 Valid for arbitrary locally compact spaces. For an alternative proof see V,1. 
18 vanishes at infinity if for given « > 0 there exists a sphere (compact set) outside 

which |u(z)| < e. 
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There exists a measure P on the o-algebra of Borel sets with P{R*} = } 
such that E(u) coincides with the integral of u with respect to P. 

In other words, our integrals represent the most general positive linear 
functionals. 

Proof. The crucial point is that if a sequence {v,} of continuous func- 
tions vanishing at infinity converges monotonically to zero, the convergence 

is automatically uniform. Assume v, >0 and put |v,|| = max v,(z). 
Then E(v,) < |lv,||, and so the countable additivity condition (5.5) is 
satisfied. By the extension theorem E can be extended to all bounded 
Baire functions and putting P{d4} = E(1,4} .we get a measure on the o- 
algebra of Borel sets. Given the measures P{A} we saw that the Lebesgue- 

Stieltjes integral is uniquely characterized by the double inequality (4.3) 
and this shows that for u continuous and vanishing at infinity this integral 
coincides with the given functional E(u). > 

6. PRODUCT SPACES. SEQUENCES OF INDEPENDENT 
VARIABLES 

The notion of combinatorial product spaces (1; V,4) is basic for prob- 
ability theory and is used every time one speaks of repeated trials. Describing 
a point in the plane R? by two coordinates means that KR? is taken as the 

combinatorial product of its two axes. Denote the two coordinate variables 
by X and Y. Considered as functions in the plane they are Baire 
functions, and if a probability measure P is defined on the o-algebra of 
Borel sets in R? the two distribution functions P{X <2} and P{Y < y} 

exist. They induce probability measures on the two axes called the marginal 
distributions (or projections). In this description the plane appears as the 
primary notion, but frequently the inverse procedure is more natural. For 

example, when we speak of two independent random variables with given 
distributions, the two marginal distributions are the primary notion and 
probabilities in the plane are derived from it by “the product rule.” The 
procedure is not more complicated in the general setup than for the plane. 

Consider then two arbitrary probability spaces, that is, we are given - 

two sample spaces SG and S®), two o-algebras U and U? of sets in 
S® and GS), respectively, and probability measures P® and P) defined 
on them. The combinatorial product (S™, G@) is the set of all ordered 

pairs (x, x)) where x) isa pointin S@. Among the sets in this product 

space we consider the “rectangles,” that is, the combinatorial products 

(AD, A) of sets AM? EU™, With sets of this form we wish to associate 
probabilities by the product rule 

(6.1) P{(AD, A@} = POLED} Pl 4@), 
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Now sets which are unions of finitely many non overlapping rectangles 

form an algebra Uy, and (6.1) defines in a unique way a countably additive 
function on it. Accordingly, by the extension theorem there exists a unique 

probability measure P defined on the smallest o-algebra containing all 
rectangles and such that the probabilities of rectangles are given by the product 
rule (6.1). This smallest o-algebra containing all rectangles will be denoted by 
u™ x U?), and the measure will be called product measure. 

Of course, other probability measures can be defined on the product 
space, for example in terms of conditional probabilities. Under any 
circumstances the underlying o-algebra U of sets will be at least as large 
as U™ x U), and it is rarely necessary to go beyond this algebra. The 
following discussion of random variables is valid whenever the underlying 
algebra U is given gy U= UY) x YO), 

The notion of random variable (measurable function) is relative to the 

underlying o-algebra and with our setup for product spaces we must dis- 
tinguish between random variables in the product space and those on 

S and S@), The relationship between these three classes is fortunately 
extremely simple. If u and v are random variables on SG and GS) we 
consider in the product space the function w which at the point (a), x) 
takes on the value 

(6.2) w(2), x'2)) = u(x") . v(x), 

We show that the class of random variables in the product space (S™, S) 
is the smallest class of finite-valued functions closed under pointwise passages 
to the limit and containing all linear combinations of functions of the form (6.2). 

To begin with, it is clear that each factor on the right in (6.2) is a random 
variable even when considered as a function on the product space. It follows 
that w is a random variable, and hence the class of random variables in 
(S®, S)) is at least as extensive as claimed. On the other hand, the 

random variables form the smallest class of functions that is closed under 
passages to the limit and contains all linear combinations of indicators of 
rectangles. Such indicators are of the form (6.2) and therefore the class of 

‘random variables cannot be larger than claimed. 
The special case of the product of two spaces R™ and KR” with probability 

measures F and G occurred indirectly in connection with Fubini’s theorem 
(2.11) concerning repeated integrals. We can now state the more general 

theorem, which 1s not restricted to R’. 

Fubini’s theorem for product measures. For arbitrary non-negative Baire 

functions u, the integral of u with respect to the product measure equals the 

repeated integrals in (2.11). 
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(It is understood that the integrals may diverge. The theorem is obvious 
for simple functions and follows in general by the approximation procedure 
employed repeatedly.) The generalization to product spaces with three or 
more factors is too obvious to require comment. 

We turn to the problem of infinite sequences of random variables, which we 
encountered in volume 1 in connection with unlimited sequences of Bernoulli 
trials, random walks, recurrent events, etc., and again in. chapter III in 

connection with normal stochastic processes. Nothing need be said when 
infinitely many random variables are defined on a given probability space. 
For example, the. real line with the normal distribution is a probability space 
and {sin mx} is an infinite sequence of random variables on it. We are here 
concerned with the situation when the probabilities are to be defined in terms 

of the given random variables. More precisely, our problem is as follows. 
Let R® denote the space whose points are infinite sequences of real 

numbers (2%, %,...), (thatis, R® is adenumerable combinatorial product 

or real lines). We denote the mth coordinate variable by X, (that is, X,, is 

the function in R®” which at the point x = (x, 2...) assumes the value 

_2,). We suppose that we are given the probability distributions for Xj, 
(X,, X,), (X;, X,, X,),... and wish to define appropriate probabilities 

in R®. Needless to say, the given distributions must be mutually consistent 
in the sense that the distributions of (X,,...,X,) appear as marginal 
distributions for (X,,...,X,41), andsoon, — 

Let us now formalize the intuitive notion of an “event determined by the 
outcome of finitely many trials.’ We agree to say that a set A in R® 
depends only on‘ the first r coordinates if there exists a Borel set A, in 
R” such that x = (%,,%_,...) belongsto A iff (a,...,2%,) belongs to Ay. 
The standard situation in probability is that the probabilities for such sets: 
are prescribed, and we face the problem of extending this domain of definition. 
We state without proof the basic theorem derived (in slightly greater 
generality) by A. Kolmogorov in his now classical axiomatic foundation of 
probability theory (1933). It anticipated and stimulated the development of 
modern measure theory. 

Theorem 1. A consistent system of probability distributions for X,, 
(X,, X,), (X,, X,, X3),... admits of a unique extension to a probability 

measure on UU, the smallest o-algebra of sets in R® containing all sets 
depending only on finitely many coordinates.’ 

The important point is that all probabilities are defined by successive 

passages to the limit starting with finite-dimensional sets. Every set A 

19 The theorem applies more generally to products of locally compact spaces; for 

example, the variables X, may be interpreted as vector variables (points in 2”). 
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in U can be approximated by finite-dimensional sets in the following sense. 
Given ¢ > 0 there exists an anda set A, depending only on the first 
n coordinates and such that 

(6.3) P{A—~AQA, $<, P{A,-ANA,} <e. 

In other words, the set of those points that belong to either A or A, but 
not to both has probability < 2e. It follows that the sets 4,, can be ."-osen 
such that 

(6.4) P{A,} > P{A}. 

Theorem | enables us to speak of an infinite sequence of mutually independent 
random variables with arbitrarily prescribed distributions. Such sequences 

did in fact occur in volume 1, but we had to be careful to define the prob- 

abilities in question by specific passages to the limit, whereas theorem | 
provides the desirable freedom of movon. This point is well illustrated by 

the following two important theorems dué, respectively, to A. Kolmogorov 
(1933) and to E. Hewitt and L. J. Savage (1955). They are typical for 

probabilistic arguments and play a central role in many contexts. 

Theorem 2. (Zero-or-one law for tail events.) Suppose that the variables 
X, are mutually independent and that for each n the event A_ is independent 
of ® X,,...,X,. Then either P{A} =0 or P{A} = 1. 

Proof. In principle the variables X, can be defined in an arbitrary 

probability space, but they map this space into the product space R® in 

which they serve as coordinate variables. There is therefore no loss 

of generality in departing from the setup described in this section. 
With the notations used in (6.3) the sets 4A and A, are independent 
and so the first inequality implies P{A} — P{A}P{A,} < «. Therefore 

P{A4} = P*{A}. > 

Example. (a) The series 2X, converges with probability zero or one. 

Similarly, the set of those points where lim sup X, = oo has either prob- 

ability zero or one. > 

Theorem 3. (Zero-or-one law for symmetric events.) Suppose that the 
variables X,, are mutually independent and have a common distribution. 
If the set A is invariant under finite permutations of the coordinates”! then 

either P{A} =0 or P{A} = 1. 

¢ }ore precisely, A is independent of every eve:.. defined in terms of Ky,..., 4a 
In other words, the indicator of A is a random variable independent of %y,..., Xn- 

21 More precisely, if (@,, a ,...) is a point of A and m, and me. are two arbitrary 

integers it is supposed that 4 contains also the point obtained by exchanging a,, and an, 
while leaving all other coordinates fixed. This condition extends autcmatically to permuta- 

tions involving & coordinates. 
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Proof. As in the last proof we use the X, as coordinate variables and 
refer to the sets A, occurring in (6.3). Let B, be the set obtained from 
A, by reversing the first 2n coordinates and leaving the others fixed. By 
hypothesis then (6.3) remains valid also when A, is replaced by B,. It 
follows that the set of points belonging to either A or A, 8B, but not to 
both has probability < 4, and therefore 

(6.5) P{A, O\ B,} > P{A}. 

Furthermore A, depends only on the first » coordinates and hence B, 

depends only on the coordinates number 1+ 1,...,2n. Thus A, and 
B,, are independent and from (6.5) we conclude again that P{A} = P®{A}. » 

Example. (5) Put S,=X,+-:--+X, and let A _ be the event 

{S,,€1i.0.} where J is an arbitrary interval on the line. Then 4 is in- 
variant under finite permutations. [For the notation see example 1(a).]  » 

7. NULL SETS. COMPLETION 

Usually a set of probability zero is negligible and two random variables 
differing only on such a null set are “practically the same.’ More formally 

they are called equivalent. This means that all probability relations remain 

unchanged if the definition of a random variable is changed on_a null set, 

and hence we can permit a random variable not to be defined on a null set. 
A typical example is the epoch of the first occurrence of a recurrent event: 
with unit probability it is a number, but with probability zero it remains 

- undefined (or is called 00). Thus we are frequently dealing with classes of 
equivalent random variables rather than with individual variables, but it is 

usually simplest to choose a convenient representative rather than to speak 

of equivalence classes. 
Null sets give rise to the only point where our probabilistic setup goes 

against intuition. The situation is the same in all probability spaces, but it 
suffices to describe it on the line. With our setup, probabilities are defined 

only for Borel sets, and in general a Borel set contains many subsets that are 

not Borel sets. Consequently, a null set may contain sets for which no 

probability is defined, contrary to the natural expectation that every subset 
of a null set should be a null set. The discrepancy has no sericus effects and 
it is easily remedied. In fact, suppose we introduce the postu/ate: if Ac 8 
and P{B\ = 0, then P{A} =0. It compels us to enlarge the o-algebra 12 
of Borel sets (at least) to the smallest o-algebra U, containing all sets of 

UW and all subsets of nuil sets. A direct description is as follows. A set 

A belongs to 2, iff it differs only by a null set®* from some Borel set 1°. 

  

22 More precisely, it is required that both A — Aq A® and A? — A A® be contained 

in a null set. 
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The domain of definition can be extended from U to U, simply by putting 
P{A} = P{A°}. Itis almost trivial that this definition is unique and leads to a 

completely additive measure on Uj. By this device we have obtained a 
probability space satisfying our postulate and in which the probabilities of 
Borel sets remain unchanged. 

The construction so described is called the Lebesgue completion (of the 
given probability space). This completion is natural in problems concerned 
with a unique basic probability distribution. For this reason the length of 
intervals on R1 is usually completed to a Lebesgue measure which is not 
restricted to Borel sets. But the completion would invite trouble when one 
deals with families of distributions (for example with infinite sequences of 
Bernoulli trials with unspecified probability p). In fact, U, depends on the 

underlying distribution, and so a random variable with respect to U, may 
stop being a random variable when the probabilities are changed. 

Example. Let a, a.,... be a sequence of points on RK carrying prob- 
abilities p,, P2,... where 2% p,=1. The complement of {a,;} has prob- 
ability zero and so Uy contains all sets of R1. Every bounded function u 
is now a random variable with expectation > p,u(a,) but it would be 
dangerous to deal with “arbitrary functions’’ when the underlying distribution 
is not discrete. > 

 



CHAPTER V 

Probability Distributions in R’ 

This chapter develops the notion of probability distribution in the r- 

dimensional space R’. Conceptually the notion is based on the integration 

theory outlined in the last chapter, but in fact no sophistication is required 

to follow the development because the notions and formulas are intuitively 

close to those familiar from volume 1 and from the first three chapters. 
‘The novel feature of the theory is that (in contrast to discrete sample 

_ spaces) not every set carries a probability and not every function serves as 

random variable. Fortunately this theoretical complication is not noticeable 
in practice because we can’start from intervals and continuous functions, 

respectively, and restrict our attention to sets and functions that can be 
derived from them by elementary operations and (possibly infinitely many) 

passages to the limit. This delimits the classes of Borel sets and Baire 
functions. Readers interested in facts rather than logical connections need 
not worry about the precise definitions (given in chapter IV). Rather they 
should rely on their intuition and assume that all sets and functions are 
“‘nice.’’ The theorems are so simple? that elementary calculus should suffice 
for an understanding. The exposition is rigorous under the convention that 

the words set and function serve as abbreviations for Borel set and Baire 
function. 

An initial reading should be restricted to sections 1-4 and 9. Sections 
5-8 contain tools and inequalities to which one may refer when occasion 
arises. The last sections develop the theory of conditional distributions 

and expectations more fully than required for the present volume where 
the results are used only incidentally for martingales in VI,11 and VII,9. 

1 It should be understood that this simplicity cannot be achieved by any theory restricted 
to the use of continuous functions or any other class of “nice’’ functions. For example, 

in II,(8.3) we defined a density gy by an infinite series. To establish conditions for g to 

be nice would be fedious and pointless, but the formula is obvious in simple cases and the 
use of Baire functions amounts to a substitute for a vague “‘goes through generally.’’— 

Incidentally, the few occasions where the restriction to Baire functions is not trivial will 

be pointed out. (The theory of convex functions in 8.6 is an example.) 

127 
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1. DISTRIBUTIONS AND EXPECTATIONS 

Even the most innocuous use of the term random variable may contain 

an indirect reference to a complicated probability space or a complex 

conceptual experiment. For example, the theoretical model may involve 
the positions and velocities of 10° particles, but we concentrate our attention 

on the temperature and energy. These two random variables map the original 
sample space into the plane R*, carrying with them their probability distri- 

butions. In effect we are dealing with a problem in two dimensions and the 
original sample space looms dimly in the background. The finite-dimensional 

Cartesian spaces KR” therefore represent the most important sample spaces, 
and we turn to a systematic study of the appropriate probability distributions. 

Let us begin with the line R!. The intervals defined by a<a<b and 
— I— 

a<x<b will be denoted by a,b and a,b. (We do not exclude the 

limiting case of a closed interval reducing to a single point. Half-open 
——| —_—_— . 

intervals are denoted by a,b and a,b. In one dimension all random 
variables are functions of the coordinate variable X (that is, the function 

which at the point x assumes the value x). All probabilities are therefore 
expressible in terms of the distribution function 

(1.1) F(x) = P{X < 3}, —Oo <4 < oO. 

In particular, I=a,b carries the probability P{/} = F(b) — F(a). 

The flexible standard notation P{ } is impractical when-we are dealing 
with varying distributions. A new letter would be uneconomical, and the 
notation P;{ } to indicate the dependence on F is too clumsy. It is by 
far the simplest to use the same letter F both for the point function (1.1) 

and the corresponding interval function, and we shall write F{J} instead 

of P{/}. In other words, the use of braces { } will indicate that the 

argument in F{A} is an interval or set, and that F appears as a function 

of intervals (or measure). When parentheses are used the argument in 

F(a) is a point. The relationship between the point function F( ) and 

the interval function F{ } is indicated by 

—— — 
(1.2) F(») = F{—0,2},  Ffa, b} = F(b) — F(a). 

Actually the notion of the point function F(x) is redundant and serves 

merely for the convenience of analytical and graphical representation. 

The primary notion is the assignment of probabilities to intervals. The 

point function F( ) is called the distribution function of the interval 

function F{ }. The symbols F( ) and F{ } refer to the same thing 

and no confusion can arise by references to “the probability distribution 
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F.”’ One should get used to thinking in terms of interval functions or measures 
and using the distribution function only for graphical descriptions.? 

Definition. A point function F on the line is a distribution function if 
(i) F is non-decreasing, that is, a <b implies F(a) < F(b) 

(ii) F is right continuous,’ that is, F(a) = F(a+) 
(ii1) F(—c) = 0 and F(@) < o~. , 

F is a probability distribution function if it is a distribution function and 
F(oo) = 1. Furthermore, F is defective if F(o) < 1. 

We proceed to show that every distribution function induces an assignment 
of probabilities to all sets on the line. The first step consists in assigning 

probabilities to intervals. Since F is monotone, a left limit F(a—) exists 

for each point a. We define an interval function F{J} by 
-—-| ——— 

F{a,b} = F(b) — F(a—), F{a, b} = F(b—) — F(a) 

(1.3) —4 _ 
F{a,b} = F(b) — Fa), F{a, b} = F(b—) — F(a—). 

For the interval a, a reducing to the single point F{ a,a} = F(a) ~ F(a—), 

which is the jump of F at the point a. (It will be seen presently that F is 
continuous “‘almost everywhere.’’) 

To show that the assignment of values (1.3) to intervals satisfies the 
requirements of probability theory we prove a simple lemma (which readers 

may accept as being intuitively obvious). 

Lemma 1. (Countable additivity.) If an interval I is the union of countably 

  

many non-overlapping intervals I,,I,,..., then 

(1.4) F{}} = > FU,}. 
— — 

Proof. The assertion is trivial in the special case J=a,b and J; =a, qQ, 
| ——+ — 

I, = @,, @2,...,1, =a,_,,6. The most general finite partition of J = a,b 

is obtained from this by redistributing the endpoints a, from one sub- 

interval to another, and so the addition rule (1.4) holds for finite partitions. 

In considering the case of infinitely many intervals J, it.suffices to assume 
    

? Pedantic care in the use of notations seems advisable for an introductory book, but it is 
noped that readers will not indulge in this sort of consistency and will find the courage to 

write Fl) and F(x) indiscriminately. No confusion will result and it is (fortunately) 

quite customary in the best mathematics to use the same symbol (in particular | and =) 
on the same page in several meanings. 

2 As usual we denote by f(a+) the limit, if it exists, of f(x) as «>a in such a way 

that « >a, and by f(co) thelimit of f(x) as x — ow, Similarly for f(a—) and f(—). 

This notation carries over to higher dimensions. 
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I closed. In consequence of the right continuity of the given distribution 
function F it is possible to find an open interval 7* containing J, and such 

that 0 < F{l#} — FUl,} < «+2 for preassigned « > 0. Now there exists 
a finite collection if, Lee if covering J and hence 

(1.5) FURS FUR) +--+ FU} < Fin} to + FUL} te. 
Thus 

(1.6) FU} <> FU}. 

But the reversed inequality is also true since to each n there exists a finite 

partition of 7 containing J,,...,Z,. This concludes the proof. > 

As explained. in [V,2 it is now possible to define 

(1.7) F{A} = > F{Az} 

for every set A consisting of finitely or denumerably many disjoint intervals 
A,. Intuition leads one to expect that every set can be approximated by such 

unions of intervals, and measure theory justifies this feeling.* Using the 

natural approximations and passages to the limit it is possible to extend 
the definition of F to all sets in such a way that the countable additivity 
property (1.7) is preserved. This extension is unique, and the resulting 

assignment is called a probability distribution or measure. 

Note on terminology. In the literature the term distribution is used loosely 

in various meanings, and so it is appropriate here to establish the usage to 
which we shall adhere. . 

A probability distribution, or probability measure, is an assignment of 
numbers F{A} > 0 to sets subject to condition (1.7) of countable additivity 

and the norming F{—0©o, 0} = 1. More general measures (or mass distri- 
butions) are defined by dropping the norming condition; the Lebesgue 

- measure (or ordinary length) is the most notable example. 

As will be recalled from the theory of recurrent events in volume 1, we 
have sometimes to deal with measures attributing to the line a total mass 

p = F{—«, 0%} <1. Such a measure will be called defective probability 

measure with defect 1 —p. For stylistic clarity and emphasis we shall 

occasionally speak of proper probability distributions, but the adjective 
proper is redundant. 

The argument of a measure m{A} is a set and is indicated by braces. 
With every bounded measure m there is associated its distribution function, 

-_—_—_——__} . 

that is, a point function defined by m(x) = m{— oo, x}. It will be denoted 
by the same letter with the argument in parentheses. The dual use of the 

4 The convention that the words set and function serve as abbreviations for Borel set 

_ and Baire function should be borne in mind. 
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same letter can cause no confusion, and by the same token the term distri- 
bution may stand as abbreviation both for a probability distribution and its 
distribution function. 

In 1; [X a random variable was defined as a real function on the sample 

space, and we continue this usage. When the line serves as sample space 

every real function becomes a random variable. The coordinate variable 

X is basic, and all other random variables can be expressed as functions of it. - 

The distribution function of the random variable wu is defined by 

P{u(X) <x} and can be expressed in terms of the distribution F of the 

coordinate variable X. For example, X*® has the distribution function 

given by F(x). . 
A function wu is called simple if it assumes only countably many values 

ay, @,,.... If A, denotes the set on which u equals a, we define the 

expectation E(u) by . 

(1.8) E(u) = > a, F{A,} 

provided the series converges absolutely. In the contrary case wu is said not 
to be integrable with respect to F. Thus wu has an expectation. iff E(|u|) 
exists. Starting from the definition (1.8) we define the expectation for any 
arbitrary bounded function u as follows. Choose « >0, and denote by 
A, the set of those points x at which (n—l)e < u(x) < ne. With any 
reasonable definition of E(u) we must have 

(1.9) > (n—De* F{A,} < E(u) < > ne * F{A,}.- 

(The extreme members represent the expectations of two approximating 

simple functions o and @ suchthat o<u<o@ and Gd —o = «.) Because 
of the assumed boundedness of u the two series in (1.9) contain only finitely 

many non-zero terms, and their difference equals «2 F{A,}= €. Re- 
placing « by $e will increase the first term in (1.9) and decrease the last. 

It is therefore not difficult to see that as «+0 the two extreme members 
in (1.9) tend to the same limit, and this limit defines E(u). For unbounded 

u the same procedure applies provided the two series in (1.9) converge 

absolutely; otherwise E(u) remains undefined. 

The expectation defined in this simple way is called the Lebesgue-Stieltjes 
integral of u with respect to F. When it is desirable to emphasize the 
dependence of the expectatian on F the integral notation is preferable and 

we write alternatively 

(1.10) E(u) =| ue F {dx} 

with x appearing as dummy variable. Except on rare occasions we shall 

be concerned only with piecewise continuous or monotone integrands 
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such that the sets A, will reduce to unions of finitely many intervals. The 
sums in (1.9) are then simple rearrangements of the upper and lower sums 
used in the elementary definition of ordinary integrals. The general 
Lebesgue-Stieltjes integral shares the basic properties of the- ordinary 

integral and has the additional advantage that formal operations and 
passages to the limit require less care. Our use of expectations will be limited 
to situations so simple that no general theory will be required to follow the 
individual steps. The reader interested in the theoretical background and 
the basic facts is referred to chapter IV. 

Examples. (a) Let F be a. discrete distribution attributing weights 
Pi» Ps,.-. to the points a,,a,,.... Then clearly E(u) = 2 u(a,)p, 

whenever the series converges absolutely. This is in agreement with the 
definition in 1; IX. 

(b) For a distribution defined by a continuous density 

“+00 

(1.11) E(u) ={ u(x) f(x) dx 

provided the integral converges absolutely. For the general notion of 
density see section 3. > 

The generalization to higher dimensions can be described in a few words. 
In R% a point x is a pair of real numbers, x = (x,, 2). Inequalities 

are to be interpreted coordinate-wise;> thus a <b means a, < 6, and 

ay <b, (or “a lies southwest of 5°’). This induces only a partial ordering, 

that is, two points a and 6b need not stand in either of the two relations 

a<b or a>b. We reserve the word interval for the sets defined by the 
four possible types of double inequalities a<x<b, etc. They are 

rectangles parallel to the axes which may degenerate into segments or points. 

The only novel feature is that the two-dimensional interval a,c with 
—| 

a<b<c isnot the union of a,b and b,c. Corresponding to an interval 
function assigning the value F{/} to the interval 7 we may introduce its 

  

distribution function defined as before by F{x} = F{—oo,x}, but an 
— 

expression of F{a, 6 } in terms of this distribution function involves all four 

vertices of the interval. In fact, considering the two infinite strips parallel 

to the z,-axis and with the sides of the rectangle a,b as bases one sees 
— 

immediately that F{a, b} is given by the so-calied mixed difference 
—4 

(1.12) F{a,b } = F(b,, bs) — Fay, by) — F(by, a2) + F(a, ae). 

5 This notation was introduced in III.5. 
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For a distribution function the right side is non-negative. This implies that 
F(%,,%2) depends monotonically on z, and 2, but such monotonicity 
does not guarantee the positivity of (1.12). (See problem 4.) _ 

The limited value of the use of distribution functions in higher dimensions 
is apparent: were it not for the analogy with R}! all considerations would 
probably be restricted to interval functions. Formally the definition of 

distribution functions in R} carries over to R* if the condition of mono- 
tonicity (i) is replaced by the condition that for a < 6 the mixed difference 
in (1.12) be non-negative. Such a distribution function induces an interval 
function as in (1.3) except that again the mixed differences take over the role 
of the simple differences in R?. Lemma | and its proof remain valid.® 

A simple, but conceptually important, property of expectations is sometimes taken 
for granted. Any function u(X) = u(X,, X,) of the two coordinate variables is a random 
variable and as such it has a distribution function G. The expectation E(u(X)) is now 

defined in two ways; namely, as the integral of u(x,,2) with respect to the given 
probability in the plane, but also by 

(1.13) E(u) = { y G{dy} 
—o 

in terms of the distribution function G of u. The two definitions are equivalent by the 
very definition of the former integral by the approximating sums IV,(4.3).”? The point 
is that the expectation of a random variable Z (if it exists) has an intrinsic meaning 
although Z may be considered as a function either on the original probability space S 
or on a space obtained by an appropriate mapping of G; in particular, Z itself maps S 
on the line where it becomes the coordinate variable. 

From this point on there is no difference between the setups in A? and 
R*. In particular, the definition of expectations is independent of the number 

of dimensions. 
To summarize formally, any distribution function induces a probability 

measure on the o-algebra of Borel sets in. R", and thus defines a probability 
space. Restated more informally, we have shown that the probabilistic 
setup of discrete sample spaces carries over without formal changes just as in 

the case of densities, and we have justified the probabilistic terminology 
employed in the first three chapters. If we speak of r random variables 

® The proof utilized the fact that in a finite partition of a one-dimensional interval 
the subintervals appear in a natural order from left to ‘right. An equally neat arrangement 

characterizes the checkerboard partitions of a two-dimensional interval a,5, that Ss, 

partitions into ma subintervals obtained by subdividing separately the two sides of a,b 
and drawing parallels to the axes through all points of the subdivisions. The proof of the 
finite additivity requires no change for such checkerboard partitions, and to an arbitrary 
partition there corresponds: a checkerboard refinement. The passage from finite to 
denumerable partitions is independent of the number of dimensions. 

7 A special case is covered by theorem 1 in 1; IX,2. 
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X,,-..,X, it is understood that they are defined in the same probability 

space so that a joint probability distribution of (X,,..., X,) exists. We are 
then free to interpret the X, as coordinate variables io the sample space RK’. 

It is hardly necessary to explain the continued use of terms such as 

marginal distribution (see III,1 and 1; IX,1l), or independent variables. 

The basic facts concerning such variables are the same as in the discrete 
case, namely: 

(i) Saying that X and Y are independent random variables with (one- 

dimensional) distributions F and G means that the joint distribution function 
of (X, Y) is given by the products F(x,) G(z,). This statement may refer to 

two variables in a given probability space or may be an abbreviation for the 

statement that we introduce a plane with X and Y as coordinate variables 
and define probabilities by the product rule. This remark applies equally 

to pairs or triples of random variables, etc. 
(ii) If the m-tuple (X;,...,X,,) is independent of the a-tuple 

(Y,,...,¥,) then u(X,,...,X,,) and v(¥,,..., Y,) are independent 
(for any pair of functions u and v). 

(iii) If X and Y are independent, then E(XY) = E(X) E(Y) whenever 
the expectations of X and Y exist (that is, if the integrals converge 
absolutely). 

The following simple result is frequently useful. 

Lemma 2. A probability distribution F is uniquely determined by the 
knowledge of E(u) for every continuous function u vanishing outside some 
finite interval. 

Proof. Let J bea finite open interval and v a continuous function that is 

positive in 7 and zero outside J. Then W/v(x)—1 at each point rel, 

and hence E(/ v) — F{I}. Thus the knowledge of the expectations of our 

continuous functions uniquely determines the values F{T} for all open 
intervals, and these uniquely determine F. > 

Note I.8 The F. Riesz representation theorem. In the preceding lemma the expectations 

were defined in terms of a given probability distribution. Often (for example, in the moment 
problem of VII,3) we start from a given functional, that is, from an assignment of values 

E(u) to certain functions. We inquire whether there exists a probability distribution F 

such that , 

| “+ 90 

(1.14) E(u) =| u(x) F{dz}. 
—c 

It turns out that three evidently necessary conditions are also sufficient. 

® This note treats a topic of conceptual interest but will not be used in the sequel. For an 

alternative approach see IV,5. 
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Theorem. Suppose that to each continuous function u vanishing outside a finite interval 
there corresponds a number E(u) with the following properties; (i) The functional is linear, 
that is, for all linear combinations 

E(cyly + Collg) == cyE(u,) + CoE (ug); 

(ii) it is positive, that is, u > 0 implies E(u) > 0; (iii) it has norm 1, that is, OS u <1 

implies E(u) < 1, but for each « >0 there exists u such that 0 Su <1 and 

E(u) >1l—e. 

Then there exists a unique probability distribution F for which (1.14) is true. 

Proof. For arbitrary ¢ and 4 >0 denote by z,,, the continuous function of x that 
equals 1 when zx < f¢, vanishes for x > t+ A, and is linear in the intermediate interval 

t<x<¢t+h. This function does not vanish at infinity, but we can define E(z,,) by 
simple approximations. Choose a function |u,| <1 such that E(u,) is defined and 
u,(%) = 24,,(@) for |z| <a. If m>n the difference u,, — u, vanishes identically within 

the interval —n,n and from the fact that E has norm 1 one concludes easily that 
E(u, —Um) 0. It follows that E(u,) converges.to a finite limit, and this limit is obviously 
independent of the particular choice of the approximating u,,. It is therefore legitimate to 
define E(z,,,) = lim E(u,). It is easily seen that even within this extended domain of 

definition the functional E enjoys the three properties postulated in the theorem. 
Now put F;,(t) = E(z,,,). For fixed A this is a monotone function going from 0 to 1. 

It is continuous, because when 0 < 6 </h the difference z,,5 , — z;,, has a triangular 
graph with height 6/h, and hence F, has difference ratios bounded by 1/h. As h 0 
the functions F, decreases monotonically to a limit which we denote by F. We show that 
F is a probability distribution. Obviously F * monotone and F(—0o) = 0. Furthermore 
F(t) > F,(t—k) which implies that F(co) = 1. It remains to show that F is continuous 

from the right. For given ¢ and «>0 choose hk so small that F(t)> F(t) — €. 

Because of the continuity of F, we have then for 6 sufficiently small 

F(t) > Fy(t) — ¢ > Fy(t+8) — 2¢ > F(t+6) — 2¢ 

which proves the right-continuity. 

Let u bea continuous function vanishing outside a finite interval a, a, b. Choose a= 

=a <a, <° -< a, = 65 such that within each subinterval a,_,, 4; the oscillation 
of u is less than ¢«. If A is smaller that the smallest among these intervals, then 

(1.15) un = > ulay) [azn — Za,_1.n1 
k=1 

is.a piecewise linear function with vertices at the points a, and a, +h. Since u(ay) = 
= u,(a,,) it follows that |u—u,| < 2e, and hence |E(u)—E(u,)| < 2¢. But as A +0 

n — 
(1.16) E(uy) > > ula) F {ay-1, 9%} 

k=1 

and this sum differs from the integral in (1.14) by less than e. Thus the two sides in (1.14) 

differ by less than 3¢, and hence (1.14) is true. > 

Note II. On independence and correlation. Statistical correlation theory goes back to a 

time when a formalization of the theory was impossible and the notion of stochastic 
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independence was necessarily tinged with mystery. It was understood that the independ- 
ence of two bounded random variables with zero expectation implies E(XY) = 0, but 

this condition was at first thought also to be sufficient for the independence of X and Y. 
The discovery that this was not so led to a long search for conditions under which the 
vanishing of correlations would imply stochastic independence. As frequently happens, 
the history of the problem and the luster of partial results easily obscured the fact that 
the solution is extremely simple by modern methods. The following theorem contains 
various results proved in the literature by laborious methods. 

Theorem. The random variables X and Y are independent iff 

(1.17) E(u(X) - v(Y)) = E(u(X)) - E@(Y)) 

for all continuous functions u and v vanishing outside a finite interval. 

Proof. The necessity of the condition is obvious. To prove the sufficiency it suffices 
to show that for every bounded continuous function E(w) agrees with the expectation 
of w with respect to a pair of independent variables distributed as X and Y. Now (1.17) 
states this to be the case whenever w is of the form w(X, Y) = u(X) v(Y). Every bounded 

continuous function w can be uniformly approximated® by linear combinations of the 
form & c,u;,(X)v,(Y), and by passing to the limit we see the assertion to be true for arbi- 
trary bounded continuous w. > 

2. PRELIMINARIES 

This section is devoted largely to the introduction of a terminology for 
familiar or obvious things concerning distribution functions in R}. 

Just as in the case of discrete variables we define the kth moment of a 

random variable X by E(X*), provided the integral exists. By this we mean 

that the integral 

(2.1) E(X*) = | a* F{dzx} 

converges absolutely, and so E(X*) exists iff E(\X|*) < 0. The last 

quantity is called the kth absolute moment of X (and is defiried also for 
non-integral k > 0). Since |z|* < |z|? +1 when 0<a<), the existence 

of an absolute moment of order b implies the existence of all absolute 

moments of orders a < b. 
If X has an expectation m, the second moment of X — m is called the 

variance of X: | 

(2.2) Var (X) = E((X—m)?) = E(X?) — m’. 

Its properties and significance are the same as in the discrete case. In 

particular, if X and Y are independent 

(2.3) Var (X+Y) = Var (X) + Var (Y) 

whenever the variances on the right exist. 
  

® See problem 10 in VIIT,10. 
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[Two variables satisfying (2.3) are said to be uncorrelated. It was shown 

in 1; IX,8 that two dependent variables may be uncorrelated. ] 
It will be recalled how often we have replaced a random variable X by 

the “reduced variable’ X* = (X—m)/o where m=KE(X) and o? = 

Var (X). The physicist would say that X* is “expressed in dimensionless 
units.’’ More generally a change from X to (X—)/a with « > 0 amounts 
to a change of the origin and the unit of measurement. The distribution 
function of the new variable is given by F(ax+), and in many situations — 
we are actually dealing with the whole class of distributions of this form 
rather than with an individual representative. For convenience of expression 
we introduce therefore 

Definition 1. Two distributions F, and F, in are said to be of the same . 
type” if F(x) = F,\(ax+8) with «a >0. We refer to « as scale factor, B 
as centering (or location) constant. 

This definition permits the use of clauses such as “Fr is centered to zero 
expectation”’ or “centering does not affect the variance.’ 

A median & of adistribution F is defined as a number such that F(é) > } 
but F(Eé—) < }. It is not necessarily defined uniquely; if F(x) = 4 for 

all x of an interval a,b then every such x is a median. It is possible 

to center a distribution so that 0 becomes a median. 
Except for the median these notions carry over to higher dimensions 

or vector variables of the form X = (X,,...,X,); the appropriate vector 

notation was introduced in ILII,5, and requires no modification. The 

expectation of X is now a vector, the variance a matrix. 
The first things one notices looking at the graph of a distribution function 

are the discontinuities and the intervals of constancy. It is frequently 
necessary to say that a point is not in an interval of constancy. We introduce 

the following convenient terminology applicable in all dimensions. 

Definition 2. A point x is an atom if it carries a positive mass. It is a 
point of increase of F iff F{I} > 0 for every open interval I containing x. 

The distribution F is concentrated on the set A if the complement A’ 
has probability F{A‘’} = 0. 

The distribution F is atomic if it is concentrated on the set of its atoms. 

Example. Order the rationals in 0, 1 in a sequence 1;,/s,... with 

increasing denominators. Let F attribute probability 2~-* to r,. Then F 
is purely atomic. Note, however, that every point of the closed interval 
~| 
0,1 is a point of increase of F. > 

19 The notion was introduced by Khintchine who used the German term Klasse, but 
in English ‘‘a class of functions’’ has an established meaning. 
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Because of the countable additivity (1.7) the sum of the weights of the 
atoms cannot exceed unity and so at most one atom’carries a weight >4, at 
most two atoms carry weights >4, etc. It is therefore possible to arrange 
the atoms in a simple sequence 4,,a,,... such that the corresponding 

weights decrease: p, > Pp, >-+-+:. In other words, there exist at most 

denumerably many atoms. 

A distribution without atoms is called continuous. If there are atoms, 

denote their weights by ;, po,... andlet p= Xp, >0 betheir sum. Put 

(2.4) F(z) = p* > p,, 
ak<z 

—— 
the summation extending over all atoms in the interval —oo, x. Obviously 
F, is again a distribution function, and it is called the atomic component 
of F. If p= 1 the distribution F is atomic. Otherwise let g = 1 —p. 
It is easily seen that [F—pF,]/q = F, is a continuous distribution, and so 

(2.5) F = pF, + qF, 

is a linear combination of two distribution functions of which F, is atomic, 

F, continuous. If F is atomic (2.5) is true with p= 1 and F, arbitrary; 

in the absence of atoms (2.5) holds with p = 0. We have thus the 

Jordan decomposition theorem. Every probability distribution is a mixture 
of the form (2.5) of an atomic and a continuous distribution; here p > 0, 
g2>0,p+q=l. 

Among the atomic distributions there is a class which sometimes encumbers 

simple formulation by trite exceptions. Its members differ only by an 
arbitrary scale factor from distributions of integral-valued random variables, 
but they occur so often that they deserve a name for reference. 

Definition 3. A distribution F in R} is arithmetic" if it is concentrated ona 
set of points of the form 0, +A, 42A,.... The largest 4 with this property 
is called the span of F. . 

3. DENSITIES 

The first two chapters were devoted to probability distributions in 

such that . 

(3.1) F{A} =| ode 

11 The term /attice distribution is, perhaps, more usual but its usage varies: according 

to some authors a lattice distribution may be concentrated on a set of points a, atA, 

a+2A,... with a arbitrary. (The binomial distribution with atoms at +1 is arithmetic 

with span 1 in our terminology, but a lattice distribution with span 2 according to the 

alternative definition.) 
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for all intervals (and therefore all sets). The distributions of chapter III 
are of the same form, the integration being with respect to the Lebesgue 

measure (area or volume) in KR’. If the density ¢ in (3.1) is concentrated on 

the interval 0,1 then (3.1) takes on the form 

(3.2) F{A} = { 2 U{dz} 

where U stands for the uniform distribution in 9,1. The last formula 

makes sense for an arbitrary probability distribution U, and whenever 

F{—0o, 0} = 1 it defines a new probability distribution F. In this case we 
shall say that is the density of F with respect to U. 

In (3.1) the measure U is infinite whereas in (3.2) we have U{—oo, oo} = 

= 1. The difference is not essential since the integral in (3.1) can be broken 
up into integrals of the form (3.2) extended over finite intervals. We shall 

use (3.2) only when U is either a probability distribution or ‘the Lebesgue 

measure as in (3.1) but the following definition is general. 

Definition. The distribution F is absolutely continuous with respect to the 

measure U if it.is of the form (3.2). In this case 9 is called a density'® of 

F with respect to U. 

The special case (3.1) where U is the Lebesgue measure is of course the 

most important and we say in this case that is an “‘ordinary’’ density. 
We now introduce the abbreviation 

(3.3) F{dx} = (x) U{dz}. 

This is merely a shorthand notation to indicate the validity of (3.2) for all 

sets and no meaning must be attached to the symbol dz. With this notation 
we would abbreviate (3.1) to F{dx} = g(x) dx and if U has an ordinary 

density uw then (3.2) is the same as F{dx} = (x) u(x) dz. 

Examples. (a) Let U be a probability distribution in 1 with second 

moment m,. Then 

F{dz} = ty U{dzx} 
Ms 

is a new probability distribution. In particular, if U is the uniform 

distribution in 0,1 then F(x) = x? for 0< z <1, and if U has density 

e* (x >0) then F is the gamma distribution with ordinary density 

4xre-7, 

(b) Let U beatomic, attaching weights p,, p.,... tothe atoms a, az,... 

(where Zp, = 1). Adistribution F has a density g with respect to U iff 

12 In measure theory @ is called a Radon-Nikodym derivative of F with respect to U.
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it is purely atomic and its atoms are among a,,@),.... If F attributes 
weight g; to a; the density is given by 9(a,) = 4@ulPy- The value of 
at other points plays no role and it is best to leave o undefined except at 
the atoms. > 

In theory the integrand in (3.2) is not uniquely determined, for if N 
is a set such that U{N} = 0 then p may be redefined on N in an arbitrary 
manner without affecting (3.2). However, this is the only indeterminacy 
and a density is uniquely determined up to values on a null set.° In practice 
a unique choice is usually dictated by continuity conditions, and for this 
reason one speaks usually of “the’’ density although “‘a’”’ density would be 
more correct. 

For any bounded function v the relation (3.3) implies obviously!4 

(3.4) v(x) F{dx} = v(2) y(z) I{dx}.  \ 

In particular, if @ is bounded away from 0 we can choose v = gy! to 
obtain the inversion formula for (3.2): 

(3.5) U{de} = Flax}. 
| , p(x) 

A useful criterion for absolute continuity is contained in a basic theorem 
of measure theory which we accept without proof. 

Randof-Nikodym theorem. 1° F is absolutely continuous with respect to U 

(3.6) _ F{A}=0 whenever U{A} =.0. 

13%n fact, if both » and g, are densities of F with respect to U consider the set A 
of all points z such that .p(z) > 9, (2) + «. From 

F{A} = [ pte) U{dz} = [ ito U{dz} 

it follows that U{A} = 0, and since this holds for every « > 0 wesee that (x) = 9, (2) 
except on a set N such that U{N}=0. 

‘4 Readers who feel uneasy about the new integrals should notice that in the case of 
continuous densities (3.4) reduces to the familiar substitution rule for integrals. The 

following proof in the general case uses a standard argument applicable in more general 
Situations. Formula (3.4) is trivial when v is simple, that is, assumes only finitely many 

values. For every bounded v there exist two simple functions of this nature such that 
vy <v <b and t — v < «, and so the validity of (3.4) for all simple functions implies its 
truth in general. 

15 Often called Lebesgue-Nikodym theorem. The relation (3.6) may be taken as a 

definition of absolute continuity, in which case the theorem asserts the existence of a density. 
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This expression may be rephrased by the statement that U-null sets 
are also F-null sets. We give an important corollary although it will not be 
used explicitly in this book. 

Criterion. F is absolutely continuous with respect to U iff to each «>0 
there corresponds a 6 >0 such that for any collection of non-overlapping 
intervals I,,...,T, 

(3.7) YUU} <6 implies > F{I,} <e. 
1 1 

An important special case arises when 

(3.8) FU} <a- U{D; 

for all intervals. Then (3.7) is trivially true with 6 = e/a, and it is easily 
seen that inthis case F hasadensity g with respect to U suchthat @ < a. 

*3a. Singular Distributions 

The condition (3.6) of the Radon-Nikodym theorem leads one to the 
study of the extreme counterpart of absolutely continuous distributions. 

Definition. The probability distribution F is singular with respect to U if 
it is concentrated ona set N such that U{N} = 0. 

The Lebesgue measure U{dx} = dx plays a special role and the word 

“‘singular’’ without further qualification refers to it. Every atomic distribution 
is singular with respect to dz, but the Cantor distribution of example I,11(@) 
shows that there exist continuous distributions in 1 that are singular with 
respect to dx. Such distributions are not tractable by the methods of calculus. 

and explicit representations are in practice impossible. For analytic purposes 
one is therefore forced: to choose a framework which leads to absolutely 

continuous or atomic distributions. Conceptually, however, singular 
distributions play an important role and many statistical tests depend on their 
existence. This situation is obscured by the cliché that “‘in practice” singular 
distributions do not occur. 

Examples. (c) Bernoulli trials. It was shown in example I,11(c) that 
the sample space of sequences SS-+-F--- can be mapped onto the unit 
interval by the simple device of replacing the symbols S and F by | and 0, 
respectively. The unit interval then becomes the sample space, and the 
outcome of an infinite sequence of trials is represented by the random 
variable Y = > 2-*X, where the X, are independent variables assuming 
the values 1 and 0 with probabilities p and g. Denote the distribution of 
Y by F,. For symmetric trials F, is the uniform distribution and the 
model becomes attractive because of its simplicity. In fact, the equivalence 

  

* Although conceptually of great importance, singular distributions appear in this 
book only incidertally. 
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__ 

of symmetric Bernoulli trials with “a random choice of a point in 0, 1” 
has been utilized since the beginnings of probability theory. Now by the law 
of large numbers the distribution F, is concentrated on the set N, consistin g 
of points in whose dyadic expansion the frequency of the digit 1 tends to p. 
When p # « the set N, has probability zero and hence the distributions F > 
are singular with respect to each other; for p 4 the distribution F, is 
singular with respect to the uniform distribution dx. An explicit representa- 
tion of F, is impractical and, accordingly, the model is not in common use 
when p ¥ 3. Two points deserve attention. 

First, consider what would happen if the special value p = } presented 
a particular interest or occurred frequently in applications. We would 
replace the dyadic representation of numbers by triadic expansions and 
introduce a new scale such that ow F, would coincide with the uniform 
distribution. “In practice’ we would again deal only with absolutely 
continuous distributions, but the reason for this lies in our choice of tools 
rather than in the nature of things. 

Second, whether a coin is, or is not, biased can be tested statistically 
and practical certainty can be reached after finitely many trials. This is 
possible only because what is likely under the hypothesis p = 3 is extremely 
unlikely under the hypothesis p = }. A little reflection along these lines 
reveals that the possibility of a decision after finitely many trials is due to 
the fact that F, is singular with respect to Fy (provided p # 3). The 
existence of singular distributions is therefore essential to statistical practice. 

(d) Random directions. The notion of a unit vector in R? with random 
direction was introduced in I,10. The distribution of such a vector is 

concentrated on the unit circle and is therefore singular with respect to the 
Lebesgue measure (area) in the plane. One might object that in this case the 
circle should serve as sample space, but practical problems sometimes 

render this choice impossible. [See example 4(e).] > 

Lebesgue decomposition theorem. Every probabilyy distribution F is a 
mixture of the form 

(3.9) F=p- Fo +q° Fy 

(where p>0, g>0, p+q =1) of.two probability distributions such that 

F, is singular and F,, absolutely continuous with respect to a given 
measure U. 

The Jordan decomposition (2.5) applies to F, and hence F can be 

written as a mixture of three probability distributions of which the first 
is atomic, the second absolutely continuous with respect to U{dz}, the 

third continuous but singular. 
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Proof. To simplify the language a set N with U{N}=0 will be called 

nullset. Let p be the least upper bound (the sup) of F{N} for all nullsets 

N. To each n there exists a nullset N,, such that F{N,} > p — I . Then 
1 ” 

F{A} i for any nullset A in the complement N’. For the union: 

N=UVN,, this implies U{N}=0 and F{N} =p, and hence no nullset 

in the complement N’ can carry positive probability. — 
If p= 1 it follows that F is singular, whereas p =O means that F 

is absolutely continuous. When 0 <p <1 the assertion holds with the 
two probability distributions defined by 

(3.10) p: F,{A} = F{AN}, — q° F,,{A} = F{AN’}. > 

4. CONVOLUTIONS 

It is difficult to exaggerate the importance of convolutions in many 
branches of mathematics. We shall have to deal with convolution in two 

ways: as an operation between distributions and as an operation between 
a distribution and a continuous function. 

For definiteness we refer explicitly to distributions in 1, but with the. 
vector notation of section | the formulas are independent of the number of 

dimensions. The definition of convolutions on a circle follows the pattern 
described in II,8 and requires no comment. (More general convolutions 

can be defined on arbitrary groups.) 

Let F be a probability distribution and g a bounded point function. 
(In our applications gy will be either continuous or a distribution function.) 

A new function wu is then defined by 

“oO 

(4.1 u(2) =|" pew Flay. 
If F has adensity f (with respect to dx) this reduces to 

+00 . ; 

(4.2) uz) =|" ew fo) dy! 
Definition 1. The convolution of a function gy with a probability distri- 

bution F is the function defined by (4.1). It will be denoted by u = Fx 9. 
When F has a density f we write alternatively ¥ = f* —. 

Note that the order of the terms is important: the symbol ~~ F is 

in general meaningless. On the other hand, (4.2) makes sense for arbitrary 

integrable f and @ (also if f is not non-negative), and the symbol * is 
used in this generalized sense. Needless to say, the boundedness of gy was 
assumed only for simplicity and is not necessary. 
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Examples. (2) When F is the uniform distribution in 0,a then 

(4.3) u(x)=a*| (s)ds. 

It follows that uw is continuous; if g is continuous u has a continuous 
derivative, etc. Generally speaking wu will behave better than o, and so 
the convolution serves as smoothing operator. 

-(b) The convolution formulas for the exponential and the uniform 
distributions [I,(3.6) and I,(9.1)] are special cases. For examples in R? see 

Iif,(1.22) and problems 15-17 of chapter III. > 

- Theorem 1. Jf gy -is bounded and continuous, so is u= Fy; if y isa 

probability distribution function, so is u. 

Proof. If gy is bounded and continuous then u(x-+h)— u(x) by the 

dominated convergence principle. For the same reason right-continuity 
of implies right-continuity of u. Finally, if @ goes monotonically from 

0 to 1 tlie same is obviously true of wu. > 

The next theorem gives an interpretation of F & g when @ isa distribu- 

tion function. 

Theorem 2. Let X and Y be independent random variables with distri- 

butions F and G. Then 

(4.4) PIX+Y<H= |  G(t—2) F{dz}. 

Proof.!® Choose « > 0 and denote by J, the interval ne << 2 <(n+l)e; 
here n=0, +1,.... The event {K+Y¥< 1} occurs if X€J,4, 
Y <t—vne} for some vn. The latter events are mutually exclusive, and as 

X and Y are independent we have therefore 

(4.5) PUK + Y <0} < 3 G(t—ne)- FUL}. 

On the right we have the integral of the step function G, assuming in J, the 

value G(t—ne). Since G.(y) < G (t+e—y) we have 

+o 

(46)  PIK+¥<H< [ G(t-+e—2) F{dz}. 

The same argument leads to the reversed inequality with « replaced by 

—e. Letting «—0 we get (4.4). > 

16 (4.4) is a special case of Fubini’s theorem IV,(2.11). The converse of theorem 2 is false: 

we saw in II,4(e), and in problem 1 of 11,9, that in exceptional cases formula (4.4) may hold 

fora pair of dependent variables X, Y. 
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Example. (c) Let F and G be concentrated on the integers 0, 1,2,... 
and denote the weights of k by p, and g,. The integral in (4.4) then reduces 
to the sum > G(t—k)p,. This is a function vanishing for t<0 and 
constant in each interval n—1 <t<xn. The jump at ¢t =n equals 

(4.7) 2 In-4Pi = GnPo + An-rPi + °° * + GoPn 

in agreement with the convolution formula 1; XI,(2.1) for integral-valued 
random variables. > 

Each of the preceding theorems shows that for two distribution functions 
the convolution operation F% G yieids a new distribution function U. 
The commutativity of the addition X + Y implies that Fx G= Gx F. 
A perfect system might introduce a new symbol for such convolutions 
among distribution functions, but this would hardly be helpful.?”7_ Of course, 
one should think of U as an interval function or measure: for each interval 
‘I= a,b obviously 

“Foc . 

(4.8) Ut ={ G{I—y} F{dy} 

where, as usual, J —y denotes the interval a—y,b—y. (This formula 
automatically carries over to arbitrary sets.) Because of the commutativity 
the roles of F and G in (4.8) may be interchanged. 

Consider now three distributions F,, Fy, Fs. The associative law of 
addition for random variables implies that (F, %& Fo) %& Fa = Fy, & (Fo Fs) 
so that we can dispense with the parentheses and write F, %* Fx %& F;. We 
summarize this in theorems 3 and 4. 

Theorem 3. Among distributions the convolution operation 4 is com- 
mutative and associative. 

  

‘7 In other words, the symbol 4 * B is used when the integration is with respect to the 
measure A. This convolution is a point function or measure according as B is a point 
function [as in (4.1)] or a measure fas in (4.6)]. The asterisk * is used for an operation 
between two functions, the integration being with respect to Lebespue measure. In our 
context this type of convolution is restricted almost exclusively to probability densities. 

A more general definition of a convolution betweer tvo functions may be defined by 

f-F 00 

fxg(e) = | f(x -yg) midy} 
—x 

where m stands for an arbitrary measure. Sums of the form (4.7) represent the special 
case when m is concentrated on the positive integers and attributes unit weight to each. 
In this sense the use of the asterisk for the convolutions between sequences in 1; XI,2 
is consistent with our present usage. 
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Theorem 4. [f G is continuous (= free of atoms), so is U =F x G. If G 
has the ordinary density p, then U has the ordinary density u given by (4.1) 

Proof The first assertion is contained in theorem 1. If g is the density 
of G then an integration of (4.1) over the interval J leads to (4.8), and so 
u is indeed the density of the distribution U defined by (4.8). > 

It follows in particular that if F and G have densities f and g, then 
the convolution Fx G has a density h = f*g given by 

(4.9) h(2) = i “f@—y) ay) dy. 
In general A will have much better smoothness properties than either f or g. 
(See problem 14.) 

Sums S, = X; +--:+X, of 2 mutually independent random vari- 
ables with a common distribution F occur so frequently that a special 
notation is in order. The distribution of S,, is the n-fold convolution of F 
with itself. It will be denoted by F"*. Thus 

(4.10) Fit= FP, Fite — pat y p 

A sum with no terms is conventionally interpreted as 0, and for consistency 
we define F°* as the atomic distribution concentrated at the origin. Then 
(4.9) holds also for n = 0. 

J* F has a density f then F** has the density f* f*---+* f (n times). 
We denote it by f™*. These notations are consistent with the notation 

introduced in I,2. 

Note. The following examples show that the convolution of two singular distributions can 
have a continuous density. They show also that an effective calculation of convolutions 
need not be based on the defining formula. 

Examples. (d) The uniform distribution in 0,1 I is the convolution of two Cantor-type 
singular distributions. In fact, let X,, X,,... be mutually independent random, variables 
assuming the values 0 and 1 with probability h. We saw in example I,11(c) that the variable 
x= > 2-*X, has a uniform distribution. Denote the contributions of the even and odd 

terms by U and .V, respectively. Obviously U and V are independent and X = 
= U+V. The uniform distribution is therefore the convolution of the distributions of 

U and V. But obviously U has the same distribution as 2V, and the variable V differs 

only notationally from the variable 4Y of example I,11(d). In other words, the dis- 

tributions of U and V differ only by scale factors from the Cantor distribution of that 

example. 
(e) Random v-tors in R®, The distribution of a unit vector with random direction (see 

1,10) is concentrated on the unit circle and therefore singular with respect to the Lebesgue 
measure in the plane. Nevertheless, ihe resultant of two independent vectors has a length 

  

2 
L_ which ts a random variable with the density — concentrated on 0, 2. In fact, 

  

™V4—/2 

by the law of the cosines L = V2 —2cos w = {2sin }| where w is the angle between 
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the two vectors. As $w is distributed uniformly in 0, 7 we have 

: 2 
(4.11) P{L <r} = P{|2 sin }w| < r} = —arcsin }r, 0<r<2 

wT 

which proves the assertion. (See problem 12.) > 

4a. Concerning the Points’ of Increase 

It is necessary here to interrupt the exposition in order to record some elementary facts 
concerning the points of increase of F % G. The first lemma is intuitively obvious, whereas 
the second is of a technical nature. It will be used only in renewal theory, and hence 
indirectly in the theory of random. walks. 

Lemma 1. If a and b are points of increase for the distributions F and G, then a+b 
is a point of increase for Fx G, If a and b are atoms, the same is true of a+ b, Further- 
more, all atoms of F*G are of this form. 

Proof. If X and Y are independent then 

P{iX+Y—a—b| < } > P{|X—al < $e} - P{|Y—b| < $e}. 

The right side is y« sitive for every « >0 if a and 6 are points of increase, and so 
a + b is again a point of increase. 

Denote by F, and G, the atomic components of F and G in the Jordan decom- 
position (2.5). The atomic component of F x G is obviously identical with the convolution 
F,* G,, and hence all atoms of Fx G are of the form a+ 5, where a and 5b are 
atoms of F and G, respectively. > 

The intrinsic simplicity of the next lemma suffers by the special role played on one hand 
by arithmetic distributions, on the other hand by distributions of positive variables. 

Lemma 2. Let F bea distribution in R} and %& the set formed by the points of increase 
of F, F?*, F8*,.... 

(a) If F is not concentrated on a half-axis then X is dense in —ac, 0 for .F not 
arithmetic, and X = {0, +A, +2A,...} for F arithmetic with span i. 

(b) Let F be concentrated on 0, 900 but not at the origin. If F is not arithmetic then 
& is ‘asymptotically dense at 00°’ in the sense that for given «€ >0 and x sufficiently 
large the interval x,X-+« contains points of X. If F is arithmetic with span A then ZX 
contains all points ni for n sufficiently large. 

Proof. Let 0 < a <b be two points in the set £ and put h = 6 — a. We distinguish 
two cases: 

(i) For each « > 0 it is possible to choose a,b such -hat h < «. 

(ii) There exists a 6 > 0 such that A > 6 for all possible choices. 
Let 7, denote the interval na<zx<nb. If n(b—a)>a_ this interval contains 

na,(n + 1)a as proper subinterval, and hence every point x > xy = a?/(b — a) belongs 
to at least one among the intervals /,,15,.... By lemma 1 the 2 +1 points na + kh, 
k =0,...,m, belong to 2, and they partition I, into subintervals of length A. 
Thus every point x > xq is at a distance <h/2 from a point of =. 

In the situation of case (i) this implies that 2 is asymptotically dense at +00. If then 
\ 

F is concentrated on 0, 20 there is nothing to be proved. Otherwise let —c <0 bea 
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point of increase of F. For arbitrary y and n sufficiently large the interval 

nmo+y<zrcnctyte 

contains a point s of &. Since s — nc again belongs to © it follows that every interva! 
of length « contains some points of , and thus = is everywhere dense. 

In the situation of case (ii) we may suppose that a and 5 were chosen such that A < 20. 
It follows then that the points na + kh exhaust a// points of £ within /,. Since (n+1)a 

is among these points this means that all points of = within I, are multiples of A. Now 
let ¢ be an arbitrary (positive or negative) point of increase of F. For n sufficiently large 
the interval /,, contains a point of the form kh +c, and as this belongs to © it follows 
that c is a multiple of A. Thus in case (ii) the distribution F is arithmetic. > 

A special case of this theorem commands interest. Every number z > 0 can be 
represented uniquely in the form z= m + € as the sum of an integer m and a number 
0<&<1. This € is called the fractional part of x. Consider now a distribution F 
concentrated on the two points —1 and a > 0. The set © contains all points of the form 
na — m and hence the fractional parts of a, 2a,.... This F is arithmetic if « = p/q 
where p and q are positive integers without common divisors, and in this case the span 
of F equals 1/9. We have thus the following corollary (to be sharpened in the equi- 
distribution. theorem 3 of VIII, 7). 

Corollary. If « > 0 is an irrational number the set formed by the fractional parts of 

a, 2a, 3u,:.. is dense in 0,1. - 

5. SYMMETRIZATION 

If the random variable X has the distribution F we shall denote the 

distribution of —X by ~F. At points of continuity we have 

(5.1) ~F(x) = 1 — F(—2) 

‘and this defines ~F uniquely.. The distribution F is called symmetric if 
-F = F, [When a density f exists this means that f(—z) = f(z).] 

Let X, and X, be independent with the common distribution F. Then 

X, — X, has the symmetric distribution °F given by 

(5.2) °F — F&F. 

Using the symmetry property °F(z) = | — °F(—2) it is readily seen that 

(5.3) *F(2) = [" Fe+y) Flay}. 
— 00 

We shall say that °F is obtained by symmetrization of F. 

Examples. (a) Symmetrization of the exponential leads to the bilateral 

exponential [IT,4(@)]; the uniform distribution on 0,1 leads to the triangular 

distribution 7, of II,(4.1). 

(b) The distribution with atoms of weight 4 at +1 is symmetric, but not 

the result of a symmetrization procedure. 
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(c) Let F be atomic, attributing weights po, p,,... to 0,1,.... The 
symmetrized distribution °F is atomic and the points +n carry the weight 

(5.4) In = 2 PePusns G-n = Qin 

When F is the Poisson distribution we get for n > 0 
00 n+2k 

5.5 n=ewy gy (2 ©) 4 o kit) © 1a) 
where /,, is the Bessel function defined in II,(7.1). (See problem 9.) > 

Many messy arguments can be avoided by symmetrization. In this 
connection it is important that the tails of F and °F are of comparable 
magnitude, a statement made more precise by the following inequalities. 
Their meaning appears clearer when expressed in terms of random variables 
rather than the distribution itself. 

Lemma 1. Symmetrization inequalities. If X, and X, are independent 
and identically distributed, then for t > 0 

(5.6) PAIX, —X,| > 1} < 2P{|X,| > He}. 
If a>0 is chosen so that P{X; < a} > p. and also P{X; > —a} > P» 

then 

(5.7) P{|X;—X2| > ¢} S p PIX] > ¢ + a}. 

In particular, if 0 is a median for X; 

(5.8) 0 Pi|Xi—Xo| > 1} > SP{IXs| > 1}. 
‘Proof. The event on the left in (5.6) cannot occur unless either |X,| > 42 

or |X,| > 3¢ and hence (5.6) is true. The event on the left in (5.7) occurs: 
if X, >t+a, X,< a, and also if X,< —t—a and X, > —a. This 
implies (5.7). > 

Symmetrization is frequently used for the estimation of sums of independ- 
ent random variables. In this connection the following inequality is 
particularly useful. 

Lemma 2. If X,,...,X, are independent and have symmetric distri- 
butions then S, = X, +°-+: +X, Aas a symmetric distribution and 

(5.9) PiIXi +: °° +X,| > 2} > P{Max |X;| > ¢}. 
If the X; have a common distribution F then 

(5.10) P{[X,+: °° +X,) >t} > Aer POR) 
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Proof. Let the random variable M equal the first term among X,,..., X,, 

that is greatest in absolute value and put T = S, — M. The pair (M, T) is 

symmetrically distributed in the sense that the four combinations (4M, +T) 
have the same distribution. Clearly . 

(5.11) P{M > t} < P{(M > ¢t,T > 0} + P{M >t, T < 0}. 

The two terms on the right have equal probabilities, and so 

(5.12) P{S>t}=P{M+T>1t}>P{M>1,T > 0} > 3P{M > #} 

which is the same as (5.9). 
(b) To prove (5.10) note that at points of continuity 

(5.13)  P{Max [X,| < 4} = (F(t) — F(—))" < ect Ft Fa) 

This implies (5.10) because 1 — x < e* when 0<2< 1. > 

6. INTEGRATION BY PARTS. EXISTENCE OF MOMENTS 

The familiar formula for integration by parts can be used also for arbitrary 
expectations in R}. If u is bounded and has a continuous derivative u'’, then 

b+ b 
(6.1) { u(x) F{dz} = u(b) F(b) — u(a) F(a) -{ u(x) F(x) dz. 

a . 

Proof. A simple rearrangement reduces (6.1) to the form 

62) | fu(b)—u(e)] F{d2} — [ w(@E@)—F(@)| de = 0. 
— 

Suppose |u’| <M .and partition a,b into congruent intervals J, of 

length A. It is easily seen that the contribution of J, to the left side in (6.2) 
is in absolute value less than 2MAF{I,}. Summing over k we find that. the 
left side is in magnitude <2Mh, which can be made as small as we please. 
Thus the left side in (6:2) is indeed zero. > 

As an application we derive a frequently used formula [generalizing 
1; XI,(1.8)]. 

Lemma 1. For any « > 0 

(6.3) [= Flas) = [et Fte) dx 
0 J0 

in the sense that if one side converges so does the other. 

Proof. Because of the infinite interval of integration (6.1) does not apply 
directly, but for every 5 < 00 we have after a trivial rearrangement 

(6.4) { "if F{dz} = —b*[1—F(b)] + @ { "eH F(a) de. 
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Suppose first that the integral on the left converges as b — oo. The contri. 

bution of 5b, c© to the infinite integral is >b*({1—F(b)], and this quantity 

therefore tends to zero. In this case the passage to the limit b — 00 leads 
from (6.4) to (6.3). On the other hand, the intégral on the left is smaller 
than the integrai on the right and hence the convergence of the second entails 
the convergence of the former, and hence (6.3). . > 

An analogue to (6.3) holds for the left tail. Combining the two formulas 
we get 

Lemma 2. The distribution F possesses an absolute moment of order 

a> 0 iff |x| [1 — F(z) + F(—2)] is integrable over 0, «. 

As an application we prove 

Lemma 3. Let X and Y be independent random variables, and S = X+Y. 
Then E(|S|*) exists iff both E(|X|*) and E({¥|*) exist. 

Proof. Since the variables X and X—c possess exactly the same moments 
‘there is no loss of generality in assuming that 0 is a median for both X and 
Y. But then P{{S} >t} > $P{{X|> 7}, and by the last lemma 
E({S|*) < oo implies E({X{*) < oo. This proves the “‘only if” part of the 

assertion. The “if” r .* follows from the inequality |S|* < 2*((X|* + |¥|*) 

which is valid, beca. > wt no point can {S| exceed the larger of 2{X| 

and 2{Y]. 

7. CHEBYSHEV’S INEQUALITY 

Chebyshev’s inequality is among the most frequently used tools in prob- 
ability. Both the inequality and its proof are the same as in the discrete 

case (1; [X,6) and we repeat it mainly for reference. Interesting applications 

will be given in VII,1. 

Chebyshev’s inequality. [f E(X?) exists 

(7.1) PIX! > 1} < 1-°E(X2) | t>0. 

In particular, if E(X) = m and Var (X) = 0°, 

(7.2) PIX — ml > 1} < o%/t?. 

Proof. If F stands for the distribution of X, 

E(X?) > [ 
J [2] 22 

which is the same as (7.1). > 

2 F{dx} > i} F{dz} 
|z|2e 
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The usefulness of Chebyshev’s inequality depends (not on sharp numerical estimates 
but) on its simplicity and the fact that it is specially adapted to sums of random variables. 
Many generalizations are possible, but they do not share these desirable. ‘properties. (Most 
of them are so simple that it is better to derive them as occasion arises. For example, a 
useful combination of Chebyshev’s tnequalty with truncation procedures is described in 
VII,7.) 

A fairly general method for deriving non-trivial inequalities may be described as follows. 
If u > 0 everywhere and u(x) > a > 0 for all x in an interval 7 then 

(7.3) F(T} < aE(u(X)). 

On the other hand, if u <0 outside J and u<1-in I we get the reversed inequality 

F{I} > E(u(X)). Choosing for u polynomials we obtain inequalities depending only on 
the moments of F. . ; 

Examples. (a) Let u(x) = (e+e) with c>0O: Then u(z) > 0 for ail 2 and 

u(x) > (t+c)? for x >t> 0. Therefore 

(7.4) px ><a 1 (K+). 

If E(X) = 0 and E(X?) = o? the right side assumes its minimum for c = o?/t and hence 

0 ” - o2 

. P => . (7.5) IX>t}< aa t>0 

‘This interesting inequality was discovered independently by many authors. 
(6) Let X be positive (that is, F(0) = 0) and E(X) = 1, E(X*) = b. The polynomial 

u(x) = h-?(z—a)(a+2h—x) is positive only for a <2 <a+ 2h, and u(x) <1 every- 

where. When 0 <a < 1 it is readily seen that E(u(X)) > [24(1—a) — byh-*, Choosing 

= b(1—a)-! we get by the remark preceding these examples 

(7.6) . P{X > a} > (1—a)*b-}. 

(c) If E(X?) =1 and E(X*) = M, the last inequality applied to X? shows that 

(7.7) 8 PIXE > 2} > -2)2M if O<tr<l. > 

For Kolmogorov’s generalization of Chebyshev’s inequality see section 8(e). 

8. FURTHER INEQUALITIES. CONVEX FUNCTIONS 

The inequalities collected in this section are of widespread use and are by 
no means typical for probability. Most common is Schwarz’ inequality. 
The others are given mainly because of their use in stochastic processes and 

statistics. (This section is meant for reference rather than for reading.) 

(a) Schwarz’ Inequality 

In its probabilistic version this inequality states that for two arbitrary 
random variables gy and y defined on the same space 

(8.1) (E(py))? < E(¢*) E(y’) 
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whenever these expectations exist. Furthermore, the equality sign holds 
only if a linear combination ay + by is zero with probability one. More 
generally, if F is an arbitrary measure on the set A then 

6.2) (ve) w) P(as}) < | oe) F(a} [ ye) Fas} 
for arbitrary functions for which the integrals on the right exist. Taking 

for F the purely atomic measure attaching unit weight to integers we get 
Schwarz’ inequality for sums in the form 

8.3) (> oy) <> Dd vi. 
In view of the importance of (8.1) we give two proofs pointing to different 

generalizations. The same proofs apply to (8.2) and (8.3). _ 

First proof. We.may assume E(y?) > 0. Then 

(8.4) E(p+ty)? = E(g?) + 2¢ E(yy) + t? E(y’) 

is a quadratic polynomial in ¢ which, being non-negative, has either two 
complex roots or a double root 4. The standard solution for quadratic 
equations shows in the first case that (8.1) holds with strict inequality. In 
the second case E(g+ty)?=0 and so » + ty =O except on a set of 

probability zero. 

Second proof. As we are free to replace » and y by constant multiples 
ag and by it suffices to consider the case E(p?) = E(y?) = 1. Then (8.1) 
follows trivially taking expectations in the inequality 2 |py| < g? + y2. p> 

(b) Convex Functions. Jensen’s inequality 

Let u bea function defined on an open interval J, and P = (é, u(§)) 

a point on its graph. A line L passing through P is said to support u at 
€ ifthe graph of u lies entirely above or on L. (This excludes vertical lines.) 

In analytical terms it is required that 

(8.5) uu) > u(2) ++ @=8) 
for all x in J, where A is the slope of L. The function u is called convex 

in I if a supporting line exists at each point x of JI. (The function w is 
concave, if —u_ is convex.) 

We proceed to show that this definition implies the various properties 
intuitively associated with convexity as exemplified by convex polygonal lines. 

Let F be an arbitrary probability distribution concentrated on J and 
suppose that the expectation E(X) exists. Choosing § = E(X) and taking 
expectations in (8.5) we get 

(8.6) E(u) 2 u(E(X)) 
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whenever the expectation on the left exists. This statement is known as 

Jensen’s inequality. 
By far the most important is the case where F is concentrated at two 

points 2, and x, and attributes weights 1—+r and ¢ to them. Then 

(8.6) takes on the form 

(8.7) (l—t) u(x.) + tu(a) > u((1—t)a, + t2). 

This inequality admits of a simple geometric interpretation which we state 

in the following. 

Theorem 1. The function u is convex iff all its chords lie above or on the 
graph of u. 

Proof. (i) Necessity. Let u be convex and consider the chord over an 

arbitrary interval 21, 2%. As ¢ runs from 0 to 1 the point (1—f)z, + fr, 

runs through the interval x,, 2, and the left side in (8.7) is the ordinate of the 
corresponding point on the chord. Thus (8.7) states that the points of the 
chord lie above or on the graph. 

(ii) Sufficiencyx Assume that u has the stated property and consider 

the triangle formed by three points P,, Pe, Ps on the graph of u with 
abscissas 2, < 1% < 23. Then P, lies below the chord P,P3, and among 

the three sides of the triangle P,P, has the smallest slope, P,P, the largest. 

Outside the interval z,, x; the graph of w therefore lies above the line 

P,P3. Now consider zg as a variable and let x,->x,+. The slope of 

P,P, decreases monotonically but is bounded from below by the slope 

of P,P,. Thus the lines P,P, tend toaline L through P,. Outside 22, x, 
the graph of u is above the line P,P3, and hence the whole graph lies 
above or on L. Thus L supports u at x2, and as 2, is arbitrary, this 
proves the convexity of uw. > 

Being the limit of chords, the line Z is a right tangent. In the limiting 

process the abscissa x, of P, tendsto x,, and P, toapointon L. Thus 

P,-—> P,. The same argument applies for an approach from the left, and 
we conclude that the graph of u is continuous and possesses right and left 
tangents at each point. Furthermore, these tangents are supporting lines 
and their slopes vary monotonically. Since a monotone function has at 
most denumerably many discontinuities we have proved 

Theorem 2. A convex function possesses right and left derivatives at all 
points, and these are non-decreasing functions. They are the same except 
possibly at countably many points. 

Obviously this theorem again expresses necessary and sufficient conditions 
for convexity. In particular, if a second derivative exists, u is convex 

iff u” > 0.
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Usually (8.7) is taken as definition of convexity. For t = 3 we get the 

inequality 

(8.8)   

2 — 2 

stating that the midpoint of the chord lies above or on the graph of u. If 
u is continuous this property guarantees that the graph can never cross a 

chord and hence that u is convex. It can be shown more generally that any 
Baire function"® satisfying (8.8) is convex. 

u (A=) < u(x,)-+ U(X) 

(c) Moment Inequalities 

We prove that for any random variable X 

(8.9) u(t) = log E(\X\'), t>0, 
is a convex function of t in every interval in which the integral exists. In 
fact, by Schwarz’ inequality (8.1) 

(8.10) E*(|X|*) < E([X|*™) E([X|*~™), O<A<t, 

provided the integrals‘converge. Putting x,=¢t—h and z%,=t+h we 

see that (8.8) holds and so wu is convex as asserted. 
Since u(0) < 0 the slope t-1 u(t) of the line joining the origin to (¢, u(z)) 

varies monotonically and hence (E(|Xj‘))'/! is a non-decreasing function 

of t>0. 

(d) Hélder’s Inequality 

Let p>1,q>1 and p'+q1=1. Then for »>0, y>O 

(8.11) E(gy) < (E(y?))/? (E(y)" 

whenever the integrals exist. 

(Schwarz’ inequality (8.1) is the special case p = g = 3, and (8.2) and 

(8.3) generalize similarly.) 

Proof. For x > 0 the function u = logz is concave, that is, it satisfies 

(8.7) with the inequality reversed. Taking antilogarithms we get for 

7%, Xe > 0 

(8.12) ay ‘as < (1 — ta, + ta, 

As in the second proof of Schwarz’ inequality it suffices to consider integrands 
normed by E(g?) = E(y)=1. Let t=q 4 and 1 —t=p". The 

assertion E(gy) <1 then follows directly taking expectations in (8.12) 
with z, = gy? and xz, = y*. > 

18 Every u satisfying (8.8) is either convex, or else its oscillations in every interval range 

from —oo to ©. See G. H. Hardy, J. E. Littlewood, and G. Ploya, Inequalities, Cambridge, 

England, 1934, in particular p. 91.
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(e) Kolmogorov’s Inequality 

Let X,,...,X, be independent random variables with finite variances and 

E(X,) = 0. Then forany x>0 

(8.13) P{max [|S,|,..., |S,|] > 2} < 2° E(S%) 
This important strengthening of Chebyshev’s inequality was derived for 

discrete variables in 1; IX, 7. The proof carries over without change, but 

we rephrase it in a form which will make it evident that Kolmogorov’s 

inequality applies more generally to submartingales. We shall return to this 
point in VII, 9. 

Proof. Put x? = ¢. For fixed ¢ and j= 1,2,...,n denote by A, the 

event that S? > ¢, but S? <¢ for all subscripts » <j. In words, A; is 

the event that 7 is the smallest among the subscripts k for which S? > t. 
Of course, such an index 7 need not exist, and the union of the events A, is 
precisely the event occurring on the left side of Kolmogorov’s inequality. 
Since the events A; are mutually exclusive this inequality may be restated in 
the form 

(8.14) SPA} < EIS?) 

Denote by 14, the indicator of the event A,, that is, 14, is a random 
variable which equals 1 on A; and equals 0 on the compliment of A,. Then 
>14, <1 and so 

(8.15) E(S1) > DE(S41.,,). 
j=] 

We shall show that , 

(8.16) E(S1,,) > E(S41,). 
‘Since S?> + whenever A; occurs, the right side is >¢P{A,}, and so (8.15) 
reduces to the assertion (8.14). 

To prove (8.16) we note that S, = S, + (S,—S,) and hence 

(8.17) E(S24,,) > E(S314,) + 2E(S,—S,)S/1,)). 
The second term on the right vanishes because the variables Ss, —S; = 
= Xj4,+°°: +X, and S14, are independent and so the multiplication 

rule applies to their expectations. Thus (8.17) reduces to the assertion 

(8.16). . > 

9. SIMPLE CONDITIONAL DISTRIBUTIONS. MIXTURES 

In III,2 we introduced a “conditional density of a random variable Y 
for a given value of another variable X” in the case where the joint dis- 
tribution of X and Y has a continuous density. Without any attempt
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at generality we proceed to define an analogous concept for a wider class 
of distributions. (A systematic theory is developed in sections 10 and 11a.) 

For any pair of intervals A and B on the line put 

(9.1) QO(A, B) = P{X eA, Ye B}. 

With this notation the marginal distribution for X is given by 

(9.2) u{A} = QA, RK’). 

If u{A} > 0 the conditional probability of the event {Y € B} given {X € A} 
is 

QCA, B) 
HA} 

(If u{A} =0 this conditional probability is not defined.) We use this 

formula when A is the interval A, = 2,2 +h and let h->O+. Under. 

appropriate regularity conditions the limit 

(9.4) a(, B) = lim 24») 
nao {A} 

will exist for all choices of x and B. Following the procedure and reasoning 

used in ITI,2 we write in this case 

(9.5) q(x, B) = P{Ye B|X =2} 

and call g “the conditional probability of the event {Y © B} given that 
X = 2.’ This constitutes an extension of the notion of conditional prob- 

abilities to situations in which the “hypothesis” has zero probability. No 
difficulties arise when q is insufficiently regular, but we shall not analyze 

the appropriate regularity conditions because a general procedure will be 
discussed in the next section. This naive approach usually suffices in 
individual cases, and the form of the conditional distribution can frequently 
be derived by intuitive reasoning. — 

(9.3) P{YeB|XeA}= 

Examples. (a) Suppose that the pair X,Y has a joint density given by 
J (x,y). For simplicity we assume that f is continuous and strictly positive. 

Then 

ate, B) = = | f(a) dy 
fi) 

where f(x) = q(x, — 00, 00) is the marginal density of X. In other words, 
for fixed x the set function q has a density given by f(z, y)/f,(#). 

(6) Let X and Y be independent random variables with distributions 

F and G, respectively. For simplicity we assume that X > 0 [that is,
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F(0) = 0]. Consider the product Z = XY. Then 

(9.6) P{Z <t|X = 2} = G(¢/z) 

and the distribution function U of Z is obtained by integrating (9.6) with 
respect to F. [See II,(3.1). The assertion is a special case of formula (9.8) 

below.] In particular, when X is distributed uniformly over 0, 1 

(9.7) U(t) = [ "G(t/2) dex. 

This formula can be used as a convenient starting point for the theory 
of unimodal distributions.1® 

For a further example see problems 18-19. > 

The following theorem (due to L. Shepp) is a probabilistic version of a formal criterion 
found by A. Khintchine. 

Theorem. U is unimodal iff it is of the form (9.7), that is, iff it is the distribution of the 

product Z = XY of two independent variables such that X is distributed uniformly in 0, 1. 

Proof. Choose h > 0 and denote by U,, the distribution function whose graph is the 
polygonal line agreeing with U at the points 0, +h,.... [In other words, U,(nh) = 
= U(nh) and U,, is linear in the interval between nh and (n-+1)h.] It is obvious from the 
definition that U is unimodal iffal! U, are unimodal. Now U,, has adensity u, which is 
a step furiction, and every step function with discontinuities at the points nh can be written 
in the form 

*) . 1 = (*) > Pa waa San) 

where f(z) = 1 for O0<2<1 and.f(x) =0 elsewhere. The function (*) is monotone 

in 0, © andin —,0 iff p, >0 forall n, and it is a density if > Pn = 1, But in this 

case (*) is the density of the product Z, = XY, of two independent variables such that 

X is distributed uniformly in 0,1 and P{Y, = nh} =p,. We have thus proved that 
U,, is unimodal iff it is of the form (9.7) with G replaced by an arithmetic distribution G), 
concentrated on the points 0, +h,.... Letting 4-0 we get the theorem by monotone 

convergence. 

(See problems 25-26 and problem 10 in XV,9.) > 

Under appropriate regularity conditions g(x, B) will for fixed x represent 
a probability distribution in B and for fixed B acontinuous function in x. 

Then 

(9.8) Q(A, B) = [ q(x, B) u{dz}. 

19 A distribution function U is called unimodal with the mode at the origin iff the graph 

of U is convex in —,0 and concave in 0, [see 8(b)]. The origin may be a point of 

discontinuity, but apart from this unimodality requires that there exist a density u which 

is monotone in —0,0 and in 0, ©. (Intervals of constancy are not excluded.)
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In fact, the right side obviously represents a probability distribution in 
the plane, and the differentiation described in (9.4) leads to q(x, B) 

Formula (9.8) shows how a given distribution in R? can be expressed in 
terms of a.conditional and a marginal distribution. In the terminology 
of II,5 it represents the given distribution as a mixture of the family of 
distributions q(x, B) depending on the parameter x with M serving as the 
distribution of the randomized parameter. 

In practice the procedure is frequently reversed. One starts from a 

“stochastic kernel’ q, that is a function q(z, B) of a point x anda set B 
such that for fixed x it is a probability distribution and for fixed B a Baire 

function. Given an arbitrary probability distribution jm the integral in 
(9.8) defines probabilities for plane sets of the form (A, B) and hence a 
probability distribution in the plane. Usually (9.8) is expressed in terms of 

point functions. Consider a family of distribution functions G(6,y) 

depending on a parameter 6, and a probability distribution uw. A new 
‘distribution function is then defined by 

+ 00 

(9.9) U(y) = [ G(x, y) u{dz}. 

{This formula represents the special case of (9.8) when A = —oo, 00 and 
—__—} : 

q(x, —0,y:) = G(x, y).] Such mixtures occur in 1; V and are discussed 

in IT,5. In the next section it will be shown that g can always be interpreted 
as a conditional probability distribution. 

Examples. (c) If F, and F, are distributions pF, +(1—p)F, is a 
mixture (0 < p < 1) and represents a special case of (9.9) when yw is 
concentrated on two atoms. 

(d) Random sums. Let X,, X2,... be independent random variables 

with a common distribution F. Let N be a random variable independent 

of the X,; and assuming the values 0, 1,... with positive probabilities 
Po. Pi,---- Weare interested in the random variable Sy = X, +--+ + Xy. 

The conditional distribution of Sy given that N=7n7 is F"*, and so the 
distribution of Sy is given by 

(9.10) U => p,F™, 
n=0 

which is a special case-of (9.9). In this case each hypothesis N = ” carries 
a positive probability p, and so we have conditional probability distributions 
in the strict sense. Other examples are found in II,5-7. (See problems 21 
and 24.)
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*10. CONDITIONAL DISTRIBUTIONS 

[t would be pointless to investigate the precise conditions under which 
conditional: probabilities g can be defined by the differentiation’ process 
in (9.4). The main properties of conditional probabilities are embodied in 
the relation (9.8) expressing probabilities of sets in terms of conditional 

probabilities, and it is simplest to use (9.8) as definition of conditional 
probabilities. It does not determine q uniquely because if for each set B 

we have q(x, B) = q(x, B) except on a set of u-measure zero, then (9.8) 

will remain true'with-q replaced by g. This indeterminacy is unavoidable, 
however. For example, if u is concentrated on an interval J no natural 
definition of gq is possible for x outside J. By the very nature of things 
we are really dealing with the whole class of equivalent conditional prob- 
abilities and should refer to a rather than the conditional probability 
distribution g. In individual cases there usually exists a natural choice 
dictated by regularity requirements. 

For definiteness we consider only events specified by conditions of the 
form XéE€A and YE B, where X and Y are given random variables and 
A,B are Borel sets on the line. Let us begin by examining the different 
meanings that may be attached to the phrase “conditional probability 
of the event {Y € B} for given X.’’ The given value of X may be either a 
fixed number or indeterminate. With the second interpretation we have 
# function of X, that is, a random variable. It will be denoted by P{B | X} 
or q(X, B), etc. For the value at a fixed point z we write for emphasis 
P{YeB | X = x} or q(x, B). 

Definition 1. Let the set B be fixed. By P{Y € B| X} (in words, “a 
conditional probability of the event {Y € B} for given X”’) is meant a function 
q(X, B) such that for every set A in R®} 

(10.1) P{X eA, Y € B} ={ q(x, B) u{dzx} 
. Jd 

where yw is the marginal distribution of X. 

When x happens to be an atom the hypothesis X = 2 has positive 
Probability and P{YeB|X =z} is already defined by (9.3) with A 
consisting of the Single point z. But in this case (10.1) reduces to (9.3) and 
our definitions and notations are consistent. 

We show that a conditional probability P{Y eB |X} always exists. In 
fact, clearly 

(10.2) P{X eA, Y © B} < pA). 

  

* This section should be omitted at first reading.
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Considered for fixed B as a function of A the left side defines a finite 
measure, and (10.2) implies that this measure is absolutely continuous with 
respect to 4 (see the Radon-Nikodym theorem in section 3). This means 
that our measure is defined by a density g, and so (10.1) is true. 

So far the set B was fixed, but the notation g(x, B) was chosen with a 

view to vary B. In other words, we wish to consider q as a function of 

two variables, a point x and a set B on the line. It is desired that for 

fixed x the set-function g be a probability measure, which requires that © 
q(x, R) = 1 and that for any sequence of non-overlapping sets B,, By,... 
with union B Se 

- (10.3) g(x, B) = > q(z, B,). 

Now if the terms on the right represent conditional probabilities for B, 
this sum yields a conditional probability for B, but there is an additional 

consistency requirement that (10.3) be true. for our choice of g and all x. 
[Note that definition 1 does not exclude the absurd choice q(x, B) = 17 

at an individual point x.] It is not difficult to see that it is possible to choose 
q(x, B) so as to satisfy these conditions.2° This means that there exists a 
conditional probability distribution of Y for given X in the sense of the 
following. 

Definition 2. By a conditional probability distribution of Y for given X is 
meant a function q of two variables, a point x anda set B, such that 

(i) for a fixed set B 

(10.4) q(X, B) = P{Y € B| X} 

is a conditional probability of the event {X € B} for given X. 
(ii) q is for each x a probability distribution. 

In effect a conditional probability distribution is a family of ordinary 
probability distributions and so the whole theory carries over without 

2° It is easiest to choose directly only the values g(x, B) when B is an interval ina dyadic 
———+ / 

subdivision of R!. For example, let B, = 0,0 and B, = —o,0. Choose for q(x, B,) 
any conditional probability for 8B, such that 0<g(z,B,)<1. Then g(x, B,) = 
= 1 — q(x, B;) is automatically a legitimate choice. Partition B, into B,, and B,, and 
choose q(2, By) subject to 0 < g(x, By) < g(x, By). Put q(x, By) = q(x, By) — q(x, By) 
and proceed in like manner refining the subdivision indefinitely. The additivity require- 
ment (10.3) then defines g(x, B) for all open sets B and hence for all Borel sets. 

This construction depends only on the existence of a so-called net, namely a partition 
of the space into finitely many non-overlapping sets each of which is partitioned in like 
manner and each point of the space is the unique limit of a contracting sequence of sets 
a pearing in the successive partitions. The assertion is therefore true in R” and in many 
other spaces.
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change. Thus when q is given*' the following definition introduces a new 
notation rather than a new concept. 

Definition 3. A conditional: expectation E(Y | X) is a function of X 

assuming at x the value 
+ 00 

(10.5) E(Y | x) =[ y q(x, dy) 

provided the integral converges (except possibly on an x-set of probability zero). 

E(Y |X) is a function of X, that is a random variable. For clarity it is 
occasionally preferable to denote its value at an individual point xz by 
E(Y |X = x). From the very definition we get 

(10.6) E(Y)= [ *PELY | 2) {dx} or E(Y) = E(E(Y|X)). 

*11. CONDITIONAL EXPECTATIONS 

We have now defined a conditional expectation E(Y|X) in terms of a 

conditional distribution, and this is quite satisfactory as long as one deals 
only with one fixed pair of random variables X, Y. However, when one 
deals with whole families of random variables the non-uniqueness of the 
individual conditional probabilities leads to serious difficulties, and it is 

therefore fortunate that it is in practice possible to dispense with this un- 

wieldy theory. Indeed, it turns out that a surprisingly simple and flexible 
theory of conditional expectation can be developed without any reference to 
conditional distributions. To understand this theory it is best to begin with a 
closer scrutiny of the identity (10.5).. 

Let A bea Borel set on the line and denote by 1,(X) the random variable 
that equals one whenever X€ A and zero otherwise. We integrate the two 
Sides in (10.5) with respect to the marginal distribution mw of X, taking the 
set A as domain of integration. The result may be written in the form 

(11.1) E(Y¥1,(X)) = { Ev | x) u{da} =[" ue) E(Y | x) u(dz). 

The variable X maps the sample space GS on a real line, and the last 
integral refers only to functions and measures on this line. The random 
variable Y1,4(X), however, is defined in the original sample space, and 
therefore a better. notation is indicated. Obviously 1,(X) is the indicator 
of a set B in G, namely the set of all those points in G at which X 

*1 For a more flexible general definition see section 11. 
* The theory of this section will be used only in connection with martingales in VI,12 

and VII,9. 
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assumes a Value in A. As we saw in LV, 3, the sets B that in this manner 

correspond to arbitrary Borel sets A on the line form a o-algebra of sets 
in G which is called the algebra generated by X. Thus (11.1) states that 
U = E(Y|X) isa function of X that satisfies the identity 

(11.2) E(Y1,) = E(U1,) 

for every set B in the o-algebra generated by X. We shall see that this 

relation may be used as a definition of conditional expectations, and it is 

therefore important to understand it properly. A simple example will 
explain its nature. . 

Examples. (a) We take the plane with coordinate variables X and Y as 

sample space and suppose for simplicity that the probabilities are defined by 

a strictly positive continuous density f(x,y). The random variable X 

assumes a constant value along any line parallel to the y-axis. If A isa 

set on the x-axis, the corresponding plane set B consists of all such lines 

passing through a point of A. The left side of (11.2) is the ordinary integral 

of y f(x, y) over this set, and this can be written as an iterated integral. Thus 

+ 20 

(11.3) E(Y1,) = | a [ y f(x, y) dy. 
—co 

The right side of (11.2) is the ordinary integral of a function U(x) /f,(2), 

where f, is the marginal density of X. Thus in this case (11.2) states that 

I 

Ail) 
in accordance with the definition (10.5) of conditional expectation and in 
accordance with intuition. 

(6) (Continuation.) We show now that (11.2) defines a conditional expecta- 

tion U even when no densities exist and the probability distribution in the 
plane is arbitrary. Given a Borel set A on the z-axis, the left side in (11.2) 

defines a number 44,{A}. Obviously “, is a measure on the Borel sets of the 
z-axis. Another such measure is given by the marginal distribution of X, 
which is defined by u{A} = E(1,). It is therefore obvious that if u{A} = 0 
then also y,{A4} = 0. In other words, #4, 1s absolutely continuous with 

respect to m1, and by the Radon-Nikodym theorem of section 3 there exists a 
function U such that 

(11.5) mi{A} = | Ue) ude, 
This differs only notationally from (11.2). Of course, (11.5) remains valid 

if U is changed on a set of u-measure 0, but this non-uniqueness is inherent 
in the notion of conditional expectation. > 

  

+ 00 

(11.4) U(z) = [ y f(x, y) dy,
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This example shows that (11.2) may be used to define a conditional 

expectation U(X) = E(Y | X) for an arbitrary pair of random variables 

X, Y in an arbitrary probability space [provided, of course, that E(Y) 

exists]. But this approach leads much further. For example, to define a 
conditional e pectation E(Y|X,,X2) with respect to a pair X,,X» of 
random variables we can use (11.2) unchanged except that B will now be an 
arbitrary set in the o-algebra 8 generated by X, and X, (see IV,3). Of 

course, U will be a function of X,, X,, but we saw in IV,4 that the class of 

Baire functions of the pair (X,, X,) coincides with the class of all B- 
measurable functions. Thus we may cover all imaginable cases by the 

following definition first proposed by Doob. 

Definition. Let (S,.2, P) be a probability space, and 8 a o-algebra of 
sets in U (that is, 8 < YN). Let Y be arandom variable with expectation. 

A random variable U is called conditional expectation of Y with respect to 
B if it is B-measureable and (11.2) holds for all sets B of B. In this case we 
write U = E(Y | 8). 

In the particular case that ® is the o-algebra generated by the random 
variables X,,...,X, the variable U reduces to a Baire function of 

X,,..., X, and will be denoted by E(Y | X,,-.., X,). 

The existence of E(Y | 8) isestablished by the method indicated in example 
(6) using an abstract Radon-Nikodym theorem. 

To see the main properties of the conditional expectation U = E(Y | 8) 
note that (11.2) holds trivially when 1, is replaced by a linear combination 
of indicators of sets B; in 8. But we saw in IV,3 that every B-measurable 
function can be uniformly approximated by such linear combinations. 
Passing to the limit we see that (11:2) implies that more generally E(YZ) = 
= E(UZ) for any ®-measurable function Z. Replacing Z by Z1, and 

comparing, with the definition (11.2) we see that 

(11.6) | E(YZ |B) = ZE(Y| 8) 

for any B-measurable function Z. This is a relation of great importance. 
Finally, consider a o-algebra 8) © B and let U, = E(Y|%,). For a 

set B in 8, we can interpret (11.2) relative to 8, as well as relative to B, 
and thus we find that for B in 8, 

E(Y1,) = E(U1,) = E(Up1,). 

Thus by the very definition U, = E(U | B,), and so 

(11.7) E(Y | By) = E(E(Y | B)B,) if By < B. 

For example, 8 may be the algebra generated by the two variables X,, Xp
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while %, stands for the algebra generated by X, alone. Then (11.7) 
reduces to E(Y | X,) = E(E(¥|X,, Xz) | X). 

Finally we note that (11.2) implies that for the constant function | the 

conditional expectation equals 1, no matter how ® is chosen. Thus (11.6) 
implies that E(Z | 8) = Z for all 8-measurable variables Z 

It is hardly necessary to say that the basic properties of expectation carry 

over to conditional expectation. 

12. PROBLEMS FOR SOLUTION 

1. Let X and Y be independent variables with distribution functions F and 
G. Find the distribution functions of?2 (a) X U Y, (b) X NY, (c) 2X UY, (d) 
X?uU Y. 

2. Mixtures. Let X, Y, Z be independent; X and Y have distributions F 
and G, while P{Z = 1} =p, P{Z =0} =q (p +q =1). Find the distribution 
functions of (a2) ZX +(1—ZY, (6) ZX+(1—-Z)(XvUY), (ce) ZX + 
(1 — Z)(X OY). 

3. If F is a continuous distribution function show that 

—o 

++ aD 1 . 

{ F(e)F(de} = | ydy =} 
0 

(a) from the very definition of the first integral (partitioning — ©, © into sub- 
intervals) and (5) from the interpretation of the left side as E(F(X)) where F(X) 
has a uniform distribution. More generally, putting G@) = F"(z), 

n 

n+k- 
  

+00 

| Fe(x)G{de} = 
0 

4. Let F(x, y) stand for a probability distribution in the plane. Put U(z, y) =0 
when « <0 and y <0, and U(z,y) = F(z,y) at all other points. Show that 

U is monotone in each variable but is not a probability distribution. (Hint: 
Consider the mixed differences.] 

5. Prescribed marginal distributions.* Let F and G be distribution functions 
in R! and . 

U(z,y) = F(z)G(y) [1 + «(1 — F(x) — G(y))) 

where |a| <1. Prove that U is a distribution function in R? with marginal 
distributions F,G and that U has a density iff F and G have densities. 

Hint: -If w(x, y) = u(x)v(y), the mixed differences of w [defined in. (1.12)] 
are of the form Au Av. Note also that A(F?) < 2 AF. 

221f a and b are numbers, a U5 =max (a,b) denotes the larger of the two, 
a 6 = min (a, 6) the smaller. For functions f'Ug denotes the function which at the 

point x assumes the value f(z) O g(x) (seeIV,1). Thus X U Y and X 1 ¥ are random 

variables. 

3 This problem contains a new example for a non-normal distribution with normal 
marginal distributions (see problems 2 and 3 in TIT,9). It is due to E. J. Gumbel.
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6. Within the unit square put U(z,y) =x if x <y and U(z,y) =y if 
x > y. Show that U isa distribution function concentrated at the bisector (hence 

singular). 

7. Fréchet’s maximal distribution with given marginal distributions. Let F and 
G be distribution functions in ®! and U(x, y) = F(x) N Gy). Prove: (a) U is 
a distribution function with marginal distributions F and G. (6) If V is any 
other distribution function with this property, then V < U. (c) U is concentrated 
on the curve defined by F(x) = G(y), and hence singular. (Problem 5 contains a 

special case.) 

8. Denote by U the uniform distribution in —A,0 and by 7 the triangular 

distribution in —A,h {see II, 4(6)]. Then F%& U and F%& T have the densities 

h~"{F(@ + 4) — F(®)) and [Fe + y) — F(x — y)) dy. 
0 

9. The independent variables X and Y have Poisson distributions with ex- 
pectations pt and qt. If 4; is the Bessel function defined in II, (7.1) show that 

P{X — Y =k} = eV (p/g)* Iny(21-V pq). 

10. For a distribution function F such that 

+00 

pla) -| era F {dx} 
—o 

exists for —a < «<a we define a new distribution F# by 9(«)F#{dr} = 
= etzF {dx}. Let F, and F, be two distributions with this property and F = 
= F,% F,. Prove that (with obvious notations) p(«) = 9,(«) g(a) and F# = 
= Fi Ff. 

11. Let F have atoms a,,@),... with weights p,,po,.... Denote by p 
the maximum of p,,p2,... . Using lemma 1 of section 4a prove . 

(a) The atoms of F%& F have weights strictly less than p except if F is con- 
centrated at finitely many atoms of equal weight. 

(b) For the symmetrized distribution °F the origin is an atom of weight 
p’ = > p?. The weights of the other atoms are strictly less than p’. 

12. Random vectors in 8°. Let L be the resultant of two independent unit 
vectors with random directions (that is, the endpoints are distributed uniformly 
over the unit sphere). Show that P{L < +} = 77/2 for 0 <t <2. [See example 

4(e).] 
13. Let the X; be mutually independent variables assuming the values 0 and 

1 with probability } each. In example 4(d) it was shown that X = >’ 2-*X;, is 
uniformly distributed over 0,1. Show that S' 2-°*X,, has a singular distribution. 

14. (a) If F has a density f such that f* is integrable, then the density /2 
of F% F is bounded. 

(6) Using the mean approximation theorem of IV,2 show that if f is bounded 
then f, is continuous. 

[If f is unbounded near a single point it can happen that f"* is unbounded for 
every n. See example XI,3(a).] 

15. Using Schwarz’ inequality show that if X is a positive variable then 
E(X~”) > (E(X?)) for all p > 0.
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16. Let X and Y have densities f and g such that f(x) > g(x) for x <a 
and f(z) < g(x) for x >a. Prove that E(X) < E(Y). Furthermore, if f(x) = 
= g(x) = 0 for x <0 then E(X*) < E(Y¥*) forall k. 

17. Let X,, Xs,... be mutually independent with the common distribution F. 
Let N_ be a positive integral-valued random variable with generating function 
P(s). If N is independent of the X; then max [X,,..., Xj] has the distribution 
P(F). 

18. Let X,,...,X, be mutually independent with a continuous distribution 
F. Let X = max [X,,..., X,] and Y = min [X,,..., X,]. Then 

P{X <2, Y >y} = (F(z) — Fly)” for y <2 
and . 

PLY > y|X =2} = [((F@)—-F))/F@) 

19. Using the same notations one has for each fixed k <n 

n—-1F(e) 
. — for x<t 

PIX, S<2[X=H= 7 FO 
1. for x >t, 

  

Derive this (a) by an intuitive argument considering the event {X, = X}, and 
(b) formally from (9.4). 

20. Continuation. Prove that 

n-1 1 f . t X =f) = _. E(X;, | t) n FG) _ Fay} +> 

21. Random sums. In example 9(c) let X, equal 1 and —1 with probabilities 
p and gq =1 —p. If N isa Poisson variable with expectation ¢ the distribution 
of Sy is identical with the distribution occurring in problem 9. 

22. Mixtures. Let the distribution G in (9.9) have expectation m(x) and 
variance o7(x). Prove that the mixture U has expectation and variance 

+00 90 0 a= |" msyu(as}, b= [-etenmtasy + [Ecc - aratany, 
—eo —ea 

23. With obvious notations E(E(Y | X)) = E(Y) but 

Var (Y) = E(Var (Y | X)) + Var (E(Y | X)). 

Problem 22 is a special case. 
24. Random sums. In example 9(c), E(Sx) = E(N)E(X), 

Var (Sx) = E(N) Var (X) + (E(X))? Var (N). 

Prove this directly and show that it is contained in the last two problems. 
Note. The following problems refer to convolutions of unimodal distributions 

defined in footnote. 19 of section 9. It has been conjectured that the convolution 
of two such distributions is again unimodal. One counterexample is due to K. L. 
Chung, and problem 25 contains another. Problem 26 shows the conjecture to 
be valid for symmetric** distributions. This result is due to A. Wintner. 

*4 For the difficulties arising in the unsymmetric case see I. A. Ibragimov, Theory of 
Probability and Its Applications, vol. 1 (1956) pp. 225-260. [Translations.]
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25. Let u(z) = 1‘ for 0 <x <1 and u(x) =0 elsewhere. Put 

4-0) 58) 
where 0 <a <b. If e€ and a are small and b large, then w =v «vu is not 
unimodal although v is. 

Hint to avoid calculations; The convolution of two uniform densities is the 
triangular density and hence w(a) > ea! and w(b) > <b) and the integral of 
w from b to 2b is >4(1—«)*. It follows that w must have a minimum between 
a and b. 

26. Let F bea uniform distribution and G unimodal. If both F and G are 
symmetric show by simple differentiation that the convolution F%G is uni- 
modal. Conclude (without further calculations) that the statement remains true 
when F is any mixture of symmetric uniform distributions, and hence that the 
convolution of symmetric unimodal distributions is unimodal.



  

CHAPTER VI 

A Survey of Some Important 

Distributions and Processes: 

This chapter is the product of the deplorable need to avoid repetition and 
cross references between chapters intended for independent reading. For 
example, the theory of stable distributions will be developed independently 
by semi-group methods (IX), by Fourier analysis (XVII), and—at least 
partly—by Laplace transforms (XIII). Giving the definitions and examples 
at a neutral place is economical and makes it possible to scrutinize some 
basic relations without regard to purity of methods. 

The miscellaneous topics covered in this chapter are not necessarily 

logically connected: the queuing process. has little to do with martingale 

theory or stable distributions. The chapter is not intended for consecutive 
reading; the individual sections should be taken up as occasion arises or 
when their turn comes up. Sections 6-9 are somewhat interrelated, but 
independent of the rest. They treat some important material not covered 
elsewhere in the book. 

1. STABLE DISTRIBUTIONS IN 8} 

Stable distributions play a constantly increasing role as a natural general- 
ization of the normal. distribution. For their description it is convenient to 
introduce the short-hand notation 

(1.1) uiv 

to indicate that the random variables U and V have the same distribution. 
Thus U 5 aV +b means that the distributions of U and V differ only by 
location and scale parameters. (See definition | in V,2.) Throughout this 
section X, X,, X2,... denote mutually independent random variables with a 
common distribution R and S, = Xi +--+ +X,,. 

169
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‘Definition 1. The distribution R is stable (in the broad sense) if for each n 
there exist constants c, >0, 7, such that! 

(1.2) S, = c,X + Yn 
and R is not concentrated at one point. R is stable in the strict sense if (1.2) 
holds with y, = 0. 

Examples will be found in section 2. An elementary derivation of some 
basic properties of stable distributions is so instructive that we proceed 
with it at the cost of some repetition. The systematic theory developed 
in chapters IX and XVII does not depend on the following discussion. 

Theorem. 1. The norming constants are of the form c, =n* with 

0<a<2. The constant « will be called the characteristic exponent of R. 

Proof. The azgument. is greatly simplified by symmetrization. If R is 

stable so is the distribution °R of X, — X, and’ the norming constants c, 
are the same. It suffices therefore to prove the assertion for.a symmetric 
stable R. 

We start from the simple remark that S,,,, is the sum of the independent 
variables S,, and S,,.,—S,, distributed, respectively, as c,,X and c,X 

Thus for symmetric stable distributions 

(1.3) CmanX = Cm&1 + CrXe. 

Similarly, the sum S,, can be broken up into r independent blocks of k 

terms each, whence c,, = c,c, forall r and k. For subscripts of the form 

n =r’ we conclude by induction that . 

(1.4) if n=r" then c, =’. 

Next put »=m-+n and note that because of the symmetry of the 
variables in (1. 3s we have for t>0 

(1.5) P{X > t} > $P{X, > tc, /c,}. 

It follows that for » > the ratios c,/c, remain bounded. 
To any integer r there exists a unique « such that c, = r/*, To prove 

that c, =n * it suffices to show that if cy = p/® then B =a. Now by 

(1.4) 
if n=r' then c,=n'* 

. if v='p* then c, =v". 

But for each »v = p* there exists an m = 7’ such that n <<» < rn. Then 

cy = VB < (rnyVP = pO elb 

1 For an alternative form see problem 1.
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Since the ratios c nlCy remain bounded this implies that B < «. Inter- 
changing the roles of r and p. we find similarly that B = « and hence. 
p=x. 

To prove that a<2 we remark that the normal distribution is stable 

with « = 2. For it (1.3) redaces to the addition rule for variances, and the 
latter implies that any stable distribution with finite variances necessarily 
corresponds to a = 2. To conclude the proof it suffices therefore to show 
that any stable distribution with « > 2 would have a finite variance. 

For symmetric distributions (1.2) holds with y, =0, and hence we can 

choosea ¢ such that P{|S,| > tc,} < } forall m. For reasons of symmetry 

this implies that n[1—R(tc,)] remains bounded {see V,(5.10)]. It follows 

that 2x*[1 — R(x)] <M for all x > and an appropriate constant M. 
- Thus the contribution of the interval 2-1 <x <2" to the integral for 
E(X?) is bounded by M2(2-#*, and for « > 2 this would be the general 
term of a convergent series. . - > 

The theory of stable distributions simplifies greatly by the gratifying fact 
that the centering constants y, may be disregarded in practice. This is so 
because we are free to center the distribution R in an arbitrary manner, 
that is, we may replace R(x) by R(x+5). The next theorem shows that, 
except when o« = 1, wecan use this freedom to eliminate y, from (1.2). 

Theorem 2. Jf R is stable with an exponent « #1 the centering constant 

b may be chosen so that R(x + b) is strictly stable. 

Proof. S,,,, is the sum of m independent variables each distributed as . 

CxaX + Y,- Accordingly 

(1.6) San = CpSm + MYn = Cl + CnYm + My 
Since m and n play the same role this means that we have identically 

(1.7) (Cr—")Vm = (Cn—M)Y n- 

When «.=1 this statement is empty,? but when « #1 it implies that 
Yn, = b(c,—n) for all n.. From (1.2) one sees finally that the sum S/ of n 

variables distributed as X’ — b satisfies the condition ‘S/, =X’. > 

_ The relation (1.3) was derived from (1.2) under the sole assumption that 

¥, = 0 and holds therefore for all strictly stable distributions. It implies that 

(1.8) sM*X, + 2K, S (s+-2)/"x 

whenever the ratio s/t is rational A simple continuity argument? leads to 

* For the case « = 1 see problem 4. 
3 Concerning the continuity of stable distributions see problem 2.
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Theorem 3. /f R is strictly stable with exponent « then (1.8) holds for 

alls >0Q and t>0. 

For the normal distribution (1.8) merely restates the addition rule for the 
variances. In general (1.8) implies that all linear combinations a,X_ + a5X, 
belong to the same type. 

The importance of the normal distribution 9 is due largely to the 
central limit theorem. Let X,,...,X, be mutually independent variables 
with a common distribution F having zero expectation and unit variance. 
Put S, =X, +:-:+X,. The central limit theorem‘ asserts that the 
distribution of ‘S,n~4 tends to &. For distributions without variance 
similar limit theorems may be formulated, but the norming constants must 
be chosen differently. The interesting point is that all stable distributions 
and no others occur as such limits. The following terminology will facilitate 
the discussion of this problem. 

Definition 2. The distribution F of the independent random variables X, 
belongs to the domain of attraction of a distribution R if there exist norming 
constants a, > 0, b, such that the distribution of a{\(S,—b,) tends to R. 

Our last statement can now be reformulated to the effect that a distribution 
R possesses a domain of attraction iff it is stable. Indeed, by the very definition 
each stable R belongs to its own domain of attraction. That no other 

distribution appears as limit becomes plausible by the argument used in 
theorem I. 

Our results have important and surprising consequences. Consider, 
for example, a stable distribution satisfying (1.8) with « <1. The average 
(X,+°--+X,)/n has the same distribution as X,n-!+1/«, and the last 
factor tends to oo. Roughly speaking we can say that the average of n 
variables is likely to be considerably larger than any given component X,. 

This is possible only if the maximal term-M,, = max [X,,..., X,] is likely 

to grow exceedingly large and to receive a preponderating influence on the 

sum S,. A closer analysis bears out this conclusion. In the case of positive 
variables the expectation of the ratio S,/M, tends to (1—«)~}, and this is 
true also for any sequence {X,} whose distribution belongs to the domain of 
attraction of our stable distribution. (See problem 26 of XIII,11.) 

Note on history. The general theory of stable distributions was initiated by P. Lévy 
(1924), who found the Fourier transforms of all strictly stable distributions. (The others 

4 The central limit theorem proves that the normal distribution is the only stable distri- 
bution with’ variance. 

5 The Fourier transforms of symmetric_stable distributions were mentioned by Cauchy, 
but it was not clear that they really corresponded to probability distributions. This point 
was settled by G. Polya for the case a <1. The Holtsmark distribution of example 2(c) 
was known to astronomers, but not to mathematicians. .
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were originally called quasi-stable. As we have seen, they play a role only when « = 1, 
and this case was analyzed jointly by P. Lévy and H. Khintchine.) A new and simpler 
approach to the whole theory was made possible by the discovery of infinitely divisible 
distributions. This new approach (still based on Fourier analysis) is also due to P. Lévy 
(1937). The interest in the theory was stimulated by W. Doblin’s masterful analysis of 
the domains of attraction (1939). His criteria were the first to involve regularly varying 
functions. The modern theory still carries the imprint of this pioneer work although 
many authors have contributed improvements and new results. Chapter XVIII contains 
a Streamlined treatment of the theory by the now classical Fourier methods, while chapter 
IX presents the same theory by a direct approach which is more in line with modern 
methods in Markov processes. Great simplifications and a unification of many criteria 
were made possible by the systematic exploitation of J. Karamata’s theory of regularly 
varying functions. An improved version of this theory is presented in VIIT,8~-9. 

2. EXAMPLES 

(a) The normal distribution centered to zero expectation is strictly stable 

with c, = Vn. 
(b) The Cauchy distribution with arbitrary location parameters has density 

1 c 

rt (ey) 
The convolution property II,(4.6) shows that it is stable with « = i. 

(c) Stable distribution with « = 4. The distribution 

(2.1) F(x) = 2[1 — NA/Vz)], 2>0 
with density 

(2.2) f(a) = ee 02), x >0 

  

eS 

[and f(x) =0 for x < 0] is strictly stable with norming constants c, = n?. 

This can be shown to be elementary integrations, but it is preferable to 
take the assertion as a consequence of the fact that F has a domain of 

attraction. Indeed, in a symmetric random walk let S, be the epoch of the 
rth return to the origin. Obviously S, isthe sum of r independent identically 
distributed random variables (the waiting times between successive returns). 
Now it was shown at the end of 1; III,(7.7) that 

(2.3) P{S. < rt} > F(t) r—> 0. 

Thus F has a domain of attraction and is therefore stable. [Continued 
in example (e).] 

(d) The gravitational field of stars (Holtsmark distribution). In astro- 
nomical terms the problem is to calculate the z-component of the gravi- 
tational force exercised by the stellar system at a randomly chosen point O. 
The underlying idea is that the stellar system appears as a ‘‘random aggregate”
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of points with “randomly varying masses.”” These notions could be made 
_ precise in terms of Poisson distributions, etc., but fortunately no subtleties 

are required for the problem at hand. ' 
Let us agree to treat the density of the stellar system as a free parameter 

and to let X, stand for the z-component of the gravitational force of a 

stellar system with density A. We seek the conceivable types of such 
distributions. Now the intuitive notion of a “random aggregate of stars” 
presupposes that two independent aggregates with densities s and t may be 
combined into a single aggregate of density s +t: Probabilistically this 
amounts to the postulate that the sum of two independent variables 
distributed as X, and X, should have the same distribution as X,44 We 
indicate this symbolically by 

(2.4) Xi, +X, = X,,,. 

Considering that a change of density from 1 to A amounts toa change of 

the unit of length from 1 to 1/*/A and that the gravitational force varies 
inversely with the square of the distancé we see that X, must have the 
same distribution as t3X,. This means that the distributions of X, differ 

only by a scale parameter and (2.4) reduces to (1.8) with « = 3. In other 
words, X, has a symmetric stable distribution with exponent 3. It will turn 
out that (up to the trivial scale parameter) there: exists exactly one such 
distribution, and so we have solved our problem without appeal to deeper 
theory. The astronomer Holtsmark obtained an equivalent answer by 
other methods (see problem 7) and, remarkably, before P. Lévy’s work. 

(e) First-passage times in Brownian motion. We start from the notion 
of a one-dimensional diffusion process, that is, we suppose that the in- 
crements X(s+1) — X(s) for non-overlapping time intervals are inde- 
pendent and have a symmetric normal distribution with variance t. We 
assume as known that the paths depend continuously on time. If X(0) = 0 

there exists an epoch T, at which the particle reaches the position a> 0 
for the first time. To derive the distribution function F,(t) = P{T, < ¢} 
we observe that the notion of an additive process presupposes a complete 
lack of after-effect (the strong Markov property). This means that the incre- 
ment X(f+T,) —a of the abscissa between epochs T, and T, ++¢ is 
independent of the process before T,. Now to reach a position a+b> a 
the particle must first reach a, and we conclude that the residual waiting 
time T,,, —T, before reaching a + 6b is independent of T, and has the 
same distribution as T,. In other words, F,%* F, = F,,,. But the transition 

probabilities depend only on the ratio 2?/t and therefore T, must have the 
same distribution as a®T,. This means that the distributions F, differ 

only by a scale parameter and hence they are stable with exponent « = }.
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This argument, based on dimensional analysis, proves the stability of 
the first-passage distribution but does not lead to an explicit form. To 
show that F coincides with the distribution of example (c) we use a reasoning 
based on symmetry (the so-called reflection principle). Because of the 
assumed continuity of paths the event {X(t) > a} can occur only if the level 

a has been crosséd at some epoch T, < ¢. Given that T, = 7 <t wehave 
X(7) = a, and for reasons of symmetry the probability that X(¢) — X(7) > 0 
is 4. We conclude that 

(2.5) PET, <1} = 2P{X() > a} = 21 — Nava] 

which i is equivalent to (2.1). 
(f) Hitting points in two-dimensional Brownian motion. A two-dimensional 

Brownian motion is formed by a pair (X(t), ¥(t)) of independent one- 

dimensional Brownian motions. We are interested in the point (a, Z,) at 
which the path first reaches the line = a > 0. As in the preceding example 
we note that the path can reach the line x = a+b >a only after crossing 
the liné =a; taking (a,Z,) as new origin we conclude that Z,,, has 
the same distribution as the sum of two independent variables distributed 
as Z, and Z,. Now an obvious similarity consideration shows that Z, has 
the same distribution as aZ, and we conclude that Z, has a symmetric 
stable distribution with exponent « = 1. Only the Cauchy distribution fits 
this description, and so the hitting point Z, has a Cauchy distribution. 

This instructive dimensional analysis does not determine the scale param- 
eter. For an explicit calculation note that Z, = Y(T,) where T, is the 
epoch when the line x = a is first reached. Its distribution is given in (2.5) 
while Y(i) has normal density with variance t. It follows that Z, has a 
density given by® 

(2.6) ts cht ach 2 
0 

‘dt = ———_... 
th) 2m Jin tan ‘a(a?+ 2”) 

(We have here an example for the subordination of processes to which we 
shall return in X,7.) 

(g) Stable distributions in economics. Arguments related to the dimen- 
sional analysis in the last two examples have been used by B. Mandelbrot 
to show that various economic processes (in particular income distributions) 
should be subject to stable (or ‘“Lévy-Pareto’”’) distributions. So far the 
strength of this interesting theory, which has attracted attention among 
economists, resides in the theoretical argument rather than observations. 
[For the apparent fit of the tails of the distribution to many empirical 
phenomena from city size to word frequency see II,4(h).] 

5 The substitution y = $(z?+<a?)/t reduces the integrand to e-¥,
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(h) Products. There exist many curious relations between stable distri- 

butions of different exponents. The most interesting may be stated in the 
form of the follewing proposition. Let KX and Y be independent stricily 

stable variables with characteristic exponents « and # respectively. 
Assume Y to be a positive variable (whence B <1). The product XY'/* 

has a Stable distribution with exponent af. In particular, the product cf a 

normal variable and the square root of the stable variable of example (c)is a 

Cauchy variable. 
The assertion follows as a simple coroliary to a theorem concerning 

subordinated processes’ [example X,7(c)]. Furthermore, it is easily verified 

by Fourier analysis (problem 9 of XViI,12) and, for positive variables, also 

by Laplace transforms [XIII,7(e) and problem 10 of XHI,11]. 

3. INFINITELY DIVIS{BLE DISTRIBUTIONS IN &! 

Definition 1..A distribution F is infinitely divisible if for every n_ there 
exists a distribution F,, such that F = F™. 

In other words,®: F is infinitely divisible iff for each n it can be represented 
as the distribution of the sum S, = X,, + °°: +X,., of n independent 

random variables with a common distribution F,,. 

This definition is valid in any number of dimensions, but for the present 
we shall limit our attention to one-dimensional distributions. It should be 
noted that infinite divisibility is a property of the type, that is, together 
with F all distributions differing from F only by location parameters are 
infinitely divisible. Stabie distributions are infinitely divisible. and dis- 
tinguished by the fact that F, differs from F only by location parameters. 

Examples. (a) On account of the convolution property II,(2,3) all gamma 

distributions (including the exponential) are infinitely divisible. That the 
same is true of their discrete counterpart, the “negative binomial” (including 

the geometric) distributions was shown in 1; XII,2(e). 

(6) The Poisson and the compound Poisson distributions are infinitely 
divisible. It will turn out thai all infinitely divisible distributions are /imits 
of compound Poisson distributions. 

7 For a direct verification requiring a minimum of calculations find the distribution of 

Z = X,4/Y, + X_\/Yq by first calculating the conditional distribution of Z given that 
Y, = ¥y, and Y2 = yg. The distribution of Z is a function of y, + y, and the change of 
variables u = y, + 2, v = ¥, — ¥, shows that it differs only by a scale factor from that 
of the two summands. The same calJculetion works for sums of » similar terms. 

8It should be understood that the random variables X;., serve merely to render 

notations simpler and more intuitive. For fixed n the variables X,,,..-,%n. are 
supposed to be mutually independent, but the variabies X,,, and X,., with m 3 n need 
not be defined on the same probability space. (In other words, a joint distribution for 
Xm and X;_, need not exist.) This remark applies to triangular arrays in general.
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(c) The distribution II,(7.13) connected with Bessel functions is infinitely 

divisible but this is by no means obvious. See example XII,7(d). 

(d) A distribution F carried by a finite interval is not infinitely divisible 
except if it is concentrated at one point. Indeed, if |S,| <a with probability 

one then |X,.,| << an-) and so Var (X;.,) < a’n7*. The variance of F is 

therefore <a*n- and hence zero. >. 

Returning to definition 1 let us consider what happens if we drop -the 
requirernent that the X,,, have the same distribution and require only 

that for each m there exist » distributions /,,,..., F,,, such that 

(3.1) F= Fy ik & Fan 

Such generality leads to a new phenomenon best illustrated by examples. 

Examples. (e) If F is infinitely divisible and U arbitrary, G= U* F 

can be written in the form (3.1) with G,, = U and all other G,,, equal 
to F,_,. Here the first component plays an entirely different role from all 
other components. 

(f) Consider a convergent series X = > X, of mutually independent 

tandom variables. The distribution F of X is the convolution of the 

distributions of X,, X,,...,X,_, and the remainder (X,+X,.1:+°°°) 

and so F is of the form (3.1). Such distributions will be studied under the 

name of infinite convolutions. Example I,11(c) shows the uniform distri- 
bution to be among them. > 

The distinguishing feature of these examples is that the contribution of 
an individual component X,, to S, is essential, whereas in the case of 

equally distributed components the contribution of each tends to zero. 
We wish to connect infinitely divisible distributions to the typical limit 

theorems involving “‘many smal] components.” [t is then necessary to 
supplement our scheme by the requirement that the individual components 
X,,, become asymptotically negligible in the sense that for each € > 0, 

(3.2) P{IX, | > <e (ke =1,...,n) 

for n sufficiently large. In the terminology of VITI,2 this means that the 
Xx., tend in probability to zero uniformly in k =1,...,n. Systems of 
variables of this type appear so often that it is convenient to give them a 
name. 

Definition 2. By a anew ar-array is meant a double sequence of random 
variables X,, (kK =1,2,...,n; m=1,2,...) such that the variables 

Xinv-+ +s Xn.» Of the nth row are mutually independent. 
The array is a null array (or has asymptotically negligible components) if 

(3.2) holds.
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More generally one may consider arrays with r, variables in the nth 
row with r, —> oo. The gain in generality is slight. (See problem 10.) 

Example. (g) Let {X,} be a sequence of identically distributed independ- 

ent random variables and S, = X, +--- + X,. The normalized sequence 
S,a,* represent the nth row sum of a triangular array in which X,, = 
= X,a_!. This array isa null array if a, — o. An array of a different sort 
was considered in the derivation of the Poisson distribution in 1; VI,6. p> 

In chapters IX and XVII we shall prove the remarkable fact that a /imit 

distribution of the row sums S,, of a triangular null array (if it exists) is 

infinitely divisible. As long as the asymptotic negligibility condition (3.2) 
holds it does not matter whether or not the components X,., have a'common 

distribution, and in (3.1) we may replace the equality sign by a-limit: the 
class of infinitely divisible distributions coincides. with the class of limit 

distributions of the row sums of triangular null arrays. , | 

Examples for applications. (h) The shot effect in vacuum tubes. Variants 

and generalizations of the following stochastic process occur in physics 
and in communication engineering. 

We propose to analyze the fluctuations in electrical currents due to the 
chance fluctuations of the numbers of electrons arriving at an anode. It is 
assumed that the arrivals form a Poisson process, anc that an arriving 
electron produces a current whose intensity xz time unit later equals I(x). 
The intensity of the current at epoch f¢ is then formally a random variable 

a 

(3.3) X(t) = 2 i(t—T,), 

where the T;, represent the epochs of past electron arrivals. (In other words, 

the variables 1—T,, ¥,—T,,T,;—T2,... are mutually independent and 

have a common exponential distribution.) 

A direct analysis of the sum (3.3) by the methods of stochastic processes 
is not difficult, but the simple-minded approach by triangular arrays may 

serve as. an aid to intuition. Partition the interval —0oo,f into small 

subiniervals with endpoints 4, =t—kh (where k =0,1,...). By the 
very definition of the Poisson process the contribution of the interval 

th, t_, to the sum in (3.3) is comparable to a binomial random variable 

assuming the value 0 with probability 1 — ah and J(t—4,) with probability 
ah. The expectation of this variableis ah J(kh), its variance «A(1 —ah) I2(kh). 

We take f = 1/\/n and construct the triangular array in which X,.,, is 

the contribution of the interval r,, t,_;. The row sums have then expectation 

ah S Wkh) and variance ah(1--xh) > I?(kh). If any meaning can be attached 
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to the series (3.3) the distributions of the row sums must tend to the distri- 
bution of X(¢) and so we must have 

(3.4) E(X(t)) = a I(s) ds, Var (X(t)). = & | I(s) ds. 
0 ' , 0 

These conclusions are easily confirmed by the theory of triangular arrays. 

The relations (3.4) are known as Campbell’s theorem. At present it does 
not appear deep, but it was proved in 1909 decades ahead of a systematic 
theory. At that time it appeared remarkable and various proofs have been 
given for it. (Cf. problems 22 in VIII,10 and 5 in XVII,12.) | 

(i) Busy trunklines. A variant of the preceding example may illustrate 

the types of possible generalizations. Consider a telephone exchange with 
infinitely many trunklines. The incoming calls form a Poisson process, and 

an arriving call is directed to a free trunkline. The ensuing holding times have 
a common distribution F; as usual, they are assumed independent of the 
arrival process and of each other. The number of busy lines at epoch ¢ isa 

random variable X(t) whose distribution-can be derived by the method of 

triangular arrays. As in the preceding example we partition 0,1: into n 
intervals of length h = ¢t/n and denote by X,,, the number of conversations 
that originated between n — kh and n — (k—1)A “and are still going on at 
epoch ¢. When a is large the variable X,,, assumes in practice only the 
values 0 and 1, the latter with probability «h[{1—F(kh)]. Theexpectation of 
S,, is then the sum of these probabilities, and. passing to the limit we conclude 
that the number of busy lines has expectation 

(3.5) | E(X(1)) = « I “[1—F(s)] ds. 

Note that the integral equals the expectation of the holding times. > 

Historical note. The notion of infinite divisibility goes back to B. de Finetti (1929). 
The Fourier transforms of infinitely divisible distributions with finite variance were 
found by A. Kolmogorov (1932), and those of the general infinitely divisible distributions 
by P. Lévy (1934), who also treated the problem from the point of view of stochastic 
processes. All subsequent investigations were strongly influenced by his pioneer work. 
The first purely analytical derivations of the general formula were given in 1937 inde- 
pendently by Feller and Khintchine. These authors proved also that the limit distributions 
of null arrays are infinitely divisible. 

4. PROCESSES WITH INDEPENDENT INCREMENTS 

Infinitely divisible distributions are intimately connected with stochastic 
Processes with independent increments. By this we mean a family of random 
variables X(t) depending on the continuous time parameter t and such that 
the in--ements X(t,,,) — X(t,) are mutually independent for any finite set
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th<tp<°''<¢,. At this juncture we require no theory of stochastic 

processes; we argue simply that if certain phenomena can be described 
probabilistically, the theory will lead to infinitely divisible distributions. In 

this sense we have considered special processes with independent increments 
in 1; XVII,1 and in example III,8(a). We limit our attention to numerical 

variables X(t) although the theory carries over to vector variables. 

The process has stationary increments if the distribution of X(s+t) — X(s) 

depends only on the length ¢ of the interval but not on s. 

Let us partition the interval s,s+t by n+ 1 equidistant points 
SH=t<t<i'<t,=s+t and put X,, = X(t.) — X(4,1). The 

variable X(s+-t) — X(s) of a process with stationary independent increments 

is the sum of the ” independent variables X, , with a common distribution 

and hence X(s+t) — X(s) has an infinitely divisible distribution. We shall 

see that the converse is also true. In fact, a one-parametric family of 

probability distributions Q, defined for ¢ > 0 can serve as the distribution 

of X(s+t) — X(s) ‘na process with stationary independent increments iff 

(4.1) . 0.,,=0,% 9, s,t>0. 

A family of distributions satisfying (4.1) is said to form a semi-group «ee 
IX,2). Every infinitely divisible distribution can be taken as element Q, 
(with ¢ > 0 arbitrary) of such a semi-group. _ 

Before passing to the non- stationary case let us consider typical examples. 

  

Examples. (a) The compound Poisson process. With an arbitrary prob- 
ability distribution F and «a > 0 

—at > (at)* 
(4.2) | Q,=e , k! 

defines a compound Poisson distribution, and it is easily verified that (4.1) 
holds. Suppose now that Q, represents the distribution of X(t) — X(0) 
in a stochastic process with stationary independent increments. When F 

is concentrated at the point 1 this process reduces to an ordinary Poisson 
process and (4.2) to 

(C) P{X() — X(0) = n) = pala 
nN! 

Fe 

The general model (4.2) may be interpreted in terms of this special 
Poisson process as follows. Let Y,, Y:,... be independent variables with 

the common distribution F, and let N(r) be the variable of a pure Poisson 

process with P{N(t) = n} = e-*‘(at)"/n!, and independent of the Y,. Then 

(4.2) represent’ the distribution of the random sum Y, +°-- + Yui. 

In other words, with the nth jump of the Poisson process there is associated 
an effect Y,, and X(t) — X(O) represents the sum of the effects occurring
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during 0,¢. The randomized random walk studied in II,7 is a compound 

Poisson process with Y, assuming the values +1 only. Empirical applica- 
tions are illustrated at the end of this section. 

(b) Brownian motion or the Wiener-Bachelier process. Here X(0) = 0 

(the process starts at the origin) and the increments X(t+s) — X(s) have 

a normal distribution with zero expectation and variance ¢. Wiener and 
Lévy have shown that the sample functions of this process are continuous 

with probability one, and this property characterizes the normal distribution 

among all infinitely divisible distributions. 

(c) Stable processes. The relation (1.8) for a strictly stable distribution 
merely paraphrases (4.1) with Q,(x) = R(r-\/*x). Thus this distribution 

defines transition probabilities in a process with stationary independent 

increments; for « = 2 it reduces to Brownian motion. > 

The main theorem of the theory (see chapters LX and XVII) states that the 

most general solution of (4.1)—and hence the most general infinitely divisible 
distribution—may be represented as a limit of an appropriate sequence of 
compound Poisson distributions. This result is surprising in view of the 

great formal difference between examples (a) and (5). 
Even in non-stationary processes with independent . increments the 

distribution of X(¢+s) — X(t) appears as the distribution of the row 
sums of our triangular array {X,,,,}, but a slight continuity condition 

must be imposed on the process to assure that (3.2) holds. Example (e) will 

explain this necessity. Under a slight restriction only infinitely divisible 
distributions appear as distributions. of X(t+s) — X(¢). 

Examples. (d) Operational time. A simple change of the time scale will 
frequently reduce a general process to a more tractable stationary process. 
Given any continuous increasing function g we may switch from the 
variable X(t) to Y(t) = X(o(t)). The property. of independent increments 

is obviously preserved, and with an appropriate choice of gm the new 

process may also have stationary increments. In practice the choice is 
usually dictated by the nature of things. For example, at a telephone 
exchange nobody would compare an hour at night with the busy hour 

of the day, while it is natural to measure time in variable units such that the 
expected number of calls per unit remains constant. Again, in a growing 
insurance business claims wil! occur at an accelerated rate but this departure 
from stationarity is removed by the simple expedient of introducing an 

Operational time measuring the frequency of claims. 
(e) Empirical applications. An unending variety of practical problems 

can be reduced to compound Poisson processes. Here are a few typical 

examples. (i) The accumulated damage due to automobile accidents, fire, 
lightning, etc. For applications to collective risk theory see example 5(a).
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(ii) The total catch by a fishery boat in search of schools of fish (J. Neyman). 
(iii) The content of water reservoirs due to rainfall and demand. Other 
storage facilities are treated in like manner. (iv) A stone at the bottom of a 
river lies at rest for such long periods that its successive displacements are 

practically instantaneous. The total displacement within time 0,7 may be 
treated as a compound Poisson process. (First treated by different methods 

by Albert Einstein Jr. and G. Polya.) (v) Telephone calls, or customers, 
arriving at a server require service. Under appropriate conditions the total 

—a 

service time caused by arrivals within the time interval 0,¢ represents a 

compound Poisson process. The remarkable feature of this process is that 
the value of X(t) is not observable at epoch t because it depends on service 

times that still lie in the future. (vi) For energy changes of physical particles 
due to collisions see example X, 1(8). > 

#5, RUIN PROBLEMS IN COMPOUND POISSON 
| PROCESSES 

Let X(t) be the variable of a compound Poisson process, that is, the 

increment X(t+s) — X(s) over any time interval of duration ¢ has. the 
probability distribution Q, of (4.2). Let c>0O and z>0 be fixed. By 
ruin we mean the event . So , : 

(5.1) {X(t)>2+ct}. 

We regard 'c as a constant and z > 0 asa free parameter, and we denote 

by R(z) the probability that no ruin will ever occur. We shall argue formally 
- that if the problem makes sense R(z) must be a.non-increasing solution of 

the functional equation (5.2). First a few examples may indicate the variety 
of practical situations to which our problem is applicable. 

Examples. (a) Collective risk theory.® Here X(t) ‘stands for the: accumu- 
lated amount of claims within the time interval 0,¢ against an insurance 
company. It is assumed that the occurrence of claims is subject to a Poisson 
process and that.the individual claims have the distribution F. In principle 
these “claims” may be positive or negative. (For example, a death may free 
the company of an obligation and increase the reserves.) In practice a grow- 
ing company will measure time in operational. units proportional to the 

* This section treats a special topic. It is of great practical interest, but will not be 
referred to in the present book except for examples where it will be treated by new methods. 

° A huge literature is devoted to this theory (inaugurated by F. Lundberg). For a 
relatively recent survey see H. Cramér, On some questions connected with mathematical risk, 
Univ. Calif. Publications in Statistics, vol. 2, no. 5 (1954) pp. 99-125. Cramér’s asymptotic 
estimates (obtained by deep Wiener—Hopf techniques) are obtained in an elementary manner 
in examples XI,7(a) and XIlI,5(d).
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total incoming premiums [see example 4(d)]. It may then be assumed 

that in the absence of claims the reserves increase at a constant rate c. 

If z stands for the initial reserves at epoch 0, the company’s total reserve at 

epoch ¢ is represented by the random variable z + ct — X(t), and “‘ruin’”’ 

stands for a negative reserve, that is, failure. 

(b) Strong facilities. An idealized water reservioir is being filled by 

rivers and rainfall at a constant rate c. At random intervals the reservoir 

is tapped by amounts X,, X2,.... The compound Poisson model applies 

and if z stands for the initial content at epoch 0 then z + ct — X(t) 

represents the content at epoch t provided that no ruin occurs before ?. 

For the huge literature on related problems see the monographs listed at the 

end of the book. 

(c) Scheduling of patients. We agree to treat the times devoted by a 

doctor to his patients as independent random variables with an exponential 

distribution and mean duration «1. As long as treatments continue without 

interruption the departures of treated patients are subject to an ordinary 

Poisson process. Let X(t) stand for the number of such departures within 

0, t. Suppose that z patients are waiting at epoch O (the beginning of the 

office hours) and that thereafter new patients arrive at epochs c™, 2c™?, 

3c-1,.... The doctor will not be idle as long as X(t) < 2 + ct. > 

The following formal argument leads to an equation determining the 

probability of ruin R. Suppose that the first jump of the sample function: 

occurs at epoch 7 and has magnitude z. For no ruin ever to occur it is. 

necessary that x <z-+ cr and that for all t > 7 the increments X(t) — 

be <z—x-+ct. Such increments being independent of the past the latter 

event has probability R(z—x-+cr). Summing over all possible + and x we 

get . 
, © : ater 

(5.2) R(2) -{ ce" dr | R(z-+cr—2x) F{dz}. 
0 —-2 

This is the desired equation, but it can be simplified. The change of variable 

=z ++ cr leads to 

(5.3) R(z) = * | e- (alsa) as | R(s—2) F{dz}. 
. C Jz —2 

Consequently R. is differentiable, and a simple differentiation leads to the 

final integro-differential equation 
2 

(5.4) R(z) = “ RO — a R(z — x)F {dx}. 

  

20R, Pyke, The supremum and infimum of the Poisson process, Ann. Math. Statist., vol. 

30 (1959) pp. 568-576. Pyke treats only the pure Poisson process but obtains more precise 
results (by different methods).
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Note that by definition R(s)=0 for s <0 so that the integral on the 

right is the convolution F % R. We shall return to (5.4) in examples 9(d); 

XI1,7(a); and XII,5(d). 

6. RENEWAL PROCESSES 

The basic notions of renewal theory were introduced in 1; XIII in 

connection with recurrent events. It will be seen that the introduction of a 

continuous time parameter depends on notational, rather than conceptual, 
changes. The salient feature of recurrent events is that the successive waiting 
times T, are mutually independent random variables with a common 

distribution F; the epoch of the mth occurrence is given by the sum 

(6.1) S,=T,+°:-+T,. 

By convention S, = 0 and 0 counts as occurrence number zero. 

Even in stochastic processes depending on a continuous tite parameter 

it is frequently possible to discover one or more sequences of epochs of 
the form (6.1). In such cases surprisingly sharp results are obtainable by 
simple methods. Analytically we are concerned merely with sums of 

independent positive variables, and the only excuse for introducing the term 
“renewal process’’ is its frequent occurrence in. connection with other 
processes and the tacit implication that the powerful tool of the renewal ' 
equation is used.*! 

Definition 1. A sequence of random variables S,, constitutes a renewal 

process if it is of the form (6.1) where the T, are mutually independent 
variables with a common distribution F such that!* F(Q) = 0. 

The variables being positive there is no dan ¢t i i I 

(| 
ot 

(ot 

even if the integral diverges (in which case we write u = 00). The expectation 
pe will be called mean recurrence time. As usual in similar situations, it is 
irrelevant for our present analysis whether the variables T, occur in some 
stochastic process or whether the sequence {T,} itself defines our probability 
space. . 

In most (but not all) applications the T, can be interpreted as “waiting 
times”’ and the S,, are then referred to as renewal (or regeneration) epochs. 

KI 
It seems intuitively obvious that for a fixed finite interval J = a,b the 

number of renewal epochs S,, falling within J is finite with probability 

1 For a more sophisticated generalization of the recurrent events see J. F.C. Kingman, 
The stochastic theory of regenerative events, Zeitschrift Wahrscheinlichkeitstheorie, yol. 2 
(1964) pp. 180-224. 

12 An atom of weight p <1 at the origin would have no serious effect.



VI.6 RENEWAL PROCESSES 185 

one and hence is a well-defined random variable N. If the event {S, e/} 
is called “success” then N is the total number of successes in infinitely many 
trials and its expectation equals 

(6.2) . U{I} = > P{S, € i} = 3, F',{1}. 

For the study of this measure we introduce, as usual, its distribution function 
defined by 

(6.3) U(x) = 3 F+(2) 
n=0 

It is understood that U(x) =0 for x <0, but U has an atom of unit 

weight at the origin. 

In the discrete case studied in 1; XIII the measure U was concentrated 
at the integers: u, stood for the probability that one among the S, equals 
k. Since this event can occur only once, u, can also be interpreted as the 

expected number of n for which S, =k. In the present situation U{JZ} 
must be interpreted as-an expectation rather than as a probability because 

the event {S, € 7} can occur for many n. 
It is necessary to prove that U(x) <.0oo. From the definition of con- 

volutions for distributions concentrated on 0, oo it is clear that 

F"*(x) < F"(x), and hence the series in (6.3) converges at least geometrically 
at each point where F(x) <1. There remains the case of distributions 

concentrated on a finite interval, but then there exists an integer r such that 
F’*(x) < 1. The terms with n =r, 2r, 3r,... form a convergent subseries, 

and this implies the convergence of the whole series in (6. 3) because its terms 

depend monotonically on 2. 
As in the discrete case the renewal measure U is intimately connected with 

the renewal equation 

(6.4) | Z=2+FRZ 
Spelled out it reads 

(6.5) Z(e) = x2) + | Z(e—w Flay}, 2>0, 
0 

where the interval of integration is considered closed. Actually the limits of 
integration may be replaced by —oo and oo provided it is understood that 
z(z) = Z(x) = O for x <0. We shall adhere to this convention. 

The basic fact concerning the renewal equation is contained in 

Theorem 1. Jf z is bounded and vanishes for x <0 the convolution 

Z = U*2z defined by 

(6.6) Z(2) = I “(x—y) Ufdy} 
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represents a Solution of the renewal equation (6.5). There exists no other 

solution vanishing on ~—00,0 and bounded on finite intervals. 

Proof. We know alréady that the series (6.3) defining U_ con- 
verges for all x. Taking the convolution with z it is seen that Z is 

bounded on finite intervals and satisfies the renewal equation. The difference 

of two such solutions would satisfy V = F%V, and hence also V= 

= F°*% V forall n. But F"*(z)—0 forall x, andif V is bounded this 

implies that Vx) = 0 for all z. > 

We shall return to the renewal equation in XI,1 where we shall study the 

asymptotic properties of U and Z. (For a generalized version of the renewal 

equation see section 10.) . 

It should be noticed that U itself satisfies 

(6.7) . U(x) = } +[ Ue—» F{dy}, xz>0, 

which is the special case of the renewal equation with z= 1. This can be 

seen directly by a probabilistic reasoning known as “renewal argument”’ 

which is of frequent use. Since 0 counts as a renewal epoch the expected 
+ 

number of renewal epochs in the closed interval 0, 2 is one plus the expected 

number in the half-open interval 0,2. This interval contains renewal 

epochs only if T, <x; given that T,; =y <2, the expected number of 
-— 

renewal epochs in 0,x equals U(x—y). Summing «ver y we get (6.7). 

Two simpie generalizations of the renewal process are useful. First, by 

analogy with transient recurrent events we may permit defective distributions. 

The defect g = 1 — F(0) is then interpreted as probability of termination. 

Abstractly speaking, the real line is enlarged by a point Q called “death,” 

and T,, is either a positive number or 2. For ease of reference we introduce 

the informal 

Definition 2.12 A terminating or transient renewal process is an ordinary 

renewal process except that F is defective. The defect q= 1 — F(o) is 

interpreted as probability of termination. 

For consistency, 0 is counted as renewal epoch number zero. The prob- 

ability that the process effectively survives the renewal epoch number 7 

equals (!—g)" and tends to 0 as m-+ 0. Thus with probability one a 

terminarine process terminates at a finite time. The tctal mass of F"™* is 

(1—q)” and se the expected number of renewal epochs is U(«) = qu < ©. 

This is, so to speak, the expected number of generations attained by the 

13 See example 7(f) for an illustration and problem 4 for a generalization. Y j t E 

 



VI.7 EXAMPLES AND PROBLEMS 187 

process. The probability that S, <2 and the process dies with this nth 
renewal epoch is gF"*(x).. We have thus the 

Theorem 2. In a terminating renewal process, qU is the proper prob- 

ability distribution of the duration of the process (age at time of death). 

The second generalization corresponds to delayed recurrent events and 
consists in permitting the initial waiting time to have a different distribution. 
In such cases we begin the numbering of the Tj with 7 =0 so that now 

So = Ty # 0. 

Definition 3. A sequence S),S,,... forms a delayed renewal process if it 
is of the form (6.1) where the T;, are mutually independent strictly positive 
(proper or defective) variables and T,,T.,... (but not Ty) have a common 
distribution. - 

7. EXAMPLES AND PROBLEMS 

Examples such as self-renewing aggregates, counters, and population 
growth carry over from the discrete case in an obvious manner. A special 
problem, however, will lead to interesting questions to be treated later on. 

Example. (a) An inspection paradox. In the theory of self-renewing 
aggregates a piece of equipment, say an electric battery, is installed and 
serves until it breaks down. Upon failure it is instantly replaced by a like 
battery and the process continues without interruption. The epochs of 
renewal form a renewal process in which T,, is the lifetime of the kth battery. 

Suppose now that the actual lifetimes are to be tested by inspection: 
we take a sample of batteries in operation at epoch ¢ > 0 and observe their 
lifetimes. Since F is the distribution of the lifetimes for a// batteries one 

expects that this applies also to the inspected specimen. But this is notso. In 
fact, for an exponential distribution F the situation differs only verbally from 

the waiting time paradox in I,4 where the lifetime of the inspected item has 
an entirely different distribution. The fact that the item was inspected at 
epoch t changes its lifetime distribution and doubles its expected duration. 
We shall see in XI,(4.6) that this situation is typical of all renewal processes. 
The practical implications are serious. We see that an apparently unbiased 
inspection plan may lead to false’ conclusions because what we actually 

observe need not be typical of the population as a whole. Once noticed the 
phenomenon is readily understood (see I,4), but it reveals nevertheless 
possible pitfalls and the necessary interplay between theory and practice. 
Incidentally, no trouble arises if one decides to test the first item installed 

after epoch ¢. > 

This is a good occasion to introduce three random variables of interest in 

renewal theory. In the preceding example all three refer to the item in 
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operation at epoch ¢>0 and may be described by the self-explanatory 
terms: residual lifetime, spent lifetime, and total lifetime. The formal 
definition is as follows. 

To given t > 0 there corresponds a unique (chance-dependent) subscript 
N, such that Sy <¢<Sy4i. Then: 

(a) The residual waiting time is Sy, —t, the time from 1 to the next 
renewal epoch. 

(5) The spent waiting time is t —Sy, the time elapsed since the last 
renewal epoch. 

(c) Their sum Sy.41 —Sy, = Ty4i is the length of the recurrence 
interval covering the epoch t¢. 

The terminology is not unique and varies with the context. For example, 

in random walk our residual waiting time is called point of first entry or 

hitting point for the interval 1, co. In the preceding example the word 
lifetime was used for waiting time. We shall investigate the three variables 
in XI,4-and XIV,3. 

The Poisson process was defined as a renewal process with an exponential 
distribution for the recurrence times T,;. In many server and counter 
problems it is natural to assume that the incoming traffic forms a Poisson 
process. In certain other processes the interarrival times are constant. To 
combine these two cases it has become fashionable in queuing theory to 
admit general renewal processes with arbitrary interarrival times.14 

We turn to problems of a fairly general character connected with renewal 
processes. The distribution underlying the process is again denoted by F. 

We begin with what could be described roughly as the ‘‘waiting time W 
for a large gap.’’ Here a renewal process with recurrence times T; is 
stopped at the first occurrence of a time interval of duration & free of 
renewal epochs, whereupon the process stops. We derive a renewal equation 
for the distribution V of the waiting time W. As the latter necessarily 

exceeds we have V(t)=0 for ¢< & For t > & consider the mutually 

exclusive possibilities that T, > € or T,; =y < &. In the first case the 

waiting time W equals &. In the second case the process starts from 
scratch and, given that T, = y, the (conditional) probability of {W < t} 

is V(t—y). Summing overall possibilities we get . 

f+ 7 
(7.1) V(t) = 1 — F(é) +{ V(t—y) F{dy}, t> é, 

and, of course, V(t) =0 for t < &. This equation reduces to the standard 

  

14 The generality is‘somewhat deceptive because it is hard to find practical examples 
besides the bus running without schedule along a circular route. The illusion of generality 
detracts from the sad fact that a non-Poissonian input is usually also non-Markovian. 
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renewal equation 

(7.2) V=z+GeV 

with the defective distribution G defined by 

(7.3) G(x) = F(x) if «<6; G(@z)= F(é) if «>F& 

and 

(7.4) 2(z)=0 if e<é; xe) =1—F(é) if x >. 
The most important special case is that of gaps in a Poisson process 

where F(t)=1—e-* and the solution V is related to the covering 

theorems of I,9 [see problem 15 and example XIV,2(a). For a different 
approach see problem i6.] 

Examples for empirical applications. (b) Crossing a stream of traffic. 

Cars move in a single lane at constant speed, the successive passages forming 
a sample from a Poisson process (or some other renewal process). A 
pedestrian arriving at the curb—or a car arriving at an intersection—will 
start crossing as soon as he observes that no car will pass during the next & 
seconds, namely the time required for his crossing. Denote by W the time 
required to effect the crossing, that is, the waiting time at the curb plus &. 
The distribution V of W satisfies (7.1) with F(t) = 1 — et. [Continued 
in examples XI,7(b) and XIV,2(a).] . | 

(c) Type II Geiger counters. Arriving particles constitute a Poisson 
process and each arriving particle (whether registered or not) locks the 
counter for a fixed time &. If a particle is registered, the counter remains 
“dead” until the occurrence of an interval of duration & without new 
arrivals. Our theory now applies to the distribution V of the duration of 
the dead period. (See 1; XIII,11, problem 14.) - , 

(dq) Maximal observed recurrence time. Ina primary renewal process 

denote by Z, the maximum of T, observed!® up to epoch ¢. The event 
{Z, < &} occurs iff up to epoch ¢ no time interval of duration ¢€ was free 
of renewal epochs, and so in our notations P{Z, > ¢} = V(t). > 

A great many renewal processes occurring in applications may be described 

as alternating or two stage processes. Depending on the context the two stages 

may be called active or passive, free or dead, excited or normal. Active and 

passive periods alternate; their durations are independent random variables, 
each type being subject to a common distribution. 

15 For the older literature and variants (treated by different methods) see J. C. Tanner, 
The delay to pedestrians crossing a road, Biometrika, vol. 38 (1951) pp. 383-392. 

16 More precisely, if 1 is the (chance-dependent) index for which S,_,< 1+ <S,, then 
Z, = max [T,,...,T,-1, §]. Variables of this nature were studied systematically by 

A. Lamperti. 
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Examples. (e) Failures followed by delays. The simplest example is given 
by actual replacements of a piece of equipment if each failure is followed by 
a delay (to be interpreted as time for discovery or repair). The successive 
service times 1T,, T,,... alternate with the successive dead periods Y,, 

Y,,... and we get a proper renewal process with recurrence times T,; + Y;. 

The same process may. be viewed as delayed renewal process with the first 

renewal epoch at T,, and recurrence times Y, + T,,;. 
(f) Lost calls. Consider a single telephone trunkline such that the 

incoming calls form a Poisson process with interarrival distribution 
G(t)=1-—e-* while the durations of the ensuing conversations are 

independent random variables with the common distribution F. The 
trunkline is free or dead, and calls arriving during dead periods are lost and 
have no influence on the process. We have here a two stage process in which 
the distribution of the recurrence times is F%& G. (See problem 17 as well 

as problems 3-4 in XIV,10.) 

(g) Last come first served. Sometimes the distributions of the alternating 

waiting times are not known a priori but must be calculated from other data. 

As an example consider a data processing machine in which new information 

arrives in accordance with a Poisson process so that the free periods have an 

exponential distribution. The time required to process the new information 

arriving at any epoch has a probability distribution G. 

Busy and free periods alternate, but the duration of busy periods depends 

on the manner in which information arriving during a busy period is treated. 

In certain situations only the latest information is of interest; a new arrival 

is then processed immediately and all previous information is discarded. 

The distribution V of the duration of the busy periods must be calculated 

from a renewal equation (see problem 18). 

(hk) Geiger counters. In type I counters each registration is followed by 

a dead period of fixed duration € and arrivals within the dead period 

have no effect. The process is the same as described in example (e), the 

T, having an exponential distribution, the Y; being equal to ¢. In type 

II counters also the unregistered arrivals produce locking and the situation 

is the same except that the distributions of the Y, depend on the primary 

process and must be calculated from the renewal equation (7.1) [example 

()]. | : > 

8. RANDOM WALKS 

Let X,,X,,... be mutually independent random variables with a 

common distribution F and, as usual, 

(8.1) S,=0, S,=X,+°:'+X,. 

We say that S,, is the position, at epoch a, of a particle performing a 
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general random walk. No new theoretical concepts are introduced,” but 
merely a terminology for a short and intuitive description of the process 
{S,}. For example, if J is any interval (or other set), the event {S, e]} 
is called a visit to J, and the study of the successive visits to a given interval 
I reveals important characteristics of the fluctuations of S,,S.,.... The 
index n will be interpreted as time parameter and we shall speak of the 
“epoch n.”’ In this section we describe some striking features of random 
walks in terms of the successive record values. The usefulness of the results 
will be shown by the applications in section 9. A second (independent) 
approach is outlined in section 10. 

Imbedded Renewal Processes 

A record value occurs at epoch n > 0 if 

(8.2) S,>S, j=0,1,...,n—1. 
Such indices may not exist for a given sample path; if they do exist they 
form a finite or infinite ordered sequence. It is therefore legitimate to speak 
of the first, second, .... , occurrence of (8.2). Their epochs are again random 
variables, but possibly defective. With these preparations we are now in a 
position to introduce the important random variables on which much of the 
analysis of random walks will be based. 

Definition. The kth (ascending) ladder index is the epoch of thé kth 
occurrence of (8.2). The kth ladder height is the value of S, at the kth 
ladder epoch. (Both random variables are possibly defective.) 

The descending ladder variables are defined in like manner with the inequality 
in (8.2) reversed.1® 

The term ascending will be treated as redundant and used only for emphasis 
or clarity. 

In the graph of a sample path (S,,S,,...) the ladder points appear as 
the points where the graph reaches an unprecedented height (record value). 
Figure 1 represents a random walk {S,} drifting to —oo with the last 
positive term at n = 31. The 5 ascending and 18 descending ladder points 
are indicated by @ and ©, respectively. For a random walk with Cauchy 
variables see figure 2. (page 204) 

  

17 Sarnple spaces of infinite random walks were considered also in volume 1, but there 

we had to be careful to justify notions such as “probability of ruin’’ by the obvious limiting 
processes. Now these obvious passages to the limit are justified by measure theory. 
(See IV,6.) 

18 Replacing the defining strict inequalities by > and < one gets the weak ladder 

indices. This troublesome distinction is unnecessary when the underlying distribution is 
continuous. In figure 1 weak ladder points are indicated by the letter w. 

 



192 SOME IMPORTANT DISTRIBUTIONS AND PROCESSES V1.8 

30 |- 

20 

10 F    

  

  OR aT T T T T T r A n 
10 20 30 70 80 90 100 110 120 130 140 

-10F w 

-20b , Sp 

-30+- 

  —80 

Figure 1, Random Walk and the Associated Queuing Process. The variables X, of the 

random walk {S,,} have expectation —1 and variance 16. Ascending and descending Jadder 
points are indicated by @ and 0, respectively. The seventh ladder point is (26, 16) and 

represents with high probability the maximum of the entire random walk. 
{The letter w indicates where a record value is assumed for a second or third time; 

these are the weak ladder points defined by (8.2) when the strict inequality is replaced 

by 2.] 
Throughout the graph S,, exceeds its expected value —n, In fact, n = 135 is the first 

index such that S, < —n (namely S,5, = ~137). This accords with the fact that the 

expectation of such a is infinite. 

The variables X,, are of the form X,, — &,, where the variables #, and .¥,, are 

mutually independent and uniformly dis dictriutéa over 1, 3, 5, 7, 9 and 2, 4, 6, 8, 10, 

respectively. In example 9(a) the variable W,, represents the total waiting time of the nth 

customer if the interarrival times assume the values 2, 4, 6, 8, 10 with equal probabilities 

while the service times equal 1, 3, 5, 7, or 9, each with probability 5. The distribution of X, 

attributes probability (5 — k)/25 to the points +2k — 1, where k = 0, I, 2,3, 4. 

Example. (a) In the ‘‘ordinary” random walk F has the atoms | and —1 

with weights p and gq. The ascending ladder variables are defective if 

q > p, the defect p/q [see 1; XI,(3.9)]. The kth ladder height necessarily 

equals & and for this reason volume 1 mentions only ladder epochs. The 

kth ladder index is the epoch of the first visit to the point k. Its distribution 

 



VI.8 RANDOM WALKS 193 

was found in Ll; XI,4(d) and in the special case p = } already in tneorem 
2 of 1; III,4. 

The first ladder index 7, is the epoch of the first entry into 0, oo, and the 

first ladder height 4”, equals Sz. The continuation of the random walk 
beyond epoch 7, is a probabilistic replica of the entire random walk. 
Given that 7, =n, the occurrence of a second ladder index a an epoch 
k >n depends only on X,,,,...,X,, and hence the number of trials 

between the first ladder index and the second is a random variable 7%, which 

is independent of 7, and has the same distribution. In this way it is seen 
more generally that the kth ladder index and the kth ladder height may be 
written in the form 

Fite: tTF,, Hy, +--+, 

where the 7, and #, are mutually independent random variables distributed, 
respectively, as FZ, and A. In other words, the ladder indices and heights 
form (possibly terminating) renewal processes. 

For terminating processes it is intuitively obvious that S,, drifts to 
—oo, and with probability one S,, reaches a finite’ maximium. The next 

section will show that the ladder variables provide a powerful tool for the 
analysis of a class of processes of considerable practical interest. 

Example. (6) Explicit expressions. Let F have the density defined by 

abe** if x <0: abe 

a+b a+b 

This random walk has the rare distinction that all pertinent distributions 

can be calculated explicitly. It is of great interest in queuing theory because 

f is the convolution of two exponential. densities concentrated on 0, 0 

and —0o,0, respectively. This means that X; may be written as the 
difference X;= &, — WL, of two positive exponentially distributed random 
variables. Without loss of generality we assume a < b. 

The ascending ladder height 4, has the density ae~**; this variable is 
defective and its defect equals (6—a)/b.. The ascending ladder epoch 7, 
has the generating function b~*p(s) where 

(8.4) 2p(s) =a +b — V(atb)? — 4abs. 
The defect is again (b—a)/b. 

The descending ladder height #7 has density ae* for zx <0, the 
descending ladder epoch YY, has. the generating function a-'p(s). In 

—bz 

(8.3)     if x.>0. 

  

the special case a=b it reduces to 1 — Jl—s, and this generating 

function is familiar from ordinary random walks (or coin tossing). [For 

proofs and other results see XII,4-S and XVIII,3. See also example 4 e).] 
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9. THE QUEUING PROCESS 

An incredibly voluminous literature!® has been devoted to a variety of 
problems connected with servers, storage facilities, waiting times, etc. 

Much progress has been made towards a unification, but the abundance 

of small variants obscures the view so that it is difficult to see the forest for 

the trees. The power of new and general methods is still underrated. We 

begin by a formal introduction of a stochastic process defined by a recursive 
scheme that at first sight appears artificial, Examples will illustrate the wide 
applicability of the scheme; later on we shall see that sharp results can be 
obtained by surprisingly simple methods. (See XII,5.) 

Definition 1. Let X,,X,,... be mutually independent random variables 

with a common (proper) «istribution F. The induced queuing process is the 
sequence of random variables Wy, W,, ... defined recursively by Wy = 0 and 

W,, + Xn41 if W,, + Xn41 = 0 

0 if W, + Xa41 < 0 

In short, Was = (Wat+Xni1) U 0. 

For.an illustration see figure 1. 

(9.1) Wat = 

Examples. (a) The one-server queue. Suppose that ‘‘customers’’ arrive 

at a “‘server’’ the arrivals forming a proper renewal process with inter- 

arrival times*® of,, @,, ... (the epochs of arrivals are 0, %,, %, + H2,... 
and the customers are labeled 0,1, 2,.. .). With the nth customer there 

is associated a service time @,, and we assume that the @,, are independent 

of the arrivals and of each other and subject to a common distribution. 
The server is either ‘‘free”’ or “‘busy’’; it is free at the initial epoch 0. The 

19 For references consult the specialized books listed in the bibliography. It would be 
difficult to give a brief outline of the development of the subject with a proper assignment 
of credits. The most meritorious papers responsible for new methods are now rendered 
obsolete by the progress which they initiated. [D. V. Lindley’s integral equation of queuing 
theory (1952) is an example.] Other papers are noteworthy by their treatment of (some- 
times very intricate) special problems, but they find no place in a skeleton survey of the 

general theory. On the whole, the prodigal literature on the several subjects emphasizes 
examples and variants at the expense of general methods.: An assignment of priorities is 
made difficult also by the.many duplications. [For example, the solution of a certain 
integral equation occurs in a Stockholm thesis of 1939 where it is credited to unpublished 
lectures by Feller in 1934. This solution is now known under several names.] For the 
history see two survey papers by D. G. Kendail of independent interest: Some problems in 
the theory of queues, and Some problems in the theory of dams, J. Roy. Statist. Soc. Series 
B vol. 13 (1951) pp. 151-185, and vol. 19 (1957) pp. 207-233. 

20 Normally the interarriva!l times will be constant or exponentially distributed but it is 
fashionable to permit arbitrary renewal processes; sec footnote 14 to section 7. 
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sequel is regulated by the following rule. If a customer arrives at an epoch 
where the server is free, his service commences without delay. Otherwise 
he joins a waiting line (queue) and the server continues uninterruptedly to 
serve customers in the order of their arrival*! until the waiting line dis- 
appears and the server becomes “‘free.”’ By queue length we mean the number 
of customers present including the customer being served. The waiting time 

W,, of the mth customer is the time from his arrival to the epoch where his 
service commences; the total time spent by the customer at the server is 
W, + &,. (For example, if the first few service times are 4, 4, 1, 3, 

and the interarrival times are 2, 3, 2, 3,..., customers number 1, 2,. 

join queues of length 1, 1, 2, 1,..., respectively, and have waiting times 

2,3, 2, 2,...). 
To avoid trite ambiguities such as when a customer arrives at the epoch 

of another’s departure we shall assume that the distributions A and B of 

the variables », and @, are continuous. Then the queue length at any 
epoch is well defined. 

We proceed to devise a scheme for calculating the waiting times W, 
recursively. By definition customer number 0 arrives at epoch 0 at a free 
server and so his waiting time is Wy) = 0. Suppose now that the nth 
customer arrives at epoch ¢ and that we know his waiting time W,. His 

service time commences at epoch ¢+W, and terminates at epoch 
t+ W,+&,. The next customer arrives at time ¢ + %,,,. He finds 

the server free if W,+2,<&%,,, and has a waiting time W,,1 
= W, + Ba — Gas. if this quantity is > 0. In other words, the sequence 
{W,,} of waiting times coincides with the queuing process induced by the 

independent random variables 

(9.2) X, = Bn — Gans n=1,2,... 

(b) Storage and inventories. For an intuitive description we use water 
reservoirs (and dams), but the model applies equally to other storage 
facilities or inventories. The content depends on the input and the output. 
The input is due to supplies by rivers and rainfall, the output is regulated 
by demand except that this demand can be satisfied only when the reservoir 
is not empty. 

Consider now the water contents”? 0, W,, W., ... at selected epochs 

0,71, 72,---- Denote by X,, the actual supply minus the theoretical (ideal) 

21 This “queue discipline’ is totally irrelevant to queue length, duration of busy periods, 
and similar problems. Only the individual customer feels the effect of the several dis- 
ciplines, among which “first come first served,”’ “‘first come last served ’’ and “random 
choice’’ are the extremes. The whole picture would change if departures were permitted. 

22 For simplicity we start with an empty reservoir. An adjustment to arbitrary initial 
conditions causes no difficulties [see example (c)]. 
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demand during 7,_;, 7, and let us pretend that all changes are instantaneous 
and concentrated at the epochs 7,,7,,.... We start with W, =9% at 

epoch 0. In general the change W,,,, —W, should equal X,,, except 

when the demar 1 exceeds the contents. For this reason the W,, must satisfy 
(9.1) and so the successive contents are subject to the queuing process induced by 
{X,} provided the theoretical net changes -X, are independent random 
variables with a common distribution. 

The problem (for the mathematician if not for the user) is to find conditions 
under which the X, will appear as independent variables with a common 

distribution F and to find plausible forms for F. Usually the 7, will be 
equidistant or else a sample from a Poisson process, but it suffices for our 
purposes to assume that the 7, form a renewal process with interarrival times 
A, ,,.... The most frequently used models fall into one of the following 
two categories: | 

(i) The input is at a constant rate c, the demand @&, arbitrary. Then 

X, =cW@, — B,. We must suppose this X, to be independent of the . 
“past”? X,,...,X, 1. (The usual assumption that <, and @, be in- 

dependent is superfluous: there is no reason why the demand &, should 
not be correlated with the duration .9%,,.) 

(ii) The output is at a constant rate, the input arbitrary. The description 
is the same with the roles of /, and @, reversed. 

(c) Queues for a shuttle train. A shuttle train with r places for passengers 
leaves a station every hour on the hour. Prospective passengers appear 
at the station and wait in line. At each departure the first r passengers in 

line board the train, and the others remain in the waiting line. We suppose 

that the number of passengers arriving between successive departures are 
independent random variables %/,, %,,... with a common distribution. 

Let W,, be the number of passengers in line just after the mth departure, 
and assume for simplicity Wy =0. Then W,,,=W,+ #4, —r if 
this quantity is positive, and W,,, = 0 otherwise. Thus W,, is the variable 
of a queuing process (9.1) generated by the random walk with variables 
X,= 7%, —r. > 

We turn to a description of the queuing process {W,} in terms of the 
random walk generated by the variables X,. Asin section 8 we put S, = 0, 
S., = X, +--+: +X, and adhere to the notation for the ladder variables. 

For ease of description we use the terminology appropriate for the server 
of example (a). 

3p. E. Boudreau, J. S. Griffin Jr., and Mark Kac, An elementary queuing problem, 
Amer. Math. Monthly, vol. 69 (1962) pp. 713-724. The purpose of this paper is didactic, 

that is, it is written for outsiders without knowledge of the subject. Although a different 

mode of description is used, the calculations are covered by those in example XII,4(c). 
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Define » as the subscript for which S, > 0,S,>0,..., S,_, > 0, but 
S, <0. In this situation customers number 1, 2,...,»—1 had positive 
waiting times W, = S,,..., W,_, =S,_,, and customer number » was 
the first to find the server free (the first lucky customer). At the epoch of 
his arrival the process starts from scratch as a replica of the whole process. 
Now » is simply the index of the first negative sum, that is, » is the first 
descending ladder index, and we denote it consistently by Fy. We have 
thus reached the first conclusion: The descending ladder indices correspond 
to the lucky customers who find the server free. Put differently, the epochs of 
arrival of the lucky customers constitute a renewal process with recurrence 
times distributed as 77,. 

In practical cases the variable Z > must not be defective, for its defect 
p would equal the probability that a customer never finds the server free 
and with probability one there would be a last lucky customer followed by 
an unending queue. It will turn out that Z> is proper whenever 
E(33,) < E(W%,). . 

Suppose now that customer number v— 1 arrives at epoch 7. His 
waiting time. was W,_,=S,_, and so the epoch of his departure is 
t+ W,_, + &,_,. The first lucky customer (number ») arrives at epoch 
t +, when the server was free for 

A, ~ W,-1 _ By = —S,1 - X, = —-S v 

time units. But by definition S, is the first descending ladder height 
# >. As the process starts from scratch we have reached the second con- 
clusion: The durations of the free periods are independent random variables 
with the same distribution as —#’; (the recurrence time for the descending 
ladder heights). In other words, customer number 77 +--+ +77 is 
the rth customer who finds the server free. At the epoch of his arrival the 
server has been free for —#, time units. 

It should now be clear that between successive ladder epochs the segments 
of the graph for the queuing process {W,} are congruent to those for the random 
walk but displayed vertically so as to start at a point of the time axis (figure 1). 
To describe this analytically denote for the moment by [7] the /ast descending 
ladder index < 7; in other words, [n] is a (random) index such that [n] <n 

and 

(9.3) Sin) <S; j=O0,l,...,7. 
‘This defines [7] uniquely with probability 1 (the distribution of X, being 
continuous). Clearly 

(9.4) W, = 8, — Stn} 

This relation leads to the most important conclusion if we look at the 
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variables X,,...,X, in reverse order. Put for abbreviation xi = 

X,.--+»X,_ = X,. The partial sums of these variables are 

S,=X,+°:'+X,=S,-S,,, 

and (9.4) shows that the maximal term of the sequence 0,S.,. . ,S;, has 

subscript  — [n] and equals W,. But the distribution of (Xj,..., X/) is 
identical with that of (X,,...,X,). We have thus the basic 

Theorem:"4 The distribution of the queuing variable W,, is identical with 
the distribution of the random variable 

(9.5) M,, = max [0, S,,...,S,] 

in the underlying random walk {X,}. 

The consequences of this theorem will be discussed in chapter XII. 
Here we show that it permits us to reduce certain ruin problems to queuing 
processes despite the dissimilarity of the appearance. 

Example. (d) Ruin problems. In section 5 ruin was defined as the event 
that X(t) > 2+ ct for some ¢ where X(f) is the variable of a compound 
Poisson process with distribution (4.2). Denote the epochs of the successive 
jumps in this process by 7,,7,,.... If ruin occurs at all it occurs also at 
some epoch 7, and it suffices therefore to consider the probability that 
S, = X(7,) — ct, > 2 for some n. But by the definition of a compound 
Poisson process X(7,) is the sum of m independent variables Y, with 

the common distribution F, while 7, is the sum of n independent expo- 
nentially distributed variables .%7,. Accordingly we are in effect dealing with 
the random walk generated by the variables X, = Y, — co, whose 
probability density is given by the convolution | 

C Ja 

(9.6) =f enlace Bf dy}, 

Ruin occurs iff in ‘the random walk the event {S, > z} takes place for some n. 

To find the prabability of ruin amounts therefore to finding the distributions 
of the variables W,, in the associated queuing process. 

(e) A numerical illustration. The most important queuing process arises 
when the interarrival and service times are exponentially distributed with 
expectations 1/a and 1/b, respectively, where a < 5. From the character- 
istics of this process described in example 8(b), one can conclude that the 
waiting time of the nth customer has a limit distribution W with an atom of 

24 Apparently first noticed by F. Pollaczek in 1952 and exploited (in a different context) 
by F. Spitzer, The Wiener-Hopf equation whose kernel is a probability density, Duke 

Math. J., vol. 24 (1957) pp. 327-344. For Spitzer’s proof see problem 21. 
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weight 1 —al/b at the origin and density a ae“ for x>0. The 
a 

expectation equals b(b—a) 

density as the first descending ladder height, that is, ae~**. In this case the 
free periods and the interarrival times have the same distribution (but this is 
not so in other queuing processes). 

The number N_ of the first customer to find the counter empty has the 
generating function p(s)/a with. p defined in (8.4). Consider now the busy 
period commencing at epoch 0, that is, the time interval to the first epoch 
when the server becomes free. This period being initiated by customer 
number 0, the random variable N also equals the number of customers during 
the initial busy period. An easy calculation shows that its expectation equals 
b/(b—a) its variance ab(a+b)/(b—a)*. 

Finally, let T be the duration of the busy period. Its density is given 
explicitly by XIV, (6.16) with cp =a and cq = b. This formula involving 
a Bessel function does not lend itself to easy calculations, but the moments 
of T can be calculated from its Laplace transform derived by different 
methods in examples XIV,4(a) and XIV,6(4). The result is 

  The free periods of the counter have the same 

    and Var (T) = (a+b) K(T) = 
© (b—a) = a) 

In the queuing process busy periods alternate with free periods, and their . 
expectations are 1(b—a) and 1/a, respectively. Thus (b-~-a)/a is a measure 
of the fraction of the time during which the server is idle. More precisely: if 
U(t) is the idle time up to epoch ¢, then t-EU(t) > (6—a)/a. 

  

    

TABLE 1 

b=1 

@=05a=06a=0.7 a =08a=09 a = 095 

Waiting time | Expectation 1 1.5 2.3 4 9 19 
(steady Variance 3 5.3 10 24 99 399 

State) 

Busy period | Expectation 2 2.5 3.3 5 10 399 
Variance 12 25 63 225 1900 16,000 

No. of cus- | Expectation} 2 2.5 3.3 5 10 399 
tomers per | Variance 6 15 44 200 1700 = 15,200 
busy period 
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In the table the expected service time is taken as unit, and so a represents 
the expected number of customers arriving during one service time. The 

table shows the huge variances of the busy periods. It follows that fantastic 
fluctuations of the busy period must be expected. One sees that the customary 
reliance on expectations is very dangerous in practical applications. For a 

busy period with variance 225 the fact that the expectation is 5 has little 
practical significance. 

The multidimensional analogue to our queuing process is more intricate. The founda- 
tions for its theory were laid by J. Kiefer and J. Wolfowitz [On the theory of queues with 
many servers, Trans, Amer. Math. Soc., vol. 78 (1955) pp. 1-18]. 

10. PERSISTENT AND TRANSIENT RANDOM WALKS 

We proceed to a classification of random walks which is independent of 
section 8 and closely related to the renewal theory of section 6. Given a 
distribution function F on the line we introduce formally an interval function 

defined by 

(10.1) UL} = 2PM}. 

The series is the same as in (6.2), but when F is not concentrated on a 
half-line the series may diverge even when / is a finite interval. It will be 
shown that the convergence or divergence of (10.1) has a deep significance. 
The basic facts are simple, but the formulations suffer from the unfortunate 

necessity of a special treatment for arithmetic distributions.”® 
For abbreviation we let J, stand for the interval —h<a2<h and 

I,+t for t-h<a<tt+h. 

Theorem 1. (i) If F is non-arithmetic either U{I} < 0 for every finite 
interval or else U{I} = 0 for all intervals. . 

(ii) Jf F is arithmetic with span i. either U{I} < 0. for every finite 
interval or else U{I} = 00 for every interval containing a point of the form nA. 

(iii) If U{I,} < 0 then forall t and h>0 

(10.2) UU, +1} < Ulm}. 

For ease of reference to the two cases we introduce a definition (in which 
F receives an adjective rightfully belonging to the corresponding random 

walk). 

Definition. F is transient if U{I} < © for all finite intervals, and per- 

sistent otherwise. 

25 F is arithmetic if all its points of increase are among the points of the form 0, +4, 
+2A,.... The largest 4 with this property is called the span of F. (See V,2.) 

 



VI.10 PERSISTENT AND TRANSIENT RANDOM WALKS 201 

Besides its probabilistic significance the theorem has a bearing on the 
integral equation 

(10.3) Z=z2+FRZ 

which is the analogue to the renewal equation (6.4). We use this integral 
equation as starting point and prove theorem 1 together with 

Theorem 2. Let z be continuous, and O< 2(z) < wy for |z| < h and 

2(z) = 0 outside I,. If F is transient then 

+00 

(10.4) Z(x) = | 2(a—y) Ufdy} 
—oO 

is a uniformly continuous solution of (10.3) with 

(10.5) 0 <Z(&) < Mo* Ulan}. 

Z assumes its maximum ata point in I,. 

Proof of the two theorems. (i) Assume that U{I,} < co for some « > 0. 
Choose A < 4a and let z vanish outside J, but not identically. We try to 
solve (10.3) by successive approximations putting Z) = z and, recursively, 

(10.6) Za) = 2) + |Z) Fly). 
With U,, defined by 

(10.7) U,{ = PU he EP 

we have obviously 

(10.8) Z,(2) =| x@—yU tae), 
(the integration extending in effect over an interval of length < 2h). The 
function Z, so defined is continuous, and we prove by induction that it 
assumes its maximum 4, at a point ¢, such that z(&,) > 0. This is 
trivially true for Z, =z. If it is true for Z,_, one sees from (10.6) that 

z(x) = 0 implies Z f=) < fén-1 whereas Ln z= Z,(En1) > Zy-16E n1) = 

Hy-1- 

It follows that the interval J, + £, is contained in J, and so by (10.8) 

(10.9) Un S bo* Uflon} 

which proves that the functions Z, remain uniformly bounded. Since 

Z,<Z, <°-:: it follows that Z,—Z with Z satisfying (10.5). 

By monotone convergence it follows from (10.6) and (10.8) that the limit 

Z satisfies the integral equation (10.3) and is of the form (10.4). The in- 
equality (10.5) holds because of (10.9). The upper bound depends only on 
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the maximum jp of z, and we are free to let 2(z) = uy forall x withina 
proper subinterval J, of J,. In this case we get from (10.8) 

(10.10) Z,(2) > fy U,{I, +2} 

This inequality holds for all 4 <A, and hence also for 1 =h (since J, 
is closed). The last two inequalities together prove the truth of (10.2). This 
implies that U{I} < 00 for intervals of length <h. But every finite interval 
can be partitioned into finitely many intervals of length <h, and therefore 
U{T} < oo for allfinite J. Finally, taking differences in (10.4) it is seen that 

|Z(z+6) — Z(x)| < ULI, }- sup |z(v+6) — 2(z)|. 

Accordingly, Z is uniformly continuous and all assertions concerning 
transient F are proved. 

(ii) There remains the case where U{I,} = oo for every «> 0. Then 
(10.10) shows that Z,(x)-» oo for all x in a neighborhood of the origin. 
If t isa point of increase of F it follows from (10.6) that Z,(x)—» oo for 
all x in aneighborhood of ¢. By induction the same is true of each point of 
increase of F2*, F?*,.... Assume F non-arithmetic. If F were con- 
centrated on a half-line we would have U{I,} < co ‘(section 6). By lemma 2 
of V,4a therefore the points of increase of F?*, F3*,... are dense on the 
line and so Z,(z)-» oo everywhere. This implies U,{I}—> oo, for all 
intervals. With the obvious modification this argument applies also to 
arithmetic distributions, and so the theorems are proved. > 

In chapter XI we shall return to the renewal equation ( 10.3), but now we 
turn to the implications of theorem 1 for random walks. Let X,, Xz,..> 
be independent random variables with the common distribution F, and put 
S, =X, +:°:+X,. By “visit to J at epoch n = 1,2;...”? is meant the 
event that S, eT. 7 

Theorem 3.” If F is transient the number of visits to a finite interval I is 
finite with probability one, and the expected number of such visits equals U{I}. 

If F is persistent and non-arithmetic every interval I is visited infinitely 
often with probability one. If F is persistent and arithmetic with span A then 
every point nA is visited infinitely often with probability one. ~ 

Proof. Assume F transient. The probability of a visit to J after epoch n 
does not exceed the nth remainder of the series in (10.1) and so for n_ suffi- 
ciently large the probability of more than n -visits is <«. “1s proves 
the first assertion. 

26 The theorem is a consequence of the second zero-or-one law in IV,6. If p(J+t2) is 

the probability of entering J +1 infinitely often then for fixed I the function g can 
assume only the values 0 or 1. On the other hand, considering the first step in the random 
walk one sees that » = Fx g and hence » = const (see XI,9). 
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Assume now F persistent and non-arithmetic. Denote by p,(t) the 
probability of a visit to I, + ¢. It suffices to prove that p,(t) = 1 for all 

h > 0 and all ¢, for this obviously implies the certainty of any number of 
- visits to each interval. 

Before proceeding we observe that if S, =z we may take x as a new 

origin to conclude that the probability of a subsequent visit to 7, equals 
p,(—%). In particular, if x isa pointin J,,, the probability of a subsequent 
visit to J, is < po,(—f).. 

We begin now by showing that p,(0) = 1. For an arbiicary, but fixed, 
h>0O denote by p, the probability of at least r visits to J, Then 
Pi + p2 +°*° is the expected number of visits to J, and hence infinite by’ 
the definition of persistency, On the other hand, the preliminary remark 
makes it clear that p,.1 < p,* po,(0). The divergence of 2 Pr therefore . 
‘requires that po,(0) = 1. 

Passing to general intervals I,41, assume first that F is not arithmetic. 

By lemma 2 of V,4a every interval contains a point of increase of F** for 
some k and therefore the probability p,(t) of entering J,,, is positive for 
all 4 > 0. and all ¢. But we saw already that even after entering J,,, a 

return to J, is certain, and by the preliminary remark this implies that 
Po,(—t) = 1. Since A and ¢ are arbitrary this concludes the proof for non- 

arithmetic distributions. But the same argument ‘applies to arithmetic 
distributions. > 

In testing whether the series (10.1) for U{J} converges one has usually to 
rely on limit theorems which provide information only for very large intervals. 
In such situations it is advisable to rely on the following 

Criterion. If F is transient, then x!U{I,} remains bounded as x — ©. 

The assertion is obvious from (10.2) since any interval J,,, may be par- 
titioned into n intervals of the form J,,,. As an illustration of the method 
we prove 

Theorem 4. A distribution with expectation jw is persistent if wu = 0, 
transient if u # 0. 

Proof. Let «= 0. By the weak law of large numbers there exists an 

integer nm, such that P{|S,|< <n} >4 for all n>n,. Accordingly 

Fr*{7} > 4 forall n such that n, <n <aje. If a > 2en, there are more 

than a/(2e) integers n satisfying this condition, and hence U{J,} > a/(4e). 

Since .¢ is arbitrary this implies that the ratio a~!U{J,} is not bounded, and 

hence F cannot be transient. 
If «> 0 the strong law of large numbers guarantees that with a prob- 

ability arbitrarily close to one S, will be positive for all n sufficiently large. 
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The probability of entering the negative half-line infinitely often is therefore 
zero, and thus F ‘is transient. > 

In a persistent process the sequence {S,} necessarily changes sign 
infinitely often and so the ascending and descending ladder processes are 

persistent. It may come as a surprise that the converse is false. Even in a 
transient random walk {S,} may change signs infinitely often (with probability 
one). In fact, this is the Case when F is symmetric. Since a finite interval 

—a, a will be visited only finitely often this implies (very roughly speaking) 

that the changes of signs are due to occasional jumps of fantastic magnitude: 
|S,| 1s likely to grow over all bounds, but the fantastic inequality 

X,u1 < —S, — @ will occur infinitely often however large the constant a. 
Figure 2 illustrates the occurrence of large jumps but is not fully representa- 

tive of the phenomenon~because it was necessary to truncate the distribution 
in order to obtain a finite graph. , 

a
 

‘we 

Figure 2. Random Walk Generated by the Cauchy Distribution. (The distribution was 

‘truncated so as to eliminate jumps of the magnitude of the graph.) - 
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11. GENERAL MARKOV CHAINS 

The generalization of the discrete Markov chains of 1; XV to Cartesian 
(and more general) spaces is simple. In. the discrete case the transition 

probabilities were given by a stochastic matrix with elements p,; whose 

rows: were probability distributions. Now we have to consider transitions 
from a point z to an arbitrary interval or set I’ in R*; we denote the 
probability of this transttion by K(x, I’). The novel feature is that we must 
impose some regularity conditions to ensure that the necessary integrations 

can be performed. Continuity would do for most practical purposes, but 
nothing is gained by restricting the full generality. 

Definition 1. A stochastic kernel K is a function of two variables, a point 

and a set, such that K(x,I) is (i) for a fixed x a probability distribution in 

I, and {ii) for any interval’ a Baire function in x. 

It is not required that K be defined on the whole space. If x and I’ are 
restricted to a set {2 we say that K is concentrated on 2. Sometimes it is 
necessary to admit defective distributions and we speak then of substochastic 

kernels. Frequently XK will be of the form 

(11.1) K(a,T) =| Ke, y) dy 

and in this case k is called a stochastic density kernel. Following the 
convention of V,(3.3) we indicate (11.1) by the shorthand notation 

K(x, dy). = k(x, y) dy. 
[Strictly speaking, k represents densities with respect to Lebesgue measure 

or length; densities with respect to an arbitrary measure m would be 
denoted by K(x, dy) = k(x, y) m{dy}.] 

Before giving a formal definition of Markov chains we can assemble 
the appropriate analytical apparatus by analogy with the discrete case. 
The probability of a transition from x to I’ in two steps is defined by 

(11.2) K®(2,T) = [ ke, dy) K(y,T), 

the integration extending over the whole space or the set Q on which K is 

concentrated. Relation (11.2) states that the first step leads from x to some 

point y and the second from y to I’. The crucial assumption is that, given 
the intermediate point y, the past history in no way influences the further 

transitions. A similar argument holds for the higher transition probabilities 

K™, If we put K") = K we have for arbitrary positive integers 

(11.3) Km (2D) = { K(x, dy)K™y, P); 
Q 
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this reduces to (11.2) when m=n=1. Keeping m=1 and letting 

n=1,2,3,... we get an inductive definition for K'™. For consistency we 
define K‘ to stand for the probability distribution concentrated at the 

point x (the so-called Kronecker delta kernel). Then (11.3) is valid for 
m>0, n> 0. The operation (11.3) between two kernels occurs frequently 

also outside probability theory and is known as composition of kernels. It is 
in all respects similar to matrix multiplication. 

It is hardly necessary to emphasize that the kernels K‘) are stochastic. 
If K has a density, the same is true of K‘") and the composition formula 
for densities is 

(1.4) Kim(a, 2) = | KOM, 9) Ky, 2) dy, 
IQ 

Examples. (a) Convolutions. If k(x, y) = f(y—x), where f is a prob- 

ability density, the composition (11.4) reduces to ordinary convolutions. 
The same is true generally if K is homogeneous in the sense that 

K(x, T) = K(x+s, +s) 

where I’ + 8 is the set obtained by translating I’ through s. For con- 

volutions on the circle see theorem 3 in VIII,7. 

(b) Energy losses under collisions. In physics successive collisions of a 

particle are usually treated as a chance process such that if the energy (or 

mass) before collision equals x > C the resulting energy (mass) is a random 

variable Y such that P{Y¢I"} = K(z,I) where K isa stochastic kernel. 

The standard assumption is that only losses are possible, and that the ratio 

Y/x has a distribution function G independent of x; then P{Y < y} 

= G(y/x) which defines a stochastic kernel. 
In a related problem in stellar radiation [example X,2(b)] Ambarzumian 

considered the special case G(y) = y* for 0<y <1 where 4 isa positive 

constant. This corresponds to a density kernel Ay*-1.2~* concentrated on 

0<y <2 and it is easily verified that the higher densities are given by 

  

x , An A-1 | z\r-1 0 < 

11.5 (x, y) = — ~—llog-] , <1 L. (11.5) (x, y) ar g y 

The particular value 4=1 corresponds to a uniform distribution (the 

fraction lost is ‘randomly distributed’’) and (11.5) then reduces to 1,(8.2). 

[Continued in example X,1(a).] 

(c) Random chains. Consider a chain (or polygonal line) in R* whose 

links have unit length and where the angles between adjacent links depend 

on a chance mechanism. Many (frequently rather involved) variants occur 

in polymer chemistry, but we consider only the case where the successive 

angles are independent random variables. 
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By /ength L of a chain with endpoints A and B we mean the distance 
between A and B. Addition of a unit link to a chain of length x results in 

a chain length Vx? + 1 — 2x cos 6 where @ is the angle between the new 

Imk and the line through A and B. We treat @ as a random variable and 
consider in particular two distributions that are of special interest in chemistry. 

(i) Let @ equal 60° or 120° with probabilities $ each. Then cos @ = +} 
and the length of the prolonged chain is subject to the stochastic kernel 

K(x, [) attributing probabilities 4 to the two points Vx?42+1. For 

fixed x the distribution K'™ is concentrated on 2” points. 
(ii) Let the direction of the new link be chosen “‘at random,”’ that is, 

suppose cos@ to be uniformly distributed in —1,1. (See 1,10.) The 
prolonged chain has a length L between x +1 and |x —1|. Within chis 
range by the law of the cosines 

P{L < y} = PQxrcos9 >a? +1 4+ y7?} = § — [x?+1+y?]/4e. 

Thus the length is determined by the stochastic density kernel 

k(x, y).= y/2x j~—I]<y<urt+l. 

The length Ly, of a chain with n +1 links has density k™(1,y). (See 
problem 23.) 

(d) Discrete Markov chains. A stochastic matrix (p,,;) may be considered 

as a stochastic density k(i, /) = p,; defined on the set Q of positive integers 

and with respect to the measure m attributing unit weight to each integer. 

Absolute and Stationary Probabilities 

Saying that a sequence Xp, X;,... is subject to the transition probabilities 
K™ > means that K'™(z,I) is the conditional probability of the event 
{Kinin eC} given that X,, =z. If the probability distribution of X, is 
Yo the probability distribution of X,, is given by 

(11.6) yAT) = [potas K(x, T). 

Definition 2. The distribution yo is a stationary distribution for K if 
Yn = Yo forall n, that is, if 

(11.7) roll} = | yeldz) (2,0). 
The basic facts concerning stationary distributions are the same as in 

the case of discrete Markov chains. Under mild regularity conditions on 
K there exists a unique stationary distribution and it represents the asymptotic 
distribution of X,, under any initial distribution. In other words, the influence 

of the initial state fades away and the system tends to a steady state governed 
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by the stationary solution. This is one form of the ergodic theorem. (See 
VIllI,7.) 

Examples. (e) The queuing process {W,} defined in (9.1) is a Markov 
t-— 

process concentrated on the closed interval 0, oo. The transition prob- 
|. 

abilities are defined only for x,y >0 and there K(zx,0,y) = F(y--2). 
The existence of a stationary measure will be proved in VIII,7. 

‘(f) Let X,,Xo,... be mutually independent positive variables with a 
distribution F with a continuous density f concentrated on 0, o0. Define 
a sequence of random variables Y, recursively by 

(11.8) Yi=X 9 Yuu =1¥, — Xpal- 

Then {Y,,} isa Markov chain concentrated on 0, oo with transition densities 

_ fey) + f(et+y) O<y¥<x 

f(z+y) y>x>0. 

The defining equation for a stationary density g is 

(11.9) k(x, y) 

11) a) = [eet slo de + [ae flety de 
If F has a finite expectation w then 

(11.11) gy) = we [1-FYy)] 

is a stationary probability density. In fact, a simple integration by parts 
will show that g satisfies?’ (11.10) and we know from V,(6.3) that g isa 
probability density. (See problem 22.) . 

(g) A technical application.2®> A long transmission line consists of indi- 
vidual pieces of cable whose characteristics are subject to statistical fluctua- 
tions. We treat the deviations from the ideal value as independent random 
variables Y,, Y2,... and suppose that their effect is additive. Reversing 
a piece of cable changes the sign of its contribution. Assume that the 
deviations 1), are symmetric and put X, = [Y,|. An efficient construction 

of a long tr: nsmission line now proceeds by the following inductive rule: 
the (7-+1)st piece of cable is attached in that position which gives its error a 
  

2? How does one discover such a thing? Assuming hopefully that g and f have deriv- 
atives we may differentiate (11.10) formally. An integration by parts leads to the relation 
& ty) = —g(O) f(y) showing that g must be of the form (11.11). Direct verification then 

proves the validity of (11.11) without differentiability conditions. 
28 Adapted from a discrete model used by H. von Schelling, Elektrische Nachr.-Technik, 

vol. 20 (1943) pp. 251-259. 
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sign opposite to the sign of the accumulated error of the preceding 1 pieces. 
The accumulated errors then follow the rule (11.8); the stationary density 
(11.11) is actually a limiting distribution: the error of a line consisting of n 
pieces is (for large n) distributed approximately with density (11.11). On the 
other hand, if the pieces of cable were combined randomly, the central limit 

theorem would apply and the variance of the error would increase linearly 
with x, that is, with the length of the cable. The simple procedure of testing 

the sign of the error thus permits us to keep it in bounds. > 

In the preceding examples a Markovian sequence Xp, X,,... was defined 

in terms of an initial distribution y, and the transition probabilities K. 
The joint distribution of (Xp, X,,..., X,) is of the form 

Vo{dxo} K(Xo, dx) +++ K(¥q_1, d%q) 

discussed in III,8 and 1; XV,1. We have here a typical example of the 

advantage of defining absolute probabilities in terms of cofiditional ones. A 

more systematic way would be to start from the postulate 

(11.12) P{Xay1 EL | Xo = 2,...,X, = zy} = K(tq. LY 

as definition. Here the Markov property is expressed by the fact that the 

right side is independent of x, 2,,...,2,_, so that the “past history” has 
no effect. The disadvantage of this definition is that it would involve us in 
problems of existence of conditional probabilities, their uniqueness, etc. 

(For Markov processes depending on a continuous time parameter see 
chapter X.) 

*12. MARTINGALES 

For a first orientation we may consider a stochastic process {X,} such 

that the joint distribution of (X;,..., X,) has-a strictly positive continuous 

density p,. Conditional densittes and expectations are then defined every- 

where in the elementary way of III,2. The variables X,, and Y, are 

supposed to have expectations. 
The sequence {X,} will be called absolutely fair if for n= t,2,... 

(12.1) E(X,) = 0, E(X,+; X,,...,X% )=0. 

A sequence {Y,} is a murtingale if 

(12.2) E(Y,.41/Y,..... Y)<=Y,, n=1,2.... 
  

(A more flexible definition will be given presently.) 

* Martingales are treated because of their great importance, but they are not used as 

a too! in this book. 
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The connection between the two types is simple. Given an absolutely 
fair sequence {X,} put 

(12.3) Y,=X,+°°°+XK, +e 
where c is a constant. Then 

(12.4) E(Y ...,%,)=Y           

The conditioning variables X, may be replaced by. the Y,, and so (12.4) is 
equivalent to (12.2). On the other hand, given a martingale {Y,} put 
X, = Y, — E(Y,) and X,,, = Y,. Then {X,} is absolutely fair and (12.3) 
holds with c = E(Y,). Thus {Y,} is a martingale iff it is of the form (12.3) 
with {X,} absolutely fair. 

The concept of martingales is due to P. Lévy, but it was J. L. Doob who 
realized its unexpected potentialities and developed the theory. It will 

be shown in VII,9 that under mild boundedness conditions the variables 
Y, of a martingale converge to a limit; this fact is important for the modern 
theory of stocHastic processes. 

Examples. (a) Classical gambling is concerned with independent variables 
X, with E(X,) = 0. Such a game is absolutely fair?® and the partial sums 

S, = X, +::: +X, constitute a martingale. Consider now an ordinary 
coin-tossing game in which the gambler chooses his stakes according to 
some rule involving the outcome of previous trials. The successive gains 
cease to be independent random variables but the game remains absolutely 
fair. The idea of a fair game is that the knowledge of the past should not 
enable the gambler to improve on his fortunes. Intuitively this means that 
an absolutely fair game should remain absolutely fair under any system of 
gambling, that is, under rules of skipping individual trials. We shall see that 
this is so. 

(b) Palya’s urn scheme of {1; V,2(c)]. An urn contains b black and r 

red balls. A ball is drawn at random. It is replaced and, moreover, c balls 
b . 

of the color drawn are added. Let Y, = bis and let Y, be the proportion 

of black balls attained by the mth drawing. Then {Y,} is a martingale. In 

this case the convergeuce theorem guarantees the existence -f a limit distri- 

bution (see examples VII,4(a) and VII,9(a)]. 

(c) Concordant® functions. Let {X%,} be a Markov chain with transition 

probabilities given by: the stochastic kernel K. Nothing is assumed con- 

cerning the expectations of X,. The function u is called concordant with 

29 The practical limitations of this notion are discussed in 1; X,3. It will be recalled 
that there exist “fair’’ games in which with probability >1 — « the gambler’s gain at the 
nth trial is as large as, say, n/log a. 

8 This term was introduced by G. Hunt. 
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respect to K if 

(12.5) u(x) =| Ke, dy) u(y). 

Define random variables Y, by Y, = u(X,) and assume that all expectations 
exist (for example, that u is bounded). The relation (12.5) is the same as 

E(Yp41 |X, = 2) = u(x), and thus E(Y,,,|X,) = Y,. Since {X,} is 
Markovia:. this implies (12.4), and since Y, is a function of X,, this in 

turn implies (12.2) (see V,10a). Thus {¥,} is a martingale. This 

result is of great value in the boundary theory for Markov chains because 
the existence of a limit for Y, usually implies the existence of a limit for 
the given sequence {X,}. [See exampies (f) and VII,9(c).] 

(d) Likelihood ratios. Suppose it is known that in a stochastic process 
X,, X2,... the joint densities of (X,,..., X,) areeither p, or g,, but we 

do not know which. To reach a decision statisticians introduce the new 

random variables 

(12.6) yw UnfX ee Mn) | 
n p,(X1, sey X,,) 

Under sufficient regularity conditions it is plausible that if the true densities 
are p, the observed values of X,,..., X,, will on the average cluster around 

points where p,, is relatively large. If this isso Y, is likely to be smail or 
large according as the true density is p, or 9g,. The asymptotic behavior 

of {Y,} is therefore of interest in statistical de¢ision theory. 
For simplicity we assume that the densities p, are strictly positive and 

continuous. If the p, represent the true densities, then the conditional 
density of X,., for given X,,...,X, equals the ratio p,4;/p,, and hence 

  

  

(12.7) E(Yju.|X,=2,...,X, =2,) = | 

-{* Gn+i(Xy, ee) Xn, y) . Pnoil%, e989 Zn y) dy 

a. Proi(2, see y Ty, y) P(X, cs Lp) 

The factors p,,; cancel. The second denominator is independent of y, 
and the integral of g,,, is given by the marginal density ¢,4,. Thus (12.7) 

reduces to q,/p, and so (12.4) is true. Accordingly, under the present 

conditions the likelihood ratios Y, form a martingale. > 

The conditioning used in (12.2) is not particularly fortunate because one 

has frequently to replace the conditioning variables Y,,..., ¥, by some 

functions of them. {Such was the case in (12.4).] A greater defect is revealed 

by example (a). The underlying process (say coin tossing or roulette) is 

represented by a sequence of random variables Z,, and the gambler’s 

gair. at the (n+1)st trial is some function of Zj,..., Zrsi and, perhaps, 

other variables. The observable past is represented by (Z,,-...,Z,), 
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which may provide more information than the past gains. For example, 

if the gambler skips trials number 1, 3, 5,... the knowledge of his gains up 
to epoch 2n is at best equivalent to the knowledge of Z,, Z,,..., Zon: 
Here the additional knowledge of Z,, Z3,... could in principle imply an 

advantage, and absolute fairness in this case must be based on conditioning 
by Z,,...,£Z,. Thus conditioning with respect to ‘several sets of random 

variables may be necessary, and to take care of all situations it is best to use 

the conditioning with respect to arbitrary o-algebras of events. 
Consider then a sequence {Y,,} of random variables in an arbitrary 

probability space and denote by %, the o-algebra of events generated by 
(Y,,..., ¥,) (see V,10a). The defining relation (12.2) is now the same as 
E(Y,.1|%,) = ¥,. We want to take this as the defining relation but 

- replace the o-algebra %, by a larger o-algebra 8,. In most cases 8B, will 
be generated by Y,,...,Y, and additional random variables depending 
on the past. The idea is that any random variable depending on the past 
must be measurable with respect to 8,, and in this sense 8, represents the 
information contained in the past history of the process. As this information 
grows richer with time we shall suppose that the B, increase, that is, 

(12.8) B, <5 By ceee, 

Definition 1. Let Y,, Y;,... be random variables with expectations. Let 

B,, Bs,... be o-algebras of events satisfying (12.8). 
The sequence {Y,} is a martingale with respect to {B,} iff 

(12.9). | E(Y,41|8,) = Yo 

[Because of the non uniqueness of the conditional expectations, (12.9) 

should be read “there exists a version of the conditional probability for 

which (12.9) is true.’ This remark applies in the sequel.] 
Note that (12.9) implies that Y, is 8, measurable, and this has two 

important consequences. Since 8, > 8,_, the basic identity V,(11.7) for 

iterated expectations shows that 

E(Y,41 | 8,1) = Y,-1 

By induction it is seen that the definition (12.9) entails the stronger relations 

(12.10) E(Y,21| By) = Y,. , k& 1,2,... >. 

It follows in particular that every subsequence Y,, Y,,.... of a martingale 
is again a martingale. 

Next we note that %, contains the o-algebra generated by the variables 

Y,,..., Y,, .and the same argument shows that {Y,} is also a martingale 

with respect to {Q,,}. Thus (12.9) implies (12.2). 
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Example. (e) Let the o-algebras 8, satisfy (12.8) and let Y be an 
arbitrary random variable with expectation. Put Y, = E(Y | %,). Then 

Y, is 8,-measurable and hence (12.9) is true. Thus {Y,} isa martingale. » 

Returning to example (a) it is now easy to prove the impossibility of 

systems of a fairly general type. Let {Y,} be a martingale with respect to 
{B,,}. To describe the gambler’s freedom to skip the mth trial we introduce a — 
decision function €,; this is a 8,_, measurable*! random variable assuming 
only the values 0 and 1. In theevent €, = 0 the gambler skips the nth trial; 
in the event €, = 1 he bets and in this case his gain at the nth trial is 

Y, — Y,-1. Denoting his accumulated gain up to and including the nth 
trial by Z, we have . 

(12.11) Z, = Zy-1 + €L¥n — Yn-1]. 

By induction it is seen that Z, has an expectation. Furthermore, Z,_1, € 

and Y,_, are %,_, measurable and hence [see V,(11.6)] 

(12.12) E(Z, | Bp-1) = Za-1 + €,[E(Y, | Ba) — Yu-al- 

Since {Y,} is a martingale the expression within brackets vanishes, and so 

{Z,,} is a martingale. We have thus proved a theorem due to P. R. Halmos 

implying the 

n? 

Impossibility of systems. Every sequence of decision functions €, €s,... 

changes the martingale {Y,} into a martingale {Z,}. 

By far the most important special case concerns optional stopping. By . 

this is meant a system where the first N trials are accepted and all succeeding 
ones skipped; the Nth trial is the last. Here N (the stopping epoch) is a 
random variable such that the event {N > k} isin %,. (In the notation of 

the theorem €, = 1 for N>&A—1I1 and e,=0 for N<k—1.) We 

have thus the 

Corollary. Optional stopping does not affect the martingale property. - 

Examples. (f) A simple random walk on the line. starts at the origin; 
the particle moves with probability p one step to the right, with probability 

qg=1-—p tothe left. If S, is the position of the particle at epoch 7 it 

is easily seen that Y, = (g|p) constitutes a martingale with E(Y,) = 1 

and E(Y,) = 1. [This is a special case of example (c).] 

In the ruin problem the random walk is stopped when it first reaches 

one of the positions —a or b, where a and 6 are positive integers. In this 

31 This condition guarantees that the decision is made on the basis of past history of 

observations. No mathematical theory can disprove prescience of the future, we must 

exclude it from our models. 
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modified process —a <8, <6 and with probability one S,, is ultimately 
fixed at 5 or at —a. Denote the corresponding probabilities by x and 
| —zx. Since S, 1s bounded 

E(S,) > x: (2) + a—a(2)" 

But E(S,) = 1 because the expected value of the martingale remains 
constant. The right side, therefore, equals 1, and this linear equation 

determines: x. We have thus found the probability x of termination at b 
derived by different methods in 1; XIV,2. The formula breaks down when 

Pp =4, but in this case {S,} is a martingale and the same argument shows 

that x = a/(a+b). Although the result is elementary and known, the argu- 
ment illustrates the possible uses of martingale theory. 

- (g) On systems. Consider a sequence of independent random variables 
X, where X, assumes the value +2” with probability $ each. A gambler 
tosses a coin to decide whether he takes the mth bet. The probability that his 
first try occurs at epoch nm is 2~” and in this case his gain is +2”. Thus 
the gambler’s gain at his first try is a random variable without expectation. 
The system theorem therefore depends on the fact that we have not changed 
the time parameter. > 

It is frequently necessary to work with absolute values and inequalities, 
and for such purposes it is convenient to have a name for processes satisfying 
(12.9) with the equality replaced by an inequality. 

Definition 2. The sequence {Y,} is a submartingale® if it satisfies the 
martingale definition (12.9) with the equality sign replaced by >. 

It follows again immediately that every submartingale satisfies the stronger 
conditions. 

(12.13) E(Y,4:|8,) > Y;,; K=1,...,n. 

Lemma. If u is a convex function and {Y,} a martingale, then {u(Y,)} is 
a submartingale provided the expectation of u(¥,) exists. In particular, 
{|Y,,|} is a submartingale. . 

The proof is immediate from Jensen’s inequality [V,(8.6)] which applies to 
conditional expectations as well as to ordinary ones. It states that 

(12.14) E(u(Yn41) |B.) > u(E(Yn+1 | B,)): 

and the right side equals u(Y,,). 

32 The older term “lower semi-martingale”’ is now falling into disuse. 
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The same proof shows that if {Y,} is a submartingale and u a convex 
non-decreasing function, then {u(Y,)} is again a submartingale. provided 
u(Y,) has an expectation. 

13. PROBLEMS FOR SOLUTION 

1. The definition (1.2) of stable distributions is equivalent to: R is stable iff 
to arbitrary constants c,, cg there exist constants c.and y such that 

d 
CyXy + CgXg = CX + yy. 

2. Every stable distribution is continuous. It suffices to prove it for symmetric 
R. From (1.3) conclude: If R had an atom of weight p at the point s > 0, 
then it would have an atom of weight >p? at each point of the form s(¢m + ¢Cn)/Cmin 
(see V,4a). Furthermore, a unique atom of weight p <1 at the origin would 
induce an atom of weight p® at the origin for R 4% R whereas stability requires an 
atom of weight p. 

3. For F to be stable it suffices that (1.2) holds for n =2 and 3. (P. Lévy) 

Hint: Products ofthe form cjck where j,k =0, +1, +2,... are either dense 
in 0, © or powers of a fixed number c. The latter must be shown to be im- 

possible in the present case, 

Note. Curiously enough it does not suffice that (1.2) holds for n =2. See 
example XVII,3(/) and problem 10 of FX,10. 

4. For a stable distribution with exponent « = 1 the centering constants in the 
defining relation (1.2) iau-fy mn = M¥n +nYm [see (1.6)]. The analogue to 

(1.8) is 

s(X, +y log s) + #(X,+y log r) (s+ t)(X +y' log (s + 2). 

5. If F and G are stable with the same exponent « so is Fy G. Find the 
centering constants y, for F%&G in terms of the constants for F and G. 

6. For a symmetric stable distribution R the symmetrization inequality V,(5.11) 
implies that nfl —R(c,«)] remains bounded. Conclude that R has absolute 
moments of order <a. [Use V,(6.3).] By symmetrization the last statement 
carries over to unsymmetric R. 

7. Alternative derivation of the Holtsmark distribution. Consider a ball of 

radius r about the origin and a stars (points) placed independently and randomly 
in it. Let each star have unit mass. Let X,,...,X, be the x-components of 

the gravitational force due to the individual stars, and S, = X, +°°: + Xp. 

Let r+ 0, n+ so that {r3an71-. A. Show that the distribution of S,, 
tends to the symmetric stable distribution with characteristic exponent 3. 

8. Show that the preceding problem is not essentially modified if the mass of a 

star is assumed to be a random variable with unit expectation provided the masses 

of the stars are mutually independent and also independent of the position of the 

stars. 

9. Holtsmark distribution, four dimensions. The four-dimensional analogue to 

the Holtsmark distribution is a symmetric stable distribution with characteristic 

exponent 4. ({n four dimensions the gravitational force varies inversely as the 

third power of the distance.) 
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10. A triangular array {X;,,,} with r, components in the nth row can be trans- 
formed into an essentially equivalent array with n components in the nth row by 
adding dummy variables assuming only the value zero and repeating certain rows 
an appropriate number of times. 

11. Let {X, n} be a triangular null array with a common distribution F, for 
Xin.---+>Xnn- Does P{max ([Xy nls... [Xn nl) > «} tend to zero? 

12. Find the density for the renewal function U of (6.3) if F has the density 

(a) f@) =e, and (6) f(@) = xe. 
13. In a terminating process F has density pcet. Find the distributions of 

the lifetime and of the number of renewal epochs. 

14, Generalized terminating renewal process. Instead of assuming that with 
probability g the process terminates instantaneously we let it (with probability q) 
continue for a random duration with a proper distribution Fy and then stop. In 
other words, the renewal epochs are of the form T, +:--+T, + Y where 
the /ast variable has a different distribution. Show that the distribution V of the 
duration of the process satisfies the renewal] equation 

(*) V=qFyo + FeV  (F(o) = 1 — 4). 

15. Show that the waiting time problem for large gaps reduces to a special case 
of the process described in the last problem. Put (7.1) into the form (*). 

16. Poisson process and covering theorems. We recall from example III,3(d@) 

that if in a Poisson process n renewal epochs occur in 0, ¢ their (conditional) 
distribution is uniform. The probability 1 — V(t) that no gap of length & appears 
follows therefore from the covering theorem 3 in I,9 in the form 

oD n—1 

ty 1 VQ =e FTO only, 

(a) Verify that this is indeed a solution of (7.1) when F(@v) = 1 — e®. 
(b) Given (f) is the unique solution of (7.1), derive the covering theorem from 

it. (This is an instance of a proof by randomization. See problem 5 of 1; XII, 6.) 

17. The waiting time for the first lost call in example 7(/) should be interpreted 
as the total lifetime of the terminating process obtained by stopping the original 
process when for the first time a call arrives during a busy period.3* Show that the 
distribution H of the duration of the busy. period of the terminating process is 
given by HA {dt} = e-st F{dr}, and the recurrence times have the distribution 
G * H. (See also problems 3-4 in XIV,10.) 

18. Let V be the distribution of the busy period in. example 7(g) (“last come 
first served”). Show that V satisfies the renewal equation V(t) = A(t) + B*& V(t) 
where A .and B are defective distributions given by A{dx} = e~* G{dx}, and 
B{dx} = [1—G(x)]ce-** dx. (Show that we are concerned with a generalized 
terminating process in the sense of problem 14: a renewal process generated 
by B is followed by an undisturbed dead period, the latter having a distribution 
proportional to A.) 

33 This simple approach replaces complicated procedures suggested in the literature and 
leads to simpler explicit results. For explicit solutions and estimates see X1,°. 
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19. Small gaps in a Poisson process.* A “coincidence” is said to occur at epoch 
S, if the distance of the renewal epochs S,_, and S, is <é&. Find a renewal 
equation for the distribution of the waiting time for the first coincidence. From 
this renewal equation conclude that the distribution is proper. 

20.°° Generalization. In the standard renewal process S, = T, +°-: + Tp find 
a renewal equation for the distribution of the waiting time to the first occurrence 
of the event {T, < Y,}, where the ¥, are independent of the process and of 
each other and have common distribution G. 

21. Let a,,...,@, bea finite numerical sequence with partial sums 

Sp = Qy +c: + ay. 

Define recursively 

vy = ay, U 0, vo = (v, +4y_1) U 0, cee sy VQ = (Un_1 +a,) U0. 

Prove by induction that v, = max [0,5,,...,5,]. Show that this implies the 
theorem of section 9. 

22. In example 11(f) assume that f(x) =1 for 0<2z <1. Prove that 
g(y) = 2(1 — y) is a stationary density and that k(™(«,y) =g(y) for n > 2. 
If f(x) = ae-e= then g(x) = f(@). 

23. Define a stochastic density kernel concentrated on 0, 1 by 

k(z,y) =401 —2)? if O<r<y <1 

and 
k(x, y) = $7} if O<y <a <i. 

Find a stationary density. (It satisfies a simple differential equation.) Interpret 
probabilistically. 

24. A Markov chain on 0,1 is such that if X, =x then X,,, is uniformly 
distributed on 1 — 2,1. Show that a stationary density is given by 22. (T. 
Ugaheri.) 

25. A Markov chain on 0, « is defined as follows: If X, =, then X,,, is 

uniformly distributed over 0,22 (here n =0,1,...). Show by induction that 
the n-step transitions have density kernels given by 

i lo ane 
xa? y 

and k‘")(xz, y) = 0 elsewhere. 

n—1 

kK (2, y) = if O<y <2" 

34 For variants (treated differently) see E. N. Gilbert and H. O. Pollak, Coincidences 

in Poisson patterns, Bell System Technical J., vol. 36 (1957) pp. 1005-1033. 

35 The “large gap” problem admits of a similar generalization with an analogous answer. 

 



CHAPTER VII 

Laws of Large Numbers. 

Applications in Analysis 

In the first part of this chapter it is shown that certain famous and deep 
theorems of analysis can be derived with surprising ease by probabilistic 
arguments. Sections 7 and 8 treat variants of the laws of large numbers. 
Section 9 contains a restricted version of the martingale convergence theorem 
and stands somewhat apart from the remainder. 

1. MAIN LEMMA AND NOTATIONS 

By way of preparation consider a one-dimensional distribution G with 

expectation 6 and variance o*. If X,,...,X, are independent variables 
with the distribution G, their arithmetic mean M, = (X, +-:-: + X,)77 

has expectation @ and variance o®7!. For large n this variance is small 
and M,, is likely to be close to 6. It follows that for every continuous 

function u(M,) is likely to be close to u(@). This remark constitutes the 
weak law of large numbers. It is slightly generalized in the following lemma, 

which despite its simplicity will prove a source of valuable information. 
For n = 1,2,... consider a family of distributions F,, , with expectation 

6 and variance o%(6); here 6 is a parameter varying in a finite or infinite 
interval. For expectations we use the notation 

(1.1) E,, o(u) = * u(a) Fa g{de}. 
—o 

Lemma 1. Suppose that u is bounded and continuous, and that o7(0) > 0 

for each 6. Then 

(1.2) E,, o(u) — (0). 

The convergence is uniform in every closed interval in which o'(8)—>0 

uniformly. 

219 
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Proof. Obviously 

(1.3) IE, o(u)—u(O)I < i_ |u(2)—u(6)I Fy, 942}. 

There exists a 6 depending on 6 and e such that for |z—6| <6 the 
integrand is <e. Outside this neighborhood the integrand is less than some 
constant M, and by Chebyshev’s inequality V,(7.2) the probability carried 

by the region |x—6| > 6 is less than o%(6)d-?. Thus the right side will be 
<2e as soon as n is So large that 02(6) < «6?/M. This bound on n is 

independent of @ if o2(@)—-0 uniformly and if wu is uniformly 
continuous. > 

Examples. (a) If F,,4 is a binomial distribution concentrated on the 

points k/n (k =0,...,m), then o2(6) = 6(1—6)n-! — 0 and so 

(1.4) Su (") (7) 61 —0)"-* + u(6) 
n=0 \n/ \k 

uniformly in 0 < @ <1. The implications are discussed in section 2. 

(b) If F,,. is the Poisson distribution attaching probability e-"8(n0)*/k! 

to the point k/n, we have o2(6) = 6/n and so 

(1.5) aw Sul 7 ar — u(6) 
uniformly in every finite 0-interval. This formula is valid also for non- 
integral nm. (Continued in sections 5 and 6.) 

(c) Taking for F,,, a gamma distribution with expectation 6 and 
variance 6/n we get 

oO n—1 

ao A uz) (7) ene EE 6) 
uniformly in every finite interval. Again this formula holds for non-integral 
n provided (n—1)! is replaced by [(m). It will be shown in section 6 that 

(1.6) is an inversion formula for Laplace transforms. 
(d) Statisticians frequently face the situation described at the beginning 

of this section but consider the expectation @ an unknown parameter to 
be estimated from observations In statistical language the relation(1.2) 
then states that u(M,,) is an asymptotically unbiased estimator for the unknown 

parameter u(6). [The estimator would be unbiased if the two sides in (1.2) 

were equal. ]} > 

  (1.6) 

We shall see that each of these examples leads to important results of 
independent interest, but some preparations are necessary for the further 

development of the theory. 
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Notations for Differences 

In the next few sections we shall employ the convenient notations of the 
calculus of finite differences. Given a finite or infinite numerical sequence 
Ay, @,,... the differencing operator A is defined by Aa, = a,,, —a,. It 
produces a new sequence {Aq,}, and on applying the operator A a second 
time we get the sequence with elements 

2g = — 
Ata; = Aa,,, — Aa; = 4,2 — 24,41 + a. 

Proceeding in like manner we may define the rth power A’ inductively by 
A’ = AA‘. It is easily verified that 

(1.7) Afa, => (7) aes 
j=0 \j 

For consistency we define A° as the identity operator, that is, A°a, = a,. 
Then (1.7) holds for all r > 0. Of course, if a,...,a@, is a finite sequence 
the variability of r is limited. 

Many tedious calculations can be avoided by noticing once and for all a 
curious reciprocity relation valid for an arbitrary pair of sequences {a,} 

and {c,}; it enables us to express the differences A’a, in terms of A’c, and 

vice versa. To derive it multiply (1.7) by (’) c,and sum overr = 0,...,». 
: , r; . 

The coefficient of a;,, is found to equal 

EQ) ere cor (ECP) carmen 
(Here the new summation index k = r —j was introduced.) The last sum 
equals A’~’c,, and thus we have found the 

General reciprocity formula 

(1.8) Se,(”)ara = Sains(")(—1y a ey 

r=0 r j=0 J 

Examples. (a) (Inversion formula.) Consider the constant sequence with 
a, =1 for all i. Then A®%a, = 1 but all other differences vanish, and so 
(1.8) reduces to 

(1.9) => (")-ares 

If we change the sequence {c;} into {c,,;} we see that (1.9) remains valid 
with cy and c,; replaced by c, and c,,,, respectively, and so (1.9) is an 
inversion formula expressing the given sequence in terms of its differences 

Here » can be chosen arbitrarily. 
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(b) Let 0< 6 <1 be fixed and define c, = 6". Then 
Ake, = 6"(1 — 6)*(—1) 

and so (1.8) takes on the form 

(1.10) y a*(")ara = Dans(") 6(1—6)-4, 
r=0 

We deal frequently with sequences with terms a, = u(x+kh) obtained 
from a function wu by fixing a point x and a span A> 0. For obvious 
reasons it is then convenient to replace the difference operator A by the 
difference ratios A = hA. Thus 

kh 

(1.11) A u(x) = [u(z+h)—u(x)]/h 
and more generally , 

(1.12) Af u(x) = hry (")(—ay'u(e-+ jm). 
h 7=0\j 

In particular, A°® u(x) = u(2). 
h 

2. BERNSTEIN POLYNOMIALS. ABSOLUTELY 

MONOTONE FUNCTIONS 

We return to the important relation (1.4). The left side is a polynomial, 
called the Bernstein polynomial of degree n corresponding to the given 
function u. To emphasize this dependence we shall denote it by B,,. Thus 

n 

(2.1) B,,wW0) = du(jh) ("\ea-or- 
j=0 

where for convenience we put m=! =h. Comparing with (1.10) one sees 
that B, ,, may be written in the alternative form 

(2.2) Ba «(6) = 3, (")(n0y 4° u0), h=t. 
r=0\r h n 

An amazing number of far-reaching conclusions can be drawn from the 
discovery that the representations (2.1) and (2.2) for the Bernstein poly- 

nomial are equivalent. Before proceeding in this direction we restate for the 
record the result derived in example 1(a). 

— 
Theorem 1. Jf u is continuous in the closed interval 0,1 the Bernstein 

polynomials B,,.,,(8) tend uniformly to u(@). 

In other words, for given « > 0 

(2.3) 1B, ,(0)—u(6)| < «, 0<6<1, 
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for all sufficiently large. The famous Weierstrass approximation theorem 
asserts the possibility of uniform approximation by some polynomials. The 
present theorem is sharper inasmuch as it exhibits the approximating 
polynomials. The above proof is due to S. Bernstein. 

As a first application of our dual representation for Bernstein polynomials 
we derive a characterization of functions that can be represented by a power 
series with positive coefficients: 

(2.4) u(x) = Po + Pi + pot? +*-°, p; 20, O0<zr<l. 

Obviously such a function possesses derivatives of all orders and 

(2.5) | u™ (x) > 0, O<ar<l. 

For many purposes in analysis it is.important that the converse is also true, 
that is, any function with the property (2.5) admits of a power series represen- 
tation (2.4). This was first observed by S. Bernstein, but the usual proofs are 

neither simple nor intuitive. We shall show that the representation (2.2) for 
Bernstein polynomials leads to a simple proof and to the useful result that 
the two. properties (2.4) and (2.5) are equivalent to a third one, namely 

1 (2.6) Afu(0)>0, k=0,...,n—1, h= 
h n 

These results are of interest for probability theory, because if {p,} is a 
probability distribution on the integers, (2.4) defines its generating function 

(see 1; XI), and so we are dealing with the problem of characterizing 

probability generating functions. Among our functions they are distinguished 
by the obvious norming condition u(l)=1. However, the example 
u(x) = (1—z)"! shows that functions with the series representation (2.4) 

need not be bounded. 

Theorem 2. For a continuous function u defined for 0 <x <1 the three 

properties (2.4), (2.5), and (2.6) are fully equivalent. 

Functions with this property are called absolutely monotone in 0, 1. 

Proof. We proceed in two steps and consider first only probability 

generating functions. In other words, we assume now that u is continuous 
b+ 

in the closed interval 0,1 and that u(i) = 1. 

Obviously (2.4) implies (2.5). If (2.5) holds then u and all its derivatives 

are monotone. The monotonicity of u implies that A u(x) > 0, while the 
h 

monotonicity of u’ implies that A u(x) depends monotonically on x and 
a) 

hence A?u(x) >0. By induction we conclude that (2.5) implies (2.6), 
h 

and also A" u(0) > 0. 
A 
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Assume (2.6) for k =0,...,7. In view of (2.2) the polynomial B,, 
has non-negative coefficients, ‘and (2.1) shows that B, ,(1) = Thus 
B,,, 18 a probability generating function, and the continuity theorem of 1; 
XI,6 (or below VIII,6) assures us that thelimit u of B, ,, isitselfa probability 
generating function. (The assumption u(1)=1 guarantees that the 
coefficients add to unity.) This concludes the proof for bounded functions. 

If wu is unbounded near 1 we put 

(2.7) v(2) = u(™— 2) /u(™—), 0<e<i 
m m 

  

  

where m is an arbitrary integer. The preceding proof applies to v and shows 
that each of the properties (2.5) and (2.6) imply the validity of a power series 
expansion (2.4) at least for 0 << 2 < (m — 1)/m. Because of the uniqueness 
of power series representations ard the arbitrariness of m this implies that 
(2.4) holds for O< x <1. > 

3. MOMENT PROBLEMS 

In the last theorem we encountered sequences {a,} all of whose differences 
were positive. In the present section we shall be concerned with the somewhat 
related class of sequences whose differences alternate in sign, that is, sequences 
{c,} such that 

(3.1) (—1)’A’c, > 0, r=0,1,... 

Such sequences are called completely monotone. 

-— 
Let F be a probability distribution on 0,1 and denote by E(u) the 

integral of u with respect to F. The kth moment of F is defined by 

(3.2) Cc, = E(X*) = [ tt F{dz} 
0 

it being understood that the interval of integration is closed. 

Taking successive differences one finds that 

(3.3) (DA, = E(CXK(L — xy) 
and hence the moment sequence {c,} is completely monotone. Now let u 

t— 
be an arbitrary continuous function in 0, 1 and let us integrate the expression 
(2.1) for the Bernstein polynomial B, , with respect to F. In view of (3.3) 
we get 

3.4) E(B.) = Suin(")(—Iiare 
j=0 

n 

=2u (jh)p\” (h =n), 
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where we put for abbreviation 

(3.5) py = (“\( priate, 

With the special choice u(x) = 1 wehave B, ,(z) = 1 forall x, and hence 
the p;”’ add to unity. This means thatforeach n the p'”) define a probability 
distribution attributing weight p\™ to the point jh = j[n. (Here j = 0,...,7.) 
We denote this probability distribution by F,, and the expectations with 
respect to it by £,. Then (3.4) reduces to E,,(u) = E(B,,,,): In view of the 
uniform convergence B, ,,—>u this implies that 

(3.6) E, (u) —> E(u). 

So far {c,} was the moment sequence corresponding to a given distri- 

bution F. But we may start from an arbitrary completely monotone sequence . 

{c,} and again define p‘”) by (3.5). By definition these quantities are non- 
negative, and we proceed to show that they add to cg. Indeed, by the basic 
reciprocity formula (1.8) 

n 

(3.7) Su(jh)p™ = Se, (") At AT u(0). 
j=0 

For the constant function u=1 the right side reduces to cg, and this 
proves the assertion. 

We see thus that any completely monotone sequence {c,} subject to the 
trivial norming condition cg = 1. defines a probability distribution {p‘”}, 
and the expectation E,(u) of u with respect to it is given by (3.7). It is 

interesting to see what happens when m-— > oo. For simplicity let u bea 

polynomial of degree N. Since h=1/n it is not difficult to see that 
A? u(0) > u'(0). Furthermore n(@z — 1)-+-(2 —r + Ih’-> 1. The series 
h 

on the right in (3.7) contains at most N + 1 terms, and so we conclude that 

as n-> 00 

~ Cr (r) (3.8) E,(u) > > uO) 
r—o rt 

for every polynomial of degree N. In particular, when u(x) = x” we get 

(3.9) E,,(X”) > ¢,. 

In other words, the rth moment of the probability distribution F,, tends to Cy. 

It is therefore plausible that there should exist a probability distribution F 

whose rth moment coincides with c,. We formulate this as 

Theorem 1. The moments c, of a probability distribution F form a 

completely monotone sequence with Cy = 1. Conversely, an arbitrary completely 
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monotone sequence {c,} subject to the norming ¢y = 1 coincides with the 

moment sequence of a unique probability distribution. 

This result is due to F. Hausdorff and was justly celebrated as a deep and 

powerful result. The systematic use of functional analysis led gradually to 
simplified proofs, but even the best purely analytical proofs remain relatively 
intricate. The present approach is new and illustrates how probabilistic 
reasoning can simplify and render intuitive complicated analytical arguments. 

We shall not only prove the theorem but give an explicit formula for F. 
From (3.8) we know that for any polynomial u the expectations E,,(u) 

converge to a finite limit. From the uniform approximation theorem (2.3) 
ae 

it follows that the same is true for any function uw continuous in 0,1. We 
denote the limit of E,(u) by E(u). The relation (3.6) is then valid under 

any circumstances, but if we start from an arbitrary completely monotone 
sequence {c,} we have to prove! that there exists a probability distribution 
F such that the limit E(u) coincides with the expectation of u with respect 

to F. 
For given 0<¢t<1 and e€ >0 denote by u,, the continuous function 

bK- 
on 0,1. that vanishes for x >¢-+, equals 1 for x <1, and is linear 

between ¢ and ¢+e. Let U(t)=E(u,.). If t<7 then obviously 

Ure <u, and the maximum of the difference u,.— uz. is <(7—O/e. 

For fixed ¢ > 0 it follows that U,(t) is a continuous non-decreasing function 

of ¢. Again, for fixed ¢ the value U,(t) can only decrease as «+0, and 
hence U,(t) tends to a limit which we denote by F(t). This is a non-decreas- 

ing function going from 0 to 1. It is automatically right continuous, ? but 
this is of no importance since we could achieve this in any case by changing 
the definition of F at its jumps. 

For the distribution function F, of the probability distribution (3.5) we 

have trivially from the definition of u,. if d> 

(3.10) E,(uys,¢) < F,(t) < E,(u;,.)- 

As n-»c the two extreme members tend to U.(t— 6) and U,(t), 
respectively. If ¢ and ¢ — 6 are points of continuity of F, we let «— 0 
to conclude that all limit points of the sequence {F,,(t)} lie between F(t — 6) 

1? We could stop the proof here, because the assertion is contained in either of two results 
proved elsewhere in the book: 

(a) In the Riesz representation theorem of V,1 since E(u) is obviously a positive linear 

functional of norm 1. 
(6) In the basic convergence theorem of VIU,1. 

The proof in the text (which partly repeats that of V.1) is given to render this chapter 
self-contained and to tead to the inversion formula. 

2 For a verification see the proof of the Riesz representation theorem in V,1. 
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and F(t). Finally, letting 6-0 we conclude that F,(t)—> F(t) for each t 
which is a point of continuity for F. This relation reads explicitly 

(3.11) > ("\-pra'e, —> F(t). 
isnt \j 

For r >1 an integration by parts permits us to write the rth moment of 
F,, in the form - 

1 

(3.12) E,(X’) = 1 — re a 'F (2) dx. 

We have shown in (3.9) that the left side tends to c,, and since F,, — F this 

proves that the rth moment of F coincides with c,. This concludes the 

proof of theorem 1. > 

. t——+ 
Note that if F is an arbitrary probability distribution function on 0, 1 

then (3.11) represents an inversion formula expressing F in terms of its 
moments. We restate this in 

Theorem 2. For the probability distribution F of theorem 1 the limit 
formula (3.11) holds at each point of continuity. 

To avoid misconceptions it should be pointed out that the situation is radically different 
for distributions that are not concentrated on some finite interval. In fact, in general a 

distribution is not uniquely determined by its moments. 

Example. The log-normal distribution is not determined by its moments. The positive 
variable X is said to have a log-normal distribution if log X is normally distributed. 
With the standard normal distribution the density of X is defined by 

1 
(2) = ——= x-le-h(loga)? x>0, 

; f V20 

and f(x) +0 for <0. For -—l1<a<1 put 

(3.13) . fale) = f(@)[1 +a sin 22 log z)]. 

Weassert that f, isa probability density with exactly the same moments of f. Since f, > 0 
it suffices to show that 

wo 

[ ak f(x) sin (27 log x) dx = 0, k=0,1;... 
0 

The substitutions logz = t = y+ reduce the integral to 

1 +O 1 +O se 
—= ett? +kt sin (2nt) dt = ——= et” e~4v* sin (2ary) dy 
V2 Jo ; V 20 _ 

  

2 

and the last integral vanishes since the integrand is an odd function. (This interesting 
example is:due to C. C. Heyde.) > 

This negative result should not give rise to undue pessimism, for suitable regularity 
conditions can remove the source of trouble. The best result is a theorem of Carleman 
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to the effect that a distribution F on —©o, 0 fs uniquely determined by its moments if 

(3.14) > glen = o, 

that is, if the series on the left diverges. In this book we shall prove only the weaker 

statement that F is uniquely determined by its moments whenever the power series 
Xi Mont™/(2n)! « mverges in some interval. (Section 6 and XV,4.) Both criteria put 

restrictions on the rate of growth of us,. Even in the most general situation the knowledge 
of finitely many moments fp, 4y,...,M, leads to useful inequalities for F similar to 

those derived in V,7 from the knowledge of uy and y,.° 

*4. APPLICATION TO EXCHANGEABLE VARIABLES 

We proceed to derive a beautiful result due to B. de Finetti which may 
serve as a typical example of the ease with which theorem I of section 3 leads 
to surprising results. 

Definition. The random variables X,,...,X,, are exchangeable * if the 

n! permutations (X,,,...,X,,) have the same n-dimensional probability 
distribution. The variables of an infinite sequence {X,} are exchangeable if 

X,,...,X, are exchangeable for each n. 

As the examples will show, there is an essential difference between finite 
and infinite sequences. We consider here the special case of an infinite 
sequence {X,} of exchangeable variables assuming the values 0 and 1 only. 

The next theorem asserts that the distribution of such a process {X,} are 

obtained by randomization of the binomial distribution, As usual we put 
S, = X, +:-: +X, and interpret the event {X, = 1} as success. 

Theorem. To every infinite sequence of exchangeable variables X,, assuming 

only the values 0 and 1 there corresponds a probability distribution F con- 
— 

centrated on 0,1 such that 

P{X, = 1,...,X, = 1, X,,, =0,...,X, =O} = 

(4.1) = [eu-o F{d6} 

(4.2) pfs aka (7) { ‘ok —0)"-* F{d0}. 

* Not used in the sequel. 
3 The first sharp results were. obtained by Markov and Stieltjes around 1884. The 

recent literature on the subject is inexhaustible. See, for example, A. Wald, Trans. Amer. 

Math. Soc., vol. 46 (1939) pp. 280-306; H. L. Royden, Ann. Math. Statist., vol. 24 
(1953) pp. 361-376 [gives bounds on F(z) — F(—2x)]. Fora general survey see the mono- 

graph by J. A. Shohat and J. D. Tamarkin, The problem of moments, New York, 1943 

(Math Surveys No. 1). See also S. Karlin and W. Studden (1966). 

4 The term symmetrically dependent is also in use. 

 



VII.4 APPLICATION TO EXCHANGEABLE VARIABLES 229 

Proof. For brevity denote the left side in (4.1) by p,,, (with O< k <n) 
Put co =1 and for n=1,2,... 

(4.3) Ch = Pan = P{X, = 1,...,X, = 1}. 

Then from the probabilistic meaning 

(4.4) Prain = Pr-1.n-1 — Pain = —Ac,_, 

and hence 

(4.5) Pn—-2.n = Pn—-2.n-1 — Pn—1.0 = A*c,,2. 

Continuing in this way we get for k <n 

(4.6) Prin = Presn-1 — Prsin = (—1)" *A"“*ey,. 

All these quantities are non-negative and hence the sequence {c,} is com- 

. pletely monotone. It follows that c, is the rth moment of a probability 
distribution F, and so (4.1) merely spells out the relation (4.6). The 

assertion (4.2) is contained in it because there are (") ways in which k 

successes can occur in 7 trials. > 

Generalizations. It is not difficult to apply the same argument to variables 

capable of three values, but we have then two free parameters, and instead 

of (4.2) we get-a mixture of trinomial distributions with F a bivariate 
probability distribution. More generally, the theorem and its proof are 
readily adapted to random variables assuming only a finite number of values. 
This fact naturally leads to the conjecture that the most general symmetrically 
dependent sequence {X,} is obtained by randomization of a parameter 
from a sequence of independent variables. Individual cases are not diffi- 

cult to trust but the general problem presents the inherent difficulty that 
““parameters’’ are not well defined and may be chosen in weird ways. A 
version of the theorem has been proved nevertheless in very great generality. 

The theorem makes it possible to apply laws of large numbers and the 
central limit theorem to exchangeable variables. (See problem 21 in VIII,10.) 

The next example shows that in individual cases the theorem may lead to 
surprising results. The other examples show that the theorem fails for finite 
Sequences. 

Examples. (a) In Polya’s urn model of 1; V,2 an urn contains originally 

b black and r red balls. After each drawing the ball is returned and c 
balls of the color drawn are added to the urn. Thus the probability of a 

5 E, Hewitt and L. J. Savage, Symmetric measures on Cartesian products, Trans. Amer. 

Math. Soc., vol. 80 (1956) pp. 470-501. A martingale treatment is found in Loéve (1963). 
See also H. Biihimann, Austauschbare stochastiche Variabeln und ihre Grenzwertsdtze, 

Univ. of California Publications in Statistics, vol. 3, No. 1 (1960) pp. 1-36. 
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black ball in each of the first » drawings equals 

blb+e)- (b+ (=e) _ r+) rE) 
(b+r)---(b+r+(n—I)c) _ rete 4 ° r(2) 

c c 

  

  (4.7) ¢, = 

Put X, = 1 or O according as the nth drawing results in black or red. 
The easy calculation in 1; V,2 shows that these variables are exchangeable 
and hence c, represents the mth moment of a distribution F. The appear- 
ance of (4.7) reminds one of the beta integral II,(2.5), and inspection shows 
that F is the beta distribution I1,(4.2) with parameters = b/c and » = rc. 
Again using the beta integral it is seen that (4.1) agrees with 1; V,(2.3), and 
(4.2) with 1; V,(2.4). 

(b) Consider the 6 distinguishable distributions of 2 balls in 3 cells and 
attribute probability 3 to each. Let X, equal 1 or 0 according as the cell 
number 7% is occupied or empty. The variables are exchangeable but the 
theorem does not apply. Indeed, from (4.3) we get cg = 1, c, = 4, C2 = 
cy = 0 and here the sequence stops. If it were the beginning of a completely 
monotone sequence {c,} we would have c,=c,=-+::=0. But then 
At‘c, = —4 <0 against the rule. 

(c) Let X,,...,X, be independent with a common distribution and 
S, =X, +-°'+X,. Put Y,=X,—7 S, for k=1,...,n—1. The 
variables (Y;,..., Y,-1) are exchangeable but their joint distribution is 

not of the form suggested by de Finetti’s theorem. > 

' *5, GENERALIZED TAYLOR FORMULA AND SEMI-GROUPS 

The preceding three sections dealt with consequences of the limit relation 
in example 1(@) involving the binomial distribution. We now pass to 

example 1(b) involving the Poisson distribution. Since this distribution 
represents a limiting form of the binomial distribution one may hope that 
our simple treatment of Bernstein polynomials may be extended to the 
present situation. The starting point for this treatment was the identity 
(1.10) in which the binomial distribution appears on the right. If we put 
6 =2x/v and let »—» oo this binomial distribution tends to the Poisson 

distribution with expectation x, and (1.10) passes into® 

© xi 

(5.1) y= © Aa; =e “7s is 5. 
r=0 r! j=0 Tf? ! 

* This section may be omitted at first reading. 
8 For a direct proof of the identity (5.1) it suffices to substitute for A’a, its defining 

expression (1.7). The left side then becomes a double sum, and the right side is obtained 
by an obvious rearrangement of its terms. 
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We use this identity with i= 0 and a, = u(jh) where uw is an arbitrary 

bounded continuous function on 0, 00, and A a positive constant. With 

x = hO the relation (5.1) becomes 

(5.2) SF argo) = ZS ucjny OD, 
r=0 rT! j=0 j! 

On the right we recognize the expectation of u with respect to a Poisson 
distribution, and we know from example 1(8) that it tends to. u(@). To 

record this result in a more natural form we replace u(@) by u(@ + £) 

where ¢ > 0 is arbitrary. We have thus proved the ) 

Theorem. For any bounded continuous function on 0, 00 

(5.3) SF ar u(t) > u(t-+6): 
r=or! h 

here? 6>0 and h-+0+. 
This is a fascinating theorem first proved by E. Hille using much deeper 

methods. The left side represents.the Taylor expansion of u except that the 
derivatives are replaced by difference ratios. For analytic functions the left 
side ‘approaches the Taylor series but the theorem applies also to non- 
differentiable functions, In this sense (5.3) represents a generalization of the 
Taylor expansion and reveals a new side of its nature. ; 

There is another way of looking at (5.3) which leads to the so-called: 
exponential formula of semi-group theory. (See theorem’ 2 in X,9.) The 

left side of (5.3) contains the formal exponential series and it is natural to use 
it to define an operator exp 6A. The relation (5.3) is then abbreviated to 

hh 

(5.4) exp 6 4 u(t) > u(t+9). 

To write it more consistently in terms of operators we introduce the translation 

operator® T(6) sending wu into the function u, defined by u,(t) = u(t+8). 

7It will be noticed that the argument remains valid if both @ and fA are negative 

provided w is defined on the whole line. 
8 This is the proof, due to M. Riesz, given (in slightly greater generality) in E. Hille 

and R. S. Phillips, Functional analysis and semi-groups, AMS Colloquium Publications, 

vol. 31 (1957) p. 314. Understandably the authors did not consider it helpful to refer 

to the linear interpolation (5.7) as a Poisson randomization of the semi-group parameter or to 

take Chebyshev’s inequality for granted. The probabilistic content was noted by D. G. 

Kendall: It is fully exploited in K. L. Chung, On the exponential formulas of semi-group 

theory, Math Scandinavica, vol. 10 (1962) pp. 153-162. 
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Then 7(0) = | is the identity operator and 

(5.5) A = h™[T(h)—1]. 
h 

In operator language (5.3) now becomes 

(5.6) er -UPM)-1) _ T(6). 

The main information conveyed by this formula is that the whole family 
of operators T(@) is determined by the behavior of 7(h) for small A. 

In retrospect it is now clear that our derivation of (5.6) applies to a much 
more general class of operators. The right side in (5.2) is simply a linear 
combination of values of u and may be interpreted as an interpolation 

formula for u. An analogous interpolatory expression is meaningful for 
every family of operators {7(6)} defined for 6> 0. Indeed, for fixed 
6 and 4 > 0 the operator 

(5.7) AQ) = ST (" i) T(kh) 
k=0 k 

is a weighted linear combination of operators 7(kh). The weights are given 

by the Poisson distribution and are such that as h-»0 a neighborhood of 
6 preponderates, the complement carrying a weight tending to 0. This 

makes it at least plausible that with any reasonable notion of convergence 
and continuity we shall have A,(6)—> T(6) for any continuous family of 
operators T(@). In particular, if the operators T(6) form a semi-group, one 
has T(kh) = (T(A))* and the interpolatory operator 4,(@) is the same as 

appears on the left in (5.6). It is therefore not surprising that the “exponential 
formula’ (5.6) is generally valid for continuous semi-groups of bounded 
operators. We shall return to the proof in X,9. . 

6. INVERSION FORMULAS FOR 
LAPLACE TRANSFORMS 

The preceding section and example 1(b) were based on a special case of the 
law of large numbers which may be stated as follows: If X is a random 
variable with a Poisson distribution of expectation 4@ then for large 4 the 

probability of the event [|X — A6| > Ae is small. For P{X < Av} we get 

therefore as 1 —> 00 

> OF 0 if O>% 
61 Siz kl if 0<2. 
The expression on the left is a special case of (5.2) when u assumes only the 
values 0 and 1, and so (6.1) is contained in the theorem of the preceding 

section. The usefulness of this formula in analysis will now be illustrated by 
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applications to Laplace transforms, a topic treated systematically in chapter 
XU. 

Let F be a probability distribution concentrated on 0, 0. The Laplace 
transform of F is the function g defined for 4 >0 by 

(6.2) — @(t) = { * &* Ffdd}. 

The derivatives ee exist and are obtained by formal differentiation: 

6.3) (= 1 pa) = ["e¥ oF Fan}. 
From this identity and (6.1) one sees that at every point of continuity of F 

(6.4) y Ye om) > FO). 
kShe k! 

This is an inversion formula of great use. It shows, in particular, that a 

distribution F is uniquely determined by its Laplace transform. 
The same argument leads to a great variety of related inversion formufas 

applicable under various circumstance. In fact, (1.6) is an inversion formula 
for Laplace integrals of the form 

(6.5) w(A) =["e* u(x) da. 

Formal! differentiation can be performed as in (6.3), and (1.6) states that 

if u is bounded and continuous, then 

(=) (2 wir) (6.6) (n/6) > u(9) 
(n—1)! 

uniformly in every finite interval. 
{These inversion formulas hold under much wider conditions, but it 

seemed undesirable at this juncture to let the ballast of new terminology 
obscure the simplicity of the argument. An abstract version of (6.6) appears 
in XIII,9.] 

If the distribution F possesses moments f44,..., Mg, its Laplace transform satisfies the 
inequalities 

  

baat (Dh an (— = k (6.7 5 Oa <9) < 2a (“Vint 
k=0 

which are of frequent use. To verify them we start from the well-known inequalities® 

| arcu (DE 2 ae (DE —pie 
(6.8) 2k < 2k , t > 0. 

® Simple differentiation shows by induction that the. difference between any two members 
in (6.8) is a monotone function of ¢. 
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Replacing ¢ by At and integrating with respect to F one gets (6.7). It follows, in particular, 
that 

wo (_]} k k 

(6.9) od) = 
k=0 

in any interval 0 < A < Ay in which the series on the right converges. It is known from 
analytic function theory that in this case the series in (6.9) uniquely determines (A) for 
all A> 9, and hence the moments (4, [g,... determine the distribution F uniquely when- 
ever the series in (6.9) converges in some interval |A| <A). This useful criterion holds also 

for distributions not concentrated on 0, 00, but the proof depends on the use of charac- 

teristic functions (see XV,4). 

  

*7, LAWS OF LARGE NUMBERS FOR IDENTICALLY 

DISTRIBUTED VARIABLES 

Throughout this section we use the notation S, = X, +--- + X,. 

The oldest version of the law of large numbers states that if the X;, are 
independent and have a common distribution with expectation m and 
finite variance then? for fixed « > 0 as n— © 

(7.1) P{|jnS, — uw] > e§ +0. 

This chapter started from the remark that (7.1) is contained in Chebyshev’s 
inequality. To obtain sharper results we derive a variant of Chebyshev’s 

inequality applicable even when no expectation exists. Define new random 
variables X, by truncation of X, at an arbitrary, but fixed, level +5,. 
Thus 

X, when |X,{<s, 
7.2 X= 
7) “0 when |X,| > S,. 
Put 

(7.3) So=Xi¢-'-4X', mi, =E(S))= nE(X;). 

Then obviously . | 

(7.4) P{|S,—m!| > t} < P{|S,—m/| > t} + P{S, ¥ 85} 
because the event on the left cannot occur unless one of the events on the 

right occurs. 

  

* The topics of this section are related to the oldest probabilistic theory but are of no 

particular significance in the remainder of this book. They are treated for their historical 

and methodological interest and because many papers are devoted to partial converses of 
the law of large numbers. 

1% (7,1) is equivalent to nS, — pb Py 0, where ~, signifies ‘‘tends in probability 

to.’’ (See VITI,2.) 
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This inequality is valid also for dependent variables with varying distri- 
butions, but here we are interested only in identically distributed independent 

variables. Putting ¢ =m and applying Chebyshev’s inequality to the first 
term on the right, we get from (7.4) the following _ 

Lemma. Let the X, be independent with a common distribution F. Then 

for x>0 

(7.5) P| . S,, — E(X)) 
  

1 ; > 2 |< <3 EK) + nP {KI > 84} 

As an application we could derive Khintchine’s law of large numbers 
which states that (7.1) holds for all e > 0 whenever the X, have finite 

expectation yw. The proof would be essentially a repetition of the proof for - 
the discrete case given in 1; X,2. We pass therefore directly to a stronger | 

version which includes a necessary and sufficient condition. For its formula- 
tion we put for ¢t > 0 

(7.6) r(t) = [1—F()+F(—)]t 

and | . . 

(7.7) o(t) = . [2 F(dz) = —7(t) + . { ‘oe 2) dz. 

(The identity of these two expressions follows by a simple integration by 
parts.) 

Theorem 1. (Generalized weak law of large numbers.) Let the X, be 
independent with a common distribution F. In order that there exist constants 
zu, such that for each e>0 

(7.8) | — -P{lntS, — p,| > } +0 

it is necessary and sufficient that™ +(t)-+>0 as t-» 0. In this case (7.8) 
holds with 

(7.9) 7 Uy = { "  F{dz}. 

Proof. (a) Sufficiency. Define pu, by (7.9). We use the truncation (7.2) 

with s=7n. Then yu, = E(X}) and-the preceding lemma the left side of 

(7.8) is <e«-2o(n) + 7(n), which tends to 0 whenever z(t)» 0. Thus this 

condition is sufficient. 
(5) Necessity. Assume (7.8). As in V,5 we introduce the variables °X, 

obtained directly by symmetrization of X,. Their sum °S,, can be obtained 

11 Yt follows from (7.7) that +(t)-+0 implies o(t)—>0. The converse is also true; see 

problem 11. For a different proof of theorem 1 see XVIT,2a. 
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by symmetrization of S, — mu. Let a be a median of the variables X,. 
Using the inequalities V,(5.6), V,(5.10), and V,(5.7) in that order we get 

2P{|S,—nu| > ne} > P{[°S,| > 2ne} > $[1'— exp (—nP{°X,| > 2ne})] 

2 2[1 — exp (—4nP{[X,| > 2ne+|a]})). 
In view of (7.8) the left side tends to 0. It follows that the exponent on the 
right tends to 0, and this is manifestly impossible unless z(t) — 0. > 

The condition 7(t)—>0 is satisfied whenever F has an expectation w. 
The truncated moment yu, then tends to « and so in this case (7.8) is 
equivalent with the classical law of large numbers (7.1). However, the 
classical law of large numbers in the form (7.1) holds also for certain.variables 
without expectation, For example, if F is a symmetric distribution such that 
t{1 — F(t)]} +0 then P{|n'S,| > «}>0. But an expectation exists only 
if 1 — F(t) is integrable between 0 and oo, which is a stronger condition. 

(It is interesting to note, that the strong law of large numbers holds only 
for variables with expectations. See theorem 4 of section 8). 

The empirical meaning of the law of large numbers was discussed in 1; X with special 
attention tothe classical theory of ‘‘fair games.’’ We saw in particular that even when 
expectations exist a participant in a “fair game’’ may be strongly on the losing side. On 
the other hand, the analysis of the St. Petersburg game showed that the classical theory 

applies also to certain games with infinite expectations except that the “fair entrance fee’’ 
will depend on the contemplated number of trials. The following theorem renders this 
more precise. 

We consider independent positive variables X;, with a common distribution F. [Thus 
F(0) = 0.). The X, may be interpreted as possible gains, and a, as the total entrance fee 
for n trials. We put 

_{[s (Ss) 
(7.10) u(s) -[ & F{dz}, sf] — FG) = p(s). 

Theorem 2. In order that there exist constants a, such that 

(7.11) P{ia,1S, — 1| > «} +0 

it is necessary and sufficient that # p(s) + © as s— 0. In this case there exist numbers sy, 

such that 

(7.12) ni(Sn) = Sp 

and (7.11) holds with a, = np(s,). 

Proof. (a) Sufficiency. Assume p(s)-> ©. For large n the function ny(s)/s assumes 

values >1, but it tends to 0 as s — 0, The function is right continuous, and the limit from 

the left cannot exceed the limit from the right. If s, is the lower bound of all s such that 
nu(s)s~! <1 it follows that (7.12) holds. 

12 11 will be seen in VIII,9 (theorem 2) that p(s) > 0 iff u(s) varies slowly at infinity. 

The relation (7.11) is equivalent to a,S, ? , 1 (see VIII,2). 
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Put yu, = “(s,) = E(Xj). We use the inequality (7.5) of the lemma with + = Ellin to 
obtain - , . 

(7.13) P| Sn 
Rl, 

  

  
\>dsan     Pay 12) + nf[1 —F(s,)]. 

  
An integration by parts reduces E(X;?) to an ‘integral with. integrand z[1 — F(x)], and by 
assumption this function is o(u(z)). Thus E(X,") = o(s,u,), and in view of (7.12) this - 

means that the first term on the right in (7.13).tends to 0. Similarly (7.12) and the definition 
(7.10) of p(s) show that n[1 — F(s,)] ~0. Thus (7.13) reduces to (7.11) with a, = nu,. 

(6) Necessity. We now assume (7.11) and use the truncation (7.2) with s, == 2a,. Since 

E(X}") < Snlln we get from the basic nega (7.5) with x = ea,/n , 

(7.14) P{S,, > Ny + €an} <3 > a, * n{l — F(2a,)). 

Since we are dealing with positive variables 

(7.15) P{S,, < 2a,} < P{max X; < 2a,) = F®(2a,). 
kon . 

By assumption the left side tends to 1, and this implies n[1 — F(2a,)] +0 (because 

a <e"-2) for x < 1). If nu;/a, tended to zero the same would bé true of the right side 
in (7.14) and this inequality would manifestly contradict the assumption (7.11). ° This 

argument applies also to subsequences and shows that mu,/a, remains bounded away 

from zero; this in turn implies that p(2a,) — oo. 
To show that p(x) for any approach 2 -> co choose a, such that 

2a, <% S 2ay,,. Then p(x) > a nl On+1) and it is obvious that (7.11) necessitates the 
_ boundedness of the ratios a,,,/a,. > 

*8. STRONG LAWS 

Let X,, X2,... be mutually independent random variables with a common 
distribution F and E(X,)=0. As usual we put S, = X, +:-:+ X,,. 

The weak law of large numbers states that-for every « > 0 

(8.1) P{n|S,| > +0. 

This fact does not eliminate the possibility that n—1S,, may become arbitrarily 
large for infinitely many nm. For example, in a symmetric random walk the 

probability that the particle passes through the origin at the nth step tends to 
0, and yet it is certain that infinitely many such passages will occur. In 
practice one is rarely interested in the probability in (8.1) for any particular 

large value of nm. A more interesting question is whether n{S,| will 
ultimately become and remain small, that is, whether n1|S,| < « 

simultaneously for all 2 > N. Accordingly we ask for the probability of the 

event}? that nS, 0. 

* This section may be omitted at the first reading. 
13 It follows from the zero-or-one law of IV,6 that this probability equals 0 or 1, but we 

shall not use this fact. 
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If this event has probability one we say that {X,} obeys the strong law of 
large numbers. 

The next theorem shows that this is the case whenever E(X,) = 0. [That 

this statement is much stronger than the weak law of large numbers follows 
from the fact that (8.1) was seen to hold also for certain sequences {X,} 

without expectation. By contrast the existence of an expectation is a necessary 

condition for the strong law. In fact, the converse to the strong law, discussed 
at the end of this section, shows that in the absence of an expectation the 

averages n™|S,| are certain infinitely often to exceed any prescribed 
bound a.] 

. Theorem 1. (Strong law of large numbers.) Let X,, Xo,... be independent 

identically distributed variables with E(X) = 0. Then nS, — 0 with prob- 
ability 1. 

The proof depends on truncations and is in effect concerned with sequences 

with varying distributions. To avoid duplications we therefore postpone the 
proof and prepare for it by establishing another theorem of wide applicability. 

Theorem 2. Let X,, X,,... be independent random variables with arbitrary 
distributions. Suppose that E(X,) = 0 for all k and 

(8.2) SES) < o. 
Then the sequence {S,,} converges with probability one to a finite limit S. 

Proof. We refer to infinite-dimensional sample space defined by the 

variables X,. Let A(e) be the event that the inequality |S,—S,,| > « holds 

for some arbitrarily large subscripts 1, m. The event that {S,} does not 

converge is the monotone limit as «0 of the events A(e), and so it 
suffices to prove that P{A(c)}=0. Let A,,(e) be the event that 

IS, —S,,| > « forsome n >m. Then A(e) is the limit as m-—> oo of the 

decreasing sequence of events 4,,(e), and so it suffices to prove that 

P{A,,(€)} ~0. Finally, for n>m let A,,,(6) be the event that 

IS, — S,,| > « for some m <k <n. By Kolmogorov’s inequality 

(8.3) P(A n(6)} < €* Var (S,—Sp) = €? > E¢XD). 
k=m+1 

Letting m-—» © we conclude that 

(8.4) P{A,,(6-)} < «7? y E(X?) 
k=m+1 

and the right side tends to0 as m-—> oo, - » 

 



VII.8 STRONG LAWS 239. 

This theorem has many applications. The following is a variant to be used 
for the proof of the strong law of large numbers. 

Theorem 3. Let X,, X,... be independent variables with arbitrary distri- 
butions. Suppose that E(X,) = 0 forall k. If b, <b, < ++: © andif 

(8.5) Eb; E(X2) < co 
then with probability one the series > b, 4X, converges and 

(8.6) bz S, 0. 

Proof. The first assertion is an immediate consequence of theorem 2 
applied to the random variables b,14X,. The following widely used lemma 
shows that the relation (8.6) takes place at every point at which the series 

converges, and this completes the proof. > 

Lemma 1. (“‘Kronecker’s lemma’’.) Let {x,} be an arbitrary numerical 
sequence and 0 <b, <b, <--->. If the series > b,x, converges, then 

(8.7) | “1 ng, 

Proof. Denote the remainders of our convergent series by p,. Then for 
n=1,2,... 

and hence t, = bAPn—2 ~~ Pn); 

Xt + a, 1% p 
(8.8) WH Prt > Pi(Dags— bx) +. 

b,, b,, k=1 b,, 

Suppose |p,|<« for k >r. Since b,—> co the contribution of the first 

r terms in the sum tends to zero, while the remaining terms add to at most 

«(b,, — 6,)/6, < ¢. Thus (8.7) is true. > 

Before returning to the strong law of large numbers we prove another 

lemma of a purely analytic character. 

Lemma 2. Let the variables X,, have a common distribution F. Then for 

any a>0 

(8.9) > P{IX,| > ak} < o 

if and only if E(X,) exists. 

Proof. According to lemma 2 of V,6 an expectation E(X,) exists if and 

only if 

(8,10) [0-Fe+F-2) dx < 0. 
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The series in (8.9) may be considered as a Riemann sum to the integral, and 
since the integrand is monotone the two relations (8.9) and (8.10) imply each 
other. 

> 

We are finally in a position to prove the strong law of large numbers. 

Proof of theorem 1. We use truncation and define new random variables as 

follows: 

X;, = X,, xX; = 0 if |X,|<k 

X,. = 0, X;. = X;,, if [X,.| > k. 

Since a finite expectation exists we conclude from the preceding lemma with 
a= 1 that 

(8.12) Y P(X! 4 0} < w 
and this implies that with probability one only finitely many variables X, 

(8.11) 

1 an. ; 
will be different from 0. Thus, with obvious notations, -S,—>0 with 
probability one. ” 

Next we shall prove that 

(8.13) > kPE(X,) < ©. 

By theorem 3 this implies that with probability one 

(8.14) - n—[Si,—E(S;,)] — 0. 

But E(X,)—> 0 and hence obviously 

(8.15) nK(S’,) = n7 SE(X) — 0. 
k=1 

To conclude the proof it remains only to verify the assertion (8.13). Now 

k 
(8.16) E(X?) =>. a” F{dz}. 

j=1 Jj-1S 2] <3 

It follows that 

(8.17) Dd kCE(X?) => a® F{dx} > k™. 
k= k=1 j=l Ji-1S|a| <3 

The inner sum is less than 2/j and so the right side is less than 

(8.18) > Torre F{dzx} = [et F{dz}. 
—co 

This accomplishes the proof. . > 

14 For a more direct proof see problem 12. 

 



VIL9 GENERALIZED MARTINGALES 241 

We saw that the weak law in the form (7.8) applies also to certain sequences without 
expectation. This is in striking contrast to the strong law for which the existence of E(X,) 
is necessary. In fact, the next theorem shows that in the absence of a finite expectation the 
sequence of averages S,,/n is unbounded with probability one. 

Theorem 4. (Converse to the strong law of large numbers.) Let X,, X,... be independent 
with a common distribution. If E(|X;|) = © then for any numerical sequence {cj} with 
probability one 

(8.19) lim sup |n71S,,—c,| = 9 

Proof. Let A, stand for the event that |X,| > ak. These events are mutually independ- 
ent and by lemma 2 the absence of an expectation implies that & P{A,} diverges. By 
the second Borel-Cantelli lemma (see 1; VIII,3) this means that with probability one 
infinitely many events Aj, will occur, and so the sequence |X,|/k is unbounded with 
probability one. But since X;, = S, —S,_, the boundedness of |S,|/n would entail the 

boundedness of |X,|/k, and so we conclude that the sequence of averages S,/n is uu- 
bounded with probability one. , 

This proves the assertion (8.19) for the special case c, = 0, and the general case may be 

reduced to,it by symmetrization. As in V,5 we denote by °X, the symmetrized variables 
X;,,. From the symmetrization inequality V,(5.1) it follows that E(|°X;|) = 0, andsothe 
sequence of averages. °S,,/n is unbounded with probability one. But °S, may be obtained 
by symmetrization of S, — c,, and so the probability that (S,—c,)/n remains bounded 
is zero. , > 

*9. GENERALIZATION TO MARTINGALES 

Kolmogorov’s inequality of V,8(e) provided the main tool for the proofs 
in section 8. A perusal of these proofs reveals that the assumed independence 

of the variables was used only to derive certain inequalities among expecta- 
tions, and hence the main results carry over to martingales and submartin- 

gales. Such generalizations are important for many applications and they 
throw new light on the nature of our theorems. 

.We recall from VI,12 that a finite or infinite sequence of random 
variables U, constitutes a submartingale if for all r 

(9.1) E(WU,|B,) >U, for k=1,2,...,r-l, 

where 8, < 8, -*- is an increasing sequence of o-algebras of events. 
When all the inequalities are replaced by equalities then {U,} is called a 

martingale. [In each case the r—1 conditions (9.1) are automatically 

satisfied if they hold for the particular value k = r — 1.] Recall also that if 
{X,} is a sequence of independent random variabies with E(X,) = G, then 
the partial sums S, forma martingale; furthermore, if the variances exist, 

{S?} is a submartingale. 

Theorem 1. (Kolmogorov’s inequality for positive submartingaies.\ Let 

U,,...,U, 4e positive variables. Suppose that the submartingale condition 
  

* The contents of this section wili not be used in the sequel. 
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(9.1) is satisfied for r<n. Then for t>0 

(9.2) P{max U,> i <r E(U,). 
kSn 

If {U,} is an arbitrary martingale then the variables |U,| form a sub- 
martingale. (See the lemma in VI,12.) It follows that theorem [ entails the 
important 

Corollary. (Kolmogorov’s inequality for martingales.) If U,,...,U, 
constitute a martingale then for t > 0 

(9.3) P{max 1U,} > i <r E(JU,)). 
kSn 

Proof of theorem 1. We repeat literally the proof of Kolmogorov’s in- 
equality in V,8(e) letting S? = U,. The assumption that the S, are sums of 

independent random variables was used only to establish the inequality 
V,(8.16) which now reads 

(9.4) | E(U,14,) > E(U,1,,). 

Now 14, is 8,-measurable, and therefore. 

(9.5) EU, 14,| 8) = 14.2, |B) > Uy, 
[See V,(10.9)]. Taking expectations we get .(9.4). > 

We turn to a generalization of the infinite convolution theorem of section 8, 

although it leads only to a special case of the general martingale convergence 
theorem. Indeed, Doob has shown that the following theorem remains valid 

" if the condition E(S%) < o is replaced by the weaker requirement that 
E(|S,,|) remain bounded. The proof of the general theorem is intricate, 

however, and our version is given. because of the great importance of the 
theorem and the simplicity of the proof. (For a generalization see problem 

13.) 

Theorem 2. (Martingale convergence theorem.) Let {S,} be an infinite 

martingale with E(S?2) < C < © for all n.. There exists a random variable 

S such that S,,—~S._ with probability one. F urthermore E(S,,) = E(S) for 

all n. 

Proof. We repeat the proof of theorem 2 in section 8. The assumption that 

the S, are sums of independent variables was s used only in (8.3) to prove 

that 

(9.6) E((S,—S,,)*) > 0, n,m — 0. 

Now we know from VI,12 that the martingale property of {S,} implies that 
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E(S,|S,,.) =S,, for n> m. By the fundamental property V,(10.9) of 
conditional expectations this implies 

(9.7) E(S,S,, | S,,) = S2,, n> m. 

Taking expectations and recalling the formula V,(10.10) for iterated 

expectations we conclude that E(S,S,,) = E(S2) and hence 

E(S,;—S;,) = E(S;)— E(S,,), n>m. 

But by the lemma of VI,12 the variables S? form a submartingale, and so 

the sequence {E(S?)} is monotonically increasing. By assumption it is 
bounded, and hence it has a finite limit. This implies the truth of (9.6). 
The martingale properly implies that E(S,) is independent of 7, and the 
identity E(S)=E(S,) follows from the boundedness of the sequence 

{E(S?2)} [example VIIT,1(e)]. > 

As an immediate corollary we obtain the following analogue to theorem 3 
of section 8. 

Theorem 3. Let {X,} be a sequence of random variables such that 

(9.8) E(X,, | B-1) = 0 

forall n. If b, <b, << +++ and 

(9.9) > bPE(K;) < 0, 
then with probability one 

(9.10) Atte +0. 
n 

Proof. It is easily seen that the variables 

(9.11) U, = > 57x, 
k=1 

form a martingale and that E(U2) is bounded by the series in (9.9). The 
preceding theorem therefore guarantees the almost sure convergence of 

{U,,}, and by Kronecker’s lemma this implies the assertion (9.10). > 

Examples. (a) Polya’s urn scheme was treated in examples VI,11(d) 

and above in 4(a). If Y, is the proportion of black balls at the nth trial 

it was shown that {Y,} is a martingale and we see now that a limit Y = 

lim Y, exists with probability one. On the other hand, the probability of 

a black ball at the th trial is obtained by randomization of the binomial 

distribution. Thus, if S, is the total! number of black balls drawn in the 

first n trials the distribution of nS, tends to the beta distribution F 

found in example 4(a). It follows that the limit variable Y has the beta 

distribution F. 
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(b) Branching processes. In the branching process described in 1; XII,5 
the population size X, in the nth generation has the expectation E(X,) = 
= uw" [see 1; XII,(4.9)]. Given that the (7—1)th generation consisted of » 
individuals, the (conditional) expectation of X, becomes x’, and this 
independently of the size of the preceding generations. Thus, if we put 
S, = X,/u” the sequence {S,} forms a martingale. It is not difficult to 

establish that if E(X?) < co then E(S?) remains bounded (see problem 
7 of 1; XII,6). We thus have the striking result that S, converges with 
probability one to a limit S,.. This implies. in particular, that the distri- 
bution of S, tends to the distribution of Se. These results are due to 
T. E. Harris. 

(c) Harmonic functions. For clarity we describe a specific example, 
although the following argument applies to more general Markov chains 
and concordant functions {example VI,12(c)]. " 

Let D denote the unit disk of points x = (x,,2,) such that x? + 23 < 1. 
For any point z € D let C, be the largest circle centered at and contained 

- in D, .We consider a Markov process {Y,} in D defined as follows. 

Given that Y, = the variable Y,,, is uniformly distributed on the circle 

C,; the initial position Y ) = y is assumed known. The transition prob- 
abilities are given by a stochastic kernel K which for fixed 2 is concentrated 
on C, and reduces there to the uniform distribution. A function u in D 
is concordant if (x) equals the average of the value of u on C,. Consider 
now a harmonic function wu that is continuous on the closed disk D. Then 

{u(Y,)} is a bounded martingale and hence Z =limu(Y,) exists with 
probability one. Since the coordinate variables 2; are harmonic functions 
it follows that with probability one Y, tends to a limit Ye D. It is easily 
seen that the process cannot converge to an interior point of D, and hence 
with probability one Y,, tends to a point Y on the boundary of D. 

An extension of arguments of this sort is used for the study of asymptotic 
properties of Markov processes,.and also to prove general theorems con- 

cerning harmonic functions, such as Fatou’s theorem concerning the 

existence almost everywhere of radial boundary values. 15 . > 

10. PROBLEMS FOR SOLUTION 

1. If uw is bounded and continuous on 0, then as n> 

© (n+k tk k 
x k (4p papi "(ey) HO 

uniformly in every finite interval. 

15 M. Brelot and J. L. Doob, Ann. Inst. Fourier, vol. 13 (1963), pp. 395-415. 
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Hint; Remember the “negative binomial” distribution of 1; VI,8. No calk.u- 
lation necessary. 

2. If uw has a continuous derivative u’, the derivative BY, of B,. tends 
uniformly to w’. 

3. Bernstein polynomials in R®. If u(x, y) is continuous in the triangle x > 0, 
y2>0,2%+y <1, then uniformly 

(2,8) aight ayy S0(17) mee (1-2 —y)" 7k — ule, y). 

rr 
4. A function uw continuous in 9,1 can be uniformly approximated by even 

polynomials. If u(0) = 0 the same is true for odd polynomials." 

5. If uw is continuous in the interval 0, © and u(«) exists, it can be approxi- 

mated uniformly by linear combinations of e~™. 
6. For the three moment sequences given below find the probabilities p(”) of 

(3.5). Find the corresponding distribution F using the limit relation (3.11). 
1 2 

(a) fn =p (0< p <1), (6) Hn =T47>? (C) Hn = 5 

7.7 Let p be.a polynomial of degree ». Show that A”p vanishes identically 
h 

when n>». Conclude that B,,, is a polynomial of degree <v (despite its 
formal appearance as polynomial of degree n > 7). 

8, When F has a density, (6.4) can be derived by integration from (6.6). 

9. Law of large numbers for stationary sequences. Let {X,} (k =0, +1, 
+2,...) be a stationary sequence and define the X;, by truncation as in (7.2). 
If E(X,) =0 and E(X)X/) ~0 as n> o then 

P{n-t |X, +°°> + X,l >} 0. 

10. Let the X, be independent and define the X;, by truncation as in (7.2). 
Let a, 0 and suppose that 

n n 

S PX, > sn} >0, az? } E(K’2) + 0. 
k=1 k=1 

P| 
1i. (To theorem 1 of section 7). Show that o(t) +0 implies r(t) +0. Hint: 

Prove that r(x) —47(2x) <e for x sufficiently large. Apply this inequality 

successively to =f, 21, 41,... to conclude that r(t) < 2e. 

12. (Direct proof of the strong law of large numbers.) With the notations used 

in the proof of theorem i in section 8 put Z, = max |S,| for 27<k < 27"), 

Prove that 

Ss, - > E(X;,) 
k=l   

  

> cal > 0. 

16 A famous theorem due to H. Ch. Mintz asseits that uniform approximation is possible 

in terms of linear combinations of 1, 2%, 2"2,... iff Linz’ diverges. 

\7 The use of this result leads to a considerable simplification of the classicat solution 

of the mornent protiem (for example in the book of Shohat and Tatitarkin). 
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Using Kolmogorov’s inequality show that 

> PZ, > 27} < m, 

and that this implies the strong law of large numbers. (This proof avoids reference 
to theorems 2 and 3 of section 8.) 

13. (Convergence theorem for submartingales.) Prove that theorem 2 of section 
8 applies also to submartingales {U,} provided U, > 0 for all k. 

14. Generalize the variant of Chebyshev’s inequality in the example of V,7(a) to 
martingales.16 

18 A, W. Marshall, A one-sided analog of Kolmogorov:s inequality, Ann. Math. Statist., 
vol. 31 (1960) pp. 483-487. 

 



CHAPTER VIII 

The Basic Limit Theorems 

The main results of this chapter are found in sections 1, 3, and 6. Sections 

4, 5, and 7 may be considered as sources of interesting examples. These are 

chosen because of their importance in other contexts. 

The last two sections are devoted to regularly varying functions in the 

sense of Karamata. This interesting theory steadily gains in importance, 

but it is not accessible in textbooks and has not been adapted to distribution 

functions. A tremendous amount of disconnected calculation in probability 

can be saved by exploiting the asymptotic relations in section 9. They are of 

a technical nature in contrast to the simple section 8. 

1. CONVERGENCE OF MEASURES 

The following theory is independent of the number of dimensions. For 

convenience of expression the text refers to one-dimensional distributions, 

but with the conventions of III,5 the formulas apply without change in higher 

dimensions. 
Two exaimples are typical for the phenomena.with which we have to cope. 

Examples. (a). Corsider an arbitrary probability distribution F and 

put F,(z) = F(z—n). Ata point x at which F is continuous we have 

F,(z) > F(z), but at points of discontinuity F, (x) —> F(a—). We shail 

nevertheless agree to say that the sequence {F,} converges to F. 

(b) This time we put F,(x) = F(z+n) where F is a continuous distri- 

bution function. Now F,(x)-—>1 for all x: a limit exists, but is not a 

probability distribution. function. Here F,{J}->0 for every bounded 

interval, but not when J coincides with the whole line. 

(c) Let F,(z) = F(x+(—1)’n). Then Fy, (x) > 1 whereas Fy,4,(7) > 0. 

Accordingly, the distribution functions as such do not converge, but neverthe- 

less F,{I}-—>0 for every bounded interval. > 

247 
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Basic Notions and Notations 

It will be necessary to distinguish three classes of continuous functions. 

In one dimension! C(—oo, 00) is. the class of all bounded continuous 
functions; C[— 0, oo] is the subclass of functions with finite limits u(— 0) 

and u(oo); finally, Cy(— 00, 0) is the subclass of functions “vanishing at 

infinity,’ thats, where u(+00) = 0. 

We shall say that J is an interval of continuity for the probability distri- 
bution F if J is open and its endpoints are not atoms. The whole line- 
counts as an interval of continuity. Throughout this section we use the 
abbreviations . 

(1.1) E,(u) = [ue F, {dz}, | E(u) = [ue F{dz}. 

Throughout this section F, will stand for a proper probability distri- 
bution, but F will be permitted to be defective (that is, its total mass may 
be <1; see the definition in.V 1). > 

Definition.’ The sequence {F,} converges to the (possibly defective) 
distribution F if: , 

(1.2) | | EA > FD 
for every bounded interval of continuity of F. In this case we write F,,—> F 
or F =lim F,. 

The convergence is called proper if F is not defective. 

For stylistic clarity we speak sometimes of improper convergence to 
indicate that the limit F is defective. 

For ease of reference we record two simple criteria for proper convergence. 

Criterion 1. The convergence F,,—> F is proper iff to each €>0 there 

correspond numbers a and N such that F,{—a,a}>1—e forn>N. 

1 For the analogue in higher dimensions note that in one dimension C[—0o, o] is 
simply the class of continuous functions on the compactified line obtained by adding 
+o to R!. For C[—«, ©] in R? both axes are so extended, and this requires the 

existence of Jimits u(z, +0) and u(+, 2) foreach number x. In itself this class is not 
very interesting, but distribution functions belong to it. For Cy(—, 0) it is required 

that u(z, to) = u(t0,2) = 0. 
2 In higher dimensions it is required that the boundary of J has probability zero. 
2 For readers interested in general measure theory we remark the following. The 

definitions and the theorems of this section apply without change to bounded measures in 
arbitrary locally compact spaces provided “interval of continuity’’ is replaced by “open 

set whose boundary has measure zero.’” To bounded intervals there correspond subseis 
of compacts sets... Finally, Co is the ciass of conditions functions vanishing at iminity, 
that is, wE Cy iff « is continuous and iu] <« outside some compact set. The other 

classes play no role in this section. 
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Proof. Without loss of generality we may suppose that —a,a is an 
interval of continuity for the limit F. The condition is sufficient because it 
implies that F{—a, a} > 1-—e, and hence F cannot be defective. Con- 
versely, if F is a probability distribution we may choose a so large that 
F{—a,a}>1-—}e. Then F,{—a,a}>1-—e for n sufficiently large, 
and hence the condition is necessary. > 

Criterion 2. A sequence {F,} of probability distributions converges to a 
proper probability distribution F iff (1.2) holds for every bounded or unbounded 
interval I which is an interval of continuity for F. 

(This implies that in the case of proper convergence F,,(x)—» F(x) at 
every point of continuity of F.) 

Proof. We may suppose that F,-—-F with F possibly defective. 

Obviously F is proper iff (1.2) holds for [= —oo, 0, and hence the 
condition of the criterion is’ sufficient. Assume then that F is a proper 

  

probability distribution. For x > —a the interval —0oo, x is the union of 
——4 — 
—0oo,a and a,x. Using the preceding criterion it is therefore seen that for 

: ; 

a and n sufficiently large F,{— 00,2} differs from F{—0o, 2x} by less 

than 3«. A similar argument applies to x, oo and we conclude that (1.2) 
holds for all semi-infinite intervals. > 

We have defined convergence by (1.2), but the next theorem shows that we 

could have used (1.3) as defining relation. 

Theorem 1. (i) Jn order that F,,— F it is necessary and sufficient that* 

(1.3) E,(@) > E(u) forall ueC(—o, 0), 

(ii) Zf the convergence is proper then E,(u) > E(u) for all bounded con- 

tinuous functions. 

Proof. (a) It is convenient to begin with the assertion concerning proper 
convergence. Assume then that F is a probability distribution and F, -» F. 

Let u be a continuous function such that |u{z)| < M forall x. Let A be 

an interval of continuity for F so large that F{Aj} >i —e. For the 

complement 4’ we have then F,{4"} < 2 for all n sufficiently large. 

Since uw is uniformly continuous in finite intervals it is possible to partition 

A by intervals J,,..., 4, so small that within each, w oscillates by less 

    

41f E(u) > E(u) for a certain ciass of functions one says that #, converges LO Q 

“weakly with respect to that class.’” Thus convergence in the sense of defimition | is equiv- 

alent to weak convergence with respect to Co(-—, ©).
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than.«. These /, may be chosen so that they are intervals of continuity for 
F, Within A we can approximate u by a step function o assuming a 
constant value in each J, and such that |u(x) — o(z)| << for all xe A. 
In the complement A’ we put o(z)=0. Then |u(x)—o(z)| << M for 
xéA’ and 

(1.4) |E()—E(o)| < «F{A} + MF{A} < © + Me. 

Similarly for 7m sufficiently large 

(1.5) IE,(u) — E,(0)| < «F, {4} + MF,{A} < € + 2Me. 

Now E,(o) is a finite linear combination of values F,{/,} tending to 
F{I,}. It follows that E,(¢) > E(o) and so for n sufficiently large 

- (1.6) |E(o) — E,(o)| <«. 

Combining the last three inequalities we get 

(1.7) |E@) — E,(@)| < E(u) — E(o)| + |E(c) — E,()| + 

+ IE,(¢) — E,(w)| < 3(M + De 

and as e is arbitrary this implies that E,,(u) > E(u). 
This argument breaks down in the case of improper convergence because 

then F,{A’} need not be small. However, in this case we consider only 
functions u€ C,(— oo, oc) and the interval A may be chosen so large that 
lu(z)| << « for rE A’. Then |u(z) — o(z)| << for all x, and the in- 
equalities (1.4)~(1.5) hold in the sharper form.with the right side replaced by 
e. Thus (1.2) implies (1.3). 

(b) We prove’ that E,(u) > E(u) implies F,, > F. Let J be an interval 
of continuity of F of length L. Denote by /; a concentric interval of 
length L +6 where 6 is chosen so small that F{J,} << FU}+e. Let u 
be a continuous function which within J assumes the constant value 1, 
which vanishes outside J;, and for which 0< u(x) <1 everywhere. 
Then E,(u) > F,{7} and E(u) < F{t,} < F{I} + ¢. But for n sufficiently 
large we have E,(u) < E(u) + «, and so 

FAD <E,u) <EW@+¢< FU} +e <FiRt+ 2e, 

Using a similar argument with J; replaced by an interval of length L — 6 
we get the reversed inequality F,{7} > F{I}—2.«, and so F,—F as 
asserted. > 

* It would be simpler to apply the proof of theorem 2, but the proof of the text is more 
intuitive. 
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It is desirable to have a criterion for convergence which does not pre- 
suppose the knowledge of the limit. This is furnished by 

Theorem 2. Jn order that the sequence {F,} of probability distributions 

converges to a (possibly defective) limit distribution it is necessary and sufficient 
that for each u€ Cy(—, 0) the sequence of expectations, E,,(u), tends toa 
finite limit. 

Proof.® The necessity is covered by theorem 1. For the proof of sufficiency 
we anticipate the selection theorem | of section 6. (It is elementary, but it is 
preferable to discuss it together with related topics.) 

According to this theorem it is always possible to find a subsequence {F,, } 
converging to a possibly defective limit ®. Denote by E*(u) the expectation 
of u with respect to ®. Let weC,(—oo, 00). Then E, (uv) > E*(u) by 
theorem 1. But E,, (uw) > lim E,(w) as well. Hence E*(u) = lim E,(u) and 
u was arbitrary in Cy)(—0o, oo). Another application of theorem 1 gives 
F,, > ® as required. > 

Examples. (d) Convergence of moments. If the distributions F, are 
tr 

concentrated on 0,1 the definition of u outside this interval is immaterial 

and in the wording of the theorem it suffices to assume wu continuous in 
tH 
0,1. Every such function can be approximated uniformly by polynomials 
(see VII,2) and hence the theorem may be restated as follows. A sequence 

ro 
of distributions F,, concentrated on 0,1 converges to a limit F iff for each 

k the sequence of moments E,,(X") converges to a number p,. In this case 
iy, = E(X*) is the kth moment of F and the convergence is proper because 
My = 1. (See VII,3.) 

(e) Convergence of moments (continued). In general the expectations of 

F,, need not converge even if F,—¥F properly.. For example, if F, 
attributes weight n-! to n? and weight 1 — n™ to the origin, then {F,} 
converges to the distribution concentrated at the origin, but E,(X)— oo. 

We have however, the following useful criterion. If F, — F and for some 
p>O the expectations E,(|X|°) remain bounded, then F is a proper 

probability distribution. Indeed, the contribution of the region |x| >a to 

E, (\Xl*) is > a°(l1—F,{—a, a}) and this quantity can remain <M only 

if 1 — F{—a,a} < a~-°M. Since a may be chosen arbitrarily large F tnust 

6 The theorem is trivial if one assumes the Riesz representation theorem (see note I, 

in V,1). Indeed, lim E,(u) defines a linear functional and according to that theorem the 

limit is the expectation of u with respect to some F. 

 



252 THE BASIC LIMIT THEOREMS VITI.2 

be proper. A: slight sharpening of this argument shows that the absolute 
moments E,(|X|*) of order a < p converge to E(|X|*). 

(f) Convergence of densities. If the probability distributions F, have 
densities f, the latter need not converge even if F,—F and F has a 
continuous density. Asanexample let f,(z) = 1 — cos 2nmx for 0 <4 < | 
and f,(x) = 0 elsewhere. Here F,, converges to the uniform distribution 
with density f(z)= 1 for 9<2x<1, but f, does not converge to f. 
On the other hand, if f, >f utd f isa probability density then F,,—> F 
where F is the proper distribution with density f. Indeed, Fatou’s lemma 
[1V.(2.9)] implies that liminf F, {1} > F{J} for every interval I of con- 
tinuity. If the inequality sign prevailed for some J it would hold a fortiori 

for every bigger interval, in particular for —0oo, oo. This being impossible 
(1.2) holds. > 

In dealing with functions u, such as sin¢x or v(t+2x) depending on a 
parameter ¢, it is often useful to know that for n sufficiently large the 
relation |E,(u,)—E(u,)| < « holds simultaneously for all #4. We prove 

that this is so if the family of functions u, is equicontinuous, that is, if to 
each «>0O there corresponds a 6 independent of f such that 
|u,(22) — u,(2,)| < € whenever |z,—2,| < 6. 

Corollary. Suppose that F,-—»F properly. Let {uj} be a family of 
equicontinuous functions depending on the parameter t and such that 
lus] <M < 0 forsome M andall t. Then E,(u,)— E(u,) uniformly in t. 

Proof. The proof in theorem 2 that E,(u) > E(u) depended on partition- 

ing the interval A into intervals within each of which wu varies by less than e. 
In the present situation this partition may be chosen independently of ¢ and 

the assertion becomes obvious. > 

Example. (g) Let u(x) = u(tz) where wu is a differentiable function 

with |u’(x)| < 1. By the mean value theorem 

|u,(%2)—u,(2)} < |t| + |z2—ay |, 

and so the family is equicontinuous provided ¢ is restricted to a finite 

interval -—a,a.. Therefore E,(u,) > E(u,) uniformly in every finite 
t-interval. 

4 
2. SPECIAL PROPERTIES 

According to definition | to Y,2 two distributions U and V are of the 
same type if they differ only by location and scale parameters, that is, if 

(2.1) V(x) = U(Ax+B), . A>9O 

We now show that convergence is a property of types in the sense thal a 
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change of location parameters does not affect the type of the limit distribution. 
It is this fact which makes it legitimate to speak of an “asymptotically normal 
Sequence’’ without specifying the appropriate parameters. More precisely 
we prove 

Lemma 1. Let U and V be two probability distributions neither of which 
is concentrated at one point. If for a sequence {F,} of probability distributions 
and constants a, >90 and «,>0 . 

(2.2) F,(a,z+b,) > U2), Fylagn+B,) > F(2) 
at all points of continuity, then 

(23) 0 - “2. 4>0, Bn — bn _, 
. a, a, 

and (2.1) is true. Conversely, if (2.3) holds then each of the two relations (2.2) 
implies the other and (2.1). 

Proof. For reasons of symmetry we may assume that the first relation in 

(2.2) holds. -To simplify notations we put G,(x) = F,(a,2+5,) and also 
Pn = «,/a, and o, = (f,—45,)/a,. Assume then that G,— U. If 

(2.4) . Pn—A, ¢,—~B 

then obviously 

(2.5) GG, (ppt +o,) > V(x) 
with V(x) = U(Az + B). We have to prove that (2.5) cannot take place 

unless (2.4) holds. 
_ Since V is not concentrated at one point there exist at t least two values 

a’ and 2” such that the sequences {p,x' + 0,} and {p,x" + o,} remain 
bounded. This implies the boundedness of the sequences {p,} and {o,}, 

and hence it is possible to find a sequence of integers m, such that p,,— A 
and o,,—> B. But then V(x) = U(Az + B), and hence A > 0, for other- 
wise V cannot be a.probability distribution. It follows that the limits A 
‘and B are the same for all subsequences, and so (2.4) is true. > 

Exampie. The lemma breaks down if V is concentrated at one point. 

Thus if p, —> oo and o, =(—1)” the condition (2.4) is not satisfied but 
(2.5) holds with V concentrated at the origin. > 

Two types of sequences {F,} of probability distributions occur so 
frequently that they deserve names. For notational clarity we state the 

definitions formally in terms of random variables X,, but the notions 

really refer only to their distributions F,,. The definitions are therefore 

meaningful without reference to any probability space. 

Definition 1. X,, converges in probability to zero if 

(2.6) P{|X,| > €} +0 
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for any « >0. We indicate this by X,, 0. 
. Pp 

By extension X,,—»> X means the same as X,, — X +0. 

Note that (2.6) holds iff the distributions F, tend to the distribution 
concentrated at the origin. In general, however, F,,—> F implies nothing 

about the convergence of X,, X2,.... Forexample, if the X; are independ- 
ent with a common distribution F then F,,-—> F but the sequence {X,} does 
not converge in probability. 

The following simple lemma is of frequent use but not always mentioned 

explicitly. (For example, the truncation method used in 1; X depends 
implicitly on it.) 

Lemma 2. Denote the distributions of X, and Y,, by F,, and G,. Suppose 

that X, — Y, —>0 and G,—G. Thenalso FG. 
> 

In particular, if X,, —» X then F, — F where F is the distribution of X. 

Proof. If X, <2 then either Y,<2+e or X,—Y,<—e. The 

probability of the latter event tends to 0 and hence F,(x) < G,(z+6) + € 

for all sufficiently large. The same argument leads to an analogous 

inequality in the opposite direction. > 

Definition 2. The sequence {X,} is stochastically bounded if for each 
€ >0 there exists an a such that for all n sufficiently large 

(2.7) P{{X,| > a} <e. 

This notion applies equally to distributions in higher dimensions and 

vector variables X,,. 

A properly convergent sequence is obviously stochastically bounded 
whereas improper convergence excludes, stéchastic boundedness. We 

have therefore the trite but useful criterion: ‘If the distributions F,, converge, 

then the limit F isa proper distribution if {F,,} is stochastically bounded. 
If {X,} and {Y,,} are stochastically bounded, so is {X,+Y,}. Indeed, 

the event |X,+Y,| > 2a cannot occur unless either {X,| >a or |Y,| > 4 

and therefore 

(2.8) P{IX,+Y,| > 2a} < P{\X,| > a} + P{LY,| > a}. 

3. DISTRIBUTIONS AS OPERATORS 

The convolution U = Fu of a point function u and a probability 

distribution F was defined in V,4. If we define a family of functions u, 

by u,(z) = u(t—x) we can express the value U(r) as an expectation 

+00 

(3.1) uy =| ut—y) Fldy} = Eup. 
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We use this to derive a criterion for proper convergence. It is based on the 
class C[—0oo, 00] of continuous functions with limits u(+00) because 
such functions are uniformly continuous. 

Theorem 1. A sequence of probability distributions F,, converges properly 
to a probability distribution F iff for each ue C[—©, «] the convolutions 
U,, = F, * u converge uniformly to a limit U. In this case U = Fu. 

Proof. The condition is necessary because the uniform continuity of. u 
implies that the family {u,} is equicontinuous and so by the last corollary 

U,,—> F%u uniformly. Conversely, the condition of the theorem entails 

the convergence of the expectations E,,(u). We saw in section | that this 

implies the convergence F,,-—> F, but it remains to show that F is proper. 
For this purpose we use criterion | of section 1. 

If u increases monotonically from 0 to 1 the same will be true of each U,,. 

Because of the uniform convergence there exists an N_ such that 
[U,(z) — Uy(x)| << for n> WN and all x. Choose a so large that 
Un(—a) <«. Now Uy is defined by a convolution of the form (3.1); 
restricting the interval of integration to —0oo < y¥ < —2a we see that for 

n>wN 
2e > U,(—a) > u(a)F,,(—2a). 

Since u increases to unity it follows that for m and a sufficiently large 

F.,(—a) will be as small as we please. For reasons of symmetry the same 
argument applies to 1 — F(a), and hence F is proper by virtue of 

criterion 1. 

To illustrate the power of our last result we derive an important theorem 
of analysis whose proof becomes particularly simple in the present prob- 
abilistic setting. (For a typical application see problem 10.) 

Example. (a) General approximation theorems. With an arbitrary prob- 

ability distribution G we associate the family of distributions G, differing 
from it only by a scale parameter: G,(x) = G(z/h). As h-—0 the distri- 

butions G, tend to the distribution concentrated at the origin, and hence by 

the preceding theorem G,*xu-—>u for each ueC[—o, 0], the con- 

vergence being uniform.’ 

7 For a direct verification note that 

+00 

Gy, & u(t) — u(t) -{ [u(t—y) — u(t)1G {dy/h}. 
—o 

To given « > 0 there existsa 6 such that within each interval of length 26 the oscillation 

of u isless than e«. The contribution of the interval |y] < 6 to the integral is then <é«, 

and the contribution of |y| >6 tends to 0 because G, attributes to |y} > 6 a mass 

tending toO as h 0. 
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If G has a density g, the values of G,%u are given by 

0 h Th 

When g has a bounded derivative the same is true of G, and (3.2) may be 
differentiated under the integral. Taking for g the normal density we get 
the following > 

, “Foo a 

(3.2) G,, * u(t) -[ u(y) »(*) dy. 

Approximation lemma. To each u€C[—, o] there exists an infinitely 
differentiable ve C[—, 0] such that |u(x) — v(x)| < « for all x. > 

In the present context it is desirable to replace the clumsy convolution 
symbol % by a simpler notation emphasizing that in (3.1) the distribution 
F serves as an operator sending u into U. This operator will be denoted by 
the German letter & and we agree that U = Qu means exactly the same as 
U=Fxu. The true advantage of this apparent pedantry will become 
visible only when other types of operators appear in the same context. It 
will then be convenient to see at a glance whether a distribution plays its 
original probabilistic role or serves merely as an analytic operator (even 
though this fine distinction may lead to schizophrenia among the distribu- 
tions themselves). With this explanation we introduce the 

Notational convention. With each probability distribution F we associate 
the operator & from C[—©, ] 10 itself which associates with the function 
u the transform ju = F %& u. As far as possible distributions and the associated 
operators will be denoted by corresponding Latin and German letters. 

As usual in operator notation Gu denotés the result of § operating on 

Gu, and so &§@© denotes the operator associated with the convolution F* G 
of two probability distributions. In particular, §” is the operator-associated 

with F"*, the n-fold convolution of F with itself. 

Example. (b) If H, denotes the atomic distribution concentrated at a, 

then §, is the translation operator $,u(x) = u(x—a). In particular, Ho 
serves as the identity operator: § u = u. 

We now define the norm |lu|| of the bounded function u by 

(3.3) |u|] = sup |u(zx)| 

With this notation the statement ‘“‘u,, converges uniformly to u’’ simplifies 
to |lu, —ulj/—0. Note that the norm satisfies the easily verified triangle 

inequality \u + v|| < lull + lel. 
An operator T is called bounded if there exists a constant @ such that 

|Zul| << a- |jwi}. The smallest number with this property is called the norm 
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of 7 and is denoted by ||7||. With these notations the principal properties 

of the linear operators associated with distribution functions are: 
They are positive, that, is, u >0O implies fu > 0. They have norm.1, 

which implies 

(3.4) [| Sul] < lel. 

Finally, they commute, that is, §G = GR. 

Definition.’ If &, and & are operators associated with probability 
distributions F, and F we write §,—-% iff 

(3.5) . l,4¢ — ull — 0 

for each ue C[— 0, oo]. 

In other words, §,—-% if F,xu—>FRu uniformly. Theorem 1 _ 

may now be.restated as follows. 

Theorem la. F,,—> F properly iff &, > §%. 
The next lemma is basic. It has the form of an algebraic inequality and 

illustrates the suggestive power of the new notation. 

Lemma 1. For operators associated with probability distributions 

(3.6) liVeu — G,Gul] < Fi — Gul] + 1Gu — Gaul. 

Proof. The operator on the left equals (%,— ©) Ge + (Ge2—G2)G, and 

(3.6) follows from the triangle inequality and the fact that §, and ©, have 
norms <1. Notice that this proof applies also to defective probability 
distributions. > 

An immediate consequence of (3.6) is 

Theorem 2. Let the sequences {F,} and {G,} of probability distributions 
converge properly to F and G respectively. Then 

(3.7) F,*&G, > FXG. 

(The convergence is proper by the definition of F% G:. The theorem is false 

if F or G is defective. See problem 9.) 

As a second application we prove that theorem 1 remains valid if the class 

of functions wu is restricted to the particularly pleasing functions with 
derivatives of all orders. In this way we obtain the more flexible 

8 In Banach space terminology (3.5) is described as strong convergence. Note that it 

does not imply ||}, — || ~ 0. For example, if F,, is concentrated at i/n and @ is the 

identity operator, then {¥,,u(z) — u(x) = «(z—n-1) — u(x) and (3.5) is true but 

lS, — Ol =2, because there exist functions |v] <1 such that »(0) = 1 and 

v(—n7) = —1. 
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Criterion 3. Let the F,, be probability distributions. If for each infinitely 
differentiable? veEC[—0, 00] the sequence {§,v} converges uniformly, 

then there exists a proper probability distribution F such that F,,— F. 

Proof. It was shown in example (a) that to given ue C[—o, o] and 

¢ > 0 there exists an infinitely differentiable v such that |lu — vl] < «. 

By the triangle inequality 

(3.8) Gu —-Grtll S NG.u—Savll + NG w—- Fall + Ge —- Fuel. 

The first and last terms on the right are <e, and by assumption the middle 

termis <e forall n,m sufficiently large. Thus {f,,u} converges uniformly 
and F, -— F by theorem 1. > 

With E,, and E defined in (1.1) the same argument yields 

Criterion 2. Let F, and F be proper probability distributions. If 
E,(v) ~ E(v) for each infinitely differentiable v vanishing at infinity then 
F,, > F. 

The basic inequality (3.6) extends by induction to convolutions with 
more than two terms; for ease of reference we record the obvious result in 

Lemma 2. Let U= 91 -°°:%, and B= G,:-:+G, where the %; and 

G,; are associated with prchability distributions. Then 

3.9) [uu — Bull < SIG u — Gul. 
In particular 

(3.10) |G"u — Gull Sn- |Fu — Gull. 

(For applications see problems 14~15.) 

4. THE CENTRAL LIMIT THEOREM 

The central limit theorem establishes conditions under which sums of 
independent random variables are asymptotically normaliy distributed. 
Its role and meaning has been partly explained in 1; X,1 and we have 
applied it on several occasions [last in example VI,11(g)]. It occupie. a 
place of honor in probability theory acquired by its age and by the fruitful 
role which it played in the development of the theory and still plays in 
applications. Jt is therefore appropriate to use the central limit theorem 
as a test case to compare the scope of the various tools at our disposal. 
For this reason we shall give several proofs. A more systematic treatment 
(ircluding necessary and sufficient conditions) will be found in chapters IX, 

° By this is meant that all derivatives exist and belong to C[-«, ~]. 
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XV, and XVI. The present discussion sidetracks us from the development 
of our main theme; its purpose is to illustrate the advantages of the operator 
terminology by a striking and significant example. Also, many readers will 
welcome an easy access to the central limit theorem in its simplest setting. 
At the cost of some repetitions we begin by a special case. 

Theorem 1. (/dentical distributions in R14.) Let X,, Xo,... be mutually 

independent random variables with a common distribution F. Assume 

(4.1) E(X,)=0, Var (X,) = 1. 

As n-» © the distribution of the normalized sums 

(4.2) St = (Mite -+X,)//n 
tends to the normal distribution Nt with density n(x) = et? /,/ 2m. 

In purely analytical terms: for a distribution F with zero expectation 

and unit variance 

(4.3) F"*(av/n) > N(@). 
For the proof we require the following 

Lemma. If %, is the operator associated with F,(x) = F(a/n) then for 
each u€ C{[—o, o] with three bounded derivatives 

(4.4) n[¥,u—u] — fu" 

uniformly on the line. 

Proof. Since E(X#) = 1 we can define a proper probability distribution 

Fy by 
(4.5) FE {dy} = ny F, {dy} = ny? Fin dy}. 

The change of variables Vn y =s shows that F* tends to the distribution 

concentrated at the origin. In view of (4.1) we have for the difference of 

the two sides in (4.4) 

n{S,u(x)—u(x)] — gu"(z) = 

(4.6) (c [a8 — u(x) + yu'(x) Ww) | F* {dy}. 
2 

y 

The Taylor development of the numerator shows that for |y|<e« the 

integrand is dominated by 3 |y|° |lu’ |] <¢- |u|], and for all y by |v’ ||. 

Since F# tends to concentrate near the origin it follows that for n sufficiently 

large the quantity is in absolute value less than e(|[u" |]+ |u|), and so the 

left side tends uniformly to zero. > 

  

—~-@ 
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Proof of theorem I. Denote by G and G,, respectively, the operators 

associated with the normal distributions Q(x) and N(xr/ n). Then by the 
basic inequality (3.10) 

Gnu — Gull = Gru — Ghul <2 Fu — G,ull 

< n ln u— u|| +n |G, u ~~ ull. 

(4.7) 

By the preceding lemma the right side tends to zero and hence v7 G 
by criterion I of section 3. > 

Example. (a) Central limit theorem with infinite variances. It is of 

‘methodological interest to note that the proof of theorem | applies without 
change to certain distributions without variance, provided appropriate 
norming ccenstants are chosen. For example, if the X, have a density such 

that f(x) = 2 |z|- log |z| for |x| >1 and f(x)=0 for |x| <1, then 

(Xy+°-*+X,)/(/2n logn) has a normal limit distribution. (The proof 
requires only obvious changes.) Necessary and sufficient conditions for a 
normal limit are given in [IX,7 and XVII,5. > 

The method of proof is of wide applicability. Problem 16 may serve as 
a good exercise. Here we use the method to prove the central limit theorem 
in more general settings. The following theorem refers formally to two 

dimensions but is valid in KR”. 

Theorem 2. (Multivariate case). Let {X,,} stand for a sequence of mutually 

independent. two-dimensional random variables with a common distribution 
F, Suppose that the expectations are zero and that the covariance matrix 
is given by 

(4.8) c= (7 pow) 
. p0,0, og }- 

As n—» 0 the distribution of (X,+-° ‘+X,)/\/n tends to the bivariate 

normal distribution with zero expectation and covariance matrix C. 

Proof. The proof requires no essential change if the matrix notation of 
III,5 is used. Since subscripts are already overtaxed we denote thé points 

of the plane by row vectors x = (x), 2), Then u(x) denotes a function 
of the two variables and we denote its partial derivatives by subscripts. 

Thus wu’ = (wu, U2) is a row vector, and u” = (u,,) is a symmetric two by 

two matrix. With this notation the Taylor expansion takes on the form 

(4.9) u(e—y) = u(x) — yu'(x) + Ayu"(@y™ ++ 
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where y? is the transpose of y, namely the column vector with com- 
ponents y, y)- In analogy with (4.5) we define a proper probability 
distribution by 

# ~ mn, ¥ 
F,, {dy} = nq(y) F{/n dy} where 2q(y) = net oe 

: 1 2 

As in the last proof F tends to the probability distribution concentrated 
at the origin. To (4.6) there corresponds the identity 

nl&,u(x)—u(x)] — 3m(x) = 

(4.10) _ (Heya) + yu' (x) — fyu"(a)y™ é {dy} 

R q(y) 

where!® 

(4.11) m(2) = E(yu"(a)y") = uy ()oF + 212) pope + Heal 2)03. 
(Here E denotes expectations with respect to F.) In view of (4.9) the 

integrand tends to zero and as in the preceding lemma it is seen that 

n[§,u—u] > m uniformly, and the proof of the theorem requires no 

change. > 

Example. (b) Random walks ind dimensions. Let X,, X2,... be independ- 
ent random vectors with a common distribution that may be described as 
follows. The X, have a random direction in the sense introduced in 
I,10, and the length L is a random variable with E(L?) = 1. For reasons 

of symmetry the covariance matrix C is the diagonal matrix with elements 

o? = 1/d. The distribution of the normalized sum S,/vn tends to the 

normal distribution with covariance matrix C. The distribution of the 

squared length of the vector S,/V n therefore tends to the distribution of 
the sum of squares of independent normal variables. It was shown in IT,3 
that this limit has the density . 

de —tar* d—1 (4.12) w,(r) = oh Pd) 2 re, 

This result shows the influence of the number of dimensions and applies, 

in particular, to the random flight example I, [0(e). 
(c) Random dispersal of populations. As an empirical application of the 

foregoing example consider the spread of a population of oak trees in 
prehistoric times. If new plants were due only to seeds dropped by mature 
trees, then seedlings would be located near mature trees and the distance of 

an nth generation tree from its progenitor would be approximately normally 

10 Obviously m(zx) is the trace (sum of the diagonal elements) of the product Cu”. 

This is true in all dimensions. [In one dimension m(z) = 407u" (z).]. 
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distributed. Under these conditions the area covered by the descendants of a 
tree would be roughly proportional to the age of the tree: Observations 
show that the actual development is inconsistent with this hypothesis. 
Biologists conclude that the actual dispersal was strongly influenced by birds 
carrying the seeds long distances.4 > 

We turn to a generalization of theorem 1 to variable distributions The 
conditions give the impression that they are introduced artifically with the 
sole purpose of making the same proof work. Actually it turns out that the 
conditions are also necessary for the validity of the central limit theorem 
with the classical norming used in (4.17). (See XV,6.) 

Theorem 3. (Lindeberg). Let X,,Xo,... be mutually independent 

one-dimensional random variables with distributions F,, F,,... such that 

(4.13) E(X,) = 0, Var (X,) = o4; 

and put 

(4.14) S=orte + +o?. 

Assume that for each t > 0 

(4.15) sy y” F,{dy} +0 
k=1 J |v] =tsn 

or, what amounts to the same, that 

(4.16) snd | y” F {dy} > 1. 
=1 Jly|<tsy 

Then the distribution of the normalized sum 

(4.17) St = (Xi+- + ++X,)/s4 
tends to the normal distribution Qt with zero expectation and unit variance. 

The Lindeberg condition (4.15) guarantees that the individual variances 
o? are small as compared to their sum s? in the sense that for given ¢« > 0 

11 J, G. Skellam, Biometrika, vol. 38 (1951) pp. 196-218. 
12 J. W. Lindeberg, Math. Zeit., vol. 15 (1922) pp. 211-235. Special cases and variants 

had been known before, but Lindeberg gave the first general form containing theorem 1. 
The necessity of Lindeberg’s condition with the classical norming was proved by Feller, 
Ibid., vol. 40 (1935). (See XV,6.) . 

Lindeberg’s method appeared intricate and was in practice replaced by the method of 
_ characteristic functions developed by P. Lévy. That streamlined modern techniques 

permit presenting Lindeberg’s method in a simple and intuitive manner was shown by 
H. F. Trotter, Archiv. der Mathematik, vol. 9 (1959) pp. 226-234. Proofs of this section 
utilize Trotter’s idea. 
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and all m sufficiently barge 

(4.18) Oo, < €5, k=1,...,n. 

In fact, obviously o,/s. is less than f? plus the left side in (4.15), and 
taking t = $e we see that (4.15) implies (4.18). 

Theorem 3 generalizes to higher dimensions in the way indicated by. 
theorem 2. See also problems 17-20. 

Proof. To each distribution F, we make correspond a normal distri- 
bution G, with zero expectation and the same variance o?. The distribution 
F,(«s,) of X,/s, now depends on both k and n, and we denote the 
associated operator by %,,,- Similarly ©, ,, is associated with the normal 
distribution G,(xs,). By (3.9) it suffices to prove that 

(4.19) 2! Ba,ntt — Gz,nttll > 0 

for every u€C[—o, oo] with three bounded derivatives. We proceed as 
in theorem 1, but (4.6) is now replaced by the n relations 

Se, ntl(@) — uz) — x u(2) = 
(4.20) _ f [eve — u(x) + yu(x) wa | FAs, dy}. 

y” 2 —2 

Splitting the interval of integration into [y| < « and ly| > ¢ and using 

‘the same estimates as in (4.6) we obtain 

2 
O, 

Send —u— eu” 
2s?     

Oy ” 

Se 1" + lu": | y” Fy{sq dy}. 
Sn lul<e - 

    

(4.21) 

The Lindeberg condition (4.15) with t= « now guarantees that for n 

sufficiently large 

n 

(4.22) > 
k=1 

2 

eo u—u-—u" kn 
2s? 

        

< e(|lu"" |] + lle"). 

For our normal distributions G, the Lindeberg condition (4.15) is satisfied 
as a simple consequence of (4.18), and therefore the inequality (4.22) remains 
valid with %,,, replaced by G,,,. Adding these two inequalities we obtain 

(4.19), and this concludes the proof. > 

Examples. (d) Uniform distributions. Let X, be uniformly distributed 

[with density 1/(2a,)] between —a, and a,. Then of = }aj. It is easily 
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seen that the conditions of the theorem are satisfied if the a, remain 
bounded and aj+---+a%—+ oo; indeed, in this case the sum (4.15) 
vanishes identically for all n_ sufficiently large. On the other hand, if 
> a < © then s, remains bounded and (4.15) cannot hold: in this case 
the central limit theorem does not apply. (Instead we get an example of an 
infinite convolution to be studied in section 5.) 

A less obvious case where the central limit theorem does not hold is 

of =2*, Then 3s? = 2"*! -2 < 2a? and obviously the left side of 
(4.15) is > 4 if, say, t <ygo. These examples show that (4.15) serves to 
insure that the individual X, will be asymptotically negligible: the prob- 
ability that any term X, will be of the same order of magnitude as the sum 
S,, must tend to zéro. 

-(e) Bounded variables. Assume that the X, are uniformly bounded, 

that is, that all the distributions F, are carried by some finite interval 

—a,a. The Lindeberg condition (4.15) is then satisfied iff s, — oo. 
(f) Let F be a probability distribution with zero expectation and unit 

variance. Choose a sequence of positive numbers o, and put F,(x) = 

= F(x/o,) (sothat F, has variance o?). The Lindeberg condition is satisfied 

iff s,— 0 and o,/s,—0. Indeed, we know that these conditions are 

necessary. On the other hand, the left side in (4.15) reduces to 

n 

s,’> o| a” F{dz}. 
k |x] <tsy/ox =1 

Under the stated conditions s,/o, tends to 0 uniformly in k = 1,...,7, 

and so for n sufficiently large all the integrals appearing in the sum will be 

<e. This means that the sum is <es?, and so (4.15) is true. > 

It is of methodological interest to observe that the same method of proof 

works even for certain sequences of random variables without expectations, 
but the norming factors are, of course, different. We shall return to this 

problem in XV,6 where we shall also further analyze the nature of the 

Lindeberg condition. (See problems 19-20.) 

We conclude this excursion by a version of the central limit theorem for 
random sums. The idea is as follows. If in theorem 1 we replace the fixed 

number n of terms by a Poisson variable N withexpectation n itis plausible 
that the distribution of Sy will still tend to M. Similar situations arise in 

statistics and physics when the number of observations is not fixed in 
advance. 

We consider only sums of the form Sy = X, +--+ + Xy where the 

X; and N are mutually independent random variables. We suppose that 
the X; have a common distribution F with zero expectation and variance 

1. Using the notation of section 2 we have
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Theorem 4.'° (Random sums.) Let N,,No,... be positive integral-valued 
random variables such that 

(4.23) a ae 

Then the distribution of Sx /V n tends to TN. 

The interesting feature is that Sn, /V. n is not normalized to unit variance. In fact, 
the theorem applies to cases with E(N,) = © and even when expectations exist, (4.23) 
does not imply that n-E(N,) > 1. Normalization to unit variance may be impossible, 
and when possible it complicates the proof. 

Proof. To avoid double subscripts we write P{N, =k} =a, with the 
understanding that the a, depend on n. The operator associated with. 
Sw, is given by the formal power series >} a,{5*. As in the proof of theorem 
llet &,, be the operator associated with F(x/n). Since F nk + Q it suffices 
to prove that 

(4.24) da, HF u — Fru 0 
k=l 

uniformly for each u€ C[—oo, o] with three bounded derivatives. 
Using the obvious factoring and the basic inequality (3.9) it.is seen that 

(4.25) liu — Frull < elu — ull <|k —n|-|F,u — ul. 
Because of (4.23) the coefficients a, with |k — n| > en add to less than « 
provided n is sufficiently large. For such n the norm of the left side in 
(4.24) is 

(4.26) < 2a, Wu — Faull < e+ full + 2e-n Fu — ull. 
k=1 

    

We saw in the proof of the lemma the right side is < 2e |u| + 3e |v” for. 
all n sufficiently large, and so (4.24) holds uniformly. > 

*5. INFINITE CONVOLUTIONS 

The following theorem is given for its intrinsic interest and because it 

is a good example for ihe working of our criteria. Stronger versions are 
found in VIT,8, [X,9. and XVII,16. 

13 For generalizations to mutually Gependent X, sec P. Billingsley, Limit theorems for 
randomly selected partial sums, Ann. Math. Stotist., vol. 33 (1963) pp. 85-92. When 

(4.23) is dropped one gets limit theorems of a novel form. See H. E. Robbins, The 

asymptotic distribution of the sum of a random number of random variables, Bull. Amer. 

Math. Soc. vol. 54 (1948) pp. 1151-1161. 

For generalizations of the central limit theorem to other types of dependent variables 
the reader is referred to the book by Loéve. (For exchangeable variables, see problem 21.) 

* This section is not used in the sequel. 
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We denote by X,, X,,... mutually independent variables with distribu- 
tions Fy, Fp,.... It is assumed that E(X,;) = 0 and o? = E(X?) exist. 

Theorem. If o? = > o2 < 00 the distributions G,, of the partial sums 
X, +++: + X,, tend to a probability distribution G with zero expectation and 
variance o°. 

Proof. To establish the existence of a proper limit G it suffices (theorem 
1.of section 3) to show that for infinitely differentiable u¢ C[—00, 0] 
the sequence of functions %,%.--° %,u converges uniformly as n—> oo, 

Now for 2 > m by the obvious factorization 

(5.1) I 9 Bu — Bi Gall S Wns aw — yl. 

Since E(X,) = 0 we have the identity 

(5.2) Guz) — u(z) =] [u(z—y) — ula) + yu'(a)] Ffdy}. 
—o 

By the second-order Taylor expansion the integrand is in absolute value 
< |lu"||-y? and therefore [Gu — ull < 02> |lu’ I. By the basic inequality 
(3.9) the quantity (5.1) is therefore <(o?,, +++: + 0%): |lu"|| and thus 

there exists a proper distribution G such that G,>6 Since G, has 
variance of +:----+ 0% the second moment of G exists and is. <o”. 
By the criterion of example 1(e) this implies that G has zero expectation. 
Finally, G is the convolution of G, and the limit distribution of 
Xai ++°* + X,4,, and hence the variance of G cannot be smaller than 

that of G,. This concludes the proof. > 

Examples. (a) In example I,11(c) a random choice of a point between 
O and 1 is effected by a succession of coin * yssings. In the present terminology 
this means representing the uniform distribution as an infinite convolution. 
Example I,1{(d) shows that the infinite convolution of the corresponding 
even-numbered terms is a singular distribution. (See XVII,10.) 

(5) Let the Y, be independent with E(Y,)=0 and E(Yj) =1. Then 

the distributions of the partial sums of 5 5,Y, converge if 42 < o. 
This fact was exploited in the discussion of normal stochastic processes in 
IIT,7. 

(c) Application to birth processes. Let X,, be a positive variable with 

- density A4,e~***. Then E(X,) = Var (X,) =A! and in case m= 
= >} A>! < oo our theorem applies to the centered variabies X, — 4;,'. 
This observation. leads to a probabilistic interpretation of the divergent pure 
birth process described in 1; XVII,3-4. A “particle’’ moves by successive 

- 14 Jt was shown in VII,8 that the random variables S, themselves converge to a limit. 
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jumps, the sojourn times X,,X,,... being independent exponentially 
distributed variables.. Here S, = X, +----+ X, represents the epoch of 

the nth jump. If lim E(S,) = m < oo, the distribution of S,, tends to a 

proper limit G. Then G(r) is the probability that infinitely many jumps will 
occur before epoch ¢. 

(d) For applications to shot noise, trunking problems, etc., see problem 
22, > > 

6. SELECTION THEOREMS 

A standard method of proving the convergence of a numerical sequence 
consists in proving first the existence of at least one point of: accumulation 
and then its uniqueness. A similar procedure is applicable to distributions, 
the analogue to-a point of accumulation being provided by the following im- 
portant theorem usually ascribed to Helly. As for all theorems of this section, 
it is independent of the number of dimensions. (A special case was used i in 1; 
XI,6.) 

Theorem 1. (i) Every sequence {F,} of probability distributions in R* 
possesses a subsequence F,, , F,,,... that converges (properly or improperly) 
toalimit. F. 

(ii) Zn order that all such limits be proper: it is necessary and sufficient 
that {F,,} be stochastically bounded. (See definition 2 of section 2.) 

(iii) In order that F,,—» F it is necessary and sufficient that the limit of 
every convergent subsequence equals F. 

The proof is based on ‘the following 

Lemma. Let a), a:,... be an arbitrary sequence of points. Every Sequence . 

{u,} of numerical functions contains a subsequence Un.» Ung»... that converges 

at all points a; (possibly to +0). 7 

Proof. We use G. Cantor’s “diagonal method.” It is possible to find a 
Sequence ¥,,%.2,... such that the sequence of values wu, (a,) ‘converges. To 
avoid multiple indices we put uj!) =u, so that fu} is a subsequence of 
{u,} and converges at the particular point a,. Out of this subsequence we 

extract a further subsequence u‘?), u‘?),... ihat converges at the point ap. 
Proceeding by induction we construct for each a sequente ui”), uf”, ... 
converging at a, and contained in the preceding sequence. Consider now 
the diagonal sequence uid), yu), uf), .... Except for its first » — 1 terms 
this sequence is contained in the "nth sequence uf; u'™,... and hence it 
converges at a,. This being true for each n, the diagonal sequence {u‘”} 
converges at all points Q;, @,,... and the lemma is proved. > 

Proof of theorem 1. (i) Choose for {a,;} a sequence that is everywhere 
dense, and choose a subsequence {F,,} that converges at each point q;. 
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Denote the limits by G(a,;). For any point x not belonging to the set {a,} 
we define G(z) as the greatest lower bound of all G(a,) with a; > 2. The 
function G thus defined increases from 0 to 1, but it need not be right- 
continuous: we can only assert that G(x) lies between the limits G(z+) 

and G(z—). However, it is possible to redefine G at the points of dis- 
continuity so as te obtain a right-continuous function F which agrees with 
G atall points of continuity. Let x be sucha point. There exist two points 
a, <x <a, such that 

(6.1). G(a;)— Ga)<« § Gla) < F(z) < G(a,). 
The F, being monotone we have F, (a) < Fi,(@) < F,,(a). Letting 
k-» © we see from (6.1) that no limit point of the sequence {F,, (x)} can 

differ from F(x) by more than e, and so F. nit) —> F(x) at all points of 

continuity. . 
, a 

(ii) Next we recall that a convergent sequence of distributions converges 
properly iff it is. stochastically bounded. Given (i) the remaining assertions 

are therefore almost tautological. > 

The selection theorem is extremely important.. The following famous 
theorem in number theory may give an idea of its amazing power and 

may also serve as a reminder that our probabilistic terminology must not 
be allowed to obscure the much wider scope of the theory developed. 

Examples. (a) An equidistribution theorem in number theory.5 Let a be 

an irrational number and «,, the fractional part of na. Denote by N,(z) 
the number of terms among a, %2,...,%, thatare <x. Then nN,(x) > x 
forall O<x<l. 

Proof. We consider distributions and functions on the circle of unit 
length; in other words, additions of coordinates are reduced modulo 1. 
(The idea was explained in II,8. The convenient tool of distribution functions 

becomes meaningless on the circle, but distributions in the sense of measures 

are meaningful.) Let F,. be the atomic distribution concentrated on the 1 

points «,2a,...,ma. and assigning probability 1/n to each. By the 

selection theorem there exists a sequence 7,,”,,... such that F,, > F, 

where F is a proper probability distribution (the circle being bounded). 

Taking convolutions with an arbitrary continuous function u we get 

(6.2) 4 [iu(e—a) + u(a—2a) +-- ut u(z—n,a)] — v(2). 
n i: kK 

15 Usually a attributed to H. Weyl although discovered independently by Bohl and by 

Sierpinski. See G. H. Hardy and E. M. Wright, Theory of numbers, Oxford, 1945, pp- 

378-381, to appreciate the difficulties of the proof when the theorem is considered in a 

non-probabilistic setting. 
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Now it is obvious that replacing x by x—« does not affect the asymptotic 
behavior of the left side, and hence v(x) = v(x—«a) for all x. This in turn 
implies v(x) = v(@—ka) for kK =1,2,.... By the corollary to lemma 2 
in V,4 the points a«,2«,... lie everywhere dense, and hence v = const. 

We have thus shown that for each continuous wu -the convolution F%& u 
is a constant. It follows that F must attribute the same value to intervals of 
equal length, and so F{J}. equals the length of the interval 7. The impos- 
sibility of other limits proves that the whole sequence {F,,} converges to this 
distribution, and this proves the theorem. We call F the uniform distribution 

on the circle. . 

(b) Convergence of moments. Let F,, and F be probability distributions 
with finite moments of all orders, which we denote by m{”) and wy, - 
respectively. We know from VII,3 that different distribution functions can 
have the same moment sequence and it is therefore not always possible from 

the behavior of u{") to conclude that F,,— F. However, if F is the only 
distribution with the moments y, Me,... andif ui” — uw, for k = 1,2,... 
then F,,—> F, In fact, the result of example 1(e) shows that every convergent 

subsequence of {F,,} converges to F. 

(c) Separability. For brevity call a distribution rational if it is concentrated 
at finitely many rational points and.attributes a rational weight to each. An 
arbitrary distribution F is the limit of a sequence {F,} of rational distri- 

butions, and we may choose F,, with zero expectation since this can be 
achieved by the addition of an atom and adjustment of the weights by 
arbitrarily small amounts. But there are only denumerably many rational 
distributions and they may be ordered into a simple sequence G,, G2,..-- 
Thus there exists a sequence {G,,} of distributions with zero expectations and 

finite variances such that every distribution F is the limit of some subsequence 

{G,,,}- > 

Theorem 1 was formulated in the form most useful for probability but is 
unnecessarily restrictive. The proof depended on the fact that a sequence 
{F,} of monotone functions with F,(—0oo) = 0, F,(0) = 1 contains a 
convergent subsequence. Now this remains true also when the condition 

F,,(c0) = 1 is replaced by the less stringent requirement that the numerical 
sequence {F,,(x)} be bounded for each fixed x. The limit F will then be finite 

but possibly unbounded ; the induced measure will be finite on intervals — 0, 2, 

but possibly infinite for — oo, oo. A similar relaxation is possible for — © 

  

and we are led to the following generalization of theorem 1, in which the 

symbol u,—m is used in the obvious sense that the relation holds in 

finite intervals. oo 
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Theorem 2. Let {u,} be a sequence of measures such that the numerical 

sequence f,{—2%,+} is bounded for each x. There exists a measure u 
and a sequence m,,N2,... such that fy, — pM. 

Variants of the selection theorem hofd for many classes of functions 
Particularly useful is the following theorem, usually called after either 
Ascoli or Arzela. 

Theorem 3. Let {u,} be an equicontinuous'® sequence of functions 
lunl <1. There exists a subsequence {u,,} converging to a continuous limit 

u. The convergence is uniform in every finite interval. 

Proof. Choose again a dense sequence of points a;. and a subsequence 
{u,,} converging at each a,; denote the limit by u(a;). Then 

(6.3) [u, (7)—n,, (@)| < \u,,, (7) —u,_(a;)| + \u,,, (7) — uy, (a;)| 

+ \u,,(a;)—u,, (a;)]. 

By assumption the last term tends to0. Because of the assumed equicontinuity 
there exists for each x a point a, such that 

(6.4) |u,(z) ™ u,(a;)| <e€ 

for all , and finitely many such a; suffice for any finite interval J. It 
follows that the right side in (6.3) will be <3e forall r and s sufficiently 

large uniformly in 7. Thus u(x) = lim u, (~) exists, and because of (6.4) 

we have |u(x) — u(a;)| << « which implies the continuity of uw. > 

*7, ERGODIC THEOREMS FOR MARKOV CHAINS 

Let K be a stochastic kernel concentrated on a finite or infinite interval 
Q. (By definition 1 of VI,11 this means: K is a function of two variabies, 

a point x anda set I’, which for fixed I’ reduces to a Baire function of 
x and for fixed z¢Q a probability distribution concentrated on Q.) In 
higher dimensions the interval 2 may be replaced by more general regions 
and the theory requires no change. 

It was shown in VI,11 that there exist Markov chains (X,, X,,...) with 
transition probabilities K. The distribution y, of the initial variable Xe 
may be chosen arbitrarily and the distributions of X,, X,,... are then 

16 That is, to each « > 0 there corresponds a 6 > 0 such that |x’ —x”| <6 implies 

| up (a’) — u,(x")| < € forall 7. 

* This material is treated because of its importance and as a striking example for the 

us¢ of the selection theorems. It is not used explicitly in the sequel. 
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given recursively by 

(7.1) rl) = | y9-s(d2) K(@, DP). 
In particular, if y») is concentrated at a point x, then y,(I) = K (a, T) 

coincides with the transition probability from 2 to IT. 

Definition 1. A measure « is strictly positive in Q if a{1} > 0 for each 
open interval I-= Q. The kernel K is strictly positive if K(x,I)>0 for 
each x and each open interval in Q. 

Definition 2. The kernel is ergodic if there exists a strictly positive prob- 
ability distribution « such that y, —> « independently of the initial probability 
distribution Yo. 

This amounts to saying that 

(7.2) K™ (a, I) a() > 0 

for each interval of continuity for a. The definitic.a is the same ‘as in the 
discrete case (1; XV); its meaning has been discussed and clarified by 

examples in VI,11. 

The most general stochastic kernels are.subject to various pathologies, 
and we wish to restrict the theory to kernels depending in a continuous 
manner on x. The simplest way of expressing this is by considering the 
transformations on continuous functions induced by K. Given a function 
u which is bounded and continuous in the underlying interval 2 we define 
Uy = u and, by induction, | 

(73) u,(2) = [ Ke. dy) up_x(¥). 

This transformation on functions is dual to the transformation (7.1) on 

measures. Note that in both cases throughout this section indices serve to 
indicate the effect of a transformation induced by K. 

The regularity property that we wish to impose on XK is, roughly speaking, 

that u, should not be worse than wu». The following definition expresses 
exactly our needs but looks formal. The examples will show that it is 
trivially satisfied in typical situations. 

Definition 3. The kernel K is regular if the family of transforms u, is 

equicontinuous!” whenever ug is uniformly continuous in Q. 

17 See footnote!®. Our “regularity’’ in analogous to “complete continuity’’ as used in 
Hilbert space theory. 
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Examples. (a) Convolutions. If F isa probability distribution the 
convolutions 

+0 

u(t) = [ty ale—w) Flay} 
represent a special case of the transformation (7.3). (With self-explanatory 
notations in this case K(x,/) = F{J—x}. This transformation is regular 

because, ug being uniformly continuous, there exists a 6 such that 
la’ — 2"| <0 implies |uo(x’) — up(x")| < € and by induction this entails 
\u,,(x’) — u,(z")| < € forall n. 

(5) Let Q be the unit interval and let K be defined bya density k which 
is continuous in the closed unit square. Then K is regular. Indeed 

1 

(74) |u,(2’) — u,(2")| < [ Ik(2', ¥) — k(x", y)|* lun a9) dy. 

By induction it is seen that if |uw)| < M also |u,| < M forall n. Because 

of the uniform continuity of k there exists a 6 such that 

k(x’, y) — k(x", y)| < «/M_ whenever |x’ — x”| <6, 

and then |u,(x’) — u,(x”)| < € independently of 27. > 

The condition of strict positivity in the following theorems is unnecessarily 
restrictive. Its main function is to eliminate the nuisance of decomposable 
and periodic chains with which we had to cope in 1; XV. 

Theorem 1. Every strictly positive regular kernel K on a bounded closed 

interval Q is ergodic. / 
This theorem fails when Q is unbounded, for the limit in (7.2) can be 

identically zero. A universal criterion may be formulated in terms of 
stationary measures. We recall that a measure « is called stationary for 

K if a, = «4, =-:- =a, that is, if all its transforms (7.1) are identical. 

Theorem 2. A strictly positive regular kernel K is ergodic iff it possesses 

a strictly positive stationary probability distribution «. 

Proof of theorem 1. Let vg be a continuous function and v, its transform 
(7.3). The proof depends on the obvious fact that for a strictly positive 
kernel K the maximum of the transform v, is strictly less than the maximum 
Of v9 except if vg is a constant. 

Consider now the sequence of transforms u, of a continuous function 
tu. Since Q is closed, up is uniformly continuous on © and hence the 

sequence {u,} is equicontinuous. By theorem 3 of section 6 there exists 

therefore a subsequence {u,,} converging uniformly to a continuous 
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function v9. Then wu, ,, converges to the transform v, of v9. Now the 

numerical sequence of the maxima m, of u, is monotone, and hence m,, 
converges to alimit m. Because of the uniform convergence both vy and 0, 
have the maximum m, and hence v(x) =m for all x. This limit being 

independent of the subsequence {u,,} we conclude that u,—>m uniformly. 
Let yo be an arbitrary probability distribution on Q and denote by E,, 

expectations with respect to its transform y,, defined in (7.1). A comparison 

of (7.1) and (7.3) shows that . 

E,,(Up) = Eo(u,) > Eq(m) = m. 

The convergence of E,,(up) for arbitrary continuous uv, implies the existence 
of a probability measure a such that y,—>«. (See theorem 2 of section 
1; the convergence is proper since the distributions y, are concentrated on 
a finite interval.) From (7.1) it follows that « is stationary for K. The strict 

positivity of « is an immediate consequence of the strict positivity of K. > 

Proof of theorem 2. Denote by E expectations with respect to the given 

stationary distribution a. For an arbitrary uyeC[—o, 0], and its 
transforms u, we have on account of the stationarity E(u) = E@,) =--- 

Furthermore, E(|u,{)- decreases with k and so lim E(|u,j) = m exists. 

As in the preceding proof we choose a subsequence such that u,, —> v9. 
Then u,,,1-> 0,, where v; is the transform of v9. By bounded convergence 

this entails E(u,,)—> E(v)) and E(|u,,|)—> E(jvol). Thus 

E(v,) = E(v,) = E(u) and E(|v;!) = E(lvgl) = m. 
In view of the strict positivity of K the last equality implies that the con- 
tinuous function vg ‘cannot change signs. When E(u,) =C we have 
therefore vp(x) = 0 identically. It follows that for arbitrary initial ug we 

have v,(x) = E(u) for all x. This proves that u,{a) -—» E(ug) which is the 

same as K(x, [) — a(I°) at all intervals of continuity. > 

We now apply this theory to convolutions on the circle of circumference 1, 

that is, to transformations of the form 

t rf Lo 
(7.5) Unyi(e) = |, u,t—y) Flay, 

where F is a probability distribution on the circle and addition is module 
1. [See If,8 and example 6(a).] This transformaticn may be written in the 

—~1 
form (7.3) with Q=0,1 and K'™(a,P) = F"*{x —I}. Theorem 1 

applies directly if F is strictly positive, but we prove the following more 

general analogue to the central limit theorem. 
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Theorem 3.'° Let F be a probability distribution on the circle and suppose 
that it is not concentrated on the vertices of a regular polygon. Then F"* 
tends to the distribution with constant density. 

Proof. It suffices to show that for an arbitrary continuous function u, 
the transforms u, tend to a constant m (depending on wu). Indeed, as 
the second part of the proof of theorem 1 shows, this implies that F”* 
converges to a probability distribution « on the circle, and since « %& up 
is constant for every continuous function wu» it follows that « coincides 
with the uniform distribution. 

To show that u,—m we use the first part of the proof of theorem 1 
except that we require a new proof for the proposition that’ the maximum 
of the transform v, of a continuous function v is strictly less than the 
maximum Of vy except if v, is a constant. To prove the theorem it suffices 

therefore to establish the following proposition. If v9 is a continuous function 
such that v9 <m and v(x) <m for all x of an internal I of length 
A> 0, then there exists an r such that v,(z) <m for all x. 

Since rotations do not affect the maxima there is no loss of generality 

in assuming that 0 is a point of increase of F. If 5 is another point of 
increase then 0,5,2b,...,rb are points of increase of F**, and it is 
possible to choose 5 and r such that every interval of length A contains 
at least one among these points (see lemma 1 and the corollary in V,4a). 
By definition 

(7.6) — o(2) = [ vo(z—y) F™ {dy}. 

To every point x it is possible tu find a point y of increase of F”* such 
that x — y is contained in J. Then v,(x—y) < m, and hence v,(%) < m. 

Since 2 is arbitrary this proves the assertion. > 

“Note. The proof is easily adapted to show that if F is concentrated on 
the vertices of a.regular polygon with one vertex at 0, then F”* tends to an 
atomic distribution with atoms of equal weight. Convergence need not take 

place if 0 is not among the atoms. 

Example. (c) Let F be concentrated on the two irrational points a 
and a+ 4. Then F"* is concentrated on the two points na and na + 3, 

and convergence is impossible. > 

18 For the analogue on the open line see problems 23 and 24. For generalizations to 
variable distributions see P. Lévy, Bull. Soc. Math. France, vol. 67 (1939) pp. 1-41; 

A. Dvoretzky and J. Wolfowitz, Duke Math. J., vol. 18 (1951) pp. 501-507. 
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8. REGULAR VARIATION 

The notion of regular variation (introduced by J. Karamata in 1930) 
proved fruitful in many connections, and finds an ever increasing number of 
applications in probability theory. The reason for this is partly explained 

in the next lemma, which is basic despite its simplicity. The examples of 
this section contain interesting probabilistic results, and problem 29-30 
contains a basic result concerning stable distributions which follow from the 
lemma in an elementary way. (See also problem 31.) 

We have frequently to deal with monotone functions U obtained from 

a probability distribution F by integrating y? F{dy} over 0,2 or 2, 0. 
(See, for example, (4.5), (4.15), (4.16).] The usual changes of parameters 

lead from such a function U to the family of functions of the form a, U(tz), 

and we have to investigate their asymptotic behavior as t—> oo. If a limit 
(x) exists, it suffices to consider norming factors of the form a, = p(1)/U(s) 

provided. y(1) > 0. The next lemma is therefore wider in scope than 
appears at first sight. It shows that the class of possible limits is surprisingly 
restricted. 

  

Lemma 1. Let Ube a positive monotone function on 0, © such that 

Utz) = 
(8.1) mn MSO — 
at a dense set A of points. Then 

(8.2) (a) = 
where ~O< p< om. 

The senseless symbol x® ‘is introduced only to avoid exceptions. It is, of 
course, to be interpreted as oo for 2 >1 and as 0 for x <1. Similarly 

a-° is oo or.0 according as x < lor «> 1. (See problem 25.) 

Proof. The identity 

U(ta,%_)  U(ta,%,) U(tz,) 

Ut) —-Ultm) UL) 
shows that if in (8.[) a finite positive limit exists for 2 = 7, and 2 == %, 

then also for x = 7,2%,, and 

(8.4) (22) = p(x) p(%2). 

Suppose first that y(z,) = 00 for some point 2,. Then by induction 

p(x?) = 00 and vz n) = 0 for all nm. Since p is monotone this implies 

that either y(z) = 2° or p(x) =2-®. It remains to prove the lemma for 

finite valued: y. (See problem 25.) Because of the assumed monotonicity 

we may define p everywhere by right-continuity, in which case (8.4) holds at 

  (8.3) 
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all points 2,,2,. Now (8.4) differs only notationally from the equation which 

we have used repeatedly to characterize. the exponential distribution. In fact, 
letting «=e and yp(e*) =u(é) the relation (8.4) is transformed into 

u(é,+&,) = u(&,) u(é,). We know from 1; XVII,6 that all solutions that are 
bounded in finite intervals are of the form u(&) = e°*. This, however, is 
the same as p(x) = 2°. > 

A function U satisfying the conditions of lemma 1 with a finite p will 
be said to vary regularly at infinity, and this definition will be extended to 
non-monotone functions. If we put 

(8.5) . U(x) = 2? L(x) 

the ratio U(tx)/U(t) will approach 2° iff 

L(tz). 
(8.6) L(t) —> I, | t—> ©, 

for every x > 0. Functions with this property are said to vary slowly, and 
- thus the transformation (8.5) reduces regular variation to slow variation. 

It is convenient to use this fact for a formal definition of. regular variation. 

Definition. A. positive (not necessarily monotone) function L defined on 

0, 00 varies slowly at infinity iff (8.6) is true. 
A function U varies regularly with exponent p (—0 < p < ©) iffit is 

of the form (8.5) with L slowly varying. 
This definition extends to regular variation at the origin: U varies 

regularly at 0 iff U(x") varies regularly at oo. Thus no new theory is 
required for this notion. 

The property of regular variation depends only on the behavior at infinity 
and it is therefore not necessary that L(x) be positive, or even defined, for 
all x >0. 

Example. (a) All powers of |log2z| vary slowly both at 0 and at oo. 
Similarly, a function approaching a positive limit varies slowly. 

The function (1 + 2”)? varies regularly at oo with exponent 2p. 
e* does not vary regularly at infinity, but it satisfies the conditions of 

lemma | with p = oo. Finally, 2 + sinzx does not satisfy (8.1). > 

For ease of reference we rephrase lemma | in the form of a 

Theorem. A monotone function U varies regularly at infinity iff (8.1) holds. 

on a dense set and the limit w is finite and positive in some interval.}® 

19 The notion of regular variation may be generalized as follows: Instead of postulating - 

the existence of a limit in (8.1) we require only that every sequence {7,} tending to infinity 

contains a subsequence such that U(r, Zl Ut, pd tends to finite positive limit.. We say 

then that U varies dominatedly. See the end of the problem section 10. 
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This theorem carries over to non-monotone functions except that it must 
be assumed that convergence takes place at ail points. 

The following lemma should serve to develop a feeling for regular 
variation. It is an immediate consequence of the general form (9.9) of slowing .- 
varying functions. 

Lemma 2. Jf L varies slowly at infinity then 

(8.7) a* < L(x) < af 

for any fixed « >0 andall x sufficiently large. 
The passage to the limit in (8.6) is uniform in finite intervals O0<a<ax<b. 

We conclude this survey by a frequently used criterion. 

Lemma 3. Suppose that 

Anti +>] 
  and a,— 0. 

n 

If U is a monotone function such that 

(8.8) lim A,, U(a,x) = x(x) < 

exists on a dense set, and x is-finite and positive in some interval, then U 
varies regularly and (x) = cx? where —0o <p < ©. 

Proof. We may assume that y(1) = 1 and that (8.8) is true for = 1 
(because this can be achieved by a trivial change of scale). For given ¢ 
define as the smallest integer such that a,,, >¢. Then a, t<4,,, 

and for a non-decreasing U | 

U(a,2) < U(tz) < U(Gns12) | 

Una) Ut) ~, Ula,) ” 

for a non-increasing U the reversed inequalities hold. Since /,, U(a,)— 1 

the extreme members tend to y(x) at each point where (8.8) holds. The 

assertion is therefore contained in the last theorem. > 

(8.9)   

To illustrate typical applications we derive first a limit theorem due to 

R. A. Fisher and B. V. Gnedenko, and next a new result. 

Exaiaple. (b) Distribution of maxima. Let the variables X, be mutually 

independent and have a common distribution F. Put 

X* = max [X,,..., X,]. 

We ask whether there exist scale factors a, such that the variables X¥/a, 

have a limit distribution G. We exclude two cases on account of their 
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triviality. If F has a largest point of increase & then the distribution of 
X* trivially tends to the distribution concentrated at & On the other hand, 
it is always possible to choose scale factors a, increasing so rapidly that 
X*/a, tends to 0 in probability. The remaining cases are covered by the 
following proposition. | > 

Let F(x) <1 for all x. In order that with appropriate scale ‘factors a,, 
the distributions G,, of X*/a, tend to a distribution G not concentrated at 0 
it is necessary and sufficient that 1 — F varies regularly with an exponent 
p <0. In this case, 

(8.10) G(x) = e-#? 

for x<>0 and G(x) = 0 for x <0. (Clearly c > 0.) 

_ Proof. If a limit distribution G exists we have 

(8.11) F*(a,2) > G(2) 
at all points of continuity. Passing to logarithms and remembering that 
log (1—z) ~ —z as z-+0 we get 

(8. 12) . nfl —F(a,x)] —> —log G(z). 

Since 0 < G(@) <1 in some interval the last lemma guarantees the regular 
"variation of I — F. Conversely, if 1 — F varies regularly it is possible 

- to determine a, such that n[1—F(a,)]— 1, and in this case the left side in 
(8.12) tends to 2°. (See problem 26.) > 

Example. (c) Convolutions. From the definition (8:6) it is obvious that the 

‘sum of two slowly varying functions is again slowly varying. We now prove 
the following > 

Proposition. [f F, and F, are. two distribution functions such that as 

x—> OO 

(8.13) 1 — F(a) = x? Lz) 

with L, slowly varying, then the convolution G = F, + F,, has a regularly 

varying tail such that | | 

(8.14) 1 — G(x) ~ x °(L,(z)+L,(2)). 
Proof. Let X, and X, be independent random variables with distributions 

F, and F,. Put “=(1+06)t>+. The event X,+X,>f occurs 

whenever one of the variables is >t’ and the other >—dt. As t-—» oo the 

probability of the latter contingency tends to 1, and hence for any « > 0 
and ¢ sufficiently large 

(8.15) 1 ~ G(t) > [(U-F,("’)) + d-FA(’)) — ©). 
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On the other hand, if we put ¢” = (1—6é)t with 0 <6 <} then the 
event X, + X, >? cannot occur unless either one of the variables exceeds 
t", orelse both are >dt. In view of (8.13) it is clear that the probability of 
the latter contingency is asymptotically negligible compared with the prob- 
ability that X; > +”, and this implies that for ¢ sufficiently large 

(8.16) 1—G(t) < [(U-A@")) + U-AC@Y)IG + ©). 

Since 6 and « can be chosen arbitarily small the two inequalities (8.15) 
and (8.16) together entail the assertion (8.14). > 

By induction on r one gets the interesting 

Corollary. If 1 — F(x) ~ aL (x) then 1 — F™(x) ~ ra-?L (2). 

When applicable, this theorem?’ supplements the central limit theorem 
by providing information concerning the tails. (For applications to stable 
distributions see problems 29 and 30. For a related theorem concerning 
the compound Poisson distribution see problem 31.) 

*9. ASYMPTOTIC PROPERTIES OF REGULARLY 

vy. RYING FUNCTIONS 

The purpose of this section is to investigate the relations between the 
tails and the truncated moments of distributions with regularly varying 
tails. The main result is that if 1 — F(z) and F(—z) vary regularly so do 
all the truncated moments. This is asserted by theorem 2, which contains 

more than what we shall need for the theory of stable distributions. It 
could be proved directly, but it may also be considered a corollary to theorem 
1 which embodies Karamata’s*! striking characterization of regular variation. 
It seems therefore best to give a complete exposition of the theory in par- 
ticular since the arguments can now be significantly simplified. 

We introduce the formal abbreviations 

Caz 

(9.1) Z,(z) = J 

* This section is used only for the theory of stable distributions, but the use of theorem 2 

would simplify many lengthy calculations in the literature. 
20 Special cases were noticed by S. Port. 
21 J, Karamata, Sur un mode de croissance reguliére, Mathematica (Cluj), vol. 4 (1930) 

pp. 38-53. Despite frequent references to this paper, no newer exposition seems to exist. 

For recent generalizations and applications to Tauberian theorems see W. Feller, One-sided 

analogues of Karamata’s regulur variation, in the Karamata memorial volume (1968) of 

L’ Enseignement Mathématique. 
22 Although new, our proof of theorem 1 uses Karamata’s ideas. 

x 

y’ Ziy) dy, Zi(ax)= I y” Z(y) dy. 
0 
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It will now be shown that in the case of a regularly varying Z these functions 
are asymptotically related to Z just as in the simple case Z(x) = 27. 

The asymptotic behavior of Z, at infinity is not affected by the behavior 
of Z near the origin. Without loss of generality we may therefore assume 
that Z vanishes identically in some neighborhood of ( 0 and so the integral 
defining Z, will be meaningful for all p. 

Lemma. Let Z > 0 vary slowly. The integrals in (9.1) converge at oo 
for p< —1, diverge for p> —1. 

If p= —1 then Z, varies regularly with exponent p+ 1. If p< —1 
then Z* varies regularly with exponent P+ 1, and this remains true for 
pti = 0 if Z* , exists. 

Proof. For given positive « and « choose 7 such that for y > 7 

(9.2) (l—«) Z(y) < Z(zy) < (1+) Z(y). 

Assume that the integrals in (9.1) converge. From 

(9.3) Zi (tv) = vn | y” Z(xy) dy 

it follows for t > 7 that 

(1-€)a?™* 23) < Z5(tz) < (1 t+)2?" 250). 
Since ¢ is arbitrary we conclude that as t— oo 

Z(t) os 
Z%(1) 

This proves the regular variation of Z*. Furthermore, since Z¥ is a 
decreasing function it follows that p — 1<0. Thus the integrals in (9.1) 
cannot converge unless p < —1. 

Assume then that these integrals diverge. Then for t > 7 

(9.4) 

t 
Z (tx) = Z,(ynx) + oe y” Z(xy) dy 

and hence . 

(1—e)xPt Z(t) < Z, (tx) — Z, (yx) < (1+€)2?*1 Z, (1). 

On dividing by Z,(t) and letting t—»0o we conclude as above that 
Z,(tz)/Z,(t) tends to x", In case of divergence therefore Z, varies 
regularly, and divergence is possible only when p > —1. > 

The next theorem shows that regular variation of Z ensures that of Z, 
and Z*; the converse is also true except if Z, or Z} vary slowly. Further- 
more we get a useful criterion for the regular variation of these functions. 
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_ Parts (a) and (4) of the theorem treat the functions Z} and Z,, respectively, 
They are parallel in all respects, but only part (a) is used extensively in prob- 
ability theory. 

Theorem 1. (a) [f Z varies regularly with exponent y and Z* exists, then 

PZ) 1 

250) 
where 4 = —(pt+y+1) >0. 

Conversely, if (9.5) holds with A> 0, then Z and Z* vary regularly with 
exponents y= —A—p—1 and —A, respectively. If (9.5) holds with 
A = 0. then Z} varies slowly (but nothing can be said about Z). 

(b) If Z varies regularly with exponent y and if p > — y —1 then 

(9.6) pez 4 
Z,(1) 

with A=p+y+1. 
Conversely, if (9.6) holds with A >0 then Z and Z, vary regularly with 

exponents A—p-—1 and A, respectively. If (9.6) holds with 2 =0 then 
Z, varies slowly. 

(9.5) 

Proof. The proofs are identical for both parts, and we conduct it for 
part (a). Put 

y’ Zty) _ ny) 

ZY) oy 
~ The numerator on the left is the negative derivative of the denominator, and 

hence we get for «> 1 

Z5(t) tes dy * nts) ds | = — = ——., (9.8) og Z4(02) I n(y) ; nO (i) s 

Suppose now that Z varies regularly with exponent y. By the preceding 

lemma Z*¥ varies regularly with exponent 4 = y + p + 1 and so the two 
sides in (9.7) vary regularly with exponent —1. Thus 7 is a slowly varying 
function. As t-—» co the last integrand in (9.8) therefore tends to s7}. 
Unfortunately we do not know that 7 is bounded, and so we can only 

assert that the lower limit of the integral is >logx by virtue of Fatou’s 

theorem [see IV,(2.9)]. But because of the regular variation of Z* the left 

side tends to Alogz, and so 

(9.7) 

  

lim sup 7{f) < A. 

But this implies the boundedness of 7, and hence we may choose a sequence 

t,o such that 7(t,)~c <0. Because of the slow variation this 
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implies that 7(t,5)—>c for all s, and the convergence is bounded. Thus 

the right side in (9.8) approaches clog, and hence c = A. It follows that 
the limit c is independent of the sequence {¢,}, and so 7(t)— A. This 

proves that (9.5) is true. 

The converse is easier. Suppose 7(t)— A> 0. The two sides in (9.8) 
then approach Alogzx, and hence the ratio Z*(t)/Z*(tz) approaches 2* 

as asserted. If 1 > 0 this together with (9.5) proves that Z varies regularly 

with exponent —A — p — 1. > 

Although we shall not use it we mention the following interesting 

Corollary. A function Z varies slowly iff it is of the form 

(9.9) Z(x) = a(x) exp( { o dy) 
1 . 

where «(x)->0 and a(x) > c < © as > @, 

Proof. It is easily verified that the right side represents a slowly varying 
function. Conversely, assume that Z varies slowly. Using (9.6) with 
p=y=0 we get 

Z(t) _ 1+ (2) 

Z(t) t 
  

  

with «(t)—>0. On the left the numerator is the derivative of the denominator, 

and by integration we get 

Z,(*) = Z,(1)- x exp (i ae at) 

which is equivalent to (9.9) because Z(x) ~~ Z,(x)a“_ by (9.6). > 

We proceed to apply theorem | to the truncated moment functions of a 

probability distribution F. We can consider each tail separately or else 
combine them by considering F(x) — F(—x) instead of F. It suffices 

-— 
therefore to study distributions F concentrated on 0, 00. For such a 

distribution we define the truncated moment functions U, and V, by 

(9.10) U2) = [ “y Fidy}, V2) = i “y" Flay}. 
It will be understood thet the second integral converges while the first integral 

tends to 0 as «-» 90. This requires that (>0 and —o<7< . 
In particuiar, Vy) = 1 — F is the tail of the distribution F. 

We prove a generalization of part (a) of theorem 1; part (6) generalizes 

in like manner. 

 



VIII.9 ASYMPTOTIC PROPERTIES. OF REGULARLY VARYING FUNCTIONS 283 

Theorem 2.75. Suppose that U,(00) = ©. 

(i) If either U, or V, varies regularly then there exists a limit 

  

f-"V,(t) 
9.11 lim T=, 0 < 0. ON) so Uft) Ses 
We write this limit uniquely in the form 

(9.12) ¢ =o nea<cl   

o—- 71 

with a= if c= @. 
(ii) Conversely, if (9.11) is true with 0<¢< 00 then automatically 

a 2 0 and there exists a slowly varying function L such that 

(9.13) Ue) \(a—n)a*L(2), V(x) ~ L—2)2*L(2) 
where the sign ~ indicates that the ratio of the two sides tends to 1. 

(iii) The statement remains true when c =0 or c = ©, provided the sign 
~~ is interpreted in the obvious manner. 

For example, if (9.11) holds with c=0 then «=€ and U, varies 
slowly, but about V,, we know only that V,(x) = o(z™ ‘L(z)). In this case 

V,, need not vary regularly (see problem 31). However, slow variation is the 

only case in which regular variation of one of the functions U, or V,, does 

not imply regular variation of the others. 

Proof. (i) We write V,, in the form 

(9.14) V (a) =| U-(dy).. 

Integrating by parts between + and t > x we get 

t 
V,(a) — V,(t) = —2™* U(x) + 7 Uf) + ca y™ > Uy) dy. 

The last two terms on the right are positive and therefore the integral must 

converge as t—> 00, Because of the monotonicity of U, this implies that 

y" *U,(t)-> 0 and hence . . 

(0.15) (a) = 2" Ufa) + cn [yr Uy) dy 
or 

c—-" —_ oO - 

(9.16) me) —1+ fon | ‘yt Uy) dy. 
U(x) atx) Je 

23 For a generalization see problems 34 and 35. 
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Assume now that U, varies regularly. Since U,(00) = oo the exponent 

is necessarily <¢ and we denote it by ¢ — a. (Since the integral in (9.16) 

converges we have necessarily « > 7.) The relation (9.5) with Z = U, 
and p= %7-—¢-—1 asserts that the right side in (9.16) tends to 

—1 + —7)/(a—7) = (C—«)/(a—7) 

if A#0 and to . if 2=0. We have thus shown that if U, varies 
regularly with exponent ¢ — «, then (9.11) holds with c given by (9.12) 

and >0. . 
Assume then that V, varies regularly. Its exponent is <7 and we 

denote it by 7 — a. We use the same argument except that (9.15) is replaced 
by the analogous relation 

0.17) Ufa) = —2" V.(2) + (Ln) { f(y) dy. 
An application of (9.6) with Z = V, and p= { — 7 — 1 now shows that 
(9.11) holds with ¢ given by (9.12) where « > 0. 

(ii) To prove the converse, assume (9.11) and write c in the form (9.12). 

Suppose first that 0 << c < «©. From (9.16) we see then that 

ans Uz) C—7 
wo _ . 1 

[ y"™ 1 ULy) dy © + 
x 

  (9.18) =“%—%. 

From theorem 1(q) it follows directly that U, varies regularly with exponent 
¢—a> 0, and (9.11) then implies that V, varies regularly with exponent 
n —«. It follows that U, and V, can be written in the form (9.13) where 

ao > 0. 

If c = 0 the same argument shows that U, varies slowly, but (9.11) does 

not permit the conclusion that V,, varies regularly. 
Finally, if (9.11) holds with c = © we conclude from (9.18) that 

"V(x (9.19) he) 
[a vo dy 

0 

and by theorem 1(b) this implies that V, varies slowly. > 

10. PROBLEMS FOR SOLUTION 

1. Alternative definition of convergence. Let F, and F be probability dis- 
tributions. Show that F, — F (properly) iff for given « > 0,4 >0 and ¢ there 

exists an N(e,A,t) such that for n > N(e, A, ft) 

(10.1) F(tt-—h)—e <F,(t)< FU +h) +e. 
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__ 2, Improper convergence. If F is a defective distribution then (10.1) implies 
that F,, -» F improperly. The converse is not true. Show that proper convergence 
may be defined by requiring that (10.1) holds for n 2 N(e,h), independently 
of ¢. | 

3. Let {F,} converge properly to a limit that is not concentrated at one point. 
The sequence {F,(a,z+b,)} converges to the distribution concentrated at the 
origin iff a, + ©, b, = o(a,). 

4. Let X,,Xs,... be independent random variables with a common distribution 
F and S, =X, +°+:+X,. Let the variables az1S, — by have a proper limit 
distribution U not concentrated at one point. If ay > 0 then 

An > ®, An|[an_1 — {, 

[Hint: . Using theorem 2 of section 3 show that ao,/a, approaches a finite limit. 
It suffices to consider symmetric distributions.] (The limit distribution is stable, 
see VI,1.) 

5. Let {u,,} be a sequence of bounded monotone functions converging pointwise 
to a bounded continuous limit (which is’ automatically monotone). Prove that the 
convergence is uniform. [Hint: Partition the axis into subintervals within each 
of which u varies by less than «.] 

6. Let F, be concentrated at n= and u(x) =sin (2). Then F,xu->u 
poiritwise, but not uniformly. 

7. (a) If the joint distribution of (X,, Y,) converges to that of (X,Y), then 
the distribution of X,, + Y, tends to that of X + Y. 

(b) Show that theorem 2 of section 3 is a special case. 
(c) The conclusion does not hold in general if it is only known that the marginal 

distributions for X, and Y, converge. 
8. Let F,, ~F with F- defective. If u€C,(—o, ©) then Fypku>FReu 

uniformly in every finite interval. (This generalizes theorem 1 of section 3.) 
 .9. If F, > F improperly it is not necessarily true that Fisk F, > F* F. 
Example. Let F, have atoms of weight 4 at the points —n,0, and n. 
10. In the plane every continuous function vanishing at infinity can be approxi- 

mated uniformly by finite linear combinations & c,9,(7)y,(y) with. infinitely 
differentiable , and yy,. 

(Hint: Use example 3(a) choosing G,(z,¥) = N.(2)M(y) where MN is the 
normal density.] 

Metrics. A function p is called a distance function for probability distributions 
if p(F, G) is defined for every pair F,G of probability distributions and has the 
following three properties: p(F,G) 20 and p(F,G) =0 iff F=G; next 
p(F, G) = p(G, F); and finally, p satisfies the triangle inequality 

p(F, F,) < p(F, G) + p( Fy, G). 

11. P. Lévy metric. For two proper distributions F and G define p(F,G) as 
the infimum of all 4 > 0 such that 

(10.2) F(x —h) —h ¥G@) < Fe +A ta 

for all x. Verify that p is a distance function. Show that F, — F properly iff 

p(F,, F) > 0. 
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12. Distance “in variation.” Put p(F,G) = sup |§u — Gull where uwEec, 
and |u|] = 1. Show that p is a distance function.24 If F and G are atomic 
and attribute weights p, and g, to the point @,, then 

(10.3) p(F, G) = > |p. — aul 

If F and G have densities f and g 

(10.4) p(F, G) = E If @) — g(e)| de. 

(Hint: It suffices to prove (10.4) for continuous f and g. The general case follows 
by approximation. ] 

13. Continuation. Show that pP(Fr, G)-0 implies proper convergence 
F, -»G.- To see that the converse is false consider the normal distribution 
functions %(nx) and the distribution F,, concentrated at 7}. 

14. Continuation. If U = Fi, ¥°-:%& F, and V =G,%*--:*G,, show that 

(10.5) U,V) <> pl, G,). 
k=1 

This extends the basic inequality (3.9). [Hint: Use (3.9) and a test function u 
such that ||%u — Bull is close to p(U, V).J 

15, Approximation by the Poisson distribution.” Let F attribute weight p to 
the point 1 and g = 1 —p to the point 0. If G is the Poisson distribution with 
expectation. p show that p(F, G) < 2p*, where p is the distance defined in (10.3). 
Conclude: If F is the distribution. of the number of successes in n Bernoulli 
trials with probabilities p,,...,p. and if G is the Poisson distribution with 
expectation p) +-** + Pn then p(F, G) < 2(p? +--+ -+p?). 

16. The law of large numbers of VII,7 states that if the X, are independent 

and identically distributed, and if E(X,) = 0, then (X,+°-- -+X,,)/n —> 0. Prove 
this by the method used for theorem 1 in section 4. 

17. The Lindeberg condition (4.15) is savisfied if a, = E((K?+31) exists for 
some 6>0 and a +:°-- + %, = o(s2t+?) (Liapunov’s condition). 

18. Let F, be symmetric and 1 — F(z) = 42°? for x > 1. Show that 
the Lindeberg condition (4.15) is not satisfied. 

19. Let X, = +1 with probability }(1 —k~) and X, = +k with probability 
3k-2. By simple truncation prove that S,/Wn behaves asymptotically in the same 
way as if X, = +1 with probability 3. Thus the distribution of S,/Wn tends 
to N but Var(S,/Vn) — 2. 

20. Construct variants of the preceding problem where E(Xj) = © and yet 
the distribution of S,/Vn tends to §. 

#4 The definition can be extended to differences of arbitrary finite measures and defines 
the “norm topology’’ for mea ares. Problem 13 shows that the resulting notion of con- 

- vergence is not natural for probability theory. 
2 Suggested by inequalities in L. LeCam, Aa approximation theorem for the Poisson 

binomial distribution, Pacific J. Math., vol. 10 (1960) pp. 1181-1197. 
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21.26 Central limit theorem for exchangeable variables. For fixed 6 let Fy bea 
distribution with zero expectation and variance o7(9). A value 6 is chosen 
according to the probability distribution G and one considers mutually in- 
dependent variables X,, with the common distribution Fy. If a is the expectation 

of o? with respect to G show that the distribution of S,/(aWn) tends to the 
distribution 

+ 00 

{ Raz] (a(8))G {ad}. 
_—oO 

It is not normal unless G is concentrated at one point. 

22. Shot noise in vacuum tubes, etc. Consider the stochastic process of example 
VI,3(h) with discretized time parameter. Assuming that at epoch kA an arrival 
occurs with probability «4 show that the intensity of the current in the discrete 
model is given by an infinite convolution. The passage to the limit 4 - 0 leads to 
Campfell’s theorem VI,(3.4). 

Do. the same for the busy-trunkline example VI,3(i). Generalize the model to 
the situation where the after-effect at epoch kh is a random variable assuming 
the values 1, 2,... with probabilities p,,p2,... . 

23. The sequence {F"*} is never stochastically bounded. [Hint: It suffices to 
consider symmetric distributions. Also, one may suppose that F has infinite 
tails, for otherwise F"* 0 by the central limit theorem. Use V, (5.10).] 

Note. It will be shown in example XV,3(a) that F"* — 0. 

24. Continuation. It is nevertheless possible that for every x 

lim sup F"*(z) =1, _ lim inf F™*(z) = 0. 
nwo no 

In fact, it is possible to choose two extremely rapidly increasing sequences of 
integers a, and 7 such that 

(=1 1 p 
_> 

2ka,, Sn, I. 
  

[Hint; Consider the distribution P{X = (—1)*a,} = p,. With an appropriate 
choice of the constants there is an overwhelming probability that about 2k among 
the terms X,,..., Xn, will equal (—1)*a, and none will exceed a, in absolute 

value. Then for & even S,, > a_ — ;,4,_1. Show that ~ 

1 
ny, = (2k)!, Pe~ (2k — 1)! ’ ay ~ (1,)* 

will do.] 

25. In the‘proof of lemma 1 of section 8 it suffices to assume that the set 4 is 

dense in some open interval. 

26. Distribution of maxima. Let X,..., Xn, be independent with the common 

distribution F and X* = max (X),...,X,). Let G, be the distribution of 
~1y* 

a, i X*. 

    

26 J R. Blum, H. Chernoff, M. Rosenblatt, and H. Teicher, Central limit theorems for 

interchangeable processes, Canadian J. Math., vol. 10 (1958) pp. 222-229. 
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(a) If F(z) = 1 —e-* and a, =n then G,, tends to the distribution concen- 
trated at the point 0. Show directly that no choice of a, leads to more discrim- 
inating results. 

(6) If F is the Cauchy distribution with density 5 
then G,(x) ~e*" for x > 0. a(1 + 2x*) 

27. If X and Y have acommon distribution F such that | — F(x) ~ x -eL(z) 

with L slowly varying, then P{X >1|X+¥>2}-—+4 as ¢-+ ©. Roughly 
speaking, a large value for the sum is likely to be due to the contribution of one of 
the two variables.?’ 

28. Let v > 0 and a>O on 0, © and suppose that 

and a, =n/7, 

lim f[a(t)v(tz) + b(t)z] = z(x) 
t+ 0 

v(%_r) _ v(z) 

; Lyx x 

varies regularly. Conclude that either z(x) =cxzz or z(z) = cx +c,x log2, 

provided only that v itself does not vary regularly [in which case z(x) = cx® + c,2]. 

29. Let G be a symmetric stable distribution, that is, G**(c,x) = G(x) (see 
VI,1). From the last corollary in section 8 conclude that 1 — G(x) ~ 2--L(a) 
with « <2 uniess r{l—G(c,x)}t- 0 in which case G is the norma! distribution. 

{Hint: The sequence r[{1—G(c,c)] remains bounded by the symmetrization 
inequality V,(5.13). The remainder is easy.] 

30. Generalize to unsymmetric stable distributions. 

31. Let {X,} be a sequence of mutually independent positive random variables 

with a common distribution F concentrated on 0, ao, Let N be a Poisson 
variable. The random sum Sx = X, +--: + Xy_ has the compound Poisson 

distribution 

exists and depends continuously on x. For fixed x, > 0 prove that   

eS" en 
U =e- > ni F *, 

Let L vary slowly at infinity. Prove that 

if 1 —- F@)~x? Le) then 1 — U(x) ~ cx? L(x). 

[Hint: Obviously P{Syx > x} exceeds the probability that exactly one among 
the components X,; > x, that is 

1— U@) acl — F(t)je~t1-F()), 

On the other hard, for sufficiently large x the event Sy > x cannot occur unless 
either one among the components X, > (1 — «)z, or at least two exceed x, 
or finally N > xt: The probability of the second contingency is o(1 — F(#)), 
while the probability of N > log z tends to 0 more rapidly than any power of =.] 

32. Let F be atomic with weight proportional to #7127?" at the point 2”. 
Show that U,, as defined in (9.10), is slowly varying and U,(«) = , but that 

1 — F does not vary regularly. 
[Hint: For the last statement it suffices to consider the magnitude of the jumps.] 

27 Tie phenomenon as such seems to have been noticed first by B. Mandelbrot. 
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Note. The remaining problems refer to a generalization of the notion of regular 
variation."* A convenient starting point is provided by the following 

Definition. A monotone function u varies dominatedly at infinity if-the ratios 
u(2x){u(x) remain bounded away from 0 and ~. 

33. Show that a non-decreasing function « varies dominatedly iff there exist 
constants A,p, and f% such that ~ 

u(tz) 

u(t) 
For non-increasing u the same criterion applies with x > 1 replaced by x < 1. 

"34. (Generalization of theorem 2 in section 9.) Define U, and V,, as in (9.10) 
(which requires that —oo <4 < @). Put R(t) =15-1V(4)/U; (2). 

Show that U, varies dominatedly iff limsup R(t) < «©. Similarly V, varies 
_ dominatedly iff lim inf R(t) > 0. 

35. (Continuation.) More precisely: If R(t) < M for t > 1%), then 

(10.5) < Axt, t>t, z>1, 

U-(tx) 
(10.6) Tay <M + De, | z>1, t >to 

with p = (€ — n)M/(M + 1). Ccnversely, (10.6) with p < ¢ — 7 implies 

(10.7) Ra) < ME +P 
[-n-p 

These statements remain true if R is replaced by its reciprocal R™ and at 
the same time the ratio U,(tz)/U,(t) is replaced by V,(t)/V,(t2). 

36. Prove the following criterion: If there exists a number s > 1 such that 
lim inf U,(st)/U,(¢) > 1 then V,, varies dominatedly. Similarly, if lim inf V,(¢/s)/ 
V(t) > Ithen U; varies dominatedly. 

28 For further results and details see W. Feller, One-sided analogues of Karamata’s 

regular variation, in the Karamata Memorial volume of |’Enseignement Mathématique, 

vol. 15 (1969), pp. 107-121. See also W. Feller, On regular variation and local limit theorems, 
Proc. Fifth Berkeley Symposium Math. Statistics and Probability, vol. 2, part 1, pp. 

373-388 (1965-66). 

 



CHAPTER IX 

Infinitely Divisible 

Distributions and Semi-Groups 

The purpose of this chapter is to show that the basic theorems concerning 
infinitely divisible distributions, processes with independent increments, and 

stable distributions and their domains of attraction can be derived by a 

natural extension of the argument used to prove the central limit theorem. 
The theory will be developed anew and amplified by methods of Fourier analysis, 
and for this reason the present outline is limited to the basic facts. The 
interest in the chapter is largely methodological, to tie the present topics to 
the general theory of Markov processes; when applicable, the methods of 
Fourier analysis lead to sharper results. To provide easy access to important 
facts some theorems are proved twice. Thus the general structure theorem is 

first proved for semi-groups of distributions with variances. In this way 

sections 1-4 present a self-contained exposition of basic facts. 

The semi-group operators in this chapter are convolutions. Other semi- 
groups will be considered independently in the next chapter. by new methods. 

1. ORIENTATION 

The limit theorems of this chapter are a natural extension of the central 

limit theorem,, and the infinitely divisible distributions are closely related 
to the normal distribution. To see this it is worthwhile to repeat the proof 
of theorem | in VIII,4 in a slightly different setting. | 

We consider this time an arbitrary triangular array {X,,,} where for 
each n the n variables! X,,,...,X,., are independent and have a 
  

i Tclaagular arrays were defined in YI,3. It should be borne in mind that we are really 

dealing with disiribution functions #, 4; the random variables X,., serve merely to 
simplify notations. Accordingly. the variables of differeat rows need not be related in 
any way (and need not be defined on the same probability space). 

290 
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common distribution F,,. For the row sums we write S, = X,,, +++: + X,.,° 
In chapter VIII we dealt with the special case where Xin = x, a? and 
F,,(x) = F(a,~). There the row sums were denoted by S*. 

Throughout this chapter we use the operational notation of VIII ,3. Thus 
Sp, is the operator. associated with F, and §§" is associated with the 
distribution of S,,. [Finally, [||| denotes the upper bound of the continuous 
function |u|. 

Example. (a) Central limit theorem. Suppose that there exist numbers 
€, — 0 such that 

(1.1) IXinl<é,, E(Xi,)=0, nE(X?,) +1. 
For a function u with three bounded derivatives we have the identity 

(1.2) nfGqu(2)—u(2)} = [Y= = Se AO nyt Fay}. 
The finite measure ny? F,{dy} converges by assumption to the probability 
distribution concentrated at the origin. The fraction under the integral is a 
continuous function of y and differs from 4u”(x) by less than e, |lu'||. 
Thus 

(1.3) n[&,,u—u] — du” 

uniformly in 2, 

Suppose now that {G,} is a second sequence of operators such that 
n(G,u—u] tends uniformly to 4u”. Then 

(1.4) n(¥,u—G,u) > 0 

uniformly. By the basic inequality VII,(3.10) (which will be used constantly 
in the sequel) 

(1.5) leiu-Gpul <n ISu—G, ul, 

and the right side tends to zero in consequence of (1.4). As we have seen 
in the proof of theorem 1 in VIII,4, we may choose for ©, the operator 
associated with the symmetric normal distribution with variance I/n. Then 

= ©, and hence §"— ,. We have thus proved that the distribution 
of S,, tends to the normal distribution Nt. > 

  

In scrutinizing the structure of this proof it is seen that the form of the 
right side in (1.3) played no role. Suppose we had an array such that 

(uniformly) 

(1.6) n{¥,u—u] > Au 

where Y is an arbitrary, but fixed, operator. Our argument permits us 
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to compare any two arrays satisfying (1.6) and to conclude that their row 
sums behave asymptotically in the same way. If for one such array the 

distributions of S, tend to a limit G then the same will be true for a// our 

arrays. We shall prove that this is always the case. 

Example. (5)  visson distribution. Suppose X,,, equals | with prob- 

ability p,, and 0 with probability 1 — p,. If np, > « 

(1.7) ALG ,u(x)—u(x)] = np, [u(z—1)—u(x)] — a [u(e@—1)—u(z)). 

This time we take for G,, the operator associated with the Poisson distribution 
with expectation a/n. An easy calculation shows that also n[G,u—u] tends 

to the right side in (1.7) and we conclude as before that Gu — © ,. Thus the 

distribution of S, tends to the Poisson distribution with expectation «. 
[The right side in (1.7) illustrates one possible form for the operator YU in 
(1.6). For another example of a simple triangular array see problem 2.]_ > 

In our two examples we were fortunate in knowing the limit distribution 
in advance. In general the triangular array as such will serve to define the 
limit and in this way we shall derive new distribution functions. This 
procedure was used in 1; VI to define the Poisson distribution as a limit of 
binomial distributions. 

We recall from VI,3 that the limit distributions of the sums S,, are called 

infinitely divisible. We shall show that such a limit distribution exists when- 
ever a relation of the form (1.6) holds, and that this condition is also necessary. 
Another approach to the problem depends on the study of the measures 

ny* F, {dy}. In both examples a limit measure existed; in example (a) it was 

concentrated at the origin, in () at the point 1. In general, the relation (1.6) 
is intimately connected with the existence of a measure {2 such that 
ny? F, {dy} > Q{dy}, and infinitely divisible distributions will be characterized 

either by the operator & or the measure Q (which may be unbounded). 

A third approach to the problem starts from the solution of the con- 
Volution equation 

(1.8) | 0. O, = Oss: 
in which Q, is‘a probability distribution depending on the parameter t > 0. 

Example. (c) The normal and the Poisson distributions satisfy (1.8) with 
t proportional to the variance. The gamma distributions of II,(2.2) have 
the convolution property IT,(2.3), which is a special case of (1.8). The same 
is true of the analogous convolution properties derived for the Cauchy 
distribution II,(4.5) and the one-sided stable distribution of I1,(4.7). 

For a. triangular array with F,, = Q,,, the relation (1.6) states that as ¢ 
runs through 4,4,.... One should expect that (1.6) will hold for an 

arbitrary approach t — 0+. 
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Now (1.8) is the basic equation for processes with stationary independent 
increments (VI,4) and is closely connected with semi-group theory. In this 
context Y& appears as a “generator.’’ It turns out that this theory provides the 
easiest access to limit theorems and to infinitely divisible distributions, and 
hence we begin with it. 

2. CONVOLUTION SEMI-GROUPS 

For ¢ > O'let Q, bea probability distribution in R?! satisfying (1.8) and 
Q(t) the associated operator, that is, 

(2.1) QC) u(2) = [we Ouldy}. 
Then (1.8) is equivalent to 

(2.2) Q(s+r) = Q(s) Q(t). 

A family of operators satisfving (2.2) is called a semi-group. [It fails to be a 
group because in general S(t) ha’ no inverse.] The operators of a semi- 

group may be of an arbitrary nature and it is convenient to have a word to 
indicate our requirement that S(t) be associated with a probability 
distribution. 

Definition 1. A convolution semi-group {Q(t)} (where t > 0) is a family 
of operators associated with probability distributions and satisfying (2.2). 

We take C,[— 0, oo] as domain of definition. The operators’ Q(t) are 
transition operators, that is, OS u<1 implies 0 < Q(tlu <1 and we 

"have Q(t)l = 
We shall have to deal with operators [such as d?/dx? in (1.3)] which are 

not defined for all continuous functions. For our present purposes it is 

fortunately possible to avoid tedious discussions of the precise domain of 
definition of such operators since we need consider only the class of functions 
u. such that ue C[—, oo] and wu has derivatives of all orders belonging to 
C[—9, 00]. Such functions are called infinitely differentiable,? and their 
class is denoted by C®. For the present we consider only operators U 
defined forall ue C® and suchthat WueC™, and so all occurring operators 

may be taken as operators from C® to C®. For operators associated with 
probability distributions we saw in VIII,3 that §, > & iff G,u— Su for 
ueC®. We now extend thisdefinition of convergence consistently to arbitrary 
operators. 

2 The class C™ is introduced only to avoid a new term. It could be replaced by the 
class of functions with (say) four bounded derivatives, or (simpler still) by the class of 

all linear combinations of normal distribution functions with arbitrary expectations and 

variances. ' . ~ 
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Definition 2. Let U,, and U be operators frm C*, to C*. We say that 
YW, converges to UA, in symbols U,—> U, if 

(2.3) [Wu — Wu] +0 

for each ueC® 

Now (2.3), states that %,u—> Wu uniformly. Conversely, if for each 
ueéC® the sequence {Wu} converges uniformly to a limit v€C® an 
operator UW is defined by Wu =v, and clearly U,—> W. 

Definition 3. The convolution semi-group {%\(t)} is continuous if 

(2.4) Qh) > 1. | h—» 0+ 
where 1 is the identity operator. In this case we put Q(0) = 1.. 

Since ||Q(t)ul| < llul] we get from the definition (2.2) for > 0 

(2.5) [QG+A)u — QMull < |Q@u — ull. 

For h sufficiently small the left side will be < ¢ independently of t, andin 
this sense a continuous convolution semi-group is uniformly continuous. = 

Definition 4. An operator U from’ C® to C® is said to generate the 
convolution semi-greup- {QM} ifas h-0+ 

(2.6) h[Q(A) — 1] > &. 

We say, equivalently, that U is the generator.® 

More explicitly, whenever the limit exists the operator & is defined by 

(2.7) - 1” fu(e—v) — ua] Ody} — Bula. 
Obviously a semi-group with a generator is automatically continuous. 

It will be shown that all continuous convolution semi-groups possess gener- 
ators, but this is by no means obvious. 

Formally (236) defines | W as derivative of Q(r) ‘at t= 0. Its existence 

implies differentiability at > 0 since 

QU+h) — Q) _ Qh) — 1 
h h 
  (2.8) Q() > ANd) 

as h-+0+ and similarly for h—0-. 

The following examples will be used in the sequel. 

3 Since we restrict the domain of definition of M& to C® our terminology departs 
slightly from canonical usage as developed in E. Hille and R. S. Phillips (1957). 
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Examples. (a) Compound Poisson semi-groups. Let 

(2.9) Q, = ny Gh 

be a compound Poisson distribution. Here 

(2.10) Q(hyu — u = (eM —1)u + oho But Sut: |. 

Dividing by h we see that (2.6) holds with UW = «(%—1). Thus the compound 

Poisson semi-group (2.9) is generated by a(§—1) and we shall indicate its 
elements by the abbreviation Q(t) = ev 8-01, 

‘(b) Translations. Denote by T, the distribution concentrated at a and 

by Z(a) the associated operator. For fixed 6 > 0 the semi-group property 
Tys%& Tp,= Tpy4, holds and 2(Bt)u(z) = u(z—Br). The graph of 
X(Bt)u is obtained by a translation from that of uw and we speak of a 

d 
translation semi-group. The generator is given by —B Tn’ Note that this 

: z 

generator is the limit as 4-»0 of the generator «(§—1) when « = B/h 
and F is concentrated at h. Now a({%—1) is a difference cperator, and the 
passage to the limit was studied in VII,5. It is suggestive to indicate this 

_ a 
semi-group by T(r) = exp (6 5). 

_(c) Addition of generators. Let U, and U, generate the convolution 
semi-groups {Q,(r)} and {Q,(r)}. Then U, + YU, generates the convolution 
semi-group of operators Q(t) = Q,(t) Q,(4). [Such Q(t) is associated with 

the convolution of the distributions associated with 0,(t) and ©,(r); see 
theorem 2 of VIII;3.] The assertion is obvious from the simple rearrangement 

D(hA)Q¢h) — 1 _ Qh) = 1 Q(h) — 1 
h h h 
  (2.11) + Q,(h)- 

(d) Translated semi-groups. As a special case we get the rule: if W 
generates the semi-group of operators Q(t) associated with the distributions 
Q,, then W—£d/dx generates a semi-group {Q*(r)} such that 

OF (x) = O.(—Br). 
(e) Normal semi-groups. Let Q, stand for the normal distribution with 

zero expectation and variance ct. As already mentioned, these Q, deter- 

mine a semi-group, and we seek its generator as defined by (2.7). By Taylor’s 

formula 

(2.12) u(x — y) — u(x) = —y u(x) + dy? u"(x) — gy? u"( — Oy). 
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The third absolute moment of Q, is proportional to t?, and we see thus 
that for functions with three bounded derivatives the limit in (2.7) exists and 

equals 4cu”(x). We express this by saying that 2 = }4cd?/dx?. > 

(For further examples see problems 3-5.) 

Note on the Fokker-Planck equation. Consider the family of functions defined by 
v(t, x) = Q( f(x). The relation (2.8) states that for smooth f 

2.13) oy (2. a D. 

This is the Fokker—Planck equatign of the process, and pv is its unique solution satisfying 
the initial condition v(0,z) = f(x). Equation (2.13) describes the process, and unnecessary 

complications are introduced by the traditional attempts to replace (2.13) by an equation 
for the transition probabilities Q, themselves. Consider, for example, a translated com- 

pound Poisson semi-group generated by YW = a(§}—1) — pe. The Fokker~Planck 
. 0 

equation (2.13) holds whenever the initial function f(z) = v(0,z) has a continuous 

derivative. Its formal analogue for the transition probabilities is given by 

0d, 20; 
(2.14) aa =-8 = — «0+ «oF & Q, 

This equation makes sense only if Q has a density and is therefore not applicable to dis- 
crete processes. The usual reliance on (2.14) instead of (2,13) only causes complications. 

3. PREPARATORY LEMMAS 

In this section we collect a few simple lemmas on which the whole theory 

depends. Despite its simplicity the following inequality is basic. 

Lemma-1. If U and U* generate the convolution semi-groups {S(t)} and 
{Q#(t)}, respectively, then for all t > 0 

(3.1) JQQu — Q*()ul| < t [Au — Way. 

Proof. From the semi-group property and the basic inequality (1.5) 
we get for r= 1,2, 

a(")s _ at("\u 
r r 

ou = O%oul <r 

t/r 

  

     
(3.2) 

As r-> oo the rightside tends to the right side in (3.1) and so this inequality 

is true. > 

Corollary. Distinct convolution semi-groups cannot have the same generator. 
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Lemma 2. (Convergence.) For each n let U, generate the convolution — 
semi-group {Q,,(t)}. , 

If U,—-U, then W generates a convolution semi-group {Q@)}, and 

O() > aw) for. each t>0. 

Proof. For each t>0 the sequence {Q,(s)u} converges uniformly, 
since by (3.1) 

(3.3) 12,(u — O,,(t)ul] <t [Xu — W,ull. 
By criterion 1 of VIII,3 there exists therefore an operator Q(t) associated 
with a probability distribution such that Q,(t)—> Q(t). Then 

(3.4) Q,(s-+t) = O,(s) 2, (1) > Q(s) Qi) 

(by theorem 2 of VIII,3) and so {Q(t)} is a convolution semi-group. To 
show that it is generated by W note that 

| OQ) — 1 , 18Ou = B,Oull 
t   

  

  
v— tu < | RO — 

  

The first term on the right tends to [Wu — Uul] as tO. Letting m— oo 

in (3.3) we see that the second term is < ||2u — U,u|]. For fixed n the 
upper limit of the left side is therefore <2 |\Wu — U,u\| which can be made 

arbitrarily small by choosing n sufficiently large. > 

The next lemma makes it at least plausible that every continuous con- 
volution semi-group has a generator. 

Lemma 3. Let {Q(t)} be a continuous convolution semi-group. If for 

some sequence ty, te,...,—0. 

(t,) — 1 (3.5) OG) =F oy 
bi 

then UM generates the semi-group. 

Proof. Call the left side %,. As was shown in example 2(a) this 4, 

generates a compound Poisson semi-group and by the last Jemma there 

exists a semi-group {Q*(t)} generated by W. To show that Q*(t) = Q(t) 

we proceed as in (3.2) to obtain 

(3.6) Q(rt)u — Q7(rt,)ull < rh Wu — esl ty, 

    

Let kK o and r— oo so that rt,—>t. The right side tends to 0 and the 

left to ||Q()u — Q*(t)ul] by virtue of (2.5). > 
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These are the lemmas that will be of immediate use. The next is recorded 
here because it is merely a variant of lemma 2 and the proof is nearly the same. 
We shall use only the special case »,, =m and t = 1, which will serve as the 
connecting link between triangular arrays and convolution semi-groups. 

Lemma 4. For each n let §,, be the operator associated with the probability 
distribution F,,. If 

(3.7) —n(§,—-1) > O, 

then U generates a convolution semi-group {Q(t)}. If n—> co and “ny 
then ” 

(3.8) or" > Q(z). 

In particular, > Q(1). The lemma remains true if .n is restricted to a 
sequence 7, Me,... 

Proof. The left side in (3.7) generates a compound Poisson semi-group 

[example 2(a)] and so W is a generator by lemma 2. By the basic inequality 
(1.5) 

(3.9) Gru —Qr,/n)ull < v,/n ln{B,u—u] — n[QU/n)u—u) 
and for ue C® each of the terms within the norm signs tends uniformly 
to Wu. > 

4. FINITE VARIANCES 

Semi-groups of distributions with finite variances are of special importance 

and their theory is so simple that it deserves a special treatment. Many 
readers will not be interested in the more complicated general semi-groups, 
and for others this section may provide an interesting introductory example. 

_ We consider a convolution semi-group {{(¢)} and denote the associated 
probability distributions by Q,. Suppose that Q, has a finite variance 

o*(t). Because of the semi-group property o?(s+1t) = o°(s) + o%(t) and 

the only positive solution of this equation‘ is of the form o%(t) = ct. 

Suppose that @Q, is centered to zero expectation. The second moment 

then induces a probability distribution Q, defined by 

(4.1) Ofdy} = ay Q,{dy}. 

4 The equation 9(s+t) = 9(s) + g(t) is called the Hamel equation. Putting u(t) = el? 

one gets u(s+t) = u(s) u(t) in which form the equation was encountered several times 

and is treated in 1; XVII,6. The expectation of Q, is also a solution of the Hamel equation; 

it is therefore either of the form mt or exceedingly weird. See section 5a. 
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By the selection theorem there exists a sequence {t,} tending to 0 such that 
as ¢ runs throughit ©, tends to a possibly defective distribution Q. 

Since Q, is centered to zero expectation we have the identity 

(4.2) sO u(a) = cf u(z—y) — e + yu'(z) O,fdy} 

the integrand being (for fixed x) a continuous function of y assuming at 

the origin the value 4u’(z). At infinity the integrand and its derivative 

vanish. This implies that as ¢ runs through. {t,}, and consequently 

Q,— Q, the integral in (4.2) tends uniformly to the analogous integral with 
respect to the limit distribution ©. According to lemma 3 of section 3 this 

means that our semi-group has a generator YW given by 

(4.3) Wu(z) =c I we ue) — uz) Fy U2) Ofgy?, 
y —aO 

  

This representation of Y is unique because for functions of the form 

  (4.4) u(2) = 1 + — fi-2) 
one gets 

re fY) 4.5 Wu(0) = = Ofdy}. (4.5) MO) = ef AE Ady) 

The knowledge of Yu for all weC® therefore uniquely determines the 
measure (1+y?)-! Of{dy} and hence Q. itself. 

In consequence of this uniqueness the limit distribution Q is independent 
of the sequence {t,} and hence Q,{dy} + OQ{dy} for any approach t— 0. 

We shall show that Q is a proper probability. distribution and that every 
-operator of the form (4.3) is a generator. The proof depends on two special 
cases contained in the following 

Examples. (7) Normal semi-groups. When Q. is the probability distri- 

bution concentrated at the origin (4.3) reduces to Wu(r) = $cu"(x). We saw 

in example 2(e) that this W& generates a semi-group of norma] distributions 

with zero expectations and variances ct. It is easy to verify directly that the 
distributions ©, tend to the probability distribution concentrated at the 
origin. , 

(b) Compound Poisson semi-groups. Let F be a probability distribution 
concentrated on the intervals |z| > 7 having expectation m, and variance 
m,. The distributions Q, of the compound Poisson semi-group of example 

2(a) have expectations am,t and variances am,t. The semi-group is gener- 

ated by a(%} — 1). In accordance with example 2(d) the same Q, but
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centered to zero expectations form.a semi-group generated by 

al —1—m,d/dz) 

that is 

4.6) aula) =f tule) — ae) — yw (@)] Flay. 
With the change of notations Q{dy} = y? F{dy}/m, and am, =c_ this 

reauces to (4.3). Conversely, if Q is a probability distribution concentrated 

on |z| > 0, then (4.3) may be rewritten in the form (4.6) and hence such % 

generates a compound Poisson distribution whose distributions Q, have 

zero expectation and variances mt = ct. 

- We are nowina position to formulate the basic 

Theorem. Let Q, have zero expectation and variance ct. The convolution 

semi-group {SX(t)} then has a gererator U of the form (4.3) where Q isa 
proper probability distribution. The representation (4.3) is unique. Con- 

versely, every operator of this form generates a convolution semi-group of 

distributions with zero expectation and variance ct. 

Proof. We have shown the existence of a generator of the form (4.3) 

but have proved only that ©. has a total mass w < 1. It remains to prove 

that if Q hasamass w then the operator -% of (4.3) generates a semi-group 

such that Q, has zero expectation and a variance < cot. 

Let %, be the operator obtained from (4.3) ‘by deleting the intervals 
0 < |yl < 7 from the domain of integration. Denote the masses attributed 

by Q to the origin and to |y| > 7 respectively by m and w,. It follows from 
the preceding examples that Y, is the sum of two operators, of which the 
first generates a normal semi-group with variances cmt, and the ‘second 

generates a compound Poisson semi-group with variances co, t. By the 

addition rule of example 2(c) the operator U, itself generates a semi- group 
with variances. e(m+o,)t. Being the limit of YU, as 4->0 the operator 
W itself is the generator of a semi-group. The variances of the associated 

distributions lie between’ the variances c(m+w,\t corresponding to U,, 
and their limit cwt. This proves that & indeed generates a semi-group’ with 
variances cut. > 

5, THE MAIN THEOREMS 

In this section {Q(t)} stands for an arbitrary continuous convolution 

semi-group, and the associated distribution functions are again denoted by 

Q,. By analogy with (4.1) we define a new measure Q, by 

(5.1) Q.{dy} = ty? O {dy}. 

The novel feature is that,-in the absence of a second moment of Q,, . the 

measure Q, need not be finite on the whole line. However, Q,{J} is finite 
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for every finite interval J. Furthermore, since Q,{dy} = ty? Of{dy} it 
follows that y~? is integrable with respect to (2, over any domain excluding 
a neighborhood of the origin. We shall see that as t-> 0 the measures Q, 
will converge to a measure {2 with similar properties and this Q will deter- 
mine the generator of the semi-group. It is therefore convenient to introduce 
the 

Definition. 4 measure Q 9 on the real line will be called canonical if 

OW} < © for finite intervals I and if the integrals 

—2z 

(52) pia) = { “y 2 Ody}, = w(-) = { y? Ody} 
— co 

converge for each x > 0. 

(For definiteness we take the intervals .of integration closed.) 

We proceed to show that the theory of the preceding section carries over 
“except that we have to deal with canonical measures rather than with prob- 
ability distributions and that in the absence of expectations we must resort 
to an artificial centering. We define the truncation function 7, as the con- 
tinuous monotone function such that 

(5.3) 7,(x) =x when |z|] <5, 7,(v) = +5 when |z| >5 

where s > 0 is arbitrary, but fixed. 
In analogy with (4.2) we now have the identity 

_ + 09 — _ x) ~ r 

(5.4) oat ! (2) = I u(e—y) — Wl) — TW) 9 cays 4 by u'(a) 
2 —a y 

  

where 

Se) +00 

(5.5) b, = i r(y)yn? O,{dy} = (uy) O,{dy}. 
The integrand in (5.4) is again (for fixed x) a bounded continuous function 

assuming at the origin the value $u"(x). It will be noted that the special 

choice (5.3) for the truncation function is not important: we could choose 
for 7+ any bounded continuous function provided it is near the origin twice 

continuously differentiable with 7(0) = r”(0) = 0 and 7’(0) =I. 
We have now a setup similar to the one in the preceding section, and we 

derive a similar theorem. The integral in (5.4) makes sense with Q, replaced 

by any cancnical measure, and we define an operator Wt) by 

6.6) a (a) -[° u(z—~—y) — we) — 7,(y) u'(x) Ofdy?. 

—o y 

The superscript + serves to indicate the dependence on the truncation 

function 7. A change of +, [or of the point s in the definition (5.3)] 
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amounts to adding a term bd/dx to MU), and so the family of operators 

(5.7) Y= U4 bedldx 
is independent of the choice of ~,. 

Theorem 1. 4 continuous convolution semi-group {Q(1)} has a generator 
WM, and U is of the form determined by (5.6)-(5.7) where Q is a canonical 

measure. 
Conversely, every operator UX of this form generates a continuous convolution 

semi-group {Q(t)}. «The: measure Q is unique,;12das t—>0 

(5.8) QT} > OL} 

for infinite intervals’ I and 

(5.9) T= Q.@)]>y*@), 17 2(-2) > y(—2) 
for x> 0. 

Proof. We return for the moment to the notations of section 1. For each 

n we consider the sum S, = X,,, + -*: + X,,, of m mutually independent 

variables with the common distribution Q,,,. Then S, has the distribution 
Q,, and Hence S, remains stochastically bounded (definition 2 of VIII,2). 

We now anticipate lemma I of section 7 according to which this implies 
that for each finite interval J the measures Q,,,{7} remain bounded, and 

that to each ¢ > 0 ‘there corresponds a number a,> 0 such that 

(5.10) n{l — Qyn(@) + Qin(—@)] < € 

for all n. (The lemma is quite simple, but its proof is postponed in order 
not to interrupt the argument.) 

By the selection theorem there exists a measure Q and a sequence of 
integers _m, such that as ¢! runs through it, Q,{7}>O{2} for finite 
intervals. The contribution of J to the integral in (5:4) then converges to the 

corresponding contribution of J to the integral (5.6) defining MW). Re- 
membering that y~? Q,{dy} = Q,{dy} it is seen from (5.10) that the contri- 
bution of |y| > a to these integrals is uniformly small if a is chosen large 

enough. We conclude that © is a canonical measure and that as ¢-1 runs 

through {7,} the integral in (5.4) converges uniformly to the integral in 

(5.6). Furthermore, under the present conditions the quantity 5, of (5.5) 

remains bounded and hence there is no loss of generality in supposing that the 
sequence {n,} was picked so that as ¢? runs through it 5, converges 

toanumber 4. Ther as ¢7 runs through {n,} 

(5.11) t—{(Qr)— 1Ju(x) > Au(z) 

> Here and in the sequel it is understood convergence is required only for intervals and 
points of continuity. 
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the convergence being uniform. By lemma 3 of section 3 this means that the 
semi-group {Q(¢)} is generated by YM, and so (5.11) holds for any approach 
t—> 0. 

We have thus shown that a generator % exists and can be expressed in the 
form (5.6)-(5.7) in terms of a canonical measure Q. As in the. preceding 

section the uniqueness of ©. in this representation follows from the fact 
that for functions of the form (4.4) the value %u(0) is given by (4. 5) (with 
c now absorbed in Q),. 

The uniqueness of © implies that (5.8) holds for an arbitrary approach 
t-»+0. Furthermore, (5.10) guarantees that the quantities in (5.9) are uni- 

formly small for x sufficiently large. These quantities were defined by (5.2) 
and the analogous relations with .Q replaced by Q,. This shows that (5.9) 
is a consequence of (5.8). 

It remains to show that the measure © can be chosen arbitrarily. The 
proof is the same as in the case of finite variances. As in example 4(d) it is 
seen that if Q is concentrated on |y| > 7 >0 the operator U of (5.6)- 

(5.7) generates a compound Poisson semi-group with modified centering (but 
without finite expectations). Thus 2% can again be represented as a limit of 

generators and is therefore a generator. > 

Example. Cauchy semi-groups. The distributions @Q, with density 

a1¢(t?-+2?)-! form a semi-group. It is easily verified that the limits in (5.9) 
are given by p+(x) = y-(—x) = aa}, and 7 coincides with the Lebesgue 

measure or ordinary length. . > 

The following theorem embodies various important characterizations of 
infinitely divisible distributions. The proof of part (v) is postponed to section 
7. (For an alternative direct proof see problem [1.) This part admits of 
further generalizations to triangular arrays with variable distributions. 
(See section 9. The full theory will be developed in chapter XVII.) For the 
history of the theory see VI,3. 

Theorem 2. The following classes of probability distributions are identical: 
(i) Infinitely divisible distributions. 
(ii) Distributions associated with continuous convolution semi-groups (that is, 

distributions of increments in processes with stationary independent increments). 
(iii) Limits of sequences of compound Poisson distributions. 
(iv) Limits of sequences of infinitely divisible distributions. 
(v) Limit distributions of row sums in triangular arrays {X,,,} where the 

variables X,., of the nth row have a common distribution. 

Proof. Let {Q(t)} be a continuous convolution semi-group. It was 
shown in example 2(a) that for fixed A > 0 the operator WU, = [Q(A)—1]/A 

generates a compound Poisson semi-group of operators ©,(t). As h-0 
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the generators %, converge to the generator WM, and hence O,(t) > Q(t) 

by lemma 2 of section 3. Thus @Q, is the limit of compound Poisson distri- 
butions, and so the class (ii) is contained in (iii). The class (iii) is trivially 

contained in (iv). 

For each n let G‘) be an infinitely divisible distribution. By definition 
G) js the distribution of the sum of n independent identically distributed 
random variables, and in this way the sequence {G'"} gives rise to a 

triangular array as described under (v). Thus the class (iv) is contained in (v). 
In section 7 it will be shown that (v) is contained in (ii), and so the classes 

(ii)-(v) are identical. Finally, the class of ail infinitely divisible distributions 

is a Subclass of (iv) and contains (ii). > 

According to the last theorem every infinitely divisible distribution F 
appears as a distribution Q, of an appropriate convolution semi-group. 
The value of the parameter ¢ can be fixed arbitrarily by an appropriate 
change of scale on the t-axis. However, there exists only one semi-group 

{Q(1)} to which an infinitely divisible distribution F belongs. This amounts 
to saying that the representation F = F"* of F as an n-fold convolution is 
unique. This assertion is plausible, but requires proof. As a matter of fact, 
in its Fourier theoretic version the uniqueness becomes obvious, whereas in 
the present context the proof would detract from the main topic without 

being iuminating. For this reason we desist for once from proving the state- 

ment within both frameworks. 

Application to stochastic processes. Let X(i) be the variable of a stochastic 

process with stationary independent increments (VI,4) and let us interpret 
Q, as the distribution of the increment X(t+s) — X(s). Consider a time 

interval s,s +1 of unit length and subdivide it by the points s = 
= 59 5, <°+° <5, = 5+ 1° into subintervals of length m7. Then 

P{X(s,) — X(j_1) > et} = 1 —Q,,,(%) and so n[1—Q,,,(z)] equals the 

expected number of intervals s,_,,5, withincrement >z. As n> © this 

expected umber tends to yp*(x). For simplicity of discussion suppose 
that the limits X(¢+) and X(t—) exist forall 7 and that X(z) lies between 

them. Let s,_,,5, be the interval of our partition containing ¢. For n 

sufficiently large the increment X(s,) — X(s,;_,) will be close to the jump 
X(t+-) — X(t—) and it is intuitively clear that the limit p(x) represents the 

expected number of epochs { per unit time at which X(t+) — X(i—) > &. 

The argument may be justified rigorously but we shall not enter into details. 
It foliows from this result that the expected number of discontinuities is 
zero only if pt(z) = 0 and y-(—2) = 0 forall x > 0. In this case Q is 

concentrated at the origin, that is, the increments X(f+s) — X(s) are 

normally distributed. For such a process the paths are continuous with 
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probability one (theorem of P. Lévy and N. Wiener) and so the paths are 
continuous with probability | iff the process is normal. 

As a second illustration consider the compound Poisson process (2.8). 

The expected number of jumps per unit time is «, and the probability of a 
jump exceeding x>0 is 1 — F(x). Thus a[l—F(x)] is the expected 

number of jumps >z in full agreement with our intuitive argument. 

*5a. Discontinuous Semi-groups 

It is natural to ask whether there exist discontinuous semi-groups. The question is of 
no practical importance but the answer has some curiousity value: Every convolution 
semi-group {Qty} differs merely by centering from a continuous semi-group {Q# (t)}. In 

particular, if the distributions Q, are symmetric the semi-group is necessarily continuous. 
In the general case there exists a function g such that the distributions Q# defined by 
Q;(z+ y(t) are associated with a continuous semi-group. The function gy must obviously 

satisfy 

(5.12) p(t+s) = v(t) + p(s). 

This is the famous Hamel equation whose only continuous solution is of the form ct 
(see footnote 4 to section 4). In fact, the only Baire function satisfying (5.12) is linear. 
The other solutions are weird indeed; for example, a non-linear solution assumes in every 

interval arbitrarily large and arbitrarily smal! values, and it is impossible to represent it 
analytically by limiting processes. In short, it is fair to ask in what precise sense it ‘‘exists.”” 

To return to earth, consider an arbitrary convolution semi-group {Q(t)} and ine 
triangular array {X,,,} associated with the distributions Q,/,. The row sums S,, have 
the common distribution Q, and hence we can use the last lemma to extract a sequence 
ny,Mg,... Such thatas m runs through itn[Q(i/n)—1] + U# where U* is the generator 

of a continuous semi-group {Q*(t)}. We may choose the nj of the form 2”. The 
inequality (3.2) now shows that Q(r)= Q#(r) for all ¢ that are multiples of I/n, for 
arbitrarily large &, that is, forall ¢ of the form ¢ = a2-’ with a and v integers. Thus 
there exists always a continuous semi-group {Q4#(t)} such that Q(t) = Q#(t) forail t 

of a dense set X. 
We are now in a position to prove the initia! proposition, Choose ¢, > 0 such. that 

t+e, isin £2. Then 

(5.13) QA (t+e,) = A(tte,) = QU) Qe). 

As «, > 0 the left side tends to Q#(r) and hence it suffices to sho-v that if Q(e,) -+ F 
then the distribution F is concentrated at a single point. Choose points 4, in & such 
that O<e«, <4, and A, +0. Then Q4(h,) = Q(h,—e,) Qe,). The left side tends 
to the identity operator, and so F can indeed have only one point of increase. 

6. EXAMPLE: STABLE SEMI-GROUPS 

A semi-group {Q(t)} ts called srab/e if its distributions are of the form 

(6.1) Ox) = GUz—B,)) 
where 2, >0 and f, are constants depending continuously on ¢, and 

G is a fixed distribution. Obviously, G is a stable distribution as defined 
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in VI,1. The theory of stable semi-groups is here developed principally as an 
illustration for the results of the last section and to put on record the form 
of their generators. In an indirect way the results of this section are derived 
independently in section 8. 

Because of the assumed continuity of A, and f, the semi-group (if it 
exists) is continuous. As ¢-+0 the distribution Q, tends to the distribution 

concentrated at the origin, and hence 4,-+ 00 and f,->0. The first 
relation in (5.14) takes on the form 

(6.2) {1 — G(A,(e—B,))] > p* (2), x > 0. 

Since ~,--0 and G is monotone this relation remains valid also when p, 

is dropped, and then (6.2) may be rewritten in the form 

1 — G(A,z) + 
1- Ga) yp (2). 

(Here we assume that 1 is a point.of continuity for yt, which can be 

achieved by a change of scale.) Now (6.3) is a particular case of the relation 

VIIT,(8.1) defining regular variation. We conclude that either yt vanishes 

identically, or else the tail 1 — G varies regularly at infinity and 

(6.4) yt (x) = ctx, z>0, ct>0. 

On the positive half-axis the measure Q has therefore the density acta7*-}. 
We conclude that 0 < « <2 because {2 attributes finite masses to finite 
neighborhoods of the origin, and w*(x)-—»+ 0 as x— oo, For similar reasons 
either y~ vanishes identically or else ‘p-(x) = c7 |a|-* for «<0. The 

_ exponent « is the same for the two tails, because also the tail sum 
1 — G(x) + G(—x) varies regularly. 

~The functions yt and wy determine the measure Q up to a possible 
atom at the origin. We shall see that such an atom cannot exist unless both 

yt and yw- vanish identically and Q is concentrated at the origin. 
The generator YW is given by (5.7). In the present case it is convenient to 

write it in the form 

(6.5) W= cUF + CUZ + bdl/dz, 

(6.3) 

where the operators %+ and W- describe the contributions of the two half 

axes and are defined as follows. 
Ifoca<] 

(6.6) WF u(x) ={ [u(x—y) — u(x)]y*? dy. 
0 

If han <c2 

(6.7) UE uz) = { “tu(z—y) — u(z) — yu'(z)ly* dy, 
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and finally if « = 1 

(6.38) Ut u(2) = { [u(—) — ule) — 1,Cy) w'(a)\y-® dy 
  

YW, is defined by the analogous integral over —co,0 with y-*"! replaced by 
jy|-z7). The centering in (6.6) and (6.7) differs front that in the canonical 
form (5.6), but the difference is absorbed in the term bd/dz -in (6.5). An 

atom of © at the origin would add aterm yd?/dz® to the generator YW. It 
was shown in example 4(a) that this term by itself generates a semi-group of 
normal distributions. 

Theorem. (a) When 6=0 and O0O<a<1 or 1<a<2 the operator 

(6.5) generates a strictly stable semizgroup of the form 

(6.9) Ofx) = Gar); 
when a= 1 and b =O it generates a stable semi-group of the form 

(6.10) O(2) = Gat? — (ct—c") log £). 

(b) A stable semi-group is either generated by (6.5) or else it is a semi-group 
of normal distributions. 

[We saw in 2(6) that bd/dx generates a translation semi-group and to 

obtain the semi-group generated by (6.5) with b #0 it suffices in (6.9) and 
(6.10) to replace x by x + bt.] 

Proof. (a) A change of scale changes the distribution Q, of a semi-group 

into distributions defined by Q*(x) = Q,(2/p). These form a new semi- 

group {Q*{r)}. If we put v(v) = u(pz) it is seen from, the definition cf a 

convolution that Q(t) u(z) = Q(t) v(z/p). For the generators this means 

that to find Y%*u(x) we have simply to calculate Wer) and replace x by 
z/p. The substitution y = z/p in (6.7) and (6.8) shows that for the corre- 

sponding generators YU? = pl, How pW, is obviously the generator of 
the semi-group {QQ(p7f)}, and from the uniqueness of generators we con- 

clude therefore that Q,(z/p) = Q,,.(v). Letting G = Q, and p = ¢t7* we 

get (6.9). 
A similar argument applies in the case a = 1. except that when the 

substitution y = 2/p is used in (6.8) the centering function gives rise to an 
additional term of the form (c* — c-)(p log p) u(r}, and this ieads to (6.10). 

(6) To measure Q concentrated at the origin there corresponds a normal 
semi-group. We saw that the generator of any other stable semi-group is of 

the form %, + yd*/dx?. As shown in example 2(c) the distributions of the 

corresponding semi-group would be the convolutions of our stable Q, with 
normal distributions with variance 2y/ and it is clear that such a semi- 

group cannot be stable. . > 
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The theorem asserts that the function A, occurring in the definition of 
stable semi-groups is of the form A, = ¢-”*. Considering (6.2) and its 
analogue for the negative half-axis we get the 

Corollary. Jf 0<a<2, ct >, ci >0 (but ct++c>0) there 
exists exactly one stable distribution function G such that as x—> x 

(6.11) {1 —G(x)] > ct, 2z* G(—2)-+c". 

The normal distribution is the only remaining stable distribution [and satisfies 
(6.11) with ao =2 and ct=cy~ = Oj. 

The assertion within brackets will be proved in section 8. 

7. TRIANGULAR ARRAYS WITH IDENTICAL DISTRIBUTIONS 

For each nm let X,,,...,X,,, be mutually independent random 

variables with a common distribution F,. We are interested in the possible 
limit distributions of the sums S, = X,, +--::+X,,,,, but it is usefui 

to begin by investigating a necessary condition for the existence of a limit 
distribution, namely the requirement that the sequence {S,,} be stochastically 
bounded. We recall from VIII,2 that {S,} is said to be stochastically bounded 
if to each ¢€ >O there corresponds an a such that P{|S,| > a}<e« 

for all n. Very roughly speaking this means that no probability mass flows 

out to infinity. Obviously this is a necessary condition for the existence of 

a proper limit distribution. 
We shall rely heavily on truncation. It is most convenient to use once more 

the truncation function 7, introduced in (5.3) in order to avoid discontin- 

uities. r, is the continuous monotone function such that 7,(z) = x when 
|z| < s and 7,(x) = +s when |z| > s. With this truncation function 

we put 

(7.1) Xin =7(Xen)s Xen = Xan = Xin + X24. 
The new variables depend on the parameter s even though our notation does 
not emphasize it. The row sums of the triangular arrays {X,,,} and {X;,,} 
will be denoted by S), and S>. Thus S, = S) + 8%. The variables X,,, 
are bounded, and for their expectation we write . 

(7.2) Bn = EQ;,n)- 
(8, is, of course, independent of k.) Finally we introduce the analogue 
to the measures Q, of section 5, namely the measure ®, defined by 

(7.3) ®@, {dx} = nz? F, {dz}. 

®,{Q is finite for finite intervals J, but the whole line may receive an 

infinite mass. 
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It is plausible that. {S,} cannot remain stochastically bounded unless the 
individual components become small in the sense that 

(7.4) P{|X,. nl > e} -> 0, nm oe, 

for every « > 0. (The left side is independent of k.) Arrays with this 
property are called null-arrays. We shall see that only null-arrays can have 

stochastically. bounded row sums, but for the time being we introduce (7.4) 
as a Starting assumption. 

The “‘necessary’’ part of the following lemma was used in the proof of 

theorem | in section 5; there the condition (7.4) was fulfilled because the 

semi-group was continuous. 

Lemma. (Compactness.) In order that the row sums S,, of a null-array 

{X;.,,} remain stochastically bounded it is necessary and sufficient 

(i) that ©, {1} remains bounded for every finite interval I, and 
(ii) that for large x the tail sums 

(7.5) —-T,(2) = nfl — F(x) + F,(-2)] 
are uniformly small. 

In other words, it is required that to each « > 0 there corresponds a ¢ 

such that 7,(z)< « for x >+¢. (Note that 7, is a decreasing function.) 

Proof. In the special case of symmetric distributions F, the necessity 

of condition (ii) is apparent from the inequality 

(7.6) P{iS,| > a} > H(1 — exp (—7,(@))) 
{see V,(5.10)]. For arbitrary F, we apply the familiar symmetrization. 

Together with S, the symmetrized variables °S, also remain stochastically 

bounded, and therefore condition (ii) applies to the tails °7, of the 
symmetrized distributions. But fora null-array it is clear that foreach 6 > 0 

ultimately °7,,(a) > 47,(a + 6), and so condition (ii) is necessary in all 

cases. 
Assuming that condition (ii) is satisfied, the truncation point s can be 

chosen so large that 7,(s)< 1 for all 2. The number of terms among 

> in ...,X,, that are different from 0 is then a binomial random variable 

with expectation and variance less than 1. It is therefore possible to pick 

numbers N and c such that with probability arbitrarily close tc 1 fewer 

than N among the variables X/, will be different from 0 and all of them 

<c. This means that the sums S” remain stochastically bounded, and 

under these circumstances {S,} is stochastically bounded iff {S/} is. 

‘It remains to show that condition (i) is necessary and sufficient for the 

stochastic boundedness of {S‘}. 
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Put o% = Var (S,). If o, —>» oo the central limit theorem of example 1 (a) 

applied to the variables (X, _,—8,)/o, shows that for large m the distribution 
of S), will be approximately normal with variarice o2-—+ oo and hence 
P{S),¢1}—-0 for any finite interval J. The same argument applies to 

subsequences and proves that {S/} cannot remain stochastically bounded 
unless Var (S,) remains bounded. But in this case Chebyshev’s inequality 
shows that {S’ — nB,} is stochastically bounded, and the same will be true 

of S). iff {nB,} is bounded. Now f£,-—>0 because {X,,,,} is a null-array, 

and hence the boundedness of nf, implies that Var (S’) ~ E(S’*). 
We have thus shown that the boundedness of E(S{?) is a necessary 

condition for the stochastic boundedness of {S/}, and by Chebyshev’s 
inequality this condition is also sufficient. But 

(7.7) E(S/?) = ©, {—s, s} + s* T,(s) 

and hence under the present circumstances the condition (i) is equivalent to 

the condition that E(S‘?) remains bounded. . > 

The assumption that {X,,} is a null-array was used only in connection 

with the symmetrization and could be omitted for arrays with symmetric 

distributions F,. However, the boundedness of ®,{7} implies the E(X,?,) = 
== O(n-'), and one concludes easily from the lemma that an array with 
stochastically bounded row sums and symmetric distributions is necessarily 

a null-array. By symmetrization it follows that in the general case there exist 
numbers yu, (for example, the medians of X,.,) such that {X,, — un} is 

a null-array. In other words, an appropriate centering will produce.a null- 
array, and in this sense only null-arrays are of interest. 

Example. Let the X,, have normal distributions with expectation 

f, and variance n“}. Then S, — nf, has the standard normal distribution 

but since the 8, are arbitrary, {S,} need not be stochastically bounded. 

This illustrates the importance of centering. > 

For theoretical purposes it would be possible to center the array so that 

B, = 9 for all , but the resulting criterion would be difficult to use in 
concrete situations. With arbitrary centerings the criteria involve non-linear 

terms and become unwieldy. We shall cover this case in full generality in 

XVII,7. Here we shall strike a compromise: we shall require only that 

(7.8) Bp = CE(Xy'n)), n—> o. 

This condition seems to be satisfied in all cases occurring in practice. In 
any case, it is so mild that it is usually easy to satisfy it by an appropriate 
centering whereas the more stringent requirement that #, = 0 may require 
complicated calculations. 
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Theorem. Let {X,",,} be a null-array such that (7.8) holds. 

In order that there exist centering constants b,, such that the distributions of 
S,,— 5, tend to a proper limit it is necessary and sufficient that there exist a 
canonical measure Q. such that 

(7.9) Oh > OULD 

for every finite interval and that for x > 0 

(7.10) n[1—F,(2)]—> pt(z), nF ,(—2) > y-(—2). 
In this case the distribution of S, —nB,, tends to the distribution Q, 

associated with the convolution semi-group generated by the operator % 
defined by 

Tr? u(x—y) — u(x) + 7,(y) u"(2) (7.11) Wu(x) = [ 2 QU dy}.   

Proof. We observe first that with arbitrary 5, the conditions (i) and (ii) 

of the lemma are necessary for {S,, — 5,} to be stochastically bounded. The 

proof is the same with the simplification that the relation E(S/?) ~ Var (S‘) 

is now a consequence of (7.8) whereas before we had to derive it from the 
boundedness of Sj. 

Assume then the conditions of the lemma satisfied. By the selection 
theorem there exists a sequence {n,} such that as n runs through it (7.9) 

holds for finite intervals. For a finite interval O< a<2<b we have 

(7.12) n[F,(b). — F,(a)] = [ y* ®, {dy} 

and (7.9) entails that also this quantity tends to a limit. Condition (ii) 
assures us that n[l1 — F,(6)} will be less than an arbitrary « > 0 provided 

only that 5 is sufficiently large. It follows that for 0<a<5b< oo the 
integral in (7.12) converges to the analogous integral with respect to QQ. 
Thus Q is a canonical measure, and (7.10) is true as m runs through {n,}. 

We know that the operator YW of (7.11) defines a semi-group {Q({r)} of 

convolution operators. Let ,, be the operator induced by: the distribution 

G, Of Xun — By namely G,(x) = F,(<+8,). It was shown in section | 

that to show that the distribution of S,, — 1,8,, tends to the distr'bution 

QO, associated with Q(1) it suffices to show that as m runs through (mi 

(7.13) n{Q,—1] — Ww 

Now 
*-+b 90 

(7.14) n{®,—1ju(z) = n| [u(at+f,—y) — u(z—y)| F,, {dy}. 
—o 
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We express u(x+f,—Yy) using Taylor’s formula—to~second-order terms. 

Since £,,—>0 it follows from (7.8) and the boundedness of ®,{7} that 
nB?—>0. As also u” is bounded it is seen that 

eo 

(7.15) n{G,—1] u(z) =| [u(z—y) — u(x) + 7,(y) u'(2)\nF {dy} -F €n(2) 

where e€, is a quantity tending uniformly to zero. The integral may be 
rewritten in the form (7.11) except that the integration is with respect to ®,, 

rather than ©. As was shown repeatedly, the limit relations (7.9)—(7.10) 
imply that the integral in (7.15) converges to that in (7.[1) and so (7.13) 
holds as n runs through- {n,}. Finally, the uniqueness of the semi-group 

containing Q, shows that our limit relations must be true for an arbitrary 

approach n-» oo, and this concludes the proof. > 

8. DOMAINS OF ATTRACTION 

In this section X,, X,,... are independent variables with a common 

distribution F. By definition 2 of VI,1 the distribution F belongs to the 

domain of attraction of G if there exist constants a, > 0 and 5b, such that 
the distribution of a/*4(X,+--++X,)— 6, tends to G,.whtre G is a 

proper distribution not concentrated at a point. Despite preliminary results 
in VI,1 and in section 6 we here develop the theory from scratch. (In XVII,5 

the theory will be developed independently and in greater detail.) 

Throughout this section we use the notation 

(8.1) U(z) -[ y F{dy}, x>0. 

We recall from the theory of regular variation in VIII,8 that a positive 

function L defined on 0, 00 varies slowly (at 00) if for x > 0 
  

L(sx) —_—> —> (8.2) (9) 1, s—> ©. 

Theorem 1. A distribution F belongs to the domain of attraction of some 
distribution G iff there exists a slowly varying L such that 

(8.3) U(x) ~ x?* L(2), xz —> ©, 

with O0< «<2, and when «<2 

(8.4) —1=F@ FD) nig, 
1—F(xj)+ F(—z) “1 — F(x) + F(—x) 
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When « = 2 condition (8.3) alone is sufficient provided F is not concentrated 
at one point.® 

We shall see that (8.3) with « =2 implies convergence to the normal 
distribution. This covers distributions with finite variance, but also many 
distributions with unbounded slowly varying U [see example VIII,4(a)]. 

Using theorem 2 of VIII,9 with €=2 and 7 =0 it is seen that the 
relation (8.3) is fully equivalent to’ 

#1-F(@)+F(—2)] 2-2 
U(2) a 

in the sense that the two relations imply each other. 
When 0 < «<2 wecan rewrite (8.5) in the form 

2-4 

(8.5)   

  (8.6) 1 — F(z) + F(—2) ~ 5—* 2 * La), 

and conversely (8.6) implies (8.3) and (8.5). This leads us to a reformulation 

of the theorem which is more intuitive inasmuch as it describes the behavior 

of the individual tails. (For other alternatives see problem 17.) 

Theorem 1a. (Alternative form). (i) A distribution F belongs to the 

domain of attraction of the normal distribution if U varies slowly. 

(ii) Zt belongs to some other domain of attraction iff (8.6) and (8.4) hold 
for some 0< a <2. 

Proof. We shall apply the theorem of section 7 to the array of variables 
X,n = X,/a, with distributions F,(z) = F(a,z). The row sums of the 
array {X,.,} are given by . 

S, = (X,+° . ‘+ X,)/ap- 

Obviously a,» 00 and hence {X,.,,} is a null-array. To show that the 

condition (7.8) is satisfied we put 

(8.7) u(x) = [ "y F{dy} 

8 For distributions with finite variance, U varies‘slowly except when F is concentrated 
at the origin. In all other cases (8.3) and (8.4) remain unchanged if F(x) is replaced by 

F(x+0). 
7 Condition (8.4) requires a similar relation for each tail separately:. 

2{1-F(2)} 2-a eF(—z), 2—a 
Ue ° «a ° U@ 1 « 
    (*) 

When‘ « = 2 these relations follow from (8.5), which explains the absence of a seca id 

condition when « =2. Theorem 1 could have been formulated more concisely “Sut 

more artificially) as follows: F belongs to some domain of attraction iff (*) is true with 

O<a<¢2,p>0,¢20, pt+q=l. 
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and note that (7.8) is certainly true if 

(8.8) v(x) = o( U(2)). 

Now if U(x) oo as x— oo itis clear that v(z) = o(x U(x)) and U(x) = 
= o(a-*), and therefore (8:8) holds. The case of a bounded function U is 

of no interest since we know that the central limit theorem applies to 
variables with finite variances. However, even with bounded functions U 

the relation (8.8) holds provided that the distribution F is centered to zero 
expectation. 

Condition (i) of the last theorem requires® that for + > 0 

(8.9) na,” U(a,x) > Q(—2, z}, n—> 0, 

while (11) reduces to 

(8.10) n{l—Fla,x]—> y*(z),  nF(—a,x) > p-(—2) 

[for the notation see (5.2)]. It is easily seen that® a,,,/a, 1. According to 
lemma 3 of VIII,8 it follows therefoye-from (8.9) that U varies regularly, 

and the limit on the right is proportional to a power of x. Following a custom 

established by P. Lévy we denote this power by 2 — a. Thus 

(8.11) Q{—a2, 2} = Cx**, x>0. 

The left side being a non-decreasing function of 2 and bounded near the 
origin, we have 0< «<2. It follows that U is indeed of the form 
asserted in (8.3). 

Again, the same lemma 3 of VIII,8 assures us that the limits in (8.10) are 

either identically zero, or else proportional to a power of x. Now (8.5) shows 

that the only possible power is 2~*; in fact, when « = 2 both limits are 
identically zero, whereas for « <2 the limits are necessarily of the form 
Ax~* and Bx-* where A >O and B>O, but 4+ B>0. It follows 

that the conditions of the theorem are necessary. . 
Assuming (8.3) to be true.it is possible to construct a sequence {a,} such 

that 

(8.12) na,” U(a,) 1. 

For example, one may take for a, ,the lower bound of all f such that 
nt~? U(t) < 1. Then (8.3) guarantees that for x > 0 

(8.13) ~ nay® U(a,x) — 2. 

® As usual, it is tacitly understood that convergence is required only at points of continuity. 
° For symmetiic distributions this follows from the fact that (KX, +--+ + X,)/a, and 

(X, +°°* +X,)/@,,, bave the same limit distributicn. For arbitrary F the assertion 

follows by symmetrization. 
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Thus condition (7.9) is satisfied for intervals of the form J = {—z, x}. In 
case a = 2 the limit measure Q is concentrated at the origin and therefore 
(7.9) is automatically satisfied for all finite intervals; in this case it follows 
from (8.5) that also condition (7.10) is satisfied with y+ and p7 identically 
zero. When « < 2 the relations (8.3)-(8.5) together imply that as x—» o 

Sy L(x) (8.14) — Sa L(2),  F(—2)                 

provided p> 0 and g>0. (In the contrary case the symbol ~ is to be 
replaced by “‘little oh’’ and there is no essential change.) It follows that 
condition (7.10) holds, and this in turn implies that (7.9) applies to arbitrary 
intervals at a positive distance from the origin. > 

It is noteworthy that all the results of section 7 are implicitly contained in 
the present theorem and its proof. The proof leads also to other valuable 
information. First we have the obvious 

Corollary. [f « = 2 the limit distribution is normal, and otherwise it is a 
stable distribution satisfying (6. 11). In either case it is determined up to 
arbitrary scale parameters. 

We saw also that (8.12) leads to a possible sequence of norming factors 

a,. It is easily seen that another sequence {a/} will do iff the ratios a’ /a, 
tend to a positive limit. 

Under the conditions of theorem | we have established the existence of a 
limit distribution for S, — 8B, where [with v defined in (8.7)] 

(8.15) By = E(X,,,) = a; o(sa,) + s{1—F(sa,)—F(—sa,)} 
We now proceed to prove the pleasant fact that the centering constants £,, 
are really unnecessary except when a = I? 

When « <1 we apply theorem 2 of VIIJ,9 with €=1 and 7=0 

separately to the two half-axes to find that as x 

  (8.16) vz) ~ , * x{1—F(x)—F(—2)]. 

From this and (8.10) it follows that nf, tends to a finite limit and therefore 

plays no essential role. 
When a> 1 the same theorem 2 of VIII,9 with €=2 and 7 =1 

shows that F has an expectation, and we naturally center F to zero 

expectation. The domain of integration in the integral (8.7) for v may then 

be replaced by |y| > x and it is found that (8.16) holds without change. 

Thus the distributions of S, tend to a limit which is again centered to zero 
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expectation. Similarly, when a <1 the limit distribution is centered so as 
to be strictly stable. We have thus proved 

Theorem .2. Suppose that F satisfies the conditions of theorem 1. If 

a<1 then F"*(a,x)— G(x) where G is a strictly stable distribution 

satisfying (6.11). If «& > 1 the same is true provided F is centered to zero 
expectation. 

(For the centering when « = 1 see XVII,5. Concerning the moments of 

F see problem 16.) 

9. VARIABLE DISTRIBUTIONS. THE THREE-SERIES 
THEOREM 

We turn very briefly to general triangular arrays* {X,,,} where the 

variables’? X,,,..., Xn,» Of the mth row are mutually independent, but 
have arbitrary distributions F,,. To preserve the character of our limit 
theorems we consider only null-arrays: it is required that for arbitrary 

7 > 0 and «> 0 and na sufficiently large 

(9.1) P{IX, 1 > 1} <«, k=1,. 

The theory developed in section 7 carries over with the sole change that 

expressions like # Var (X;,,) are replaced by the corresponding sums. In 
particular, on/y infinitely divisible distributions occur as limit distributions of 
row sums of null-arrays. The verification may be left to the reader as a 

matter of routine. 
We proceed to discuss some interesting special cases. The notations are 

the same as in section 7, but in the following it does not matter which type of 

truncation is used; itis perhaps simplest to define the truncated variables 

by Xin = Xen When |X,,|<s and X,,= 0 otherwise. Here the 

truncation levél s is arbitrary. 
The first theorem is a variant of the compactness lemma and i is equivalent 

to it. 

Theorem 1. (Law of large numbers.) Let S,, stand for the row sums of a 
. P 

null-array. In order that there exist constants b, such that) S, — b, —> 0 

it is necessary and sufficient that for each % > 0 and each truncation level s 

n 

(9.2) SP(Keal> m0 DVar Kn) +0 
In this case one may take 6, = 2 E(X;. 2») 

10 Concerning the number of variables in the nth row see problem 10 in VII,13. 
‘1 We recall from VIII,2 that Z, converges in probability to 0.if P{|Z,| > «} +0 

for every « > 0. 
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As an application we prove the following theorem which was already 
discussed in VIII,5. 

Theorem 2. (Infinite convolutions.) Let Y,,Y2,... be independent 
random variables with distributions G,, Gz, .... In order that the distributions 
G,*%& Gz- ++ G, of the sums T, = Y¥, +-+-+ Y,, tend to a proper limit 
distribution G it is necessary and sufficient that for each s > 0 

(9.3) SPY.) >s}< 0, SVar (VY) <a 
and : 

(9.4) — DE(Y;) > m. 
k= 

Proof. For a given increasing sequence of integers Vy, My... and 

kK=1,...,n put X,, = Y,4,. The distributions G,*---*G, con- 

verge iff a// triangular arrays of this type obey the law of large numbers with 
centering constants 6, =.0. From theorem | it is clear that the conditions 
(9.3) and (9.4) are necessary and sufficient for this. > 

Theorem 2 may be reformulated more strikingly as follows. 

Theorem 3. (Kolmogorov’ s “‘three-series. theorem’’.) The series > Y;, 
converges with probability one if (9. a and (9.4) hold, and with probability 
zero otherwise. 

Proof. Assume (9.3) and (9.4). By theorem 2 of VII,8 the second con- 
dition in (9.3) guarantees that )} [Y;—E(Y,)] converges with probability 
one, and then (9.4) implies the same for > Y,- By the Borel-Cantelli lemma 

(see 1; VIII,3) the first condition in (9.3) entails that with probability one 
only finitely many Y, differ from Y,, and so > Y; converges with 
probability one. 

To prove the necessity of our conditions fecall from IV,6 that the prob- 

ability of convergence is either zero or one. In the latter case'the distribution 
of the partial sums must converge, and so (9.3) and (9.4) hold. > 

Processes with Non-stationary Increments 

The semi-group theory developed in this chapter is the tool particularly adapted to 
processes with stationary independent increments. Without the condition of stationarity 
the incremert X(t) — X(x) will have a distribution depending on the two parameters ¢ 
and +, and we have to deal with a two-parametric family of operators Qe, Hn,0<r<t 

satisfying the convolution equation 

(9.5) Q(r, Ns, t) = Q(r, 1), r<is<t 

Are the distributions associated with such operators infinitely divisible? We can partition 

7,¢ into » intervals ¢,_,,¢, and consider the variables X(t,) — X(t,_,), but to apply 
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the theory of triangular arrays we require the condition (9.1) amounting to a uniform 
continuity of the distributions in their dependence on the two time parameters. But 
(7,1) need not depend continuously on ¢. In fact, the partial sums of a sequence 
X,, Xp,..- of independent random variables represent a process with independent incre- 
ments where all changes occur at integer-valued epochs and so the process is basically 
discontinuous. In a certain sense, however, this is the only type of essential discontinuity. 

The qualification “‘essential’’ is necessary, for it was shown in section Sa that even with 
ordinary semi-groups artificial centering can produce mischief which, though inconse- 
quential, requires caution in formulations. For simplicity we stick therefore to symmetric 
distributions and prove 

Lemma. If the distributions associated with Q(7,‘t) are symmetric, a one-sided limit 

Q(r,t—) exists for each t. 

Proof. Let 7 <% <%, <*:-: and t, ~+1t. The sequence of distributions associated 
with Q(7,1,) is stochastically bounded and so there exists a convergent subsequence. 

Dropping double subscripts we may suppose that {(7,¢,) > Uo where U is associated 
with a proper distribution U. It follows easily that Q(t, t,41) 1 and this implies 
Qty, 5n) —> 1 for any sequence of epochs such that t, < 5, <4 1- In view of (9.5) this 

means that Q(7, 5,)-> U, and so the limit U is independent of the sequence {,}, and 
the lemma is proved. > 

Following Paul Lévy, we say that a‘fixed discontinuity occurs at ¢ if the two limits 
Q(r, 1+) and Q(r, —1) are different. It follows readily from theorem 2 that the set of 

fixed discontinuities is countable. Using symmetrization it follows also in the general case 
that, except for at most denumerably many epochs, discontinuities are due only to centering 
(and are removable by an adequate centering). The contribution Q,(7, 7) of all fixed 

discontinuities to Q(7,¢) is an infinite convolution and it is possible to decompose the 

process into a discrete and a continuous part. For the triangular arrays arising from con- 
tinuous processes it is not difficult to see (using theorem 2) that the uniformity condition 

(9.1) is automatically satisfied and we reach the conclusion that the distributions associated 

with continuous processes.are infinitely divisible. P. Lévy has shown that the sample function 
of such processes are well-behaved in the sense that with probability one right and left 
limits exist at every epoch ¢. 

10. PROBLEMS FOR SOLUTION 

1. In Example 1(a)show that > Xé ,, — > 1 as n> «: (Hint: Use variances.) 

2. In an ordinary symmetric random walk let T be the epoch of the first 
passage through +1. In other words, T is a random variable such that 

r 

1 /2r 
P{T = 2r — 1} = 3 2 

Consider a triangular array in which X,, has the same distribution as T/r’. 

Using the elementary methods of section 1 ‘show by direct calculation that 

° u(x — y) — uz) (*) n[Buue() — u(e)] > == wef. ja 
y 

Conclude that the distribution of the row sums tends to the stable distribution 

F, defined in II,(4.7) with the convolution property II,(4.9). Interpret the result 
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in terms of a random walk in which the steps are +1/n and the times between 
successive steps 1/n?. 

(Hint: The series defining (§,u(z) can be approximated by an integral.] 
3. Consider the gamma distributions of JI,(2.2) for the parameter value « = 1. 

Show that the convolution property II,(2.3) implies that they form a semi-group 
with a generator given by 

Uu(zx) = [ u(e—y) — ue) e- "dy. 

6 y 

Discuss the absence of a centering term. 

4. The one-sided’ stable distributions of II,(4.7) enjoy the convolution property 
II,(4.9) and therefore form a semi-group. Show that the generator is given by the 
right side of (*) in problem 2. 

5. Let the distributions Q, of a semi-group be concentrated on the integers 
and denote the weight of k by 9,(t). Show that 

Uu(x) = —9'(0) u(x) + ¥ 9'(0) ula ~ k). 
E40 

Compare with the canonical form (5.9). Interpret in this light the generating 
functions for infinitely divisible distributions obtained in 1; XII,2. 

6. Generalize the notions of section 2 to semi-groups with defective distributions. 
Show that if U generates {Q(¢)} then U — cf generates {e~*Q(¢)}. 

7. The notation e3—-1) for the compound Poisson semi-group tempts one to, 
write in general Q(t) = e4. For the normal semi-group this leads to the formal 
Operational equation 

1 d? 1 ” 

ov (5 (ga) #00 = B53 (5) wre. 
Show that it is valid whenever the Taylor series of u converges for all x and the 
series on the right converges for ¢ > 0. (Hint: start from the Taylor series for the 
convolution of u and a normal distribution. Use the moments of the normal 
distribution.) 

1 
8. The distributions of a semi-group have finite expectations iff TF is 

integrable with respect to the measure 2 appearing in the generator. 

9. Show directly that if n[%,—1]—U, the operator U is necessarily of the 
form of a generator. [Use the method of section 4 considering functions of the 
form (4.4) but do not use semi-group theory. The intention is to derive the general 
form of a generator without first proving its existence. ] 

10. Let F, attach probabilities } to the two points +*. Then 

+a 

> 2-*(G.-1) 
h=— 

generates a semi-group such that Q,,(z) = Q,(zz), but Q, isnot stable. (P. Levy.) 

11. (A direct proof that the limit distributions of row sums of triangular arrays 
are infinitely divisible.) Let {X,,,} be a triangular array with identically distributed 
variables. The stochastic boundedness of S,, implies the same for the partial sums 

X;n+°*:+Xmn, where m stands for the largest integer <n/r. Using the 
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selection theorem show that this implies that the limit distribution G of S, is 
the r-fold convolution of a distribution GT". 

12. For any distribution F and smooth u 

+00 2 

M& — Aull < 100Cj|all + lu”) | Tai Fld} + Ia’. 

13. To the triangular array {X,.,} with distributions F,, there corresponds 
another array {X#_ } with compound Poisson distributions. 

oF = eon], 

Show that n”[%,— — HF ] +0 whenever {S,} is stochastically bounded. This shows 
that the row sums S,, and S*# are asymptotically equivalent. Since the distribution 

of S# is associated with el” a" this yields a second method for deriving the main 
theorems of section 7. This method can be used also for arrays with variable 
distributions. (Hint: Use problem 12.) 

14. With the notations of section 5 put M, = max [X,n,...,Xna.nj. If S, 
has a limit distribution show that p*(x) = —lim log P{M,, < 2}. 

15, If S, has a limit distribution so do the row sums of the array formed by 
the squares X? ,. 

16. (Domains of attraction.) Let F belong to the domain of attraction of a 
stable distribution with index «. Using theorem 2 of VIII,9 show that F possesses 
absolute moments of all orders <«. If « <2 no moments of order >« exist. 
The last statement is false when « = 2. 

17. (Continuation.) In section 8 the theory was based on the truncated second 
moment function, but this was done only for reasons of tradition. Theorem 2 of 

VIII,9 permits us to replace y? in (8.1) by |y|? with other exponents -p, and for 

each p to replace (8.3) and (8.5) by equivalent relations. 
18. Let X,,Xz,... be independent variables with a common distribution F. 

If 1 — F(z) + F(—2) varies slowly, deduce from the compactness lemma that 
a sequence S, A + 6, can have no proper limit distribution G except G 
concentrated at a point. (This may be expressed by saying that F belongs to no 
domain of partial attraction. See XVI9) Hint: Use symmetrization. 

 



CHAPTER X 

Markov Processes and Senu-Groups 

This chapter starts out with an elementary survey of the most common 
types of Markov processes—or rather, of the basic equations governing 
their transition probabilities. From this we pass to Bochner’s notion of 
subordination of processes and to the treatment of Markov processes by 
Semi-groups. The so-called exponential formula of semi-group theory is the 
connecting link between these topics. The existence of generators will be 
proved only in chapter XIII by the theory of resolvents. In theory the present 

exposition might have covered the processes and semi-groups of the preceding 

chapter as a special case, but the methods and uses are so different that the 
following theory is self-contained and independent of chapter IX. The results 
will be amplified in chapter XIH, but the theory of Markov processes is not 
used for the remaining topics in this book. 

This chapter is largely in the nature of a survey, and no attempt is made at - 

either generality or completeness.’ Specifically, we shall not discuss properties 

of the sample functions, and throughout this chapter the existence of the 
processes will be taken for granted. Our interest centers entirely on the 
analytical properties of the transition probabilities and of the defining 
operators. 

The theory of the induced semi-groups of transformations wili be treated 
in fair generality in sections 8-9. In the earlier sections the basic space is an 
interval on the line or the whole line although parts of the theory apply more 

generally. To avoid special symbols it is therefore agreed that when no 
limits are indicated integrals are taken over a fixed set 9) serving as the basic 
space. 

1 The semi-group treatment of Markov processes is described in greater detail in Dynkin 

(1965) and Loéve (1963). Yosida (1966) contains a succinct introduction to the analytic 

theory of semi-groups and their applications to diffusion and to ergodic theory. 
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1. THE PSEUDO-POISSON TYPE 

Throughout this chapter we limit our discussion to Markov processes with 

stationary transition probabilities Q, defined by 

(1.1) O(a, UT) = P{X(t47) €T | X(7r) = x} 

and supposed to be independent of +. (See VI,11.) 

A simple generalization of the compound Poisson process leads to an 
important class of such processes from which all others can be derived by 
approximation. The theory of semi-groups hinges on an analytical counter- 
part to this situation (section 10). 

Let N(t) denote the variable of an ordinary Poisson process. In VI,4 

the compound Poisson process was introduced by considering the random 

sums Sy, where So, S,,... are the partial sums of a sequence of independ- 

ent identically distributed random variables. The pseudo-Poisson process is 
defined in like manner except that now S,,S,,... are the variables of 

_ Markov chain with transition probabilities given by a stochastic kernel K 
(see VI,11). The variables X(t) = S,,,, define a new stochastic process 
which can be described formally as follows. 

Between the jumps of the Poisson process the typical sample path remains 

constant. A transition from x to I canoccurin0, 1, 2,...steps, and hence 

(1.2) Q(2,0) = o# yO Kime, Ty, t>0. 
. n=0 Ne 

This generalizes the compound Poisson distribution VI,(4.2) and reduces to 
it in the special case when Q is the whole line and S, is the sum of n 
independent random variables with a common distribution F. 

The composition rule 

(1.3) One, P) = { 0,(2, dy) 0,(y, T) 
(t,7 > 0) analogous to VI,(4.1) is easily verified analytically.2 It is called 
the Chapman-Kolmogorov equation and states that a transition from x at 

epoch Oto [° atepoch ¢ + 7 occurs via a point y atepoch 7 and that the 
subsequent change is independent of the past.2 [See 1; XVII,9 and also 

VI,(11.3).] 

Examples. (a) Particles under collision. Let a particle travel at uniform 
speed through homogeneous matter occasionally scoring a collision. Each 

2 Approximating Q, and Q, by their partial sums with n terms shows that the right 

side in (1.3) is < the left side but > the nth partial sum of Q,,,. 
3 Jt is sometimes claimed that (1.3) is a law either of nature or of compound prob- 

abilities, but it is not true for non-Markovian processes. See 1; XV,13. 
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collision produces a change of energy regulated by a stochastic kernel K. 

The transition probabilities for the energy X(t) are of the form (1.2) if 
the number of collisions obeys a Poisson process. This will be the case 

under the now familiar assumptions concerning homogeneity of space and 
lack of memory. 

It is usually assumed that the fraction of energy lost at each-collision is 
independent of the initial amount, which means that K(x, dy) = V{dy/zx} 

where Vis a probability distribution concentrated on 0,1. For later 

applications we consider the special case where V(x) = 24. Then K hasa 
density given by 

(1.4) k(x, y) = Aax~Py*-}, O<y<z. 

For A= 1 this implies that the fraction of energy lost is uniformly dis- 
tributed.*| The iterated kernels k™> were calculated in VI,(11.5). Sub- 
stituting into (1.2) itis seen that Q, has an atom of weight e~#¢ at the origin 
(accounting for the event of no collision) and for 0 < y.< x the density 

(1.5) qe, y) = 6 Jat —L—— 1,(2Vatd log (#/y)) 
iS (z/y) 

where J, is the Bessel function defined in II,(7.1). [See examples 2(a) and 

2(6).] . 
(b) The energy loss of fast particles by. ionization. An_ instructive 

variant of the last example is obtained by considering the extreme case of a 
particle whose energy may be considered infinitely large. The energy losses 
at successive collisions are then independent random variables with a common 

distribution V concentrated on 0, 0. If X(t) is the total energy loss 

within the time interval 0,¢ then X(t) is the variable of a compound Poisson 
process. Its transition probabilities are given by (1.2) with K™ replaced by 
the convolutions V"* 

(c) Changes in direction. Instead of the energy of a particle we may 
consider the direction in which it travels and derive a model analogous to 
example (a). The main difference is that a direction in R* is determined by 
two variables, and so the densitv kernel & now depends on four real 
variables. 

4 This assumption is used by W. Heitler and L. Janossy, Absorption of meson producing 
nucleons, Proc. Physical Soc., Series A, vol. 62 (1949) pp. 374-385, where the Fokker- 

Planck equation (1.8) is derived (but not solved). 

> Title of a paper by L. Landau, J. Physics, USSR, vol. 8 (1944) pp. 201-205. Landau 
uses a different terminology, but his assumptions are identical with ours and he derives 

the forward equation (1.6). 
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(d) The randomized random walk of example 1I,7(b) represents a pseudo- 

Poisson process restricted to the integers. For a fixed integer x the kernel 
K attributes weight 4 to the two points x + 1. > 

From (1.2) one gets easily 

(1.6) eet) = —«0,(x,T) + 2 Ou dz) K(z, T). 

This is Kolmogorov’s forward equation which will be discussed in a more 
general setting in section 3 where it will be shown in the next section that (1.2) 
is its only solution satisfying the obvious probabilistic requirements. The 
equation (1.6) takes on a more familiar form when K hasadensity k. At the 

point x the distribution Q, has an atom of weight e-#t, which is the prob- 
ability of no change; except for this atom Q, has a density q, satisfying 
the equation 

(1.60) ED = nade, 8) + 0 foes) Me 8) de 
If fy is the probability distribution at epoch 0 the distribution at epoch 

t is given by 

(1.7) MAT} = | Mo{dz} Q(z, P) 

and (1.6) implies 

GwAU = —% a z} K(z , (1.8) oS = —ay{P} + | nde} K(z, T), 

This version of (1.6) 1s known to physicists as the Fokker-Planck (or 

continuity) equation. Its nature will be analyzed in section 3. When K and 
the initial distribution jz, have densities, then 4, also has a density m,, 

and the Fokker-Planck equation reduces to 

(1.82) ome) = —am{é) +a { m2) k(e, 8) de. 

2. A VARIANT: LINEAR INCREMENTS 

A simple variant of our process occurs in physics, queuing theory, and 
other .applications. The assumptions concerning the jumps remain the 
same but between jumps X(t) varies linearly at a rate c. This means that 

X(t) — ct is the variable of the described pseudo-Poisson process; if 
Q, stands for the transition probabilities of the new process, then 

Q,(z, + ct) must satisfy (1.6). The resulting equation for @Q, is of an 
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unfamiliar form, but if differentiable densities exist they satisfy familiar 
equations. For m, we have to replace & in ([.8a) by & + ct. With the 
change of variables y = & + ct we get the Fokker-Planck equation.® 

0 
(2.1) my) —_ - —am{y) + a mie) K(z, y) dz.   

The analogue to (1.6a) is obtained similarly by adding the term —c 0q,/dy 
to the right side. 

In connection with semi-group theory we shall cast the Fokker-Planck 

equation in a more flexible form quite independent of the unnatural differ- 
entiability conditions. [See example 10(4).] 

Examples. (a) Particles under collision. In the physical literature example 

1(a) occurs usually in a modified form where it is assumed that between 

collisions energy is dissipated at a constant rate due to absorption or friction. 
The model of (2.1) fits this situation if the energy loss is proportional with m, 
standing for the probability density of the energy at epoch ¢. 

In other situations physicists assume that between collisions energy is 
dissipated at a rate proportional to the instantaneous energy. In this case 
the logarithm of the energy decreases at a constant rate and an-equation of 
the form (2.1) now governs the probability density for the logarithm of the 

_ energy. | 
(6) Stellar radiation.’ In this model the variable ¢ stands for distance 

and X(t) for the intensity of a light ray traveling through space. ‘It is 
assumed that (within the equatorial plane) each element of volume radiates 
at a constant rate and hence X(t) increases linearly. But the space also 
contains absorbing dark clouds which we treat as a Poissonian ensemble of 
points. On meeting a cloud each ray experiences a chance-determined loss 

and we have the exact situation that led us to (2.1). It is plausible (and it 

6 Many special cases of the Fokker-Planck equation (1.8) have been discovered in- 

dependently, and much fuss has been made about the generalization (2.1). The general 

notion of Fokker-Planck equations was developed by Kolmogorov in his celebrated 
paper, Uber die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. Ann., 

vol. 104 (1931) pp. 415-458. In it Kolmogorov mentions the possibility of adding an 
arbitrary diffusion term 

02m, am, 
Yaa eo 

ay? dy 

to the right side, and (2.1) is merely a special case of this. Even the first existence theorems 
covered the general equation in the non-stationary case. [Feller, Math. Ann., vol. 113 

(1936).] 
7 The physical assumptions are taken from V. A. Ambarzumian, On the brightness 

fluctuations in the Milky Way, Doklady Akad. Nauk SSSR, vol. 44 (1944) pp. 223-226, 
where a version of (2.1) is derived by an indirect approach. 

 



326 MARKOV PROCESSES AND SEMI-GROUPS X.3 

can be proved) that the density m, of X(t) approaches a steady state density 
m which is independent of ¢ and satisfies (2.1) with the left side replaced by 0. 
Ambarzumian assumes specifically that the loss of intensity at an individual 

passage through a cloud is regulated by the transition kernel (1.4). In this 
case an explicit solution is available in (1.5) but it is of minor interest. More 
important (and easily verified) is the fact that (2.1) has a time-independent 
(or steady state) solution, namely the gamma density 

  (2 2) m(y) = (2) 1 A easly >0 

ce) Tat” * ye’ 

This result shows that pertinent information can be derived from (2.1) 

even without finding explicit solutions. For example, it is readily verified 
by direct integration that the steady state solution has expectation 
c{a(1—)]-* where yw is the expectation of the absorption distribution V. 

(c) The ruin probléms of VI,5 represent the special case where k is a 
convolution kernel. The variable of these processes is obtained by adding 
—ct to the variable of a compound Poisson process. Analogous ruin 
problems can be formulated for arbitrary pseudo-Poissonian processes, 

and they lead to (2.1). > 

3. JUMP PROCESSES 

In the pseudo-Poisson process the waiting time to the next jump has a 
fixed exponential distribution with expectation 1/«. A natural generalization 
consists in permitting this distribution to depend on the present value of 
the path function X(t). [In example 1(a) this amounts to assuming that 
the probability of scoring a hit depends on the energy of the particle.] The 
Markovian character of the process requires that the distribution be expon- 

ential, but its expectation can depend on the present value of X(t). Accord- 
ingly, we start from the following 

Basic postulates. Given that X(t) = x, the waiting time to the next jump 
has an exponential distribution with expectation 1/a(x) and is independent 
of the past history. The probability that the Sollowing jump leads to a point in 
I’ equals K(x, 1). 

In analytical terms these postulates lead to an integral equation for the 
transition probabilities @Q,(x,I) of the process (assuming that such a 

process does in fact exist). Consider a fixed point x and a fixed set I° not 
containing x. The event {X(t)e€IT} cannot occur unless the first jump 
from x has occurred at some epoch s < ¢t. Given this, the conditional 
probability of {X(t)¢IT} is obtained by integrating K(x, dy)Q,_,(y, T°) over 
the set © of all possible y. Now the epoch of the first jump is a random 
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variable with exponential density a(x)e~#(*)*, Integrating with respect to 
it we get the probability of {X(t)e¢T} in the form 

(3.a) Ox, T) = a(2) [ ‘gales dg [ K(a, dy) Q,_,(y, I). 

For a set I containing x we must add the probability that no jump occurs 
before ¢ and thus we get 

(3.1b) Ox, T) = e7?* + a(x) { ‘eae ds { K(x, dy) Q,_,(y, I’). 
0 . Q 

These two equations, valid for x€T and zeT, respectively, are the 

analytic equivalent of the basic postulates. They simplify by the change of 
the variable of integration to r= ¢ —s. Differentiation with respect to ¢ 
then reduces the two equations to the same form, and the pair is replaced 
by the single integro-differential equation 

x q 

Oi = — a2) Ox, 1) + a2) | Kz, dv) Uy, 1). 
oQ 

(3.2) 

This is Kolmogorov’ s backward equation, which serves as point of departure 
for the analytical development because it avoids the annoyance of 
distinguishing between two cases. 

The backward equation’ (3.2) admits of.a simple intuitive interpretation 
which may serve to reformulate the basic postulates in more practical terms. 
In terms of difference ratios (3.2) is equivalent to 

(3.3) Qual) = [1—a(2)h] O,(2, P) + a(a)h [ K(z, dy) Q,y, T) + o(h). 

For an intuitive interpretation of this relation consider ‘the change within 

the time interval 0,¢+A as the result of the change within the initial short 

interval 0, A and the subsequent interval h,t+A of duration ¢. Evidently 

then (3.3) states that if X(0) =z, the probability of one jump within 0, 4 
is a(x)h + o(h); and the probability of more than one jump is o(A); 

finally, if a jump does occur within 0,4, the conditional probabilities of 

the possible transitions are given by K(x, dy). These three postulates lead to 

(3.3) and hence to (3.2). In essence they repeat the basic postulates.’ 
From a probabilistic point of view the backward equation is somewhat 

artificial inasmuch as in it the terminal state I" plays the role of a parameter, 

8 The differentiability of Q, with respect to ¢ and the fact that the probability of more 

than one jump is o(f) are now stated as new postulates, whereas they are implied by the 

original more sophisticated formulation. 
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and (3.2) describes the dependence of @Q,(z, I) on the initial position zx. 

Offhand it would seem more natural to derive an equation for Q;,, by 

splitting up the interval 0,/+A into a long initial interval 0,t and the 

short terminal interval ¢,t-+A. Instead of (3.3) we get then formally 

(3.4) Qus(z.T) = [ ou, de)[1—a(2)h) + [ O,(2, dz) a(2)h K(2,T) + o(h) 
and hence 

200.0) D) _ 

at 

This is Kolmogorov’s forward equation (in special cases known to physicists 
as the continuity or Fokker-Planck equation). It reduces to (1.6) when « is 
independent of z. 

The formal character of the derivation was emphasized because the 
forward equation is really not implied by our basic postulates. This is 
because the term o(/) in (3.3) depends on z and since z appears as variable 

of integration in (3.4), the term o(h) should have appeared under the 

integral sign. But then the problem arises as to whether the integrals in 
(3.5) converge and whether the passage to the limit 4-0 is legitimate. 

[No such problems occurred in connection with the backward equation 
because the initial value x was fixed and the integral in (3.2) exists in con- 
sequence of the boundedness of Q,.] 

It is possible to justify the forward equation by adding to our basic 
postulates an appropriate condition on the error term in (3.3), but such a 
derivation would lose its intuitive appeal and, besides, it seems impossible 

to formulate conditions which will cover all typical cases occurring in 
practice. Once unbounded functions a are admitted, the existence of the 

integrals in (3.5) is in doubt and the equation cannot be justified a priori. 
On the other hand, the backward equation is a necessary consequence of 
the basic assumptions, and it is therefore best to use it as a starting point 

and to investigate the extent to which the forward equation can be derived 
from it. 

A solution of the backward equation is easily constructed using successive 
approximations with a simple probabilistic significance. Denote by 
Q'(x, I) the probability of a transition from X(0)=2 to X(t)eET with 
at most n jumps. A transition without jumps is possible only if zeT, 
and since the sojourn time at x has an exponential distribution we have 

(3.6) ((3., Tr) = en ulait K(2, r) 

(where K((x, I) equals 1 or 0 according as 2 is, or is not, contained 

in I"). Suppose next that the first jump occurs at epochs s < ¢ and leads 

(3.5) - | ou, dz) a(z) + { O(a, dz) a(z) K(z, I). 
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from xz to y. Summing over all possible s and y we get [as in (3.1)} the 
recursion formula 

(3.7) One, I) = 0%, r ) +f ee'a(a) as [Ke dy) Q:7\(y, T) 

valid for n = 0, le... Obviously _ ow < Q™ and hence by induction 
W < QW) <--e,, 

‘Tt follows that for every pair z,T the limit 

(3.8) | Q:>"(z, T) = limos", r) 

exists, but conceivably it could be infinite. We show that actually 

(3.9) . Oz, Q) <1. 

[Which implies O(a, I) < 1 for all sets in (Q. It suffices to prove that | 

(3.10) Qi(2,Q) <1 
for all n. This is trivially true for n = 0 and we “proceed by. induction: 
Assuming (3.10) for some fixed n we get fi from (3. 7) (recalling ¢ that K is 
stochastic) 

(3.11). ; : ann(e, Q) <e —a(a)t oa fes tte a(a) ds : = = 1, 

and hence (3.10) is true for all 7. 

From (3.7) it follows by monotone convergence that Q'”? satisfies the 
backward equations in the original integral version (3.1) [and hence also in - 
the integro-differential version (3.2)]. For any other. positive solution Q, of 

(3.1) it is clear that Q, > Q!; comparing (3.1) with (3.7) we conclude that 
QO, > Q\” forall n, and hence Q, > Q'*). For this reason Q'‘”? is called 
the minimal solution of the backward equations; (3:9) shows that Q!* is 
stochastic or substochastic. 

It follows from (3.8) that Q‘*)(x, I) is the probability ofa passage from 
xz to I in finitely many steps. Accordingly, with a substochastic solution 
the defect 1 — Q!°)(a, Q) represents the probability that, from x as 
starting point, infinitely many jumps will occur within time ¢. We know 

from 1; XVII,4 and example VIII;5(c) that this phenomenon occurs in 
certain pure birth processes, and hence substochastic solutions exist. But 

they are the exception rather than the rule. In particular, if the coefficient 
a(x) is bounded the minimal solution is strictly stochastic, that is, 

(3.12) O'?"(x, O) = 1, t>0. 

Indeed, if «(z) << a< o forall z we show by induction that 

(3.13) Q(x, Q) > 1 — (—en*ty" 
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for al] n and ¢>0. This is trivially true for m= 0. Assume (3.12) for 
some n, and note that the right side is a decreasing function, say f(t). 

Consider (3.7) with [T= Q. In consequence of (3.13) the inner integral is 
= f(t) which does not depend on the variable of integration. Integrating 

a(xje~*'*)* it is then seen that (3.13) holds with n replaced by n + 1. 

Finally we note that in the strictly stochastic case (3.12) the solution Q‘°) 

is unique. In fact, because of the minimal character of Q'°) any other 
acceptable solution would satisfy 

1 > Q(z, Q) = Of(2,T) + Of2, Q -T) 

> Oe, T) + Q(x, Q~T) = Q'?(x, Q) = 1 

which is impossible unless the equality sign prevails in both places. We have 
thus proved the 

(3.14) 

Theorem. The backward equations admit of a minimal solution @Q'‘®? 
defined by (3.8) and corresponding to a process in which transitions from x to 
YP occur only with finitely many jumps. It is stochastic or substochastic. 

in the. substochastic case the defect 1 — Q‘*)(x, Q) accounts for the prob- 

ability of the event that infinitely many jumps occur within time t, in which 
case the minimal process terminates. 

In the strictly stochastic case (3.12) the minimal solution is the unique 

probabilistic solution of the backward equation. This case arises whenever the 
coefficient a(x) is bounded. 

The discovery of defective solutions came as a shocking surprise during 
the early stages of the theory in the 1930’s, but it has given impetus to 

research leading to a unified theory of Markov processes. Processes ig which 
transitions from x to I’ are possible after the occurrence of infinitely many 
jumps are the analogue to diffusion processes with boundary conditions 

and therefore not as pathological as they appeared at the beginning. The 
possibility of infinitely many jumps also explains the difficulties in deriving 

the forward equations directly.» The backward equations were derived from 
the assumption that, given the present state x, the next jump occurs after an 
exponentially distributed waiting time with expectation 1/a(x). The forward 
equations depend on the state just prior to epoch #, and therefore depend 
on the whole space ©. In particular, it is not easy to express directly the 

requirement that there exist a /ast jump prior to epoch f¢. 
However, it will be shown in the Appendix that the minimal solution Q‘*? 

automatically satisfies the forward equations and is minimal also for the latter. 

It follows, in particular, that if « is bounded, Q'°) represents the unique 

® Compare the analogous discussion in 1; XVII,9. 
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solution of the forward equation. When Q!*) is substochastic there exist 
various processes involving transitions through infinitely many jumps and 
satisfying the backward equations. The transition probabilities Q, of such 
processes may, but need not, satisfy the forward equations. This surprising 
fact shows that the forward equations may be satisfied in situations where 
the derivation from (3.4) breaks down. 

In conclusion we note again that (in contrast to the process in section 2 
and to diffusion processes involving derivatives with respect to x) the pure 
jump process does not depend on the nature of the underlying space: our 
formulas apply to any set © on which a stochastic kernel K is defined. 

Example. Denumerable sample spaces. \f the random variables X(t) 
are positive and integral-valued the underlying sample space consists of 
the integers 1,2,.... It suffices now to know the transition probabilities 
P,(t) from one integer ta another; all other transition probabilities are 

obtained by summation over k. The theory of Markovian processes.on the 
integers was outlined in 1; XVII,9 where, however, also non-stationary 

transition probabilities were considered. To restrict that theory to the 
stationary case the coefficients c, and probabilities p,, must be assumed 
independent of ¢t.: The assumptions are then identical with the present ones 
and the two systems of Kolmogorov equations derived in 1; XVII,9 are 
easily seen to be the special cases of (3.2) and (3.5) [replacing a(i) by c; 

and K(i,j) by p,,J. The divergent birth process of 1; XVII,4 is an example 

of a process with infinitely many jumps within a finite time interval. We 
shall return to this process in XIV,7 to present the possibility of a passage 
from i to j involving infinitely many jumps. > 

Appendix.!° The minimal solution for the forward equation. The construction of the minimal 
solution Q'@) for the backward equation can be adapted to the forward equation. We 

indicate briefly how this can be done and how one can verify that the two solutions are 
in fact identical. Details will be left to the reader. 

Let 

(3.15) K# (a, T) = i e~*(v)t K(x, dy). 
r 

To construct a solution of the forward equation we define Q!°) by (3.6) and put 
t 

(3.16) Qin) (x, T) = Qe, T) + | { Q\”) (a, dy) ay) K#y, T). 

0 

10 In XIV,7 the theory is developed by means of Laplace transforms. (For simplicity 
only countable spaces are treated, but the argument applies generally without essential 

change.) The direct method of the text is less elegant, but has the advantage that it applies 
also to non-stationary processes with transition probabilities depending on the time param- 
eter. In this general form the theory was developed by Feller, Trans. Amer. Math. Soc. 

vol. 48 (1940) pp. 488-515 [erratum vol. 58, p. 474). 
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This defines the probabilities for transitions in at most + 1 steps in terms of the /ast 
jump, just as (3.7) refers to the first jump. Repeating the proof of the last theorem it is 
seen that Q{°) = lim Q{”) is the minimal solution of the forward equations. 

‘ Although we used the same letters, the two recursion formulas (3.7) and (3.16) are 

independent, and it is by no means clear that the resulting kernels are identical. To show 
that this is so we put P{") = Q{") — Q{»-1), which corresponds to transitions in exactly 
n steps. Then (3.16) reduces to 

; t 

(3.17) Piste, T) = [ | Pin) (x, dy) aly) K# ty, I). 
f | 

We indicate this by the shorthand notation P{"+1) = P(g. For the recursion formula 
(3.7) we write similarly P{"+)) = BP"), The starting P\) is the same in either case 
[defined by (3.6)]. We now prove that the two recursion formulas lead to the same result. 

More precisely: the P{”) defined by P{("+)) = P(™9 satisfy also P("+)) = BPI"), We 
proceed by induction. Assume the assertion to be true for all 2 <r. Then 

PUD a Pingy = (BPD) = B(pir-1q1) = Bpir) 

and thus the induction hypothesis holds also for n =r + 1. 
We have thus proved that the minimal solution is common to the backward and forward 

equations. 

4. DIFFUSION PROCESSES IN &} 

Having considered processes in which all changes occur by jumps we turn 

to the other extreme where the sample functions are (with probability 
one) continuous. Their theory is parallel to that developed in the last 
section, but the basic equations require more sophisticated analysis. We 
shall therefore be satisfied with a derivation of the backward equation and 
with a brief summary concerning the minimal solution and other problems. 
The prototype for diffusion processes is the Brownian motion (or Wiener 
process). This is the process with independent normally distributed incre- 
ments. Its transition probabilities have densities q,(z, y) given by the normal 

density with expectation x and variance at, where a> 0 is a constant. 
These densities satisfy the standard diffusion equation, © 

Og, y) 1  da(z, y) 
ot 2 dz? 

It will now be shown that other transition probabilities are governed by 
related partial differential equations. The object of this derivation is merely 
to give an idea concerning the types of processes and the problems involved 

and thus to serve as a first introduction; for this reason we shall not strive at 

generality or completeness. 
From the nature of the normal distribution it is evident that in Brownian 

motion the increments during a short time interval of duration ¢ have the 

(4.1) 
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following properties: (i) for fixed 6 > 0 the probability of a displacement 
exceeding 6 is o(f); (ii) the expected value of the displacement is zero; 
(iii) its variance is at. We retain the first condition, but adapt the others 
to an inhomogeneous medium; thatis, we let a depend on x and permit a 
non-zero mean displacement. Under such circumstances the expectation 
and the variance of the displacement will not be strictly proportional to 
t and we can postulate. only that given X(r)=2 the displacement 
X(t+7) — X(7) has an expectation b(x)t + o(r) and variance a(x) + o(t). 

Moments do not necessarily exist, but in view of the first condition it fs 

natural to consider truncated moments. These considerations lead us to the 
following 

Postulates" for the transition probabilities Q,. For every 6>0 as t—+0- 

(4.2) mf 02, dy) 0 
[y-a2[>4 

(4.3) rl [ (y—2)0,(x, dy) > b(2) 
[y-a2]<d 

(4.4) ef yas, dy) > a2) 
Ju~a[<d- . 

Note that if (4.2) holds for a/l 6 >0, the asymptotic behavior of the 

quantities in (4.3) and (4.4) is independent of 4; it is then permissible in 
the last two relations to replace 6 by 1. 7 

The first condition makes large displacements improbable and was 
introduced in 1936 in the hope that it is necessary and sufficient for the 
continuity of the sample functions.!2 It was named in honor of Lindeberg 

because of its similarity to his condition in the central limit theorem. It can 
be shown that under mild regularity conditions on the transition probabilities 
the existence of the limits in (4.3) and (4.4) is really a consequence of (4.2). 

We shall not discuss such details because we are not at this juncture interested 
in developing a systematic theory.* Our modest aim is to explain the nature 

1 The original derivation of (4.1) from probabilistic assumptions is due to Einstein. 
The first systematic derivation of the backward equation (4.6) and forward equation (5.2) 
was given in Kolmogorov’s famous paper of 1931 (see section 2). The improved postulates 
of the text are due to Feller (1936), who gave the first existence proof and investigated the 
relation between the two equations. 

12 This conjecture was verified by D. Ray. 
13 Modern semi-group theory enabled the author to derive the most general backward 

equation (generator) for Markov processes satisfying a Lindeberg type condition. The 
classical differential operators are replaced by a modernized version, in which a “natural 
scale” takes over the role of the coefficient 6, and a ‘‘speed measure’’ the role of a. The 
study of such processes was the object of fruitful research by E. B. Dynkin and his school on 
one hand, by K. Ito and H. P. McKean on the other. The whoie theory is developed 
in the books by these authors quoted in the bibliography. 

 



334 MARKOV PROCESSES AND SEMI-GROUPS X.4 

and the empirical meaning of the diffusion equations in the simplest situation. 
For this purpose we show how certain differential equations can be derived 
formally from (4.2)-(4.4), but we shall not discuss under what conditions 

there exist solutions to these equations.'4 The coefficients a and b may be 
therefore assumed as bounded continuous functions and a(x) > 0. 

We take as our basic space a finite or infinite interval J on the line and 
continue the convention that when no limits are indicated, the integration 

is over the interval /. To simplify writing and to prepare for the applications 

of semi-group theory we introduce the transformations. 

(4.5) u(t, =) = [ Oz, dy) ua) 

changing (for fixed t) a bounded continuous “‘initial function’’ uv, into a 

function’ with values u(f, x). 

Clearly the knowledge of the left side in (4.5) for all initial uy uniquely 
determines Q,. It will now be shown that under mild regularity conditions 

u must satisfy the backward equation 

C 
6 —_— 

(4-6) Ot 

Cu Ou 
b— ’ 

Ox? + Ox 
  

1 
-a 
2 

generalizing the standard diffusion equation (4.1). We seek a function u 

satisfying it and such that u(f,x)— up(x) as t->0. In case of uniqueness 

this solution is necessarily of the form (4.5) and Q, 1s called the Green 

function of the equation. Cases of non-uniqueness will be discussed in the 
next section. 

To derive the backward equation (4.6) we start from the identity 

(4.7) u(s+t, x) = [O, dy) u(t, y), s,t >0 

which is an immediate consequence of the Chapman-Kolmogorov equation 
(1.3). From it we get for k > 0 

u(i+h, x)—ult, z) _ 
(4.8 (4.8) h : [onc dy)[u(t, y)—u(t, x)]. 

We now suppose that the transition probabilities Q, are sufficiently regular 

to ensure that in (4.5) the transform u has two bounded continuous deriva- 

tives with respect to x, at least when uy is infinitely differentiable. To given 

  

14 For the treatment of diffusion equations by Laplace transforms see XIV,5. 
15 In terms of the stochastic process, u(t, x) is the conditional expectation of uo(X(t)) 

on the hypothesis that X(0) = =. 
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¢ > 0 and fixed x there corresponds then by Taylor’s formula a 6 >0 
such that 

(4.9) 

Ou(t, x) 

Ox 
| u(t, y) — ult, x) — (y—2) —-— een 2) 

— Hy—z)’ <ely—z2}? 

for all |y — 2] < 6. With this 6 consider in (4.8) vray the contribu- 
tions of the domains |y— | > 6 and |y — | <.6. The former tends to 

0 in consequence of (4:2) and of the boundedness of u. Owing to the 
conditions (4.3) and (4.4) it is clear from (4.9) that for sufficiently small / 

the contribution of |y — z| <0 differs from the right side in (4.6) by less 

than ¢-a(z). Since « is arbitrary, this means that as h +0 the right side 
in (4.8) tends to that of (4.6). Accordingly, at ieast a right-sided derivative 
du/@t exists and is given by (4.6). The principal result of the theory may be 
summarized roughly as follows. If the transition probabilities of a Markov 

process satisfy the continuity condition (4.2) the process is determined by the 
two coefficients b and a. This sounds theoretical, but in practical situations 
the coefficients 5 and q are given a priori from their empirical meaning and 
the nature of the process. | 

To explain the meaning of 6 and a consider the increment X(t-+7) — X(7) 

over a short time interval assuming that X(7) = z. If the moments in (4.3) 

and (4.4) were complete, this increment would have the conditional expecta- 

tion b(x)t + o(t) and the conditional variance a(x)t — b?(x)t? + o(t) = 
= a(x)t + o(t). Thus D(x) is a measure for the local average rate of 
displacement (which may be zero for reasons of symmetry), and a(x) for the 
variance. For want of a better word we shall refer to b as the infinitesimal 
velocity (or drift) and a as the infinitesimal variance. 

The following examples illustrate the way in which these coefficients are 

_ determined in concrete situations. 

Examples. (a) Brownian motion. If the x-axis is assumed homogeneous 
and symmetric, a(x) must be independent of x and b(x) must vanish. We 

are thus led to the classical diffusion equation (4.1). 
(b) The Ornstein-Uhlenbeck process is obtained by subjecting the particles 

of a Brownian motion to an elastic force. Analytically this means a drift 
towards the origin of a magnitude proportional to the distance, that 1s, 

b(x) = px. As this does not affect the infinitesimal variance, a(x) remains 

a constant, say |. The backward equation takes on the form 

u(t, 2) _ 1 d*u(t, x) du(t, 2) 

(4-10) ot 2 @2 pe Ox 
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It is fortunately easy to solve this equation. Indeed, the change of variables 

v(t, x) = u(t, xe”) 
reduces it to 

got Ov = 1 d*v 

Ot = 2 ax? 

and the further change of variables 

1 — e 
4.12 . = (4.12) ra 

(4.11) 

changes (4.11) into the standard diffusion equation (4.1). It follows that 

the transition densities q,(x,y) of the Ornstein-Uhlenbeck process coincide 
with the normal density centered at xe-°t and with variance + given by (4.2). 

It was shown in example III,8(e) that the Ornstein-Uhlenbeck process 

determined by (4.10) and an initial normal distribution is the only normal 

Markovian process with stationary transition probabilities. (Brownian 
motion is included as the special case p = 0.) 

(c) Diffusion in genetics. Consider a population with distinct generations 
and a constant size N. (A cornfield represents a typical example.) There 
are 2N genes and each belongs to one of two genotypes. We denote by 
X,, the proportion of genes of type A. If selection advantages and mutations 
are disregarded, the genes in the (n+1)st generation may be taken as a random 
sample of size 2N of the genes in the nth generation. The X,, process is 
then Markovian, 0 < X, < 1, and given that X, = the distribution of 
2NX,,,1 18 binomial with mean 2Nx and variance 2Nx(1—zx). The change 

per generation has expectation 0 and variance proportional to 2(1—z). 
Suppose now that we look over a tremendous number of generations and 

introduce a time scale on which the development appears continuous. 
In this approximation we deal with a Markov process whose transition 
probabilities satisfy our basic conditions with b(z) =0 and a(x) propor- 
tional to 2(1 — x). The proportionality factor depends on the unit of time 
scale and may be normalized to 1. Then (4.6) takes on the form 

Ou(t, x) = x(1 — 2) O7u(t, x) 
4, 
(4.13) at Bx? 

and this time the process is restricted to the finite interval 0,1. Selection 

and mutation pressures would cause a drift and lead to an equation (4.13) 
with a first-order term added. The resulting model is mathematically 

equivalent to the models developed by R. A. Fisher and S. Wright although 

their arguments were of a different nature. The genetical implications are 
somewhat dubious because of the assumption of constant population size,
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the effect of which is not generally appreciafed. The correct description 
depends on an equation in two space variables (gene frequency and population 
size). 

(d) Population growth. We wish to describe the growth of a large population 
in which the individuals are stochastically independent and the reproduction 
rate does not depend on the population size. For a very large population the 

process is approximately continuous, that is, governed by a diffusion 
equation. The independence of the individuals implies that the infinitesimal 
velocity and variance must be proportional to the population size. Thus the 
process is governed by the backward equation (4.6) with a-= ax and b = Bz. 

The constants « and £ depend on the choice of the units of time and 
population size, and with appropriate units of measurement it is possible to 
achieve that «= 1 and 6 =1, —1, or 0 (depending on the net rate of 

growth). 
In 1; XVII,(5.7) the same population growth is described by a discrete 

model. Given X(r) = 7 it was assumed that the probabilities of the 

contingencies X(t+7) =n+l1, n—1, and n differ from. Ant, pnt, and 

1 — (A+y)nt, respectively, by terms o(f?), and’so the infinitesimal velocity: 

and variance are (A—y)n and (A+ )n. The diffusion process is obtained | 

by a simple passage to the limit, and it can be shown that its transition 

probabilities represent the limit of the transition probabilities for the discrete 
model. 

Similar approximations of discrete processes by diffusion processes are 
often practical; the passage from ordinary random: walks to diffusion 
processes described in 1; XIV,6 provides a typical example. [Continued 
in example 5(a).] > 

5. THE FORWARD EQUATION. BOUNDARY CONDITIONS 

In this section we assume for simplicity that the transition probabilities 
Q, have probability densities qg, given vy a stochastic density kernel 

qilz, y). 

The transformation (4.5) and the ensuing backward equation (4.6) describe 

the transition probabilities in their dependence on the initial point z. From 
a probabilistic point of view it appears more natural to keep the initial point 
x fixed and to consider g,(x,y) as a function of the terminal point y. 

From this point of view the transformation (4.5) should be replaced by © 

(5.1) (sy) = [eso gla, y) dx 
    

15 W. Feller, Proc. Second Berkeley Symposium on Math. Statist. and Probability, 

1951, pp. 227-246. 
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Here vy is an arbitrary probability density. From the stochastic character 
of q, it follows that for arbitrary fixed s > 0 the transform v is again a 
probability density. In other words, whereas the transformation (4.5) 
operated on continuous functions, the new transformation changes probability 
densities into new densities. 

In the preceding section we were able by probabilistic arguments to show 
that the transform (4.5) satisfies the backward equation (4.6). Even though 
the new transformation is more natural from a probabilistic point of view, 
a similar direct derivation of the forward equation is impossible. However, 
the general theory of adjoint partial differential equations make it plausible 
that (under sufficient regularity conditions) v should satisfy the equation?” 

2 

(5.2) ED 1S tay es, on) — 2 fol) os, Wh 
Os 2 oy oy 

_ l’ Here is an informal sketch of the derivation of (5.2). From the Chapman-Kolomogorov 
equation (1.3) for the transition probabilities it follows that 

    

{ v(s, y} u(r, y) dy 

depends only on the sum s + ¢. Accordingly, 

. ou du(t, 
(*) | SD us, yy dy = [ea OD dy, 

ds at 

We now express @u/@r in accordance with the backward equation (4.6) and apply the 
obvious integrations by parts to the resulting integral. If R(s,y) stands for the right 
side in (5.2) we concludé that (*) equals 

[zc yy ut, y) dy 

plus a quantity depending only on the values of u,v and their derivatives at the boundaries 
(or at infinity). Under appropriate conditions these boundary terms may be neglected, 
and in this case the passage to the limit +0 leads to the identity 

av(s, 3 | | “ » _ Rs, Jean dy, 

If this is to be valid for arbitrary uy the expression within brackets must vanish, that is 

(5.2) must hold. 

This argument is justified in most situations of practica! interest and accordingly the 

forward equation (5.2) is generally valid. However, in the so-called return processes the 

boundary terms which we have neglected actually play a role. The transition probabilities 

of such processes therefore satisfy the backward equation (4.6), but not (5.2); the correct 

forward equation is in this case an equation of a different form. 
It is also noteworthy that (5.2) is meaningless unless a and 6 are differentiable whereas 

no such restriction applies to the backward equation. The true forward equation can be 

written down also when a and 6 are not differentiable, but it involves the generalized 

differential operators mentioned in footnote 13 of section 4. 
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In probability theory this equation is known as the forward or Fokker-Planck 
equation. 

Before proceeding let us illustrate the kind of information that can be 
derived from (5.2) more easily than from the backward equation. 

Example. (a) Population growth. Example 4(d) leads to the forward 

equation 

(5.3) aus, 9) _ Purley) _ by v9) 

ds dy" Oy 

  

It can be proved that for a given initial density vp there exists a unique 

solution. Although explicit formulas are hard to come by, much relevant 
information can be obtained directly from the equation. For example, to 
calculate the expected population size. M(s) multiply (5.3) by. y and 
integrate with respect to y from 0to o. On the left we get the derivative 
M'(s). Using integration by parts and assuming that v vanishes at infinity 
faster than 1/y? it is seen that the righi side equals BM(s). Thus 

~M'(s) = BM(s) 

and hence M(s) is proportional to e**. Similar formal manipulations show 
that the variance is proportional to 2%6-1e?*(e8s—1). [Compare the analogous 

result in the discrete case, formulas (5.10) and (10.9) of 1; XVII.] Admittedly 

the manipulations require justification, but the result has at least heuristic 
value and could not be obtained from the backward equation without 
explicit calculation of q,. | > 

The connection between the forward and backward equations is similar to 
that described in the case of jump processes in section 3. We give a brief 
summary without proof. 

Consider the backward equation (4.6) in an open interval <4, 2%, which 

may be finite or infinite. We assume, of course, ‘a >0O and that the co- 

efficients a and 6 are sufficiently regular for (5.2) to make sense. Under 
these conditions there exists a unique minimal solution Q, such that (4.5) 

yields a solution of the backward equation (4.6). The catch is that for fixed 
t and x the kernel Q,(x, I’) may represent a defective distribution. Under 

any circumstances Q, ‘possesses densities and the function rv of (5.1) 

satisfies the forward equation. In fact, this solutien is again minimal tn the 
obvious sense made precise in section 3. To this extent the forward equation 
is a consequence of the backward equation. However, these equations deter- 
mine the process uniquely only when the minimal solution is not defective. 

In all other cases the nature of the process is determined by additional 

boundary conditions. 
The nature of boundary conditions is best understood by analogy with 
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the simple random walk on 0, 00 discussed in1; XIV. Various conventions 
can be in effect when the origin is reached for the first time. In the ruin 
problem the process stops; in this case the origin is said to act as an absorbing 
barrier. On the other hand, when the origin acts as reflecting barrier, the 
particle is returned instantaneously to the position 1 and the process 
continues forever. The point is that boundary conditions appear iff a 
boundary point can be reached. The event “‘the boundary point x, has 
been reached before epoch +” is well defined in diffusion processes because 
of the continuity of the path functions. It is closely related to the event 
“infinitely many jumps have occurred before rf” in jump processes. 

In some diffusion processes with probability one no boundary point 
is ever reached. Such is the Brownian motion [example 4(a)]. Then the 

minimal solution stands for a proper probability distribution and no other 
solutions exist. In all other situations the minimal solution regulates the 
process until a boundary is reached. It corresponds to absorbing barriers, 

that is, it describes a process that stops when a boundary point is reached. 

This is the most important type of process not only because all other 
processes are extensions of it, but even more because all first-passage 
probabilities can be calculated by imposing artificial absorbing barriers. 
The method is generally applicable but will be explained by the simplest 

example. (It was used implicitly in random walks and elsewhere, for example 
in problem 18 of 1; XVIT,10.) 

In the following examples we limit our attention to the simple equation 
(5.4). More general diffusion equations will be treated by the method of 

Laplace transforms in XIV,5. 

Examples. (6) One absorbing barrier. First-passage times. Consider 

Brownian motion on 0,-co with an absorbing barrier at the origin. More 
precisely, a Brownian motion starting at the point x > 0 at epoch 0 is 

stopped at the epoch of the first arrival at the origin. Because of symmetry 
both the backward and the forward equation take on the form of the classical 
diffusion equation 

(5.4) a" Ou _10% 
Ot =§ 20x? 

The appropriate boundary condition is q,(0, y) = 0 for all ¢,. just as in the 

case of random walks... (The assertion can be justified either by the passage 

to the limit in 1; XIV,6-or from the minimal character of the solution.) 

For a given wu, we seek a solution of (5.4) defined for t > 0,» > 0 and 
such that u(0,7) = u(x) and u(t,0)=0. Its construction depends on 

the method of images due to Lord Kelvin.1® We extend ug to the left half- 

line by ug(—2) = —up(x) and:solve (5.4) with this. initial condition in 

18 See problem 15-18 in 1; XIV,9 for the same method applied to difference equations. 
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—oo, 0. For reasons of symmetry the solution satisfies the condition 
u(t, 0) = 0, and restricting x again to'0, 00 we have the desired solution. 

It is given by the integral of u(y) q,(z, y) over 0, co where 

65.5) 4(%y)= Fale (- ws) — exp (- wey) 

Thus 9, represents the transition densities of our process (t >0,x> 0, 
y > 0). It is easily seen that q, is, for fixed y, a solution (5.4) satisfying the 

boundary condition ¢,(0,y) = 0. [For a more systematic derivation see 
example XIV,5(qa).] 

Integrating over y ohe gets the total probability mass at epoch ¢ 

  

(5.6) | [ ghee y) dy = 22/3) — 1, 

where 3t stands for the standard normal distribution. In other words, 

(5.6) is the probability that a path starting from x > 0 does not reach the 
origin before epoch t. In this sense (5.6) represents the distribution’ of 
jirst-passage times in a free Brownian motion. Note that (5.6) may be charac- 

terized as the solution of the differential equation (5.4) defined’ for x > 0 
and satisfying the initial condition u(0,z) = 1 together with the boundary 

condition u(t, 0) = 0. 

_ [One recognizes in (5.6) the stable distribution with exponent « = 3; 

the same result was found in VI,2 by a passage to the limit from random 

walks. ] 

(c) Two absorbing harriers. Consider now a Brownian motion impeded 

by two absorbing barriers at 0 and a> 0. This means that for fixed 
0 < y <a the transition densities g, should satisfy the differential equation 

(5.4) together with the boundary conditions g,(0, y) = q,(a, y) = 0. 

It is easily verified that the solution is given by!® 

gz, y) = 
+00 _ 2 Ik 2 

(5.7) 1 5 [exp (- (y atthe ~ exp (- (y+a2+2ka) }} 
7 J2nt ko— 2t 2t 

where 0 <2, y <a. Indeed, the series is manifestly convergent, and the 

obvious cancellation of terms shows that 4,(0,y) = q,(a,y)=0 for all 

t>Oand0 <y <a. [The Laplace transform of (5.7) is given in XIV,(5.17).] 

19 The construction depends on successive approximations by repeated reflections. In 

(5.5) wé have a solution of the differential equation satisfying the boundary condition at 

0, but not a. A reflection at a leads to a four-term solution satisfying the boundary 

condition at a, but not at 0. Alternating reflections at 0 and a lead in the limit to (5.7). 

The ana‘ogous solution for random walks is given in 1;- XIV,(9.1), and (5.7) could be 

derived from it by the passage to the limit described in 1; XIV,6. 
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Integrating (5.7) over 0<y<a we get the total probability mass at 
epoch ¢ in the form 

~a@ittets) , 9(tets)) 
This is the probability that a particle starting at x will not be absorbed 
before epoch t. 

The function A, is a solution of the diffusion equation (5.4) tending to 1 
as t-»>0 and satisfying the boundary conditions A,(t, 0) = A,(t, a) = 0. 
This solution can be obtained also by a routine application of the method of 
Fourier series in the form?° 

  

2,2 exp (- (2n+1)?x ) «gin CU Naz 
o2n = 2a? a 

42 

(5.9) A(t, 2) =~ > 
7 n=0 

We have thus obtained two very different representations®! for the same 
function A,. This is fortunate because the series in (5.8) converges reasonably 

only when ¢ is small, whereas (5.9) is applicable for large ¢. 
For an alternative intetpretation of A, consider the position X(t) of a 

particle in free Brownian motion starting at the origin. To say that during 

the time interval 0,7 the particle remained within —}a, $a amounts to 

Saying that in a process with absorbing barriers at +a and starting at 0 
no absorption took place before epoch ¢. Thus A,(t, $a) equals the prob- 
ability that in an unrestricted Brownian motion starting at the origin |X(s)| < 3a 

for all s in the interval O0< s <1. 

(d) Application to limit theorems and Kolmogorov-Smirnov tests. Let 
-Y,, Y,,... be independent random variables with a common distribution 
and suppose that E(Y,)=0 and E(Y?)=1. Put S,= Y,+-°-'+Y, 
and T, = max {|S,|,...,{S,|]. In view of the central limit theorem it is 
plausible that the asymptotic behavior of T,, will be nearly the same as 
in the case where the. Y; are normal variables, and in the latter case the 

normed sum SV n is comparable to the variable of a Brownian motion 

20 The analogous formula for random walks is derived in 1; XIV,5 where, however, 
the boundary conditions are A,(t,0) = 1 and 4A,(¢,a) =0 

21 The identity between (5.8) and (5:9) serves as a standard example for the Poisson 
summation formula [see XIX,(5.10)}. It has acquired historical luster, having been dis- 

covered originally in connection with Jacobi’s theory of transformations of theta functions. 

See Satz 277 in E. Landau, Veérteilung der Primzahlen, 1909. . 
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atepoch k/n (k =0,1,...,7). The probability that this Brownian motion 
remains constrained to the interval (—4a, $a) was shown to equal 4,(1, $a). 
Our plausibility argument would therefore lead us to the conjecture that as 
n—> © 

(5.10) P{T,, < z} — LE) 

where L(z) = A,(1, z) is obtained from (5.8) and (5.9): 

Le) = 2 3 {N(4k-+1)2) — N(4k—12)} = 

495 <i" _ Qn+1)*x* 
== 82" ) 

(5.11) 

This conjecture was proved in 1946 by P. Erdds and M. Kac, and the 
underlying idea has since become known as invariance principle. It states, 
roughly speaking, that the asymptotic distribution of certain functions of 

random variables is insensitive to changes of the distributions of these 
variables and may be obtained by considering an appropriate approximating 
stochastic process. This method has been perfected by M. Donsker, P. 
Billingsley, Yu. V. P shucov, and others, and has become a powerful tool 
for proving limit theo1c.:is. | 

For similar reasons the distribution (5.11) plays a prominent part also in 
the vast literature on non-parametric tests of the type discussed in I, 12. 

(e) Reflecting barriers. By analogy with the ordinary random walk we 

dq (0, y) _ 

ey 
= 0 for a reflecting barrier at the origin is imposed by analogy with random 

walks. It is readily verified that the solution for the interval 0, co is given by 

(5.5) with the minus sign replaced by plus. The formal derivation by the 
method of images is the same, except that one puts uwo(—zx) = u(x). The 

solution for 0,a with reflecting barriers at both 0 and a is obtained 
similarly by changing the minus sign to a plus in (5.7). (An alternative 
expression obtained by Fourier expansions or the Poisson summation 

formula is given in problem 11 of XIX,9.) 

It should be noted that in the case of reflecting barriers g, is a proper 

probability density. > 

define a reflecting barrier at the origin by the boundary condition 

22 The topic is relatively new, and yet the starting point of the much used identity (5.11) 
seems already to have fallen into oblivion. [A. Renyi, On the distribution function L(2). 

Selected Translations in Math. Statist. and Probability, vol. 4 (1963) pp. 219-224. Renyi’s 

supposedly new proof depends on the classical argument involving theta functions, thus 

obscuring the simple probabilistic meaning of (5.11).] 
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6. DIFFUSION IN HIGHER DIMENSIONS 

It is €asy to generalize the foregoing theory to two dimensions. To avoid 
the nuisance of subscripts we denote the coordinate variables by (X(t), Y(‘)) 

and the values of the transition densities by q,(z,y; &, ); here x,y is the 
initial point and q, is a density in (&, 7). The postulates are as in section. 
4 except that the infinitesimal velocity b(x) is replaced by a vector, and the 
variance a(x) by a covariance matrix. Instead of (4.6) we get for the 
backward di iffusion equation 

, Ou Oru O7u Ou Ou Ou - 
(6.1). 5p 7 9 Zgt + 25 a +a aaa t bi 2 4 4, 

the coefficients depending on x and y. In the case of two-dimensional 
Brownian motion we require rotational symmetry, and up to an irrelevant 
norming constant we must have 

ey Bat 
The corresponding transition densities are normal with variance ¢, centered 
at (x, y).. The obvious factoring of this density shows that X(t) and Y(t) 
are stochastically independent. 

The most. Pee, variable in this process is the distance R(t) from 
the origin (R? = X? + Y?). It is intuitively obvious that R(t) is the 
variable of a one-dimensicgal diffusion process and it is interéSting to 

compare the various ways of getting at the diffusion equation for this process. 
In polar coordinates our normal transition densities for (6.2) take on the form 

, 2 22 4 _ (6.3) Pp. exp (- p + r° — 2pr cos (6 ») 

2ut' 2t 

(with x =rcosa, etc.). Given the position r, a at epoch 0, the marginal 

density of R(t). is obtained by integrating (6.3) with. respect to @. The 
parameter « drops out and we get®* for the transition densities of the R(t) 
process . 

(6.4) wir, p) =5 exp (- r 7 (2)   

where J, is the Bessel function defined in II,(7.1). Here r stands for the 

initial position at epoch 0. From the derivation it is clear that for fixed p the 

23 The integral is well known. For a routine verification expand e°°8® into a power 
series in cos @, 

 



346 MARKOV PROCESSES AND SEMI-GROUPS X.7 

with a variety of other distributions, each of which leads to an analogue of 
the exponential formula. | > 

The variables X(T(r)) form a new stochastic process which need not be 

Markovian. For the process to be-Markovian it is obviously necessary that 
the P, satisfy the Chapman-Kolmogorov equation 

+o 

(7.3) Psi (%, LP) -( 
—a 

Px, dy) PAY; P). 

This means that the distribution of XGIF(t+5)}) is obtained by integration of 

P,{y, IP) with respect to the distribution of X(T(s)) and so 

(7.4) Py, P) = P{X(T(t+5)) € I’ | X(T(s) = y} 

by the definition of conditional probabilities. A similar calculation of higher 

order transition probabilities shows that (7.3) suffices to ensure the Markovian 

character of the derived process {X(T(t))}. 
We wish now to find the distributions U, that lead to solutions P, of 

(7.3). A direct attack on this problem leads to considerable difficulties, but 

these can be avoided by first considering the simple special case where the 
variables T(/) are restricted to the multiples of a fixed number A > 0. For 

the distribution of T(t) we write 

(7.5) P{T(t) = nh} = a,(t). 

Given that (0) = x the variable X(T(t)) has the distribution 

(7.6) P(x, 0) = Sa Onl, P). 

Since the kernels {0} satist’y the Chapman-Kolmogorov equation we have 

(7.7) | “Px, dy) Phys P) = Fas) a) Qin P) 
dk 

and it is seen that the kernels P, satisfy the Chapman-Kolmogorov equation 

(7.3) uff 

(7.8) dos) @n(t) + ay (8) dpa(t) + +++ + @,(S) a(t) = a,(s+1) 

for all s>0 and t>0. This relation holds if {T(t)} is a process with 

stationary independent increments, and the most generai solution of (7.8) 

was found in 1; X1I,2. 

This result leads to the conjecture that in general (7.3) will be satisfied 

whenever the T(t) are the variables of a process with stationary independent 
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increments, that is, whenever the distributions U, satisfy?! 

(7.9) U(x) = [ U{xz—y) U,idy}, 
o— 

We verify this conjecture by a passage to the limit.2> We represent U, as the 
limit of a sequence of arithmetic distributions of the type just considered: 
U;” is concentrated on the multiples of anumber A,, and the weights that it 
attaches to the points nh, satisfy a relation of the form (7.8). For each » 
we get thus a kernel P{” corresponding to (7.6) that satisfies the Chapman- 
Kolmogorov equation (7.3). To show that also the kernel P, of (7.1) 
satisfies this equation it suffices therefore to show that P‘” —> P,, or, what 
amounts to the same, that 

“+00 

(710) [Pr ay) f(y) >| Paz, dtu) 
— 2 

for every continuous function f~® vanishing at infinity. If we put 

7.11) FD = [Ole ans 
(7.10) may be rewritten in the form 

(7.12) [ “FCs, x) Uf {ds} > { "F(s, x) U,{ds}. 

_ This relation holds certainly if F is continuous, and this imposes only an 
extremely mild regularity condition on the Q,. We have thus proved the 
following basic result: 

Let {X(t)} be a Markov process with continuous transition probabilities 

Q, and {T(t)} a@ process with non-negative independent increments. Then 
{X(T(t))} is a Markovian process with transition probabilities P, given by 
(7.7). This process is said to be subordinate*® to {X(t)} using the operational 
time T(t). The process {T(t)} is called the directing process. 

The most interesting special case arises when also the X(t) process has 
independent increments. In this case the transition probabilities depend only 
on the differences I’ — « and may be replaced by the equivalent distribution 

  

24 The most general solution of (7.9) will be found by means of Laplace transforms in 

XIHII,7. It can be obtained also from the general theory of infinitely divisible distributions. 
25 A direct verification requires analytic skill. Our procedure shows once again that a 

naive approach is sometimes most powerful. 
*6 The notion of subordinated semi-groups was introduced by S. Bochner in 1949. For a 

high-level systematic approach see E. Nelson, A functional calculus using singular Laplace 
integrals, Trans. Amer. Math. Soc., 88 (1958), pp. 400-413. 
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functions. Then (7.7) takes on the simpler form 

(7.13) P(x) = [ “Q,(2) U, {ds}. 

All our examples are of this type. 

Examples. (b) The Cauchy process is subordinated to Brownian motion. 

Let {X(‘)} be the Brownian motion (Wiener process) with transition 
densities given by q(x) = (27t)-te-22"/". For {T(t)} we take the stable 
process with exponent $ with transition densities given by 

u(x) = == eo itle 

V > a J x3 

The distribution (7.13) has then a density given by 

t +00 2 2 t 

7.14 x e HBS) dy a —_-___ (7.14) pz) = > aa 

and thus our subordination orocedure leads to a Cauchy process. 

This result may be interpreted in terms of two independent Brownian 
motions X(t) and Y(t) as follows. 

It was shown in example VI,2(e) that U, may be interpreted as the 

distribution of the waiting time for the epoch at which the Y(s)-process for 
the first time attains the value ¢> 0. Accordingly, a Cauchy process Z(t) 
may be realized by considering the value of the X-process at the epoch T(t) 

when Y(s) first attains the value t. [For another connection of the Cauchy 
process with hitting times in Brownian motion see example VI,2(/).] 

(c) Stable processes. The last example generalizes easily to arbitrary 
strictly stable processes {X(t)} and {T(z)} with exponents, « and @, 
respectively. Here «<2, but since T(t) must be positive we have 

necessarily 6 <1. The transition probabilities Q, and U, are of the form 
Ox) = Q(xt-V*) and U,(x) = U(zt-”*) where Q and U are fixed stable 

distributions. We show that the subordinated process X(T(t)) is stable with 
exponent «8. This assertion is equivalent to the relation P,,(z) = P,(a-¥/*). 

In view of the given form of Q, and U, this relation follows trivially from 
(7.13) by the substitution s = yAv?, 

[Our result is essentially equivalent to the product formula derived in 

example VI,2(h). When X(t) > 0 the formula can be restated in terms of 

Laplace transforms as in XIII,7(e). For the Fourier version see problem 9 
in XVIJ,12.] 

(d) Compound Poisson process directed by gamma process. Let Q, be 
the compound Poisson distribution generated by the probability distribution 
F and let U, have the gamma density e~*2'/[(t). Then (7.13) takes on 
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transition probabilities w, satisfy (6.2) in polar coordinates; that is to say 

(65) Oe (oe + =). 
ot =2\0r? or Or 

This is the backward equation for the R(t) process and is obtained from (6.2) 
simply by requiring rotational symmetry. 
“Equation (6.5) shows that the R(t) process has an infinitesimal velocity _ 

1/(2r). The existence of a drift away from the origin can be understood if 

one considers a plane Brownian motion starting at the point r of the x-axis. 
For reasons of symmetry its abscissa at epoch h > 0 is equally likely to be 
>r or <r. In the first case certainly R(h) > r, but this relation can occur 
also in the second case. Thus the relation R(h) > has probability >4, 
and on the average R_ is bound to increase. 

The same derivation of transition probabilities applies to three dimensions 
with one essential simplification: the Jacobian p in (6.3) is now replaced 
by p%sin 6, and an elementary integration is possible. Instead of (6.4) we 

' get for the transition densities of the R(t) process in three dimensions 

(Again r stands for the initial position at epoch 0.) 

  

7. SUBORDINATED PROCESSES 

From a Markov process {X(t)} with stationary transition probabilities 

Q(x, I) it is possible to derive a variety of new processes by introducing 

what may tbe called a randomized operational time. Suppose that to each 
t> 0 there corresponds a random variable T(t) with distribution U,. 
A new stochastic kernel P, may then be defined by 

(7.7) P(2,T) = [oe D) U,{ds}. 

This represents the distribution of X(T(t)) given that X(0) = 0. 

Example. (a) If T(t) has a Poisson distribution with expectation at 

t (7.2) pia) = Sew EX 0,(4,1), 
n=0 

These P, are the transition probabilities of a pseudo-Poisson process. It 

will be shown in section 9 that the randomization by Poisson distributions 

leads to the so-called exponential formula which is. basic for the theory of 

Markov semi-groups. We shall now see that similar results are obtained 
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the form 

(7.15) P, => a,(t) F™ 
n=0 

where 
00 n t~1 

(7.16) a,(t) = [ et StS gs a UMN | 5 
0 n! I(t) nll 

It is easily verified that the probabilities a,(t) have the infinitely divisible 
generating function > a,(#)¢” = (2-0)*. 

(e) Gamma process directed by the Poisson process. Let us now consider 
the same distributions but with reversed roles. The-operational time is then 
integral-valued and 0 has weight e~‘. It follows that the resulting distribution 
has an atom of weight e~‘ at the origin. The continuous part has the density 

  

oo _» get 4 t” ten ‘ _— 

(7.17) de -e'—=e —1,(2./ xt), 
n=1 (n—1)! n! x 

where J, is the Bessel function of IT,(7.1). It follows that this distribution is 
: infinitely divisible, but a direct verification is not easy. > 

8. MARKOV PROCESSES AND SEMI-GROUPS 

Chapter VIII revealed the advantages of treating probability distributions 
as operators on continuous functions. The advantages of the operator 
approach to stochastic kernels are even greater, and the theory of semi-groups 

leads to a unified theory of Markov processes not attainable by other 
' methods. Given a stochastic -kernel K in R} and a bounded continuous 
function wu the relation 

+a | 

(8,1) U(z) =| K(x, dy) u(y) 
oo 

defines a new function. Little generality is lost in assuming that the transform 
U is again continuous and we could proceed to study properties of the kernel 
K in terms of the induced transformation u—»U on continuous functions. 
There are two main reasons for a more general setup. First, transformations 

of the form (8.1) make sense in arbitrary spaces, and it would be exceedingly 

uneconomical to develop a theory which does not cover. the simplest and 
most important special case, namely processes with a denumerable state 
space [where (8.1) reduces to a matrix transformation]. Second, even in a 

theory restricted to continuous functions on the line various types of boundary 

conditions compel one to introduce special classes of continuous functions. 

On the other hand, the greater generality is bought at no expense. Readers 

so inclined are urged to ignore the generality and refer all theorems to one 

(or several) of the following typical situations. (i) The underlying space % 
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is the real line and % the class of bounded continuous functions vanishing at 
infinity. (ii) the space 2 isa finite closed interval J in R! or KR? and F 

the class of continuous functions on it. (iii) 2 consists of the integers 

and & of bounded sequences. In this case it is best to think of sequences 
as column vectors and of transformations as matrices. 

As in chapter VII the norm of a bounded real function u is defined by 

\ju|| = sup |u(x)|. A sequence of functions u, converges uniformly to u 
iff |lu, — ull — 0. 

From now on & will denote a family of real functions on some set = 

with the following properties: (i) If u, and uw, belong to & then every 

linear combination cu, + cu,6E%. (ii) If u,eL and |lu, — ull] 0 

then ve #. (ii) If ue HY then also ut and u~ belongto & (where 
u = ut — u~ is the usual decomposition of u into its positive and negative 
parts.) In other words, & is closed under linear combinations, uniform 

limits, and absolute values. The first two properties make & a Banach 
space, the last a lattice. 

The following definitions are standard. A linear transformation T 
is an endomorphism on & if each ue Y has animage Tue & such that 

| 7u\| < m \\u\| where m is a constant independent of wu. The smallest 

constant with this property is called the norm ||T|| of 7. Thetransformation 

T is positive if u >0O implies Tu > 0. In this case —Tum < Tu < Tut. 

A contraction is a positive operator T with ||7|| <1. If the constant 

function 1 belongs to & and T is a positive operator such that 71 = 1, 
then 7 is called a transition operator. (It is automatically a contraction.) 

Given two endomorphisms S and T on &, their product ST is the 
endomorphism mapping u into S(Tu). Obviously ||ST|| < | S| - |Z]. In 

general ST # TS, incontrast to the particular class of convolution operators 
of VIII,3 which commuted with each other. 

‘We are seriously interested only in transformations of the form (8.1) where 

K is a stochastic, or at least substochastic, kernel. Operators of this form 
are contractions or transition operators and they also enjoy the 

Monotone convergence property: ifu, > 0 and u, tu (with u, and u in 

L) then Tu, — Tu pointwise. 

In practically all situations contractions with this property are of the form 
(8.1). Two examples will illustrate this point. 

Examples. (a) Let & stand for the real line and 4 = C for the family 
of all bounded continuous functions on it. Let Cy < & the subclass of 

functions vanishing at +0. If 7 is acontractionon & then for we Cy 

the value Tu(x) of Tu ata fixed x is a positive linear functional on %. 

By the F. Riesz representation theorem there exists a possibly defective 
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probability distribution F such that Tu(x) is the expectation of u with 
respect to F. Since F depends on 2x we write K(z,1T) for F(T). Then 
for uEC, 

+ 00 

(8.2) _ Tula) =] — K(z, dy) u(y), 
~a 

and when T has the monotone convergence property this relation auto- 
matically extends to all bounded continuous functions. 

For fixed x, asa function of I’, the kernel K isa measure. If T' is an 

open interval and {u,} an increasing sequence of continuous functions 
such that u,(z)—> 1 if. «eT and u,(x) 0 otherwise, then K(z, [) = lim 

Tu, (x) by the basic properties of integrals. Since Tu, is continuous it 
follows that for fixed I’ the kernel K is a Baire function of 2 and therefore 
K has all the properties required of stochastic or substochastic kernels. 
The same situation prevails when the line is replaced by an interval, or R”. 

(6) Let 2 be the set of integers, and & the set of numerical sequences 
u = {x,} with |u|] = sup |z,|. If p,,; stands for a stochastic or substochastic 

matrix we define a transformation TJ such that the ith component of Tu. 
is given by 

(8.3) (Tu); = DY Puttar 

Evidently 7 is a contraction operator enjoying the monotone convergence 

property; if the matrix is strictly stochastic, then 7 is a transition 
operator. > 

These examples are typical and it is actually difficult to find contractions 

not induced by a stochastic kernel. Anyhow, we are justified to proceed 
with the general theory of contractions with the assurance that applications to 
probabilistically significant problems will be obvious. (In fact, we shall 

never have to go beyond the scope of these examples.) 
The transition probabilities of a Markov process form a one-parameter 

family of kernels satisfying the Chapman-Kolmogorov equation 

(8.4) 0,2, T) = { Q(x, dy) Oy, ) 

(s > 0,t > 0), the integration extending over the underlying space. Each 
individual kernel induces a transition operator Q(t) defined by 

(8.5) Q(1) u(2) = | Qux, dy) u(y). 

Obviously then (8.4) is equivalent with 

(8.6) Q(s+t) = Qs) Ql), s>0,t>0. 
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A family of endomorphisms with this property is a semi-group. Clearly 
Q(s) Q(t) = Qt) Qs), that is, the elements of a semi-group commute 

with each other. 

A sequence of endomorphisms T, on & is said to converge”’ to the endo- 
morphism T iff \\T,u — Tu\|—0 for each ue &. In this case we write 
T,, — T. 
From now on we concentrate on semi-groups of contraction operators 

and impose a regularity condition on them. Denote again by 1 the identity 
operator, 1u = u. 

Definition. A semi-group of contraction operators Q (t) will be called 

continuous® if (0) = 1 and Q(h)>1 as h-0+. 
If 0<t’ <t” we have 

(8.7) JQ" — Quy < Qe" —1’)u — ull. 
For continuous semi-groups there exists a 6 > 0 such that the right side is 
<e for t” —t’ <6. Thus not only is it true that Q(t) ~ Q(t.) as t > bo, 
but (8.7) shows that Q(t)u isa uniformly continuous function of ¢ for each 

fixed u.?° 

The transformation (8.1) is, of course, the same as (4.5) and served as starting point for 

the derivation of the backward equation for diffusion processes. Now a family of Markovian 
transition probabilities induces also a semi-group of transformations of measures such that 
the measure yw is fransformed into a measure 7(t)u attributing to the set I the mass 

(8.8) T(t)u(T) = { ui{dz} O,(z,T). 

When the Q, have a density kernel ¢, this transformation is the same as (5.1) and was 
used for the forward equation. Probability theory being concerned primarily with measures, 
rather than functions, the question arises, why we do not start from the semi-group 
{7(t)} rather than Q(¢)? The answer is interesting and throws new light on the intricate 
relationship between the backward and forward equations. 

The reason is that (as evidenced by the above examples) with the usual setup the con- 
tinuous semi-groups of contractions on the function space £& come from transition 
probabilities: studying our semi-groups 2(f) is in practice the same as studying Markovian 

27 This mode of convergence was introduced in VIII,3 and is called strong. It does 
not imply that ||7;, — 7||-»0 (which type of convergence is called uniform). A weaker 
type of convergence is’defined by the requirement that 7,,u(x) — Tu(x) for each x, but 
not necessarily uniformly. See problem 6 in VII",10. 

28 We use this word as abbreviation for the standard term “strongly continuous at the 
origin.’ 

2 There exist semi-groups such that Q(h) tends to an operator 7 #1, but they are 
pathological. For an example define an endomorphism T by 

Tu(x) = 4u(0)[1+cos 2] + Ju(m)[1—cos z] 

and put Q(¢) = T for all ¢ > 0. 
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transition probabilities. For semi-groups of measures this is nor true. There exist analytically 
very reasonable contraction semi-groups that are not induced by Markov processes. To 
get an example consider any Markovian semi-group of the form (8.8) on the line assuming 
only that an absolutely continuous yu is transformed into an absolutely continuous 7(t)s 
[for example, let 7(¢) be the convolution with a normal distribution with variance ¢]. 
If «=m. +4, is the decomposition of uw into its absolutely continuous and singular . 
parts define, a new semi-group {S(t)} by 

(8.9) S(t) = Tg + My. 

This semi-group is continuous and S(0) = 1, but it is not difficult to see that it is not 

connected with any system of transition probabilities and that it is probabilistically 
meaningless. . 

9. THE “EXPONENTIAL FORMULA” OF 

SEMI-GROUP THEORY 

The pseudo-Poisson processes of section I are by far the simplest Markov 
processes, and it will now be shown that practically all Markov processes 
represent limiting forms of pesudo-Poisson processes.*° An abstract version 
of the theorem plays a fundamental role in semi-group theory, and we shall 
now see that it is really a consequence of the law of large numbers. 

If J is the operator induced by the stochastic kernel K, the operator 
Q(t) induced by the pseudo-Poisson distribution (1.2) takes on the form 

(9.1) a = et SOD pe 
n=0 n! 

the series being defined as the limit of the partial sums. These operators 
form a semi-group by virtue of the Chapman-Kolmogorov equation (1.3). 

It is better, however, to start afresh and to prove the assertion for arbitrary 

contractions 7. 

Theorem 1. If 7 is a contraction on &, the operators (9.1) form a con- 
tinuous semi-group of contractions. If T is a transition operator so is S\(t). 

Proof. Obviously Q(t) is positive and Q(t) < e-*te!Tl <1. The 
semi-group property is easily verified from the formal product of the series 
for Q(s) and Q(t) (see footnote 1 to section 1). The relation Q(h)— 1 

is obvious from (9.1). > 

We shall abbreviate (9.1) to 

(9.2) Q(t) = et(F-, 

90 The special case where the {Q(r) are convolution operators is treated in chapter IX. 
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Semi-groups of contractions of this form will be called pseudo-Poissonian™ 
and we Shall say that {SQ(t)} is generated by o«(T—1). 

Consider now an arbitrary continuous semi-group of contractions Q(t). 
It behaves in many respects just as a real-valued continuous function and the 
approximation theory developed in chapter ‘VII using the law of large 
numbers carries over without serious change. We show in particular that the 
procedure of example VII,1(5) leads to an important formula of general 

semi-group theory. 

For fixed h > 0 we define the operators 

(9.3) (1) = et 5 LD ont) 
n=o n! 

which could be described as obtained by randomization of the parameter 
t in Q(t). Comparing with (9.1) is it seen that the Q,(t) form a pseudo- 

Poissonian semi-group generated by [Q(h)—1]/h. We now prove that 

(9.4) | Q(t) + Q@), h—0. 

Because of the importance of this result we formulate it as 

Theorem 2. Every continuous semi-group of contractions Q(t) is the 

_ limit (9.4) of the pseudo-Poisson semi-group {Q,(t)} generated by the 

endomorphism h-{{)(h)—1}. 

Proof. The starting point is the identity 

(9.5) Q,()u — Au = ny y [Q(nh)u—A(Hu). 
' n=O 

Choose 6 such that |{QX(s)u —ull <e for 0<s <6. In view of (8.7) 

we have then 

(9.6) |Q(nh)ju — Q(rt)ul| < € for |nh —t| < nt. 

The Poisson distribution appearing in (9.5) has expectation and variance 
equal to t/h. The contribution of the terms with |nh —1| > 6 can be 
estimated using Chebyshev’s inequality, and we find that 

Q,(tu — Q)ul] < « + 2 jul thd-2. 

It follows that (9.4) holds uniformly in finite ¢-intervals. > 

Equivalent variants of this section are obtained by letting other infinitely divisible dis- 
tributions take over the role of the Poisson distribution. We know from 1; XII,2 that the 

31 There exist contraction semi-groups of the form e'’ where S is an endomorphism not 
of the form «(7 — 1). Such are the semi-groups associated with the solutions of the jump 
processes of section 3 if «(z) remains bounded. 
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generating function of an infinitely divisible distribution {u,(¢)} concentrated on the 
integers nm > 0 is of the form 

(9.7) DX ane? = exp (telp()—1) 

where ° 

(9.8) PY) =po tpl te-:, Ps 29, Dp, = 1. 

Suppose that the distribution {u,(t)} has expectation b¢ and a finite variance ct. Replac- 
ing in (9.3) the Poisson distribution by {u,(t/b)} leads to the operator 

t t n 
(9.9) Q¢) = > a, (i) Q(nh) = > u, (ia) ® (A). 

As in the preceding proof a simple application: of the law of large numbers shows that 
Q,(¢) + Q(t) as 4-0. In this way we get a substitute ‘‘exponential formula’’ in which 

{u,(t)} takes over the role of the Poisson distribution.*? 
To see the probabilistic content and the possible generalizations of this argument, denote 

by X(t) the variables of the Markov process with the semi-group {Q(t)}, and by T(t) 
the variables of the process with independent increments subject to {u,,(¢)}. The operators 

t 
(9.9) correspond to the transition probabilities for the variables x (ir (i)). In other 

words, we have introduced a particular subordinated process; the law of large numbers 

for the T-process makes it plausible that as 4 -+0 the distributions of the new process 
tend to those of the initial Markov process. This approximation procedure is by no means 
restricted to integral valued variables T(t). Indeed, we may take for {T(t} an arbitrary 

process with positive independent increments such that E(T(¢)) = d5¢ and that variances 
exist. 

The given Markov process {X(t)} thus appears as the limit of the subordinated Markov 
t 

processes with variables X Gs (i) . 

The point is that the approximating semi-groups may be of a much simpler structure 
than the original one. In fact, the semi-group of the operators Q,(t) of (9.9) is of the simple 
pseudo-Poisson type. To see this put 

(9.10) Q# = p(Qh)) = Y p,Q"h) = Y p,Q(nh). 
n=0 n=0 

This is a mixture of transition operators and therefore itself a transition operator. A 
comparison of (9.7) and (9.9) now shows that formally 

a 
(9.11) Q,(1) = XP 5 (Q# —~— 1) 

which is indeed of the form (9.2). It is not difficult to justify (9.11) by elementary methods, 

but we shall see that it is really only a special case of a formula for the generators of 

subordinated semi-groups (see example XIII,9(6)). 

32 This was pointed out by K. L. Chung (see VII,5). 
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10. GENERATORS. THE BACKWARD EQUATION 

Consider a pseudo-Poisson semi-group {Q(t)} of contractions generated 
by the operator & = a(T—1). This operator being an endomorphism, 

Wu = vis defined for all we Y, and 

Qh) — 1 u 

h 

It would be pleasant if the same were true of all semi-groups, but this is 
too much to expect. For example, for the semi-group associated with 

Brownian motion the diffusion equation (4.1) implies that for twice con- 
tinuously differentiable u the left side in (10.1) tends to }4u”, but no limit 

exists when wu is not differentiable. The diffusion equation nevertheless 
determines the process uniquely because a semi-group is determined by its 

action on twice differentiable functions. We must therefore not expect that 
(10.1) will hold for al/ functions u, but for all practical purposes it will 
suffice if it holds for sufficiently many functions. With this in mind we 
introduce the 

(10.1) — v, h— 0+. 

Definition. If for some elements u,v in L the relation (10.1) holds (in the 
sense of uniform convergence) we put v = Wu. The operator so defined is ~ 
called the generator® of the semi-group {XQ(t)}. 

Premultiplying (10.1) by Q(¢) we see that it implies 

Q(t+h) — Q(t) Y 

A 

Thus, if Mu exists then all functions QQ\(t)u are in the domain of the WM and 

QU+h) — 2) u 

h 

(10.2) > Q(Av. 

(10.3) —> Q(t) Wu = UO()u. 

This relation is essentially the same as the backward equation for Markov 
processes. In fact, with the notations of section 4 we should put 

u(t, x) = Q(t) Uy(z), 

where wy is the initial function. Then (10.3) becomes 

Ou(t, x) 
(10.4) 71 = Wut, 2). 

33 The treatment of convolution semi-groups in chapter IX restricts the consideration to 
infinitely differentiable functions with. the result that all generators are defined on the same 
domain. No such convenient device is applicable for general semi-groups. 
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This is the familiar backward equation, but it must be interpreted properly. 
The transition probabilities of the diffusion processes in section 4 are so 
smooth that the backward equation is satisfied for a/l continuous initial 
functions uy. This is not necessarily so in general. 

Examples. (a) Translations. Let £& consist of the continuous functions 

on the line vanishing at infinity and put Q(t)u(x) = u(x+t). Obviously 

(10.1) holds iff u possesses a continuous derivative u’ vanishing at infinity, 
and in this case Wu = wu’. 

Formally the backward equation (10.4) reduces to 

Qu du 
(10.5) On. 

The formal solution reducing for t= 0 toa given initial ug would be 
given by u(t, x) = u,(t+x). But this is a true solution only if ug is differ- 

entiable. | 
(b) As in section 2 consider a pseudo-Poisson process with variables X(t) 

and anothér process defined by X*(t) = X(t) — ct. The corresponding _ 
semi-groups are in the obvious relationship that the value of Q#(t)u at x 
equals the value of Q(t)u at x + ct. For the generators this implies 

(10.6) we =u—cF 
dx 

and so the domain of U* is restricted to differentiable functions. The 
backward equation is satisfied whenever the initial function u) has a 
continuous derivative but not for arbitrary functions. In particular, the 
transition probabilities themselves need not satisfy the backward equation. 
This explains the difficulties of the old-fashioned theories [discussed in 
connection with IX,(2.14)] and also why we had to introduce unnatural 

regularity assumptions to derive the forward equation (2.1). > 

The usefulness of the notion of generator is due to the fact that for each 
continuous semi-group of contractions the generator defines the semi-group 
uniquely. A simple proof of this theorem will be given in XIII,9. 

This theorem enables us to handle backward equations without un- 
necessary restrictions and greatly simplifies their derivation. Thus the 
most general form of diffusion operators alluded to in footnote 12 of section 
4 could not have been derived without the a priori knowledge that a generator 
does in fact exist. 

 



CHAPTER XI 

Renewal Theory 

Renewal processes were introduced in VI,6 and illustrated in VI,7. We 
now begin with the general theory of the so-called renewal equation, which 
occurs frequently in various connections. A striking example for the 
applicability of the general renewal theorem is supplied by the limit theorem 
of section 8. Sections 6 and 7 contain an improved and generalized version 
of some asymptotic estimates originally derived laboriously by deep analytic 

methods. This illustrates the economy of thought and tools to be achieved 
by a general theoretical approach to hard individual problems. For a 

treatment of renewal problems by Laplace transforms see XIV,1-3. 

Many papers and much ingenuity have been spent on the elusive problem 
of freeing the renewal theorem of the condition that the variables be. positive. 

In view of this impressive history a new and greatly simplified proof of the 
general theorem is incorporated in section 9. 

1. THE RENEWAL THEOREM 

zt F be a distribution concentrated’ on 0, 00, that is, we suppose 
F(0) = 0. We do not require the existence of an expectation, but because 

of the assumed positivity we can safely write 

(1-1) Ul ={"y F{dy} = {"u-Fo) dy 

where u < 00. When. = © we agree to interpret the symbol yu as 0. 

In this section we investigate the asymptotic behavior as x— > 00 of the . 

function oy 

(1.2) U=>F™. 
n=0 

1 No essential changes occur if one permits an atom of weight p <1 at the origin. 
(See problem 1.) 

358 
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It will be seen presently that this problem is intimately connected with the 
asymptotic behavior of the solution Z of the renewal equation 

(1.3) Z(x) = 22) +| Ze» F{dy}, x > 0. 

For definiteness we take the interval of integration closed, but in the present 
context it will be understood that z and Z vanish on the negative halt-axis; 
‘the limits of integration may then be replaced by —oo and oo, and the 
renewal equation may be-written in the form of the convolution equation 

(1.4) Pmt FZ. 

(A similar remark applies to all convolutions in the sequel.) | 
The probabilistic meaning of U .and probabilistic applications of the 

renewal equation were discussed at some length in VI,6-7. For the present 
we Shall therefore proceed purely analytically. However, it should be borne 

in mind that in a renewal process U(x) equals the expected number of 

renewal epochs in 0, x, the origin counting as a renewal epoch. Accordingly, 
ceo 

U should be interpreted as a measure concentrated on 0, 0, the interval 
— 

= a,b carrying the mass U{I} = U(6) — U(a). The origin is an atom of 
unit weight contributed by the zeroth term in the series (1.2). 

The following lemma merely restates theorem 1 of VI,6 but a new proof 
is given to render the present section self-contained. 

Lemma. U(x) < oc forall x. If z is bounded the function Z defined by 

pn 

(1.5) Zz) = | ev) Uldy} z>0 

is the unique solution of the renewal equation (1.3) that is bounded on finite 

intervals. 

[With the convention that, z(x) = Z(z) =0 for <0 we may write 

(1.5) in the form Z = U*%z.] 

Proof. Put U, = F* +---+F"* and choose positive numbers 
7 and 7 such that 1 — F(r) > 7. Then 

(1.6) [ [1 — F(x—y)] U, {dy} =1 — FOU), z>0 
0 

and hence 7[U,(x) ~ U,(z—7)] <1. Letting n— oc we conclude that 

U{I} < n7 for every interval J of length <7. Since an arbitrary interval 

of length a is the union of at most 1 + a/z intervals of length 7 it follows 
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that 

(1.7) U(x) ~ U(x — a) <C, 

where C, = (a + 7)/(77). Thus U{I} is uniformly bounded for all intervals 

I of a given length. 
Now Z, = U,*z satisfies Z,,,;=z+F*Z,. Letting n— oo one 

sees that the integral in (1.5) makes sense and that Z is a solution of (1.3). 

To prove its uniqueness note that the difference of two solutions would 
satisfy V = Fx V, and therefore also 

(1.8) V(x) -{" V(x—y)F™ {dy}, zx>0 
0 . : 

for r=1,2,.... But F’*(z)—+0 as r-+o and since V is supposed 

bounded in 0,2 this implies V(x) = 0 for all x > 0. > 

The formulation of the renewal theorem is encumbered by the special | 
role played by distributions concentrated on the multiples of a number A. 

According to definition 3 of V,2, such a distribution is-called arithmetic, - 

and the largest A such that F is concentrated on A, 2A,... is called'the 
span of F. In this case the measure U is purely atomic, and we denote by 
u, theweight of nA. The renewal theorem of 1; XIII,11 states that u, — A/u. 

The following theorem? generalizes this result to arbitrary distributions 

concentrated on 0, 00. The case of arithmetic F is repeated for.complete- 

ness. (We recall the convention that w=! =0 if uw = ©.) 

  

Renewal theorem (first form). if F is not arithmetic 

(1.9) U(t) — U(t —h) +h], {> 

for every h>0. If F is arithmetic the same is true when h is a multiple 
of the span 4. 

Before proving the theorem we reformulate it in terms of the asymptotic 
behavior of the solutions (1.5) of the renewal equation. Since the given 
function z may be decomposed into its positive and negative parts we may 

suppose that z > 0. For definiteness we suppose at first that the distribution 
F is non-arithmetic and has an.expectation wu < ©o. 

* The discrete case was proved in 1949 by P. Erdés, W. Feller and H. Pollard. Their 
proof was immediately generalized by D. Blackwell. The present proof is new. For a 

generalization to distributions not concentrated on 0, © oo see section 9. A far reaching 

generalization in another direction is contained in Y. S. Chow and H. E. Robbins, 4 
renewal theorem for random variables’ which are dependent or non-identically distributed. 

Ann. Math. Statist., vol. 34 (1963), pp. 390-401. 
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If 2(~)=1 for O<a<gux<b< oo and 2(x) =0 for all other x 
we get: from (1.5) 

(1.10) Z(t) = U(t — a) — U(t — b) > (6 — a), t— o, 

This result generalizes immediately to finite step functions: Let J,,... 
be non-overlapping intervals on the positive half-axis of lengths | oy 
If z assumes the value a, in J, and vanishes outside the’union of the J,, 
then clearly 

(1.11) Z(t) + Sa,L, = wr |"ata) dx. 
k=1 

Now the classical Riemann integral of a function z is defined in terms of 

approximating finite step functions, and it is therefore plausible that the 
limit relation (1.11) should hold whenever z is Riemann integrable. To 
make this point clear we recall the definition of the Riemann integra! of z 
over a finite interval 0 < x <a. It suffices to consider partitions into sub- 
intervals of equal length h =a/n. Let m, be the largest, and m, the 
smallest number such that 

(1.12) mM, <2(t) << mM, for (k—-D)h <x <kh. 

The obvious dependence of m, and m, on h should be kept in mind. The 
lower and upper Riemann sums for the given span h are defined by 

(1.13) - o=h>Ym, G=h> mM,. 

As k-+0 both o and 6 approach finite limits. If ¢—o—0O these 
limits are the same, and the Riemann integral of z is defined by this common 

limit. Every bounded function that is continuous except for jumps is 
integrable in this sense. 

When it comes to integrals over 0, 00 the classical definition introduces 
an avoidable complication. To make the class of integrable functions as 

extensive as possible the integral. over 0, 0 is conventionally defined as the 

limit of integrals over 0,a. A continuous non-negative function z is 
integrable in this sense iff the area between its graph and the z-axis is finite. 
Unfortunately this does not preclude the effective oscillation of z() and 
co as x» 0. (See example a.) It is obviously not reasonable to assume 

that the solution Z will tend toa finite limit if the given function z oscillates 
in a-wild manner. In other words, the sophisticated standard. definition 

makes too many functions integrable, and for our purposes it is preferable 
to proceed in the naive manner by extending the original definition also to 
infinite intervals. For want of an established term we speak of a direct 

integration in contrast to the indirect procedure involving a passage to the 

limit from finite intervals. 
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Definition. A function z >0 is called directly Riemann integrable if the 
upper and lower Riemann sums defined in (1.12)~(1.13) are finite and tend to 
the same limit as h—+ 0. 

This definition makes no distinction between finite and infinite intervals. 

It is easily seen that z is directly integrable over 0, 00 if it is integrable over 

every finite interval 0,a and if &<-0o for some h. (Then automatically 
6 < oo forall A.) It is this last property that excludes wild oscillations. 
“We may restate the definition in terms of approximating step functions. 

For fixed h>O put z,(x) = 1 when (k—Dh <a<kh and (a) = 0 

elsewhere. Then 

(1.14) z= >) mz, and z= > mz, 

are two finite step functions and z < z <2. The integral of z isthe common 

limit as h-+0 of the integrals of these step functions. Denote by Z, the 

solution of the renewal equation corresponding to z. The solutions corre- 
sponding to z and Z are then given by 

(1.15) . Z=>}> Z,m, and Z=>m,Z, 

By the renewal theorem Z,(x) > 4/u for each fixed k. Furthermore, (1.7) 

assures us that Z,(x) < C, forall k and 2. The remainders of the series in 

(1.15) therefore tend uniformly to 0 and we conclude that 

(1.16) Zz) alu, — Z(z) > lu (a — 00). 
But Z<Z< Z and hence all limit values of Z(x) lie between g/u and 

G/u. If z is directly Riemann integrable it follows that 
oo 

(1.17) | Z(«) «| z(y) dy, x—> 0. 
0 

So far we have assumed that F is non-arithmetic and <0. The 
argument applies without change when « = © if yw’ is interpreted as 0.. 

If F is arithmetic with span A the solution Z of (1.5) is of the form 

(1.18) . Z(t) = DY axa — kA)ju, 

where u, —> A/u. One concludes easily that for fixed x 

(1.19) Z(x + nd) > Au Dez + jd), n—-> 0, 
j=] 

provided the series converges, which is certainly the case if z is directly 

integrable. . 
We have derived (1.17) and (1.19) from the renewal theorem, but these 

relations contain the renewal theorem as a special case when z reduces to 

the indicator of an interval 0,4. We have thus proved the following 
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Renewal theorem. (A/ternative form). 8 If z is directly Riemann integrable 
the solution Z of the renewal equation. satisfies (1.17) if F is non-arithmetic, 
and (1.19) if F is arithmetic with ‘Span A 

One may- ask whether the condition of direct integrability may be dropped 
at least for continuous functions z tending to 0 at infinity. The following 
examples show that thisis not so. Example 3(6) will show similarly that the 
renewal theorem may -fail for an. unbounded function z even when it 
vanishes outside a finite interval. Improper Riemann integrals are therefore 
not usable in renewal theory. and direct integrability appears as the natural 

basis. 

Examples. (a) A continuous function z may be unbounded and yet Riemann 

integrable over 0, «©. To see this let 2(n) = a, for n=1,2,... and let z 

vanish identically outside the union of the intervals |z —n| <h, <4; 

between n and n +h, let z vary linearly with z. The graph of z then 
consists of a sequence of triangles of areas a,h,, and hence z is Riemann 
integrable iff > a,h, < 0. This does not preclude that a, —> oo. 

(6) To explore the role of direct integrability in the renewal theorem it 
suffices to consider arithmetic distributions F. Thus we may suppose that 
the measure U is concentrated on the integers and that the weight w, 
carried by the point n tends to the limit 4-1 > 0. For any positive integer 
n we have then 

Z(n) = u,, 2(0) + u,_1 21) +: °° + upe(n). 

Now choose for z the function of the preceding example with a, = 1; 

then Z(n) ~ nu, and so Z is not even bounded. The same is obviously 
true if a, tends to 0 sufficiently slowly, and thus we get an example of a 

continuous integrable function z such that z(x)—>0, but Z(x) does not 

remain bounded. > 

3 It is hoped that this form and the preceding discussion will end the sorry confusion now 
prevailing in the'literature. The most widely used reference is the report by W. L. Smith, 
Renewal theory and its ramifications, in the J. Roy. Stat. Soc. (Series B), vol. 20 (1958), 

pp. 243-302. Since its appearance Smith’s ‘“‘key renewal theorem’’ has in practice replaced 
all previously used versions (which were not always correct). The key theorem proves (1 t7) 
under the superfluous assumption that z be monotone. Smith’s proof (of 1954) is based 
on Wiener’s deep Tauberian theorems, and the 1958 report gives the impression that this 

tortuous procedure is simpler than a direct reduction to the first form of the renewal 
theorem. Also, the condition that z be bounded was inadvertently omitted in the report. 

[Concerning its necessity see example 3(6).] 
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2. PROOF OF THE RENEWAL THEOREM 

For arithmetic distributions F the renewal theorem was proved in I; 

XIII,11 and we suppose therefore F non-arithmetic. For the proof we 

require two lemmas. (The first reappears in a stronger form in the coroilary 
in section 9.) 

Lemma 1. Let C be a bounded uniformly continuous function such that 

U(x) < (0) for -w<x< om. If 

(2.1) C(x) = {Pu — y) F{dy} 

then C(x) = £(0) identically. 

Proof. Taking convolutions with F we conclude from (2.1) by induction 

that . 

(2.2) C(x) = [Pua ~ y) F™* {dy}, r=1,2,. 

The integrand is <{(0), and for z= 0 the equality is. therefore possible 
only if ¢(—y) = €(0) for every y that is a point of increase of F’*. By 

lemma 2 of V,4a the set & formed by such points is asymptotically dense at 
infinity, and in view of the uniform continuity of ¢ this implies that 

~{(—y) — (0) as. y— oo. Now as ro the mass of F’* tends to be 
concentrated at oo. For large r the integral in (2.2) therefore depends 
essentially only on large values of y, arid for such values (x — y) is close 

to €(0). Letting r—» 0 we conclude therefore from (2.2) that f(x) = ((0) 
as asserted. > 

Lemma 2. Let z be a continuous function vanishing outside 0,h. The 
corresponding solution Z of the renewal equation is uniformly continuous and 
for every a 

(2.3) Z(x + a) ~ Z(x) > 0, x—> OO, 

Proof. The differences z(¢ + 6) — 2(z) vanish outside an interval of 

length. h + 26 and therefore by (1.5) and (1.7) 

(2.4) \Z(x +6) — Z(x)| < Cy425 max |z(a + 6) — z(2)J. 

This shows that if z is uniformly continuous the same is true of Z. 
Suppose now that @ has a continuous derivative z’. Then 2’ exists and 

satisfies the renewal equation 

(2.5) Zi(x) = 2'(2) + I "Z'(e — y) Fldy}. 
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Thus Z’ is bounded and uniformly continuous. Let 

(2.6) lim sup Z’(x) = n, 

and choose a sequence such that Z’(t,)—> 7. The family of functions @, 
defined by . 

(2.7) Cr(x) = Z'(t, +2) 

i$ equicontinuous and 

(2.8) (2) = ent) + [Ge — 9) Flay}, 
Hence there exists a subsequence such that ¢,° converges to a limit ¢. 
It follows from (2.8) that this limit satisfies the conditions of lemma | and 

therefore (€'(x) = C’(0) = 7 for all x. 

Thus Z(t, + 2) or 

(2.9) — Zt, + a) — Z(t, ) > a. 

This being true for every a and Z being bounded it follows that 7 = 0. 

The same argument applies to the lower limit and proves that Z’(z) — 0. 
We have thus proved the lemma for continuously differentiable z. But an 

arbitrary continuous z can be approximated by a continuously differentiable 

function z, vanishing outside 0,4. Let Z, be the corresponding solution 

of the renewal equation. Then 

|z —~z,|<¢« implies |Z —Z,| < Cye, 

and thus |Z(x+a) — Z(x)| < (2C,+1)e for all x sufficiently large. Thus 

(2.3)holds for arbitrary continuous z. > 

The conclusion of the proof is now easy. If J is the interval «<2 < B 

we denote by J+ ¢ theinterval «+ 1<¢2<¢ 8+ 1. We know from (1.9) 

that U{Z + t} remains bounded for every finite interval J. By the selection 
theorem 2 of VIII,6 there exists therefore a sequertce ¢, —> co and a measure 

V such that 

(2.10) U{t, + dy} > Vidy}. 
. . -— 

The measure V is finite on finite intervals, but is not concentrated on 0, ©. 

Now let z be a continuous function vanishing outside the finite interval 

0,a. For the corresponding solution Z of the renewal equation we have 
then 

(2.11) Z(t, + 2) = [4-9 U(t, + 2 + ds} = [x9 Vix + ds}. 

From the preceding lemma it follows that the family of measures V{x + ds} 
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is independent of z, and hence V{J} must be proportional to the length of 
I. Thus (2.10) may be put in the form 

(2.12) U(t,) — Ut, —h) > yh. 

This 's the same as the assertion (1.9) of the renewal theorem except that 

the factor 77? is replaced by the unknown y and that ¢ is restricted to the 

sequence {t,}. However, our derivation of the alternative form of the 

renewal theorem remains valid and thus 

2.13) Z(t.) > | 2(y) dy 
wD 

whenever z is directly integrable. 

The function z = 1— F is monotone, and its integral equals wu. The 
corresponding solution Z reduces to the constant 1. If 4 < oo the function 

z is directly integrable, and (2.13) states that yu = 1. When u = © we. 
truncate z and conclude from (2.13) that y~} exceeds the integral of z 

over an arbitrary interval 0,a. Thus ~ = © implies y = 0. Hence the 

limit in (2.12) is independent of the sequence {t,}, and (2.12) reduces to the 
assertion (1.9) of the renewal theorem. | > 

*3. REFINEMENTS 

In this section we show how regularity properties of the distribution F 
may lead to sharper forms of the renewal theorem. The results are not 

exciting in themselves, but they are useful in many applications. 

Theorem 1. Jf F is non-arithmetic with expectation js and variance 
o*, then 

on 2 

(3.1). 10 < Ut) — > SEF 
bb 2u 

  

The renewal theorem itself states only. that U(t)~ t/u, and the estimate 

(3.1) is much sharper. It is applicable even when no variance exists with the 
right side replaced by oo. [The analogue for arithmetic distributions is given 

by 1; XIIT,(12.2).] 

Proof. Put 

(3.2) Z(t) = Ut) — Aly. 
It is easily verified that this is the solution of the renewal equation correspond- 
ing to 

(3.3) 4) =1[u-Fnlay. 
pvt 

* This section should be omitted at the first reading. 
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Integrating by parts we get 

00 ] a0 2 2 

(3.4) [ 2(t) dt = =| y F{dy} = ote 
0 2u Jo Qu 

Being monotone z is directly integrable, and the alternative form of the 
renewal theorem asserts that (3.1) is true. > 

Next we turn to smoothness properties of the renewal function U. If F 
has a density f the renewal equation for U takes on the form 

(3.5) U(2) = 14 [ “U(a—y) fly) dy. 
If f is continuous a formal differentiation would indicate that U should 
have a derivative u satisfying the equation 

(3.6) u(a) = f(2) + [ “u(z—y) f(y) dy. 
This is a renewal equation of the standard type, and we know that it has a 
unique solution whenever f is bounded (not necessarily continuous). It is 

easily verified that the function U defined by 

(3.7) U(t)=14+ I u(y) dy, t > 0. 

satisfies (3.5) and hence the solution wu of (3.6) is indeed a density for U. 

As a corollary to the alternative form of the renewal theorem we get thus 

Theorem 2. If F has a directly integrable density f, then U has a density 
u_ such that u(t) —> pol. 

- Densities that are not directly integrable will hardly occur in practice but certain con- 
clusions are possible even for them. In fact, consider the density 

. t 

(3.8) f(D -| ft-w f® dy 
0 . 

of Fx F. In general f, will behave much better than f. For example, if f< M we get 
for reasons of symmetry 

(3.9) fp(t) < 2M[L — FN). 

If 4 < oo the right side is a monotone integrable function and this implies that fg is 
directly integrable. Now u — f is the solution of the renewal equation with z = fg, and 

we have thus 

Theorem 2a. If £ has a bounded density f anda finite expectation mu, then 

(3.10) u(t) — f(t) > eh 

This result is curious because it shows that if the oscillations of f are wild, 4 will 

oscillate in a manner to compensate them. (For related results see problems 7-8.) 
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The condition that f be bounded is essential. We illustrate this by an example which also 
throws new light on the condition of direct integrability in the renewal theorem. 

Examples. (a) Let.G be the probability distrioution concentrated on 0,1 and defined 

by 
(3.11) GG) = jog (e/2)’ 0O<2z<¢1. 

It has a density that is continuous in the open interval, but since z—!G(x) -- 0 as x0 

the density is unbounded near the origin. The sum of a independent random variables 
with the distribution G is certainly <x if each component is <z/n, and hence 

(3.12) G"*(x) > (Gz/n))". 
_ It follows that for each a the density of G"* is unbounded near the origin. 

‘ Now put F(x) = G(z— 1). Then F"*(z) = G"*(z —1n), and hence F"* has a 

density which vanishes for x <n, is continuous for z >, but unbounded near n. The 
density u of the renewal.function U = >’ F"* is therefore unbounded ia the neighborhood 
of every integer n > 0. 

(6) The density u of the preceding example satisfies (3.6) which agrees with the standard 
renewal equation (1.3) with z = f. This is an integrable function vanishing for x > 2 and 

continuous except at the point 1. The fact that the solution Z =u is unbounded near 
every integer shows that the renewal theorem breaks down if z is not properly Riemann 

integrable (bounded), even when z is concentrated on a finite interval. > 

4. PERSISTENT RENEWAL PROCESSES 

The renewal theorem will now be used to derive various limit theorems 
for the renewal processes introduced .in VI,6. We are concerned with a 
sequence of mutually independent random variables 1T,,T,,..., the 
interarrival times, with a common distribution F. In this section we assume 

that F is a proper distribution and F(0) = 0. In addition to the T, there 
may be defined a non-negative variable S, with a proper distribution Fy. 
We put 

(4.1) | S,=So+T,+-°°+T,. 

The variables S, are called renewal epochs. The renewal process {S,} is 

called pure if S, = Q and delayed otherwise. 
We adhere to the notation U = > F"* introduced in (1.2). The expected 

-—| 
number of renewal epochs in 0, 1t equals 

(4.2) Vi) = SP{S, <1} = Fok U 
n=0 . / . 

For h >0O we have therefore* 

Pt+h 

0 
(4.3) Vth) = V0) =|" [UG-+h—w) — UG—y)] Foldy}. 

4 We recall from section | that the intervals of integration are taken closed; ‘the limits of 

integration may therefore be replaced by — «© and ©. 
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If F is not arithmetic the integrand tends to uth as t+ 0, and thus the 

basic theorem extends also to delayed processes: if F is non-arithmetic 

the expected number of renewal epochs within t,t+h tends to wth. This 
statement contains two equidistribution theorems; first, the renewal rate 

tends to a constant, and second, this constant rate is independent of the 

initial distribution. In this sense we have an analogue to the ergodic theorems 
for Markov chains in 1; XV. 

If uw < oo it follows that V(t)~ wt as t— oo. It is natural to ask 
whether F, can be chosen as to get the identity V(t) = ws, meaning a 
constant renewal rate. Now V satisfies the renewal equation 

(4.4) Ve=Fot+FRV 

and thus V(t) = wr iff 

(4.5) | F(t) = - —= | (t-y) Ffdy}. 
pe pedo 

Integration by parts shows this to be the same as 

L [* . (4.6) Fo) = 2 [Ur — Fond 
This Fo is a probability distribution and so the answer is affirmative: with 
the initial distribution (4.6) the renewal rate is constant, V(t) = wot. 

The distribution (4.6) appears also as the limit distribution of the residual! 
waiting times, or hitting probabilities. To given ¢ > 0 there corresponds a 
chance-dependent subscript N, such that 

(4.7) Sx, St < Sy 
In the terminology introduced in VI,7 the variable S,,,—¢ 1s called 

residual waiting time at epoch t. We denote by A(z, €) the probability 
that m is <é. In other words, A(t, ¢) is the probability that the first 

renewal epoch following epoch ¢ les within t,f+&, or that the level ¢ 
‘be overshot by anamount <&. This event occurs if some renewal epoch 8, 

equals x <7 and the following interarrivai time lies between ¢ — x and 
t+—x-+ &. In the case of a pure renewal process we get, summing over 

x and a, 
t 

(4.8) it [ Ufao}FU—e $8) — Pt—x)}. 
5 

This integral contains & as a free parameter but is of the standara form 

Uxez with 2(t) = F(t+&) — Fit), which function is directly integrable.* 

  

5For n& <x <(ntlE we have 2(r) < F((n+2)5) — F(né), and the series with 

these terms is obviously convergent. 
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Assume F non-arithmetic. Since 

(4.9) io dt =f" — F(t)] — (1 — F(t+8)) dt -[' — F(s)) ds 

we have the /imit theorem 

§ 
(4.10) lim H(t, 6) = wf [1 — F(s)] ds. 

‘ ~~ 0 

(It is easily verified that this is true also for the delayed process regardless 
of the initial distribution Fo.) This limit theorem is remarkable in several 

respects. As the following discussion shows, it is closely connected with the 
inspection paradox of VI,7 and the waiting time paradox in I,4. 

When pw < © the limit distribution (4.10) agrees with (4.6) and thus 
if <0 the residual waiting time has a proper limit distribution which 
coincides with the distribution attaining a uniform renewal rate. In this 
pattern we recognize one more the tendency towards a “‘steady state.” 

The limit distribution of (4.10) has a finite expectation only if F has a 
variance. This indicates that, roughly Speaking, the entrance probabilities 
behave worse than F. Indeed, when pu = 0 we have 

(4.11) H(t, &) 0 

for all &: the probability ‘tends to 1 that the level t- will be overshot by an 

arbitrarily large amount &. (For the case of regularly varying tails more 
precise information is derived in XIV,3.) 

Examples. (a) Superposition of renewal processes. Given n renewal proc- 

esses, a new process can be formed by combining all their renewal epochs 
into one sequence. In. general the new process is not a renewal process, 
but it is easy to calculate the waiting time W for the first renewal following: 

epoch 0. We shall show that under fairly general conditions the distribution 
of W is approximately.exponential and so the combined process is close to a 
Poisson process. This result explains why many processes (such as the in- 
coming traffic at a telephone exchange) are of the Poisson type. 

Consider nm mutually independent renewal processes induced by the 
distributions of their interarrival times by Fy,.. ., F, with expectations 

My, +--+ fy Put 

] 1 1 
(4.12) —~+r+4+- =". 

By Hy x 

We require, roughly speaking, that the renewal epochs of each individual 
renewal process are extremely rare so that the cumulative effect is due to 

many small causes. To express this we assume that for fixed k and y the 

probabilities F,(y) are small and pu, large—an assumption that becomes 

meaningful in the form of a limit theorem. 
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Consider the “steady state’ situation where the processes have been 
going on for a long time. For the waiting time W, to the nearest renewal 
epoch in the Ath process we have then approximately 

t 

(4.13) PIW, <t}a~ | (1 — Fydy~ 4. 
My 0 Mr 

[The last approximation is justified by the smallness of F,(y).] The waiting 

time W in the cumulative process is the smallest-among the waiting 
times W, and hence 

(4.14) Piw> te (1-2) (1-2) ven 
mon 

This estimate is easily made precise, and under the indicated conditions 
the exponential distribution emerges as the limit distribution as n —> ©. 

(6) Hitting probabilities in random walks. For a sequence of independent. 
random variables. X,, X,,... let 

Y,=X,+---+X,. 

For positive X, the random walk {Y,} reduces to a renewal process, but 

we consider arbitrary X,. Assume the random walk to be persistent so 

that foreach ¢ > 0 withcertainty Y, > forsome n. If N is the smallest 

index for which this is true Yy is called the point of first entry into 1, 00. 
The variable Yy — ¢ is the amount by which the ¢ level is overshot at the 
first entry and corresponds to the residual waiting time in renewal processes. 
We put again P{¥, <t+ 6} = H(t, 6), and show how the limit theorem 
for residual waiting times applies to this distribution. 

Define S, as the point of first entry into 0, 00 and, by induction, S.4, 

as the point of first entry into S,, «0. The sequence S,,S,,... coincides 
‘with the /adder heights introduced in V1,8 and forms a renewal process: 
the differences S,,, —S, are evidently mutually independent and have the 
same distribution as Sy. Thus Yx —/ is actually the residual waiting 
time in the renewal process {S,}, and so (4.10) applies. > 

By the method used to derive (4.10) it can be shown that fhe spent waiting 

time t — Sy, has the same limit distribution. Fer the length L, = Snii — Sn, 

of the interarrival time containing the epoch t we get 

t 

(4.15) P{L, < §} | Uldes Fs) — F(t—zx)] 

and hence 

(4.16) timP(L, <8} =o" | FUE) — FO da = et ic 
0 ta 
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The curious implications of this formula were discussed in connection with 
the inspection paradox in VI,7 and the waiting time paradox in I,4. 

It is easily seen that the three families of random variables + — Sy,, Sni41 — 7, and L 
form Markov processes with stationary transition probabilities. Our three limit theorems 
therefore represent examples for ergodic theorems for Markov processes. (See also 
XIV,3.) 

5S. THE NUMBER N, OF RENEWAL EPOCHS 

For simplicity we consider a pure renewal process so that the rth renewal 
epoch is the sum of r independent variables with f as distribution. The 
origin counts as renewal epoch. We denote by N, the number of renewal 

b—| 
epochs within 0,7. The event {N, >} occurs iff the rth renewal epoch 

anen 
falls within 0, ¢, and hence 

(5.1) P{N, >r} = F’*(t). 

Obviously N, > 1. It follows that. 

6.2). E(N) = SP(N, > 1} = Ul. 
(For higher moments see problem 13.) 

The variable N, occurs also in sequential sampling. Suppose that a 

sampling {T,,} is to continue until the sum of the observations for the first 

time exceeds ¢. Then N, represents the total number-of trials... Many 
tedious calculations might have been saved by the use of the estimate (3.1) 
provided by the refined renewal theorem. | 

If F has expectation # and variance o* the asymptotic behavior. of the 
distribution of N, is determined by the fact that F’* is asymptotically 
normally distributed. The necessary calculations can be found in 1; .XIII,6 
and do not depend on the arithmetic character of F. We have therefore the 

-general 

Central limit theorem for N,. Jf F has expectation mand variance o? 
then for large t the number N, of renewal epochs is approximately normally . 
distributed with expectation tu~ and variance to*u-*. 

Example. (a) Type 1- counters. The incoming particles constitute a . 
Poisson process. A particle reaching the counter when it is free is registered 

but locks the counter for a fixed duration &. Particles reaching the counter 

during a locked period have no effect whatever. For simplicity we start the 
process at an epoch when a new particle reaches a free counter. We have 

then tuo renewal processes. The primary process—the incoming traffic—is a 
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Poisson process, that is, its interarrival times have an exponential distribution 
| — e~*f with expectation c~! and variance c~*. The successive registrations 
form a secondary renewal process in which the interarrival times represent 
the sum of & plus an exponential random variable. The waiting time 
between registrations has therefore expectation & + c-1 and variance c~?. 

Thus the number of registrations within the time interval 0. t is approximately 
normally distributed with expectation tc(1 +cé)-) and variance tc(1+cé&)-3. 

The discrepancy between these quantities shows that the registrations 

are not Poisson distributed. In the early days it was not understood that the 

registration process differs essentially from the primary process, and the 

observations led some physicists to the erroneous conclusion that cosmic ray 
showers do not conform to the Poisson pattern of “‘perfect randomness.” > 

A limit distribution for N, exists iff F belongs to some domain of attraction. These 
domains of attraction are characterized in IX,8 and XVII,5 and it follows that N;, has a 
proper limit distribution iff 

(5.3) | 1 — F(x) ~ x L(x), a7 

where L is slowly varying and 0 < « < 2. The limit distribution for N, is easily obtained 
and reveals the paradoxical properties of fluctuations. The behavior is radically different 
for «<1 and a>. 

Consider the case 0 <.a <1. If a, is chosen so that 

2-4 
  (5.4) tt r{l — F(a;)] > 

then F’*(a,x) + G,(z} where G, is the one-sided stable distribution satisfying the con- 

dition x7[1 — G,(x)] + (2 — «)/a as xo. (Cf. 1X,6 and XVII,5 as well as XIH,6.) 

Let r and ¢ increase in such a manner that ¢ ~a,v. On account of the slow variation 

of L we get then from (5.3) and (5.4) : 

2—-a 2x77 
  

  

°” ET 
whence from (5.1) 

2- 

(5.6) P)[1 — F()IN, > . | > G,(2). 

This is an analogue to the central limit theorem. The special case « = } is covered in 1; 

X111,6. The surprising feature is conveyed by the norming factor 1 — F(t) in (5.6). Very 

roughly 1 — F(t) is of the order of magnitude r~* and so the probable order of magnitude 

of N, is of the order ¢7; the density of the renewal epochs must decrease radically (which 

agrees with the asymptotic behavior of the hitting probabilities). 

When 1 <« <2 the distribution / has an expectation « < x and the same type of 

calculation shows that 
; t- A(t )x\ 
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where .A(t) satisfies 

(5.8) a — F(A(t))] > ? 
—a 

  

BL. 

In this case the expected number of renewal epochs increases linearly, but the norming 
A(t) indicates that the fluctuations about the expectation are extremely violent. 

6. TERMINATING (TRANSIENT) PROCESSES _ 

The general theory of renewal processes with a defective distribution F 
reduces almost to a triviality. The corresponding renewal equation, however, 
frequently appears under diverse disguises with accidental features obscuring 
the general background. A clear understanding of the basic facts will avoid 
cumbersome argument in individual applications. In particular, the 
asymptotic estimate of theorem 2 will yield results previously derived by 
special adaptations of the famous Wiener- -Hopf techniques. 

To avoid notational confusion we replace the underlying distribution 
F by L.. Accordingly, in this section L stands for a defective distribution 
with L(0Q)=0 and L(w)=L, <1. It serves as distribution of the 

(defective) interarrival times T,, the defect 1—L,, representing the 
probability of a termination. The origin of the time axis counts as renewal 
epoch number zero, and S, =T,+---+T,, is the mth renewal epoch; 

it is a defective variable with distribution L™ whose total mass equals 
L"*(0) = L%. The defect 1 — L% is the probability of extinction before 

the nth renewal epoch. We put again 

(6.1) U= SL". 
n=0 

As in the persistent process, U(t) equals the expected number of renewal 
bH 

epochs within 0, 1;. this time, however, the expected number of renewal 
epochs ever occurring is finite, namely 

1 
. U(o) = (6.2) | (0) = 

The probability that the nth renewal epoch S, is the last and <x equals 

(1—L,;) L"*(x). We have thus 

  

Theorem 1. A transient renewal process commencing at the origin terminates 

with probability one. The epoch of termination’ M (that is, the maximum 

attained by the sequence 0,8,,S_,...) has the proper distribution 

(6.3) P{M < x} = (1—L,,) U(2). 

The probability that the mth renewal epoch is the last equals (1—L,.)La, 

and so the number of renewal epochs has a geometric distribution. 
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It is possible to couch these results in terms of the. (defective) renewal 
equation 

(6.4): Z(t) = 2(t) +| 20-9 L{dy}, 

but with a defective Z the theory is trite. Assuming again that z(x) = 0 for 
x <0 the unique solution is given by 

(6.5) Z(t) =| u-y) U{dy} 

and evidently 

6.6 Z(t) + AO) (6.6) > 
whenever z(t) — z(00) asf: o., 

Examples, (a) The event {M < ¢} occurs if the process terminates with 

So, or else if T, assumes some positive value y <¢ and the residual 

process attains an age <t—y. Thus Z(t)=P{M <1} satisfies the 

renewal equation 
: 

(6.7) 7) = 1— Ly +| Z(t—y) L{dy}, ; 0 

This is equivalent to (0.5). 

(6) Calculation of moments. The last equation represents the proper 

distribution Z as the sum of two defective distributions, namely a con- 
volution and the distribution with a single atom at the origin. To calculate 
the expectation of Z put 

(6.8) E, =[*« L{dx} 

and similariy for other distributions, whether defective or not. Since L is 

defective the convolutiom in (6.7) has expectation L,: Ez + E,. Thus 

E, = E,/(1 — L.). For the more general equation (6.4) we get in like 
manner. 

E,+ E, 
6.9 Ez; = —————.. (6.9) z= TT 

Higher moments can be calculated by the same method. > 

Asymptotic estimates 

[In applications z(t) usually tends to a limit z(co), and in this case Z(t) 

tends to the limit Z(oo) given by (6.6). It is frequently important to obtain 

asymptotic estimates for the difference Z(0) — Z(t), This can be achieved 

by a method of wide applicability in the theory of random walks [see the
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associated random walks in example XII,4(6)]. It.depends on the (usually 
harmless) assumption that there exists a number « such that 

(6.10) { “eV {dy} = 1. 

This root « is obviously unique and, the distribution L being defective, 
x > 0. We now define a proper probability distribution L* by 

(6.11) L# {dy} = eX” L{dy} 

and associate with each function f a new function f*. defined by 

f#(x) = e% f(a). 

A glarice at (6.4) shows that the renewal equation 

(6:12) Z(t) = 2) + | ZA—y) Lay} 

holds. Now if Z#(t)+a #0 then Z(t)~ae*'. Accordingly, if z* is 
directly integrable [in which case z(00) = 0] the renewal theorem implies 

that 

(6.13) z(t)» + [ e*2(2) da 
i 

where oO 

(6.14) pt = [ ely L{dy} 

In (6.13) one has a good estimate for Z(t) for large t. | a 
With a slight modification this procedure applies also when 2(00) # 0. | 

Put , So 

Le — Lt 
z,(t) = 2(0%) — 2(t) + 2(0) bo — LY) . 

: 1—L, 

It is easily verified that the difference Z(0oo) — Z(t) satisfies the standard 

renewal equation (6.4) with z replaced by z,. A simple integration by parts 

shows that the integral of 2# (x) = z,(x)e* is given by the right side in (6.15). 

Applying (6.13) to Z, we get.therefore | 

Theorem 2. If (6.10) holds then the solution of the renewal equation satisfies 

2z( 00) 
  6.13) phe{2(a) ~ 269] +222 + [er te(e0 — 26a) de 

provided yp # © and 2, is directly integrable. 
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For the particular case (6.7) we get 

  

(6.16) P{M >th~ 1 — be e**, 
: Ky 

The next section will show the Surprising power of this estimate. In 

particular, example (6) will show that our simple method sometimes leads 
quickly to results that used to require deep and laborious methods. 

The case Lo > 1. If Lo >1 there exists a constant « <0 such that (6.10) is true 

and the transformation described reduces the integral equation (6.4) to (6.12). The 

‘renewal theorem therefore leads to precise estimates of the asymptotic behavior of Z(r)e*? 
[The discrete case is covered in theorem | of 1; XIII,10. For applications in demography 
see example 1; XHH,16(e).] 

7, DIVERSE APPLICATIONS 

As has been pointed out already the theory of the last section may be 
applied to problems whieh are conceptually not directly related to renewal 
processes. In this section we give two independent examples. 

(a) Cramér’s estimates for ruin. It was shown in VI,5 that the ruin: 

problem in compound Poisson processes and problems connected with 
storage facilities, scheduling of patients, etc., depends on a probability 

distribution R, concentrated on 0, «0, and satisfying the integro-di iferential 
equation 

(7.1) | R ‘(z).= = ~ RG) —_ af R(z—=x) F{dx} 
c 

where F is a proper distribution. Integrating (7.1) over 0,¢ and per- 
forming the obvious integration by parts one gets 

(7.2) R(t) — - R() =" = UR R(t—x){1 — F(x)] dz. 

Here R(0) is an unknown constant, but otherwise (7.2) is a renewal equation 

with a defective distribution L with density a/c [1 — F(x)]. Denoting the 

expectation of F by u the mass of L equals L,, = au/c. [The process is” 

meaningful only if L.. <1 for otherwise R(f) =O for all 1.] Note that 

(7.2) is a special case of (6.4) and that R(0o) = 1. Recalling (6.6) we con- 

clude that 

(7.3) R(O) = 1 — aulc, 

8 This is the special case of VI,(5.4) when F is concentrated on 0, ©. It will be-treated 

by Laplace transforms i in XIV,2(5). The general situation will be taken up in XII,5(@). 
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and with this value the integral equation (7.2) reduces to the form (6.7) for 

the distribution of the lifetime M_ of a terminating process with intetarrival 

time distribution ZL. From (6.16) it follows that if there exists a constant 

« such that 

(7.4) 2 { “e[1 — F(x)| dz = 1 

and ‘ 

(7.5) wt = * Mace — F(x)] dx < 0 

then as t— © 7 

(7.6) 1 — R(t) ~=3( _ Bent 
KU c 

This is Cramér’s famous estimate originally derived by deep complex 

variable methods. The moments of R may be calculated as indicated in 

example 6(5). 
(b) Gaps in Poisson processes. In VI,7 we derived a renewal equation for 

the distribution V of the waiting time for the first gap of length >é ina 
renewal process. When the latter is a Poisson process the interarrival times 

have an exponential distribution, and the renewal equation VI,(7.1) is of 

the standard form V=z+V%*L with 

L(z) = 1 — ee, z(x) = 0 for a<& 

L(x) = 1 — e~%, 2(z) = e® for «> &. 

Since z(0o) = 1 —L, the solution V is a proper distribution as required 
by the problem. 

The moments of our waiting time W are easily calculated by the method 

described in example 6(5). We get 
co | feb gt cg 

(7.8) E(W) = < ,  Var(W) = ee ata ce 
c c 

(7.7) 

  

If we interpret W as the waiting time for a pedestrian to cross a stream 

of traffic these formulas reveal the effect of an increasing traffic rate. The 
average number of cars during a crossing time is cé. Taking cé = 1,2 
we get E(W) 1.72 and E(W) = 3.2&, respectively. The variance 
increases from about é® to 6%. [For explicit solutions and connection 
with covering theorems see example XIV,2(a).] The asymptotic estimate 

(6.14) applies. If c& > 1 the determining equation (6.10) reduces to 

  

(7.9) celX—O = Kc, O<K<e 

and by a routine calculation we get from (6.14) 

(7.10) 1— v(t) ~ Lael > e 
1 — Ké 
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8. EXISTENCE OF LIMITS IN STOCHASTIC PROCESSES 

Perhaps the most striking proof of the power of the renewal theorem is 
that it enables us without effort to derive the existence of a ‘‘steady state” 
in a huge class of stochastic processes. About the process itself we need 
assume only that the probabilities in question are well defined; otherwise - 
the theorem is purely analytic.” 

Consider a stochastic process with denumerably many states Ep), E,,... 

and denote by P,(t) the probability of E, at epoch + > 0. The following 

theorem depends on the existence of “recurrent events,” that is, of epochs 
at which the’ process starts from scratch. More precisely, we assume that 
with probability one there exists an epoch S, such that the continuation of 
the process beyond S, is a probabilistic replica of the whole process 

commencing at epoch 0. This implies the existence of further epochs 
S,,S3,... with the same property. The sequence {S,} forms a persistent 
renewal process, and we. assume that the mean recurrence time «4 = E(S,) 
is finite. We denote by ?,(t) the conditional probability of the state E, at 
epoch ¢ +s given that S, =s. It is assumed that these probabilities are 
independent of s. Under these conditions we prove the important 

Theorem 

(8.1) | lim P,(t) = Px 
t- 0 

exists with p, > 0 and > p, = 1. 

-Proof. Let ,(t) be the probability of the joint event that S, > ¢ and 
that at epoch ¢ the system is in state £,. Then 

2) 2. S qi(t) = 1 — F(t) 
'. k=O 

where F is the distribution of the recurrence times S,,,, — S,. By hypothesis re 

(8.3) . P,(t) = q(t) + | P,(t—y) F{dy}. 
_ Jo 

The function 9, is directiy integrable since it is dominated by the monotone 
integrable function 1 — F. Therefore 

t->a@ 

(8.4) lim P,(t) = 4 { aut) at 
pe Jo 

by the second renewal theorem. Integration of (8.2) shows that these limits 

add to unity, and the theorem is proved. > 

? For more sophisticated results see V. E. Bene3, A “renewal”? limit theorem for general 

stochastic processes, Ann. Math. Statist., vol. 33 (1962) pp. 98-113, or his book (1963). 
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It is noteworthy that the existence of the limit (8.1) has been established 

without indication of a way to compute them. 

Note. If Fy is a proper distribution, then (8.1) implies that 

t 

(8.5) [Pae—y Fold} > as 1+ 0, 
Thus the theorem also covers the case of a delayed renewal process {S,} 

in which 8, has distribution Fy. 

Examples. (a) Queuing theory. Consider an installation (telephone ex- 

change, post office, or part ofa computer) consisting of one or more “‘servers,”’ 
and let the state £;, signify that there are k ‘‘customers’’ in the installation. 

In most models the process starts from scratch whenever an arriving customer 
finds the system in state E,; in this case our limit theorem holds iff such an 
epoch occurs with probability one and the expectations are finite. 

(b) Two-stage renewal process. Suppose that there are two possible states 
E,, E,. Initially the system is in £,. The successive sojourn times in £, 

are random variables X,; with a common distribution Fy. They alternate 

with sojourntimes Y, in £,, having’a common distribution F,. Assuming, 
as usual, independence of all the variables we have an imbedded renewal 
process with interarrival distribution F = F,%& Fy. Suppose E(X,) = 
=u, < 0 and E(Y;) = u, < 0. Clearly g,(t) = 1 — F,(t) and therefore 

as t-»> oo the probabilities of E, tend to the limits 

    (8.6) P(t) >—— P(t)» SE. 
fy + fe Hy + be 

This argument generalizes easily to multi-stage systems. 
(c) The differential equations of 1; XVII correspond to stochastic 

processes in which the successive returns to any state form a renewal process 
of the required type. Our theorem therefore guarantees the existence of limit 
probabilities. Their explicit form can be determined easily from the differ- 
ential equations with the derivatives replaced by zero. (See, for example, 1; 
XVII,(7.3). We shall return to this point more systematically in XIV,9. 
The same argument applies to the semi-Markov process described in problem 
14 of XIV,10.] me . > 

*9, RENEWAL THEORY ON THE WHOLE LINE 

In this section the renewal theory will be generalized to distributions 
that are not concentrated on a half-line. To avoid trivialities we assume 

  

  

* Not used in the sequel. 
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that F{—0,0} >0 and F{0, 0} > 0 and that F is non-arithmetic. The 

modifications necessary for arithmetic distributions will be obvious by 
analogy with section 1. 

We recall from VI,10 that the distribution F is transient iff 

ow 

(9.1) UL} = SF" 
n=O 

is finite for all finite intervals. Otherwise U{J} = oo for every interval and 

F is called persistent. For transient distributions the question imposes 

itself: do the renewal theorems of section | carry over? This problem has 
intrigued many mathematicians, perhaps less because of its intrinsic 
importance than because of its unsuspected difficulties. Thus the renewal 
theorem was generalized step by step to various special classes of transient 

distributions by Blackwell, Chung, Chung and Pollard, Chung and Wolfo- 
witz, Karlin, and Smith, but the general theorem was proved only in 1961 

by Feller and Orey using probabilistic and Fourier analytic tools. The 
following proof’ is considerably simpler and more elementary. In fact, 
when F has a finite expectation the proof given in section 2 carries over 
without change. (For renewal theory in the plane see problem 20.) 

For the following it must be recalled that a distribution with an expectation 
#0 is transient (theorem 4 of VI,10). As usual, J+ ¢ denotes the 

interval obtained by translating J through ¢. 

General renewal theorem. [f F has an expectation ~ >O0 then for every 
finite interval I of length h >.0 

(9.2) 7 | U{I + aes | t—> © 
lu 

(9.3) a Ul +t}+0- fe 00. 
(b) If F is transient and without expectation then U{I+t}—0 as 

t—+>1+0 for every finite interval I. 

From now on it is understood that F is transient and that z is a con- 
tinuous function vanishing outside the finite interval —h << x<h where 

z>0. 
Before proceeding to the proof we recall a few facts proved in VI,10. 
The convolution Z = U %z is well defined by 

(9.4) — £(x) =| “a—y) U{dy} 
~0 

because the effective domain of integration is finite. According to theorem 
2 of VI,10 this Z is a continuous function satisfying the renewal equation 

(9.5) =2z2+FYZ, 

and it assumes its maximum ata point € at which 2(é) > 0. 
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Put U, = F°* +---+ F"*. Every non-negative solution Z of (9.5) 
satisfies Z > z= U, *&z, and hence by induction Z > U,, *z. It follows 

that the solution (9.4) is minimal in the sense that Z, > Z for any other non- 

negative solution Z,. Since Z, = Z + const. is again a solution, it follows 

that 

(9.6) lim inf Z(x) = 0, | L—> +0, 

Lemma 1. For every constant a 

(9.7) Z(a + a) — Z(x) +0 Z+>++0., 

Proof. The proof is identical with the proof of lemma 2 in section 2. 

There we used the fact that a bounded uniformly continuous solution of the 
convolution equation 

(9.8) C=Frel 

attaining its maximum at xz = 0 reduces to a constant. This remains true 

also for distributions not concentrated on 0, oo, and the proof is actually 
simpler because now the set > formed by the points of increase of F, 
F?*,... is everywhere dense. > 

Although we shall not use it explicitly, we mention the following interesting 

Corollary.® Every bounded continuous solution of (9.8) reduces to a constant. 

Proof. If & is uniformly continuous the proof of lemma 1 applies without change. 
Now if G is an arbitrary probability distribution then & = Gx ¢ is again a solution 
of (9.8). We may choose G such that §, has a bounded derivative and is therefore 
uniformly continuous. In particular, ihe conveiution of € with an arbitrary normal 
distribution reduces to a constant. Letting the variance of G tend to zero we see that 
itself reduces to a constant. ; > 

Proof of the renewal theorem when expectations exist. When 0 <u < © 

the proof in section 2 applies with one trite change. .In the final relation (2.13) 

we used the trial function z = 1 — F for which the solution Z reduced 

to the constant 1. Now we use instead 

(9.9) zn FO* — F. 

For it U, % 2 = F* — Ft)*, and since uw > 0 it & clear that Z = F*. 

It should be noticed that this proof applies also if ~ = -+-00 in the 

obvious sense that the integral of x F{dx} diverges over 0, 00, but converges 

over —oo, 0. > 

  

8 This corollary holds for distributions on arbitrary groups. See G. Choquet and J. 
Deny, C. R. Acad. Sci. Paris, vol. 250 (1960) pp. 799-801. 
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When no expectation exists the proof requires a more delicate analysis. 
The next lemma shows that it suffices to prove the assertion for one tail. 

Lemma 2. Suppose that no expectation exists and that 

(9.10) UU — t}—-0, t> +o. 

Then also 

(9.11) U{I + t}—0, t—> +0. 

Proof. We use the result of example 4(4) concerning hitting probabilities in 
the random walk governed by F. Denote by H(t, ) the probability that 

the first entry into 1%, 00 takes place between ¢ and t+ &. Relative to 
t+ x the interval J + ¢ occupies the same position as J — x relative to ¢ 
and hence 

(9.12) U{1 +1} = ["HG. dé) U{I — &}. 

Considering the first step in the random walk one sees that 

(9.13) 1 — A(0, &) > 1 — FS), 

We know already that the assertion is true if ~ < 0 or w= —, that is, 

if the right side is integrable over 0, 0. Otherwise H has an infinite 

expectation, and hence A(t, €)-+0 as too for every & For large ¢ 
therefore only large values of & play an effective role and forthem U{J — §} 

_ is small. Thus (9.11) is an immediate consequence of (9.10) and (9.12). » 

Lemma 3. Suppose Z(x)<m and choose p>0O such that p' = 
=1-—pm>0. To given « >0 there exists an s. such that for s >, 
either 

(9.14) Z(s)<e 

or else 

(9.15) Z(s+2)>pZ(s)Z(x) forall x. 

Proof. Because of the uniform continuity of Z and lemma 1 we can 

choose s. such that 

(9.16) Zs+2)—Z(e)>—ep’ for s>s, and |x| <h. 

Put 

(9.17) V(x) = Z(s +2) —pZ(s)Z(z), v(x) = 2(s + 4) — p Z(s) 2(2). 

V, satisfies the renewal equation V, =v, + F% V, and from the remark 

preceding lemma | it follows that if V, assumes negative values, then it 
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assumes a minimum at a point € where v(&) <0, and hence |é| <A. 
In view of (9.16) we have then if s > s, 

(9.18) V(2) > —ep’ + Z(s)[1 — p Z(€)] > p'[Z(s) — «1. 

Accordingly, either (9.14) holds, or else V, assumes no negative values in 

which case (9.15) is true. > 

Lemma 4. Let 

(9.19) lim sup Z(x) = 7 > $0. 

Then also | 

(9.20) lim sup [Z(x) + Z(—z)] = 7 L—> . 

| Proof. Choose a such that Z(a) < 6; this is possible in consequence of 

(9.6). By the preceding lemma we have for sufficiently large s either 

(9.21) pZ(s)Z(a—s) < Z(a) < 6, 
or else Z(s) < ¢. Since ¢ is arbitrary, the inequality (9.21) will hold in 

any case for all s sufficiently large. In view of lemma | this implies® 

(9.22) Z(s) Z(—s) — 0. 

Thus for large x either Z(x) or Z(—2) is small, and since Z > 0 it is 

clear that (9.19) implies (9.20). > 

Proof of the theorem. Assume » > 0 because otherwise there is nothing 

to be proved. Consider the convolutions of Z and z with the uniform 

distribution 0, f, namely 

(9.23) Wi2y=1] ZQ)dy, w(x) =t [ “ay dy 
a—t — 

Our next goal is to show that as f-» c© one of the relations 

1 (t. | 0 
(9.24) Wi) = © [zw dy—>n or W,0)= Ly) dy + 7 

. . —t 

must take place. 

Because of (9.7) the upper bounds for Z(x) and W(x) (with ¢ fixed) are 

the same, and hence the maximum of W, is >7. On the other hand, W, 
satisfies the renewal equation (9.5) with z replaced by w,. As noted before, 

® It is easily seen that (9.22) is equivalent to U{7 +1} U{7 —1t} +0. If p{I} stands for 
the probability that the random walk {S,} governed by F enters J, then (9.22) is also 

equivalent to p{I +1} p{1 —1t}—0. If this were false the probability of coming near the 

origin after a visit to 1 +t wodld not tend to 0, and F could not be transient. 
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this implies that the maximum of W, is attained at a point where w, is 
positive, that is, between —A and t+ +h. Nowfor }t<2<t 

(9.25) W(x) =" i _2Y) dy + - tf [Z(y) + Z(—y)] dy. 

The combined length of the two intervals of integration is x and g0 it follows 

from (9.20) that for ¢ sufficiently large W(x) < n(z/t)+ ¢. Thus if 
W(x) > the point x must be close to ¢ and W,(t) close to 7. If the 
maximum of W, is attained at a point « < }¢ a similar argument shows 
that x must be close to 0 and W,(0) close to 7. 

We have now proved that for large ¢ either W,(t) or W,(0).is close to 7. 
But a glance at (9.23) shows that in view of (9.20) 

(9.26) lim sup [W,(t) + W;(0)} = lim sup { IZ(y) + Z(—y)] dy <7. 
Because of the continuity of the two functions therefore either I7,(t) > 7 
and W,(0)— 0, or else these relations hold with the limits interchanged. 

For reasons of symmetry we may assume that W,(t)—> , that is 

t t/2 

0.271 wiy= | Za) ay = [" Zatty) + 201 — Day > 9, 
It follows that for arbitrarily large ¢ there exist values of x such that both 
Z(x) and Z(t — x) are close to .7. By lemma 3 this implies that for large ¢t 
the values of Z(t) are bounded away from 0, and therefore Z(—1t)—>0 in- 

consequence of (9.22). Thus U{J—t}-+0 as t-—+ 0, and in view of 

lemma 2 this accomplishes the proof. > 

10. PROBLEMS FCR SOLUTION 

(See also problems 12-20 in VI,13.) 

1. Dropping the assumption F(0) =0 amounts to replacing .F by the dis- 
tribution F# = pH, + qgF where H, is concentrated at the originand p + q = 1. 
Then U is replaced by U# = U/g. Show that this is a probabilistically obvious 
consequence of the definition and verify the assertion formally (a) by calculating 
the convolutions, (4) from the renewal equation. 

2. If F is the uniform distribution i in 0, 0,1 show that 

z tt — ki 
Ua) = X (—Wrers Ei for n<t<ntl.   

This formula is frequently rediscovered in queuing theory, but it reveals little about 
the nature of U. The asymptotic formula 0 < U(t) — 2-3 is much more 

interesting. It is an immediate consequence of (3.1). 

3. Suppose that z > 0 and that |z’| is integrable over 0, ~. Show that z is 
directly integrable. 
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Note: In the next three problems it is understood that Z and 2, are the 
solutions of the standard renewal equation (1.3) corresponding to z and 2,. 

4. If z+ © ‘and 2; ~~z as x > » show that Z, ~ Z. 

5. If 2, is the integral of z and z,(0) =0, then Z, is the integral of Z. 
Conclude that if z = 2") then Z~ x"/(nu) provided p< ©. 

6. (Generalization.) If z, =Gy2z (where G is a measure finite on finite 

intervals) then also Z, = G%& Z. For G(x) = 2% with a >0 conclude: 

if 2(z)~ 221) then Z(x) ~ x*/(apn). 

7. (To theorem 2 of ‘section 3). Denote by f, the density of F’* and put 
v=u-—f—---: —f,. Show thatif f, is bounded, then v(x) ~ 1/#. In particular, 
if f>0O then u > I/z. 

8. If F?* has a directly integrable density then V = U — 1 — F has a density 
v tending to 1/#.. 

9. From (4.4) show that Z(t) = V(t) — V(t — A) satisfies the standard renewal 
equation with z(t) = Fo(t) — Fy(t — A). Derive the result V(t) — Vit — h) + hl 

directly from the renewal theorem. 

10. Joint distribution for the residual and spent waiting times. With the notation 
(4.7) prove that as t + © 

] x 

Pr - Sn, > vy, Sy +1 -—t> y} > nf {1 ~ F(s)] ds. 

ary 

(Hint: Derive a renewal equation for the left side.) 

11. Steady-state properties, Consider a delayed renewal process with initial 
distribution F, given by (4.6). The probability H(t, 6) that a renewal epoch 

S,, occurs between ¢ and ¢ + € satisfies the renewal equation 

H(t, &) = Fo(t+é) — Fo(t) + Fox At, 6). 

Conclude without calculations that A(t, ¢) = F(t) identically. 

12. Maximal observed lifetime. In the standard persistent renewal process let 
V(t, £) be the probability that the maximal interarrival time observed up to 
epoch ¢ had a duration >&. Show that 

v(t, &) =1 — F(é) + ['re-non 1 

Discuss the character of the solution. 

13. For the number N, of renewal epochs defined in section 5 show that 

wo 

E(N2) = > Qk +1)F** (1) = 2U & U(t) — U2). 
k=0 

Using an integration by parts conclude from this and the renewal theorem that 

co 

E(N?) =F | v@a +; +31 + o(t) 
0 

and hence Var (N,) ~ (6?/#)f in accordance with the estirnate in the central limit 

theorem. (Nofe: This method applies also to arithmetic distributions and is 

preferable to the derivation of the same result outlined in problem 23 of 1; XIIH,12.) 
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14. If F is proper and a a constant, reduce the integro-differential equation 

t 

Z' =aZ—aZ*F to Z(t) =Z(0) + a| Z(t—x)[l — F(x)] dx: 
0 

15. Generalized type II counters. The incoming particles constitute a Poisson 
process. The jth arriving particle locks the counter for a duration T; and annuls 
the aftereffect (if any) of its predecessors. The T,; aré independent of each other 
and of the Poisson process and have the common distribution G. If Y is the 
duration of a locked interval and Z(t) = P{Y > 1}, show that Y is a proper 
variable and 

t 
Z(t) = {1 — G@)Jem«! + [ Z(t—z)- [1 — G(x)]ve~ 2? dz. 

0 

Show that this renewal process is terminating if and only if G has an expectation 
we <a, Discuss the applicability of the asymptofic estimates of section 6. 

16. Effect of a traffic island. [Example 7(b).] A two-way traffic moves in two 
independent lanes, representing Poisson processes with equal densities. The 
expected time required to effect a crossing is 2&, and formulas (7.10) apply with 
this: change. A traffic island, however, has the effect that the total crossing time 
is the sum of two independent variables with expectations and variances given in 
(7.10). Discuss the practical effect. 

17. Arrivals at a counter constitute a persistent renewal process with distribution 
f. After each registration the counter is locked for a fixed duration & during 
which all arrivals are without effect. Show that the distribution of the time from 
the end of a locked period to the next arrival is given by 

[ee+-» — F(§—y)] U{dy}. 
0 

If F is exponential so is this distribution. 

18. Non-linear renewal. A particle has an exponential lifetime at the expiration 
of which it has probability p, to produce k independent replicas acting in the 
same manner (k =0,1,...). The probability F(t) that the whole process stops 
before epoch ¢ satisfies the equation 

oO é 

F(t) = Poll —e ot) + > Pk { ae alt—2) Fk (-) dx. 

0 K=1 

(No genera! method for handling such equations is known.) 

19. Let F be an arbitrary distribution in 1! with expectation u >0 and 

finite second moment m,. Show that 

where, as usual, x, denotes the positive part of x. Hint: If Z(t) stands for the 
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left side then Z satisfies renewal equation with 

1 t 

if F(x) dx, t<0 
—3o 

2(x) = 

x | fl —F(x)) az, t>0 

20. Renewal theorem in R*, Let the distribution of the pair (X, Y) be concen- 
trated on the positive quadrant. Let J be the interval 0 <z,y <1. For an 
arbitrary vector a denote by J + a the interval obtained by translating J through 
a. Lemma | of section 9 generalizes as follows. For any fixed vectors a and b 

U{l +a +tb} — U{1 + tb} +0 

as [> ©, 
(a) Taking this for granted show that the renewal theorem for the marginal 

distributions implies that U{7 + tb; > 0. 
(6) Show that the proof of lemma carries over trivially. 

10 A more appropriate formulation of renewal problems in the plane has been introduced 
recently by P. J. Bickel and J. A. Yahav, [Renewal theory in the plane, Ann. Math. Statist., 

vol. 36 (1965) pp. 946-955]. They consider the expected number of visits to the region 
between circles of radii r and r + a, and let r— o. 

 



CHAPTER XII 

Random Walks in R’ 

This chapter treats random-walk problems with emphasis on combinatorial 
methods and the systematic use of ladder variables. Some of the results 

will be derived anew and supplemented in chapter XVIII by Fourier methods. 
(Other aspects of random walks were covered in VI,10.) In the main our 

attention will be restricted to two central topics. First, it will be shown that 
the curious results derived in 1; III for fluctuations in coin tossing have a 

much wider validity.and that essentially the same methods are applicable. 
The second topic is connected with first passages and ruin problems. It has 
become fashionable to relate such topics to the famous Wiener-Hopf theory, 
but the connections are not as close as they are usually made to appear. 
They will be discussed in sections 3a and XVIII,4. 

E. Sparre Andersen’s discovery in 1949 of the power of combinatorial 

methods in fluctuation theory put the whole theory of random walks into a 

new light. Since then progress has been extremely rapid, stimulated also by 
the unexpected discovery of the close connection between random walks and 

"queuing problems.} 
The literature is vast and bewildering. The theory presented in the follow- 

ing pages is so elementary and simple that the newcomer would never suspect 
how difficult the problems used to be before their natural sétting was under- 
stood. For example, the elementary asymptotic estimates in section 5 cover 
a variety of practical results obtained previously by deep methods and 

sometimes with great ingenuity. 
Sections 6-8 are nearly independent of the first part. It is hardly necessary 

to say that our treatment is one-sided and neglects interesting aspects of 
random walks such as connections with potential theory and group theory.” 
    

1 The first such connection seems to have been pointed out by D. V. Lindley in 1952. 
He derived an integral equation which would now be considered of the Wiener-Hopf type. 

2 For other aspects see Spitzer’s book (1964), although it is limited to arithmetic distri- 
butions. For combinatorial methods applicable to higher dimensions see C. Hobby and 
R. Pyke, Combinatorial results in multidimensional fluctuation theory, Ann. Math. Statist., 

vol. 34 (1963) pp. 402-404. 
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1. BASIC CONCEPTS AND NOTATIONS 

Throughout this chapter X,, X,,... are independent random variables 
with a common distribution F not concentrated on a half-axis. [For distri- 

butions with F(O) = 0 or F(0) = 1 the topic is covered by renewal theory-] 
The induced random walk is the sequence of random variables 

(1.1) So = 0, S, = X,+°°:+X,,.- 

Sometimes we consider a section (X,,,,...,X,) of the given sequence 
{X,}; its partial sums 0,S,,,—S,,...,S,—S,; will be called a section of 

ihe random walk. The subscripts are treated in the usual manner as a time. 
parameter. Thus an epoch 2 is said to divide the whole random walk 
into a preceding and a residual section. Because Sg = 0 the random walk 
is said to start at the origin. By adding a constant a to all terms we obtain 

a random walk starting at a. Thus S,,S,.,,... is a random walk induced 

by F and starting at S,,. 

Orientation. Looking at the graph of a random walk one notices as a 

striking feature the points where S, reaches a record value, that is, where 

S, exceeds all previously attained values S,,...,S,;. These are the 
ladder points according to the terminology introduced in VI,8. (See fig. 1 
in that section.) The theoretical importance of ladder points derives from 
the fact that the sections between them are probabilistic replicas of each other, 
and therefore important conclusions concerning the random walk can be 
derived from a study of the first ladder point. 

In volume 1 we have studied repeatedly random walks in which the X,, 
assume the, values +1 and —1 with probabilities p and q_ respectively. 
In such walks each record value exceeds the preceding one by +1, and the 
successive ladder points represent simply the first passages through 1, 2,.... 

In the present terminology we would say that the ladder heights are known 
in advance, and only the waiting times between successive ladder points 
require study. These are independent random variables with the same 
distribution as the first passage time through +1. The generating function 

of this distribution was found in 1; XI,(3.6) and is given by 

(1.2) [1 — V1 — 4pqs? }/(2gs) 
where J denotes the positive root [see also 1; XIV,4; for explicit formulas 

see 1; XI,3(d) and 1; XIV,5]. When p< q_ the first passage t'mes are 

defective random variables since the probability that a positive value will 
ever be attained equals p/q. 

The same record value may be repeated several times before a new record 
value is reached. Points of such relative maxima are called weak ladder 
points. [In the simple binomial random walk the first weak ladder point is 
either (1,1) orelse it is of the form (2r, 0).] 
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After these preliminary remarks we proceed to a formal introduction of 
ladder variables repeating in part what was said in VI,8. The definition 
depends on an inequality, and there exist therefore four types of ladder 
variables corresponding to the four possibilities <, <, >, >. This leads 
to a twofold classification to be described by the self-explanatory terms 
ascending and descending, strict and weak. The ascending and descending 
variables are related by the familiar symmetry between plus and minus, or 
maxima and minima. The distinction between strict and weak variables, 
‘however, puts a burden on description and notation. The simplest way out 
is to consider only continuous distributions F, for then the strict and weak 
variables are the same with probability one. Beginners are advised to 
proceed in this way and not to distinguish between strict and weak ladder 
variables, but this distinction is unavoidable for the general theory on one 
hand, and for examples such as the coin-tossing game on the other. 

To introduce the necessary notations and conventions we consider the 
ascending strict ladder variables. We shall then show that the theory of 
weak ladder variables follows as a simple corollary of the theory of strict 
variables. Descending ladder variables require no new theory. We shall 
therefore take the ascending strict ladder variables as typical, and when no 
danger of corfusion arises, we shall drop the qualifications “ascending” and 
“strict.” 

Ascending strict ladder variables. Consider the sequence of points (n, S,) 

for n=1,2,... (the origin is excluded). The first strict ascending ladder 

point (7 ,, #,) is the first term in this sequence for which S,, > 0. In other 
words, 7, is the epoch of the first entry into the (strictly) positive half-axis 
defined by 

(1.3) {F, = n} = {S, < 0, sey S,-1 < 0, Sn > 0}, 

and #, =S,,. The variable 7, is called first Jadder epoch, #, the first 
ladder height. These variables remain undefined if the event (1.3) does not 

take place, and hence both variables are possibly defective. 
For the joint distribution of (7,, #,) we write 

(1.4) P\7, = 1, #, < 2} = H,(2). 

The marginal distributions are given by 

(1.5) Pi7, =n} = H,( 0), n=1,Z,... 

(1.6) Pi, < 2} = DH,(2) = H(z). 
n=1 ‘ . 

The two variables have the same defect, namely 1 — H(oo) > 0. 

3 Problems 3-6 provide illustrative exercises accessible without general theory. 
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The section of the random walk following the first ladder epoch is a 
probabilistic replica of the whole random walk. Its first ladder point is the 
second point of the whole random walk with the property that 

(1.7) ~S, > So,..2,S, > Spas. 

it will be called the second ladder point of the entire random walk. It is 

of the form (7,+ 7.2, 4, + #,) where the pairs (F1, # 1.) and 

(7 ,, 4) .are independent and identically distributed. (See ‘also VI,8.) 

Proceeding in this way we define the third, fourth, ... ladder points of our 
random walk. Thus a point (n,S,) is an ascending ladder point if it satisfies 
(1.7). The rth ladder point (if it exists) is of the form (7, +°°'+7,, 
HO, +--+ + 4) where the pairs (7,,#,) are mutually independent 

’ and have the common distribution (1.4). (See fig. 1 in VI,8.) 

For economy of notation no new letters will be introduced for the sums 
TFit+::-+7, and #,+:-''+ #,. They form*(possibly terminating) 
renewal processes with “‘interarrival times” ZT, and #,.’In the random 
walk, of course, only 7, is of the nature: of a time variable. The ladder 

points themselves form a two-dimensional renewal process. 
We shall denote by 

(1.8) y= SH 
n=0 

the renewal measure: for the ladder height process. (Here H* = y,.) Its 

improper distribution function given by y(x) = p{—0o, 2x} vanishes 

when x <6, while for ‘x positive p(x) equals one plus the expected number 
. — 

of ladder points in the strip 0,2 (no limitation on time). We know from VI,6 
_and XI,1 that y ) < o for all z and in the case of defective ladder 

variables 
20 , 1 

1.9). 00) = > H*(co) = —————_. (1.9) MO) BP = ay 

Finally we introduce the notation y, for the atomic distribution with unit 

mass at the origin ; thus for any interval J 

(1.10) wil} = 1 if rel, w{Z} =0 otherwise. 

Ascending weak ladder variables. The point (n, S,) is a weak (ascending) | 
ladder point iff S, >S, for k =0,1,...,m. The theories of strict and 

weak ladder variables run parallel, and we shall systematically use the 

same letters, indicating weak variables by bars: thus 7, is the small- 
est index n such that S,<0,...,8,,<0, but S,>0. As was 

mentioned before, the tedious distinction between strict and weak 
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variables becomes unnecessary when the distribution F is continuous. 
Even in the general situation it is easy to express the distribution H of 
weak ladder heights in terms of. the distribution AH, and this will enable 
us to confine our attention to the single distribution. defined in (1.6). . 

The first weak ladder point is identical with the first strict ladder point — 
except if the random walk returns to the origin having passed only through 

negative values; in this case H. 1 =0 and we put (= PLL, , = 0}. Thus 

(1.11) $= SP{S, <0,...,8,, <0,S, = 0}. 
‘n=l | / -_ 

(The event cannot occur if X, > 0 and hence 0 < { < 1.) With probability 
1 — € the first strict ladder point coincides with the first weak ladder point. — 
and hence ) 

(1.12) A = ty + (1—O#.. 
In words, the distribution of the first weak ladder height is a mixture of the 

distribution H and the atomic distribution. concentrated at the origin. - 

_ Example. In the simple binomial random walk’ the first weak ladder 
height equals 1 iff the first step leads to +1. If the first step leads to —1 the 
(conditional) probability of a return to 0 equals 1 if p>gq, and p/q¢ 
otherwise. In the first case =, in the second =p. The possible 
laddet heights are 1 and 0, and they have probabilities p and q if p <q, 
.while both probabilities equal p when p <q. In the latter case the ladder 
height is a defective variable. . . > 

The probability that prior to the first entry into 0, 00 the random walk 
returns to the origin exactly k times equals ¢*(1—{). The expected number 

of such returns is 1/(1+{) and this is also the expected multiplicity of each 
weak ladder height prior to the appearance of the next strict ladder points: | 

Therefore 

5-—l 
(1.13) . ee 

(See problem 7.) The simplicity of these relations enables us to avoid 

explicit use of the distribution Z. 

Descending ladder variables. The strict and weak descending ladder variables 
are defined by symmetry, that is, by changing > into <. On the rare 
occasions where a special notation will be required we shall denote descending 

order by the superscript minus. Thus the first strict descending ladder point 
is (7 | ,#,), and so on. _ 

It will be seen presently that the probabilities P{/”, = 0} and P{#’, = 0} 
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are identical. because 

(1.14) P{S,>0,...,8,.,>0,S, =0} = 

. P{S, <0,...,S,,< 0,8, = 0}. 

It follows that the analogue to (1.12) and (1.13) for the descending ladder 
variables depend on the same quantity ¢. 

2. DUALITY. TYPES OF RANDOM WALKS 

The amazing properties of the fluctuations in coin tossing were derived in 
1; II by simple combinatorial arguments depending on taking the variables 
(X,,..., X,) im reverse order. The same device will now lead to important 
results of great generality. 

For fixed we introduce n new variables by X* = X,,..., X* = Xj. 
Their partial sums are given by S*=S, Sy where k = 0,...,2. 
The joint distributions of (S,,...,S,) and (Sf,..-,S%) being the 

same, the correspondence X,,— x maps any event A defined by 
(So,...,S,) into an event A* of equal probability. The mapping is easy 
to visualize because the graphs of (0,S,,...,S,) and (0,Sf,...,S*) 

are rotations of each other through 180 degrees. 

Example. (a) If S, < 0,...,S,.<9 but S, =0, then 

— S*>0,...,S*,,>0 and S*=0. 

This proves the validity of the relation (1.14) used in the preceding section. p» 

We now apply the reversal procedure to the event S, > Sy,...,S, > S,-1 

defining a (ascending strict) ladder point. The dual relations are S*¥ > S*_, 
for kK = 1,...,n. But SS > S*_, is the same as S > 0, and hence we 

—_—_—— 

have. for every finite interval I<0,0 | 

(2.1) P{S, >S,; for j=0,...,n—-1 and S,eB= 

= PS, >0 for j=1,...,n and S,€}}. 

The left side is the probability that there exists a ladder point with abscissa 
n and ordinatein J. The right side is the probability of the event that a visit 
to I at epoch n takes place without prior _ to the closed half-line 
  

Consider then the result of summing (2.1) over all m. On the left we get 
y{I} by the definition (1.8) of the renewal measure y. On the right we get 

the expected number of visits to the interval J prior to the first entry into 

  

—oo,G. It is finite because p{I} < 00. We have thus proved the basic 
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Duality lemma. The renewal measure y admits of two interpretations. For 

every finite interval I <.0, © the value {I} equals 
(a) the expected number or ladder points in I; 

(b) the expected number. of visits S,¢€I such that S,>0 for 

k =1,2,. 7 - | 

This simple lemma will enable us to prove in an elementary way theorems 
that would otherwise réquire deep analytic methods. In its analytic formu- 
lation the lemma does not seem exciting, but it has immediate cohsequences 
that are most surprising and. contrary to naive intuitions.. 

Example. (b) Simple random walk. In the random walk of: the example | 

in section 1 there exists a ladder point with ordinate & iff the event {S, = k} 
occurs for some n, and we saw that the probability for this is 1-or (p/q)*. 
according as p >q or p<q. By the duality lemma this means that in a 
symmetric random walk. the expected number of visits to k > 1 prior to the 

first return to the origin equals | for all k. The fantastic nature of this result 
appears clearer in the coin-tossing terminology. The assertion is that on the 
average Peter’s accumulated gain passes once through every value k, however. 
large, before reaching the zero level for the first time. This statement usually 
arouses incredulity, but it can be verified by direct calculation (problem 2): 

(Our old result that the waiting time for the first return to 0 has infinite 
expectation follows by summation over k.) > 

In the symmetric binomial random walk (coin tossing) each of the values 

+1 is attained with probability one, but the expected waiting time for each 
of these events is infinite. The next theorem shows that this is not a peculiarity 
of the coin tossing game since a similar statement is true for all random walks 
in which both positive and negative values are ass"med with probability one: 

Theorem 1. There exist only two types of randam walks. 
(i) The. oscillating type. Both the ascending and the descending renewal 

processes are persistent, S, oscillates with probability 1 between —oo and 
co, and 

(2.2) EJ, =0, EZ; =0. 

(ii) Drift ‘to —0o, (say). The ascending renewal process is terminating, 
the descending one proper. With probability one S,, drifts to --co and 
reaches a finite maximum M > 0. The relations (2.5) and (2.7) are true. 

[Walks of type (ii) are obviously transient, but type (i) includes both 
persistent and transient walks. Sec end of VI,10.] 
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Proof. The identity (2.1) holds also when the strict inequalities are 

replaced by weak ones. For J = 0, co it reduces to 

(2.3) P{S,>S, for 0<k<n}=P{S,>0 

for O<k<usH=1—-—P{LFZ_Z <n}. 

The left side equals the probability that (7, S,) be a weak ascending ladder 
point. These probabilities add to (00) < oo, and in view of (1.13) we have 
therefore 

(2.4) : = w(co) = Sl — PFT < nh) 
' When the descending ladder process is defective the terms of the series are 
bounded away from zero and the series diverges. In this case w(oo) = 0 
which means that the ascending process is persistent. We have thus an 
analytic proof for the intuitively obvious fact that it is impossible that both 
the ascending and thé descending ladder processes terminate. 

If 7 > is proper (2.4) reduces to 

1 
(2:5) - E73) = —— yo )=——_____— 

1a (1 = (1 — H(0o)) 
_ with the obvious interpretation when H7(0o) = 1. It follows that E(7[) < 0 

iff H(oo) <1, that is, iff the ascending variable 7, is defective. Thus 

either one of these variables is defective, or else (2.2) holds. 
If E(7 7) < co the ascending renewal process is terminating. With 

probability one there occurs a last ladder point, and so 

(2.6) M = max {S, S,, .. 3. 

is finite. Given that the nth ladder point occurred, the probability that it is 
- the last equals 1 — H(0o), and so [see XI,(6. 3)] 

n=0 

1) PIM < s}= [1 H(oo)] LHe) = [1 — HC) v(z). a 

In the following theorem we agree to write E(X) = +00 if the defining 

integral diverges only at +00 or, what amounts to the same, if P{K < ft} is 

integrable over —©o, 0..- 
  

’ Theorem 2. (i) If E(X,) =0, then 4, and JZ, are proper,’ and 

E(7 ,) = 0. 7 

‘Theorem 4 of VI,10 contains the. stronger result that the random walk is persistent 
whenever E(X,) = 0. 
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fi ) If E(X)) is finite and positive, then #/, and JF, are proper, have 
nite expectations, an 

(2.8) E(#’,) = E(7 ,) E(X,) 

The random walk drifts to + ©. 
(iii) If’ E(X,) = +00 then E(4’,) = © and the random walk drifts to 

+ 00. . 

(iv) Otherwise either the random walk drifts to — oo (in which case FZ, and 

H , are defective), or else E(4,) = ©, 

The identity (2.8) was discovered by A. Wald in a more general setting to 
be discussed in XVIII,2. The following proof is based on the strong law of 
large numbers of VII,8. Purely analytic proofs will be.given in due course. 
(See theorem 3 of section 7 and problems 9-11 as well as XVIII,4.) 

Proof. If m coincides with the kth ladder epoch we have the identity 

(2.9) Sn _ (yp th 
no (yt +I lk 

We now observe that the strong law of large numbers applies also if E(X,) = 
= +00 as can be seen by the obvious truncation. _ 

(i) Let E(X,) = 0. As k — oo the left side in (2.9) tends to 0. It follows 
that the denominator tends to infinity. This implies that 7, is proper and 
E(J,) = 0. 

(ii) If 0 < E(X,) < the strong law of large numbers implies that the 

random walk drifts to oo. In view of (2.5) this means that 7, is proper and 
E(7,) < co. Numerator and denominator in (2.9) therefore tend to finite 

limits, and (2.8) now follows from the converse to the law of large numbers 
(theorem 4 in VIT,8). 

(iii) If E(X,) = ++ 00 the same argument shows that E(#’,) = w. 

(iv) In the zemaining cases we show that if #%@, is proper and E(J#,) < 
the random walk drifts to —oo. Considering the first step in the random 

walk it is clear that for x > 0 

(2.10) | P{#, > 2} > P{X, > a}. 

If #, is improper the random walk drifts to —oo. If it is proper the 

integral of the left side extended over 0, © equals E(3;). If E(,) < © 

it follows that E(X,) is finite or —o«. The case E(X,) > 0 has teen taken 

care of, and if E(X,) <0 (or — ©) the random walk drifts to — 0. b 

It follows from (2.10) and the analogous irequality for « < 0 thatif both 

Jf, and He are proper and have finite expectations, then P{|X,| > x} is 

 



398 RANDOM WALKS IN f! XII.3 

integrable and hence E(X,) exists (lemma 2 of V,6). With E(X,) ¥ 0 

one of the ladder variables would be defective, and hence we have the 

Corollary. If both #, and #7 are proper and have finite expectations, 
then E(X,) = 0. 

The converse is not true. However, if E(X,) = 0 and E(X?) < o then 

HAH, and AT have finite expectations. (See problem 10.. A more precise 
result is contained in theorem | of XVIJJ,5 where S. and S, are the first 

entry variables with distributions #, and #7.) 

3. DISTRIBUTION OF LADDER HEIGHTS. 
WIENER-HOPF FACTORIZATION 

The calculation of the ladder height distributions H and A seems at 
first to present a formidable problem, and was originally considered in this 
light. The duality lemma leads to a simple solution, however. The idea is 

-| . * 

that the first entry into, say, — oo, 0 should be considered together with the 

section of the random walk prior to this first entry. We are thus led to the 
. Study of the modified random walk {S,} which terminates at the epoch of 

—— 
the first entry into —oo,0. We denote by y, the defective probability 

distribution of the position at epoch nin this restricted random walk; that 
is, for an arbitrary interval J and n=1,2,... we put 

(3.1) yr(l} = P{S, >0,...,8, >0,8,6N. 
———__—__| 

(Note that this implies y,{— oo, 0} = 0.) As before, yy is the probability 

distribution concentrated at the origin. Now it was shown in (2.1) that 
y,{I} equals the probability that (”,S,) be a ladder point with S, ¢/. 
Summing over 1 we get therefore 

(32) vl} = S val} 
where y is the renewal function introduced in (1.8). In other words, for an 
interval in the open positive half-axis yw{Z} is the expected number of 
(strict asceriding) ladder points with ordinate in J. For J in the negative 
half-axis we now define p{7} = 0. It follows that the series in (3.2) con- 

verges for every bounded interval I (though not necessarily for J = 0, 00). 
It is this unexpected result that renders the following theory so incredibly 
simple. 

——_—_———_| . 

Studying the first entry into —oo,0 means studying the weak descending 

ladder process, and with the notations of section 1 the point of first entry 

is #7, its distribution A-. For typographical convenience, however, we 
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replace H- by p and denote by p,{I} the probability that the first entry to 
| 

— 00,0 takes place at epoch n and within the interval J. Formally for 
n=1,2,... 

(3.3) pl} = P{S, >0,...,8,.>0,8, <0,S,eN. 

(This implies p,{0, 0} = 0. The term py remains undefined.) This time 
the series 

(3.4), p(T} = > pal} 
obviously converges and represents the possibly defective distribution of 
the point of the first entry. (In other words, p{I} = HT.) 

It is easy to derive recurrence relations for y, and p,. Indeed, given the 
position y of S, the (conditional) probability that S,,,¢/ equals 
F{I — y}, where I — y is the translate of J through —y. Thus 

(3.5a) Parill} = | vatay) Fil — y} if 1c —x,0 

(3.5b) Part} = | vatay) F{I — y} if 1¢ 0,0 

(the origin contributing only when » = 0). For bounded intervals J the 
duality lemma assures the convergence of > y,{J}, and > p,{J} always 
converges to a number <1. We have thus series representations for p 
and y. It is clear that these sums satisfy 

(3.6a) ptt} =| “v(ay} Fu — 9} if 1 —w, 0 

(3.66) wD =| "vlay) Fu — 9} if 1c 00 
with the proviso that (3.65) is restricted to bounded intervals 7. We shall 
see that in practice the relations (3.6) are more useful than the theoretical 

series representations for p and y. It is sometimes convenient to replace 
the interval function p and y by the equivalent point functions 

{ ————H 

p(x) = p{—«, x} and p(x) = p{—o, 2}. 
  

Clearly (3.62) is equivalent to 

Gla) pte) = |“ v{dy} Fey) <0. 
From (3.66) we get for z > 0 

we) = 1+ Oz} = 1+ [vlay) Fe — F—v) 
/0 
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Taking into account (3.7a) we see thus that (3.6b) is equivalent to 

(3.7b) wa) = 1 — pl0) + | vlay) Fey), 2>0. 
To simplify notations we introduce the convolution 

(3.8) pRF = 2 Pn * F. 

Since w is concentrated on 0, «0 the value yp % F{J} equals the sum of the 
two integrals in (3.6) and is therefore finite. As y has a unit atom at the 

origin we can combine the two relations (3.6) into the single convolution 
equation , 

(3.9) p+yp=wWtyee 
a | 

In view of the fact that p and wy — wy are concentrated on —co,0 and 

0, ©, respectively, the relation (3.9) is fully equivalent to the pair (3.6). 
We shall use (3.9) as an integral equation determining the unknown 

measures p and y. A great many conclusions of theoretical importance 

can be derived directly from (3.9). We list the most remarkable such theorem 

_under the heading of an example in order to indicate that it will not be used 
in the sequel and that we embark on a digression. 

  

Examples. (a) Wiener-Hopf type factorization. It follows from the 
definition (1.7) of w that it satisfies the renewal equation 

(3.10) P= + ypx* H. 

Using, this relation we show that (3.9) may be rewritten in the equivalent form 

(3.11) F=H+p—Hkp. | | 

- Indeed, convolving (3.9) with H. we get 

Hk p+y-p=H-F+yxkF. 

Subtracting ‘this from’ (3.9) yields (3.11). Conversely, convolving (3.11) 
with py we get 

pRF=yp—Pptyep—(Y—pw)kKp=y—Wt Pp 

which is the same as (3.9). 

_ The identity (3.11) is remarkable in that it represents an arbitrary prob- 
ability distribution F in terms of two (possibly defective) distributions H 

———- _ 
and p concentrated on 0, © and —.«,0Q, respectively. The first interval 
is open to the second closed, but this asymmetry can be remedied by express- 

——————_ 

ing the first entrance probabilities p into —0o,0 by the first entrance 
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probabilities H- into —oo,0. The relationship between these prob- 
abilities is given by the analogue to (1.12) for 7 <0, namely 

p = lp. + (1-2) 
with ¢ defined by (1.11) [which relation holds also with the inequalities 

reversed; see example 2(a)]. Substituting into (3.11) we get after'a trite 

rearrangement | 

G.12) Yo — F = (1-4) [vo — HI} & [po — AM]. 
Of course, for a continuous distribution F the relations (3.11) and (3.12) 
are identical. ° 

Various versions of this formula have been discovered independently by 
different methods and have caused much excitement. -For a different variant 

see problem 19, and for the Fourier analytic equivalent see XVIII,3. The 
connection with the Wiener-Hopf techniques is discussed in section 3a. 
Wald’s identity (2.8) is an easy consequence of (3.11). (See problem I1 as 

well as XVIII,2.) 
(b) Explicit expressions for H and H~ are usually difficult to.come by. 

An interesting distribution for which the calculations are particularly simple 
was found in example VI,8(b). If F is the convolution of two exponentials 

concentrated on 0, © and —oo,0, respectively, then it has a density of the 

form 

  

  

ab e** x<0 
a+b 

f(x) = 
aby, 

e x > 0. 
a+b 

We suppose b <a, so that E(X)>0. Thea H and H™~ have densities 

given by be~** and be. Here Hx H~ = (b/a)F, and (3.11) is trivially 

true. > 

(For further explicit examples see problem 9.) 

We now turn to the consideration of (3.9) as an integral equation for the 
unknown measures p and y. It will be shown that in the present context 

the solution is unique. For brevity we agree to say that a pair (p, y) is 

probabilistically possible if p is a possibly defective probability distribution 
a | 

  

concentrated on —o,0, and vw — yy a measure concentratea on 0, < 

such that for each bounded interval / the measures p{7+ ¢} remain 

bounded. (The last condition follows from the renewal theorems since 

p= > H"™) 
Theorem 1. The convolution equation (3.9) [or, equivalently, the pair 

(3.6)] admits of exactly one probabilistically possible solution (p, p). 
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This implies that p is the distribution of the point of first entry into 
—— 
—o,0 and y= > H"* where H is the distribution of the point of first 

entry into 0, o. 

Proof. Let p# and w# be two non-negative measures satisfying (3.6), 

and y* > wy). From (3.6b) we get by induction that p* > yy +---+ y, 
for every n, and hence our solution y is minimal in the sense that for any 
other solution y* with a unit atom at the origin p*{7} > p{J} for all 

intervals. In other words, 6 = y* — p is a measure. From (3.6a) it is 
now seen that the same is true of y= p* — p. Since both (p, yw) and 
(p*, p*) satisfy (3.9) we have 

(3.13) 6 4 yp HOKE 

Let J be a fixed finite interval and put z(t) = 6{7 + t}. Two cases are 

possible. If p is a proper distribution the fact that p* > p implies that 
p* = p andhence y = 0. Then z isa bounded solution of the convolution 
equation z = F &z and hence by induction | 

(3.14) 2(1) =["-0-» F"*{dy} 

for all n. Now z>0 and z(t)=0 for every ¢ such that 7+ 17 is con- 

tained in the negative half-axis. For such ¢ it is clear from (3.14) that 
z(t — y) =0 for every y which is a point of increase for some F"*. By 
lemma 2 of V,4a the set of such y is everywhere dense and we conclude that 
z vanishes identically. . 

For a defective p we know only that y > 0, and then (3.13) implies only 
that z < Fz. In this case (3.14) holds with the equality sign replaced by 
<. But the random walk then drifts to oo and so the mass of F"* tends 
to concentrate near oo. Again, 2(t—y) = 0 for all sufficiently large y 

and so z must vanish identically. Thus y* = y as asserted. > 

3a. THE WIENER-HOPF INTEGRAL EQUATION 

To explain the connection between the integral equation (3.9) and the 

standard Wiener-Hopf equation it is best to begin by a probabilistic problem 
where the latter occurs. 

Example. (c) Distribution of maxima. For simplicity let us assume that 
the distribution F has a density f ana a negative expectation. The random 
walk {S,} drifts to — oo and a finite-valued random variable 

(3.15) M = max [0,S8,,S.,...] 
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is defined with probability one. We propose to calculate its probability 
distribution M(x) = P{M <x} which is by definition concentrated on 
-— | 
0, 0. The event {M < zx} occurs iff 

X,;=y<2 and max (0, X2., X,+X;,...] <2-y. 

Summing over all possible y we get 

(3.16) Mc) =|" M@—wsw ay, z>0 
which is the same as 

(3.17) M(x) = [ ” M(s)f(a—s) ds, x > 0. 

On the other hand, we know from (2.7) that M(x) = [i — H(o)] p(x). 

We saw that y satisfies integral equation (3.7b) where under the present 
conditions p(0) = 1. A simple integration by parts now shows that (3.75) 
and (3.17) are actually identical. > 

The standard form of the Wiener-Hopf integral equation is represented 
by (3.17) and our example illustrates the way in which it can occur in prceb- 

ability theory. General references to the Wiener-Hopf techniques are 
misleading, however, because the restriction to positive functions and 
measures changes (and simplifies) the nature of the problem. 

_ The ingenious method> used by N. Wiener and E. Hopf to treat (3.17) 
has attracted wide attention and has been adapted to various probabilistic 

problems, for example, by H. Cramér for asymptotic estimates for proo- 
abilities of ruin. The method involves a formidable analytic apparatus and 
hence the ease with which these estimates are obtained from the present 
approach is almost disquieting. The deeper reason can be understood as 

follows. The equation (3.17) represenis, at best, only one of the two 

equations (3.7), and when p(0) <1 even less. Taken by itsel? (BAN is 

much more difficult to handle than the pair (3.7). For exampic, the unique- 

ness theorem fails for (3.17) even if oaly probability distributions are admittca, 

In fact. the basic idea of the Wiener-Hopf technique consists in intreaucing 

an auxiliary function which in the general theory lacks any varticular 

meaning. This tour de force in effect replaces “the individual equation 

(3.17) by a pair equivalent to (3.7) but the uniguc.jess is lost. We proceeded 

in the opposite direction, starting from th: obvious recursion system (3.5) 

for the probabilities connected with the two inseparable probleras: the 

* Dating back to 1931. A huge literature followed the first presentation in book form: 

E. Hopf, ‘Mathematical problems of radiative equilibrium, Cambridge tracts, No, 31, 1934. 

    

 



404 RANDOM WALKS IN R2 XI1.4 

—— 
first entry to —oo,0 and the random walk restricted to x >0 prior to 
this first entry. In this way we derived the integral equation (3.9) from 
the <nown solution, and the uniqueness of the probabilistic solution was 
easy to establish. The convergence proof, the properties of the solutions, 
as well as the connection between the distribution M of the maxima and 

the renewal measure y depend on the duality lemma. 
The possibility of attacking the Wiener-Hopf equation (3.17) using the 

duality principle was noticed by F. Spitzer. The usual way of connecting 
the Wiener-Hopf theory with probabilistic problems starts from formulas 
related to (9.3) below in their Fourier version to which we shall return in 

chapter XVIII. There exists now a huge literature relating Wiener-Hopf. 
techniques to probabilistic problems and extending the scope of combi- 
natorial methods. Most of this literature uses Fourier techniques.’ 

4. EXAMPLES 

Explicit formulas for the first entry distributions are in general difficult 
to obtain. By a stroke of good fortune there is a remarkable exception to 

this rule, discussed in example (a). At first sight the distribution F of this 

example appears artificial, but the type turns up frequently in connection 
with Poisson processes, queuing theory; ruin problems, etc. Considering 
the extreme simplicity of our general results it is unbelievable how much 

ingenuity and analytical skill has been spent (often repeatedly) on individual 
special cases. 

Example (c) exhibits (in a rather pedestrian fashion) the complete cal- 

culations in the case of an arithmetic F with rational generating functions. 
The calculations are given because the same method is used for rational 

Laplace or Fourier transforms. Another example is found in problems 3-6. 
Example (6) deals with a general relationship of independent interest. 

We adhere to the notations of the preceding section. Thus H and p 

are the distributions of the point of first entry into 0,00 and —,0 
respectively. (In other words, H and p are the distributions of the first 

strict ascending and the first weak descending ladder heights.) Finally, 
y = > H"* is the renewal function corresponding to H. Our main tool 
is the equation (3.7a) stating that for x <0 the distribution of the first 

  

§ The Wiener-Hopf equation whose kernel is a probability density, Duke Math. J., vol. 

24 (1957) pp. 327-343. 
7 A meaningful short survey of the literature is impossible on account of the unsettled 

state of affairs and because the methodology of many papers suffers under the influence of 
accidents of historical developments. Generalizations beyond probability theory are 
illustrated by G. Baxter, An operator identity, Pacific J. Math., vol. 4 (1958) pp. 649 -663. 
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° , - : , 

entry into +00, 0 is given by 

(4.1) | pte) = ["vlay) Few. 
- Examples. (a) Distributions with one exponential tail occur more frequently 
than might be expected. For exaniple, in the random walk of example VI,8(b) 
and in the corresponding queuing process VI,9(e) both tails are exponential. 
Suppose, by way of introduction, that the /eft tail of F is exponential, that is, 

F(x) = qe®* for x <0. Whatever p is, (4.1) shows that p(x) = Ce 

for x <0 where C is a constant. Having made this discovery we inter- 
change the role of the two half-axes (partly to facilitate reference to our 
formulas, partly with a view to the most important applications in queuing 
theory). Assume then that 

(4.2) F(x) = 1 — pe** | for x>0 

without any conditions imposed for x < 0. To avoid unnecessary compli- 

cations we assume that F has a finite expectation mw and that F is con- 
tinuous. It follows from the preliminary remark that the ladder height 
distribution H has a density proportional to e-**, We now distinguish 
two cases. 

(i) If «> 0 the distribution H is proper and hence for x >0 

(4.3) H(z) = 1-—e™%, p(x) = 1 + ae.. 

(The latter follows trivially from p= > H"* or the renewal equation 
(3.10).] From (4.1) we get 

(4.4) p(x) = F(x) + «| F(s) ds, z<0,. 

and thus we have explicit expressions for all desired probabilities. An easy 
calculation shows that : 

(4.5) pO) = 1 — am. 

This is a special case of (2.8) because (1 — p(0))-! = E(7,) by virtue of 

(2.5). 
(ii) If w <0, the relations (4.3) and (4.4) still represent a solution of the 

integral equation (3.9), but because of (4.5) it is probabilistically impossible 

when «<0. For the correct solution we know that H has a density 

h(x) = (a—«)e"** where 0< «<a because H is defective. An easy 

calculation shows that y’(x) = (a—«)e** for x>0. The unknown 

consiani « is obtained from the condition that p(0) = 1. A routine cal- 

culation shows that « must be the unique positive root of the equation (4.6). 

Given the root of this transcendental equation we have again expi:it 

formulas for H, p, and y. 

 



406 RANDOM WALKS IN §? - ' XIL4 

The reader will easily verify that the same theory applies when the variables 
- X,, Xo,.. . of the random walk are integral-valued and the distribution F 

has a geometric right tail, that is, if F attributes to the integer kK > 0 the 
weight gf*. 

(b) Associated random walks. Suppose that F has an expectation BF 
and that there exists a number « ¥ 0 such that 

, +00 

(4.6) [Per ray} = 
. ~o 

Given an arbitrary ‘measure y on ‘the Line we associate with it a new 
measure *y defined by . 

42  yfdy) = yhdy}. . 
The measure °F associated with F is againa proper probability distribution 
and we say that the random walks generated by *F and F are associated 
with each other.® It is easily seen that the n-fold convolution of *F with 
itself is associated with F*.so that the notation *F** is unambiguous. 
Furthermore, the recursion formulas (3.5) show that the transforms “%p, 
and *y, have the same probabilistic meaning in the new random walk. as 
Pn. and y, in the old one. It follows generally that the transforms °p, *H, 
¢w, -etc., have the obvious meaning for the random walk associated with *F. 

[This can be seen also directly from the integral equation (3.9).] 
The integral . 

+0 

P(t) = [ ev Fidy} 

exists for all ¢ betweenQ and « and in this interval p may be differentiated 
indefinitely. The second derivative being positive, y is a convex function. 
If g’(«) exists, the fact that g(0) = m(x) implies that g’(0) and 9’(x) 
have opposite’signs. The random walks induced by F and °F have therefore 
drifts in opposite directions. (This remains .obviously, true even in the 
exceptional case that *F has no finite expectation.) 

We have thus devised a widely applicable method of translating facts 
about a random walk with “<0 into results for'a random walk with 

positive expectation, and vice versa. 
If «4 <0 the ladder height distribution H is defective, but *H isa 

proper distribution. This means that . 

(4.8) [ “ee H{dy} = 1. 

8 This notion was used by A. Khintchine, A. Wald, and others but was never fully 

exploited. The transformation (4.7) was used for renewal theory in XI,6 and (in a form 
disguised by the use of generating functions) in theorem I (iii) of 1; XIII,10 and wili be 
used for Laplace transforms in XIII,(1.8). The equation (4.6) serves also in the Wiener- 

Hopf theory. 
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The power of the method of associated random walks derives largely from 
this remark. Indeed, we know from XI,6 that excellent asymptotic estimates 
are available for the ascending ladder process if one knows the root of the 
equation (4.8). These estimates would be illusory if they required a knowledge 
of H, but we see now that the roots of the two equations (4.6) and (4.8) are 

identical. 

(c) Bounded arithmetic distributions. Let a and b be positive integers 
and let F be an arithmetic distribution with span 1 and jumps f, at k = 

= —b,...,a. The measures y and p are also concentrated on integers 
and we denote their jumps at k by yp, and p,, respectively. The first 

—_——1 
entry into —oco,0 occurs ataninteger > —b andso p,=0 for k < —b. 
We introduce the generating functions 

49 =D As YO) = Svs" R(s) => prs 
k=—b =—d 

They differ from those of 1; XI in that ® and R involve also negative 
powers of s, but it is clear that the basic properties and rules remain - 
unchanged. In particular, ~ = ®’(1) is the expectation of F. To a con- 
volution of distributions there corresponds the product of the generating 
functions, and.so the basic integral equation (3.9) is equivalent to 
Y+R=14+ VO or 

b 

(4.10) W(s) = LRO=DY 
~ s%@(s)—1) 

The numerator and denominator are polynomials of degrees b and 
a+b, respectively. The power series on the left is regular, for |s| <1, 

and so all roots of the denominator located within the unit circle must 

cancel against roots of the numerator. We proceed to show that this require- 
ment uniquely determines R and ‘Y’. 

For concreteness suppose 4 = 0. (For #0 see problems 12-13.) 

Then s=1 is a double root of the equation O(s)= 1. For |s| = 1 we 

have |®(s)| < ®(1) = 1 where the inequality sign holds only if s* = 1 for 

every k such that f, > 0. As the distribution F is assumed to have span 1 

this is true only if s = 1, and hence no other roots of Os) = | are located 

on the unit circle itself. To discover how. many roots are located in the 

interior we consider the polynomial of degree a + b defined by - 

P(s) = s*(M(s) — 4], g >i. 

For |s| = 1 we have |P(s)} >q¢—1>0 and 

{P(s) + qs*| = |®(s)} < 1 <q fs". 
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By Rouché’s theorem? this implies that the polynomials P(s) and gs? have 
the same number of zeros located inside the unit circle. It follows that P 
has exactly 6 roots with |s| <1 anda roots with |s| > 1. Now P(0) = 0 

and PUi)=1—-—q< 0 while P(s) >0 for large s; and so P has two 
real roots s’<1<s". As g—1 the roots of P tend to the roots of 
@(s) = 1. Thus we conclude finally that the denominator in (4.10) has 1 

as a double root, and furthermore 5 — 1 roots s,,...,5,-; with |s,| <1 

and a—1 roots o,,..., 0, with |o;| > 1: Then the denominator is 
of the form 

(4.11) 9°(®(8)—1) = C(s—1)%(s—s,) * + (s—s5-a(6—0y) +++ (594-2). 
The roots S1,..+.., 5-1; must cancel against those of the numerator, and 

since the coefficients yw, remain bounded the same is true of one root 

‘s = 1. This‘determines YY up to a multiplicative constant. But by definition 
‘Y'(Q) = 1 and hence we have the desired explicit formula 

1 

(1—s)(1—s/o,)--- (1 3/01) 

Expansion into partial fractions leads to explicit expressions for »,, the 
- great ‘advantage of this method being that the knowledge of the dominant 
root leads to reasonable asymptotic estimates (see 1; X14). . 

  (412) 9 Y= 

. For the generating function R: of the first entrance probabilities p, we" — 

get from (4.10) and (4: 12): eo | 

@. 13) R(s) = 1+C: (= =146, + -04,.1(1—1/s)(l —s,/s) «> —Sp1/s). 

[The coefficient -C is defined in (4.11) and. depends only on the given 
distribution {fd] Again a partial fraction expansion leads to asymptotic 

: estimates. (Continued i in Problems 12-15.) 

5. APPLICATIONS | 

‘It was shown in VI,9 that: a basic problem of ‘queuing theory consists 
in finding the distribution M of — 

(5.1) ~M= max-[0;S,,...] 

in-a random walk with variables X, such that p = E(X;) < 0. Examples 
VI,9(a) to (c) show that the same~ problem turns up in other contexts, 

for example in connection with: ruin problems in compound Poisson 

® See, for example, E. Hille, Analytic function theory, vol. I, section 9, 2. (Ginn and Co., 

1959.) 
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processes. In this case, as well as in queuing theory, the underlying distri- 
bution is of the form 

(5.2) F=Axb 

where A is concentrated on 0, and B on —0o,0. We suppose that A 
and B have finite expectations a@ and —b, so that F has expectation 
ft = a— b. We suppose also that F is continuous so as to avoid the tedious 
distinction between strict and weak ladder variables. 

As-in the preceding two sections we denote the ascending and descending 
ladder height distributions by H and p respectively. (For consistency we - 
should write H~ for p.) In other words, H and p are the distributions 

of the point of first entry into 0,00 and —o,0 (and also into corre- 
sponding closed intervals). It was shown in example 3(c) and in (2.7) that 

fu <0 | 
(5.3) M(z) = 

y(oo) | 

Example 4(a) contains an explicit formula’ for this distribution if one of the 
tails of F is exponential, that is, 

  

= [1 — H(o)] > H™ (2). 

(5.4) F(x) = 1 — pe” for x>0, 

or else F(x) = ge*™* for x < 0. 
By extreme good luck the condition (5.4) holds if F is of the form (5.2) with 

(5.5) A(x) = 1 — ee” for x>O. 

Then ) 
0 

(5.6). | | r={ e*’ Bidy}. 

Our simple results are therefore applicable in queuing theory whenever 
either the incoming traffic is Poissonian or the service time is exponential. 
Furthermore, the ruin problem in compound Poisson processes is covered 

by the present conditions. There exists an immense applied literature 
treating special problems under various assumptions on the distribution B, 

sometimes, as in ruin problems, in a disguised form. As it turns out, greater 

generality and much greater simplicity can be achieved by using only the 

10 Another explicit formula is contained in example 4(c) for the case of an arwnm ‘ic 

distribution F With finitely many atoms. This explicit formula is too unwieldy * © 

practical, but an expansion into partial fractions leads to good asymptotic estimates if the 

dominant root of the denominator is known, The same method applies to Fourier transforms 

whenever the characteristic function of F is rational. This remark covers many special 

cases treated in the literature. 
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condition (5.4) instead of the combination (5.5) and (5.2). We see here a 

prime example of the economy of thought inherent in a general theory where 
one’s view is not obscured by accidents of special’ cases. 

Examples. (a) The Khintchine-Pollaczek formula. Suppose that F is of 
the form (5.2) with A given by (5.5) and w = 1/e — b> 0. The random 
walk drifts to co and we have to replace the maximum in (5.1) by the 
minimum. This means replacing H in (5.3) by the distribution p given in 
(4.4). A simple integration’ by parts shows that for x < 0 

(5.7) pe) =a] Bly) dy 
— 

Hence p(0) = «b and sofor x <0 

(5.8) Pimin (S,,S,,...) < x} = (1 — ab) ¥ p”*(z). 
0 

This is the celebrated Khintchine-Pollaczek: formula, which has been 
rediscovered time and again in special situations, invariably using Laplace 

transforms [which method is inapplicable for the more general distributions of 
the form (5.4)]. We return to it in problems 10-11 of XVIII,7. 

(b) The dual case. Consider the same distributions as in the last example 

but with ~ <0. As was shown in the second part of example 4(a) in this case 

(5.9) P{max (So, S,,.-.) < zt} = “y(a)=1- (1 — *) e* 
a e 

where « is the unique positive root of the “‘characteristic equation” (4.6). 

[This result can be obtained also by the method of associated random walks 

recalling the fact that when 4 >0 one has y(xz)=1+ ax for x >0.] 
In queuing theory (5.9) implies that at a server with exponential servicing 
times the distribution of the waiting times tends to an exponential limit. 

(c) Asymptotic estimates. The method of associated random walk 
described in section 45 leads easily to useful estimates for the tail of the 

distribution 

(5.10) - M(x) = P{max (S,, 8),...) < x}. | 

The following simple method replaces many complicated calculations used 
for special problems in the applied literature. It represents a special case of 
the general theory in XI,6, but for convenience the following exposition is 
self-contained. - 

The distribution M is given by (5.3). In it py stands for the renewal 

measure corresponding to the defective distribution H. To the associated 

proper distribution *H there corresponds the renewal measure “yp given by 

*wi{dx} = eX*y{dz}, with « given by (4.6) or (4.8). Hence (5.3) may be 
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rewritten in the form 

65.11) M{dx} = [1—H(o)]e—** - *w{dr}. 

By the basic renewal theorem of XI,1 the renewal measure “yp is asymptotically 
uniformly distributed with a density B-! where 

(5.12) B= { "ne H {dz}. 

Integrating (5.11) between t and o0 we see therefore that as t > o 

1 — A(o) en*t 

K 

provided only that 8 < co. [Otherwise 1 — M(t) = o(e-**).] 
The constant f depends on the distribution H which is usually not known 

explicitly, but the exponent « depends only on the given distribution F. 

At worst therefore (5.13) represents an estimate involving an unknown 
factor, and even this result is not easily obtained by other methods. The 
next example illustrates important applications. 

(d) Cramér’s estimate for probabilities of ruin. We now apply the preceding 

result to example (a). Here the drift is toward +00, and hence the roles of 

the positive and negative half-axes must be interchanged. This means that 

« <0, and the distribution H is to be replaced by the distribution (5.7) 

of the first entry into —oo,0. Thus (5.12) takes on the form 

(5.14) Baal ely] By) dy. 
We saw that p(0) = ab, and so (5.13) is equivalent to the statement that as 
L—> 

1 — ab 

|x] B 

This formula has many applications. In queuing theory the left side represents 
the limit distribution for the waiting time of the nth customer (see the theorem 
in VI,9). In example VI,9(d) it was shown that the basic ruin problem of 

VI,5 may be reduced to this queuing problem. With different notations the 
same problem is treated in example XI,7(a).1! It is therefore not surprising 
that the estimate (5.15) has been derived repeatedly under special circum- 
stances, but the problem becomes simpler in its natural general setting. 

elslz   (5.15) P{min (Sy, S,,...) < 2}~ 

11 To our defective distribution p, which is concentrated on —,0, there corresponds 

in XI,7 the defective distribution L with density (a/c)(1 — F(z)) concentrated on 0, «. 
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From the point of view of the general theory (5.15) is equivalent to a famous 
estimate for the probability of ruin in the theory of risk due to H. Cramér.?? » 

6. A COMBINATORIAL LEMMA 

The distribution of ladder epochs depends on a simple combinatorial 
lemma, and the probabilistic part of the argument will appear clearer if we 

isolate this lemma. 
Let x,,...,2, be m numbers, and consider their partial sums 

So =0,...,5, =X +7°°4+ 2,. 

We say that » > 0 is a ladder index if s, > 5 ,...,5, > 5,-,, that is, if 

s, exceeds all preceding partial sums. There are n ladder indices if all zx, 

are positive, whereas there are none if all x, are negative. 
Consider the n cyclical reorderings (a,...,2%,), (o,.--5%n,%),---, 

({_,%,..+,2%,-,) and number them from 0 to n —1. The partial sums 

s”) in the arrangement number y are given by 

Syik — Sy for k=1,...,n—» 

Sy — Sy + Spingv for k=n—v+l,...,n 

Lemma 1. Suppose s, > 0. Denote by r the number of cyclical re- 

‘arrangements in which n is a ladder index. Then r > 1, and in each such 

cyclical arrangement there are exactly r ladder indices. 

(6.1) sf) = 

Examples. For (—1, -1, —1,0,1,10) we have r = 1: the given order 

is the only one in which the last partial sum is maximal. For (—1, 4, 7, 1) 

we have r = 3; the permutations number 0, 2, and 3 yield 3 ladder indices 

each. > 

Proof. Choose » so that s, is maximal, and if there are several such 

indices choose » as small as possible. In other words, 

(6.2) Sy > Sy, +++ Sy > Sy—1) Sy = Syst» ree SY 2 Sn: 

It is then seen from (6.1) that in the »th permutation the last partial sum 

is strictly maximal and so n isa ladder index. Thus r > 1. Without loss 

of generality we: now suppose that n is a ladder index in the original 

arrangement, that is, s, > s; for all j. The quantities in the first line in 

(6.1) are then <s,, and the second line in (6.1) shows that n isa ladder 

index also in the »th permutation iff s, > 5,,...,5,> 5,4, that is, 

iff » is a ladder index in the original arrangemert. Thus the number of 

12 For a newer derivation by Wiener-Hopf techniques in the complex plane see Cramér’s 

paper cited in VI,5. Our (5.15) is Cramér’s (57). 
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permutations in which n is a ladder index equals the number of ladder 
indices, and the Jemma is proved. > 

Weak ladder indices are defined analogously except that the strict 
inequality > is replaced by >. The preceding argument applies to them 
and leads to 

Lemma 2. If s, > 0, lemma | applies also to weak ladder indices. 

7. DISTRIBUTION OF LADDER EPOCHS . 

In the preceding sections we have focused our attention on the ladder 
height, but now we turn to the ladder epochs. Let 

(7.1) Tn = P{S, < p78 89 S,-1 < 0, S,, > 0}. 

  

This is the probability that the first entry into 0, co occurs at the nth step, 

and so {r,} is the (possibly defective) distribution of the first ladder epoch 
7 ,. We introduce its generating function 

(7.2) r(s) = S 1,5" 0O<s<l. 
n=1 

The foliowing remarkable. theorem shows that the distribution {7,} is 

completely determined by the probabilities P{S, > 0} and vice versa. It 
was discovered by E. Sparre Andersen whose ingenious but extremely com- 

plicated proof was gradually simplified by several authors. We derive it as a 
simple corollary to our combinatorial lemma. [A stronger version is 

contained in (9.3) and will be treated by Fourier methods in chapter XVIII.] 

Theorem 1: 

  a5 “prs, > 0}. 
1 —r(s) n=1n . 

(7.3) log 

Note: The theorem and its proof remain valid if in (7.1) and (7.3) the signs 

> and < are replaced by > and <, respectively. In this case {r,} 

stands for the distribution of the first weak ladder epoch. 

Proof. For each sample point consider the an cyclical permutations 

(X,,...,X,, X,,.-., X,_1) and denote the corresponding partial sums by 

s™,...,S. Fix an integer r and define n random variables Y’ as 

follows: Y‘” =1 if 1 is the rth ladder index for (S‘”,...,S%) and 

Y’) = 0 otherwise. To v = 1 there corresponds the unpermuted sequence 

(Sy,.--,5,) and hence 

(7.4) PLY? = ps7," 
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where {r‘”} is the distribution of the rth ladder epoch. This epoch is the 

sum of r independent random variables distributed as .7,, and hence 

z'") is the coefficient of s” in the rth power 77(s). 
For reasons of symmetry the variables Y'”) have a common distribution; 

since they assume only the values 0 and 1 we conclude from (7.4) that 

(7.5) qi) = E(y"?) = 1 Ey? +- . py”), 

n 

By our last lemma the sum Y") +--+ + Y'") can assume only the values 

0Qor r, and hence 

(7.6) Ltn _! PLY +. 4 ¥™ = 7}, 
r n 

For fixed n and r =0,1,... the events on the right are mutually exclusive 
and their union is the event {S, > 0}. Summing over r we get therefore 

(7.7) 5 lin lps > 0} 
: n r=1 7. 

On multiplying by s” and summing over a we obtain 

ew J x n 

(7.8) 5 =7(s)= > = P{S, > 6} 
. r=1 7 n=1 

which is the same as the assertion (7.3). > 

Corollary. if F is continuous and symmetric, then 
  

  

(7.9) r(s) =1-V1—s. 
Proof. All the probabilities occurring in (7.3) equal and so the right side 

equals log a/v1 —s). » 

It is of interest to generalize this result assuming only that 

(7.10). P{S,, > 0} — $. 

Such is the case whenever the distribution of S,/a, tends to the normal distribution ®. 

We shall assume a tfifle more than (7.10), namely that the series 

oO 

(7.11) > 1 (P{s, > 0} —H=c 
n=1 

converges (not necessarily absolutely). It will be shown in XVII,5 that (7.11) Acids when- 

ever F has zero expectation and a finite variance. 

The following th or m is given not only because of its intrinsic interest, but also as an 

illustration for the use of refined Tauberian theorems.
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Theorem fa. If (7.11) holds then 

1 I 
(7.12) P{7, > n}~w~ —e¢ —. 

1 V a9 Vn 

Vhus when F has zero expectation and a finite variance the distribution {7,} is very 
similar to the one encountered in the binomial random walk. 

Proof. From (7.3) we see that as s — J] 

Vi-s 
  

= >= pis, > 0} —Hoc.   

  

  

n 

7.13). I 
(7.13) cs ae eee 
It follows that 

1 — r(s) J 
(7.14) ow ee ee, 

l—-s V1l—s 

On the left one recognizes the generating function of the probabilities in (7.12). These 
decrease monotonically, and hence (7.12) is true by the last part of the Tauberian theorem 
5 in XVI,5. > 

Theorem 2. The random walk drifts to — 0 iff 

(7.15) 5 LPs, > 0} < @. 
n=1N 

This criterion remains valid® with {S, > 0} replaced by {S, = 0}. 

Proof. Drift to —oo takes place-iff the ascending ladder processes are 
terminating that is, iff the distribution of 7, is defective. This is the same 
as 7(1) <1, and in this case the two sides in (7.3) remain bounded as 

s—1. The condition (7.15) is seen to be necessary and sufficient. The 

same argument applied to weak ladder epochs justifies the concluding 

assertion. > 

We know that drift to —oo takes place if F has an expectation “ <0, but it is not 
analytically obvious that 4 <0 implies (7.15). The verification of this fact provides an 
excellent technical exercise of methodological interest. (See problem 16.) 

This theorem has surprising implications. 

Examples. (a) Let F be a strictly stable distribution with F(0) = 6 < 4. 

Intuitively one would expect a drift toward. oo, but in fact the random walk 
is of the oscillating type. Indeed, thé series (7.15) reduces to (1—6) > n7 
and diverges. Thus 7, is proper. But the same argument applies to the 

negative half-axis and shows that also the descending ladder variable 7 7 

iS proper. 
(b) Let F stand for the symmetric Cauchy distribution and consider the 

random walk generated by the variables X’ -= X, + 1. The median of the 

13 We shall see that > nP{S,, = 0} < 0 under any circumstances [see 9(c)]. 
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sums Si =S, +7 lies at n, and intuitively one should expect a strong 
drift to oo. Actually the probabilities P{S’ > 0} are again independent of 
n, and as in the preceding example we conclude that the random walk is of 
the oscillating type. > 

Theorem 3. The ladder epoch F, has a finite expectation (and is proper) 

iff the random walk drifts to co. In this case 

(7.16) log E(7) = log S kr, = 5 1 P{S, <0}. 
n=1N 

(The series diverges in all other cases). 

Proof. Subtracting the two sides of (7.3) from log (1—s)"! we get for 

0<s<l 

(7.17) log $= 79) _ F “1 — Pfs, > 07. 
n 1—s n=1 

As s->1 the left side converges iff 7, is proper and has a finite expectation. 
The right side tends to the right side in (7.16), and by theorem 2 this series 

converges iff the random walk drifts to oo. > 

In conclusion we show that the generating function occurring in theorem 1 
has an alternative probabilistic interpretation which will lead directly to the 

amazing arc sine laws. 

Theorem 4. The generating function of the probabilities 

  

(7.18) Pn = P{S, > 0,S,>9,...,S8, > 0} 

is given by 

1 
7.19 s)= (7.19) P(s) low 

that is, 

(7.20) log p(s) = > ~ P{S, > 0}. 
n=1 

For reasons of symmetry the probabilities 

(7.21) Gn = P{IS, ¢ 0,...,8, < 0} 

have the generating function q given by 

(7.22) log q(s) = ¥ = P{S, < 0}. 
n=1 N 

(Cf. problem 21.) 
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Proof. We use the duality lemma of section 2. From the theory of 
recurrent events it is clear that (7.19) is the generating function of the 
probabilities p, that n 1s a ladder epoch, that is 

(7.23) Pr = PIS, > So, se ; S, > S,-1} 

Reversing the order of the variables X; we get the dual interpretation (7.18). 

[This is really contained in (2.1) when J = 0, €.] > 

8. THE ARC SINE LAWS 

One of the surprising features of the chance fluctuations in coin tossing 
finds its expression in the two arc sine laws (1; III,4 and 8). One of them 

implies that the number of positive terms in the sequence S,,...,S, is 
more likely to be relatively close to0 or n than to n/2 as one would naively 

expect. The second implies the same for the position of the maximal term. 
We show now that these laws are valid for arbitrary symmetric and for many 
other distributions. This discovery proves the general relevance and applic- 

ability of the discussions of 1; III. 

In the following we have to cope with the nuisance that the maximum may 
be assumed repeatedly and that partial sums may vanish. These possibilities 

can be disregarded if F is continuous, for then the probability is zero that 
any two partial sums are equal. (Readers are advised to consider only this 

case.) For the general theory we agree to consider the index of the first 

maximum, that is, the index k such that 

(8.1) Si > So, wee ’ Sz > S,—-1 S; = Sri tens Si = S,- 

Here n is fixed and & runs through the values 0,1,...,”. The event (8.1) 

must occur for some k <n, and so we may define the (proper) random 

variable K,, as the index of the first maximum, that is, the index where 

(8.1) occurs. Here (Sp = 0). 

The event (8.1) requires the simultaneous realization of the two events 

{S, > S,-..,S, > S,1} and {S,.,—8,<0,...,S, —S, <0}. The 

first involves only X,...,X,, the second. only X,,,,...,X,, and hence 

the two events are independent. But these are the events occurring in the last 
theorem and so we have proved 

Lemma 1. For all k,n 

(8.2) P{K, = k} = pPign—n- 

Suppose now that P{S, > 0} = P{S, <0} =4 for all ». The right 
sides in (7.15) and (7.17) then reduce to $log (1—s)1, and hence 

p(s) = 4(s) = V1 = s. 
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Thus 

Valo" 8.3 Ink = —1)", (8.3) Pitre = (5 *)( 3d 
and this may be wrii:. > the more pleasing form 

2k\ (2n—2k\ 1 
4 = —. (8.4) Prine = (0) (no) an 

This expression was used in 1; III,(4.1) to define the discrete arc sine distri- 

bution which was found in 1; IIJ,4 and 8 to govern various random variables 
connected with coin tossing; its limiting form was derived in 1; III,(4.4). 

Using in particular the arc sine law of 1; TII,8f we can state 

Theorem 1. /f F is symmetric and continuous, the probability distribution 
of K,, (the index of the first maximum in. Sy, 8,,...,S,) is the same as in 

the coin tossing game. It is given by (8.3) or (8.4). For fixed 0<a< 1 as 
n> oO 

(8.5) P{K, < na}—2 1 arc sin ,/c. 
T 

The limit distribution has the density 1 Na a(1—a«)] which is unbounded 

at the endpoints 0 and | and has its minimum at the midpoint 4. This shows 
that the reduced maximum K,/n is much more likely to be close to 0 or 1 
than to 4. Fora fuller discussion see 1; [11,4 and 8. For an alternative form 

of the theorem see problem 22. 

This theorem can be generalized just as theorem 1 of the preceding section. 

Theorem 1a.'4 If the series 
2 1 

8.6 ~ [P{S,, > —})] = (8.6) 2, 7 PiSn > 0} s}=¢ 

converges, thenas n> © and n—k-—-> © 

2k\ {2n — 2k\ 1 
. P{K, = k}~w —., (8.7) iK, = &} Ce) roe) 

and hence the arc'sine law (8.5) holds. 

It will be shown in X VIII,5 that the series (8.6) converges whenever F has zero expecta- 

tion’ and finite variance. The arc sine laws therefore hold for such distributions. 

Proof. From (7.20) and the elementary theorem of Abel on power series we conclude 

thatas s—! . 

(8.8) log (P()VI—-s) = > ~ [P{S, > 0} — #1], 
n=l 

14 This theorem was proved by laborious calculations by Sparre-Andersen. The remark 
that the Tauberian theorem removes all trouble,is due to Spitzer. For a generalization 
see 9.d, . 
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and so 

(8.9) p(s)~ & - (1—s)y-4 

By the definition (7.18) the p, decrease monotonically, and hence the last part of the 
Tauberian theorem 5 of XIII,5 implies that coefficients of the two power series in (8.9) 
exhibit the same asymptotic behavior. Thus 

(8.10) mame (om, n> © 

For q, we get the same relation with c replaced by —c, and hence the assertion (8.7) 
follows from (8.2). The derivation of the arc sine law depends only on the asymptotic 
relation (8.7) and not on the identity (8.4). > 

Theorem 1 and its proof carry over to arbitrary strictly stable distributions. If 
P{S,, > 0} = 6 is independent of n we get from (7.20) and (7.22) 

(8.11) Bs) = (sy, gs) = (1-5)? 

and hence , 
, ne _ n —6d\ /d—1 

(8.12) P{K,, = k} = PrIn—k = (~-1) ( k (m4) 

The limit theorem (8.5) holds with the arc sine distribution on the right replaced by the 
distribution with density 

sin 76d 1 
(8.13) a 28 —a)’ O<2< 1. 

Theorem la carries over to distributions belonging to the domain of attraction of a stable 
distribution. 

In 1; UI we had to prove the two arc sine laws separately, but the next 

theorem shows that they are equivalent. Theorem 2 (for continuous 
distributions) was the point of departure of the investigations by E. Sparre- 
Andersen introducing the new approach to fluctuation theory. The original 
proof was exceedingly intricate. Several proofs are now in existence, but the 
following seems simplest. 

Theorem 2. The number II, of strictly positive terms among S,,...,S, 

has the same distribution (8.2) as K,,, the index of the first maximal term in 

Sp = 0, 8,,...,5,. 

(See problem 23.) 
This theorem will be reduced to a purely combinatorial lemma. Let 

t,,...,2%, be ” arbitrary (not necessarily distinct) reat numbers and put 

(8.14) So = 0, Sy Uy fos + ey. 

The maximum among 5o,...,5, may be assumed repeatedly and we must 
therefore distinguish between the index of the first and the last maximal term. 

Consider now the n! permutations z;,..., 2, (some of which may have 
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the same outer appearance). With each we associate the sequence of its 

n+ partial sums 0,2,,...,%, t+** + 4, 

Example. (a) Let 2, =2,=1 and 23 = 2, = —1. Only 6 rearrange- 

ments (%;,,..-,%,,) are distinguishable, but cach represents four permu- 

tations of the subscripts. In the arrangement (1,1, —1, —1) three partial 
sums are strictly positive, and the (unique) maximum occurs at the third 

place. In the arrangement (—1, —1,1,1) no partial sum is positive, but 

the last is zero. The first maximum has index 0, the last index 4. > 

Theorem 2 will be shown to be a: simple consequence of | 

Lemma 2. Let r beaninteger 0 <r <n. The number A, of permutations 
with exactly r strictly positive partial sums is the same as the number B, 
of permutations in which the first maximum among these partial sums occurs 
at the place r. 

(See problem 24.) a - . a 

-Proof.5 We. - proceed by induction. The assertion is true for n=1 

since z,>0 implies A; = B,=1 and A,=B,=0 while 2x, <0 
implies. A; = B, = 0 and A, = By = 1: Assume the lemma true when 7 - 
is replaced by: n —12>1. Denote by A®. and B® the numbers corre- 
sponding to A, and B, when the n-tuple .(2, ....,2,) is replaced by the 
(n — 1)-tuple obtained by omitting «,. The induction . Bypoties's then 
states that A® = BY for‘l1<k<n and r=90,...,n—1. This is 
true also for r =n since trivially Ay = BY = 0. . : 

(a) Suppose 2 +°:: +2, <0. The a! permutations of (21, ...5%q_) 

are obtained by choosing the element x, at the last place and permuting the 
remaining n — 1 elements. The nth partial sum being <0, it is clear that 
the number of positive partial sums and the index of the first maximal term 
‘depend only on the first n — 1 elements. Thus ° 

(215) 9° A, => Ae), B, = SB, 
_ k=l k=1 

and hence. A, Le B,. by the induction hypothesis. 

15 The following proof is due to Mr. A. W. Joseph of Birmingham (England). -Its 
extreme simplicity comes almost as a shock if one remembers that in 1949 Sparre 
Andersen’s discovery of theorem 2 was a sensation greeted with incredulity, and the original 
proof was of an extraordinary intricacy and complexity. A reduction to the purely com- 
binatorial lemma 2 and an elementary proof of the latter was given by the author. ' (See 
the first edition of the presént book.) Joseph’s proof is not only simpler, but is the first 
constructive proof establishing a one-to-one correspondence between the two types of 
permutations. Our discussion of this aspect in lemma 3 expioits an idea of Mr. M. T. L. 
Bizley of London (England). The author is grateful to Messrs. Joseph and Bizley for 
permission to use their unpublished results (communicated when the typescript was alread: 
at the printers). 

 



XIL.8 - . THE ARC SINE LAWS 421 

(b) Assume 2, +:--+2, >0. The ath partial s sum is then positive 
and the preceding argument shows that now 

n 

(8.16) | A, => AM). 
k=1 

To obtain an analogous recursion formula for B, consider the arrangements 
(%,, %;,,-..,%;,) starting with x,. The nth partial sum being positive 
the maximal terms of the partial sums have positive subscripts. Clearly the 

first maximum occurs at the place r (1 <r <n) iff the first maximum of 
the partial sums for (z;,,...,%;,_,) occurs at the place r — 1. Thus 

(8.17) B, = > BY, 
oe 

A comparison of (8. 16) and (8.17) shows again that A, ='B,, and this 
completes the proof. . > 

We shall presently see that this argument yields further results, but first 
we return to the oo 

Proof of theerem 1. We proceed as in the proof of theorem | in section 7. 
Consider the n! permutations (Gp. Ly w and number them so that the 

natural order (2,,...,2,) counts as number one. For a fixed integer 

0<r<n define Y°) =1 if the permutation number » has exactly r- 
positive partial sums, and Y) = 0 otherwise. For reasons of symmetry the - 
n! random variables have a common distribution, and hence 

(8.18) P{II, = r} = pry = 1} = E(Y") = = > EY). 

Similarly | Lo | 

. Al 

where Z”) = 1 if in the permutation number » the first maximal partial 
sum has index’ r, and Z'”) =0 otherwise. By the last.lemma the sums 
>Y” and > z are identical, and hence the jprobabilities in (8. 18) and 
(8.19) are the same. > 

Note on Sparre Andersen transformations. It follows from lemma 2 that 

there exists a transformation such that each ntuple (v1,...,2%,) of real 
numbers is mapped into a rearrangement (x,,,...,%;,) in such a way that: 
(i) if exactly r (0 <r<_n) among the partial sums 5s, in (8.14) are strictly 
positive, then a maximum of the partial sums of (z;,, we ty) occurs for 

the first time with index r, and. (i*) the transformation is invertible (or 

one-to-one). Such transformations will be called after E. Sparre Andersen 

even though he was concerned with independent random variables without 
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being aware of the possibility to reduce teorem 2 to the purely com- 
binatorial lemma 2. A perusal of the proof of lemma 2 reveals that it 
contains implicitly a prescription for a construction of a Sparre Andersen 
transformation. The procedure is recursive, the first step being given by the 
rule: if s, <0 leave the n-tuple (2,,...,2,) unchanged, but if s, >.0 
replace it by the cyclical rearrangement (2,,2,,...,%,-,). The next step 

consists in applying the same rule to the (n — 1)-tuple (#1,...,2%,-1). The 

desired rearrangement (z;,,...,%;) is obtained after n — 1 steps. 

Examples. (56) Let (a,..., 2%) =(—1,2, —1, 1,1, —2). No change 
occurs at the first step while the second leads to (1, —1,2, —1,1, —2). 

As s,=1 the third step yields (1,1, —1,2, —1, —2), and the fourth 
step introduces no change because 5; = ° Since s,=1 the final step 
leads to the arrangement (1, 1,2, —1, —1, —2). The unique maximum of 
the partial sums occurs at the third place, and i in the original arrangement 
exactly three partial sums are positive. 

(c) Suppose that z; <0 forall 7. The initial and the final arrangement of 

the 2x; are identical. No partial sum is positive, and sy = 0 represents a 
maximum (which is repeated if 2, = 0). > 

It is preferable to replace the recursive construction by a direct description 
of the final result. We give it in the following lemma; because of its intrinsic 
interest a new proof is given which is independent of the preceding lemma. 
(See also problem 24.) 

Lemma 3. Let (a,...,2%,) be an n-tuple of real numbers such that the 

Partial sums s,,..., $, are positive and all others negative or zero: here 

% > >:'' >, >0. Writedown x, ,...,x, followed by the remaining 

x; in their original order. (If all partial sums are <0 then r=0 and the 

order remains unchanged.) Among the maxima of the partial sums in the new 

arrangement the first occurs at the rth place, and the transformation thus 

defined is one-to-one. 

Proof. Denote the new arrangement by (é,,..., &,) and its partial sums 

by 0 ,...,0,- To every subscript j <a” there corresponds a unique 
subscript *k such that ¢;= 2,. In particular, &,,...,&, agree with 
Type ey Ly in that order. 

Consider first a 7 such that s;, <0. It is clear from the construction that 
j>k and the elements &;,43;..., &; represent a permutation of 2,,..., 

x, Thus oa; = o;_, + 5; < Oj_xs ‘and sO oa, cannot be the first maximal 

partial sum. 

If r = 0 it follows that the first maximum among the o; is assumed for 
jJ =0. When r> 0 the first maximum occurs at one among the places 

0,1,...,7r, and we show that only r is possible. Indeed, if 7 <r it 
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follows from the construction that the vy; elements 6&,,. 
coincide with some rearrangement of (2,...,2, ) Thus 54. = 
= 6;_, + 5,, > 0;_1, and hence no maximum can occur at the place j — 1. 

To complete the proof of the lemma it remains to show that the trans- 
formation is one-to-one. Asa matter of fact, the inverse to &,..., &, may 
be constructed by the following recursive rule. If all o; <0 leave the 
arrangement unchanged. Otherwise let k be the largest subscript such that 
Oo, > 0. Replace (41, o- ,€ n) by (£., eee ee é,, Exit, cfg En) and 

apply the same procedure to the (k—1)-tuple (Ey, wey Eye > 

£. 
* > S3-l1+p, 

. Note on exchangeable variables. It should be noticed that the proof does not depend on 
the independence of the variables X; but only the identity of the joint distribution for each 
of the m! arrangements (X,,,.. x, ,) In other words, theorem 2 remains valid for every 
n-tuple of exchangeable variables (VIL.4) -although naturally the common distribution of 
K,, and II,, will depend on the joint distribution of the X,. As an interesting example let 
X,, Xq,... be independent with a common distribution F, and put Y,, = X, — S,/n 
(where k =1,...,”). The variables Y,,..., Y, are exchangeable and their partial 
sums are . 

(8.20) =; = 8, — kS,/n, kK=1,...,2—-1. 

_ With reference to the graph of (Sp, S,,...,S,) wecan describe &, as the vertical distance 
of the vertex S, from the chord joining the origin to the endpoint (n, S,). 

We now sappose that F' is continuous (in order.to avoid the necessity of distinguishing 
between the first and the last maximum). With probability 1 there is a unique maximum 
among the terms 0, Z,,...,2,_,. To the cyclical rearrangement (Y5,..., Yn, Y,) 

there correspond the partial sums 0, Z, — Zj,..., Zn_y — 2,, —2,, andit is clear that 
the location of the maximum has moved one place ahead in cyclical order. (If the original 
maximum was at the zero place then Z, <0 for k =1,..., n—1, and thenew maximum 
is at the place n — 1.) Inthe n cyclical permutations the maximum is therefore assumed 
exactly once.at each place, and its position is uniformly distributed over 0,1,...,”—1. 
We have thus the following theorem due to Sparre-Andersen and related to the theorem 
3 of 1; IH,9 in coin tossing. 

’ Theorem 3. Jn any random walk with continuous F and for any n the number of vertices 

among S,,...,S,_; that lie above the chord frem (0,0) to (n,S,) is uniformly distributed 

over 0,1,...,2—1. 

(The same is true of the index of the vertex with greatest maximal distance.) 

9. MISCELLANEOUS COMPLEMENTS 

(a) Joint Distributions 

The argument leading to theorem | of section 7 requires only notational 
changes to yield the joint distribution of the ladder variables. Adapting the 

notation of section 1, let 7 be an interval in 0, co and denote by H”{J} 

the probability that n be the rth ladder epoch and S, € 1. Put 

(9.1) ACI, s} = > s"H {I}, O<s<l. 
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It is seen by induction for fixed s 

(9.2) H* {1,3} = s SOHO, 

The argument leading to (7.3) now yields without difficulty the following 

result due to G. Baxter which reduces to (7.3) when J = 0, 00. 

Theorem. For I< 0,0 and 0O<-s <1 

(9.3) > SAT, s}= s — PS, ET}. 
r n=1 

A simpler and more tractable form will be derived in XVIII,3. 

(b) A Mortality Interpretation for Generating Functions 

The - following interpretation may help intuition and simplify formal 
calculations. For fixed s with 0 <s <1 consider the defective random 

walk which at each step has probability 1 — s to terminate and otherwise 
subject to the distribution sF. Now s” F"*{/} is the probability of a position 
in J at time n, the defect 1 — s” representing the probability of a prior 
termination. All considerations carry over without change, except that all 
distributions become defective. In particular, in our random walk with 
mortality, (9.1) is simply the first ladder height distribution, and (9.2). the 
analogue to H’* of sections 2-3. The generating function 7(s) now 
equals the probability that a ladder index will occur. 

(c) The Recurrent Event ; 

(9.4) {S, < 0, . “9 9 S,-1 < 0, S,, = 0} 

‘represents a return to the origin without previous visits to the right half-axis. 
It was considered in section 1 in the definition of weak ladder variables. 

Denote by w, the probability of the first occurrence of the event (9.4) at 

epoch n, that is; 

(9.5) wo, = P{S, <0,...,8,., <0,S, = 0}. 

If w(s) = > w,s", then w’ is the generating function for the rth occurrence 

and so 1/[1—q(s)] is the generating function for the probabilities (9.4). 

A simplified version of the proof of (7.3) leads to the basic identity 

1 — 5” 
9.6 log ——_—_—- = — P{S,, = 0}. (9.6) 8 Tow = 2 PS = 9 

Comparing this with (7.3), (7.16), (7.22), etc., one sees how easy it is to 

pass from weak to strict ladder variables and vice versa. Formula (9.6) 
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confirms also the remark of section | that the probabilities of (9.4) remain 
unchanged if all inequalities are reversed. 

(d) Generalization to Arbitrary Intervals 

The theory of section 3 generalizes with trite notational changes to the 

situation in which 0, 00 is replaced by an arbitrary interval 4, and —0,0 
by the complement A’. In particular, the Wiener-Hopf integral equation 

remains unchanged. The reader is invited to work out the details; they 

are fully developed in XVIII,1. (See also problem 15.) 

  

10. PROBLEMS FOR SOLUTION 

1. In the binomial random walk [example 2(6)} let e, be the expected number 
of indices » > 0 such that S, = k,S, >0,...,S,_; >0 (visits to k preceding 
the first negative value). Denote by / the probability of ever reaching —1, 
that is, f=1 if g >p and f=q/p otherwise. Taking the point (1,1) as new 
origin prove that eg =1 + pfey and e, =p(e,y+fe,) for k >1. Conclude 
that for k >0 

— »—1 
ex =p if p2q, e =(pig'q* if p <q. 

2. Continuation. For k > 1 let a, be the expected number of indices n > 1 

such ‘that S, =k,S; >0,...,S,.1 >0 (visits to A preceding the first return 
to the origin). Show that a, = pe,_, and hence 

a, =1 if p2q, a, =(p/g® if p <q. 

This gives a direct proof of the paradoxical result of example 2(d). 

Note. The following problems 3~6 may serve as introduction to the problems 
of this chapter and can be solved before studying it. They present also examples 
for explicit solutions of the basic integral equations. Furthermore, they illustrate 
the power and elegance of generating functions [try to solve equation (1) directly!]. 

3. The variables X; of a random walk have a common arithmetic distribution 
attaching probabilities f,, fo,... to the integers 1,2,... and g to —1 (where 
gtfitfe+°*: =1). Denote by A, @ =1,2,...) the probability that the 
first positive term of the sequence S,,S_,... assumes the value r. (In other 
words, {A,} is the distribution of the first ladder height.) Show that: 

(a) The 4, satisfy the recurrence relations 

(1) A, =f; + qQArst +A,A,). 

(b) The generating functions satisfy 

fis) +qs4 -1 

Agtqst—1’ 

(c) If E(X,) = « =f'() —q > 0, there exists a unique root, 0 <o <1, of 
the equation 

(3) f(s) +9/s =1. 

(2) Ms) =1 — O<s<1. 
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From the fact that 2 must be monotone and <1 in 0,1 conclude that 

(4) Us) = 5 (LY =LO | 
q s—o 

This is equivalent to 

(5) 1, = Ure tfrere $00) 
q 

(d) If E(X;) <0 the appropriate solution is obtained letting 4, = (1-9)/¢ 
in (2). Then (4) and (5) hold with o'= 1. 

4. Adapt the preceding problem to weak ladder heights. In other words, 
instead of 4, consider the probability that the first non-negative term of S,,So, . 
assumes the value r (r = 0,1,...). Show that (1) and (4) are replaced by 

  

(la) =f,+ i. Yrs 

(4a) ws) =1 —2 + 0 =f 
o S—o 

5. In the random walk of problem 3 (but without using this problem) let =< 
be the probability that S, <0 for some zn. Show that <x satisfies the equation 
(3) and hence x = o. 

6. Continuation. Show that the probability that S, <0 for some n> 0 is 
gq + f(o) =1 —q(o 1-1). Verify that 2°(1) = wo[g(1—o)}"}, which is a special 
case of relation (2.8) (or Wald’s equation). 

7. Derive (1.13) by straight calculation from (1.12). 

8. Hitting probabilities. For t > 0 and & > 0 denote by G(t, ) the probability 
that the first sum S, exceeding ¢ will be <t+.é Prove that G@ satisfies the 
integral equation . 

t+ 
G(t, §£) = F(t+ 4) — F(t) +{ G(t—y, §) F{dy}, 

In case of non-uniqueness, G is the minimal solution. The ladder height .dis- 
tribution H is uniquely.determined by H(&) =‘G(0, 6). 

9. Let H be a continuous probability distribution concentrated on 0, 0 and 

H™~ a possibly defective continuous distribution concentrated on — ©, 0. Suppose 
that 

(6) H+H--~HkH-=F 

is a probability distribution. From the uniqueness theorem in | section 3 it follows 
that, H and H™~ are the distributions of the points of first entry # and #~ 
in the random walk generated by F. In this way it is possible to find distributions 
F admitting of an explicit representation of the form (6). Such is the case if 
0<g<1 and H and H7 have densities defined by either 

(a) be™* for x >0, gq for -1 <x <0 

or 

(6) b> for 0<x <b, g for -l1<x<0. 
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In case (a) the distribution has a density given by 

(b —g)e* + ge%*+1) for x >0, and ge 41) for -l <a <0. 

In case (6) if 5 > 1 the density of F is given by gb-(1 +2) for -1 <2 <0, 
by gb for 0 <x <b —1, and by gb-'(b — x) for 6-1 <2 <b. Ineither 
case F has 0 expectation iff g = 1. 

10. From (3.11) conclude: 1f H and H™ are proper and have variances then 
E(X,) = 0 and E(X?) = —2E(#,)E(7). 

Ili. Analytic proof of Wald’s relation (2.8). From (3.11) conclude 

0+ 

1 — F(@) = [1 ~ p)][1 —A@)] +{ pldy}[H(@—y) — H(z)] 
—o 

F(x) =|’ pldy}[l — H(z—y)] 

for « >0O and x <0, respectively. Conclude that F has a positive expectatior, 
ue iff H has a finite expectation » and p(0) <1. Conclude by integration over 
—o, © that « = [1— (0)}v, which is equivalent to (2.8). . 

12. To example 4(c). If «# >0 the denominator has a positive root sy < 1, 
exactly 6 — 1 complex roots in |s| < sy, and @ —1 complex roots in |s| > J 
The situation for « <0 is described by changing s into 1/s. 

13. The generating function of the ascending ladder height distribution i: 
example 4(c) is given by 

z(s) = 1 — A —s)(1 —s/0,) > ++ (1 —s/o,_}). 

For descending ladder heights change s/c, into s,/s. 

14. To example 4(c). Suppose that the X,; assume the values —2, —1,0,1,2 
each with probability +. Show that the ascending tadder height distribution 1: 
given by 

_1+Vv5 , 2 4, =—— = 
34V5° * 34 V5" 

For the weak heights Jj) = (7-V5), 4, = ps1 + V5), 4, =H. 

15. In example 4(c) denote by yi the probability that the first steps do nes 

  

'——+ 
lead out of the interval —B,A and that the nth step leads to the position 4 
(Thus y") =0 for k > A and k < —B. Asusual y!) equals 1 when k =° 
and 0 otherwise.) Let y, => y'") be the expected number of visits to & prix 

_ bf 
to leaving —B, A. Show that 

A 
v= > Py fi—y + ve; -Bskss 

y=. 

and that for k > A and k < —B 
a 

Pe. >= > Py Sev 

v=~B 
‘-—_——__ 

is the probability that the first exit from the interval —B, A leads to the point ‘ 

[This problem is important in sequential analysis. It illustrates the situatic’ 

described in 9(d).} 
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16. Theorem 2 of section 7 implies that if « <0 then } n™P{S, > 0} < o. 
Fill in the following direct proof. It suffices to show (Chebyshev) that 

—n 

; “Lon 

> Fidy}< 4, S44 PP F{dyy <x. 
lyl>n | ” 

The first is obvious. To prove the second relation write the integral as a sum of n 
integrals over kK —1 < ly] <k,k =1,...,n. Reverse the order of summation 
and conclude that the whole series is <2E(|X\). 

17. For the coin-tossing game show that 

‘Hint; Easy by observing that the left side may be written as the integral on 
[ll —x?)-2 — 1]z from 0 to s. 

18. Suppose that the random walk is transient, that is U{Z} = de Ft < x 

for every bounded interval. In the notation of section 3 put ® =} p™*. Prove 

the truth of the renewal equation 

U=O+U%H. 

If w~ is the analogue of y for the negative half-line then y~ = (1—{)® as in 

(1.13). 

19. Conclude that 
1 

U=; eee   

and show this to be equivalent to the Wiener-Hopf decomposition (3.12). 

20. Derive Wald’s identity E(?,) = E(7,)E(X,) directly from the renewal 

equation in problem 18. 
21. To theorem 4 of section 7. The probabilities p* = P{S, >0,...,S, > 0} 

and g* = P{S, <0,...,S, <0} have generating functions given by 

oO nm oO nm 

log p*(s) = >. — P{S, > 0} and loggt => —P{S, <0}. 
n=1 1 n=1 

22. On the last maximum. Instead of the variable K,, of Section 8 consider the 
index K* of the /ast maximum of the partial sums Sp,...,S,. With the notations 
of the preceding problem, prove that 

P{K} =k} = pigh_y. 

23. Alternative form of theorem 2, section 8. The number Il? of non-negative 
terms among So,...,S, has the same distribution as the variable Ky of the 
preceding problem. Prove this by applying theorem 2 to (—Xp — Xp_a,-- +» —X1)- 

24. The combinatorial lemma 2 of section 8 remains valid if the first maximum 

of So,...,S, is replaced by the /ast maximum, and the number of positive partial 

sums by the number of non-negative terms in S,,...,S, (excluding Sy = 0). 

The proof is the same except for the obvious changes of the inequalities. In like 

manner lemma 3 carries over. 

 



CHAPTER XIII 

Laplace Transforms. 

Tauberian Theorems. Resolvents 

The Laplace transforms are a powerful practical tool, but at the same time 
their theory is of intrinsic value and opens the door to other theories such as 
semi-groups. The theorem on completely monotone functions and the basic 
Tauberian theorem have rightly been considered pearls of hard analysis. 
(Although the present proofs are simple and elementary, the pioneer work 
in this direction required originality and power.) Resolvents (sections 9-10) 
are basic for semi-group theory. 

As this chapter must cover diverse needs, a serious effort has been made 

to keep the various parts as independent of each other as the subject permits, 
and to make it possible to skip over details. Chapter XIV may serve for 

collateral reading and to provide examples. The rc.naining part of this book 
is entirely independent of the present chapter. 

Despite the frequent appearance of regularly varying functions only the 
quite elementary theorem 1 of VIITI,8 is used. 

1. DEFINITIONS. THE CONTINUITY THEOREM 

Definition 1. Jf F is a proper or defective probability distribution con- 
-———_ 

centrated on 0, 00, the Laplace transform y of F is the function defined for 

A> 0 by 

(1.1) g(A) = { "o*® Fda}, 

Here and in the sequel it is understood that the interval of integration is 

closed (and may be replaced by —0a, ©). Whenever we speak of the 

Laplace transform of a distribution F it is tacitly understood that F is 
-~—~—— 

concentrated on 0, 00. As usual we stretch the language and speak of “the 

429 

 



430 LAPLACE TRANSFORMS, TAUBERIAN THEOREMS XIIL.1 

Laplace transform of the random variable X,’’ meaning the transform 
of its distribution. With the usual notation for expectations we have then 

(1.2) GA) = E(e**). 

Example. (a) Let X assume the values 0,1,... with probabilities 
Po: Pi,---- Then (4) = > p,e-"* whereas the generating function is 
P(s) = 3 p,s". Thus (4) = P(e~*) and the Laplace transform differs 
from the generating function only by the change of variable s = e~*. This 
explains the close analogy between the properties of Laplace transforms and 
generating functions. 

(6) The gamma distribution with density f,() = (x*—1/['(a))e-* has the 
transform 

  

. I “ 1 
(1.3) AA) =— |] eM gt dy = , a > 0. 

* T(a) Jo (A+1)* 

The next theorem shows that a distribution is recognizable by its transform; 
without this the usefulness of Laplace transforms would be limited. 

Theorem 1. (Uniqueness.) Distinct probability distributions have distinct 
Laplace transforms. 

First proof. In VIII,(6.4) we have an explicit inversion formula which 

permits us to calculate F when its transform is known. This formula will be 
derived afresh in section 4. | 

Second proof. Put y = e*. As x goes from 0 to oo the variable y goes 

from | to 0. We now define a probability distribution G concentrated on 
  

0,1 by letting G(y) = 1 — F(x) at points of continuity. Then 

(1.4) | @(A) = |e F{dz} =| G{dy} 

as is obvious from the fact that the Riemann sums > e~?*[F(x,..1)— F(2,)] 
coincide with the Riemann sums > ¥2[G(y,)—G(Ye41)] when y, = e7™. 

We know from VII,3 that the distribution G is uniquely determined by its 
moments, and these are given by (k). Thus the knowledge of ¢(1), 

p(2),... determines G, and hence F. This result is stronger than the 

assertion of the theorem. > 

The following basic result is a simple consequence of theorem 1. 
  

1 More generally, a completely monotone function is uniquely determined by its values 
at a sequence {a,} of points such that > a,' diverges. However, if the series converges 
there exist two distinct completely monotone functions agreeing at all points a,. For an 
elementary proof of. this famous theorem see W. Feller, On Miintz’ theorem and completely 

monotone functions, Amer. Math. Monthly, vol. 75 (1968), pp. 342-350. 
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Theorem 2. (Continuity theorem.) For n= 1,2,... let F, bea probability 
distribution with transform -¢,,. 

If F,— F where F is a possibly defective distribution with transform » 
then ,{A)— 9(A) for A>0. — 

Conversely, if the sequence {y,(A)} converges for each A> 0 to a limit 

@(A), then is the transform of a possibly defective distribution F, and 
Ff, > F. . 

The limit F is not defective iff p(A)—>1 as 1-0. 

Proof. The first part is contained in the basic convergence theorem of 

VIII,1. For the second part we use the selection theorem 1 of VIII,6. Let. 

{F,,,} be a subsequence converging to the possibly defective distribution F. 
By the first part of the theorem the transforms converge to the Laplace 
transform of F. It follows that F is the unique distribution with Laplace 
transform g, and so all convergent subsequences converge to the same limit 

F. This implies the convergence of F,, to F. The last assertion of the theorem 
is clear by inspection of (1.1). > 

For clarity of exposition we shall as far as possible reserve the letter F 
for probability distributions, but instead of (1.1) we may consider more 
general integrals of the form 

(1.5) | w(A) = [Pe U{dz}. 

where U is a measure attributing a finite mass U{J} to the finite interval J, 
but may attribute an infinite mass to the positive half axis. As usual, we 
describe this measure conveniently in terms of its improper distribution 

t—+ 
function defined by U(x) = U{0, x}. In the important special case where 

U is defined as the integral of a function u > 0 the integral (1.5) reduces to 

(1.6) | oA) = { "6 u(x) da 

Examples. (c) If u(x) = z* with a > —1,- then w(/) = T'(a+1)/A**? for 
all A> 0. 

(d) If u(x) = e* then w(A) = 1/(A—a) for A>a>0, but the integral 

(1.6) diverges for A < a. 
(e) If u(x) = e*” the integral (1.6) diverges everywhere. 
(f) By differentiation we get from (1.1) 

(1.7) —g’{A) =| e“*x F{dz} 
0 

and this is an integral of the form (1.5) with U(€dzx} = x F{dx}. This example 

illustrates how integrals of the form (1.5) arise naturally in connection with 

proper probability distributions. > 

 



432 LAPLACE TRANSFORMS. TAUBERIAN THEOREMS XIT.1 

We shall be interested principally in measures U derived by simple 
operations from probability distributions, and the integral in (1.5) will 

generally converge for all 4 > 0. However, nothing is gained by excluding 
measures for which convergence takes place only for some A. Now w(a) < 00 
implies w(A) < oo for all A> a, and so the values of A for which the 

integral in (1.5) converges fill an interval a, o. 
  

Definition 2. Let U be a measure concentrated on 0, 0. If the integral 
in (1.5) converges for 4 > a, then the function w defined for 4 > a is called 

the Laplace transform of U. 

If U has a density u, the Laplace transform (1.6) of U is also called the 
ordinary Laplace transform of u. 

The last convention is introduced merely tor convenience. To be systematic one should 
consider more general integrals of the form 

(1.8) { wean v(x) U{dzx} 
0 

and call them “*Laplace transform of v with respect to the measure U.’’ Then (1.6) would 

be the “transform of u with respect to Lebesgue measure’’ (or ordinary length). This 
would have the theoretical advantage that one could consider functions u and v of variable 
signs. For the purposes of this book it is simplest and least confusing to associate Laplace 
transforms only with measures, and we shall do so.? 

If U is a measure such that the integral in (1.5) converges for 4 = a, 

then for all 2 >0 

(1.9) w(A+a) -| ede. ge U{dz} =|" U* {dz} 
, 0 0 

is the Laplace transform of the bounded measure U* {dx} = e~** U{dz}, 
and w(A+a)/w(a) is the transform of a probability distribution. In this 
way every theorem concerning transforms of probability ‘distributions 
automatically generalizes to a wider class of measures. Because the graph 
of the new transform w(A-+a) is obtained by translation of the graph of 

we shall refer to this extremely useful method as the translation principle. 

For example, since U is uniquely determined by U#, and U* by w(A+a) 

for 4 > 0, we can generalize theorem 1 as follows. 

Theorem la. A measure U is uniquely determined by the values of its Laplace 
transform (1.5) in some interval a< A < ©. 
  

2 The terminology is not well established, and in the literature the term ‘Laplace trans- 
form of F’’ may refer either to (1.1) or to (2.6). We would describe (2.6) as the “ordinary 

Laplace transform of the distribution function F,’’ but texts treating principally such 
transforms would drop the determinative “‘ordinary.’’ To avoid ambiguities in such cases 
the transform (1.1) is then called the Lap/ace-Stieltjes transform. 
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Corollary. A continuous function u is uniquely determined by the values 

of its ordinary Laplace transform (1.6) in some interval a<4 < ©. 

Proof. The transform determines uniquely the integral U of u, and two 
distinct continuous? functions cannot have identical integrals. > 

[An explicit formula for w in terms of @ is given in VII,(6.6).] 

The continuity theorem generalizes similarly to sequences of arbitrary 
measures U,, with Laplace transforms. The fact that U,, has a Laplace 

transform implies that U,{/} < oo for finite intervals J. We recall from 

VIII,1 and VIIL.6 that a sequence of such measures is said to converge to 
a measure U iff U,{I}—» U{I} < © for every finite interval of continuity 
of U. 

Theorem 22. (Extended continuity theorem.) For n= 1,2,... let U, be 

a measure with Laplace transform o,. If w,(A)—> (4) for 4 > a, then w 

is the Laplace transform of a measure U and U,,— U.: 

Conversely, if U,—-U ad the sequence {w,(a)} is bounded, then 
aw, (A) > w(A) for A> a. 

Proof. (a) Assume that U,,-—- U and that w,f(a)< A. [f ¢>0 isa 

point of continuity of U then 

rt t 
(1.10) |e (Atada U {dx} +f erie U{dx} 

and the felt side differs from w,(A+a) by at most 

(1.11) | eins U {dx} < Ae*' 
t 

which can be made <e by choosing f sufficiently large. Fhis means that 
the upper and lower limits of «,(A-+-a) differ by less than an arbitrary e, 

and hence for every A > 0 the sequence {co,(A+a)} converges to a finite 

limit. 
(b) Assume then that w,(A)— (A) for 2 >a. For fixed A, >a the 

function 03, (A+ Ig 0r,o) is the Laplace transform of the probability 

distribution U#{dr} = (Min, tAghe"o U fade. By the continuity theorem 

therefore U# converges to a possibly defective distributicn U*, and this 
implies that U, converges to a measure U such that Ufdr}= 
= (Age? UF {der}. > 

The following example shows the necessity of the condition that {m,(@)} 

remain bounded. 

* The same argument shows that in generai uv is determined up to values on an arbitrary 

Set of rneasure Zero. 
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Example. (g) Let U, attach weight e”* to the point n, and zero to the 
complement. Since U.{0,n} =0 we have U,—0, but w,(A)= 
= e("4)_, o forall A> 0. > 

One speaks sometimes of the bilateral transform of a distribution F with two tails, 
namely 

. +00 

(1.12) p(A) -{ eA F{dz}, 

but this function need not exist.for any. 4 #0. If it exists, @(—A) is often called the 
moment generating function, but in reality it is the generating function of the sequence 
{u,/n!} where w,, is the nth moment. 

2. ELEMENTARY PROPERTIES 

In this section we list the most frequently used properties of the Laplace 
transforms; the parallel to generating functions is conspicuous. 

(i) Convolutions. Let F and G be probability distributions and U their 
convolution, that is, 

2.1) | U(e) = [Gey Fay} 
The corresponding Laplace trarisforms obey the multiplication rule 

(2.2) wo = oy. 

This is equivalent, to the assertion that for independent random variables 
“E(e4%+%)) = E(e*) E(e~*¥), which is a special case of the multiplication 

rule for expectations. 4 
If F and G have densities f and g, then U hasa density u given by | 

(2.3) u(x) = in g(x—y) f y) dy 

and the multiplication rule (2.2) applies to the “ordinary”? Laplace trans- 
forms (1.6) of f, g, and wu. 

- We now show that the multiplication rule can be extended as follows. 
Let F and G be arbitrary measures with Laplace transforms and: y 
converging for 4 >0. The convolution U has then a Laplace transform w 
given by (2.2). This implies in particular that the multiplication rule applies 
to the “ordinary” transforms of any two integrable functions f and g and 

their convolution (2.3). 

4 The converse is false: two variables may be dependent and yet such that the distribution 

of their sum is given by the convolution formula. [See I1,4(e) and problem 1 of III,9.] 
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To prove the assertion we introduce the finite measures F,, obtained by 
truncation of F as follows: for x<n we put F,(x) = F(x), but for 
x > we let F,(x) = F(n). Define G,,, similarly by truncating G. For 
a <n the convolution U, = F,*G, does not differ from U, and hence 

not only F,,-> F and G,->G, but also U,-—» U. For the corresponding 

Laplace transforms we have w, = ,y, and letting n— o we get the 

assertion w@ = gy. 

Examples. (a) Gamma distributions. In example 1(6) the familiar con- 

volution rule f, * f3 = fa;, is mirrored in the obvious relation 9.93 = Pa+p- 
(6) Powers. To u,(x) = x*~"/[(a) there corresponds the ordinary 

Laplace transform (2) = A~*. It follows that the convolution (2.3) of 

U, and ug is given by u,,,. The preceding example follows from this by the 

translation principle since o,(A) = o,(A+1). 

(c) If a>0 then e~*w(A) is the Laplace transform of the measure with 

distribution function U(z—a). This is obvious from the definition, but may 
be considered also as a special case of the convolution theorem inasmuch as 
e™ is the transform of the distribution concentrated at the point a. > 

(ii) Derivatives and moments. If F is a probability distribution and 
g its Laplace transform (1.1), then @ possesses derivatives of all orders given 

by 

Q.4) (= 1)" 9a) = | “ere Fa} 
0 

(as always, A> 0). The differentiation under the integral is permissible 

since the new integrand is bounded and continuous. 
It follows in particular that F possesses a finite nth moment iff a finite 

limit ¢™ (0) exists. For a random variable X we can therefore write 

(2.5) E(X) = —@(0), — E(X’) = ¢"(0) 

with the obvious conventions in case of divergence. The differentiation 
rule (2.4) remains valid for arbitrary measures F. 

(iii) Integration by parts leads from (1.1) to 

(2.6) [e 7 Be) da = me ) A>0. 
0 

For probability distributions it is sometimes preferable to rewrite (2.6) in 
terms of the tail 

et — F(2)| dz = ; 

This corresponds to formula 1; XI,(1.6) for generating functions. 

2 1 — oA 
(2.7) { 3 1a 4) 

 



436 LAPLACE TRANSFORMS. TAUBERIAN THEOREMS XITI.3 

(iv) Change of scale. From (1.2) we have E(e~*4%) = g(ad) for each 
fixed a >0, andso (a) is the transform of the distribution F{dxJa} [with 

distribution function F(z/a)]. This relation is in constant use. 

Example. (¢) Law of large numbers. Let X,,X2,... be independent 

random variables with acommon Laplace transform gy. Suppose E(X/) = 
The Laplace transform of the sum X, +----+ X, is g", and hence the 

transform of the average [X,+---+X,]}/n is given by g%(A/n). Near the 
origin g(A) = 1 — wA + ofA) [see (2.5)] and soas n> © 

n 

(2.8) lim 9" (") = lim (: ~ ““) = et 
n n 

But e~ is the transform of the distribution concentrated at mu, and so 

the distribution of [X,+---+X,]/n tends to this limit. This is the weak law 

of large numbers in the Khintchine version, which does not require the 

existence of a variance. True, the proof applies directly only to positive 
variables, but it illustrates the elegance of Laplace transform methods. p> 

3. EXAMPLES 

(a) Uniform distribution. Let F stand for the uniform distribution. 

concentrated on 0, 1. Its Laplace transform is given by (A) = (l—e7*)/A. 
Using the binomial expansion it is seen that the n-fold convolution F”* has 

the transform 

G.1) ra =S(- oy ie eye . ! i 

As 4-* is the transform corresponding to U(x) = x"/n! example 2(c) shows 

that e““4-" corresponds to (2—k)%/n! where 2, denotes the function 

that equals 0 for x <0 and x for r> 0. Thus 

(3.2) Fom(a) = © 3 (— (Teh. no | 

This formula was derived by direct calculation in I,(9.5) and by a passage 

to the limit in problem 20 of 1; XI. | 
(b) Stable distributions with exponent 3. The distribution function 

(3.3) oe G(x) = 20 -na/Vx)], 2>0 

(where Jt is the standard normal distribution) has the Laplace transform 

(3.4) Wa) = eo ¥*, 
This can be verified by elementary calculations, but they are tedious and we 
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prefer to derive (3.4) from the limit theorem 3 in 1; IJJ,7 in which the 

distribution G was first encountered. Consider a simple symmetric random 
walk (coin tossing), and denote by T the epoch of the first return to the 
origin. The cited limit theorem states that G is the limit distribution of the 
normalized sums (T,+-°--+T,)/n?, where T,,T,,. . are independent 
random variables distributed like T. According to 1; XI,(3.14) the 

generating function of T is given by f(s) = 1 — V1—s?, and therefore 

(3.5) y(@) = lim [1—v -e4/*Y" = Lim ! - iy eV 2d 
n 

We have mentioned several times that G is a stable distribution, but 

again the direct computational verification is laborious. Now obviously 
y"(A) = y(v?4) ~which is the same as G"*(x) = G(n-*x) and proves the 
stability without effort. 

(c) Power series and mixtures. Let F be a probability distribution with 

Laplace transform (A). We have repeatedly encountered distributions 
of the form 

(3.6) . G =) p,F* 
k=0 

where {p,} is a probability distribution. If P(s) = > p,s* stands for the 
generating function of {p,}, the Laplace transform of G is obviously given 

by | | 

(3.7) yA) = 2 PeP'(A) = P((A)). 

This principle can be extended to arbitrary power series with positive coeffi- 
cients. We turn to specific applications. 

(d) Bessel function densities. In example II,7(c) we saw that for r = 1, 
2,.... the density 

(3.8) a (a) = e* = 1,2) 

corresponds to a distribution of the form (3.6) where F is exponential with 
p(A) = 1/(A+1), and {p,} is the distribution of the first-passage epoch 
through the point r > 0 in an ordinary symmetric random walk. The 

generating function of this distribution is 

(9) pg) = (== 2) 
  

[see 1; X1I,(3.6)]. Substituting s = (1 + A)~! we conclude that the ordinary 

Laplace transform of the probability density (3.8) is given by 

(3.10) A+1—VJVd+)l?2—-1F. 
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That v, is a probability density and (3.10) its transform has been proved 
only for r= 1,2,.... However, the statement is true® for a// r>0. It 

is of probaBilistic interest because it implies the convolution formula 
v, *V, = v,,, and thus the infinite divisibility of v,. (See section 7.) 

(e) Another Bessel density. In (3.6) choose for F the exponential distri- 

bution with (A) = 1/(A+1) and for {p,} the Poisson distribution with 

P(s) = e+", It is easy to calculate G ‘explicitly, but fortunately this task 
was already accomplished in example IJ,7(a). We saw there that the density 

(3.11) w,(#) = eo */(a/t)? 1,(2V' tx) 
defined in IJ,(7.2) is the convolution of our distribution G with a gamma 

density fi ,41- It follows that the ordinary Laplace transform of w, is 
the product of our y with the transform of f,,.;, namely (A+1)*. 
Accordingly, the probability density (3.11) has the Laplace transform 

  

1 3.12 se te t/CA+ 1) 
( ) (A + Lert © 

For ¢ = 1 we see using the translation rule (1.9) that vz, £1 (20 x) has the 

ordinary transform 1-?-te\2, 
(f) Mixtures of exponential densities. Let the density Ff be of the form 

  

(3.13) f(z) = Srae, P, > 0, Sp =1 

where for definiteness we assume 0 <a, <-:- <.a,. The corresponding 
Laplace transform is given by: 

Bo “ a. QA) (3.14) A) = > = = 
k=1 A + a, P(A) 

where P isa polynomial of degree n with roots —a,, and Q is a poly- 
nomial of degree n—1. Conversely, for any polynomial Q of degree 
n—1 theratio Q(A)/P(A) admits of a partial fraction expansion of the form 

(3.14) with | 
: —a, G15) os pon O80) 

P (—a,) 

{see 1; XI,(4.5)]. For (3.14) to correspond to a mixture (3. 13) it is necessary 

and sufficient that p, > 0 and that Q(0)/P(0) = 1: From the graph of P 
it is clear that P’(—a,) and P’(—a,,,) are of opposite signs, and hence 

the same must be true of Q(—a,) and Q(—a,,,). In other words, it is 

necessary that Q has a root —b, between —a, and —a,,,;. But as Q 

  

5 This result is due to H. Weber. The extremely difficult analytic proof is now replaced 
by an elementary proof in J. Soc. Industr, Appl. Math., vol. 14 (1966) pp. 864-875.. 
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cannot have more than  — | roots —b, we conclude that these must satisfy 

(3.16) 0<a <b <a<be<--+ <b, , <a, 

This guarantees that all p, are of the same sign, and we reach the following 
conclusion: Let P and Q be polynomials of degree n and n—1, 
respectively, and Q(0)/P(0) = 1. Jn order that Q(A){P(A) be the Laplace 
transform of a mixture (3.13) of exponential densities it is necessary and 

sufficient that the roots —a, of P and —b, of Q Be distinct and (with proper 
numbering) satisfy (3.16). > 

4. COMPLETELY MONOTONE FUNCTIONS. 

INVERSION FORMULAS 

As we saw in'VII,2 a function f in 0,1 isa generating function of a 
positive sequence {f,} iff f is absolutely monotone, that is, if f possesses 
positive derivatives f') of all orders. An analogous theorem holds for 
Laplace transforms, except that now the derivatives alternate in sign. 

Definition 1. A function gm on 0, 00 is completely monotone if it possesses 
derivatives y\” of all orders and 

(4.1) (—1)"9'(4) > 0, A>0. 

As A->0 the values (A) approach finite or infinite limits which we 

denote by y'”(Q). Typical examples are 1/2 and 1/(1+A). 

The following beautiful theorem due to S. Bernstein (1928) was the 

starting point of much research. and the proof has been simplified by siages. 
We are able to give an extremcly simple proof because the spade work was 

laid by the characterization of generating functions derived in theorem 2 of 

VII,2 as a consequence of the law of large numbers. 

Theorem 1. A function gy on 0, © is the Laplace transform of a prob- 
ability distribution F, iff it is completely monotone, and (0) = 1. 

We shall prove a version of this theorem which appears more general in 
form, but can actually be derived from the restricted version by an appeal 

to the translation principle explained in connection with (1.9). 

Theorem la. The function y on 0, 0 i§ completely monotone iff it is of 

the form 

(4.2) ¢(A) = |e F{dz}, A> 0, 
0 

where F is not a necessarily finite measure on 0, ©. 
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(By our initial convention the interval of integration is closed: a possible 
atom of F at the origin has the effect that g(oo) > 0.) 

Proof. The: necessity of the condition follows by formal differentiation 

as in (2.4). Assuming gy to be completely monotone consider g(a—as) 

for fixed a>0O and0<s<1 as a function of s. Its derivatives are 
evidently positive and by theorem 2 of VII,2 the Taylor expansion 

oe (—a)"o'(a) n 

a ) (4.3) p(a—as) => ; 

| 
n=0 n! 

is valid for O< s < 1. Thus 

0 (__7\n_(n) 

(4.4) PalA) = o(a—ae*’*) = sovrer@) ela 

n=0 n! 

is the Laplace transform of an arithmetic measure attributing mass 
(—a)"y™(a)/n! to the point n/a (where n = 0,1,...). Now 9,(A)— (A) 
as a» oo. By the extended continuity theorem there exists therefore a 

measure F such that. F,-> F and @ is its Laplace transform. > 

We have not only proved theorem la, but the relation F,—- F may be 

restated in the form of the important 

Theorem 2. (Inversion formula.) If (4.2) holds for 4 >0, then at all points 
of continuity® 

(4.5) F(z) =lim y 2" pinay, 
a~o nSar n! 

This formula is of great theoretical interest and permits various conclusions. 
The following boundedness criterion may serve as an example of particular 
interest for semi-group theory. (See problem 13.) 

Corollary. For py to be of the form 

(4.6) oi) = [eM s()dz where O< F< C 
. 0 

it is necessary and sufficient that 

ef a)” (a) - 

n! SF 
(4.7) 

forall a>O. 

6 The inversion formula (4.5) was derived in VII,(6.4) as a direct consequence of the law 

of large numbers. In VII,(6.6) we have an analogous aversion formula for integrals of the 
form (4.6) with continuous f (not necessarily positive). 
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Proof. Differentiating (4.6) under the integral we get (4.7) [see (2.4)]. 
Conversely, (4.7) implies that g is completely monotone and hence the 
transform of a measure F. Substituting from (4.7) into (4.5) we conclude that 

F(x) — F(a) < C(x_—2) 

for any pair x, <x,. This means that F has bounded difference ratios 

and hence F is the integral of a function f< C (see V,3). > 

Theorem | leads to simple tests that a given function is the Laplace trans- 
form of a probability distribution. The standard technique is illustrated by 
the proof of 

Criterion 1. If y and yp are completely monotone so is their product py. 

Proof. We show by induction that the derivatives of gy alternate in 

sign. Assume that for every pair oy, y of completely monotone functions 
the first 1 derivatives of yy alternate insign. As —g’ and —y’ are com- 
pletely monotone the induction hypothesis applies to the products —9’y 

and —y’, and we conclude from —(gy)’ = —q’y — py’ that in fact the 
first 1 +1 derivatives of gy alternate in sign. Since the hypothesis is 
trivially true tor 1 = 1 the criterion is proved. > 

The same proof yields the useful 

Criterion 2. If @ is completely monotone and yp a positive function with a 
completely monotone derivative then p(y) is completely monotone. (In 
particular, e~* is completely monotone.) 

Typical applications are given in section 6 and in the following example, 

which occurs frequently in the literature with unnecessary complications. 

Example. (a) An equation occurring in branching processes. Let py be 
the Laplace transform of a probability distribution F with expectation 
0 <u < 0, and let c >0. We prove that the equation 

(4.8) BA) = p(A+e—cB(A)) 

has a unique root B(A) <1 and B is the Laplace transform of a distribution 

B which is proper iff uc <1, defective otherwise. 

(See XIV,4 for applications and references.) 

Proof. Consider the equation 

(4.9) g(A+c—cs) —s =0 

for fixed A2>0 andO<s <1. The left side is a convex function which 

assumes a negative value at s = 1 and a positive value at s = 0. It follows 
that there exists a unique root. 
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To prove that the root #(A) is a Laplace transform put fy =0 and 
recursively B,,, = ¢y(A+c—cB,). Then By < B,<1 and since is 
decreasing this implies 6, << 8,< 1, and by induction f, < B,4, <1. 
The limit of the bounded monotone sequence {8,,} satisfies (4.8) and hence 
Bb = lim B,. Now 6,(A) = y(A+c) is completely monotone and criterion 
2 shows recursively that B,, B;,... are completely monotone. By the 
continuity theorem the same is true of the limit f, and hence f is the 
Laplace transform of a measure B. Since f(A) <1 for all 24 the total 
mass of B is B(O) < 1. It remains to decide under what conditions #(0) = 1. 

By construction s = §(0) is the smallest root of the equation 

(4.10) ¢(e—cs) —s = 0. 

Considered as a function of s the left side is convex; itis positive for s = 0 

and vanishes for 5 = 1. A second root s <1 exists therefore iff at s = 1 
the derivative is positive, that is iff —cg’(0) > 1. Otherwise B(0) = 1 and 
B is the Laplace transform of a proper probability distribution B. Hence 
B is proper iff —cq’(0) = cu < 1. > 

5. TAUBERIAN THEOREMS 

Let U be a measure concentrated on 0, 00 and such that its Laplace 
transform 

(5.1) w(A) = [ro U{dx} 

exists for 2 > 0. Jt will be convenient to describe the measure U in terms 

of its improper distribution function defined for x >0 by U(0, 2}. We 

shall see that under fairly general conditions the behavior of w near the 

origin uniquely determines the asymptotic behavior of U(x) as x—>» oo and 

vice versa. Historically any relation describing the asymptotic behavior of 

U in terms of w 1s called a Tauberian theorem, whereas theorems describing 
the behavior of w in terms of U are usually called Abelian. We shall make 

no distinction between these two classes because our relations will be 
symmetric. _ . 

To avoid unsightly formulas involving reciprocals we introduce two 
positive variables f and 7 related by 

(5.2) | tr= 1, 

Then 7-0 when f— o. 

To understand the background of the Tauberian theorems note that 
for fixed ¢ the change of variables x = ty in (5.1) shows that w(7A) is the 

Laplace transform corresponding to the improper distribution function 
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U(ty). Since w decreases it is possible to find a sequence 7,,7,,...—>0 

such that as 7 runs through it 

(5.3) or) 4) 
(7) 

with y(A) finite at least for A> 1. By the extended continuity theorem the 
limit y is the Laplace transform of a measure G and as f¢ runs through the 
reciprocals t, = 1/7, 

U(tz) 

o(r) 
(5.4) 

  

—> G(x) 

at all points of continuity of G. For x = 1 it is seen that the asymptotic 
behavior of U(t) as t-» oo is intimately connected with the behavior of 
w(t). 

In principle we could formulate this fact as an all-embracing Tauberian 
theorem, but it would be too clumsy for practical use. To achieve reasonable 

simplicity we consider only the case where (5.3) is valid for any approach 
70, that is, when varies regularly at 0. The elementary lemma’ 1 of 
VHI,8 states that the limit y is necessarily of the form y(A) = A-* with 

p = 0. The corresponding measure is given by G(x) = x°/['(p+1), and 
(5.4) implies that U varies regularly and the exponents of w and U are 
the same in absolute value. We formulate this important result together 

with its converse in 

Theorem 1. Let U be a measure with a Laplace transform w defined for 

A> 0. Then each of the relations 

(5.5) wfrd) od a, 
an | ols) AP? 

and 

(5.6) U(te) —> x? . t+ © 
| Ut) 

implies the other as well as 

(5.7) w(7) ~ U(t) P(p+1). 

Proof. (a) Assume (5.5). The left side is the Laplace transform corre- 
sponding to U(tx)/w(r), and by the extended continuity theorem this implies 

U(tzx) _ x? 

(tr) T(p+1) 

For x = 1 we get (5.7), and substituting this back into (5.8) we get (5.6). 

(5.8) 

7 This lemma is used only to justify the otherwise artificial form of the relations (5.5) and 
(5.6). The theory of regular variation is not used in this section [except for the side remark 

that (5.18) implies (5.16)]. 
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(b) Assumie (5.6). ‘Taking Laplace transforms we get 

ora) Met!) 
U(t) AP 

provided the extended continuity theorem is applicable, that is, provided 
the left-side remains bounded for some 4. As under (a) it is seen that (5.9) 
implies (5.7) and (5.5), and to prove the theorem it suffices to verify that 
w(r)/U(t) remains bounded, 

On partitioning the domain of integration by the points 1, 2t,4f,... 
itis clear that 

(5.9) 

8 
(5.10) w(t) < Se” (22). 

0 

In view of (5,7) there exists a ft) such that U(2r) < 2°41 U(t) for t > fy. 
Repeated application of this inequality yields 

(5.11) WD) Sartori” 
U(t) 

and so the left side indeed remains bounded as 1 — oo, > 

Examples. (a) U(x) ~ log? as x-» oo iff w(A) ~ log? A as 2-0. 

Similarly U(z) ~ Vx iff w(A) ~ Wad. 
(5) Let F bea probability distribution with Laplace transform g. The 

measure U{dx} = x F{dx} has the transform — a Hence if — g’(A) ~ peda-e 
as A-—» o then 

° Hyg | 
Ue) =| y Flay ~ ————_ 2’, 2—> © 

0 dys I(p + 1) 

and vice versa. This generalizes the differentiation rule (2.4) which is con- 

tained in (5.7) for p = 0. - > 

It is sometimes useful to know to what extent the theorem remains valid 

in the limit p— oo, We state the result in the form of a 

Corollary. If for some a> 1 as to 

(ra) —-0 or Ulta) > . ith (5.12) either ool) U1 

then 

(5.13) UO 
(rT) 

Proof. The first relation in (5,12) implies that w(7A)/w(r) ~ 0 for A>a 

and by the extended continuity theorem U(tx)/w(7) +0 forall x > 0. The 
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second relation in (5.12) entails (5.13) because 

at 

w(7) >| eat U{dx} > e* U(ta). > 
0 

un applications it is more convenient to express theorem | in terms of slow 

variation, We recall that a positive function L defined on 0, © varies 
slowly at oo if for every fixed x 

  

(5.14) Lz) — 1, t— ©. 
L(t) 

L varies slowly at 0 if this relation holds as t—>0, that is, if L(1/x) varies 

slowly at 00. Evidently U satisfies (5.6) iff U(x)/xe varies slowly at oo 

and similarly (5.5) holds iff A?w(A) varies slowly at 0. Consequently 

theorem 1 may be rephrased as follows. 

Theorem 2. If L is slowly varying at infinity and 0 < p < ~™, then each 

of the relations. 

| 11 
(5.15) | w(r)~ 7? L *) , T—>0, - 

and ( 

(5.16) U(t)~ —1 _ t? Lit), . t—> 0 
P(p+1) 

implies the other. 

Theorem 2 has a glorious history. The implication (5.16) — (5.15) (from the measure 

to the transform) is called.an Abelian theorem; the converse (5.15) — (5.16) (from trans- 

form to measure), a Tauberian theorem. In the usual setup, the two theorems are entirely 
separated, the Tauberian part causing the trouble. In a famous paper G. H. Hardy and 
J. E. Littlewood treated the case w(A) ~ A~* by difficult calculations. In 1930, J. Karamata 

created a sensation by a simplified proof for this special case. (This proof is still found in 
texts on complex variables and Laplace transforms.) Soon afterwards he introduced the 
class of regularly varying functions and proved theorem 2; the proof was too complicated 
for textbooks, however. The notion of slow variation was introduced by R. Schmidt about 
1925 in the same connection, Our proof simplifies and unifies the theory and leads to the 
little-known, but useful, corollary. 

A great advantage of our proof is that it applies without change when the. 
roles of infinity and zero are interchanged, that is, if +—» 00 while r—0. 
In this way we get the dual theorem connecting the behavior of w at infinity 
with that of U at the origin. [It will not be used in this book except to 
derive (6.2).] 

Theorem 3. The last two theorems and the corollary remain valid when 
the roles of the origin and infinity are interchanged, that is, for 7» © and 

t{— 0. 
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Theorem 2 represents the main result of this section, but for completeness 

we derive two useful complements. First of all, when U has a density 

‘= y it is desirable to obtain estimates for u. This problem cannot be 

treated in full generality, because a well-behaved distribution U can have an 

extremely ill-behaved density uv. In most applications, however, the density 
  

u will be ultimately monotone, that is, monotone in some interval 2, ©. 

For such densities we have 7 

Theorem 4.8 Let 0 < p < 0. If U has an ultimately monotone derivative 

u then as A->0 and x— 0, respectively, 

1 /t\ . i 
(5.17) o@) ~3,L(;) if wa)~T 

(For a formally stronger version see problem 16.) 

  x?) L(x). 

Proof. The assertion is an immediate consequence of theorem 2 and the 

following 

Lemma. Suppose that U has an ultimately monotone density u. If 

(5.16) holds with p> 0 then 

(5.18) u(z) ~ pU(x)/x, z—> 0, 

[Conversely, (5.18) implies (5.16) even if u is not monotone. This is 

contained in VIII,(9.6) with Z =u and p=0.} 

Proof. For 0<a <b 

(5.19) U(tb) — Ulta) _ [ ulty)t 

- U(t) a U(t) 

As t— © the left side tends to b° — a®. For sufficiently large ¢ the inte- 

grand is monotone, and then (5.16) implies that it remains bounded as 

t—» oo. By the selection theorem of VIII,6 there exists therefore a sequence 

ty, tg, ...—» 00 such that as ¢ runs through it 

u(ty)t 
(5.20) om >   vy) 

at all points of continuity. It follows that the integral of y over a, b equals 

b? — a’, andso y(y) = py’). This limit being independent of the sequence 

{t,} the relation (5.20) is true for an arbitrary approach t—> 0, and for 

y = 1 it reduces to (5.18). > 

8 This includes the famous Tauberian theorem of E. Landau. Our proof serves as a 

new example of how the selection theorem obviates analytical intricacies. 
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Example. (c) For a probability distribution F with characteristic 
function gy we have [see (2.7)] 

(5.21) [ “oT — F(x)|\dx = [1 — (A)]/A. 

- Since 1 — F is monotone each of the relations 

  (5.22) 1—9(2)~2-L(1/2) and 1— Fla)~ = 5 eL (2) 
. p 

(p > 0) implies the other. The next section will illustrate the usefulness of 
this observation. > 

The use of this theorem is illustrated in the next section. In conclusion 

we show how theorem 2 leads to a Tauberian theorem for power series. 
[It is used in XII,(8.10) and in XVII,5.] 

Theorem 5. Let Gn =. 9 and Suppose that 

(5.23) | O(s) = 34,3” 
n=0 

converges for O<s <1. If L varies slowly at infinity and 0< p< @ 
then each of the two relations 

  

  

  

1 1 
(5.24) a) ~a- (—) sl. 
and 

5.25 rt ate + dna ™~ ? L(n), > 
( ) Go T 41 Qn-1 T(p+1) n? L(n) n 

implies the other. 
Furthermore, if the sequence {q,} is monotonic and 0 < p< ©, then 

(5.24) is equivalent to 

(5.26) In™   n°" L(n), n— 00. 
T(p) 

Proof. Let U be the measure with density u defined by 

(5.27) u(x) = q, for n<axcn4+l. 

The left side in (5.25) equals U(n). The Laplace transform w of U is 

given by 

(5.28) w(A) = 
et @ _! 

zane 

It is thus seen that the relations (5.24) and (5.25) are equivalent to (5.15) 

and (5.16), respectively, a.d hence they imply each other by virtue of theorem 

2. Similarly, (5.26) is an immediate consequence of theorem 4. > 

—A 

Q(e~’). 
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Example. (/) Let g, =n’! log¢n where p > 0 and a isarbitrary. The 
sequence {g,} is ultimately monotone and so (5.24) holds with L(t) = 
= I(p) log? r. > 

*6. STABLE DISTRIBUTIONS 

To show the usefulness of the Tauberian theorems we now derive the most 
  

general stable distributions concentrated on 0, @ and give a complete 
characterization of their domains of attraction. The proofs are straight- 
forward and of remarkable simplicity when compared with the methods 

  

required for distributions not concentrated on 0, oo. 
, 

Theorem 1. For fixed 0 <a <1 the function y,(A) = e-** is the Laplace 
transform of a distribution G, with the following properties: 

G, is stable; more precisely, if X,,...,X,, are independent variables with 
the distribution G,, then (X,+-+++X,)/n¥* has again the distribution G,. 

1 

Pda)’ 

(6.2) e* °G,(x) > 0, x—> 0. 

  (6.1) x[) — G,(x)] > x , 

Proof. The function y, is completely monotone by the second criterion 
of section 4, because e~* is completely monotone and 4* has a completely 
monotone derivative. Since y,(0)= 1, the measure G, with Laplace 
transform y, has total mass 1. The asserted stability property is obvious 
since y2(A) = y,(n*A). 

(6.1) 1s a special case of (5.22), and (6.2) is an immediate consequence of 
theorem 3 and the corollary to theorem 1 of the preceding section. > 

Theorem 2. Suppose that F is a probability distribution concentrated on 

0, «© such that 

(6.3) F"*(a,x) — G(x) 

(at points of continuity) where G is a proper distribution not concentrated at 
a single point. Then 

(a) There exists a function L that varies slowly at infinity® and a constant 
a with O<a<1 such that 

x *L(x) 

Pd —2). 

* Except for (6.2) the results of this section are derived independently in chapters IX 

and XVII. Stable distributions were introduced in VI,1. 

® That is. L satisfies (5,14). The norming factor ['(l1—«) in (6.4) is a matter of con- 

venience and affects only notations 

xX—> CO. (6.4) | 1 — F(a) ~ 
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(b) Conversely, if F is of the form (6.4) it is possible to choose a, such 

that “ 

nL(a,) 

a 

n 

and in this case (6.3) holds with G = G,,. 

(6.5) I, 
a 

This implies that the possible limits G in (6.3) differ only by scale factors 

from some G,. It f¢ tows, in particular, that there are no other stable dis- 
  

tributions concentrated on 0, «©. (See lemma 1 of VIII,2.) 

Proof. If y and y are the Laplace transforms of F and G, then (6.3) is 
equivalent to 

(6.6) —n log 9(A/a,) ~ —log y(A). 

By the simple theorem of VIII,8 this implies that —log @ varies regularly 
at the origin, that is 

(6.7) —log (A) ~ A* L(1/A), A> 0, 

with L varying slowly at infinity and « > 0. From (6.6) then —log (A) = 

= CA”. Since G is not concentrated at a single point we have O< a <1. 
Now (6.7) implies 

(6.8) 1- A | ms), a0. 
A A 

In view of (5.22) the two relations (6.4) and (6.8) imply each other. 

Accordingly, (6.4) is necessary for (6.1) to hold. 
For the converse part we start from (6.4) which was just shown to imply 

(6.8). For fixed n define a, as the lower bound of all zx such that 

n({l — F(x] 1/PU — «). Then (6.5) holds. Using this and the slow variation 

of L we conclude from (6.8) that 

(6.9) 1 — pfAla,) ~ #a,*L(o,/A) ~ A*/n. 

It follows that the left side in (6.6) tends to 2%, and this concludes the proof. » 

(See problem 26 for the influence of the maximal term.) 

*7, INFINITELY DIVISIBLE DISTRIBUTIONS 

According to the definition in VI,3 a probability distribution U with 

Laplace transform w is infinitely divisible iff for n =-1,2,... the positive 
nth root o, =” is the Laplace transform of a probability distribution. 
  

* Not used in the sequel. 
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Theorem 1. The function w is the Laplace transform of an infinitely 
divisible probability distribution iff « =e where w has a completely 
monotone derivative and w(O) = 0. 

Proof. Using the criterion 2 of section 4, it is seen that when (0) = 0 

and y’ is completely monotone then w, = e-”/" is the Laplace transform 
of a probability distribution. The condition is therefore sufficient. 

To prove the necessity of the condition assume that w, = e-¥/" is, for 
each n, the Laplace transform of a probability distribution and put 

(7.1) PalA) = nll — w,(4)]. 
Then y,-—>+y and the derivative y’ = —nw} is completely monotone. 
By the mean value theorem y,(/) = Ayp/(6A) > Ay’ (A), and since y, > y 

this implies that the sequence {y,(A)} is bounded for each fixed 4 > 0. 
It is therefore possible to find a convergent subsequence, and the limit is 

automatically completely monotone by the extended continuity theorem. 

Thus y is an integral of a completely monotone function, and this completes 

the proof. > 

An alternative form of this theorem is as follows. 

Theorem 2. The function w is the Laplace transform of an infinitely 

divisible distribution iff it is of the form w = e-” where 

1.2) yy = [EE ptaay 
and P is a measure such that 

(7.3) . { x P{dx) < o. 
1 

Proof. In view of the representation theorem for completely monotone 
functions the conditions of theorem 1 may be restated to the effect that. 

we must have y(0) = 0 and 

(7.4) yA) = { ve Pidz} 

where P is a measure. Truncating the integral at a changes the equality 

sign into >, and this implies that 

—Ax 

(7.5) w(t) & [= Fite} 
foreach a> 0 (the integrand being bounded). It follows that (7.2) makes 

sense and the condition (7.3) is satisfied. Formal differentiation now shows 
that (7.2) represents the integral of (7.4) vanishing at zero. > 

[See problems 17-23 and example 9(a).] 
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Examples. (a) The compound Poisson distribution 

(7.6) U=e°y 
on! 

c” 

F"™* 

has the Laplace transform e~‘t’? and (7.2) is true with P{dx} = cx F{dx}, 
(b) The gamma density x* e*/T(a) has transform (A) = 1/(A+1), 

Here 
o,- ett 

(7.7) w(A) = a { ——— e*dx 
zw 

because y’(A) = a(A+1)7 = o'(A)/w(A). 

(c) Stable distributions. For the transform w(A) = e~** of section 6 we 
have y(A) = A* and 

(7.8) qt = ——£_ dy   

as is again seen by differentiation. 

(d) Bessel junctions. Consider the density v, of example 3(d) with 
Laplace transform (3.10). It is obvious from the form of the latter that uv,’ 

is the n-fold convolution of v,,, with itself, and hence infinitely divisible. 

Formal differentiation shows that in this case y’(A) = r/V(A+1? — 1 and 
it is easily shown (see problem 6) that this yw’ is of the form (7.4) with 

P{dz} = re-* I,(x) dz. 

(e) Subordination. It is easily seen from the criteria in section 4 that 
if y,-and yw, are positive functions with completely monotone derivatives, 

the composite function (A) = y,(y2(4)) has the same property. The 

corresponding infinitely divisible distribution is of special interest. To 
find it, denote by Q‘) the probability distribution with Laplace transform 
ei) (where i = 1,2), and put 

(7.9) Ux) = [Por era tas}, 

(The distribution U, is thus obtained by randomization of the parameter 
s in Q®).) The Laplace transform of U, is 

(7.10) wa) =| eo 2 gst =— ete (a) 

0 

Readers of X,7 will recognize in (7.9) the subordination of processes: 
U, is subordinated to Q‘?) by the directing process Q{). It is seen with 

what ease we get the Laplace transforms of the new process although only 
for the special case that the distributions Q‘?) are concentrated on the 
positive half-axis. 
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A special case deserves attention: if y,(2) = 2% and y,(A) = 2% then 
y(A) = 7". Thus a stable o-process directed by a stable 8-process leads to 

a stable «f-process. Readers should verify that this statement in substance 

repeats the assertion of problem 10. For a more general proposition see 
example VI,2(/). 

(f) Every mixture of exponential distributions is infinitely divisible. The 

most general such distribution has a density of the form 

(7.11) f(a =f se Ufds} 

where U is a probability distribution. In the special case where U is 

concentrated on finitely many points 0 <a, <-+*: <a, it was shown in 
example 3(f) that the Laplace transform is of the form 

Atbdbh  A+t+d,, 1 

Ata, A+ a, 1 Ata, 
  (7.12) g(A) = C 

with a, < by < Ayi3. Now 

(7.13) — fog At ye ot bn = ae 
dA Ata, Ata, A+t-b, (A+ a,)(A + b,) 

is the product of two completely monotone functions, and therefore itself 

completely monotone. It follows that each factor in (7.12) is infinitely 
divisible and therefore the same is true of gy. For general mixtures the 
assertion follows by a simple passage to the limit (see problems 20-23). > 

  

*8. HIGHER DIMENSIONS 

The generalization to higher dimensions is obvious: not even the definition 
(1.1) requires a change if x is interpreted as column matrix (%,...,2%,) 

and A as row matrix (A4,,...,4,). Then. 

du = 1,2, +°°+ + A,2, 

is the inner product of 4 and x. Within probability theory the use of 
‘multidimensional transforms is comparatively restricted. 

Examples. (a) Resolvent equation. Let f be a continuous function in one 
dimension with ordinary Laplace transform (A). Consider the function 

10 This surprising observation is due to F. W. Steutel, Ann. Math. Statist., vol. 40 (1969), 

pp. 1130-1131 and vol. 38 (1967), pp. 1303-1305. 
* Not used in the sequel. 

 



XHL8 HIGHER DIMENSIONS 453 

f(st+t) of the two variables s, ¢. Its two-dimensional transform is given by 

(8.1) oA, v) = [*Pemnsen ds dt. 
0 Jo 

After the change of variables s+t=2 and —s+s=vy the integral 
reduces to 

  

, [ e +vee (a) a eiGavy dy —_ 1 [ (e"* —e~*7) f(x) dx. 

0 a A—vdJo 

Thus 

(8.2) o(d,») = — ma 
—Y» 

We shall encounter this relation in more dignified surroundings as the basic 

resolvent equation for semi-groups [see (10.5) and the concluding remarks 
to section 10]. 

(b) Mittag-Leffler functions. This example illustrates the use of higher 
dimensions as a technical tool for evaluating simple transforms. We shall. 
prove the following proposition: 

If F is stable with Laplace transform e~*", the distribution 

(8.3) Gz) = 1 — F(t/x’%), x > 0, 

(t fixed) has as Laplace transform the Mittag-Leffler function 

oO .f_ 4\k 

(8.4) 5 LD pe 
k=0 D(1+ka) 

This result is of considerable interest because in various limit theorems the 

distribution G.appears in company with F [see, for example, X1,(5.6)]. A 
direct calculation seems difficult, but it is easy to proceed as follows. First 
keep x fixed and take ¢ as variable. The ordinary Laplace transform y,(v) 

(with » as variable) of G,(z) is obviously (1—e~’**)/», Except for the 
norming factor » this is a distribution function in x, and its Laplace 
transform is evidently 

(8.5) 
yt 

A+ 

This, then, is the bivariate transform of (8.3). In theory it could have been 

calculated by taking first the transform with respect to x, then ¢, and so 
(8.5) is the transform with respect to ¢ of the transform which we seek. 
But expanding (8.5) into a geometric series one sees that (8.5) is in fact the 

transform of (8.4) and thus the proposition is proved. 
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The Mittag-Leffier function (8.4) is a generalization of the exponential to 
which it reduces when « = 1. > 

9. LAPLACE TRANSFORMS FOR SEMI-GROUPS 

The notion of Laplace integrals can be generalized to abstract-valued 
functions and integrals,1? but we shall consider only Laplace transforms of 
semi-groups of transformations associated with Markov processes.12 We 
return to the basic conventions and notations of X,8. 

Let & bea space (for example, the line, an interval, or the integers), and 

£ a Banach space of bounded functions onit with the norm ||u|| = sup |u(z)]. 

It will be assumed that if we Y thenalso juJe Y. Let {Q(t),t> 0} bea 

continuous semi-group of contractions on . In other words we assume 
that for ue Y there exists a function Q(t)ve Y and that Q(t) has 

the following properties: 0 <u <1 implies 0 < Q(t)u < 1; furthermore 

Q(t+s) = Q(t) Q(s), and Q(h) > Q(0) = 1, the identity operator.1® 

We begin by defining integration. Given an arbitrary probability distri- 

bution F on 0, co we want to define a contraction operator E from 2% 

to £, to be denoted by 

(9.1) E= [ "Q(s) F{ds}, 
such that “ 

(9.2) | Q(NE = EQ(1) = { “Q(t-+s) F{ds}. 

(The dependence of E on the distribution F should be kept in mind.) 
For a semi-group associated with a Markov process with transition 

probabilities Q,(v, I) this operator E will be induced by the stochastic or 

substochastic kernel 

(9.3) . [ "0,(2, P) F{ds}. 

A natural (almost trivial) definition of the operator E presents itself if 

F is atomic and a simple limiting procedure leads to the desired definition as 
follows. 

11 A fruitful theory covering transforms of the form (9.6) was developed by S. Bochner, 

Completely monotone functions in partially ordered spaces, Duke Math. J., vol. 9 (1942) 

519-526. For a generalization permitting an arbitrary family of operators see the book by 

E. Hille and R. S. Phillips (1957). 
‘12 The construction of the minimal solution in XIV,7 may serve as a typical example 

for the present methods. 

13 Recall from X,8 that strong convergence 7,— 7 of endomorphisms means 

7,4 — Tu\| >0 for all «€. Our “continuity’’ is an abbreviation for “strong 

continuity for ¢ > 0.” 
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Let p; >90 and p, +-+-+p,=1. The linear combination 

(9.4) E= p,Q(t) + +++ + p,(Qz,) 

is again a contraction and may be interpreted as the expectation of Q(t) 
with respect to the probability distribution attaching weight p; to 4¢,. 
This defines (9.1) for the special case of finite discrete distributions, and 

(9.2) is true. The general expectation (9.1) is defined by a passage to the 
  

limit just as a Riemann integral: partition 0, o into intervals J,,...,J,, 

choose ¢;€/;, and form the Riemann sum } Q(t,) F{J,} which is a con- 

traction. In view of the uniform continuity property X,(8.7) the familiar 

convergence proof works without change. This defines (9.1) as a special 
case of a Bochner integral. . 

If the semi-group consists of transition operators, that is, if Q(s)1 = 1 

for all ¢, then El = 1. The notation (9.1) will be used for E, and for the 
function Ew we shall use the usual symbol 

(9.5). Ew = ["a0 - Ff{ds} 

(although it would be logically more consistent; to write w outside the — 
integral). The value Ew(x) at a given point 2x is the ordinary expectation 
with respect to F of the‘numerical function Q(s) w(z). . 

In the special case F{ds} = e~* ds the operator E is called the Laplace 

integral of the semi-group, or resolvent. \t will be denoted by 

(9.6) RA) = { ” 5-48 Os) ds, A>0. 

In view of (9.2) the resolvent operators (A) commute with the operators 
Q(t) of the semi-group. In order that AR(A)1 = 1 it is necessary and» 
sufficient that Q(t)1 = 1 for all ¢, and thus the contraction AR(A) is a 

transition operator iff all Q(s) are transition operators. 

Lemma. The knowledge of SR(A)w for all A >O and we # uniquely 
determines the semi-group. 

Proof. The value 

R(A) w(x) = [Pera09 w(x)° dt 
0 

ata given point 2 is the ordinary Laplac_ transform of the numerical function 
of ¢ defined by Q(t) w(z). This function being continuous, it is uniquely 

determined by its Laplace transform (see the corollary in section 1). Thus 

Q(t)w is uniquely determined for all ¢ and all we 2%. > 
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The Laplace transform (9.6) leads to a simple characterization of the 

infinitesimal generator N of the semi-group. By the definition of this 
operator in X,10 we have 

(9.7) “= u—> Wu, —> 0+, 

if Ww exists (that is, if the norm of the difference of the two sides tends to 

zero). 

Theorem 1. For fixed 1 > 0 

(9.8) u = R(A)w 

iff u is in the domain of & and 

(9.9) du — Wu = w. 

Proof. (i) Define u by (9.8). Referring to the property (9.2) of expec- 
tations we have 

(9.10) Qh) = 4 “us 7 { e**Q(s+h)w: ds — ; [e*acw - ds. 
0 0 

The change of variable s + 4 = ¢ in the first integral reduces this to 

Q(h) — 1 

h 

et —1(° At 1 f” A(n—t) (9.11) u==——— } e*RA(Nw-dt—=— | ee" Q()w- dt 
h 0 h Jo 

et — | h 

= (u—A*w) — ; { e* *—)(Q()w—w) dt.   

Since |[Q(t)w—w||—0 as t-—0 the second term on the right tends 

in norm to 0, and the whole right side therefore tends to A(u—A™w). 

Thus (9.9) is true. 

(ii) Conversely, assume that Wu exists, that is, (9.7) holds. Since AR(A) 

is a contraction commuting with the semi-group, (9.7) implies 

(9.12) 4 RA —> R(A)Uu. 

But we have just seen that the left side tends to AR(A)u — u, and. the 
resulting identity exhibits uw as the Laplace transform of the function w in 
(9.9). > 

Corollary 1. For given we L there exists exactly one solution u of (9.9). 

Corollary 2. Two distinct semi-groups cannot have the same generator U. 
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Proof. The knowledge of the generator Q permits us to find the Laplace 
transform R(A)w for all we YL and by the above lemma this uniquely 

determines all operators of the semi-group. > 

It is tempting to derive Tauberian theorems analogous to those of section 

5, but we shall be satisfied with the rather primitive 

Theorem 2. As A- © 

(9.13) AR(A) > 1. 

Proof. For arbitrary we & we have 

(9.14) AR Aw — w| < [19cm — wll - Ae*' dt. 

.As A4-—» © the probability distribution with density Ae~*! tends to the 

distribution concentrated at the origin. The integrand is bounded and tends 
to0as t-—0, and so the integral tends to 0 and (9.13) is true. > 

Corollary 3. The generator MU has a domain which is dense in £. 

Proof. It follows from (9.13) that every we L is the strong: limit of a 
sequence of elements AR(A)w, and by theorem 1 these elements are in the 

domain of Q. > 

Examples. (a) Infinitely divisible semi-groups. Let U be the infinitely 
divisible distribution with Laplace transform w = e-¥ described in (7.2). 

The distributions U, with Laplace transforms 

(9.15) { e** U {dx} = e" = exp (-«| 
foe) _— og A# 
1-e™” P{dz}) 

x 

are again infinitely divisible, and the associated convolution operators (ft) 
form a semi-group. To find its generator choose a bounded continuously 
differentiable function v. Then clearly 

(9.16) WO =F (a) = [ Me—Y) — 0) 1 yy fay}. 
t 0 y t 

Differentiation of (9.15) shows that the measure ty U,{dy} has the 
transform y’(A)e~*¥'4) which tends to y’(A) as t- 0. But y’ is the trans- 
form of the measure P, and so our measures tend to P. Since the fraction 

under the last integral is (for fixed x) a bounded continuous function of y, 

  

“4 This derivation is given for purposes of illustration. The generator is already known 
from chapter IX and can be obtained by a passage to the limit from compound Poisson 
distributions. 
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we get 

(9.17) W(x) = { a=) — 2) prays 
Lo o y 

and have thus an interpretation of the measure P in the canonical repre- 

sentation of infinitely divisible distributions. 
(6) Subordinated semi-groups. Let {Q(t)} stand foran arbitrary Markovian 

semi-group, and let U, be the infinitely divisible distribution of the preceding 
example. As explained in X,7 a new Markovian semigroup {Q*(t)} may be 
obtained by randomization of the parameter ¢. In the present notation 

(9.18) OK) = [ Qs) U,{ds}. 

Putting for abbreviation 

(9.19) V(s, 2) = BOI ya) 
. Ss : 

we have 

Q*(t) — 1 
(9:20) . v(x) = {VG x) a S U,{ds}. 

For a function v in the domain of &@ and for 2 fixed the function V is 

continuous everywhere including the origin since V(s,z)— Wv(x) as 

s—>0. We saw in the last example that t-1s U,{ds} + P{ds} if t—0. Thus 

the right side in (9.20) tends to a limit and hence U*v exists and is given by 

(9.21) W*v(x) =| V(s, x) P{ds}. 
0 

The conclusion is that the domains of M and U* coincide, and 

(9.22) At = [ * Q(s) — 4 P{ds} 
0 s 

in the sense that (9.21) holds for v in the domain of W. > 

10. THE HILLE-YOSIDA THEOREM 

The famous and exceedingly useful Hille-Yosida theorem characterizes 

generators of arbitrary semi-groups of transformations, but we shall 

specialize it to our contraction semi-groups. The theorem asserts that the 

properties of generators found in the last section represent not only necessary 

but also sufficient conditions. 

Theorem 1. (Hille- Yosida.) An operator U with domain L' < L is the 

generator of a continuous semi-group of contractions Q(t) on L (with 

Q(0) = 1) iff it has the following properties. 
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(i) The equation | 

(10.1> Au — Lu = w, A>0O, 

has for each we £ exactly one solution u; 
(li) f O<w<l thenO0<SdAu <i; 
(iil) the domain £' of U is dense in L. 

We know already that every generator possesses these properties, and 

so the conditions are necessary. Furthermore, if the solution u is denoted 
by uw = R(A)w, we know that R(A) coincides with the Laplace transform 

(9.6). Accordingly the conditions of the theorem may be restated as follows. 

(i’) The operator (A) satisfies the identity 

(10.2) 7 AR(A) — AR(A) = 1. 

The domain of R(A) is #; the range coincides with the domain ¥’ of UW 

(ii') The operator AR(A) is a contraction. 
(iii’) The range of R(A) is dense in &. 

From theorem 2 in section 9 we know that (A) must satisfy the further 

condition . 

(10.3) . AR(A) > 1, A> o. 

This implies that every w is the limit of its own transforms and hence that 
the range &’ of R(A) is dense. It follows that (10.3) can serve as replace- 

ment for (iii’), and thus the three conditions of the theorem are fully equivalent 

to the set (i’), (ii*}, (10.3). 
We now suppose that we are given a family of operators R(A) with these 

properties and proceed to construct the desired semi-group as the limit of a 
family of pseudo-Poisson semi-groups. The construction depends on 

Lemma 1. if w isindomain L' of U then- 

(10.4) WRA)w = R(A)Uw. 

The operators R(A) and RO) commute and satisfy the resolvent equation 

(10.5) RG) - Rv) = (P—-A)R(A)R(r). 

Proof. Put v = Wu. Since both u and w are in the domain # of 
Y it follows from (10.1) that the same is true of v and 

Av — UW = Aw. 

Thus v = R(A)%Mw which is the same as (10.4). 

Next, define z as the unique solution of vz — Uz = w. Subtracting this 
from (10.1) we get after a trite rearrangement 

A(u—z) — A(u—z) = (v—A)z,
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which is the same as (10.5). The symmetry of this identity implies that the 
operators commute. > 

For the construction of our semi-group we recall from theorem | of X,9 
that to an arbitrary contraction T and a> 0 there corresponds a semi- 
group of contractions defined by 

(10.6) ett(T-1) _ eu a T". 

. n=0 . 

The generator of this semi-group is a(7—1), which is an endomorphism. 
We apply this result to T = Aggy. Put for abbreviation 

(10.7) W, = AAR(A) — 1] = AUR\), al) =e 
These operators defined for 4 > 0 commute with each other, and for fixed 
A the operator .%, generates the quasi-Poissonian semi-group of con- 
tractions Q,(¢). 

‘It follows from (10.4) that. Uu—> Uu forall uw inthe domain &’ of the 
given operator. &. We can forget about the special definition of , and 
consider the remaining assertion of the Hille-Yosida theorem as a special 
case of a more general limit theorem which is useful in itself. In it A may 

be restricted to the sequence of integers. 

tM, 

Approximation lemma 2. Let {Q,(t)} be a family of pseudo-Poissonian 

semi-groups commuting with each other and generated by the endomorphisms 

Y,. . 

If Mu—> Au for all u of adense set L', then 

(10.8) Q(t) > Q(), A— o, 

- where {Q(t)} is-a semi-group of contractions whose generator agrees with 

U forall weF’. 

Furthermore, for ue £' 

(10.9) IQ(@)u — Q,()ull < t Au — Wal. 

Proof. For two commuting contractions we have the identity 

| S" — T" = (S™44-+-+T4(S—T) 
and hence 

(10.10) |S"u—T"ul| <n ||Su—Tul. 

Applied to operators Q ,(t/n) this inequality yields after a trite rearrangement _ 

Q,(t/n) — 1 1 Q(t/n) — 1 , 

t/n t/n 

  

      (10:11) Qe — OQ,()ull <t 

Letting n—> «© we get 

(10.12) (Q,(@)u — Q, (ul <t Wu — Ayu. 
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This shows that for ue #’ the sequence {Q,(t)u} is uniformly convergent 
as A-> 0. Since &” is dense in &- this uniform convergence extends to 
all u, and if we denote the limit by Q(t)u we have a contraction Q(t) 
for which (10.8) is true. The semi-group property is obvious. Also, letting 
y—> © in (10.12) we get (10. 9). ame the left side as in (10.11) we have 

20 _ i — Qt) — 
t . t   

(10.13) 
  ‘yf < [tu — Aull. 

Choose A large énough to render the right side <e. For sufficiently 

small t¢ the second difference ratio on the left. differs in norm from Ww 

by less than €, and hence from Yu by less than 3e. Thus for ue #’ 

(10.14) Qi) —1 
t 

and this concludes the proof. > 

u—> Wu 

Examples. Diffusion. Let £ be the family of continuous functions on 

the line vanishing at +00. To use familiar notations we replace A by h- 

and let h-»>0. Define the difference operator V, by 

(10.15) V,U(2) = j [Mert wen) ua) | 
h’ 2 

This is of the form A-*(T — 1) where T isa transition operator, and hence 
V, generates a semi-group e‘Y* of transition operators (a Markovian semi- 

group). The operators V, commute with each other, and for functions 

with three bounded derivatives V,u— $u” uniformly. The lemma implies 
the existence of a limiting semi-group {Q(t)} generated by an operator U 
such that Qu = }u” at least when w is sufficiently smooth. 

In this particular case we know that {Q(ft)} is the semi-group of con- 
volutions with normal distributions of variance ¢ and we have not obtained 
new information. The example reveals nevertheless how easy it can be 

(sometimes) to establish the existence of semi-group with given generators. 

The argument applies, for example, to more general differential operators 
and also to boundary conditions. (See problems 24, 25.) > 

Note on the resolvent and complete monotonicity. The Hille-Yosida theorem emphasizes 
properties of the generator 1, but it is possible to reformulate the theorem so as to obtain 

a characterization of the family {R(A)}. 

Theorem 2. (Alternative form of the Hille-Yosida theorem.) In order that a family 

{R(A); A > 0} of endomorphisms be the resolvent of a semi-group {Q()} of contractions it is 

necessary and sufficient (a) that the resolvent equation 

(10.16) RA) — Riv) = (V—APR(A)R). 

be satisfied, (b) that AR(A) be a contraction, and (c) that AR(A) +1 as A> oO. 
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Proof. (10.16) is identical with (10.5), while conditions (5) and (c) appear above as (ii’) 

and (10.3). All three conditions are therefore necessary. 

Assuming the conditions to hold we define an operator % as follows. Choose some 

v > 0 and define #’ as the range of R(v), that is: we ¥’ iff u = Rw for some 
w€ 2. Forsuch « we put Wu = Au — w. This defines an operator 2% with domain 2’ 

and satisfying the identity 

(10.17) vR(v) — UR(y) = 1. 

We show that this identity extends to all A, that is 

(10.18) AR(A) — UR(A) = 1. 

The left side may be rewritten in the form 

(10.19) (A—vy RA) + (v-W RA). 

Using (10.16) and the fact that (v—2)R(v) = 1 we get 

(10.20) (y—W RA) = 1 + (AR). 
Using (10.19) the identity (10.18) follows. It shows that all conditions of the Hille-Yosida 

theorem are satisfied, and this accomplishes the proof. > 

The preceding theorem shows that the whole semi-group theory hinges on the resolvent 
equation (10.16), and it is therefore interesting to explore its meaning in terms of ordinary 

Laplace transforms of functions. It is clear from (10.16) that (A) depends continuously 
on A in the sense that R(v) + R(A) as v + 2. However, we can go a step farther and 

define a derivative (A) by 
Rv) — RA) _ Re aT (A). (10.21). R’(A) = lim 

vod 

The same procedure now shows that the right side has a derivative given by —2R(A)R’(A). 

Proceeding by induction it is seen that ‘R(A) has derivatives ®(™) (A) of all orders and 

(10.22) (—1)"R'™ (A) _ nlRr+1(2), 

Let now uw be an arbitrary function in # such that 0 <u <1. Choose an arbitrary 
point x and put w(A) = R(A)u(x). The right side in (10.22) is a positive operator of norm 
<nt/2"+1 and therefore w is completely nionotone and |w'”)(A)] < n!/A"*1. From the 
corollary in section 4 it follows now that @ is the ordinary Laplace transform with values 
lying between 0 and 1. If we denote this function by Q(r) u(x), this defines Q(t) as a 

contraction operator. Comparing the resolvent equation (10.16) with (8.2) it is now clear 

that it implies the semi-group property 

(10.23) Q+s)u(z) = Q(t) QG)u(z). 

We see thus that the essential features of the semi-group theory could have been derived 

from (10.16) using only the classical Laplace transforms of ordinary functions. In par- 

ticular, the resolvent equation turns out to be merely an abstract paraphrasing of the 

elementary example 8(a). 

To emphasize further that the present abstract theory merely paraphrases the theorems 

concerning ordinary Laplace transforms we prove an inversion formula. 

Theorem 3. For fixed t>0 as 4 

(—1)""? 

(10.24) ———- RD (njry(n/t)” > QC). 
(n—1)! 
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Proof. From the definition (9.6) of Rij as a Laplace transform of Q(t) it follows 
that 

ao 

(10.25) (—1)"R™ (A) = [ eT Assn Qs) ds. 
0 

The left side of (10.24) is the integral of Q(s) with respect to the density [e~"*’*(ns/t)"—}/ 
t(n—1)!] 7 which has expected value ¢ and variance t?/n. As n — 00 this measure tends to 

the distribution concentrated at f, and because of the continuity of Q(s), this implies 

(10.24) just as in the case of functions [formula (10.24) is the same as VII,(1.6)]. > 

11. PROBLEMS FOR SOLUTION 

1. Let F, be the geometric distribution attributing weight gp” te the point 
ng (n =0,1,...). AS g ~0 show that F, tends to the exponential distribution 
1 — e~ and that its Laplace-transform tends to 1/(A+1). 

2. Show that the ordinary Laplace transforms of cos and sinz are 4/(A?+1) 

and 1/(A?+1). Conclude that (1 +a~*)e-*(1—cosaz) is a probability density 
with Laplace transform (1 +a*)(A+1)7[(A+1)? + af. Hint: Use ef = 
=cosz +isinz or, alternatively, two successive integrations by parts. 

3. Let w be the transform of a measure U. Then w is integrable over 0,1 

and 1, oo iff 1/x is integrable with respect to U over 1,00 and 0,1, respectively, 

4. Parseval relation. If X and. Y are independent random variables with dis- 
tributions F and G, and transforms g and y, the transform of XY is 

{ * p(y) G{dy} = [ * yy) F(dy}. 
0 0 

5. Let F be a distribution with transform gy. If a >0 then g(A+a)/e(a) 
is the transform of the distribution e~%* F{dx}/p(a). For fixed t >0 conclude 

from example 3(6) that’® exp [—tV2A + a? + at] is the transform of an infinitely 
t 1 t 

divisible distribution with density Vous exp | - ave —av *) | 

6. From the definition I ,(7.1) show that the ordinary Laplace transform of I,{x) 

is w (A) =1/V22 —1 for A>1. | Reca the identity (7) = ([")-o" | 
n | n 

7. Continuation. Show that Ij =1,, and hence that -J, has the ordinary 

Laplace transform «,(A) = w9(A) R(A) where R(A) = 4 — V2? — 1. 

8. Continuation. Show that 2//, =I,_, +1,,,; for n =1,2,... and hence 
by induction that /, has the ordinary transform @,(A) = wg(A) R"(d). 

9. From example 3(e) conclude by integration that e/4 —1 is the ordinary 
transform of 1,(2 V2) Vx. 

10..Let X and Y be independent random variables with Laplace transforms 

p and e~4", respectively. Then YX?/* has the Laplace transform (A?). 

15 This formula occurs in applications and has been derived repeatedly by lengthy cal- 
culations. 
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11. The density f of a probability distribution is completely monotone iff it is 
a mixture of exponential densities [that is, if it is of the form (7.11)]. Hint: Use 
prokiem 3. 

_ 12. Verify the inversion formula (4.5) by direct calculation in the special cases 
@(A) = 1/(A+1) and (A) = e7?. 

13. Show that the corollary in section 4 remains valid if f and g'") are replaced 
by their absolute values. 

14. Assuming e~*/,(z) monotone at infinity, conclude from problem 8 that 

l 
V2nx 
  e 7], (2) 

15. Suppose that 1 — p(A)~ APP L(A) as A-+0O where p>0O. Using 
example 5(c) show that 1 — F™&(x) ~ nxP-! L(1/x)/T(p) as x > oo. [Compare 
this with example VIII,8(c).] 

16. In theorem 4 of section 5 it suffices that u(x) ~ v(x) where v is ultimately 
monotone. 

‘17. Every infinitely divisible distribution is the limit-of compound Poisson 
distributions. 

18. If in the canonical representation (7.2) for infinitely divisible distributions 
P(e) ~~ x°L(x) as x + © withO <c <1, provethat 1 — F(x) ~ (c/1 — c)x*? L(@). 
[Continued in example XVII,4(d@).] 

19. Let P be the generating function of an infinitely divisible integral-valued 
random variable and g the Laplace transform of a probability distribution. 
Prove that P(¢) is infinitely divisible. 

20. The infinitely divisible Laplace transforms 9, converge to the Laplace 
transform g of a probability distribution iff the corresponding measure P,, in 

the canonical representation (7.2) converges to P. Hence: the limit of a sequence 
of infinitely divisible distributions is itself infinitely divisible. 

21. Let F, be a mixture (7.11) of exponential distributions corresponding to a 
mixing distribution U,. The sequence {F,} converges to a probability distribution 
F iff the U,, converge to a probability distribution U. In this case F is a mixture 
corresponding to U. 

22. A probability distribution with a completely monotone density is infinitely 
divisible. Hint; Use problems 11 and 21 as well as example 7(/). 

23. Every mixture of geometric distributions is infinitely divisible. Hint: Follow 
the pattern of example 7(/). 

24. Diffusion with an absorbing barrier. 1n the example of section 10 restrict 
x to x >0 and when x —/A <0 put 2(x—h) = 0 in the definition of V,. Show 
that the convergence proof goes through if # is the space of continuous functions 
with u(co) = 0, u(0) = 0, but not if the last condition is dropped. The resulting 
semi-group is given in example X,5(d). 

25. Reflecting barriers. In the example of section 10 restrict x to x > 0 and 
when x —h <0 put u(e—A) = u(x +h) in the definition of V,. Then Vu 
converges for every u with three bounded derivatives such that u/(0) = 0. The 

domain ¥’ of is restricted by this boundary condition. The semi-group is 
described in example X,5(e). 
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26. The influence of the maximal term in the convergence to stable distributions. 
Let X,, Xo, wee be independent variables with the common distribution F satis- 

fying (6.4), that is, belonging to the domain of attraction of the stable distribution 
G, Put S, =X, +--: +X, and M, = max [X;,...,X,]. Prove that the 

ratio S,/M, has a Laplace transform @,(A4) converging tolé 

ena 

(*) w(A) =   1 oe 

lta { (1 —e7Atye-a-8 dt 
0 

Hence E(S,/M,) — 1/(1 —2). 
Hint; Evaluating the integral over the region X; < X,; one gets 

72 oO n—-1 

w,(A) = ne | F{dzx} ( | e4v/* F (ay) 
0 0 

Substitute y = tz and then zx =a,s where a, satisfies (6.5). The inner integral 

is easily seen to be 

1—F(a,s) If) at F{a,, dt} 1\ s—*p(A) \ 

| ~ att —F@)) —al, (be) TF) + o(;) 1 - of), 
  

where w(A) stands for the denominator in (*). Thus 

  

a ds 

getl = (A). 

wo 

w,(A) > e* [ es twa) 
0 

16 This result and its analogue for stable distributions with exponent « > 0 was derived 

by D. A. Darling in terms of characteristic functions. See Trans. Amer. Math. Soc., vol. 

73 (1952) pp. 95-107. 

 



CHAPTER XIV 

Applications of 

Laplace Transforms 

This chapter can serve as collateral reading to chapter XIII. It covers 
several independent topics ranging from practical problems (sections 1, 2, 
4, 5) to the general existence theorem in section 7. The limit theorem of 
section 3 illustrates the power of the methods developed in connection with 
regular variation. The last section serves to describe techniques for the 
analysis of asymptotic properties and first-passage times in Markov processes. 

1, THE RENEWAL EQUATION: THEORY 

_ For the probabilistic background the reader is referred to VI,6—7. Although 
the whole of chapter XI was devoted to renewal theory, we give. here an 
independent and much less sophisticated approach. A comparison of the 
methods and results is interesting. Given the rudiments of the theory of 
Laplace transforms, the present approach is simpler and more straightfor- 
ward, but the precise result of the basic renewal theorem is at present not 
obtainable by Laplace transforms. On the other hand, Laplace transforms 
lead more easily to the limit theorems of section 3 and to explicit solutions 
of the type discussed in section 2. 

The object of the present study is the integral equation 

(1.1) V(t) = G(t) + { V(t-—-2) F{dz} 

in which F and G are given monotone right continuous functions vanishing 
for t <0. We consider them as improper distribution functions of measures 
and suppose F is not concentrated at the origin and that their Laplace 
transforms : 

(1.2) o(i) = (“et Fa}, (a) = ["e*G{ar) 
466 
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exist for A> 0. As in the preceding chapter all intervals of integration 
are taken closed. It will be shown that there exists exactly one solution V; 

it is an improper distribution function whose Laplace transform y exists 
for all 4 >0: If G has a density g, then V has a density v satisfying 

the integral equation 

(1.3) v(t) = g(t) + | o@—2) F{dzx} 

obtained by differentiation from (1.1). 
Recalling the convolution rule we get for the Laplace transform y of 

the distribution V (or the ordinary transform of its density) y = y + pq, 
whence formally 

(A) (1.4) yA) = 
1 — fA) 

To show that this formal solution is the Laplace transform of a measure 
(or density) we distinguish three cases (of which only the first two are 
probabilistically significant). 

Case (a). F is a probability distribution, not concentrated at the origin. 
Then 9(0) = 1 and (A) <1 for A> 0. Accordingly 

(1.5) w= => 9" 
1— 9 Q 0 

converges for A > 0. Obviously w is completely monotone and therefore 

the Laplace transform of a measure U (theorem 1 of XIII,4). Now 

y = wy is the Laplace transform of the convolution V = Ux G, that is 

(1.6) . V(t) =| G0- U{dz}. 

Finally, if G has adensity g then V possesses a density v = Ug. We 

have thus proved the existence and the uniqueness of the desired solution of 

our integral equations. 

The asymptotic behavior of V at infinity is described by the Tauberian 

theorem 2 of XIII,4. Consider the typical case where G(oo) < co and F 

has a finite expectation yw. Near the origin y(A) ~~ w4G(00)A-*_ which 

implies that 

(1.7) V(t)~ w3G(o) - 8, t—» 00, 

The renewat theorems in XI,1 yield the more precise result that 

V(tth) — V(t) wG(ojh, 

but this cannot be derived from Tauberian theorems. [These lead to better 

results when F has no expectation; (section 3).] 
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Case (b). F is a defective distribution, F(oc) <1. Assume for simplicity 
that also G(00) < oo. The preceding argument applies with the notable 
simplification that @(0) = F(c%o) <1 and so w(0) < oo: the measure V 
is now bounded. 

Case (c). The last case is F(o)> 1. For small values of A the de- 

nominator in (1.4) is negative, and for such values w(A) cannot be a 

Laplace transform. Fortunately this fact causes no trouble. To avoid 
trivialities assume that F has no. atom at the origin so that g(A) > 0 as 
A-» oo. In this case there exists a unique root « >0 of the equation 

p(x) = 1 and the argument under (a) applies without change for 4 > x. 

In other words, there exists a unique solution V, but its Laplace transform 
w@ converges only for A > «.. For such values q is still given by (1.4). 

2. RENEWAL-TYPE EQUATIONS: EXAMPLES 

(a) Waiting times for gaps in a Poisson process. Let V, be the distribution 

of the waiting time to the ccmpletion of the first gap of length & in a 
Poisson process with parameter c (that is, in a renewal process with 
exponential interarrival times). This problem was treated analytically in 
example XI,7(b). Empirical interpretations (delay of a pedestrian or car 
trying to cross a stream of traffic, locked times in type II Geiger counters, 
etc.) are given in VI,7. We proceed to set up the renewal equation afresh. 

The waiting time commencing at epoch 0 necessarily exceeds &. It 
terminates before ¢ > & if no arrival occurs before epoch & (probability 
.e~*) or else if the first arrival occurs at an epoch x < é and the residual 
waiting time is <¢— 2. Because of the inherent lack of memory the 
probability V(t) of a waiting time <z is therefore 

(2.4) V(t) =e +['ve-2) ec dx 

for t>é and V(t)=0 for t < &. Despite its strange appearance (2.1) 

is a renewal equation of the standard type (1.1) in which F has the density 
f(x) = ce concentrated on 0 <x < &, while G is concentrated at the 

point € Thus 

(2.2) pA) = (de), of) = HE 
c 

1 The solution V is of the form V{dx} = extV#{dx} where V* is the solution [with 
Laplace transform y*#(A) = y(A+x«)] of a standard renewal equation (1.1) with F 

replaced by the proper probability distribution F#{dz} = e—** F{dz} and G by 
G#{dz} = e~*« G{dc}. 
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and hence the transform yp of V is given by 

_ (c+A)eW ets 

hb cet het ag ” 

The expressions XI,(7.8) for the expectation and variance are obtained 
from this by simple differentiations? and the same is true of the higher 
moments. 

(2.3) (A) 

It is instructive to derive from (2.3) an explicit formula for the solution. For reasons that 
will become apparent we switch to the tail 1 — V(t) of the distribution. Its ordinary 
Laplace transform is {1—v(A)]/A [see XIII,(2.7)] which admits of an expansion into a 
geometric series 

1 — (A) 2 1 — ene +ayeyn 
2.4 ee n—1 En—1 2.4) pose Des ane | 

The expression within braces differs from the Laplace transform (1—e74)/A of the uniform 

distribution merely by a scale factor € and by the change from A to 4+ c. As was 
observed repeatedly, this change corresponds to a multiplication of the densities by e~¢. 
Thus 

(2.5) 1 — V(t) = ent x cn-Len-lyn% (1/£) 

n=] 

where f"* is the density of the n-fold convolution of the uniform distribution with itself. 
Using I,(9.6) we get finally 

00 (ct)?—1 00 n E n-1 

— = eet —1)* —k— (2.6) 1— V(t)=e 2, (—D! > (—1) (Z)( k ) . 
k=0 + 

  

The relation to covering theorems is interesting. As was shown in I,(9.9) the inner sum 

represents (for t, & fixed) the probability that n —1 points chosen at random in 0,t 
partition this interval into n parts each of which is < &. Now the waiting time exceeds f 

iff every subinterval of 0, f contains at least one arrival arrd so (2.6) states that if in a 

Poisson process exactly n — 1 arrivals occur in.0, ¢ their conditional distribution is uniform. 
If one starts from this fact one can take (2.6) as a consequence of the covering theorem; 
alternatively, (2.6) represents a new proof of the covering theorem by randomization. 

(b) Ruin problem in compound Poisson processes. As a second illustrative 

example we treat the integro-differential equation 

(2.7) R(t) = (a/c)R(t) — (a/c) [ R(t—2) F{dx} 

in which F is a probability distribution with finite expectation uw. This 
equation was derived in VI,5, where its relevance for collective risk theory, 
storage problems, etc., is discussed. Its solution and asymptotic properties 
are derived by different methods in example XI,7(a). 

  

2 St saves labor first to clear the denominator to avoid tedious differentiations of fractions. 
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The problem is to find’ a probability distribution R_ satisfying (2.7). 
This equation is related to the renewal equation and can be treated in the same 
way. Taking ordinary Laplace transforms and noticing that 

(2.8) p(A) =| e 4" R(x) dx = mf e**R'(x dx + A“R(0) } 

we get " 

R(0) 1 2.9 = — et (2.9) p(A) al =o) | 

c A 

where @ is the Laplace trausform of F: Recalling that [1—(A)]/A is the 
ordinary Laplace transform of 1 — F(x) we note that the first fraction on 
the right is of the form (1.4) and hence the Laplace-Stieltjes transform of a 
measure. R. The factor 1/A° indicates an integration, and hence p(A) is the 
ordinary Laplace transform of the improper distribution function R(x) [as 
indicated in (2.8)].- Since R(z)-»1 as x-» oo it follows from theorem 4 
in XIII,5 that p(A)—1 as A-+0, From (2.9) we get therefore for the 
unknown constant R(0) 

(2.10) RO) = 1 — (a/c). 
Accordingly, our problem admits of a unique solution if au <c and admits 
of no solution if au > c. This result was to be anticipated from the prob- 
abilistic sétup. 

Formula (2.9) appears also in queuing theory under the name Khintchine-Pollaczek 
formula [see example XII,5(a)]. Many papers derive explicit expressions in special cases. 
In the case of the pure Poisson process, F is concentrated at the point 1, and g(A) = e7?. 
“The expression for p is now almost the same as in (2.3) and the same method leads easily 

to the explicit solution 

_ _ o —a\k (x—k)k oe 
  

k=0 

Although of no practical use, this formula is interesting because of the presence of positive 
exponents which must cancel out in curious ways. It has been known in connection with 

collective risk? theory since 1934 but was repeatedly rediscovered. 

3. LIMIT THEOREMS INVOLVING ARC SINE 

DISTRIBUTIONS 

It has become customary to refer to distributions concentrated « on 0,1 

with density 

(3.1) gq, (2) = 
sin Th 

  

a *(1—2x)*", 0<a<l 
    

3 An explicit solution for ruin before epoch ¢ is given by R. Pyke, The supremum and 
infimum of the Poisson process, Ann. Math. Statist., vol. 30 (1959) pp. 568-576. 
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as “generalized arc sine distributions’ although they are special beta distri- 
butions. The special case « = } corresponds to the distribution function 

2n-) arc sin Vx which plays an important role in the fluctuation theory for 
random walks. An increasing number of investigations are concerned with 
limit distributions related to g,, and their intricate calculations make the 
occurrence of ¢, seem rather mysterious. The deeper reason lies in the 

intimate connection of q, to distribution functions with regularly varying 
tails, that is, distributions of the form 

(3.2) 1 — F(x) = x7* L(2), 0<a<1 

where, L(tx)/L(t)—» 1 as t—» oo. For such functions the renewal theorem 

may be supplemented to the effect that the renewal function U = > F"* 
satisfies 

1 t* 
(3.3) U(t) ~ 

T(i—a) Pd +e) L(t)’ 

  

t—-- ®. 

In other words, if F varies regularly,sodoes U. Itis known (but not obvious) 

that the constant in (3.3) equals (sin *ra)/7« and so (3.3) may be rewritten 
in the form - 

(3.4) [1—F(z)} U(x) > IZ, ¢—> 0. 
Th 

Lemma. If F is of the form (3.2) then (3.4) holds. 

Proof. By the Tauberian theorem 4 of XIII,5 

  

1 -- pA) ~ PU—a)a* L1/a) A—-0. 

The Laplace transform.of U is > y” = 1/(1—@) and (3.3) is true by virtue 
of theorem 2 of XIUII,5. > 

Consider now a sequence of positive independent variables Xe with the 
common distribution F and their partial sums S, = X, +°:: + X,,. 

For fixed ¢ > 0 denote by N, the chance-dependent index for which 

(35) SN < t < Sy, 

We are interested in the two subintervals 

Y, = t— Sn, and LZ, = Sy,,, — ft. 

They were introduced in VI,7 as “spent waiting time’ and “residual waiting 

time” at epoch t. The interest attached to these variables was explained in 

various connections, and in X1,4 it was proved that as t—» oo the variables 

Y, and Z, have a common proper limit distribution iff F has a finite 

expectation. Otherwise, however, P{Y, < x}-+0 for each fixed x > 0, 
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and similarly for. Z,. The following interesting theorem emerges as a by- 
product, of our results, but the original proof presented formidable analytical 
difficulties.* 

Theorem. If (3.2) is true, then the normed variable Y,/t has the limit 

density q. of (3.1), and Z,/t has the limit density given by*® 

sin 7a 1 

wn ot(1+2)" 

Proof. The inequality tz, < Y, < tz, occurs iff S, = ty and 

Xni1 > r(l—y) 

for some combination n,y such that l—r<y<1—2,. Summing 

over all n and possible y we get 

    (3.6) p(x) = z>0. 

  

BN Plt <¥,< tm} =[" fl — FU») Ue dy} 
and hence using (3.4) ~ 

sin wa [41 — F(t(1—y)) U{t dy} 
(3.8) P{tz, < Y,; < txz} — sin 7a [ ‘a 1 FO Te 

Now U(ty)/U(t)->y* and so the measure U{t dy}/U(t) tends to the 

measure with density a«y*~! while the first factor approaches (1—y)~*. 

Because of the monotonicity the approach is uniform, and so 

  

, . 1-2) 

(3.9) Pee, <¥, < tag} SE tray dy, 
Tr l—z2 

which proves the first assertion. For P{Z, > ts} we get the same integral 
between the limits 0 and 1/(1+5) and by differentiation one gets (3.6). > 

It is a remarkable fact that the density g, becomes infinite near the 
endpoints 0 and 1. The most probable values for Y,/t are therefore near 

0 and 1. 
It is easy to amend our argument to obtain converses to the lemma and 

the theorem. The condition (3.2) is then seen to be necessary for the 
existence of a limit distribution for Y,/t. On the other hand, (3.2) character- 

izes the domain of attraction of stable distributions, and this explains the 

frequent occurrence of q, in connection with such distributions. 

4E. B. Dynkin, Some limit theorems for surns of independent random variables with infinite 
mathematical expectations. See Selected Trans. in Math. Statist. and Probability, vol. 1 
(1961) IMS-AMS, pp. 171-189. 

5Since Sn,i1 = Ze + the distribution of Z,/Sy,,1 is obtained from (3.6) by the 
change of variable + = y/(1—y). It is thus seen that also Z,/Sy,41 has the limit,density qq. 
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4. BUSY PERIODS AND RELATED BRANCHING PROCESSES 

It was shown in example XIII,4(a) that, if g is the Laplace transform 

of a probability distribution F with expectation mu, the equation 

(4.1) | B(A) = p(A + ¢ — cB(A)), A> 0, 

possesses a unique solution 8: furthermore 8 is the Laplace transform of a 

distribution B which is proper if cu<1 and defective otherwise. This 
simple and elegant theory is being applied with increasing frequency and it is 
therefore worthwhile to explain the probabilistic background of (4.1) and its 
applications. 

The derivation of (4.1) and similar equations is simple if one gets used 
to expressing probabilistic relations directly in terms of Laplace trans- 
forms. A typical situation is as follows. Consider a random sum Sy = 
= X, +-+:+ Xy where the X; are independent with Laplace transform 

y(A), and N is an independent variable with generating function P(s). 
The Laplace transform of Sy is obviously P(y(A)) [see example XIII,3(c)]. 

For a Poisson variable N this Laplace transform is of the form e~*8-7)1, 
As we have seen repeatedly, in applications the parameter « is often taken 
as a random variable subject to a distribution U. Adapting the terminology 
of distribution functions we can then say that e~*!1-”)] js the conditional 
Laplace transform of Sy given the value « of the parameter. The absolute 
Laplace transform is obtained by integration with respect to U. Due to the 
peculiar form cf the integrand the result is obviously w(1—y(A)) where w 
stands for the Laplace transform of U. 

Examples. (a) Busy periods.6 Customers (or calls) arrive at a server 
(or trunkline) in accordance with a Poisson process at a rate c. The 
successive service times are supposed to be independent variables with 

the common distribution fF. Suppose that at epoch 0 a customer arrives 

and the server is free. His service time commences immediately: the 
customers arriving during his service time join a queue, and the service 
times continue without interruption as long as a queue exists. By busy 

period is meant the interval from 0 to the first epoch when the server again 

6 That (4.1) governs the busy periods was pointed out by D. G. Kendall, Some problems 
in the theory of queues, J. Roy. Statist. Soc. (B), vol. 13 (1951) pp. 151-185. The elegant 
reduction to branching processes was contributed by I.J. Good. Equation (4.1) is equivalent 
to 

t n 
B(t) = Sf“ “ B°*(t—z) F{dz} 

  

which is frequently referred to as Takacs’ integral equation. The intrinsic simplicity of the 

theory is not always understood. . 
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becomes free. Its duration is a random variable and we denote by B and B 
its distribution and Laplace transform, respectively. 

In the terminology of branching processes the customer initiating the busy 
period is the “ancestor,” the customers arriving during his service time are 
his direct descendents, and so on. Given that the progenitor departs at 
epoch x the number N of his direct descendants is a Poisson variable with 
expectation cx. Denote by X; the total service time of the jth direct 
descendant and all of his progeny. Although these service times are not 

necessarily consecutive their total duration has clearly the same distribution 
as the busy period. The total service time required by all (direct and indirect) 
descendants is therefore S, = X, + +--+ X, where the X; have the La- 
place transform f and all the variables are independent. For the busy period 
we have to add the service time 2z of the ancestor himself. Accordingly, 

given the length of the ancestor’s service time the busy period x + S, has 
the (conditional) Laplace transform e-*/+°-4)l_ The parameter x has 
the distribution F and integration with respect to wx yields (4.1). 

If B is defective the defect 1 — B(oo) represents the probability of a 
never-ending busy period (congestion). The condition cu <1 expresses 

that the expected total service time of customers arriving per time unit must 
not exceed unity. It is easy from (4.1) to calculate the expectation and 
variance of B. | 

In the special case of exponential service times F(t) =1—e and 
g(A) = a/(A+). In this case (4.1) reduces to a quadratic equation one of 

whose roots is unbounded at infinity. The solution 8 therefore agrees with 
the other root, namely 

oY] 
This Laplace transform occurs in example XIII,3(c). Taking into account 

the changed scale parameter and the translation principle we find that the 
corresponding density is given by 

(4.3) Vale e (ateley—1 LQVac x). 

The same result will be derived by another method in example 6(5); it was 

used in example VI,9(e). | 
(b) Delavs in traffic.’ Suppose that cars passing a given point of the 

road conform to a Poisson process at a rate c. Let the traffic be stopped 
(by a red light or otherwise) for a duration 6. When traffic is resumed K 

cars will wait in line, where K is a Poisson variable with parameter cé. 

(4.2) 

  

? This example is inspired by J. D.C C. Little’s treatment of the number of cars delayed. 
[Operations Res., vol. 9 (1961) pp. 39-52.] 
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Because the rth car in the line cannot move before the r — 1 cars ahead of it, 

each car in the line causes a delay for all following cars. It is natural to 
assume that the several delays are independent random variables with a 
common distribution F. For the duration of a waiting line newly arriving 

cars are compelled to join the line, thus contributing to the total delay. The 
situation is the same as in the preceding example except that we have K 
“ancestors.” The total delay caused by each individual car and its direct and 

indirect descendants has the Laplace transform # satisfying (4.1), and the 

total “busy period”—the interval from the resumption of traffic to the 
first epoch where no car stands waiting—has the Laplace transform 

—cé 2 (oy 

It is easy to calculate the expected delay and one can use this result for the 

discussion of the effect of successive traffic lights, etc. (See problems 

6, 7.) > 

5. DIFFUSION PROCESSES ~ | 

, BA) = e—cFl1 BAN) 

In the one-dimensional Brownian motion the transition probabilities are 
normal and, the first passage times have a stable distribution with index 4 
[see example VI,2(e)]. Being in possession of these explicit formulas we must 
not expect new information from the use of Laplace transforms. The reason 
for starting afresh from the diffusion equation is that the method is instructive 
and applicable to the most general diffusion equation (except that no explicit 
solutions can be expected when the coefficients are arbitrary). To simplify 
writing we take it for granted that the transition probabilities Q, have 
densities g, (although the method to be outlined would lead to this result 
without special assumptions). 

We begin with the special case of Brownian motion. For a given bounded 
continuous function f put 

(5.1) ult, 2) = [ae nf) dy. 
Our starting point is the fact derived in example X,4(a) that (at least for f 
sufficiently smooth) u will satisfy the diffusion equation 

du(t, x) _ 1 ult, x) 
ot 2 02° 

with the initial condition u(t, x) —»f(x) as t-»+0. In terms of the ordinary 

Laplace transform 

(5.3) w,(x) = [eu x) dt 

(5.2) 
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we conclude from (5.2) that® 

(5.4) Aw, — 40, = 

and from (5.1) that 
+0 

(5.5) w(x) =| K,(a, s) f(s) ds 

where K,(x, y) is the ordinary Laplace transform of ¢,(x, y). In the theory 

of differential equations K, is called the Green function of (5.4). We shall 

show that 

(5.6) K, (x, y) = ee Vl, Ja 
The truth of this formula can be verified by checking that (5.5) represents the 

desired solution of the differential equation (5.4), but this does not explain 

how the formula was found. 
We propose to derive (5.6) by a probabilistic argument applicable to more 

general equations and leading to explicit expressions for the basic first 

passage times. (Problem 9.) We take it as known that the path variables 

X(t) depend continuously on t. Let X(0).= x and denote by F(t} 2, y) the 

probability that the point y will be reached before epoch ¢. We call F 

the distribution of the first-passage epoch from x to .y and denote its 

Laplace transform by 9,(*, y). 

For «<y<z theevent X(t) =z takes place iff a first passage through 

y occurs at some epoch + < t¢ and is followed by a transition from y to z 

within time ¢— 7. Thus q,(x,z) represents the convolution of F(t, 2, y) 

and q,(y,z), whence 

(5.7) | K,(x, z) = p,(z, y) K,(y, z), . t < y¥< a 

Fix a point y and choose for f a function concentrated on y, oo. Multiply 

(5.7) by f(z) and integrate with respect to z. In view of (5.5) the result is 

(5.8) w,(%) = yp, (x, y) w,(y), x > y; 

while (5.4) requires that for y fixed y,(x, y) satisfy the differential equation 

109, _ — 0, x< y. 
2 dx 4 

(5.9) AQ, 

A solution which is bounded at —oo is necessarily of the form C en ee, 

8 Readers of the sections on semi-groups will notice that we are concerned with a 

Markovian semi-group generated by the differential operator & = 4d?/dz?. The differential 

equation (5.4) is a special case of the basic equation XIII,(10.1) occurring in the Hille- 

Yosida theorem. 
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Since (5.8) shows that p,(x, y)-> 1 as x+y, wehave 9, (x, y) = eV24alzy 
provided x< y. Asimilar argument applies when x > y and it is clear that 
for reasons of symmetry the Laplace transform of the first-passage time from 
x to y is given by 

(5.10) pil, y) = eV EM, 
Letting z = y in (5.7) we see therefore that 

Kyle, Y= eV BIK Gy, 9), 
and since K must depend symmetrically on x and y it follows that 

K(y, y) reduces to a constant: C, depending only on 4. We have thus 

determined K, up to a multiplicative constant C,z that V24C, =1 
follows easily from the fact: that to f= 1 there corresponds the solution 
w,(x) = 1/A. This proves the truth of (5.6). . 

The following examples show how to calculate the probability that a point 
y, > x will be reached before another point. y, < 2. At the same time they 

illustrate the treatment of boundary conditions. 

Examples. (a) One absorbing barrier. The Brownian motion on 0, «© 

with an absorbing barrier at the origin is obtained by stopping an ordinary. 
Brownian motion with - X(0) =z > 0 when it reaches the origin. We 
denote its transition densities by qe (, y) and adapt similarly the other 
notations. _ 

In the unrestricted Brownian motion the probability density of a passage 
from x >0 to y >0 with an intermediate passage through 0 is the con- 
volution of the first passage from x to 0 and q,(0, y). The corresponding 
Laplace transform i is ,(x, 0) K,(0, y) and hence we must have . 

(5.11) K%%(x, y) = K,(x, y) — 9,(x, 0) K,(0, y), 

where x > 0, y >0. This is equivalent to 

(5.12) K® 8x, y) = fen 2a lel _ eV eet) (FY 

or 
| 

(5.13) q??(a, y) = Gila. y) — Gx, —y) 

in agreement with the solution X,(5.5) obtained by the reflection principle. 

The argument leading to (5.7) applies without change to the absorbing 

barrier process and we conclude from (5.12) thatfor O< %<y 

eV 2x _ e7Y Aa 

(5.14) g(a, y) = <2. 
ev 2aAy __ enV tay 
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This® is the Laplace transform of the probability that in an unrestricted 
Brownian motion with X(O) =x the point y > x is reached before epoch 1 
and before a passage through the origin. Letting 4-+0 we conclude that 
the probability that y will be reached before the origin equals x/y. just as in 
the symmetric Bernoulli random walk (see the ruin problem in 1; XIV,2). 
(Continued in problem 8.) 

(b) Two absorbing barriers. Consider now a Brownian motion starting 
at a point x in 0,1 and terminating when either 0 or | is reached. It is 
casiest to derive this process from the preceding absorbing barrier process 
by introducing an additional absorbing barrier at 1 so that the reasoning 
leading to (5.11) applies without change. The transition densities q*(x, y) 
of the new process have therefore the Laplace transform K# given by 

(5.15) Ki(a, y) = K3>(a, y) — (a, 1) K2°*(1, y) 
with x and y restricted to 0,1. [Note that the boundary conditions 
K# (0, y) = K#(1, y) are satisfied. ] Simple arithmetic shows that 

~V 22|2—v| + enV 2M2-|z-¥))__ 9 V2alet)__ 4 V2a2-2-w) 

J 2A —¢2¥ 22) 

Expanding 1/1 —e2V 24] intoa geometric series, one is led to the alternative 
representation 

(5.16) Ki(z,y) = 5   

+2 _ ' — 

(5.17) K* (2, y) = Fi > fen ¥ 2a lave ent e-V Aletytonly 

which is equivalent to the solution X,(5.7) obtained by the reflection 
principle. > 

The same argument applies to the more general diffusion equation 

(5.18) te) = hax 2 ee x) + B(x) oe a>0, 

in a finite or infinite interval. Instead of (5.4) we get 

(5.19) Aw, — haw, — bo, =f 

and the solution is again of the form (5.5) with a Green function K, of 

the form (5.7) where 9,(%, y) is the transform of the first-passage density 
from x to y> x. For fixed y, this function must satisfy the differential 

equation corresponding to (5.9) namely 

(5.20) Ap, — tay; — bp, = 0. 

°For y fixed, g>* represents the solution of the differential equation (5.9) which 
reduces to0 when x = 0 and tol when x = y. In this form the result applies to arbitrary 
triples of points a <x <6 and a>z> 6b and to more general differential equations. 
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It must be bounded at the left endpoint and ,(y, y) = 1. These conditions 
determine 9, uniquely except if (5.20) possesses a bounded solution, in 
which case (as in the above examples) appropriate boundary conditions 
must be imposed. (See problems 9, 10.) 

6. BIRTH-AND-DEATH PROCESSES AND RANDOM 

WALKS 

In this section we explore the corinection between the birth-and-death 

processes of 1; XVII,5 and the randomized random walk of II,7. The main 

purpose is to illustrate the techniques involving Laplace transforms and the 
proper use of boundary conditions. 

Consider a simple random walk starting at the origin in which the individual 
steps equal 1 or —1 with respective probabilities p and g. The times between 
successive steps are supposed to be independent random variables with an 

exponential distribution with expectation l/c. The probability P,(t) of 
the position n at epoch ¢ was found in II,(7.7); but we start afresh from a 
new angle. To derive an equation for P,(t) weargueasfollows. The position . 

n #0 atepoch ¢ is possible only if a jump has occurred before ¢t. Given that 
the first jump occurred at ¢ — x and led to 1, the (conditional) probability 
of the position n at epoch ¢ is P,_,(x). Thus for n = +1, +2,.... 

(6.12) P,(t) = [ ce" DP,_ (2) + gPyar(2)] de. 
For n = 0 the term e~* must be added to account for the possibility of no 
jump up to epoch ¢. Thus 

(6.16) Pot) = et + ['ce*[pP_aa) + gP\(x)] de. 
Accordingly, the P, must satisfy the infinite system of convolution 

equations (6.1). A simple differentiation leads to the infinite system of 

differential equations’® 

(6.2) Pi(t) = —cP,(t) + cpP,(t) + CqP n43(t) 

together with the initial conditions P,(0) = 1, P,(0) =0 for 1 #0. 

The two systems (6.1) and (6.2) are equivalent, but the latter has the 

formal advantage that the special role of » =0 is noticeable only in the 

initial conditions. For the use of Laplace transforms it does not matter 

where we start. 

10 They are a special case of the equations 1; XVII,(5.2) for general birth-and-death 
processes and may be derived in like manner. 
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We pass to Laplace transforms putting 

(6.3) 1,(A) = [ e** P(t) dt. 
0 

Since convolutions correspond to multiplication of Laplace transforms and 
e- has the transform I/(c+4A) the system (6.1) is equivalent to 

  

  

(6.4a) (A) = : : i [pa,a(A) + 97n4,(A)], n#0 

1 
4 (A) = —— m_;(A 1 (6.4b) o( A) ceateg al? _i(A) + qm (A)], 

[The same result could have been obtained from (6.2) since 

[ e'P! (t) dt = —P,(0) + Az,(A) 0 

which follows on integration by parts.] 
The system of linear equations (6.4) is of the type encountered in connection 

with random walks in 1; XIV, and we solve it by the same method. The 
quadratic equation 

(6.5) cqs® — (c+A)s +cp=0 

has the roots 

(6.6) 5 aft A — JV(é+4)? — 4cpq 
, = and 0, = (p/q)sz- 

2cq 

It is easily verified that with arbitrary constants A,, B, the linear com- 
binations 7,(A) = A,s? +°B,o% satisfy (6.4a) for n= 1,2,..., and the 

coefficients can be chosen so as to yield the correct values for a (A) and 

m,(A). Given 7, and 7, it is possible ftom (6.4a) to calculate recursively 
1), 73,---, and so for »>0O every solution is of the form 7,,(A) 

= A,s? + B,o". Now s,—>0 but o,-+ 0 as A-> w. Asour 7,,(A) remain 
bounded at infinity we must have B, = 0, and hence 

(6.74) T (A) = mr(A)sz, n=0,1,2,.... 

For n <0 we get analogously 

(6.76) (A) = m(Aor = (p/q)"m(A)sz", n= 0, —1, -2,.-- 
Substituting into (6.45) we get finally 

1 
(6.8) (A) = 

y(c+A)? — 4c*pq 
and so all 7,(A) are uniquely determined. 
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Much information can be extracted from these Laplace transforms without 
knowledge of explicit formulas for the solution itself. For example, since 
multiplication of Laplace transforms corresponds to convolutions, the form 
(6.7) suggests that for » >0 the probabilities P, are of the form P, = 
= F"* + Py where F isa (possibly defective) probability distribution with 
transform s,. That this is so can be seen probabilistically as follows. If at 
epoch ¢ the random walk is at the point n, the first passage through n 
must have occurred at some epoch + <t. In this case the (conditional) 
probability of being at epoch ¢ again at n equals P,(t—r). Thus P,, is 
the convolution of P, and the distribution F, of the first passage time 

through n. Again, this first passage time is the sum of n identically dis- 
tributed independent random variables, namely the waiting times between 
successive passages through 1, 2,.... This explains the forin (6.7) and shows 
at the same time that s% is (for n > 0) the transform of the distribution F,, 

of the first passage time through n. This distribution is defective unless 
P =q =+3. for only in this case is sy = I. | 

In the present case we are fortunately able to invert the transforms s,. 

It was shown in example XIII,3(d@) that (A — JR = 1)’ is (for A> 1) 

the ordinary Laplace transform of (r/x)/Z,(z). Changing A into Af2cV, PY 

merely changes a scale factor, and replacing A by 4+ c reflects multipli- 
cation of the density by e~°*. It follows that s% (with n > 0) ts the ordinary 

Laplace transform of a distribution F, with density 

(6.9) Salt) = V(p/qy" nt yen pq er. 
This is the density of the first passage time through n> 0. This fact was 
established by direct methods in II,(7.13) [and so the present argument may 

be viewed as a new derivation of the Laplace transform of zx! /,(z)]. 

An explicit expression for the probabilities P,(t) can be obtained similarly. 

In problem 8 of XIII,11 we found the Laplace transform of J,, and the 
adjustment of parameters just described leads directly to the explicit formulas 

(6.10) P,(t) = V(piay’ et 1,2cV pq),  n=0, +1, 42,.... 
Again, this result was derived by direct methods in II,(7.7). 

As we have seen in 1; XVII,7 various trunking and servicing problems 
lead to the same system of differential equations (6.2) except that 7 is 

restricted to »>O0 and that a different equation corresponds to the 
boundary state 1» = 0. Two examples will show how the present method 

operates in such cases. 

  

  

Examples. (a) Single-server queues. We consider a single server in which 
newly arriving customers join the queue if the server is busy. The state of the 
ststem is given by the number ” > 0 of customers in the queue including 
the customer being served. The interarrival times and the service times are 
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mutually independent and have the exponential densities Ae-*’ and yet, 
respectively. This is a special case of the multi-server example (b) in 1; 
XVII,7, but we derive the differential equations afresh in order to elucidate 

the intimate connection with our present random walk model. 
Suppose that at present there are n > 1 customers in the queue. The 

next change of state will be +1 if it is due to a new arrival, and —1 if it is 
due to the termination of the present service time. The waiting time T for 
this change is the smaller of the waiting times for these two contingencies 

and so P{T > t} =e“ where we put c= A+ u. When a change occurs 

it is +1 with probability p = A/c, and —1.with probability q = u/c. In 
other words, as long as the queue lasts our process conforms to our random 

walk model, and hence the differential equations (6.2) hold for n> 1. 

However, when no service is going on, a change can be caused only by new 
arrivals, and so for n = 0 the differential equation takes on the form 

(6.11) Po(t) = —cpPo{t) + cqP,(0). 
We solve these differential equations assuming that originally the server 

was free, that is P,(0)=1. For »>1 the Laplace transforms 7,(A) 

again satisfy the equations (6.4a), but for n = 0 we get from (6.11) 

(6.12) (cp-+A)m(A) = 1 + cqm,(A). 

As in the general random walk we get 7,,(A) = 7(A)sj for n> 1, but in 
view of (6.12) 

(6.13) T7(A) = 

Thus 

1 __1i-s, 

cp +A — cqs, A 
  

1 — ; n n mA) + tng (A) bo = Ee (sts $e) = SA. 

We found that s” is the Laplace transform of the distribution F,, with 

density (6.9); the factor 1/A corresponds to integration, and so for n > 0 

(6.14) PAW) + Pritt) +++ = F(t) 

where F, is the distribution with density (6.9). For n= 0 the left side is, 

of course, unity. 
(b) Fluctuations during a busy period. We consider the same server, 

but only during a busy period. In other words, it is assumed that at epoch 
0 a customer arrives at the empty server, and we let the process terminate 
when the server becomes empty. Analytically this implies that n is now 
restricted to n > J, and the initial condition is P,(0) = 1. Nothing changes 

in the differential equations (6.2) for’ n >=. 2, but in the absence of a zero 

state the term cpP,(t) drops out in equation number one. Thus the Laplace 
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transforms 7,(A) satisfy (6.4a) for n > 2 and 

(6.15) (A+c)7,(A) = 1 4+ cqz,(A). 

As before we get 7,,(A) = 7,(A)s}~! for n>2, but 7,(A) is to be 
determined from (6.15). A routine calculation shows that 7,(A) = s,/(cp), 

and hence 7,,(A) = s%/(cp). Using the preceding example we have thus the 
final result that P,(t) = /,(t)/(cp) with f, given by (6.9). 

To ensure that the busy period has a finite duration we assume that 
p <q. Denote the duration of the busy period by T. Then P{T >t} = 
= P(t)= > P(t). Now P’(t)= —cgP,(t) as can be seen summing the 
differential equations, or probabilistically as follows. Neglecting events of 
negligible probabilities the busy time terminates between ¢ and ¢+h iff 
at epoch ¢ there is only one customer in the queue and his service terminates 
within the next time interval of duration h. The two conditions have 

probabilities P,(t) and cgh + o(h), and so the density of T satisfies the 

condition —P’(t) = cqP,(t). Accordingly, the duration of the busy period 
has the density 

(6.16) —P'(t) = Vq/p tL, 2cv'pq te-**. 

This result was derived by a different method in example 4(a) and was used 
in the queuing process VI,9(e). See problem 13. > 

7. THE KOLMOGOROV DIFFERENTIAL EQUATIONS" 

We return to the Markovian processes restricted to the integers 1,2,.... 

The Kolmogorov differential equations were derived in 1; XVII,9 and 

again in X,3. This section contains an independent treatment by means of 

Laplace transforms. To render the exposition self-contained we give a 
new derivation of the basic equations, this time in the form of convolution 
equations. ; 

The basic assumption is that if X(7) =i at some epoch 7, the value 
X(t) will remain constant for an interval 7 <¢<7+T whose duration 

has the exponential density c,e~**; the probability of a jump to j,, then p,;. 
Given that X(0) =i the probability P,,(t) that X(t) = k #i can now be 

1 The theory developed in this section applies without essential change to the general 
jump processes of X,3. It is a good exercise to reformulate the proofs in terms of the 

probabilities themselves without using Laplace transforms. Some elegance is lost, but the 
theory then easily generalizes to the non-stationary case where the coefficients c; and Pjx 
depend on ¢. In this form the theory is developed (for general jump processes) in W. Feller, 
Trans. Amer. Math. Soc., vol. 48 (1940), pp. 488-515 [erratum vol. 58, p. 474}. 

For a probabilistic treatment based on the study of sample paths see Chung (1967). 

For generalizations to semi-Markov processes see problem 14. 
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calculated by summing over all possible epochs and results of the first jump: 

t 

(7.14) Palt) =S | cep Py(t—2) de (k # i). 
j=1 J0 

For k =i w must add a term accounting for the possibility of no jump: 

oo t 

(7.15) P(t) =e" + | cep, ,P,(t—2x) dx 
j=1 /0 

These equations can be unified by introducing the Kronecker symbol 6,, 
which equals | or 0 according as k =i or k #i. 

The backward equations (7.1) are our point of departure;! given arbitrary. 

c;>0 and a stochastic matrix p= (py) we seek stochastic matrices 
P(t) = (P,(¢)) satisfying (7.1). 

Alternatively, if we suppose that. any finite time interval contains only. 
finitely many jumps we can-modify the argument by considering the epoch x 
of the /ast jump preceding ¢. The probability of a jump from j to k has 
density > P,;(x)cip;,, while the probability of no jump between x and ¢ 

equals e—°(*"). Instead of (7.1) we get the forward equations . 

(7.2) Py(t) = Ox met SPul@esPne ent a) dx. 
0 j=1 

As will be seen, however, there exist processes with infinitely many jumps 
satisfying the backward equations, and hence the forward equations are not 
implied by the basic assumptions underlying the ptocess. This phenomenon 
was discussed in X,3 and also in 1; XVII,9. 

In terms of the Laplace transforms 

(7.3) «oT (A) = { e 7 P(t) at 
. 0 

the backward equations (7.1) take on the form 

_ Oi 
(7.4) IT ,(A) = s Pi; ITA). 

  

Ate, +e 

We now switch to a more convenient matrix notation. (The rules of matrix 

12 The change of variables y = t — x makes differentiation easy, and it is seen that the 
convolution equations (7.1) are equivalent to the system of differential equations 

Piylt) = —c; Pix(t) + €; > Pi P(t) 
. j 

together with the initial conditions P,,(0) = 1 and P,,(0)=0 for k #7. This system 
agrees with 1; XVII,(9.14), except that there the coefficients c,; and p,; depend on time, 
and hence P;, is a function of two epochs + and ¢ rather than of the duration ¢ — 
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calculus apply equally to infinite matrices with non-negative elements.) We 
introduce the matrices II(A) = ([1,,(A)) and similarly P(t) = (P(t); 
p = (p;,), and the diagonal matrix ¢ with elements c,. By 1 we denote 
the column vector all of whose elements equal 1. The row sums of a matzix 
A are then given by Ai. Finally, J is the identity matrix. 

It is then clear from (7. 4) that the backward equations (7.1) are trans- 
formed into 

(7.5) (A+c) F(A) = I + ep Ta), 

and the forward equations into 

(7.6) TI(A)(A+e) = 1 + (Ap. 

To construct the minimal solution we put recursively 

(7.7) (A+c) (a) = J, (A+e) T+) (4) = I + cp T™ (A). 

For the row sums of AII')(A) we introduce the notation 

(7.8) ATI (A)1 = 1 — EA), 

Substituting into (7.7) and remembering that p1 = 1 it is seen that 

(7.9) (A+e)E (2) = cpé”(A). 

Since £ > 0 it follows that &™ (A) > 0 for all n, and so the matrices 

All(™(A) are substochastic. Their elements are non- -decreasing functions 
of n and therefore there exists a finite limit 

(7.10) T'(4) = lim IIA) 
no 

and AII‘®)(A) is substochastic or stochastic. 
‘Obviously II'*(A) satisfies the backward equation (7.5) and for any 

other non-negative solution II(A) one has trivially [(A) > II (A), and 
by induction IT(A) > IIA) for all n. Thus 

(7.11) Ta) > H(A). 

Less obvious is that II‘%)(A) satisfies also the forward equation (7.6). 
To show it we prove by induction that 

(7.12) TI (A)(A--e) = I + Ti" Aaep. 

This is true for n = 1. Assuming the truth of (7.12), substitution into (7.7) 

leads to 

(7.13) Abe) AA+e) = + ¢ + [+ cpl" (A) Jep. 

The expression within brackets equals (A+e)II™ (A). Premultiplication of . 
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(7.13) by (A+e)~? yields (7.12) with n replaced by n+ 1. This relation 
is therefore true for all n, and hence II'°)(A) satisfies the forward equation. 

Repeating the argument that led to (7.11) we see equally that any rion- 
negative solution of the forward equations (7.6) satisfies II(A) > II'™)(A). 

For this reason II‘”(A) is called the minimal solution. 
We have thus proved 

Theorem 1. There exists a matrix II'(a)>0 with row sums <.A7} 

satisfying both (7.5) and (7.6) and such that for every non-negative solution 
of either (7.5) or (7.6) the inequality (7.11) holds. 

Theorem 2. The minimal solution is the Laplace transform of a family of 
substochastic or stochastic matrices P(t) satisfying the Chapman-Kolmogorov 
equation 

(7.14) P(s+t) = P(s) P(t) 

and both the backward and forward equations (7.1)-(7.2). Either all matrices 

P(t) and AIl™)(A) (t > 0,4 > 0) are strictly stochastic or none is. 

Proof. We drop the superscript oo and write II(A) for Ti({A). From 

the definition (7.7) it is clear that II'")(4) is the transform of a positive 
function P‘) which is the convolution of finitely many exponential distri- 
butions. Because of (7.8) the row sums of P'")(t) form a monotone sequence 

bounded by 1 and so it follows that II(A) is the transform of.a matrix P(t) 

which is substochastic or stochastic. From (7.5)-(7.6) it is clear that P(t) 
satisfies the original forward and backward equations. These imply that 
P(t) depends continuously on 1.- It follows that if the ith row sumis < 1 

for some f-the ith row sum of II(A) is < A for al] A and conversely. 
To restate (7.14) in terms of Laplace transforms multiply it by e~**-”* and 

integrate over s and ft. The right side leads to the matrix product IT(A) II(»), 
and the left side is easily evaluated by the substitution x =i+s, y= 

= —t+s. The result is 

_ He) — 1a) 
ym 

(7.15) = I(A) T(v); 

conversely (7.15) implies (7.14). [This argument was used in example 
XII ,8(a).] 

To prove (7.15) consider the matrix equation 

(7.16) (A+c)Q = A + cpg. 
If A and Q are non-negative then obviously Q > (Ate)-A = II (A)A 

and by induction Q > II (A)A for all n. Thus Q > II(A)A. Now II(») 
Satisfies (7.16) with A = J+ (A—r)II(») and hence for A> » 

(7.17) I(r) > (A) + A—»)I(4) 0). 

 



XIV.7 THE KOLMOGOROV DIFFERENTIAL EQUATIONS 487 

On the other hand, the right-hand member satisfies the forward equation 
(7.6) with A replaced by ». It follows that it is > II(v) and thus the 

equality sign holds in (7.17). This concludes the proof.’ > 

To see whether the matrix AII‘°)(A) is strictly stochastic!* we return to 
the relations (7.8) and (7.9). Since the elements ¢!")(4) are non-increasing 

functions of n there exists a limit &(A) = lim &)(A) such that 

(7.18) AIN'(4)1 = 1 — E(A) 

and a 

(7.19) (A-+e)é(A) = cpé (A), 0<é() <1. 
On the other hand, we have 

(7.20) —  (A+e)€ (A) = cl = cpl 

and therefore £(0(4) = &(A).for any vector &(A) satisfying (7.19). From 
(7.9) it follows by induction that é (A) > &(A) forall n, and so the vector 
&(A) in (7.18) represents the maximal vector satisfying (7.19). We have thus 

Theorem 3. The row defects of the minimal solution are represented by 
the well-defined maximal vector &(A) satisfying (7.19). 

Thus AII'°)(A) is strictly stochastic iff (7.19) implies | E(A) = 0. 

Corollary 1. If-c; <M < © for all i the minimal solution is strictly 

stochastic (so that neither the forward nor the backward equations possess 
other admissible solutions). 

Proof. Since: c/(A+c) is an increasing function of c it follows from (7.19) 

by induction that 

(7.21) | 8) < (753) 
for all n, and hence &(A) = 0. > 

If A(A) is a matrix of elements of the form &,(A) (A) with arbitrary (A) then 
II(A) + A(A) is again a solution of the backward equation (7.5). It is always possible 

to choose A(A) so as to obtain admissible matrices P(t) satisfying the Chapman- 

Kolmogorov equation. The procedure is illustrated in the next section. The corresponding 

13 (7.15) is the resolvent equation for the family of contractions AII(A) on the Banach 
space of bounded column vectors. We saw in XIII,10 that it holds iff the range of these 
transformations is independent of A, and minimal character guarantees this. (In terms 

of boundary theory the range is characterized by the vanishing of the vectors at the “active 

exit boundary.’’) 
14 Warning: A formal multiplication of the forward equations by the column vector 1 

would seem to lead to the identity AII(A)l =1, but the series involved may diverge. 

The procedure is legitimate if the c; are bounded (corollary 1). 
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processes are characterized by transitions involving infinitely many iumps in a finite time 
interval. Curiously enough, the forward equations may be satisfied even though their 
interpretation in terms of a last jump is false. 

These are the main results. We conclude with a criterion that is useful 

in applications and interesting because its proof introduces notions of 

potential theory; the kernel I" of (7.25) is a typical potential. 

We assume c, > 0 and rewrite (7.19) in the form 

(7.22) E(A) + Ac-1E(A) = pé(A). 

Multiplying by p* and adding over k =0,...,n—1 we get 

n~-1 

(7.23) &(A) + AX pre'é(A) = p"é(A). 

This implies that p”&(A) depends monotonically on n and SO pré(A) > = 

where x is the minimal column vector satisfying 

(7.24) px =z, EA) <z<l. 

Now define a matrix (with possibly infinite elements) by 

(7.25) T= Spier. 
k=1 

Letting n-—> oo in (7.23) we get 

(7.26) &(A) + AP E(A) = , 

which implies in particular that &,(A) =0 foreach k such that Ty, = oo. 

This is the case if k is a persistent state for the Markov chain with matrix 

p and hence we have 

Corollary 2. The minimal solution is strictly stochastic (and hence unique) 
whenever the discrete Markov-chain with matrix p has only persistent states. 

8. EXAMPLE: THE PURE BIRTH PROCESS 

Instead of pursuing the general theory we consider in detail processes in 
which only transitions i+i+1 are possible, for they furnish good 
illustrations for the types of processes arising from non-uniqueness. To 
avoid trivalities we suppose c,>0 for all i. By definition p, 4. = 1 
whence p,, = 0 for all other combinations. The backward and forward 

equations now reduce to 

(8.1) (A+ce)I nA) — ¢Migre(A) = 9 

15 It is not difficult to see that x is independent of 4 and AII'~)(A) = x — &(A). 
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and 

(8.2) (A+c,) (A) — Cyl, ,-a(A) = Oi, . 

where 6, equals 1 for i =k and 0 otherwise. We put for abbreviation 

C; 1 
8.3 = , = . 83) Math Oa 

p, is the Laplace transform of the (exponential) sojourn time distribution 
at i, and r, is the ordinary Laplace transform of the probability that this 
sojourn time extends beyond 1. The dependence of r; and p, on 4 should 
be borne in mind. 

(a) The minimal solution. It is easily verified that 

PiPiti’** Peale for k >i - 
(8.4) IT ,,(4) = . 

0 for k <i 

is the minimal solution for both (8.1) and (8.2). It reflects the fact that 
transitions from j to k <i are impossible, and that the epoch or the 
arrivalat k > i isthe sum of the k independent sojourn timesat i,i+1,..., 
k—1. 

Let P,,(¢) stand for the transition probabilities of the process defined by 
(8.4). We prove the following important result derived by other methods in 
1; XVII,4. 

Lemma. If - 

(8.5) ¥ tfc, = 
then 

(8.6) SPA) = 1 
k=i 

for all i and-t > 0. Otherwise (8.6) is false for all i. 
Proof. Note that Ar, = 1 — p,, whence 

(8.7) AUIT,,(A) teeet TI, sen(A)] = 1 — pi°** Pin: 

Thus (8.6) holds iff for all 2 > 0 . 

(8.8) | PiPit1’** Pn 0 n—- ©. 

Now if c,— oo then p, ~e-/= and hence in this case (8.5) is necessary 
and sufficient for (8.8). On the other hand, if c, does not tend to infinity 

there exists a number g <1 such that p, <q for infinitely many n, and 

hence both (8.8) and (8.5) hold. > 

— 
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In the case where the series: in (8.5) diverges there are no surprises: the 

c, determine uniquely a birth process satisfying the basic postulates from 
which we started. From now on we assume therefore that } cy} < o. 

The defect 1 — >, P,,(t) is the. probability that by epoch ¢ the system 
has passed through a// states, or has ‘“‘arrived at the boundary oo.” The epoch 
of the arrival is the sum of the sojourn times at i,i+1,.... The series 
converges with probability one because the sum of the mean sojourn times 
1/c, converges. 

In a process starting at i the lifetime of the process up to the epoch of the 
arrival at 00 has the Laplace transform 

(8.9) | &, = Lim pypjra* °° Pitn 
n7O 

and the &, satisfy the equations (7.19), namely, 

(8.10) (Ate )e: = cba 
For the row sums we get from (8.7) 

(8.11) : A> 1,4) = 1 - &,. 
k=t 

(6) Return processes. Starting from the process (8.4) new processes may 
be defined as follows. Choose numbers q, such that g,>0, > 9, = 1. 
We stipulate that on arrival at 00 with prebability* q, the state of the system 
passes instantanecusly to i. The original process now starts afresh until a 
second arrival at 00 takes place. The time elapsed between the two arrivals 
at 00 is a random variable with Laplace transform 

(8.12) a) = Dads. 
The Markovian character of the process requires that on the second arrival 
at oo the process recommences in the same manner. We new describe the 

_transition probabilities Pi'(t) of the new process in terms of its Laplace 
transforms IIte*(4).. The prebability of a transition from i at epoch 0 to 
k atepoch ¢ without an intervening passage through co has the transform 
(8.4). The probability to reach k after exactly one passage through oo has 
therefore the Laplace transform &, >, q,I1,(4), and the epoch ef the second 
arrival at oo has.transform &,7(A). Considering further returns we see in 

this way that we must have 

(8.13) ma) = Ty(A) + g, 

  

_ p> q;} TE ,,(A) 

16 Variants of the return processes are obtained by letting xq, <1; on arrival at © 
the process terminates with probability 1-24; 
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where [1—7r(A)}! = > r*(4) counts the number of passages. through oo, 
A trite calculation using (8.11) shows that the row sums in (8.13) equal 1/A, 
and so the [Itt(a) are the transforms of a strictly stochastic matrix of 
transition probabilities P™*(¢). 

It is easily verified that the new process satisfies the backward equations 
(8.1) but not the forward equations (8.2). This is as should be: the postulates 
leading to the forward equations are violated since no last jump need exist. 

(c) The bilateral birth process. To obtain a process satisfying both the 
forward and the backward equations we modify the birth process by letting 
the states of the system run through 0,41, +2,.... Otherwise the con- 
ventions remain the same: the constants c, > 0 are defined for all integers, 

and transitions from i are possible only to i +1. We assume again that 
¥ 1/c, < 0, the summation now extending from — © to’ oo. 

Nothing changes for the minimal solution which is still given by (8. 4). 
The limit 

(3.14) 1 = lim T1.(A) = Ppa Pe—2Pr—s **” 

exists and may be interpreted as the transform of ‘ ‘the probability P_.,, ,(t) 
of a transition from —oo at epoch 0 to k at epoch ¢.” With this starting 
point the process will run through all states from — 00 to oo and “arrive at 
co” at an epoch with Laplace transform ¢_,, = lim &,. We now define 

n—>— 00 

a new process as follows. It starts as the process corresponding to the 
minimal solution (8.4) but on reaching 0 it recommences at — ©, and in this 

way the process continues forever. By the construction used in (5) we get 
for the transition probabilities 

oi (8.15) | (a) = 1,(A) + a . 

It is easily verified that the II1* satisfy both the backward and the forward 
equations (8.1) and (8.2). The process satisfies the hypotheses leading to the 
backward equations, but not those for the forward equations. 

9. CALCULATION OF ERGODIC LIMITS AND OF 

FIRST-PASSAGE TIMES 

As can be.expected, the behavior as t > co of the transition probabilities 
P;;(t) of Markov processes on integers is similar to that of higher transition 

probabilities in discrete chains with the pleasing simplification, however, 
that the nuisance of periodic chains disappears. Theorem | establishes this 
fact as a simple consequence of the ergodic theorem of 1; XV. Our main 

concern will then be to calculate the limits for the general processes of section 
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7 and to show how first passage times can be found. The methods used are of 
wide applicability. 

Theorem 1. Suppose that for the family of stochastic matrices P(t) 

(9.1) | P(s+t) = P(s) P(t) 

and P(t)+I as t-+0. Ifno P,, vanishes" identically, then as t-> 

(9.2) P(t) > uy 

where either u, = 0 forall k or else 

(9.3) : u, > 0, | x u, = 1, 
and — . — 

(9.4). | Xu; P(t) = uy. 

The second alternative occurs whenever there exists a probability vector 
(u,, Ua,...) satisfying (9.4) for some t>0. In this case (9.4) holds for all 

t > 0, and the probability vector ‘u-is unique. 

(As explained in 1; XVII,6 the important feature is that the limits do 

not depend on i, which indicates that the influence of the initial conditions 
is asymptotically negligible.) 

Proof. For a fixed &>0 consider the discrete Markov. chain with 
matrix P(é) and higher transition probabilities: given by _P®(d) = P(n6). 
If all elements P;,(nd) are ultimately positive the chain is irreducible and 

aperiodic, and by the ergodic theorem 1; XV,7 the assertions are true 
for ¢ restricted to the sequence 6, 26; 36,.... Since two rationals have 
infinitely many multiples in common the limit ¢ as n-» oo of P;,(nd) is the 
same for all rational 6. To finish the proof it suffices to show that P(t) 

is a uniformly continuous function of ¢ and is. positive for large t, Now by 
(9.1) a 

(9.5) Pals) Pal) < Pals+) < Pa(t) + [1 — Py(s)] 
[the first inequality i is trivial, ‘the second follows from the fact that the terms 

_ £,,(s) with j #7 add up to 1— P,,(s)]. For s sufficiently small we have 
1'"— ¢ < P,,(s) < 1 and so (9.5) shows the uniform continuity of Py. It . 

follows from (9:5) also that if P,(t)>0 then P,(¢+s) >0 in some 
s-interval of fixed length and hence Po is either identically zero or ultimately 
positive. . > 

17 This condition is introduged only to avoid trivialities that may be circumvented by 
restrictions to appropriate sets of states. It is not difficult to see that our conditions imply 
strict positivity of P,,(¢) for all ¢. 
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We now apply this result to the minimal solution of section 7 assuming 
that it is strictly stochastic, and hence unique. In matrix notation (9.4) reads 
uP(t) = u; for the corresponding ordinary Laplace transform this implies 

(9.6) — UATT(A) = a. 

If a vector u satisfies (9.6) for some particular value 2 > 0 the resolvent 
equation (7.55) entails the truth of (9.6) for all A> 0, and hence the 
truth of (9.4) for all 1 > 0. Introducing (9.6) into the forward equation 
(7.6) we get 

(9.7) ucp = uc; 

the components u,c, are finite though possibly unbounded. On the other 
hand, if uw is a probability vector satisfying (9.7) it follows by induction 
from (7.12) that uAII™(A) < u for all’n, and hence uAlI(A) < u. But the 

matrix AII(A) being strictly stochastic the sums of the components on either 
side must be equal and hence (9.6) is true. We have thus 

Theorem 2. [f the minimal solution is strictly stochastic (and hence utique) 
the relations (9.2) hold with u, > 0 Uff there exists a probability vector u 
such that (9.7) holds. 

This implies in particular that the solution u of (9.7) is unique. 
Probabilistic interpretation. To fix ideas consider the simplest case where 

the discrete chain with transition probabilities p,; is ergodic. In other words, 
we assume that there exists a strictly positive probability vector « = 
= (%, %,...) suchthat «p = a and p'") +a, as n-> oo. Itis then clear 
that if o=)> a,c; ~1 < w, ~the probability vector with components 
u, = %,C, 1/0 satisfies (9.7) whereas no solution exists if o¢ = oo.. 

Now it is intuitively obvious that the transitions in our process are the 
same as in the discrete Markov chain with matrix p, but their timing is 

different. For an orientation consider a particular state and label it with the 
index 0. The successive sojourn times at 0 alternate with off times during 
which the system is at states j > 0. The number of visits to the state / is 

regulated by p, their duration depends on c;. In the discrete-Markov chain 
the long-run frequencies of j and 0 are in the ratio «,/a) and hence «,/a 
should be the expected number of visits to j during an off interval. The 
expected duration of each visit being 1/c, we conclude that in the long rur 
the probabilities of the states / and 0 should stand in the proportion 
a,;cj-2: Aly t OL Uji Uy. 

This argument can be made rigorous even in the case where P,,(t)-+0. According to 

a theorem of C. Derman mentituned in 1; XV,11, if p induces an irreducible and persistent 

chain there exists a vector « such that ap=« and a is unique up to a multiplicative 

constant; here «, >0, but the series > a, may diverge. Even in this case the ratio 
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@j:%q have the relative frequency interpretation given above and the argument holds 
generally. If > aye <0 then (9.2)-(9.4) are true with uy proportional to «,c,1, and 

- otherwise P(t)-+0 as t+ ©. The interesting feature is that the limits u, may be positive 

even if the discrete chain has only null states. 

The existence of the limits P,,(00) can be obtained also by a renewal 

argument intimately connected with the recurrence times. “To show how the 
distribution of recurrence and first passage times may be calculated we number 
the states 0,1,2,.... and use 0 as pivotal state. Consider a new process 

which coincides with the original process up to the random epoch of the first 
visit to 0 but with the state fixed at.0 forever after. In other words, the new 
process is obtained from the old one by making 0 an absorbing state. Denote 
the transition probabilities of the modified process by °P,,(t). Then 
°P,.(t) = 1. In terms of the original process °P;,(t) is the probability of a 
first passage from i #0 to 0 before epoch t, and °P,,(t) gives the prob- 
ability of a transition from i #0 to k #0 without intermediate passage 
through 0. It is probabilistically clear that the matrix °P(t) should satisfy 
the same backward and forward equations as P(r) except-that cy is replaced 

by 0. We now proceed the inverse way: we modify the backward and forward 
equations by changing cy to 0 and show that the unique solution of this 
absorbing-state process has the predicted properties. 

If & isthe vector represented by the zeroth column of I1(4), the backward 

equations show that the vector , 

(9.8) (A+c—cp)é = 7 | , 
has components 1,0,0,.... Now the backward equations for °II(A) are 
obtained on replacing cy by0,and soit ¢& stands for the zeroth column of 
JI (A) the vector (9.8) hascomponents 7, = 7,2 =°-: =0, but 7) = p ¥ 0. 

It follows that the vector with components &, = II,9(A) — p°Il,9(A) satisfies 

(9.8) with 71 =0, and as AII(A) is strictly stochastic this implies &, = 0 

for all k (theorem 3 of section 7). Since °II,)(A) = 1/A we have therefore 
for k>0 

(9.9) TT y(A) = APT po (A) 0 (A). 

Referring to the first equation in (9.8) we see also that 

1 Co oT 
Lye, +74 G x Posh Il jo(A) HT o9(). 

(9.9) and (9.10) are renewal equations with obvious probabilistic interpreta- 
tion. In fact, let the process start at kK >0. Then °Il,, is the ordinary 

Laplace transform of the probability °P,9(t) that the first entry to 0 occurs 
before ¢, and hence A°II,9(A) is the Laplace transform of the distribution 
F, of the epoch of first entry to 0. Thus (9.9) states that P,o(t) is.the con- 
volution of F, and Po); the event X(t) = 0 takes place iff the first entry 

(9.10) ITgo(4) =   
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occurs at some epoch x <1 and ¢ — x time units later the system is again 
at 0. 

Similarly, >} po;4°Il,9 represents the distribution Fy of an off time, that 
is, the interval between two consecutive sojourn times at 0. The factor 
of IIp9(A) on the right in (9.10) therefore represents the waiting time for a 
first return to 0 if the system is initially at 0. (This is also the distribution 
of a complete period = sojourn time plus off time.) The renewal equation 
(9.10) expresses P(t) as the sum of the probability that the sojourn time 

at 0 extends beyond 1 and the probability of X(t) = 0 after a first return 
atepoch x < #. If 0 is persistent (9.10) implies by the renewal theorem that 

  

9.11 Pyo(00) = (9.11) (00) t+ cu 

where yu is the expected duration of an off time and c)1+ yu is the expected 
duration of a complete cycle. 

16. PROBLEMS FOR SOLUTION 

1. In the renewal equation (1.3) let F’(t) = g(t) = et? 4/I'(p). Then 

I 
. 4) = ————_... (10.1) (A) GtpPci 

By the method of partial fractions show that for integral*® p 

(10.2) v(t) = i = aye (1-a,)t 

o=k 
where a, = e #*k/» and i = —1. 

2. A server has Poisson incoming traffic with parameter « and a holding time 
distribution G with Laplace transform y. Let H(t) be the probability that 
the duration of a holding time does not ex-eed ¢ and that no new call arrives during 
it. Show that H is a defective distribution .with Laplace-Stieltjes transform 
y(A+e). 

3. Lest calls. Suppose that the server of the preceding example is free at epoch 
0. Denote by U(t) the probability that up to epoch ¢ all arriving calls find the 
server free. Derive a renewal equation for U and conclude that the ordinary Laplace 
transform w of U satisfies the linear equation 

1 1 — y(A+«) a 
w(A) = T+a + @ pat + Tao y(A +e) w(A). 

The expected waiting time for the first call arriving during a busy period is 

at + al — (a). 
18 The roots of the denominator are the same for p = n and p = n/2, but the solutions 

are entirely different. This shows that the popular “‘expansion according to the roots of the 
denominator’’ requires caution when yw is an irrational function. 
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Hint: Use the preceding problem. 

4. (Continuation.) Solve the preceding problem by the method described in 
problem 17 of VI,13 considering U as the distribution of the total lifetime of a 
delayed terminating renewal process. 

5. If F has expectation # and variance o* and if cu <1, the solution of the 

busy-period equation (4. 1) has variance (07 +cy®)/(1 —cz). 

6. In example 4(5) the generating function of the total numbers of cars delayed 
is e°4lv(s}—1] where 

(10.3) p(s) = se(c — cy(s)). 

7. Show that if gy is the Laplace transform of a proper distribution the solution: 
y of (10.3) is the generating function of a possibly defective distribution. The 
latter is proper iff F has an expectation uw < 1/c. 

8. In the absorbing barrier process of example 5(@) denote by F(t, x) the 
' probability that (starting from 2x) absorption will take place within time ¢. (Thus 
F stands for the distribution of the total lifetime of the process.) Show that the 
ordinary Laplace transform of 1 ~ F is given by the integral of K*>S(z, y) over 
0.<y < ©. Conclude that the Laplace-Stieltjes transform of F is given by 
eva 7, in agreement with the fact that it must satisfy the differential equation (5.9). 

-9, Starting from (5.7) show that the Green function of the general diffusion 
equation (5.19) in any interval is necessarily of the form 

E,(x Tae for a<y 

(10.4) K,(@,y) = t 

Ta for 24, 
_where €, and 7, are solutions of the homogeneous equation 

(*) Ap - fag” _— by’ = 0 

bounded, respectively, at the left and the right boundary. If (*) has no bounded 
solution then ¢, and 7, are determined up to arbitrary multiplicative constants 
which can be absorbed in W. (Otherwise appropriate boundary conditions must 
be imposed.) 

Show that w, defined by (10.4) and (5.5) satisfies the differential equation 
(5.19) iff W is the Wronskian 

(10.5) Wy) = [66% mu — &(y) 1, Y)]a/2. 
The solutions §, and 1, are necessarily monotonic, and hence W(y) # 0. 

10. Continuation. For x <y the first-passage epoch from x to y has the 
Laplace transform é,(«)/é,(y). For z > y it is given by 7,(x)/n,(y). 

11, Show that the method described in section 5 for diffusion processes applies 
equally to.a general birth-and-death process. 

12. Adjust example 6(a) to the case of a > 1 channels. (Explicit calculations 
of the a constants are messy and not recommended.) 

1® For details and boundary conditions see W. Feller, The birth and death process as 
diffusion process, Journal Mathématiques Pures Appliquées, vol. 38 (1959), pp. 301-345. 
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13. In example 6(5) show directly from the differential equations that the busy 

time has expectation and variance 
1 

c(q—p) ~ q—pP- 
14. Semi-Markov processes. A semi-Markov process on 1, 2,... differs from 

a Markov process in that the sojourn times may depend on the terminal state: 
given that the state i was entered at + the probability that the sojourn time ends 
before + +¢ bya jump to k is F(t). Then dx Fy,ft) gives the distribution of 
the sojourn time and p;, = F;,(°) is the probability of a jump to k. Denote by 
P;x(t) the probability of .k at epoch ¢ +.7 given that i was entered at epoch +. 
Derive an analogue to the Kolmogorov backward equations. With self-explanatory 
notations the transformed version is given by 

T1(A) = yA) + ®(A) IT(A) 

where (4) is the diagonal matrix with elements [1 — >% %(A)]/4. For 
F(t) = pu(1 —e~**) this reduces to the backward equations (7.5). The con- 
struction of the minimal solution of section 7 goes through.2° 

  

20 For details see W. Feller, On semi-Markov processes, Proc. National Acad. of Sciences, 
vol. 51 (1964) pp. 653-659. Semi-Markov processes were introduced by P. Lévy and W. L. 
Smith, and were investigated in particular by R. Pyke. 

“hy 

 



CHAPTER XV 

Characteristic Functions 

This chapter develops the elements of the theory of characteristic functions 

and is entirely independent of chapters VI, VII, IX-XIV. A refined Fourier 
analysis is deferred to chapter XIX. 

1. DEFINITION. BASIC PROPERTIES 

The generating function of a non-negative integral-valued random vari- 
able X is the function defined for 0< s <1 by E(s*), the exnectation of 
s*, As was shown in chapter XIII, the change of variable s = e~4 makes 
this useful tool available for the study of arbitrary non-negative random 
variables. The usefulness of these transforms derives largely from the multi- 
plicative property s**¥ = s*s" and e~4(*+v) — e-4*e-4¥, Now this property 
is shared by the exponential function with a purely imaginary argument, 
that is, by the function defined for real x by 

(1.1) e® = cos Cx + isin Cx 

where ¢ is a real constant and i? = —1. This function being bounded, 
its expectation exists under any circumstances. The use of E(e®*) as a 
substitute for generating functions provides a powerful and universally 
applicable tool, but it is bought at the price of introducing complex-valued 
functions and random variables. Note, however, that the independent 
variable remains restricted to the real line, (or, later on, to RK’). 

By a complex-valued function w=u-+ iv is meant the pair of real 
functions u and v defined for real x. The expectation E(w) is merely an 

abbreviation for E(u) + iE(v). We write, as usual, w =u — iw for the 

conjugate function, and |w| for the absolute value (that is, |w/? = ww = 

= u® + v*). The elementary properties of expectation remain valid, and 
only the mean value theorem requires comment: if |w| <a then \|E(w)| < a. 
In fact, by Schwarz inequality 

(1.2) - [E@v)? = (E@))? + EQ)? < Eu’) + Ev’) = E(\wl?) < a’. 
498 
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Two complex-valued random variables W;=U;+iV; are called 
independent iff the pairs (U,, V,) and (U;, V.) are independent. That the 
multiplicative property E(W,W,) = E(W,) E(W,) holds as usual is seen 
by decomposition into real and imaginary parts. (This formula illustrates 
the advantage of the complex notation.) With these preparations we define 
‘an analogue to generating functions as follows. 

Definition. Let X be a random variable with probability distribution F. 
The characteristic function of F (or of X) is the function y defined for real 

g by - 
+ 00 

(1.3) p=] Fda} =u + in 
cm 

where 

(1.4) u(f) = [cos {x - F{dz}, v(Z) = [sin {x - F{dz}. 

For distributions F with a‘density f, of course, 

(1.5) g(t) = [ TM f(a) de. 

Terminological note. In the accepted terminology of Fourier analysis 
is the Fourier-Stieltjes transform of F. Such transforms are defined for all 
bounded measures and the term “‘characteristic function” emphasizes that 
the measure has unit mass. (No ether measures have characteristic functions.) 
On the other hand, imtegrals of the form (1.5) occur in many connections 
and we shall say that (1.5) defines the ordinary Fourier transform of f. The 
characteristic fuaction of F is the ordinary Fourier transform of the density 

' f (when the latter exists), but the term Fourier transform applies alse to 
other functions. . > 

For eas¢ of reference we list some basic properties of characteristic 
functions. 

' Lemma 1. Let g =a + iv be the characteristic function of a random 
variable X with distribution F. Then 

{a) @ is continuous. 

(B) (0) = 1 and (p(L)1 <1 forall Z. 
(c) aX + 5 has the characteristic function 

(1 6) E(e8 ext) — e'%o(al). 

In particular, @ = u — iv is the characteristic function of —X. 
(d) u is even and v is odd. The characteristic function is real iff F is 

symmetric. 
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(e) For all ¢ 

(1.7) 0< 1 — (22) < 4(1—u(Q). 

(For variants see problems 1-3.) 

Proof. (a) Note that [e“*| = 1 and hence 

(1.8) [eit _ et _ | et? _ 1]. 

The right side is independent of x and is arbitarily small for A sufficiently 
close to 0. Thus @ is, in fact, uniformly continuous. Property (8) is 
obvious from the mean, value theorem, and (c) requires no comment. For 

the proof of (d) we anticipate the fact that distinct.distributions have distinct 
' characteristic functions. Now 9 is real iff » = @, that is, if X and —X 

have the same characteristic function. But then X and —X have the same 
distribution, and so F is symmetric. Finally, to prove (e) consider the 
elementary trigonometric relation 

(1.9) 1 — cos 2¢x = 2(1—cos? fx) < 4(1—cos Cz) 

valid because 0 < 1 + cos fx < 2. Taking expectations we get (1.7). > 

Consider now two random variables X,, X, with distributions F,, F, and 

-characteristic functions 9, 2. If X, and X, are independent, the multi- 

plicative property of the exponential entails 

(1.10) E(e60G4%)) = E(e™) E(e*™). 
_ This stmple result is used frequently and we record it therefore as 

Lemma 2. The convolution F,* F, has the characteristic function $192. 

In other words: to the sum X, + X, of two independent random variables 
there corresponds the product 9,92 of their characteristic functions. 

‘If X, has the same distribution as X,, then the sum X, — X, represents 

the symmetrized variable (see V,5). We have therefore the 

Corollary. |y|? is the characteristic function of the symmetrized distri- 

bution °F. 

The following lemma gives a characterization of arithmetic distributions. 

Lemma 3. /f 41 4 0 the following three statements are equivalent: 

(a) p(A) = 1. 
(b) » has period A, that is p(C-+nA) = y(C) for all £ and n. 

1 The converse is false, for it was shown in 11,4(e) and again in problem 1 of III,9 that 

in some exceptional cases the sum of two dependent variables may have the distribution 
F, *& Fy, and consequently the characteristic function 9,9. 
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(0) All points of increase of F are among 0, +h, +2h,... where 
h = 2x2. , 

Proof. If (c) is true and F attributes weight p, to mh then | 

a(t) = > pre. 
This function has period 2nfh, and so (c) implies (6), which in turn iS 
stronger than (a). 

Conversely, if (a) holds, the expectation of the non-negative function 
1 — cos Ax vanishes, and this is possible only if 1 — cos Ax = 0 at every 
point x that is a point of increase for F. Thus F is concentrated on the 
multiples of 27/4, and hence (c) is true. 

Technically this lemma covers the extreme case of a distribution F 
concentrated at the origin. Then (¢) = 1 forall ¢, and so every number 

is a period of . In general, if A is a period of g the same is true of all 
multiples + 2, +2A,..., but for a non-constant periodic function 9 
there exists a smallest positive period, and this is called the true period. 
Similarly, for an arithmetic F there exists a largest positive h for which 
property (c) holds, and this is called the span of F. It follows from lemma 
3 that the span fA and the period 4 are related by Ah = 27. Thus unless 
either ~(C) ¥ 1 forall ¢ 40, or y(¢) = 1 identically, there exists a small- 

est A >0 such that y(A)=1 but 9(f) #1 for O< 6 <A. 

All this can be restated ina form of more general appearance. Instead 
of g(A) = 1 assume only that |g(A)| = 1. There exists then a real 5 such 
spat p(A) = e***, and we can apply the preceding result to the variable . 

—b with characteristic function g()e~®4 which equals 1 at ¢ =A. 
Every period of this characteristic function is automatically a period of |¢|, 

and we have thus proved 

Lemma 4. There exist only the following three possibilities: 

(a) \p()| <1 for all £0. 
(b) |(A)| = 1 and |y(Q)) <1 for0<¢ <A. In this case |p| has period 

A and there exists areal number b such that F(%+b) is arithmetic with span 
h = 2nd. 

(c) em = | for all &. In this case p(¢) = e*®* and F is concentrated 

at the point b. 

Example. Let F be concentrated on 0 and 1 attributing probability 

3 to each. Then F is arithmetic with span 1, and its characteristic function 

o(£) = (1+e#)/2 has period 27. The distribution F(x+4) is concentrated 

on +}. It has span } and its characteristic function cos /2 has period 

Ar. >
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2. SPECIAL DISTRIBUTIONS. MIXTURES 

For ease of reference we give a table of the characteristic functions of ten 
common densities and describe the method of deriving them. 

Notes to table 1. (1) Normal density. If one is not afraid of complex 
integration the result is obvious by the substitution y = x — if. To prove 
the formula in the real domain use differentiation and integration by parts to 
obtain (2) = —l—(Z). Since y(0) = 1 it follows that log (4) = —}32?, 
as asserted. 

(2)-(3) Uniform densities..The calculation in (2) and (3) is obvious. 
The two distributions differ only by location parameters, and the relation 
between the characteristic functions illustrates the rule (1:6). 

(4) Triangular density. Direct calculation is easy using integration by 
-parts. Alternatively, observe that our triangular density is the convolution 
of the uniform density in —4a < x < 3a with itself and in view of (3). its 

i. Lok 2, 
characteristic function is therefore (5 - sin “) . , a 

(5) This is obtained by application of the inversion formula (3.5) to the 
triangular density (4). See also problem 4. This formula is of great im- 
portance because many Fourier-anatytic proofs depend on the use of a 
characteristic function vanishing outside a finite interval. 

(6) Gamma densities. Use the substitutibn y = z(1 —if). If one prefers to 
stay in the real domain-expand e** into a power series. For the characteristic 
function one gets in this way 

J . 5 er" ~e, ghtt-1 —C(n +1 a —t\, ann 

FO Zon! ee dz = = 2 ntTO nt T(t) cnr PA n )« if) 

which is the binomial series for (1—it)-“. For the: special case t= 1 

(exponential distribution) the calculation can be performed in the real by 

repeated integration by parts. The same is true (by recursion) for all integral 

values of ¢. 
(7) The bilateral exponential: is obtained by symmetrization from the 

exponential distribution, and so the characteristic function follows from 

(6) with «= 1. A direct verification 1 is easy using repeated integrations by — 

arts. 

P (8) Cauchy distribution. Again the formula follows from the preceding 

one by the use of the inversion formula (3.5). The direct verification of this 

formula is a standard exercise in the calculus of residues. 

(9) Bessel density. This is the Fourier version of the Laplace transform 
derived in XIII,3(d); and may be proved in the same way. 

(10) Hyperbolic cosine. The corresponding distribution function is 
F(z) = 1 — 277) arc tan e~*. Formula 10 is of no importance, but it has a
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TABLE 1 

No. Name Density Interval Characteristic Function 

1 TT 

1 | Normal ——e "| -w <x mw He? 
V20 f ‘ 

bee 

2 | Uniform I 0<2<a e 
a ial 

3 | Uniform i Iz] <a sin ag 
2a | al 

4 | Triangular I 1 — lel |z] <a 1 = cos af 
a a a C 

I¢| 
11 —cos ax 1—— for |{|<a 

5 — _~ . —~-ON <2 < mw a 
7 ax 

0 for |¢{]/ >a 

. J 1 
6 | Gamma — ve! ¢>0, ¢>0 ——— , TO) au Fe G@ — i} 
7 | Bilateral ~|2| 1 

exponential te Te se<e 1+? 

8 | Cauchy Pot | -a<#<0 e#1¢] 
wt? + 22 t>0o0 

t ____ 
9 | Bessel e*-I(@@) | >0, t>0 \l-m-—VvVCa-i? -1F 

. x 

10 | Hyperbolic 1 1 
. —~o0 <2 wo —___-__ 

cosine? a cosh x cosh (7/2)         
  

*cosh x = 4(e* +e~*). 

curiosity value in. that it exhibits a “‘self-reciprocal pair’’: the density and 

its characteristic function differ only by scale parameters. (The normal 
density is the prime example for this phenomenon.) To calculate the 
characteristic function expand the density into the geometric series 

i > (— 1)Fe~ Cet Iz] 

27 

Applying number 7 to the individual term one gets the canonical partial 
fraction expansion for the characteristic function. 

(For further examples see problems 5~3.) 

>
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Returning to the general theory, we give a method of constructing new. © 
characteristic functions out of given ones. . The principle is extremely 
simple, but example (5) will show that it can be exploited to avoid lengthy 
calculations. 

Lemma. Let Fy, F,,... be probability distributions with characteristic 

functions 9, 91,..-- If Py =O and > p, = 1 the mixture 

(2.1) U = > Prk 

is a probability distribution with characteristic function 

(22) | O= VAP 
Examples. (a) Random sums. Let X,,Xs,... be independent random 

variables with a common distribution F and characteristic function 9. 
Let N_ be an integral-valued random variable with generating function. 
P(s) = > p,s* and independent of the X;. Therandomsum X, + --: + Xy 
has then the distribution (2.1) with F, = F**, and the corresponding 

characteristic function is 

(2.3) | — w(f) = P(p(S)). 
The most noteworthy special ; icase is that of the ‘compound Poisson: dis- 
tribution. Here p, = e~‘t*/k! and 
(2 4) | w/( = —< etre), 

The ordinary Poisson distribution represents. the special case where F is 
concentrated at the point | 1, that is, when eo) = 

e 

  

    
Figure 1. Illustrating example (6).
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(b) Convex polygons. From number 5 in table 1 we know that 

1~ |e] for [{) <1 
(2.5) p(t) = 

0 for {{1>1 

is a characteristic function. If a,,...,a, are arbitrary positive numbers, 
the mixture 

(2.6) : (0) = p.o(*) tet pao () 
| Aa, a, 

  

is an even characteristic function whose graph in 0, co is a convex polygon 
(8. 1). In fact, without loss of generality assume a, < ag S++ <a,. 

In the interval 0 < { < a, the graph of w isa segment of a line with slope 

-(24 +- 48 Pe), Between a, and a, theterm p,/a, drops out, and so 

on, until between,a,_, and a, the graph coincides with a segment of slope 

—p,/a,:, In 0, 0 the graph is therefore a polygon consisting of n finite 

segments with decreasing slopes ahd the segment a,, 00 of the ¢-axis. It is 
easily seen that every polygon with these properties may be represented in 
the form (2.6) (the m sides intercepting. the w-axis at the points p,, 
PntPn-1>-++>Pnt°°* +P: = 1). We conclude that every even function 

  

w>0 with w(0)=1 whose graph in 0,00 is a convex polygon is a. 
characteristic function. 

A simple passage.to the limit will lead to the famous Polya criterion 
[example 3(5)] and reveals its natural source. Even the present special 

criterion leads to surprising and noteworthy results. 

2a. SOME UNEXPECTED PHENOMENA 

We digress somewhat to introduce certain special types of characteristic functions with 
surprising and interesting properties. We begin by a preliminary remark concerning 
arithmetic distributions. 
Suppose that the distribution G. is concentrated on the multiples a/L of some fixed 

number. 7/L > 0, the point nn/L carrying probability p,; here-n = 0,+1,.... The 
.characteristic function y is given by 

+a 

(2.7) | y(t) = > Pneinrs/E 
, R=— 30 

and has period 2L. Itis usually not easy to find simple explicit expressions for y, whereas 
it is easy to express the probabilities p, in terms of the‘characteristic function y. Indeed, 
multiply (2.7) by e~#r4/L. The probability Pa Pa appears as the coefficient of the periodic 

function ef("-r)#t/L whose integral over —L£, Z vanishes except when 1 =r. It follows 
that 

1 fL : , 
(2.8) Pr= 357 y(Cje—irt0/E al r=O0,+l,.... 

-—
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\ | LN th LN I LN 
-L -1 0 1 L 2L 3L 4L 

Figure 2. Illustrating example (c). 

We now anticipate the following criterion of theorem | in X1X,4. Let y» bea continuous 
function with period ZL > 0 and normed by (0) = 1. Then y isa characteristic function 

iff all the numbers p, in (2.8) are 20. In this case {p,} is automatically a probability 
distribution and (2.7) holds. 

Example. (c) Choose L 21 arbitrary and let y be the function with period 2Z 

which for || < ZL agrees with the characteristic function of (2.5). Then y is the 
characteristic function of an arithmetic distribution concentrated on the multiples of a/L. 
In fact, for reasons of symmetry (2.8) reduces to 

1 (4 1% 
(2.9) Pr=T i y(%) cos rrl/L dl = Zz [ (1—{%) cos raZ/L dZ, 

L fy Jo 

and a simple integration by parts shows that. 

(2.10) Po=1(2L), pp = La-® (1—cos rn/L) > 0, r #0. 

We have thus obtained a whole family of periodic characteristic functions whose graphs 
consist of a periodic repetition of a right triangle with bases 2nL —1 <a <-2nL +1 and 

. intermittent sections of the ¢-axis (see fig. 2). (We shall return to this example i in the more 

general setting of Poisson’s summation formula in XIX,5.) > 

Curiosities. (i) Two distinct characteristic functions can coincide within a finite interval 

—a,a. This obvious corollary to examples (6) or (c) shows a marked contrast between 

characteristic functions and generating functions (or Laplace transforms). 
(ii) The relation F *& F, = F & Fy, between three probability distributions does not imply* 

that F, = Fy. Indeed, with » defined by (2.5) we have gp, = 9g, for any two character- 

istic functions that coincide within the interval —1, 1. In particular, we have gy? = gy 

for each of the periodic characteristic functions of example (c). 

(iii) Even more surprising is that there exist two real characteristic functions gp; such that 
|p| = y, 20 everywhere. In fact, consider the characteristic function y of example 
(c) with L = 1. Its graph is shown by the heavy polygonal line in fig. 3. We saw that the 
corresponding distribution attributes to the origin weight 4. Eliminating this atom and 
doubling all the other weights yields a distribution with characteristic function 2y — 1. Hts 
graph is given by a polygonal tine oscillating between +1 whose slopes are +2. It follows 
that 27(%¢) — 1 is a characteristic function whose graph is obtained from that of y by 

2 Statisticians and astronomers sometimes ask whether a given distribution has a normal 
component. This problem makes sense because the characteristic function of a normal 
distribution %,, has no zeros and therefore N, *& Fy = Nq *& Fo doesimply yp, = v2 and 

hence, by the uniqueness theorem, F, = Fy, 
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Figure 3. Illustrating euriosity (iii). 

mirroring every second triangle along the (-axis (fig. 3). Thus »({) and 2y(3f) — 1 are 
two real characteristic functions that differ only by their signs. (For a similar construction 
relating to fig. 2 see problem 9.) 

3. UNIQUENESS. INVERSION FORMULAS 

Let F and G be two distributions with characteristic functions g and y. 
Then 

(3.1) | é Ket) = (- eis(z—#) F{dz}. 

Integrating with respect to G{d~} one gets 

(3.2) [Peto afar) =f ne—0 Fae} 
This identity is known as the Parseval relation (which, however, can be 
written in many equivalent forms; we shall return to it in chapter XIX). 

We shall use only the special case where G = %, is the normal distribution 
with density an(azr). Its characteristic function is given by y({) = 

2m n(Z/a), and so (3.2) takes on the form 

  (3.3) [Ce ®to(C)an(al) df = Jim {" on(? = * F{d~} 

which is the same as 

6) Fe ce [eto pete ag = [? n(—*) Faz}, 
Surprisingly many conclusions can be drawn from this identity. To begin 

with, the right side is the density of the convolution N,* F of F with a 

normal distribution of zero expectation and variance a*. Thus the knowledge 
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of enables us in principle to calculate the distributions N, * F for all a. 
But 9, has variance a?, and hence MN, %F-—-F as a—0O. It follows 
that the knowledge of ~ uniquely determines the distribution F. We have 
thus the important. 

Theorem 1. Distinct probability distributions have distinct characteristic 
functions. 

Suppose then that we are given a sequence of probability distributions F, 
with characteristic functions g,, such that ,(£)—> y(0) for all &. By 
the selection theorem of VIII,6 there exists a sequence {n,} and a possibly 
defective distribution F such that F, — F. We apply (3.4) to the pair 
(Pn,»Fn,) and let k — oo. In the limit we get again the identity’(3.4) [the 
left side by bounded convergence, the right side because the integrand. 
n((t — z)a) vanishes at infinity]. But we ‘have seen that for given @ the 
identity (3.4) determines F uniquely, and hence the limit F is the same for 
all convergent subsequences {F,,}. We have thus the 

Lemma. Let F,, be a probability distribution with characteristic function 
Pn» Uf Or(S) > wf) for all $ then there exists a possibly defective distribution 
F such that F,,—> F. - 

Example. (a) Let U be a probability distribution with a real, non- 
negative characteristic function w. Let F, = U"* sothat ,(f) = (0). 
Then ¢,(¢) 0 except at the points where w(¢) = 1, and by lemma 4 of 
section 1, this set consists of all points of the form +A, where 2 > 0 isa 

fixed number. It follows that the left side in (3.4) is identically zero, and so 
U"* — 0. By symmetrization we conclude that G"* —0 for any prob- 
ability distribution G not concentrated at zero. > 

The next theorem states essentially that the limit F is defective iff the 
limit g is discontinuous at the origin. 

Theorem 2. (Continuity theorem.) In order that a sequence {F,} of 
probability distributions converges properly to a probability distribution F it 
is necessary and sufficient that the sequence {y,} of their characteristic 
functions converges pointwise to a limit y, and that is continuous in some 
neighborhood of the origin. 

In this case y is the characteristic function of F. (Hence is continuous 

everywhere and the convergence 9, > is uniform in every finite interval.) 

Proof. (a) Assume that F,,— F where F is a proper probability distri- 

bution. By the corollary in VIII,1 the characteristic functions y, converge 

to the characteristic function g of F, and the convergence is uniform in 
finite intervals. 
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(b) Assume ¢,(€)~> y(2) for all ¢. By the preceding lemma the limit 
F=limF, exists and the identity (3.3) applies. The left side is the 
expectation of the bounded function e*‘p(2) with respect to a normal 
distribution with zero expectation and variance a-% As a— oo this 

distribution concentrates near the origin and so the left side tends to (0) 
whenever @ is continuous in some neighborhood of the origin. But since 

y,(0) = 1 we have g(0) = 1. On the other hand, 2m n(x) <1 for all 

x, and so the right side is <F{— 00, oo}. Thus F{— 00, 00} > 1, and hence 
F is proper. > 

Corollary. A continuous function which is the pointwise limit of a sequence 
of characteristic functions is itself a characteristic function. 

Example. (5) Polya’s criterion.. Let w bea real even function with w(0) = 

and a graph that is convex in 0,0. Then w is a characteristic function. 

Indeed, we saw in example 2(b) that the assertion is true when the graph is a 
convex polygon. Now the inscribed polygons toa concave curve are convex, 

and hence the general assertion is an immediate consequence of the corollary. 
The criterion (together with a tricky proof) had a surprise value in the early 

days. G. Polya used it in 1920 to prove that e"" for O<a<11 isa 
characteristic function of a stable distribution. (Cauchy is sajd to have been 

aware of this fact, but gave no proof.) Actually e~"!° is a characteristic 

function even for 1 < « < 2, but the criterion breaks down. > 

We defer to chapter X1X a full use of the method developed for the proof 
of theorem 1. We use it here, however, to derive an important theorem 

which was used in numbers 5 and 8 of the table in section 2. For abbreviation 

_ we write pe L iff || is integrable over — 00, oo. 

Theorem 3. (Fourier inversion.) Let gy be the characteristic function of 

the distribution F and suppose that Ge L. Then F has a bounded continuous 

density f given by 
+00 

(3.5) fa) = % [ote a, 
27 J—x 

_ Proof. Denote the right side in (3.4) by f,(t). Then f, is the density 
of the convolution F, = %,%* F of F with the normal distribution 9%, 
of zero expectation and variance a®. As already mentioned, this implies 
that F,—» F as a-»+0. From the representation on the left it is clear that 
f,(t) ~f(t) boundedly, where f is the bounded continuous function defined 

in (3.5). Thus for every bounded interval J 

(3.6) F,{1} = { f(t) dt > { f(x) dx. 
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But if J is an interval of continuity for F the leftmost member tends to 
F{I}, and so f is indeed the density of F. > 

Corollary. If y > 0 then peEL iff the corresponding distribution F hasa 

bounded density. 

Proof. By the last theorem the integrability of g entails that F hasa 
bounded continuous density. Conversely, if F has a density f< M we 
get from (3.4) for t = 0 

1 

Jan: a 

The integrand on the left is > 0 and if m were not integrable the integral 
would tend to © as a—0. > 

  an 2 [mek at = [Met ycey de <M. 

Examples. (c) Plancherel identity. Let the distribution F have a density 

f and characteristic function 9. Then \pl?EL iff f?EL and in this case 

(3.8) (“roa =+ [ora 
Indeec, ||? is the characteristic function of the symmetrized distribution 
°F. If |y|*eL it follows that the density 

(3.9) F(a) = [fly +e)fi) dy 
of °F is bounded and continuous. The left side in (3.8) equals °f(0), and 
the inversion formula (3.5) applied to °f shows the same is true of the right 
side. Conversely, if f?¢ LZ an application of Schwarz’ inequality to (3.9) 
shows that °f is bounded, and hence |g/*eZ by the last corollary. We 

shall return to the relation (3.8) in XIX,7. 

(d) Continuity theorem for densities. Let gy, and gp be “integrable 
characteristic functions such that 

(3.10) [ “tel — (Ol de> 0. 
By the last corollary the corresponding distributions F, and F have 
bounded continuous densities f, and f, respectively. From the inversion 
formula (3.5) we see that 

dS < (any { eal — ADI al. 
Therefore f,, —f uniformly. (See also problem 12.) 

(e) Inversion formula for distribution functions. Let F be a distribution 

with characteristic function gy, and let 4 >0 be arbitrary, but fixed. We 
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prove that 

F(a+h)—F(x)_ 1 (*" 1am e™ i 

whenever the integrand is integrable (for example, if it is O(1/¢7), that is, 
if [~(f)| = O(1/2) as €— oo). Indeed, the left side is the density of of the 

convolution of F with the uniform distribution concentrated on —h,0; by 
the product rule the factor of e~“* under the integral is the characteristic 
function of this convolution. Thus (3.11) represents but a special case 
of the general inversion formula (3.5). > 

Note on so-called inversion formulas. Formula (3.11) is applicable only when Ip(O/ eI 

is integrable near infinity, but trite variations of this formula are generally applicable. 

For example, let F, again denote the convolution of F with the symmetric normal dis- 
tribution with variance a*, Then by (3.11) 

Fi(z+h) — F,(x) 1—eith 
WN ga2g? op te, (3.12) I ={. p( Le ith e—thk dl, 

The statement that if z and z+ are points of continuity of F the right side tends to 
[F(z+h) — F(x)]/h as a->0 is a typical “inversion theorem.” An infinite variety of | 

equivalent formulas may be written down. The traditional form consists in replacing in 

(3.12) the normal distribution by the uniform distribution in —/,t and letting f—> ©. 

By force of tradition such inversion formulas remain a popular topic even though they have 
lost much of their importance; their derivation from the Dirichlet integral detracts from 
the logical structure of the theory. 

From distributions with integrable characteristic functions we turn to 

lattice distributions. Let F attribute weight p, to the point 5 + kh, where 
Px 20 and > p, = 1. The characteristic function is then given by 

. te 
(3.13) r2¢4) — > per rene, 

We suppose A > 0. ~ 

Theorem 4. If y is a characteristic function of the-form (3.13) then 

h ahh . , 

(3.14) . DP, == p(Le ts ae, 
27 J—a/h 

Proof. The integrand is a series in which the factor of p, equals e'*~7)". 
Its integral equals 0 or 27/h according as k #r or k =r, and so (3.14) 

is true. > 

4. REGULARITY PROPERTIES 

The main result of this section may be summarized roughly to the effect 
that the smaller the tails of a distribution F, the smoother is its characteristic 

function py; conversely, the smoother F, the better will gm behave at 
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infinity. (Lemmas 2 and 4.) Most estimates connected with characteristic 

functions depend on an appraisal of the error committed in approximating 

e*' by finitely many terms of its Taylor expansion. The next lemma states 
that this error is dominated by the first omitted term. 

Lemma 1.2 For n=1,2,... and t>0 

(4.1), oe a sty 
  ni 

Proof. Denote the expression within the absolute value signs by p,(2). 

Then 

(4.2) | pilt) = i [e dx, 

whence |p,(t)| < ¢. Furthermore for n> 1 

(4.3) palt) = i [py s(e) de 
and (4.1) now follows ‘by induction. | > 

In the sequel F is an arbitrary distribution function, and its character- 
istic function. For the moments and absolute moments of F (when they 
exist) we write 

(4.4) "mM, = [oe F{dz}, M, = [ist F{dz}. 

Lemma 2. If M, <0, the nth derivative of p exists and is a continuous 
function given by ; 

+a 

(4.5) g'”'(L) = i” { eX*x" F{dz}. 

Proof. The differénce ratios of y are given by 

wo+h) — Ah) im et 
Porn AS) fete a! pry (4.6) ; ot I fds}. 

According to the last lenima the integrand is dominated by |z| and so for 
n= 1 the assertion (4.5) follows by dominated d convergence. The general 

case follows by induction. >. 

Coroliary. If m. < 0 then 

(4.7) g'(0) = im, 9"(0)=— 

* The same proof shows that when the Taylor development for either sins or cos f 
is stopped after finitely many terms, the error is of the same sign, and smaller in absolute 

value, than the first omitted term. For example, 1 — cos t <-t/2. 
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The converse‘ of the last relation is also true: If g"(0) exists, then 
m, < 0. 

Proof. Denoting the real part of g by u we have 

1 Lau) =|" La gehs — cos hz (4.8) os uF {dz}. 

Proof. The existence of u"(0) implies that wu’ exists near the origin and 
is continuous there. In particular, u’(0) =0 because uw is even. By. the 

mean value theorem there exists a 6 such that 0 <6 <1 and 

u(h) — 1 | - u “(eh) | < u “oH (4.9) 3 
    

  

As h-—0 the right side tends to u”(0). But the fraction under the integral 
in (4.8) tends to 4, and so the integral approaches 00 if m, = oo. Fora 

generalization see problem 15. > 

Examples. (a) A non-constant function y such that y’(0) = 0 cannot 

be a characteristic function, since the corresponding distribution would 

have a vanishing second moment. For example, e~!*!* is not a characteristic 
function when a > 2. 

(b) The weak law oflargenumbers. Let X,, X2,... be independent random 

variables with E(X;) = 0 and the common characteristic function g. Put 
S, = X,+:::+X,. The average S,/n has the characteristic function ~ 

y"(E/n). Now near the origin g(h) = 1+ 0(A), and hence (C/n) = : 
= 1+ o0(l/n) as n-—>oo. Taking logarithms we see, therefore, that 

y”(f/n) — 1. By the continuity theorem 2 of section 3 this implies that the 

distribution of S,/n tends to the distribution concentrated at the origin. 

This is the weak law of large numbers. The simple and straightforward 
nature of the proof is typical for characteristic functions; a variant will lead 
to the central limit theorem.* > 

Lemma 3. (Riemann-Lebesgue.) If g is integrable and 

(4.40) (9) = [ve g(x) dz, 
—D 

hen y(Q)—>0 as L++00. 

4 The argument does not apply to the first derivative. The long outstanding problem 
of finding conditions for the existence of 9 ’(0) is solved in section XVII,2a. 

5It was shown in VII,7 that the weak law of large numbers can hold even when the 

variables X,; have no expectations. The proof of the text shows the existence of a derivative 
(0) isa sufficient condition. It is actually also necessary (see section XVIL,2a). 
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Preof. The assertion is easily verified for finite step functions g. For an 
arbitrary integrable function g and « >O0 there exists by the mean 
approximation theorem of IV,2 a finite step function g, such that 

(4.11) { “Ie(z) — g,(x)| dx <e. 

The transform (4.10) y», of g, vanishes at infinity, and in consequence of 

the last two relations we have |y(¢) ~ y,(2)| < € for all ¢. Accordingly 

Ini(Z)| < 2e for all sufficiently large |¢|, and as ¢ is arbitrary this means 

that ¥,(—-0 as (+40. > 

As a simple cerollary we get 

Lemma 4. /f F has a density f, then ¢(0) +90 as (>++0./f f has 
integrable derivatives f’,...,f'™, then |e(Q)| = o(|f|-”) as |f| > o. 

Proof. The first assertion is contained in lemma 3. If f’ is integrable, 
an integration by parts shews that 

12) =H, [Cerede 
and hence le(0)} == o(|C}-'), and so on. - > 

Appendix: The Tayler Development of Characteristic Functions 
The inequality (4.1) may be rewritten in the form 

sri pits _ ie —eee (jtx)" 

° ( 1 @—it}| $ 
_|ta|" 

(4.13) 
  

  

nt 

From this we get using (4.5) 

n—1 

(n—1)! 
ue ti, - 

(4.14) | AEH — HO — FPO — 0 — He pO) | < M, — 

If M, < © this inequality is valid for arbitrary { and ¢ and provides an upper bound 
for the difference between gy and the first terms of its Taylor development. In the special 
case when F is concentrated at the point 1 the inequality (4.14) reduces to (4.1). 

‘Suppose now that all moments exist and that 

(4.15) lim sup — PMit adc 00, 
aco 

Stirling’s fermula for a! then shows trivially that for jt} < 1/(34) the right side in (4.14) 
tends te zero as n —> 00, and so the Taylor series for g converges in some interval about 
{. It follows that @ is analytic in a neighborhood of any point of the real axis, and hence 
completely determined by its power series about the origin. But y'"(0) = (i)"m,, and 
thus » is completely determined by the moments m, of F. Accordingly, if (4.15) holds 
then F is uniquely determined by its moments, and ¢ is analytic in a neighborhood of the 
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real axis. This uniqueness criterion is weaker than Carleman’s sufficient condition 
> M;1/" = oo mentioned in VII,(3.14), but the two criteria are not very far apart. (For 
an example of a distribution not determined by its moments see VIT,3.) 

5. THE CENTRAL LIMIT THEOREM FOR EQUAL 
COMPONENTS 

Work connected with the central limit theorem has greatly influenced 
the development and sharpening of the tools now generally used in prob- 
ability theory, and a comparison of different proofs is therefore illuminating. 
Until recently the method of characteristic functions (first used by P. Lévy) 
was incomparably simpler than the direct approach devised by Lindeberg 
(not to mention cther approaches). The streamlined modern version of the 

latter (presented in VIII,4) is not more complicated and has, besides, other 

merits. On the’other hand, the method of characteristic functions leads to 
refinements which are at present not attainable by direct methods. Among 
these are the local limit theorem in this section as well as the error estimates 
and asymptotic expansions developed in the next chapter. We separate the 
case of variables with a common distribution, partly because of its impor- 
tance, and partly to explain the essence of the method in the simplest situation. 

Throughout this section X,, X,,... are mutually independent variables 

with the common distribution F and characteristic function gy. We suppose 

(5.1) E(X,)=0, E(X)=1 
and put S, = X, +°:'+X,. 

Theorem’ 1. The distribution of S,|\/n tends to the normal distribution N. 
By virtue of the continuity theorem 2 in section 3 the assertion is equivalent 

to the statement that as n— oo 

(5.2) e(L//n) > eo for all £. 

Proof. By lemma 2 of the preceding section has a continuous second 
derivative, and hence by Taylor’s formula 

(5.3) p(x) = y(0) + xy'(0) + 32°—p"(0) + o(2*), x —> 0. 

Choose ¢ arbitrary and let x = {/n to conclude that 

ea) ata teG) 5.4 —==p=1-—-—C+o0(- —> 0. (5.4) >/ i one o(- 8 

Taking nth powers we get (5.2). > 

  

8 The existence of a variance is not necessary for the asymptotic normality of S,. For 
the necessary and sufficient conditions see corollary 1 in XVII,5. . 
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It is natural to expect that when F possesses a density f, the density of 

Ss, |v n should tend to the normal density n. This is not always true, but 
the exceptions are fortunately rather “‘pathological.” The following theorem 
covers the situations occurring in common practice. 

Theorem 2. If |p| is integrable, then S,/,/n has a density f,, which tends 

uniformly to the normal density n. 

Proof. The fourier inversion formula (3.5) holds both for f, and n, 
and therefore 

nl & * 
"j—-) — al. 

, (5) my 
1 

(5.5) lf.(z) — n(z)] < — 
2a 

The right side is independent of x and we have to show that it tends to 0 as 
n—» oo. In view of (5.3) it is possible to choose 6 > 0 such that 

(5.6) IWODl<e® - for IN <6. 
We now split the integral into three parts and prove that each is <e for n 
sufficiently large. (1) As we have seen in the last proof, within a fixed 
interval —a<¢<a the integrand tends uniformly to zero and so the 

contribution of —a,a tends to zero. (2) For a < |{| < éVn the integrand 

is < 2e-# and so the contribution of this intervalis <e if a is chosen 
sufficiently large. (3) We know from lemma 4 of section 1 that |y(Q)| < 1 
for ¢ #0, and from lemma 3 of the last section that g({)—-0 as || > o. 
It follows that the maximum of [(Q)| for |f| > 6 equals a number n< l. 

The contribution of the intervals |{| > d/n n to the integral, (5.5) is then. less 

oc 

  

=o 

  

  

than 

. +o f C 

cn of (52) asf har 
; 5 OO Jn i] >3V 

The first integral: equals the integral of ./n|g|, and-so the quantity (5.7) 
tends to zero. > 

Actually the proof yields’ the somewhat stronger result that if |g|"E L for some integer 
r then In +n uniformly. On the other hand, the corollary to theorem 3.3 shows that if 
no |9|" is integrable, then every f, is unbounded. Because of their curiosity value we 

insert examples showing that such pathologies can in fact. occur. 

Examples. (a) For z >.0 and p 21 put 

  

1 

(5.8) Uy(z) = ~ log?? x" 

7 The only change is that in (5.7) the factor %~* is replaced by 1%", and y by 9". 
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Let g bea density concentrated on 0,1 such that &(x) > u,(z) in some interval 0, A. 
There exists an interval 0,6 in which u, decreases monotonically, and within this interval 

x 

(5.9) . g'*(z) = { Uy(z#—Y) Uy(y) dy > x u2(xz) = up, (2). 
0 

By induction it follows that for n = 2* there exists an interval 0, 4, in which gr* > hy, 
and hence g"*(x) > co as x-»0+. Thus no convolution g”* is bounded. 

(6) A variant of the preceding example exhibits the same pathology in a more radical 
form. Let v be the density obtained by symmetrization of g and put 

(5.10) f(x) = Flo@e+1) + o(z-1)]. 

Then f is an even probability density concentrated on —2,2, and we may suppose that 
it has unit variance. The analysis of the last example shows that v is continuous except 
at the origin, where. it is unbounded. The same’statement is true of all convolutions v”* 
Now f?"*(z) is a linear‘combination of values v2"*(z+k) with k =0, +1,+42,..., 
stn, and is therefore unbounded at all these points. The density of the normalized sum 
Son/V2n of variables X; with the density f is given by fon() = V2nf2"*(2V2n). It is 
continuous except at the 21 +1 points of the form k[V2n (A =0, +1,..., +n), 
where it is unbounded.. Since to every rational point 1. there correspond infinitely many 
pairs k,n such that k|V2n = t it follows that the distribution of S,/ Vn tends to TN, but 
the densities f, do not converge at any rational point, and the sequence { f,} is unbounded 
in every interval. = - 

(c) See problem 20. > 

To round off the picture we turn to Jattice distributions, that is, we suppose 
that the variables X, are restricted to values of the form b, bah, b+2h,.... 
We assume that A is the span of the distribution F,. that is, A is the 
largest positive number with the stated property. Lemma 4 in section 1 states 
that || has period 27/h, and hence |g] is not.integrable. Theorem 2, 
however, has a perfect analogue for the weights of the atoms of the distri- 

bution of S,/\/n. All these atoms are:among the points of the form 2 = 

(nb+kh)|./n, where kK = 0, +1, +2,.... For such x we put 

(5.11) p, (2) = P= = | 

and we leave p,(x) undefined for all other x. In (5.12) therefore x is 

restricted to the smallest lattice containing all atoms of S,,|V n. 

Theorem 3. If F is a lattice distribution with span h, then as n—> « 

(5.12) a P,(2) — n(x) > 0 

uniformly in x. 
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Proof. By (3.14) 

(5.13) vn P,(x) = = ~ | my (Ge ei df. 

Using again the Fourier inversion formula (3.5) for the normal density n 
we see that the leit side in (5.12) is dominated by 

cu foot 
It was shown in the proof of theorem 2 that the first integral tends to zero. 
The second integral trivially tends to zero and this completes the proof. p 

dt+)]o eat. 
Kl>V na/h 

  

  

6. THE LINDEBERG CONDITIONS 

We consider now a sequence of independent variables X, such that 

(6.1) | E(X,)=0, E(X?) = o?. 

We denote the distribution of X, by F,, its characteristic function by 9,, 

and as usual we put S, = X, +---+ X, and s? = Var (S,). Thus 

(6.2) s=ott::: +2. 
We say that the ome condition is satisfied if 

(6.3) > >) a” F, {dz} — 0, n—> ©, 
S xeni Jlel>ts, 

for each fixed ¢ >0. Roughly speaking, this condition requires that the 

variance o2 be due mainly to masses in an interval whose length is small 

in comparison with s,. It is clear that o2/s? is less than ¢? plus the left 
side in (6.3) and, ¢ being arbitrary, (6.3) implies that for arbitrary « > 0 
and » sufficiently large 

(6.4) ee ke=l,...,n. 
Lo S, 

This, of course, implies that s,—> 00. 
The ratio o,/s, may be taken as a measure for the contribution of the 

component X,, to the weighted sum S,,/s, and so (6.10) may be described 

as stating that asymptotically S,/s, is the sum of “many individually 
negligible components.”” The Lindeberg condition was introduced in VIII, 

_ (4.15) and the following theorem coincides with theorem 3 of VIJI,4. Each 
proof has its advantages. The present one permits us to prove that the 

Lindeberg conditions are, in a certain sense, necessary; it leads also to the 
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asymptotic expansions in chapter XVI, and to convergence theorems for 
densities (problem 28). 

Theorem 1. If the Lindeberg condition (6.3) holds, the distribution of the 
normalized sums S,,|s, tends to the standard normal distribution SR. 

Proof. Choose {> 0 arbitrary, but fixed. We have to show that 

6.5) pL fsq) +++ PnlE|S_) > eo. 
Since (0) = 0 and |¢;(x)| < 0? for all x it follows from the two-term 

Taylor expansion and (6.4) that for 7 sufficiently large 

(6.6) lpr(2/sn) — 1] < 8 ozlsn < €f?. 
We show that if this is true (6.5) is equivalent to _ 

(6-7) Sloat) — 1] + 420. 

In fact, we saw in (2.4) that e%~1 js the characteristic function of a compound 
Poisson distribution and therefore |e?*~1| < I. . Now for any. complex 
numbers such that |ja,| <1 and |b,| <1 

(6.8) ‘ ja,-: +a, — b,°--b,| <> la, — Bl 
. kel 

as can be seen by induction from the identity 

2yX_q— YiY2 = (X—Ys)%o + (%2—92)91- 

For any 6>0 we have |e* — 1 — 2] <6 |z| if |z} is sufficiently small, 

and hence we get from (6.6) for large n 

(6.9) eMail — (Lis) --- palL/sn)I <> Jere (Clem) or(E/sa)l 
k=l 

Ss > lee(LI5,) —11 < o(L4/s?) Sot*= of? 
k=} 

Since 6 is arbitrary this means that the left side tends to zero and hence 
(6.5) holds iff (6.7) is true. 

Now (6.7) may be rewritten in the form 

  (610) > [etn — 1 SE + i | Fale) > 0 
k=1 J—c Sn n 

From the basic inequality (4.1) it follows that for |z| < ts, the integrand is 

dominated by |z¢/s,|° < 1f8x*/s? and for |z| > ts, by x?f?/s?. The left 
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side in (6.10) is therefore in absolute value 

(6.11) < i + Cs = | x'F {da}. 
k=1 Je|> ten 

In consequence of the Lindeberg condition (6.3) the second term tends to 
zero, and as ¢ can be chosen arbitrarily small it follows that (6.10) is true. p 

Illustrative examples are given in VIII,4, in problems 17-20 of VIIT,10, 
and in problems 26-27 below. 

The next theorem contains a partial converse to theorem 1. 

Theorem 2. Suppose that s,—> 00 and o,,/S,—>0. Then the Lindeberg 
condition (6.3) is necessary for the convergence of the distribution of. S, [sp 
to TN. 

Warning. We shall presently see that even when the Lindeberg condition 

fails the distribution of S,/s, can tend to a normal distribution with 

variance < 1. " 

Proof. We begin by showing that (6.4) holds. By assumption there exists 

a v such that o,/s,<e for n>». For »<k<n we have then 
O;/Sn << %/5, <€, and the » ratios O%/Sn with k < ‘tend to 0 because 
Sp CO. 

Assume then that the distribution of S,/s, tends to MN, that is, assume 

(6.5). We saw in the preceding proof that when (6.4) holds, this relation 

implies (6.10). Since cosz — 1 + 32’ > 0 the real part of the integrand is 
non-negative and so the real part of the left side is 

(6.12) . 

5 x0? 2 2 2 > S Wiou (ae ) Fade) 2 a: aay S [arn 
Sh k=l Jz|>ten 

     

Thus for arbitrary { and ¢ the right side tends to zero, and hence (6.3) 

is true. . . > 

The condition o,/s,—0 is not strictly: necessary as can be seen in the 

special case where all the distributions F, are normal: the o, may then be 
chosen arbitrarily and yet the distribution of S,/s, coincides with 3t. (See 
also problem 27.) However, the condition o;/s, is a natural way to ensure 
that the influence of the individual terms X, is in the limit negligible, and 
without this condition there is a radical change in the character of the 
problem. Even if o,/s, +0 and s,—> co the Lindeberg condition is not 

‘necessary in order that there exist some norming constants a, such ‘that 
the distribution of S,/a, tendsto 9. The following example will clarify 

the situation. | 
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Example. Let {X,} be a sequence of variables satisfying the conditions 
of theorem | including the norming (6.1). Let the X), be independent of 
each other and of the X, and such that 

(6.13) SPX, #0} < 0. 

Put X, =X, + X/ and denote the partial sums of {X’} and {X,} by 
S’ and §,. By the first Borel-Cantelli lemma with probability one only 
finitely many Xj; will differ from 0, and hence with probability one S/, 
= O(s,). It follows easily that the distributions of §,/s, and S,/s, have 
the same asymptotic behavior. Thus the distribution of §,/s, tends to N 
even though s;, is not the variance of S,; in fact, the &, need not have a 
finite expectation. lf ES,) = 0 and E(S2) = 52 < oo, the distribution of 
S,/5, converges only if s,/5, tends to a limit p. In this case the limit 

distribution is normal with a variance p < 1. > 

This example shows that the partial sums S, can be asymptotically 
normally distributed even when the components X,, have no expectations, 
and also that the variances are not always the appropriate norming constants. 
We shall not pursue this topic here for two reasons. First, the whole theory 
will be covered in chapter XVII. More importantly, generalizations of the 
above theorems provide excellent exercises, and problems 29-32 are designed 

to lead by easy stages to necessary and sufficient conditions for the central 
limit theorem. 

7. CHARACTERISTIC FUNCTIONS IN 
HIGHER DIMENSIONS 

The theory of characteristic functions in higher dimensions is so closely 
parallel to the theory in R! that a systematic exposition appears unnecessary. 
To describe the basic ideas and notations it suffices to consider the case of 
two dimensions. Then X stands fora pair of two real random variables X, 
and X, with a given joint probability distribution F. Wetreat X as arow 
vector with components X, and X,; similarly, in F(x) the variable x 

should be interpreted as row vector with components 2,,z,. On the other 

hand the variable { of the corresponding characteristic function stands fora 
column vector € = (¢,, €,). This convention has the advantage that x¢ 

now denotes the inner product xf = €,2, + C,x,. The characteristic function 

g of X (or of F) is defined by 

(7.1) p(C) = E(e™). 

This definition is formally the same as in one dimension, but the exponent 
has a new interpretation and the integration is with respect to a bivariate 

distribution. 
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The main properties of bivariate characteristic functions are self-evident. 
For example, the choice ¢, = 0 reduces the inner product xf to 2,6, 
and hence (¢,,0) represents the characteristic function of the (marginal) 
distribution of X,. For any fixed choice of the parameters ¢,, €, the linear 
combination ¢,X, + (X_ is a (one-dimensional) random variable and its 
characteristic function is given by 

(7.2) E(e*S1¥1+4a%2)) = PAL, Ale); 

here ¢, and ¢, are fixed and A serves as independent variable. In particular, 
the characteristic function of the sum X, + X, is given by (A, A). In 
this manner the bivariate characteristic function yields the univariate 
characteristic function of all linear combinations ¢,X, + {X,. Conversely 

if we know the distributions of all such combinations, we can calculate all 

expressions (A¢,, 4¢,), and hence the bivariate characteristic function.® 

The next example shows the usefulness and flexibility of this approach. 
It uses the notations introduced in III,5. 

-Example. (a) Multivariate normal characteristic functions. Let X = 
= (X,, X,) (thought of as a row vector!) have a non-degenerate normal 
distribution. For tne sake of simplicity we suppose that E(X) = © and denote 
the covariance matrix E(XTX) by C. Its elements are cy, = Var (X,) and 

Cie = Co = Cov (X;, X2). For fixed ¢, and ¢, the linear combination 
CX = 5,X, + ¢,X, has zero expectation and variance 

(7.3) oF = LICE = cyl + 2cyalile + Cools. 

With 4 as independent variable; the characteristic function of the variable 
XC = OX, + 22X, is therefore given by e~%*"". Accordingly, the bivariate 
characteristic function of X = (X,, X) is given by 

(7.4) p(t) = eee | 
This formula holds also in r dimensions except that then ¢7C{_ is a quadratic 
form in r variables ,...,¢,. Thus (7.4) represents the characteristic 

function of the r-dimensional normal distribution with zero expectation and 

covariance matrix C. 

It is occasionally desirable to change both pairs (X,,X_.) and (G, bs) 
to polar coordinates, that is, to introduce new variables by 

(7.5) X,;=R cos@,. X, =Rsin®, ¢, = pcosa, Co = p sin &. 

8 This proves incidentally that a probability distribution in R? is uniquely determined 
by the probabilities of all half-planes. This fact (noted by H. Cramér and H. Wold) does not 
seem to be accessible by elementary methods. For an application to moments see problem 
21. 
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(For such transformations, see III,!.) Then 

(7.6) y(f) — E(e’r cos (O—a)) 

but it must be borne in mind that this is not the characteristic function of the - 

pair (R, ©); the latter is given by E(e:8 +529), 

Examples. (6) Rotational symmetry. When the pair (X,, X2) represents 

a ‘‘vector issued in a random direction”’ (see I,10) the joint distribution of 
(R, ©) factors into the distribution G of R and the uniform distribution 
over —7 <6 <7. The expectation in (7.6) is then independent of « and 
takes on the form 

(7.7) La ba) = ny [“GEdr} [ler coveas 
The change of variable cos 6 = x reduces the inner integral to that discussed 
in problem 6, and thus 

  

(7.8) Pbisbe) = [ “hlenGidr} (p=V@4@), 
where . | 

nye (EV 2)" (7.9) Jo(a) = iz) = (3) 

(The Bessel function /) was introduced in II,7.) 

A unit vector in a random direction has the distribution G concentrated 

at the point 1. Thus Tn(/ ¢2 + 2) is the characteristic function of the 
resultant of n independent unit vectors issued in random directions. This 
result was derived by Raleigh in connection with random flights. 

(c) We consider the special case where (X,, X,) has a bivariate density 
f given by 

(7.10) f(t, 2) = (Qa tae", ra Ve + 2? 
where a is a positive constant. Then (7.8) takes on the form? 

  

(7.11) G(o1, 2) = a? [“e*o(orr dr = (1+p?/a’). 

(d) Rotational symmetry in R%. Example (5) carries over to three dimen- 
sions except that we have now two polar angles: the geographic longitude 

9 Substituting for J, its expansion (7.9) one gets g 0 P g 

we Qt)! pF 3) (08 
P(E, L)=> kiki (—1) (z,) =3(, ) (3) 

which is the binomial series for (1+ p?/a?)—3. 
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' @ and the polar distance 6. The inner integral in (7.7) takes on the form 

(7.12) 
T T , 1/2 

i aw | et? cosé@ sin A dé _ i (e’?? cos@ + ere cos °) sin g dQ 

4a Jn 0 0 

where p?= (+ (2+ 22. The substitution cos9=-2x reduces this 
expression to (rp)~' sin rp, and so (7.8) has the analogue 

© sin rp 

rp 

  (7.13) (bs be f) = [ G{dr}. 

In particular, for a unit random vector the integral reduces to p-! sin p. 
Letting ¢, = ¢3 we see that the characteristic function of the X,-component 
ofa unit random vector is given by (71 sin ¢,. We have thus a new proof for 
the fact established in J,10 that this component is distributed uniformly over 
—I,1. . > 
  

It may be left to the reader to verify that the main theorems concerning 
characteristic functions in one dimension carry over without essential 
change. The Fourier inversion theorem in R* states that if p is (absolutely) 
integrable over the entire plane, then X has a bounded continuous density 
given by 

i: 

(22) 
  

+0 

(7.14) - J (%1, %) = [fete oc, fo) dt, d&,. 

Example. (e) Bivariate Cauchy distribution. When the. inversion formula 
(7.14) is applied to the density f in example (c) it is seen upon division by 

Jf (0, 0) =(2z)"? a that an 

(7.15) by G) = eV? 
represents the characteristic function of a bivariate density g. defined by. 

| a 7.16 2, £2) =. ——_—_—__—_ ( ) 8(%1, Xe) n(a® + 2° + 2)E 

It tollows that this density shares the main properties of the ordinary Cauchy 
density. In particular, it is strictly stable: if X™,...,X are mutually 
independent vector variables with the density (7.16), their average 1dep y 
(X+4---+X(™)/n has the same density. > 
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*8. ‘TWO CHARACTERIZATIONS OF THE 
NORMAL DISTRIBUTION 

We begin by a famous theorem conjectured by P. Lévy and proved in 
1936 by H. Cramér. Unfortunately its proof depends on analytic function 
theory and is therefore not quite. in line with our treatment of characteristic 
functions. 

Theorem 1. Let X, and X, be independent random variables whose sum is 

normally distributed. Then both X, and X, have normal distributions. 

In other words, the normal distribution cannot be decomposed except 

in the trivial manner. The proof will be based on the following lemma of 
some independent interest. 

Lemma. Let F be a probability distribution such that 

(8.1) I(m) = {" ent F {dz} < a 

for some »>0. The characteristic function is then an entire function 
(defined for all complex ¢). If p(f) #0 forall complex ¢, then F is normal. 

Proof of the lemma. For all complex ¢ and real 2,7 one has 
[xl] < n?x? + n-*|¢|? and so the integral defining g converges for all 

complex ¢ and 

(8.2) | IPO < et KY £m). 
This means that » is an entire function of order <2, and if such a 

function has no zeros, then log (¢) is quadratic polynomial.!® Hence, 

p(L) = e~ 45? +5 Where a and b are {possibly complex) numbers. But 

is a characteristic function and hencé —ig’(0) equals the expectation, and 
—g"(0) the second moment of the distribution. It follows that 0} is real 

and a> 0, and so F is indeed normal. > 

Proof of theorem 1. Without loss of generality we may assume the variables 
X, and X, centered so that the origin is a median for each. Then 

(8.3) P{|X, + X,| > 1} > SP{IX| > 2}. 
Now the usual integration by parts [see V,6] shows that 

(8.4) fon <i 2 eff — Fea) + Fad 
0 

and therefore the functions, f, corresponding to X, satisfy the inequalities 
    

* This section treats special topics and is used only in problem 27. 

10 See, for example, E. Hille, Analytic function theory, Boston, 1962, vol. Il, p. 199 

(Hadamard’s factorization theorem). 
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fl) S 2f(m) < co. Since 9, (0) y(f) = ett neither gy, nor 9, 
can have a zero, and so X, and X, are normal. > 

We furn to a proof of the following characterization of the normal distri- 
bution enunciated and discussed in II134. 

Theorem 2. Let X, and X, be independent variables gnd 

(8.5) Y, = @)X1 + Qy.Xo, Yo = Gy, X, + dggXp. 

Ifalso Y, and Y, are independent of each other then either all four variables 

are normal, or else the transformation (8.5) is trivial in the sense that either 

Y, = aX, and Y, = bX, or Y, = aX, and Y, = bX,. 

Proof. For the special case of variables X,; with continuous densities 

the theorem was proved in III,4. The proof depended on the general solution 

of the functional equation III,(4.4), and we shall now show that an equation 

of the same type is satisfied by the characteristic functions , of the variables 
X,. We show first that it suffices to consider real characteristic functions. 

This argument illustrates the usefulness of theorem 1. 
(a) Reduction to symmetric distributions. Introduce a pair of variables 

X, and X, that are independent of each other and of the X;, and distrib- 
uted as —X, and —Xz, respectively. The linear transformation (8.5) 

changes the symmetrized variables °X; = X; + X;— into a pair (°Y,, °Y2) 
of symmetric independent variables. If the theorem is true for such variables 
then °X; is normal, and by theorem | this implies that also X, is normal. 

(5) The functional equation. Because of the assumed independence of 

Y, and Y, the bivariate characteristic function of (Y,, Y,) must factor: 

(8.6) E(e Ss ¥1t2¥2)) = E(e%s 1) K(e%2%2), 

Substituting from (8.5) we see that this relation implies the following 

identity for the characteristic functions of X, and X, 

(8.7) (41101 +4214) Go(G1261 +420b2) = 

= $1(41161) Ge(G12b1) G1 (aerbe) %2(a2262). 

This identity coincides with ITI,(4.4) except that the roles of a,. and a, are 

interchanged. By assumption the g,; are real and continuous, and as in 

JIT,4 it is seen that all aj, may be assumed to be different from zero. By 
the lemma of II1,4 therefore y,(£) = e~***, and so the X,; are normal. p» 

9. PROBLEMS FOR SOLUTION 

1. From the inequality (1.7) conclude (without calculations) that for every 

characteristic function » 

(9.1) lo(or <1 — 2 —1PED! < praetor, 
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2. If »=utiv isa characteristic function show that 

(9.2) WL) S40 +(22). 
This in turn implies 

(9.3) | le Di < $C +1 9(22))). 
Hint; For (9.2) use Schwarz’ inequality, for-(9.3) consider characteristic functions 

of the form e%(Z). 

3. With the same notations 

(9.4) . | p( Zo) _— v(t? S 201 _— u(l, — 2,)). 

The inequality (1.7) is contained herein when % = —{. 

4. From elementary formulas prove (without explicit integrations) that the char- 
acteristic function of. the density (1/7)((1 — cos x)/z*] differs only by a constant 
factor from 2|2| — |¢+1| —|¢—1]. Conclude that (2) =1 — || for |¢| <1. 

5. From the characteristic function of the density $ae~l*l derive a new char- 
acteristic function by simple differentiation with respect to a. Use the result 
to show that the convolution of the given distribution with itself has density 
fae4l7I(1 +a |x). 

6. Let f be the density concentrated on —I,1 and defined by 

  

1 
9.5 =. 

"> T® — arV1 — 

Show that its characteristic function is given by 

(9.6) eo) = > ™ gox = 100 . cook! k! ose 

Note that J,(Z) = (if) where J, is the Bessel function defined in II,(7.1). 
Hint: Expand e%? into a power series. The coefficient of {” is given by an integral, _ 
and (9.6) can be verified by induction on 7 using an integration by parts. 

7. -The arc sine distribution with density 1/{*Va(1 —x)] concentrated on 0, 1 
has the characteristic function e*5/2J,(¢/2). Hint: Reduce to the preceding problem. 

8. Using the entry 10 of the table in section 2 show that 27%x -(sinhz) is a 
density with characteristic function 2/{1 + cosh (7Q)}. Hint: Use problem 6 
of II,9. 

9. Let y, stand for the characteristic function with period 2Z described in 
example 2(c). Show that 272,; — yz, is again a characteristic function of an 
arithmetic distribution. Its graph is obtained from fig. 2 by reflecting every second 
triangle about the Z-axis. 

10.11 Let X and Y be independent random variables with distributions F 
and G, and characteristic functions g and y, respectively. Show that the 
product XY has the characteristic function 

oO oe 

(9.7) i y(gx) F{dx} = | (tx) G{dz}. 
— —x 

11 Combining (9.7) with the theorem in the footnote to example V,9(4) one gets the follow- 

ing criterion due to A. Khintchine. A function @ is the characteristic function of a unimodal 

distribution iff w(f) = f b p(lx) dx where p isa characteristic function. 
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11. If {g~,} is a sequence of characteristic functions such that ,(2)—1 for 
—-6 <0 <6, then 9,(f) > 1 forall &. 

12. Let g be an even density with a strictly positive characteristic function . 
Then 

_ &(x){l — cos az] 
(9.8) £a(x) — — T—-y(a) 

is a probability density with characteristic function 

2y(Q) — v(L+a) — y(L—a) 
2(1 — y(a)] , 

As a-+ 0 we have y,—y but not g,->g. This shows that in the continuity 
theorem for densities the condition (3.10) is essential. 

‘13. If y is a real characteristic function and y > 0, there exist even densities 
&n with strictly positive characteristic functions y, such that y, > y. Hint: 
Consider mixtures (1 — 6)G + «F and convolutions. 

14. If y is a characteristic function such that »y >9 and y(a)#1, then 

(9.9) defines a characteristic function. Hint: Use the preceding two problems. 

15. Generalization of the converse to (4.7). Considering the distributions 
(1/7719),)2** F {dx} (when they exist) prove by induction: the distribution F possesses 
a finite moment m,, iff the 2rth derivative of the characteristic function exists 
at the origin. 

16. Let f be a probability density with a positive and integrable characteristic 
function. Then f has a unique maximum at the origin. If a second derivative 
f’ exists, then 

2 

(9.10) ~ — f@>f@>sO-F/O:; 

(9.9) va(0) = 

analogous expansions hold for the first 2r terms of the Taylor development. 
[Note that f is even and hence f(*+) (0) = 0.] 

17. Let g bea real characteristic function with continuous second derivative 
gy”. Then [unless 9(¢) = 1 forall ] 

1— ¢@%) 2 
9.11 = (9.11) y(%) z ipo 

is a characteristic function belonging to an even density f defined for  >0 by 

2 [2 
—— 1 — F(t)) dt. (9.12) won, FO 

Generalize to higher moments. 

18. Let f be an even density with characteristic function g. For x >0 put 

  (9.13) g(x) = { * Lbs) a &(—2) = g(@). 
S 

Then g is again an even density and its characteristic function is 

1 fs 
(9.14) y(%) = 7 @(s) ds. 

0 
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19. Let y bea characteristic function such that lim sup |y(Q| =1 as [+ ow. 
The corresponding distribution F is purely singular (with respect to Lebesgue 
measure). 

20. Suppose that c, >0, Dic, =1 but Si c,2* = 0. Let u be an even 
continuous density concentrated on —I, 1 and let w be its characteristic function. 
Then 

(9.15) | f(%) =D c4,2* u(2kx) 
defines a density that is continuous except at the origin and ‘has the characteristic 
function . 

(9.16) 9(f) = > cyw(2-¥Q. 
Show that |g|” is not integrable for any n. Hint: For x #0 the series in (9.15) 
is finite. Use the trivial inequality (> czp,)" > > cpt valid for p;, > 0. 

21. Moment problem in R*. Let X, and X, be two random variables with a 
joint distribution F. Put A, = E(|X,|*) + E(/X,|*). Show that F is uniquely 
determined by its moments if lim sup k~! A}/* < «©. Hint; As pointed out in the 
footnote 8 to section 7 it suffices to prove that the distributions of all linear 
combinations @a,X, + aX, are uniquely determined. Use the criterion (4.15). 

22. Degenerate bivariate distributions. If y isa univariate characteristic function 
and a,,a, arbitrary constants, show that 9(a,f,+a,[,) as a function of &, % 
represents the bivariate characteristic function cf a pair (X,, X,) such that identically 
a,X, = 4,X,. Formulate the converse. Consider the special case a, = 0. 

23. Let X,Y, U be mutually independent random variables with characteristic 
functions 9, y,@. Show that the product 9(£,) v(f) o(4,+%) represents the 
bivariate characteristic function of the pair (U + X,U + Y¥). Hint; Use a tri- 
variate characteristic function. . , 

Examples and complements to the central limit theorem 

24. Prove the central limit theorem 4 of VIII,4 for random sums by the method 
of characteristic functions. 

25. Let X, have the density e~*a%«—1/I(a,) where a,—- ©. The variance of 
S, is s2 = (a,+-:+++a,). Show that the Lindeberg condition is satisfied if 

sD ag > 9. 
k=l 

26. Let P{X, = 41} =(k —1)/2k and P{X, = +Vk} =1/2k. Show that 
there do not exist norming constants a, such that the distribution of S,/a, 
tends to N. Hint; Pass to exponentials using 

e (=) k-1 2 i-— <mji2i<i!- 2H 2 
ap Pe en, ~ 2k ak 

o 
27. If the distribution of S,/s, tends to R, put o/s, +p > 6% then the 

distribution of X,/s, tends to a normai distribution with variance »*. Hint: By 
the Cramér-Lévy theorem in section 8 if R = Ux V, then both U and V are 
normal. Use convergent subsequences for the distributions of X,,/s, and Sp_4/Sa- 
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28. (Central limit theorem for densities.) Show that theorem 2 of section 5 
generalizes to sequences with variable densities f, provided sufficient uniformity 
conditions are imposed on the characteristic functions. It suffices, for example, 
that the third absolute moments remain bounded and that the J; have derivatives 
such that |fj| <M for all k. 

29. (Central limit theorem for triangular arrays.) For each n let >, Co Xan 
be » independent variables with distributions F,,,. Let T, = Xyn +°°: + Xan 
Suppose that E(X, ,) =0 and E(T?) = 1, and that 

(9.17) | Ss { 2? F, {dx} +0 
k=1 Jfa|>t 

for each t > 0. Show that the distribution of T,, tends to 9. Hint: Adapt the 
proof of theorem '] in section 6. 

Note. The Lindeberg theorem represents the special case X;, = X;/s, and 
T, =S,,/s,. Then (9.17) reduces to the Lindeberg condition (6.3). For triangular 
arrays see VI,3._ So ‘ 

30. (Truncation.) Let {X;} be a sequence of independent variables with 
symmetric distributions, For each n and k_ <n let X;,,, be the variable obtained 
by truncating X; at +a,. Suppose that >2_, P{|X,| > a,} ~0 and that (9.17) 
holds. Show that the distribution of S,/a, tends to N. | 

31. (Generalized central limit theorem.) Suppose the distributions F, -are 
symmetric and that ior every ¢ > 0 ; 

(9.18) > F, {dz} - 0, a? > a Fy{dx} +1. 
k=1 J[a|>ia, k=] Jlapcta, 

Prove that the distribution of S,/a, tends to ® (a) using the last two problems, 
(b) directly, by adapting the proof of. theorem 1 in section 6.” 

. 32. (Continuation.) The condition of symmetry may be replaced by the weaker 
_ondition 

0. 
kal 

(9.19) 

    

I eas? Fle) 

33. In-order that there exist norming constants a, for which the conditions 
(9.18) are satisfied it is necessary and sufficient that there exists a sequence of 
Mumbers ¢, — © such that 

n 1 a ° 

k=1 J |al<t, nN R=1 J |2I<tp 

In this case one can take 

a= 5 x F,{dz}. 
k=1 J Izl<tp 

(This criterion usually can be applied without difficulty.) 

12 Theorem 2 generalizes similarly but requires a different proof. 

 



CHAPTER XVI 

Expansions Related to 

the Central Limit Theorem 

The topics of this chapter are highly technical and may be divided into 
two classes. One problem is to obtain estimates for the error in the central 
limit theorem and to improve on this result by providing asymptotic expan- 
sions. A problem of an entirely different nature is to supplement the centrat 
limit theorem for large values of the independent variable, where the 
classical formulation becomes empty. 

In order to facilitate access to important theorems, and to explain the 
basic ideas, we separate the case of identically distributed variables. Section 
7 on large deviations is independent of the first five sections. The theory 
developed in these sections depends essentially on two techniques: direct 
estimation of absolutely convergent Fourier integrals, and smoothing methods. 
At the cost of some repetitions and some loss of elegance we separate the two 
main.ideas by first treating expansions for densities. 

The chapter culminates in the Berry-Esseen theorem of section 5. The 
smoothing method described in section 3 was first used by A. C. Berry in 
the proof of this theorem. An endless variety of smoothing procedures 
are in general use. In fact, the long and glorious history of the subject 
matter of this chapter has the unfortunate effect that accidents of historical 
development continue to influence the treatment of individual topics. 
The resulting diversity of tools and abundance of ad hoc methods has rendered 
the field proverbial for its messiness. The following systematic exploitation 
of Berry’s method and of modern inequalities fortunately permits an ainazing 
unification and simplification of the whole theory.’ 

* This chapter treats special topics and should be omitted at first reading. 
1 The best-known introduction to the asymptotic expansions is H. Cramér (1962). It 

contains the expansion theorems of sections 2 and 4 for equally distributed variables and a 
slightly sharper version of the theorems of section 7. The first rigorous treatmen: of the 
expansion theorems is due to Cramér, but his methods are no longer useful. Gnedenko 
and Kolmogorov (1954) treat the material of sections 1-5. 

331 
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1. NOTATIONS 

Except in the last section (which deals with unequal components) we 
shall denote by F a one-dimensional probability distribution with char- 
acteristic function gy. When the kth moment exists, it will be denoted by: 

+o” . 

(1.1) hy, = x Fidz}. 

We suppose 4, = 0 and put, as usual, uw, = o7. For the normalized n-fold 
convolution we write F,. Thus . 

(1.2) _ F(x) = F"*(xovn ). 

When a density of F,, exists we shall denote it by Ff,. 

Except in section 6 (concerned with large deviations) we shall have to 
deal with functions of the form 

(1.3) uy = 4h Jen at, 
and the obvious esiimate | 

(1.4) wl < -{" (DI dt 

Both uw and v will be integrable. If uw is a probability density, then v is 
its characteristic function. To simplify expressions we introduce the 

Convention. The function v in (1.3) will be called the Fourier transform 

of u and the right side of (1.4) will be called the Fourier norm of u. 

As always, the normal density is denoted by. 

(1.5) | n(x) = te et 
J2m 

Its Fourier transform is the characteristic function e-#°, By repeated 
differentiation we get therefore the identity 

valid for k = 1,2,.... Obviously the left side is of the form 

d* _/_4\ 
(1.7) ” n(x) = (—1) H,{(x) n(x) 

where H, is a polynomial of degree &k. The H, are called Hermite 
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polynomials.” In particular, 

(18) Wi@)=2,  Hl2)= 22-1, (x) = 28 — 3e. 
The characteristic property of H, is, then, that H,(x)n(x) has the Fourier 
transform (it)* e725", 

2. EXPANSIONS FOR DENSITIES 

The central limit theorem 2 of XV,5 for densities can be strengthened 
considerably when some higher moments , exist. The important assump- 
tion is that? 

(2.1) [ “Ig(Ol" al < 00 
for some » > 1. The proof given in XV,5 may be summarized roughly 
as follows. The difference u, =f, — n has the Fourier transform 

(2.2) 10 = (Sa) — e¥ 
on 

The integral of |v,| tends to zero for two reasons. Given an arbitrarily 

small but fixed 6 > 0 the contribution of the intervals |¢| > doVn tends 

to zero because: of (2.1). Within |Z] < édoV/n the ‘integrand v, is small by 

virtue of the behavior of @ near the origin. The latter conclusion depends 
only on the fact that uw, = 0 and pu, = o*. When higher moments exist we 
can use more terms in the Taylor development for gy and thus obtain more 
precise information concerning the speed of convergence f,-—>n. Un- 
fortunately the problem becomes notationally involved when more than three 
terms are involved, and we therefore separate out the simplest and most 
important special case. 

Theorem 1. Suppose that uz exists and that |p|” is integrable for some 
y > 1. Then f, exists for n> andas n—- o 

fi y 
Ms = (x "—3a) n(z) = of —=} 

6o°x! " ajn! 

  (2.3) Pile) — a(t) — 

unifornily in x. 

Proof. By the Fourier inversion theorem of i¢V,3 the isrt side in (2.2) 

e-ists Tor # > v and has the Fourier norm 

Diy 

    
i 

i { 
J 

! ’ . 
. ‘ 

f 2 i bee or i . 

jot{—ey — eB ER Gites aie, 
of 4 60° fy oo Lovie Savin ! 

* Sometimes Cheodvshev-Hermite polynemnials. The terminology is not unique. Various 
. ‘ at ep Y _ 2 

norming factors are in use and frequently e-" replaces our e 4x 

2 Concerning this condition see examples XV. She -by and problem 29 in TOY9, 
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Choose 6 > 0 arbitrary, but fixed. Since g” is the characteristic function 
of a density we have |y(Q| <.1 for |¢] #0 and o(Q)—0 as |<j > © 

(lemmas 4 of XV,I and 3 of XV,4). There exists therefore a number 

qs <1 such that |p(2)| <5 for {¢| > 6. The contribution of the intervals 

[g} > doVn to the integral in (2.4) is then 

(2. 5) - q3” f° 
c ) 

—00 (oe 

and this tends to zero more rapidly than any power of 1/n. 
With the abbreviation! 

        

"at + (1 + 
[{l>soV'n 

  

(2.6) | p(¢) = log p(2) + 40°C? 

we have therefore | 

(2.7) . 

=— i et fo te 3 1 

Ne 2a Itl<seVn- me (>»( <a) I 60 oa Fe (#) af + of 

  

The integrand will be estimated using the following general scheme 

(2.8) Je*— 1 — B] = |(e*—e*) + (¥-1—8)| < (la—A] + 3A%)e!, 

where y > max (|a|, [6[). (That this inequality is valid for arbitrary real 

or complex a and £ becomes evident on replacing e* and e* by their 
power Series.) 

The function y is thrice differentiable and w(0) = y 0) = y"(0) = 0 
while p”(0) = i243. Since y” is continuous it is possible to find a neighbor- 
hood |¢| <6 of the origin in which yp” varies by less than e.. From the 
three-term Taylor expansion we conclude that 

(2.9) WC) — da) < eo? ICP | for || <6. 
‘Here we choose 6 so small that also 

(2.10) ICS) < 20°O?, — eaa(tl)"] < 20°C? for |{] < 6. 

With this choice of 6 it is seen using (2.8) that the integrand in (2. 7) is less 

than 

2.11 et —{yrt{3 4+ £3 Bs \, (2.11) #(s air +e 

and as e is arbitrarv we have N,, = o(1/Vn) and so (2.3) is true. > 

4 All logarithms of complex numbers used in the sequel are defined by the Taylor series 
log (1+z) = > (—2)"{n valid for |z| < 1. No other values of z will occur. 
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The same argument leads to higher-order expansions, but their terms cannot be expressed 
by simple explicit formulas. We therefore postpone the explicit construction of the poly- 
nomials involved. 

Theorem 2. Suppose that the moments Hg, - ++, Hp exist and that |p|* is integrable for 

some v > 1. Then f, exists for n =v andas no 
r 

(2.12) fr(@) — n(z) — n(x) > n—tk+1p (x) = o(n-i+) 
k=3 

uniformly in x, Here P,, is a real polynomial depending only on py,..., @y, but not on 
n and r (or otherwise on F). 

The first two terms are given by 

Ms BE Hy — 304 ao H a 
6a 779813 + 546A 

where H, stands for the Hermite polynomial defined in (1.7). The expansion (2.12) is 

called (or used to be called) the Edgeworth expansion for f, 

(2.13) P,=—:H3 Py= Hy 

Proof. We adhere to the notation (2.6). If p is a polynomial with rea/ coefficients 

Pi Po» --- then 

  

  

(2.14) . fu — 0 — np, 

has the Fourier norm 

1 f(t? 1s c 
(2.15) Na = — e380" | exp (rv -) — 1 — pif) | dl. 

2a eo ovn 

The theorem will be proved by exhibiting appropriate polynomials p. (Their dependence 
on 7 is not stressed in order not to encumber the notations.) 

We begin by estimating the integrand. The procedure is as in the last proof except that 
we use the Taylor approximation for y up to and including the term of degree r. This 
approximation will be denoted by f2y,(f). Thus y, isa polynomial of degree r — 2 

with w,(0) = 0; it is uniquely determined by the property that 

y(l) — fy,(2) = o(( 21") f—0. 
We now put 

(2.16 w= 51 y,(+)]" 8 no= Sal (or) | k=1 

  

Then p(if) is a polynomial with real coefficients depending on n. For fixed @, on the 

other hand, p is a polynomial in 1/ Vn whose coefficients can be calculated explicitly as 

polynomials in f41, fg, .. + 5 fy. As in the last proof it is obvious that for fixed 6 > 0 the 

contribution of {Z| > 601 to the integral in (2.15) tends to zero more rapidly than any 

power of I/n, and thus we are concerned only with the integrand for ltl< doV n To | 

estimate it we use [instead of (2.8)] the inequality 

(2.17) [et-—1—- s BE/k! ! < lex — ef + | eb -—1—- > Bik! | 

1   

Se? (i — pl + yi a) | 

valid when ja| < y and || < y. 
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By analogy to (2.9) we now determine 6 such that for [Z| <6 

(2.18) ly) — Fv < eo” [ZV 
The coefficient of ¢ in y, being 34/6, we can suppose that for [| <6 also 

(2.19) ve) <a [Z| < 40? 
provided a>1+ |g]. Finally we require that for || <6 

(2.20) WO) <a.” 
For |£] < 6o0Vn the integrand in (2.15) is then less than 

4 aie (ele. at [ghey (2.21) ° (Gat Sn ees): 
  

As e¢ is arbitrary we have N, = o(n—i"+), 
We have now found real coefficients p, depending on 1 such that the left side in (2.14) 

is o(n—3*+4) uniformly in x. For fixed { the left side isa polynomial in 1/Wm. Rearrang- 

ing it according to ascending powers of 1/Vn we get an expression of the form postulated 
in the theorem except that the summation extends beyond r. But the terms involving 
powers i/n* with k > 4r—1 can be dropped, and we get then the desired expansion 
(2.12). > 

The explicit definition of the polynomials P, is thus as follows. A polynomial wp, of degree 
r — 2 is uniquely determined by the Taylor formula 

(2.22) log p(Z) = 2[—407? +y,(D] + o((21) 

valid near the origin. Rearrange (2.16) according to powers of 1/V n. Denote the coefficient 
of n-¥*t1 by qxlit). Then P,, is the polynomial such that n(x) P;,(x) has the inverse Fourier 
transform e—*q,(il). 

3. SMOOTHING 

Every expansion for the densities f,, leads by integration to an analogous 
expansion for the distributions F,, but this simple procedure is not available 
when the integrability condition (2.1) fails. To cope with this situation we 

shall proceed indirectly (following A. C. Berry). To estimate the discrepancy 
F,,— ® ora similar function A we shall use the Fourier methods of the 

last section to estimate an approximation 7A to A, and then appraise the 
error 7A —A by direct methods. In this section we develop the basic 
tools for this procedure. 

Let Vy be the probability distribution with density 

(3.1) U(x) = I 1 — cos Tx 

7 Tx’ 

and characteristic function wy. For |f| < 7 we have 

_ iél =e 

> 

(3.2) wll) = 
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but this explicit form is of no importance. What matters is that w (2) 
vanishes for |\C| > 7T, for this circumstance will eliminate all questions of 

convergence. 
We shall be interested in bounds for F, — St and, more generally, for 

functions of the form A,, = F,, — G,. ‘Such functions will be approximated 
by their convolutions with Vy and we put generically 7A = Vp% A. In 
other words, given any function A we define 

+00 

(3.3) TA(t) = A(t—2) v(x) dz. 
—c 

If A is bounded and continuous, then 7A—»>A as T-> oo. Our main 

problem is to estimate the maximum of JAY in terms of the maximum of 

[PAj. 

Lemma 1. Let F be a probability distribution and G a function such that 
G(—«) = 0, G(o) = 1, and |G'(z)| < m< ow. 

Put 

(3.4) A(x) = F(z) — G(z) 
and 

(3.5) n =sup|A(x)|, np = sup {7 A(z)|. 

Then ° ° 

12m 
(3.6) r>2 5 oP 

Proof. The function A vanishes at infinity and the one-sided limits 
~ A(a+) and A(x—) exist everywhere, and so it is clear that at some point z, 

either |A(zy+)| = 7 or |A(z)—)| = 7. We may assume A(z) = 7. As 

F does not decrease and G grows atarate <m this implies 

(3 7) A(z, +s) > 4 — ms for s>0. 

Putting 

(3.8) h= JL . t=x2th, 2=h— S, 
2m 

we have then 

(3.9) A(t—2) 5 + mx for \xl <h. 

We now estimate the convolution integral in (3.3) using (3.9) and the bound 

A(t—x) > —» for |x| >A. The contribution of the linear term vanishes 

for reasons of symmetry; since the density ry attributes to |z| > A a mass 

<4/(wTh) we get 

(3.10) 
, mt 4 

Vian x — t “_— yy 2 A(%) = 5 oTh 
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In our applications G will have a derivative g coinciding either with the 
normal density n or with one of the finite expansions described in the last 
section. In every case g will have a Fourier transform y with two con- 

tinuous derivatives such that y(0)'= 1 and y’(0)=0. Obviously then 

the convolution 7g = Vg. has the Fourier transform yw,. Similarly, 
by the Fourier inversion theorem of XV,3 the product gw, is the Fourier 
transform of the density 7f of Vp%* F. In other words, 

T 

Bi) He) Pe =H | e“t—— yO ond db, 
7 JT 

Integrating with respect to x we obtain 
r - 

(3.12) TA(x) — 1| eo ike ¢(f) — WO), (0) dt. 

2a J-T —il 

No integration constant appears because both sides tend to 0 as |x| > 0, 

the left because F(z) — G(x)— 0, the right by the Riemann-Lebesgue 

lemma 4 of XV,4. Note that y(0) = y(0)=1 and ¢’(0) = v'(0) =0; 

hence the integrand is a continuous function vanishing at the origin, and so no 

problem of convergence arises. 
From (3.12) we get an upper bound for 77 which, combined with (3.6), 

yields an upper bound for 7, namely 
T 

7(S) — (4) 

¢ 
As this inequality will be the basis for all estimates in the next two sections 

we recapitulate the conditions of its validity. 

at + 74m | 
aT     (3.13) Fa) — Gi <4 | 

t 

Lemma 2. Let F be a probability distribution with vanishing expectation 

and characteristic function y. Suppose that F — G vanishes at +0 and 

that G hasa derivative g such that |g| < m. Finally, suppose that g has a 

continuously differentiable Fourier transform y such that y(0)=1 and 

y'(0) = 0. Then (3.13) holds for all x and T> 0. 

We shall give two independent applications of this inequality: In the 

next section we derive integrated versions of the expansion theorems of 

section 2. In section 5 we derive the famous Berry-Esseen bound for the 
discrepancy F, — Xt. 

4. EXPANSIONS FOR DISTRIBUTIONS 

From the expansion (2.3) for densities we get by simple integration 

(4.1) F(z) — (2) — = (1—2*) n(z) = o( i ) 
60%,/n Jn 
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For this expansion to hold it is not necessary that F has a density. In fact, 
we shall now prove that (4.1) holds for all distributions with the sole exception 
of lattice distributions (that is, when F is concentrated on the set of points 
of the form 6b+nh). For a lattice distribution the inversion formula 

XV,(5.12) shows that the largest jump of F,, is of the order of magnitude 

1 [Nn n, and hence (4.1) cannot be true of any. lattice distribution. However, 
even for fattice distributions the following theorem applies with a minor 
amendment. For convenience we separate the two cases. 

Theorem 1. Jf F is not a lattice distribution and if the third moment ps 
exists, then (4.1) holds uniformly for all x. 

Proof. Put | 

(4.2) G(x) = R(x) — ae (x?—1)n(z). 
o*/n 

Then G satisfies the conditions of the last lemma with 

(4.3) y(Q) =e E + a cin? 

We use the inequality (3.13) with T= an where the constant a is 

chosen so large that 24|G’(x)| < ea forall x. Then 

  _ 19" — (4) 
(4.4) [avn (“7 € 

As the domain of integration is finite we can use the argument of section 2 
even when |g| is not integrable over the whole line. We partition the 
interval of integration into two parts. First, since F is not a lattice distri- 
bution the maximum of |g(Qj| for 6 < || < ao is strictly less than 1 

owing to lemma 4 of XV,1. As in section 2 it follows that the contribution 

of |¢| > don tends to zero faster than any power of I/n. Second, by 

the estimate (2.11) for |£] < 60Vn the integrand in (4.4) is 

cel (< i+ 2 ier) 

and so for large n the right side in (4.4) is < 1000¢/V/n. Since «¢ is 

arbitrary this concludes the proof. > 

This argument breaks down for lattice distributions because their character- 

istic functions are periodic (and so the contribution of |¢] > doVn does 

not tend to zero). The theorem can nevertheless be saved by a natural 
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reformulation which takes into account the lattice character. The distri- 
bution function F is a stepfunction, but we shall approximate it by a 
continuous distribution function F* with polygonal graph. 

Definition. Let F be concentrated on the lattice of points b+nh, tut 
on no sublattice (that is, h is the span of F). 

The polygonal approximant F*# to F is the distribution function with a 

polygonal graph with vertices at the midpoints b + (n+-4)h lying on the graph 
of F. 

Thus 

(4.5) F*¥(x) = F(x) if x= b+ (n+ $)h 

(4.6) F#(z) =43[F(z) + Fe—)]) if x=b+Anh. 

Now F,, is a lattice distribution with span 

h 
( ) Ty on/n 

and hence for large n the polygonal approximant F* is very close to F,. 

Theorem 2.° For lattice distributions the expansion (4.1) holds with F,, 

replaced by its polygonal approximant F#. . 

In particular, (4.1) is true at all midpoints of the lattice for F,, (with span h,), 

while at the points of the lattice (4.1) holds with F,(x) replaced by 

SF,(2) + F,(z—)]. 
Proof. The approximant F* is easily seen to be identical with the con- 

volutior of F with the uniform distribution over —4h < x < 4h. Accord- 

ingly, F* is the convolution of F, with the uniform distribution over 

—th, <x < 44,, and we denote by G* the convolution of this distribution 

with G, that is 

(4.8) G*(x) = h7) | “G(a—y) dy. 
—h,/2 

hy! 

If M denotes the maximum of |G”| it follows from the two-term Taylor 

expansion of G about the point x that 

(4.9) |G"(x) — G(x)| < Mh; = OU/n), 
and to prove the theorem it suffices therefore to show that 

(4.10) [F#(x) — G* (2) = o(t//n). 

“Instead of replacing F, by Fa one can expand Fé — F,, into a Fourier series and 

add it to the right side in (4.1). In this way one arrives formally at a form of the theorem 

proved by Esseen by intricate formal calculations. See, for example, the book by Gnedenko 

and Kolmogorov. 
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Since. taking convolutions corresponds to multiplying the transforms, we 
conclude from (4.4) that 

aVn| on _ 
(4.11) [F(x —G%@| f° "| eGo — x) 

—aVn t 

where w,(£) = (sin $h,0)/(44,,0) is the characteristic function of the uniform 
distribution. The estimates used for (4.4) apply except that a new argument is 
required to show that 

y dy = o(°). 
n 

By Lemma 4 of XV,1 the characteristic function has period 27/h, and the 

same is obviously true of {sin $hy|. It suffices therefore to prove that 

(4.13) Pwwlya = (Fz) 
« 

    

lw, (O)| df + —= 
n 

aVn ala 

(4.12) I “_lP*Elonyos OIE a=? I or(y) sin 
6 

    

But this is trivially true because within a neighborhood of the origin 

\o(y)| < e-te” while outside this neighborhood |g ({y)| is bounded away 

from 0 and hence the integrand in (4.13) decreases faster than any power of 

n. The integral is therefore actually O(1/n). > 

We turn to higher-order expansions. The proof of (4.1) differs from the proof of (2.3) 
only by the smoothing, which accounts for the finite limits in the integral (4.4). The same 
smoothing can be applied to the higher expansions (2.12), but it is obvious that to achieve an 
error term of the order of magnitude n—?"+! we shall have to take T~an’"—!. Here one 

difficulty arises. The proof of (4.1) depended on the fact that the maximum of 204) (oV n))| 

in doVn <|L| < T is less than one. For non-lattice distributions this is always true when 

7 =aVn, but not necessarily when 7 increases as some higher power of n. For higher- 
order expansions we are therefore compelled to introduce the assumption that 

(4.14) lim sup |y(Q1 <1 
Ig] +0 

which for non-lattice distributions implies that the maximum ¢,; of |p(Q| for [Z| > 6 is 
less than 1. With this additional assumption the method of proof given in detail for (4.1) 

applies without change to the expansions (2.12) and leads to 

Theorem 3. if (4.14) holds and the moments Usz,..., My exist, thenas n— ©, 

r 

(4.15) F(z) — R(x) — n(x) DS aA, (@) = o(n 4) 
k=3 

uaiformiy in x. Here &, is a polynomial depending only on fy,..., fy but not on n and 

r (or otherwise on fF). 

The expansion (4.15) is simply the integrated version of (2.12) and the polynomials Ry 
are related to those in (2.12) by 

d 
(4.16) n(x) P,.(z) = an n(x) R,,(2). 
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There is therefore no need to repeat their construction. The condition (4.14) is satisfied by 
every non-singular F. 

(4.15) is called the Edgeworth expansion of F. If F has moments of all orders, one is 
tempted to let r— co, but the resulting infinite series need not converge for any n. 
(Cramér showed that it converges for all n iff et" is integrable with respect to F.) The 
formal Edgeworth series should not be confused with the Hermite polynomial expansion 

(4.17) F,(z) — N(x) = > cy, H,(a)et2” 
k=1 

which is convergent whenever F has a finite expectation, but is without deeper prob- 
abilistic meaning. For example even if it is possible to expand each F,, into a series of 
the form (4.17) the coefficients are not indicative of the speed of convergence F, — M. 

5. THE BERRY-ESSEEN THEOREMS® 

The following important theorem was discovered (with radically different 
proofs) by A. C. Berry (1941) and C. G. Essen (1942). 

Theorem 1. Let the X,, be independent variables with a common distribution 

F such that’ 

(5.1) E&)=0, EX)=07>0, E(X I) =p < o, 
and let F,, stand for the distribution of the normalized sum 

(X;+:--+X,)/ovn. 
Then for all x and n 

(5.2) [F,(2) — (ay < Pe, 
a°./n 

The striking feature of the inequality is that it depends only on the first 
three moments. The expansion (4.1) provides a better asymptotic estimate, 
but the speed of convergence depends on more delicate properties of the under- 
lying distribution. The factor 3 on the right could be replaced by a better 
upper bound C but no attempt is made in our setup to achieve optimal 

results.” 

6 This section uses the smoothing inequality (3.13) (with G standing for the normal 

distribution) but is otherwise independent of the preceding sections. 
7 Berry gives a bound C < 1.88, but his calculations were found in error. Esseen 

gives C < 7.59. Unpublished calculations are reported to yield -C ¢ 2.9 (Esseen 1956) 

and C < 2.05 (D. L. Wallace 1958). Our streamlined method yields a remarkably good 

bound even though it avoids the usual messy numerical calculations. No substantial im- 

provement can be expected without improving the error term 24m/7 in (3.13). 
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Proof. The proof will be based on the smoothing inequality (3.13) with 
F=F, and G=%&. For T wechoose 

‘4 o® 

(5.3) T =~ Ins 4Vn, 

the last inequality being a consequence of the moment inequality o? < p- 
[See V,8(c).] Since the normal density n. has a maximum m <2 we get 

Tr . 

(54) mIFA(@)— I<] Io*Clayny — | 4 28. 
To appraise the integrand we note that the familiar expansion for a” — f” 
leads to the inequality 

(5.5) la" — B"| Sn|la—Bl-y™" if lal<y, IBl<y. 
We use this with « = o(tloV n) and B = e-#"/"_ From the inequality 
XV,(4.1) for e** we have , 

(5.6) |p(t) — 1+ 4$o7| = E (e? — 1 — ite + ht?x”) F{dx}| < ép |t|® 
  

and hence 

(5.7) Ip(t)l < 1 — 407t? + dp |t)> if 4071? <1. 

We conclude that for |f| < T 

  
, 1 2 P 3 3 2 —3h07/n (5.8) |pEloyn)| <1 — 7 + Gh <1  < en 

Since o? <p the assertion of the theorem is trivially true for Vn <3 
and hence we may assume n > 10. Then 

(5.9) Ip(LloJny|" < a, 

and the right side may serve for the bound y"" in (5.5). Noting that 
e*— [+2 < 32? for x >0 we get from (5.6) 

        
_£_ |) _ o-k’/n ==) —1 e (5.10) 7 (=) ekinl <n (oa +> 

. _ 2 _— 3-3? sn | c 3 1 4 

+n d 2n ° S cant + ano     

Since Vn > 3 it follows from (5.5) and (5.9) that the integrand in (5.4) is 

(5.11) < a ae + ds Ie. 
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This function is integrable over —co < £ < oo, and simple integrations 
by parts now show that 

(5.12) nT |F,(z) — R(x)| < V7 + 8 + 10. 

Since Vm <2 the right side is < 1442 < 4m, and so (5.2) is true. > 

The theorem and its proof can be generalized to sequences {X,} with vary- 
ing distributions as follows. 

Theorem 2.8 Let the X;,, be independent variables such that 

(5.13) P(X,)=0, P(X) =o;, PX) = 
Put 

(5.14) Se Ob +O t= Prt + Pn 
and denote by F,, the distribution of the normalized sum (X,+---+X,)[Sp- 
Then for all x and n 

(5.15) IF,(z) — R(x) <6 o 
Sn 

Proof. If a, stands for the characteristic function of X, the starting 
inequality (5.4) is now replaced by . 

d 9.6 dt, 9.6 6 7 — X 5. F x x - W, (*) -@, (*) —~et 

S 

    
This time we choose 

3
:
0
 

(5.17) T= 

Instead of (5.5) we now use 

(5.18) la,--- a, — Bros’ Bal S Dv Yate BeYesa °° Yn 
k=1 

\©
O 

10
0 

| 

r 

3 

valid if |a,| << y, and |B,| < y,- This inequality will be applied to 

(5.19) %, = O4(L/5n), By = eRe ene If] < T. 
By analogy with (5.8) we have 

1 oj Px y¥13 Oo Prt (520) Jo(tis)i 1-530 + Pee < ex (- 5 ae aoe 

provided o,7T < s,V 2. To obtaina bound y, applicable for all k we change 

8 Due (with an entirely different proof) to Esseen. 
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the coefficient } to 3 and put 
2 

(5.21) nem exp (— Ze + Pee 
2s 8 sh 

Obviously |f,| << y,, and from (5.20) also |a,|<y, for k such that 
0,1 < Zs,. But from the moment inequality p, > 3 it follows that y, > 1 
if o,T > 3s,, and hence || < y, for all k.— 

The theorem is trivially true when the right side in (5.15) is > 1, that is, if 

r,/S3, >. Accordingly we assume from now on that r,/s? < + or T > 48. 

The minimum value of y, is assumed for- some k_ such that 
On/S, <4/3T <4, and hence y, > e%/8? for all k. Thus finally 

  

3r,7T 1 _p? 
(5.22) |¥1° °° YetPeri’** Ynl S exp o(-; 5 + a + 3) <@t® 

By analogy with (5.10) we get 

(5.23) Sia Al <7 ich + a = 4 dot 

To appraise the last sum we recall that of is pt < rt. p, Whence 

$ 5S Trp 
5.24 — = -<--. 

00.24) st 7 2ot <(° s) <2 a; a 938 

These inequalities show that the integrand in (5.16) is 

(5.25) < ot Fee, 
and hence finally 

(5.26) nT |F,(z) — 2(2z)| < 27/27 + Fr 64 + 9.6. 
The right side is <167/3, and thus (5.26) implies (5.15). > 

Recently much attention has been paid to generalizations of the Berry- 

Esseen theorem to variables without third moment; the upper bound is 
then replaced by a fractional moment or some related quantity. The first 

step in this direction was taken by M. L. Katz (1963). The usual calculations 
are messy, and no attempt has been made to develop unified methods applic- 
able to the several variants. Our proof was developed for this purpose and 
can be restated so as to cover a much wider range. Indeed, the third moment 

occurs in the proof only because of the use of the inequality 

je — | — ita + §1?x?| < 1 [eaI3. 

Actually it would have sufficed to use this estimate in some finite interval 

|z| < a and to be otherwise satisfied with the bound ¢?z?. In this way one 
obtains the following theorem obtained by different methods and with an 
unspecified constant by L. V. Osipov and V. V. Petrov. 
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Theorem 3. Assume the conditions of theorem 2 except that no third 

moments need exist. Then for arbitrary 7, > 0 

(5.27) |F,(2) — N(x] < 6(sst[ < \a|® F{dzx} + sf x? F{dz}), 
Jz[>rx } 

Simple truncation methods permit one to extend this result to variables 
without moments.® 

6. EXPANSIONS IN THE CASE OF VARYING COMPONENTS 

The theory of sections 2 and 4 is easily generalized to sequences {X,} of 

independent variables with varying distributions U,. In fact, our notations 
and arguments were intended to prepare for this task and were therefore 
not always the simplest. 

Let E(X,) = 0 and E(X%) = of. As usual we put s? = o? +--+ + o?. 
To preserve continuity we let F, again stand for the distribution of the 
normalized sum (X,+:-:+X,,)/s,. 

To fix ideas, let us consider the one-term expansion (4.1). The left side 
has now the obvious analogue 

(n) 

(6.1) D,(x) = F(x) — N(x) — a n(x) 
where " 

(6.2). ps” = SEX?) 

In the case of equal components it was shown that D,(x) = o(1//n). 
Now D,, is the sum of various error terms which. in the present situation 
need not be of comparable magnitude. In fact, if the X, have fourth 

moments it can be shown that under mild further conditions 

(6.3) [Da] = OCn*se8) + O(ns;4). 
Here either of the two terms can preponderate depending on the behavior of 
the sequence xs,® which may fluctuate between 0 and oo. In theory it 
would be possible to find universal bounds for the error,° but these would 
  

® For details see W. Feller, On the Berry-Esseen theorem, Zs. Wahrscheinlichkeitstheorie 
verw. Gebiete, vol. 10 (1968) pp. 261-268. It is surprising that the unified general method 
actually simplifies the argument even in the classical case and, moreover, leads without 
effort to better numerical estimates. 

10 For example, in Cramér’s basic theory the bound is of the form 

D,(z) = o(msst( > EKs y) 
k=] 

which may be worse than (6.3). 
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be messy and too pessimistic in individual cases arising in practice. It is 

therefore more prudent to consider only sequences {X,} with some typical 
pattern of behavior, but to keep the proofs so flexible as to be applicable in 
various situations. 

For a typical pattern we shall consider sequences such that the ratios s?/n 
remain bounded between two positive constants.1!_ We show that under mild 
additional restrictions the expansion (4.1) remains valid and its proof requires 
no change. In other situations the error term may take on different forms. 
For example, if s? = o(m) it can be said only that |D,(z)| = o(n/s?). 

However, the proof is adaptable to this situation. 

The proof of (4.1) depended on taking the Fourier transform of D,(z). 

If mw, denotes the characteristic function of X, this transform may be 
written in the form 

(6.4) grraiend gre? _ MU a(0) papa 
6s, 

where 

(6-5) 04(0) = mS log ox() 

Now this is exactly the same form as used in the proof of (4.1), except that 

there v,(¢) = log ¢(4) was independent of n. Let us now see how this 
dependence on n influences the proof. Only two properties of v were 

used. 
(a) We used the continuity of the third derivative y” to find an interval 

[¢| <6 within which v” varies by less than «. To assure that this 6 can 

be chosen independent of n we have now to assume some uniformity 

condition concerning the derivatives w7” near the origin. To avoid uninterest- 
ing technical discussions we shall suppose that the moments E(X{) exist 

and remain bounded. Then the w;’ have uniformly bounded derivatives 
and the same is true of v”’. 

(6) The proof of (4.1) depended on the fact that |p7(Q)| = o(1/Vn) 

uniformly for all ¢ > 6. The analogue now would be 

(6.6) [w,(f)--- o,(O| = o(1/Vn) uniformly in [>0>0. 

This condition eliminates the possibility that all X, have lattice distri- 

butions with the same span, in which case the product in (6.6) would be 

periodic function of ¢. Otherwise this condition is so mild as to be trivially 

satisfied in most cases. For example, if the X, have densities each factor 

|w,| remains bounded away from |, and the left side in (6.6) decreases faster 

i Then (6.3) gives |D,(z)| = O(1/n) which is sharper than the bound o(1/Vn) obtained 
in (4.1). The improvement is due to the assumption that fourth moments exist. 
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than any power of 1/n unless |@,(¢)| > 1; that is, unless the X,, tend to be 
concentrated at one point. Thus in general the stronger condition 

(6.7) Jory(L) +++ A(Q)| = o(n-*)— uniformly in £ > 6 
will be satisfied and easily verified for all a > 0. 

Under our two additional assumptions the proof of (4.1) goes through 
without change and we have thus 

Theerem 1. Suppose that with some positive constants 

(6.8) on<s?<Cn, E(X2)<M 

for all n and that (6.6) holds. Then |D,(x)| = o(1/Vn) uniformly for all x. 

As mentioned before, the proof applies equally to other situations. For 
example, suppose that 

(6.9) siin—>0O but sino. 

The proof of (4.1) carries through with T = as?/n, and since T = o(s,) 

the condition (6.6) becomes unnecessary. In. this way one arrives at the 

following variant. 

Theorem 1a. If (6.9) holds and the E(X*) are uniformly bounded then 
|D,, (x)| = o(n/s3) uniformly in x. 

The other theorems of sections 2 and 4 generalize in like manner. For 
example, the proof of theorem 3 in section 4 leads without essential change 
to the following general expansion theorem: 

Theorem 2. Suppose that 

(6.10) 0<c< E([X!) <C< 0, vel,...,rt+1, 

and that (6.7) holds with a =r-+ 1. Then the asymptotic expansion (4.15) 

holds uniformly in x. 

The polynomials R; depend on the moments occurring in (6.10) but for 
fixed x the sequence {R,(x)} is bounded. 

7. LARGE DEVIATIONS® 

We begin again by considering our general problem in the special case of 

variables with a common distribution F such that E(X,)=0 and 

12 With slightly milder uniformity conditions this theorem is contained in Cramér’s 

pioneer work. Cramér’s methods, however, are now obsolete. 

15 This section is entirely independent of the preceding sections in this chapter. 
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E(X{) = 0”. As before, Ff, stands for the distribution of the normalized 

sums (X,+°> “4X )foVn. Then F, tends to the normal distribution %. 
This information is valuable for moderate values of x, but for large x both 
F,(x) and (x) are close to unity and the statement of the central limit 

theorem becomes empty. Similarly most of our expansions and approxima- 
tions become redundant: One needs an estimate of the relative error in 

approximating | — F, by | — Mt. Many times we would like to use the 
relation 

1 — F,(x (7.1) 1 — F,(2) — 
1 — N(x) 

in situations where both z and n tend to infinity. This relation cannot be 
true generally since for the symmetric binomial distribution the numerator 

vanishes for all x > J n. We shall show, however that (7.1) is true if z 

varies with n in such a way that xn~*-+0 provided that the integral 

1 

. +00 

(7.2) (= { e* F{dz} 

exists for all in some interval |¢] < %). [This amounts to saying that the 

characteristic function (¢) = f(id) is analytic in a neighborhood of the 

origin, but it is preferable to deal with the real function f.] 

Theorem 1. If the integral (7.2) converges in some interval about the origin, 
and if x varies with n in such a way that x-» 0 and x= o(nt), then 

(7.1) is true. 

Changing x into —z we obtain the dual theorem for the left tail. The 
theorem is presumably general enough to cover “‘all situations of practical 
interest,’ but the method of proof will lead to much stronger results. 

For the proof we switch from f to its logarithm. In a neighborhood of 
the origin . . 

(7.3) w(£) = log f(£) = a ce 

defines an analytic function. The coefficient yp, depends only on the moments 

y,..., Hy Of the distribution F and is called the semi-invariant of order k 

of F. In general y, = 44, Ye = 07,.... In the present case w, = 0 and 

therefore py, = 0, yp, = 07, ¥3 = Ms, - . 

The proof is based on the technique of associated distributions.4 With 

the distribution F we associate the new probability distribution V such that 

(7.4) Vidz} = e¥e% F{dz}, 

14 {t was employed in renewal theory XI,6 and for random walks XII,4. 
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where the parameter s is chosen within the interval of convergence of yp. 
The function 

(75) oe) = Tet) 
F(s) 

plays for V the same role as does f for the original distribution F. In 
particular, it follows by differentiation of (7.5) that V has expectation 
y'(s) and variance w"(s). | 

The idea of the proof can now be explained roughly as follows: It is 
readily seen from either (7.4) or (7.5) that the distributions F"* and V"* 
again stand in the relationship (7.4) except that the norming constant e-¥™ 
is replated by e~”““. Inverting this relation we get 

ao 

(7.6) 1 — F,(x) = 1 — F"*(xo,/n) = er) [ ey * dy}. 
zon 

In view of the central limit theorem it seems natural here to replace V"* 
' by the corresponding normal distribution with expectation ny'(s) and 
variance ny’(s). The relative error committed in this approximation will be 
small if the lower limit of the integral is close to the expectation of V”*, 
that is, if x iscloseto w'(s)Vn/o. In this way one can derive good approxima- 
tions to 1 — F,(%) for certain large values of x, and (7.1) is among them. 

Proof. In a neighborhood of the origin y is an analytic function with a 
power: series of the form 

(7.7) v(s) = 1 + fos? + Spgs? 4° + 
y is a convex function with w’(0) = 0, and hence increases for s > 0. The 
relation - 

(7.8) . J ny'(s) = ox s>0, x>0, 

therefore establishes a one-to-one correspondence between the variables 

s and x aslongas s and x/\/n are restricted to a suitable neighborhood 
of the origin. Each variable may be considered as an analytic function of the 
other, and clearly 

x x 
7.9) - sS~ i ——>?0. 

(7-9) o./n f Jn 

We now proceed in two steps: 
(a) We begin by calculating the quantity A, obtained on replacing V"* 

in (7.6) by the normal distribution having thé same expectation ny’(s) and 

the same variance nyp"(s). The standard substitution y = ny'(s) + tVny"(s) 

yields 
o 2 

(7.10) A,= erwt-ovron 2 | on tsV nye (s)he dt. 

0 [am 
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Completing the square in the exponent we get 

(7.11) A, = exp (n[p(s) — sp'(s) + 45%y"(S)]) > [L — Rsv ny"(s))]. 
The exponent and its first two derivatives vanish at the origin and so its 
power series starts with cubic terms. Thus 

(7.12) A, = [1 — 1sVny"(s))]- + O(ns%)], s>0. 

If ns?—»+0 or, what amounts to the same, if x = o(nt) we may rewrite 

(7.12) in the form 

(7.13) A, = [1 — R@I]U + O@Wn)), 
where we put for abbreviation 

  

  

  

(7.14) | z= sv ny" (s). 

It remains to show that in (7.13) we may replace by x. The power series 
for (e—x)/n is independent of n and a trite calculation shows that it starts 

with cubic terms. Accordingly, 

(7.15) lz = al = OWn5) = O(23)n). 

From 1; VII,(1.8) we know that as t—> 00 

    

(7.16) 1), 
1— NCA). 

Integrating between x and we get for x © 

(7.17) log HO = O(a: [@—2x]) = O(2x*/n) 

and hence 

1 — NZ) _ 4 7.18 ———-=1+0 . (7.18) 1 Ke) | (x"/n) 

Substituting into (7.13) we get finally if r—» o so that z= o(n*) 

(7.19) A, = [L — R(x)][1 + O(@/Vn)). 

(b) If MN, denotes the normal distribution with expectation ny'(s) and 
variance ny"(s) then A, stands for the right side in (7.6) when V”* is 
replaced by %t,. We now proceed to appraise the error committed by this 
replacement. By the Berry-Esseen theorem (section 5) 

(7.20) IV"*(y) — Ny) < 3M,o7/Vn 
for all y, where M, denotes the third absolute moment of the distribution
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V. After a simple integration by parts it is therefore seen that 

(7.21) 

—F,(2)—A,] < aM ere era 4s [" end] = 6Mg ntolsi—sya0} 
/n ny’(s) on 

But by (7.11) 

(7.22) A, _— enly(s)—sy'(s)}, efe[1 — N(Z)] ~ 4 1 nty(s)—sy(a)] 

x 

and hence the right side in (7.21) is A, - O(x)v'n). Thus 

(7.23) 1 — F(z) = A,{l + O(a/Wn)). 

In combination with (7.19) this not oniy proves the theorem, but also the 

stronger 

Corollary. If x— o sothat x = o(n‘) then 

— 3 

LaF) pag =). 
1 — M(x) Vn 

We have indirectly derived a much further-going result applicable wheneve: z varies 

with m in such a way that z-> oo but 2 = 0(Vn), Indeed, by (7.23) we have then 

1 — F,(z)~ A, with A, given by (7.11). Here the argument of M is %, but (7.18) 

= may be replaced by x. We get therefore the general approximation formula 

(7.24) 

shows that z 

(7.25) 1 — F(z) = exp (nlp(s)—sy’(9) + dy) -N@)] - 1+ 0@/Vn)]. 

The exponent is a power series in s commencing with the term of third order. As in (7.8) 
we now define an analytic function s of the variable z by y’(s) = oz. With this function 
we define a power series 4 such that 

(7.26) a® A(z) = Aya? + Aged + >> = p(x) — sp'(s) + 4y'%s). 

In terms of this series we have 

Theorem 2.15 If in theorem \ the condition x = o(n') is replaced by x = o( Vn), then 

1 — F,(@) x 
. ——_——— = x74 | —= 

15 The use of the transformation (7.4) in connection with the central limit theorem seems 
due to F. Esscher (1932). The present theorem is due to H. Cramér (1938), and was 

generalized to variable components by Feller (1943). For newer results in this case see 
V. V. Petrov, Uspekhi Matem. Nauk, vol. 9 (1954) (in Russian), and W. Richter, Local 

limit theorems for large deviations, Theory of Probability and Its Applications (transl.), 

vol. 2 (1957) pp. 206-220. The latter author treats densities rather than distributions. For 
a different approach leading to approximations of the form 1 — F(x) = exp [v(z)+o(v(z))] 
see W. Feller, Zs. Wahrscheinlichkeitstheorie verw. Gebiete vol. 14 (1969), pp. 1-20. 
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In particular, if = o(n*), only the first term in the power series matters, and we get 

1 — F,(@2) A, Lt 
.28 rw a= 3 v8) i—R@) ~™ (Zz): 1 Got 

For an increase such that z = o(n?®*) we get 

1 — F,(@) . a af\- o*y, — 3y2 
29 a ~ 4, — — = —14_ 7 "3 

(7.29) 1 — Nz) ve (A = +47), Ag 2408” 

and so on. Note that the right sides may tend to 0 or «0, and hence these formulas do not 
imply an asymptotic equivalence of 1 — F,(z) and 1 — (x). Such an equivalence exists 
only if 2 = o(nt) [or, in the case of a vanishing third moment, if z = o(n?)]. Under 

any circumstances we have the following interesting 

Corollary. If x = o( Vn) then for any « >0 ultimately | 

(7.30) exp (—(+6)27/2) < 1 — F(a) < exp (—(1—6)2?/2). 

The preceding theory may be generalized to cover partial sums of random 

variables X, with varying distributions and characteristic functions a,. 

The procedure may be illustrated by the following generalization of theorem 
1 in which the uniformity conditions are unnecessarily severe. In it F, 
stands again for the distribution of the normalized sum (X, + +--+ X,)/5q. 

Theorem 3. Suppose that there exists an interval —a,a in which all the 
characteristic functions w, are analytic, and that 

(731) 0 -E((X,|°) < Mo?, | 
where M is independent of n. If s, and x tend to «so that x = o(s*), then 

1 — F,(2) 
(7.32) 1 wa) 

with an error O(z4/s,). 

The proof is the same except that py is now replaced by the real-valued 

analytic function yp, defined for -a<s<a by 

(7.33) y,(s) = 1 Slog w,(—is). 
nN k=1 

In the formal calculations now zs, replaces zon. The basic equation (7.8) 

takes on the form y/(s) = 2s,,/n. 

 



CHAPTER XVII 

Infinitely Divisible Distributions 

This chapter presents the core of the now classical limit theorems of 
probability theory—the reservoir created by the contributions of innumerably 
many individual streams and developments. The most economical treatment 
of the subject would start from the theory of triangular arrays developed in 
section 7, but once more we begin by a discussion of simple special cases in 
order to facilitate access to various important topics. 

The notions of infinite divisibility, stability, etc., and their intuitive meaning 
were discussed in chapter VI. The main results of the present chapter were 
derived in a different form, and by different methods, in chapter IX, but the 

present chapter provides more detailed information. It is self-contained, 
and may be studied as a sequel to chapter XV (characteristic functions) 
independently of the preceding chapters. 

1. INFINITELY DIVISIBLE DISTRIBUTIONS 

‘We continue the practice of using descriptive terms interchangeably for 
distributions and their characteristic functions. With this understanding the 
definition of infinite divisibility given in YI,3 may be rephrased as follows. 

Definition. 4 characteristic function w is infinitely divisible iff for each n 
there exists a characteristic function w,, such that 

(1.1) — O, =O. 

We shall presently see that infinite divisibility can be characterized by 
other striking properties which explain why the notion plays an important 
role in probability theory. 

Note concerning roots and logarithms of characteristic functions. It is 
tempting to refer to w, in (1.1) as the nth root of w, but to make this 
meaningful we have to show that this root is essentially unique. To discuss 

554 
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the indeterminacy of roots and logarithms in the complex domain it is con- 
venient to start from the polar representation a = re‘ of the complex 
number a #0. The positive number. r is uniquely determined, -but the 
argument @ is determined only up to multiples of 2. In principle this 
indeterminancy is inherited by loga = logr + i0 and by a¥” = rV/et@/" 
(here r/" stands for the positive root, and logr .for the familiar real 
logarithm). Nevertheless, in any interval |¢| < % in which w(¢) #0 the 

characteristic function w admits of a unique polar representation w(¢) = 
= r(fje*) such that 6. is continuous and 6(0) = 0. In such an interval we 
can write without ambiguity tog w(£) = logr(£) + i0(f) and w/"() = 
= rV/™(L)ei*@)/"; these determinations are the only ones that render log 
and w'/” continuous functions that are real at the point € = 0. In this sense 
log@w and w”” are uniquely determined in any interval \C| < free of 
zeros of w. We shall use the symbols log@ and w”” only in this sense, 
but it must be borne in mind that this definition breaks down! as soon as 

(Co) = 0. - > 

Let F be an arbitrary probability distribution and 9 .its characteristic 
function. We recall from XV,(2.4) that F generates the family of compound 
Poisson distributions | 

co ,k 

(1.2) ety & Fee 
x=0 k! 

with characteristic functions e°~!). Here c >.0 is arbitrary. Obviously 
w = el) ig infinitely divisible (the root w/” being of the same form 
with c replaced by c/n). The normal and the Cauchy distribution show that 

an infinitely divisible distribution need not be of the compound Poisson type, 
but we shall now show that every infinitely divisible distribution is the limit 
of a sequence of compound Poisson distributions. Basic for the whole 
theory is 

Theorem 1. Let {p,} be a sequence. of characteristic functions. In order 
that there exist a continuous limit 

(1.3) a) = lim oD 
it is necessary and sufficient that 

(1.4) ntyn(2) — > vo 
with w continuous. In this case 

(1.5) oe”. 

1 At the end of XV,2 (as well as in problem 9 of XV,9) we found pairs of real character- 

istic functions such that gt = g?. This shows that in the presence of zeros even real 

characteristic functions may possess two real roots that are again characteristic functions. 
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' Proof. We recall from the continuity theorem in. XV,3 that if a sequence 
of characteristic functions converges to a continuous function, the latter 
represents a characteristic function and the convergence is automatically 
uniform in every finite interval. 

(a) We begin with the easy part of the theorem. Assume (1.4) where yp 

‘iscontinuous. This implies that ¢,(¢) > 1 forevery ¢, and the convergence 
is automatically uniform in finite intervals. This means that in any interval 

Ci < 4, we have |1 — ,()| <1 forall » sufficiently large. For such n 
we conclude then from the Taylor expansion for log (1—z) that 

(16) nog (2) = n log [1 — [1-9,(D)] = 

= —All = 9.91 — FU — e(OF — 

' Because of (1.4) the first term on the right tends to —y(), and since 
Pnl(5) -» | this implies that all other terms tend to zero. Thus n log y, > —y 
or y"%—>e-, as asserted. 

 {b) The converse is equally simple if it is known that the limit @ in (1.3) 
has no zeros. Indeed, consider an arbitrary finite interval |¢| < ¢,. Init the 

convergence in (1.3) is uniform and the absence of zeros of w implies that 

also 9,(¢) # 0 for |¢| < ¢, and all.” sufficiently large. We can therefore 

_ pass to logarithms and conclude that nlog y,—logw, and hence 
log g, 0. This implies. that y,(2)—>1 for each fixed {, and the con- 
vergence is automatically uniform in every finite interval. As under (a) 
therefore we conclude that the.expansion (1.6) is valid, and since 

this implies that * ee a 

(1.7) —— nlog 9, (2) = —all—¢,(Q)]U+0(1) 

where O(1) stands for a quantity that tends to as n-» 00. By assumption 
the left side tends to log w(Z), and hence obviously n{1—9,] > —log w 
as asserted. 

To validate this argument we have to show that w(2) cannot vanish for 

any ¢. For that purpose we can replace w and 9, by the characteristic 
functions |w|? and -|9,|*, respectively, and hence it suffices to consider the 

special case of (1: 3) where all gy, are real. and o, > 0. Let then |Q| < & 
be an interval in which w(¢) > 0. Within this interval —n log ¢,(4) is 

positive and remains bounded. On the other hand, for |f| < ¢,, the expan- 

sion (1.6) is valid, and since all terms are of the same sign it follows that 

n{l — @,(¢)] remains bounded for all |¢| < bs. But by the basic inequality 

XV ,(1.7) for characteristic functions 

n{l—9, 2D} < 4n[l—~, (D1, 
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and so n[{!— 9,(¢)] remains bounded for all |¢| < 2Z,. It follows that this 
interval can contain no zero of w. But then the initial argument applies 
to this interval and leads to the conclusion that w(¢) > 0 for all |¢| < 4¢,. 

Continued doubling shows that «(2) > 0 for all ¢, and this concludes the 
proof. > 

Theorem 1 has many consequences. On multiplying (1.4) by t> 0 it is 
seen that this relation is equivalent to 

(1.8) . | einlon—-1)_, gtv®) — eZ), 

The left side représents a characteristic function of the compound Poisson 
type, and therefore e‘¥) is a characteristic function for every t>0. We 
conclude in particular that w = e¥ is necessarily infinitely divisible. In 
other words, every characteristic function w appearing as the limit of a 

sequence {y”} of characteristic functions is infinitely divisible. This may be 

regarded as a widening of the definition of infinite divisibility in that it 

replaces the identity (1.1) by the more general limit relation (1.3). It will 
be seen in section 7 that this result may be further exténded to more general 
triangular arrays, but we record our preliminary result in the form of 

Theorem 2. A characteristic function w is infinitely divisible iff there exists 
a sequence {9,} of characteristic functions such that yo” > w. 

In this case w* is a characteristic function for every t >0, and w(L) #0 
forall €. 

Corollary. A continuous limit of a sequence {w,} of infinitely divisible 
characteristic functions is itself infinitely divisible. 

Proof. By assumption g, =!" is again a characteristic function, and 
so the relation w,—w may be rewritten in the form o”% > w. > 

Every compound Poisson distribution is infinitely divisible, and theorem | 
tells us that every infinitely divisible distribution can be represented as a 
limit of a sequence of compound Poisson distributions [see (1.8) with ¢ = 1]. 

In this way we get a new characterization of infinite divisibility. 

Theorem 3. The class of infinitely divisible distributions coincides with the 
class of limit distributions of compound Poisson distributions. 

Application to processes with independent increments. As explained in VI,3 such processes 

can be described by a family {X(t)} of random variables with the property that for any 
partition t% <t, <-°* <4, the increments X(t,) — X(t,_,) represent n mutually 
independent variables. The increments are stationary if the distribution of X(s+7) — X(s) 
depends only on the length ¢ of the interval, but not on its position on the time axis. In 
this case X(s+f)— X(s) is the sum of a» independent variables distributed as 
X(s + t/n) — X(s), and hence the distribution of X(s + t) — X(s) is infinitely divisible. 
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Conversely, every family of infinitely divisible distributions with characteristic functions 
of the form e!” can regulate a process with independent stationary increments. The results 
concerning triangular arrays in section 7 will generalize this result to processes with non- 
Stationary independent increments. The increment X(t +5) — X(s) is then the sum of 
increments X(t,,;) — X(¢,) and these are mutually independent random variables. The 
theorem of section 7 then applies provided the process is continuous in the sense that 
X(t + A) — X(t) tends in probability to zero as h +0. For such processes the distribution 
of the increments X(t +s) — X(t) are infinitely divisible. (Discontinuous processes of this 
type exist, but the discontinuities are of a trite nature and, in a certain sense, removable. 
See the discussion in IX,5a and IX,9.) 
Compound Poisson processes admit of a particularly simple probabilistic interpretation 

(see VI,3 and IX,5) and the fact that every infinitely divisible distribution appears as limit 
of compound Poisson distributions helps to understand the nature of the more general 
processes with independent increments. 

2. CANONICAL FORMS. THE MAIN LIMIT THEOREM 

We saw that to find the most general form of infinitely divisible character- 
istic functions w = e” it suffices to determine the general form of possible 
limits -of sequences of characteristic functions exp c,(¢,—1) of the com- 
pound Poisson type. For various applications it is desirable to state the 
problem more generally by permitting arbitrary centerings, and hence we 

seek the possible limits of characteristic functions of the form w, =e”, 

where we put for abbreviation 

(2.1) vnlS) = Cnle,(S) — 1 — if,6). 

The w, are infinitely divisible, and the same is therefore true of their 
continuous limits. 

Our problem is to find conditions. under which there exists a continuous 
limit 

(2.2) v(¢) = lim y, (2). 

It is understood that , is the characteristic function of a probability 
distribution F,, the c, are positive constants, and the centering constants 
B,, are real. . . 

For distributions with expectations the natural centering is to zero expec- 
tation, and whenever possible we shall choose f,, accordingly. However, we 
needa universally applicable centering with similar properties. As it turns 

out, the simplest such centering is obtained by the requirement that for ¢ = 1 
the value of y, be real. If u,, and v, stand for the real and imaginary part 
of -y, our condition requires that 

+ 00 

(2.3) a 6b, = o9(t)-= | sin x F, {dz}. 
—@ 
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This shows that our centering is always possible. With it 

a 

(2.4) yal) =e, 
a 

Near the origin the integrand behaves like —4Z@*z*, just as is the case with the 
more familiar centering to zero expectation. The usefulness of the centering 
(2.3) is due largely to the following 

e** — 1 — if sin 2] F {dz}. 

Lemma. Let {c,} and {p,} be given. If there exist centering constants 

B,, such that yp, tends to a continuous limit y, then (2.3) will achieve the same 
goal. 

Proof. Define y, by (2.1) with arbitrary 8,, and suppose that y, — y. 

If 6 denotes the imaginary part of (1) we conclude for ¢ = 1 that 

(2.5) c,(v,(1) — B,) > 6. 

Multiplying by if and subtracting,from y,— y we see that 

(2.6) Cal@a(S) — 1 — iv,(1)2] + yD) — if 

and this proves the assertion. > 

We begin by treating our convergence problem in a special case in which the 

solution is particularly simple. Suppose that the functions y, and yp are 
twice continuously differentiable (which means that the corresponding 
distributions have variances; see XV,4). Suppose that not only y,— y, 

but also y” — yp”. In view of (2.1) this means that 

+00 

(2.7) caf ety? F {dx} > —y"(f). 

By assumption c,x? F,{dx} defines a finite measure, and we denote its 

total mass by uw,. For =0 we see from (2.7) that wu, — —yp"(0). On 

dividing (2.7) by wu, we get on the left the characteristic function of a proper 
probability distribution, and as n-—» oo it tends to p"(2)/p"(0). It follows 
that w”(2)/y"(0) is the characteristic function of a probability distribution, 
and hence 

+0 

(2.8) —y"(2) =( e8* M{dz} 
—2 

where M isa finite measure. From this we obtain y by repeated integration. 

Bearing in mind that y(0) = 0 and that with our centering condition (1) 
must be real, we get 

+o ott _ 1 _ il sin zx 
(2.9) w(Z) =[ rr M{dz}. 

—c2 
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This integral makes sense, the integraid being a bounded continuous 
function assuming at the origin the value —4Z?. 

Under our differentiability. conditions the limit yw is necessarily of the 
form (2.9). We show next that with an arbitrarily chosen finite measure M 

the integral (2.9) defines an infinitely divisible characteristic function e”. 

However, we can go a step further. For the integral to make sense it is not 

necessary that the measure M be finite. It suffices that M attributes finite 

masses to. finite intervals and that M{—z, 2} increases sufficiently slowly 
for the integrals 

(2.10) Mt(x) = [ “y? M{dy}, M-(—2z) = [ “y? M{dy} 

to converge-for all x > 0. (For definiteness we take the intervals of inte- 
gration closed.) Measures defined by the densities |z|? dx with 0 <p <1 

are typical examples. We show that if M has these properties (2.9) defines 
an infinitely divisible characteristic function, and that a// such characteristic 
functions are obtained in this manner. For this reason it is convenient to 

introduce a special term for our measures. 

_Definition 1. A measure M_ will be called canonical if it attributes finite 
masses to finite intervals and the integrals (2.10) converge for some (and 
therefore all) x > 0. 

Lemma 2. If M is a canonical measure and v defined by (2.9) then e® ‘is 

an infinitely divisible characteristic function. 

Proof. We consider two important special cases. 

(a) Suppose that M is concentrated at the origin and attributes mass 

m> 0 toit. Then py(¢) = —m€?/2, and so e” is a normal characteristic 
function with variance m7}. 

(b) Suppose that M is concentrated on |x| > 7 where 7 > 0. In this 
case (2.9) may be rewritten in a simpler form. Indeed, x? M{dz} now 
defines a finite. measure with total mass u = M*(n) + M~(—7n). Accord- 

ingly, 2? M{dz}/u.= F{dx} defines a probability measure with character- 

istic function gy, and obviously p(¢) = u[p(¢) — 1 — ibf}, where 6 isa 

real constant. Thus in this case e” is the characteristic function of the 

compound Poisson type, and hence infinitely divisible. 
(c) In the general case, let m > 0 be the mass attributed by M to the 

origin, and put 

(2.11) v,(L) -[ eile | = iC sins M{dz}. 

jz{>n av 

Then 

(2.12) y(t) = -— > 5 e + lim y,(2) 
nO 
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We saw that en") is the characteristic function of an infinitely divisible 
distribution U,. If m>0 the addition of —m{?/2 to y,(¢) corresponds 
to a convolution of U, with a normal distribution. Thus (2.12) represents 
e” as the limit of a sequence of infinitely divisible characteristic functions, 
and hence e* is infinitely divisible as asserted. | : > 

We show next that the representation (2.9) is unique in the sense that distinct 

canonical measures give rise to distinct integrals. 

Lemma 3. The representation (2. 9) of y As unique. 

Proof. In the special case of a finite measure M- it is clear that the second 

derivative yw” exists and that —w”"({) coincides with the expectation of 

e** with respect to M. The uniqueness theorem for characteristic functions 
guarantees that M is uniquely determined by wy”, and hence by y. 

This argument can be. adapted to unbounded canonical measures,. but it 

is necessary to-replace the second derivative by an operation with a similar 

effect and applicable to arbitrary continuous functions. Such operations can 

be chosen in various ways (see problems 1-3). We choose the operation 
that transforms yp into the function y* defined by 

kh. 

213) © pQ= we — 57 | wE+ 9) ds, 

where A > O is arbitrary, but fixed.. For the function y defined by yO 9) 
we get / . . 

  

eM) rO= Z ef - K(2) M{dz} 
where we put for abbreviation oe . 

. ah 

This is a strictly positive continuous functicn assuming at the origin the value 

h®/6 and as x-—> +0 wehave K(x)-~ x. The measure A* defined by 
M*{dx} = K(x) M{dz} is therefore finite, and (2.14) states that w* is its 

Fourier transform. By the uniqueness theorem for characteristic functions 
the knowiedge of y* uniquely determines the measure M*. But then 
Midx} = K7'\x) M*{dzx} is uniquely determined and so the-knowledge of 
y enabies us to calculate the corresponding canonical measure (cf. problem 
3). e 

Qur next goal should be to prot: that lemma Z describes the totality ofvall 
infinitely divisibie characteristic functions, but to do this we must first solve 

the convergence problem described at the beginning of this section. We put 
it now in the following slightly ‘more general form: Let {+ be a sequence 
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of canonical measures and 

+o ey ar 

2.16) p=] SEE any + i,t 
where 5, is real. We ask for the necessary and sufficient conditions that 
¥,—>y where » is a continuous function. Note that functions y, defined 

by (2.1) or (2.4) are a special case of (2.16) with 

(2.17) M, {dz} = c,z? F, {dx} 

Assume y, — y, the limit y being continuous. The transforms defined 
by (2.13) then satisfy p* — y*, that is 

(2.18) [ “"eK(2) M,,{dx} > p" (5), 
— 00 

_where K is the strictly positive continuous function defined by (2.15). On 
the left we recognize the Fourier transform of a finite measure with total mass 

: +00 

(2.19) | Hn =|. K(x) M, {dz}. 

Clearly. u,, — y*(0). It is easily seen that «,—0 would imply p(f)= 0 
for all ¢, and hence we may suppose py*(0) = » > 0. Then the measures 
M* defined by . 

(2.20) M* {dz} = 1 K(2) M,{de} 

are probability measures, and. (2.18) states that their characteristic functions 

-tend to the continuous function y*(2)/p,(0). It follows that 

(2.21) | M*—> M* 
where M* is the probability distribution with characteristic function 
y*(2)/p,,(0). But y,. may be written in the form . 

: +o Ce 8 4 ire: 

2.22) y(t) = mq [ ESE Ke ide} + ib, 
The integrand is a bounded continuous function of z, ana so (2.21) implies 

that the integral converges. It follows that b,-—> 6b and our limit y is of the 

form 7 

(2.23) y(ty— af ASSO K-a(ay Mae} + ibe 
—da 

Since M* is a probability measure it is clear that the measure M defined by 

(2.24) M{dx} = uK~(x) M*{dz} 
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is canonical, and 

(2.25) yb) = [ = ats M{dx} + ibf. 

This shows that, except for the irrelevant centering term ib, all our limits 
-are of the form described by lemma 2. As already remarked, functions y, 
defined by (2.1) are a special case of (2.16), and hence we have solved the 
convergence problem formulated at the begipning of this section. We state 
the result as 

Theorem 1. The class of infinitely divisible characteristic functions is identical 

with the class of functions of the form e* with w defined by (2.25) in terms of a 
canonical measure M anda real number b. 

In other words, except for the arbitrary centering there is a one-to-one 

correspondence between canonical measures and infinitely divisible 
distributions. 

In the preceding section we have emphasized that the conditions 
M*— M™* and 6b, —b are necessary for the relation y,— y. Actually 

we have also shown the sufficiency of these conditions, since y, could be 

written in the form (2.22) which makes it obvious that py, tends to the limit 

defined by (2.23). We have thus found a useful limit theorem, but it is 
desirable to express the condition M*-»+ M* in terms of the canonical 
measures M, and M. The relationship between M, and M* is defined 
(2.22). In finite intervals K remains bounded away from 0 and oo, and so 
for every finite J the relations M*{I}—~ M*{I} and M,{I}— M{} 

imply each other. As x — oo the behavior of K is nearly the same as that 

of x-*, and hence M*{x, co} ~ M*+(x) where M+ stands for the integral 

occurring in the definition (2.10) of canonical measures. Thus proper 
convergence M* — M* is fully equivalent to the conditions 

(2.26) MAU} > M{B 

for all finite intervals of continuity for M, and 

(2.27) M7(%)—> M*(x),  M;,(x) > M~(z) 
at all points x > 0 of continuity. In the special case of canonical measures 

of the form M,,{dz} = c,? F,{dx} (with F, a probability distribution) 
these relations take on the form 

(2.28) caf 2 F {dz} > M{T} 
I 

and 

(2.29) c,[{| — F,(2)] ~ M*(2), C,F,(—2) > M~(—2). 

If J =a, 6 isa finite interval of continuity not containing the origin, then 
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(2.28) obviously implies c, F,,{7}—- M*(a) — M*(b) and so (2.29) may be 
taken as an extension of (2.28) to semi-infinite intervals. An equivalent 

condition is that no masses flow out to infinity in the sense that to each « > 0 
there corresponds a 7 such that 

(2.30) c,ll — F,(r) + F,(—7)] < 

at least for all m sufficiently large. In the presence of (2.28) the conditions 

(2.29) and (2.30) imply each other. [Note that the left side of (2.30) is a 

decreasing function of 7.] Sequences of canonical measures M,{dx} = 

= c,x* F, {dx} will occur so frequently that it is desirable to introduce a 
convenient term for reference. 

Definition 2. A sequence {M,} of canonical measures is said to converge 
properly to the canonical measure M if the. conditions (2.26) and i (2. 27) are 
satisfied. We write M,— M iff this is the case. 

With this terminology we can restate our finding concerning the con- 
vergence y,— y as follows. 

Theorem 2. Let M,, be a canonical measure and y,,. be defined by (2.16). 
In order that w, tends to a continuous limit wp it is necessary and sufficient 
that there exist a canonical measure M_ such that M,,— M, and that 
b, > 6. In this case wp is given by (2.25). | 

In the following we shall use this theorem only in the special case 

(2.31) YnlS) = Calgn(d) — 1 — 16,6). 

where 9, is the characteristic function of a probability distribution F,. 

Our conditions then take on the form 

(2.32) c,t F,(dz} > Midz}, —¢,(B,—b,) > b 
where we put again : te 

(2.33) Ba -{ sin x: F, {dz}. 
—oO 

By virtue of theorem !| of section ] our conditions apply not only to sequences 

of compound Poisson distributions, but also to’more general sequences of 
the form {9g}. 

Note on other canonical representations. The measure M is not the one encountered in . 

the literature. In his pioneer work P. Lévy used the measure A defined outside the origin 
by A{dz} = x*M {dz} and which represents the limit of nF, 7 az}. It is finite on intervals 
|[z| > 6 > 0 but unbounded near the origin. It does not take into account the atom of M 

at the origin, if any. In terms of this measure (2.9) takes on the form 

(2.34) y(Z) = Fo? + HE + lim fete —1 + if sin x] faz}. 
§>9 Jlal>6 
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‘This is (except for a different choice of the centering function) P. Lévy’s original canonical 
representation. Its main drawback is that it requires many words for a full description of 
all required properties of the measure A. 

Khintchine introduced the bounded measure K defined by K{dz} = (1+2%) M{adz} 
This bounded measure may be chosen arbitrarily, and Khintchine’s canonical represen- 
tation is given by 

+0 ‘ 2 

(2.35) x(L) = ibl +f ew -1-# | 1+ © K{az}. 

  

1 + 2? x 
—@® 

It is easiest to describe since it avoids unbounded measures. This advantage is counter- 
balanced by the fact that the artificial nature of the measure K complicates many argu- 
ments unnecessarily. Stable distributions and the example 3(/) illustrate this difficulty. 

2a. DERIVATIVES OF CHARACTERISTIC FUNCTIONS 

Let F be a probability distribution with characteristic function gy. It was shown in 
XV,4 that if F has an expectation « then has a derivative gy’ with o’(0) = iu. The 
converse is false. The differentiability of p is closely connected with the law of large numbers 
for a sequence {X,,} of independent random variables with the common distribution F, 
and hence many studies were concerned with conditions on F that will ensure the existence 
of gy’. This problem was solved by E. J. G. Pitman in 1956 following a partial answer by 
A. Zygmund (1947) who had still to impose smoothness conditions on gy. In view of the 

formidable difficulties of a direct attack on the problem it is interesting to see that its 
solution follows as a simple gorollary of the last theorem. 

Theorem. Each of the following three conditions implies the other two. 

(i) (0) = in. 
(it) AS t —> oo, 

. t 

(2.36) ttl — F(t) + F(t)] 0, { x F{dx\} — y.. 
—t 

(ili) The average (X,;+**-+X,)/n tends in probability to qu. 

Proof. The real part of y being even, the derivative g’(0) is necessarily purely imagin- 
ary. To see the connection between our limit theorem and the relation g’(0) = iu it is 
best to write the latter in the form 

(2.37) tlp(d/t) — 1] > ine, f+, 

If * runs through a sequence {c,} this becomes a special case of (2.31) with »,({) = 
= p(U/c,) and F,(2) = F(c,x). Thus theorem 2 asserts that (2.37) holds iff 

+00 

(2.38) ta” F{t dz} +0, ‘| sin x F{t dx} > pu. 
. —c« 

(a) Assume (2.36). An integration by parts shows that for arbitrary a > 0 

a a 

(2.39) if x F{tdz} < ‘| t2[1 — F(tx) + F(—t2z)] dz. 
—@ 0 

As i © the integrand tends to 0, and hence the same is true of the integral. Since 
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|f sin z/t — | < Cx? it follows easily that (2.38) is true and this entails (2.37). Conversely 

(2. 38) clearly implies (2.37). Thus conditions (i) and (ii) are equivalent. 

(b) According to theorem | of section 1 we have o"({/n) — et#S iff 

(2.40) n(y(C/n) — 1] + ive. 

In other words, the law of large numbers applies iff (2.37) holds when ¢ runs through the 

sequence of positive integers. Since the convergence of characteristic functions is auto- 
matically uniform in finite interva s it is clear that (2. 40) implies (2.37) and so the con- 
ditions (i) and (iii) are equivalent. 

That (2.36) represents the necessary and sufficient conditions for the law of large numbers 
(iii) was shown by different methods in theorem 1 of VII,7. » 

3. EXAMPLES AND SPECIAL PROPERTIES 

We list a few special distributions and turn then to properties such as 
existence of moments and positivity. They are listed as “‘examples’’ partly 
for clarity of exposition, partly to emphasize that the individual items are not 
connected. None of the material of this section is used in the sequel. 
Further examples are found in problems 6, 7, and 19. 

Examples. (a) Normal distribution. If M is concentrated at the origir. 

and attributes weight. o? to it, then (2.25) leads to y(Q) = — Bore and e* 
is normal with zero expectation and variance o”. 

(b) Poisson distribution. The standard Poisson distribution with expectation 
a has the characteristic function w =e” with y(¢) = «(e*—1). We 

change the location parameters so as to obtain a distribution. concentrated 
at points of the form —b + nh. This changes the exponent into. p(¢) = 
= a(e**—1) — ibf, which is a special case of (2:25) with M concentrated 

at the single point 4. The property that the measure M is concentrated at a 
single point is therefore characteristic of the normal and the Poisson distri- 
butions with arbitrary scale parameters. Convolutions of finitely many such 
distributions correspond to canonical measures with finitely many atoms. 
The most general measure M may be obtained as the limit of a sequence of 
such measures and so all infinitely divisible distributions are limits of con- 

volutions of finitely many Poisson and normal distributions. 
(c) Randomized random walks. In I1,(7.7) we encountered the family of 

arithmetic distributions attributing to r = 0, +1, +2,... probability 

(3.1) a,(t) = i (Pet2/ Pq); 

here the parameters p,g,f are positive, p+q=1, and J, is the Bessel 
function. defined in II,(7.1). The fact that {a,} satisfies the Chapman- 

Kolmogorov equation shows that it is infinitely divisible. Its characteristic 
function w = e” is easily calculated because it differs from the Schlémilch 
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expansion II,(7.8) merely by the change of variable u = Vplq e—*. The result 

(3.2) y() = —t + t(pe*+qe-*) 
shows that {a,(t)} is the distribution of the difference of two independent 
Poisson variables with expectations pt and gt. The canonical measure is 
concentrated at the points +1. 

(d) Gamma distributions. The distribution with density 

g.(x) = e-*xt1/T(2) 
for x > 0 has the characteristic function y,(¢) = (1—iQ)~* which is clearly 
infinitely divisible. To put it into the canonical form note that — 

  

(3.3) (log y(Q))’ = it(1—if)™ = it [ e*-* dx, 

Integration shows that ° 
co pile 

(3.4) log y,() = if < i e* dx. 
o- x 

Thus the canonical measure M is defined by the density tze~* for z > 0. 
Here no centering term is necessary since the integral converges without it. 

(e) Hyperbolic cosine density. We saw in XV,2 that the density {(x) = 
== 1/7 cosh x has the characteristic function w(¢) = 1/cosh (wf/2). To show 
that. it is infinitely divisible we note that (log w)” = —(m?/4)w2. Now w? 

is the characteristic function of the density f?* which was calculated in 
probiem 6 of II,9. Thus 

x 
dx.   

@ __ “+00 ite 

G3.5) ae log w(f) EC e 

Since (log w)’ vanishes at the origin we get 

e= — e? 

(3.6) log w(£) ={~ an — ite 
20 x e — & 

dz.   

z 

The canonical measure therefore has density x/(e* — e~*). For reasons of 

symmetry the contribution of the term ifx vanishes, and since the integral 
converges without it, this term may be omitted from the numerator. 

(f) P. Lévy’s example. The function 

+00 

(3.7) wl) = 2 ¥ 2 *[cos 2*6—1] 
k=—0O 

is of the form (2.9) with M symmernt and attributing weight 2* to the 

points +2* with k =0,+1+42,,.... (The series converges because 

1 — cos 2*{ ~ 2-102 as k—» —oo.) The characteristic function w.= e” 
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has the curious property that w?(f) = w(2¢), and hence w?(Q) = w(2*0). 
For stability (in the sense introduced in VI,1) one should have on(t) = 
= w(a,¢) forall n, but this requirement is satisfied only for n = 2, 4, 8, - 

In the terminology of section 9 this. w belongs to its own domain of partial 
attraction, but it does not have a domain of attraction. (See problem 10.) 

(g) One-sided stable densities. We proceed to calculate. the characteristic 

functions corresponding to the canonical measures concentrated on 0, © 

such that 

(3.8) > oe M{0, x} = Cx?-* 0<a<2, C>0. 

This example is of great importance because it will turn out that from it we 
may derive the general form of stable characteristic functions. 

(i) If 0 < « <1 we consider the characteristic function w, = e’« with 

Cl. ae 

; Lae.   (3.9) yl) = C(2—a) rs me 

This differs from the canonical form (2.9) by the omission of the centering 
term, which is dispensable since the integral converges without it. To 
evaluate the integral we suppose {> 0, and consider it as the limit as 
A— 0+ of 

/ | | ee we — 1 _l 4 . Te “cite eq = 
(3.10) oti * - 7 0 ° ° a 

=e “Pd — a)(a — ity" 

(for the characteristic function of gamma densities see XV,2). Now 

A= it = (8+ Bee 
where 6 is the argument of A— it, that is, tan@ = oa. Obviously 

6 +» —n/2 as A—0+, and hence (A—il)* + Ce-i#7/2,, We write the final 

‘result in the form 

(3.11) w(t) = tt C EGHY) inert 
(aa | 20. 

For €<0 one gets p,(¢) as the conjugate of p,(—{). 
(ii) When 1 Ca <2 we put 

ibe _ ans 
(3.12) y(t) = c{" eentate dex 

This differs from the canonical form (2.9) by the more convenient centering 

to zero expectation. An integration by parts reduces the exponent in the 
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denominator and enables us to use the preceding result. A routine cal- 
culation shows that y, is again given by (3.11). (The real part is again 
negative, because. now cos 7/2 < 0.) 

(iii) When « = 1 we use the standard form 

co itz —_ j{rad 

(3.13) vid) =C [ eet isin ey, 
x 

We know from XV,2 that (1—cos x)/(7a?) isa probability density, and hence 
the real part of y,(2} equals —47{. For the imaginary part we get 

(3.14) { sin fx — {sin ® 4, = lim | sin ba cf sin 2 io| 

9 at €-+0 € x € zx 

When ¢> 0 the substitution fx = y reduces the first integral to the form 
of the second, and the whole reduces to 

4 Ci 

(3.15)  —flim fe he de = —flim { siney 4Y _ _riogt. 
€-+0 ‘€--0 Jl ¥y 

Thus finally 

G.16) pid) = C(—b7l—if log 2), C> 0. 

Of course, y,(—{) is the conjugate to »,({). 
When « #1 the characteristic function w = e’* enjoys the property 

that w"(¢) = w(n/*2). This means that w@ is strictly stable according to 
the definition of VI,1: The sum of independent variables X,,...,X,, with 

characteristic function « has the same distribution as n/*X,. When « = 1 

we have w"(C) = w(nZje-* 2", and hence the distribution of the sum 

differs from that of n/*X, by its centering. Thus y, is stable in the wide 
sense. 

[For various properties of, and examples for, stable distributions see 
_VI,1-2. Additional properties will be derived in section 5. In section 4c we 
shall see that when « <1 the distribution is concentrated on the positive 
half-axis. This is not true for « # 1.] 

(A) General stable densities. To each y, of the preceding example there 

corresponds an analogous characteristic function induced by the canonical 
measure with the same density, but concentrated on the negative half-axis. 
To obtain these characteristic functions we have merely to change i into —/ 
in our formulas. One can derive more general stable characteristic functions 

by taking linear combinations of the two extreme cases, that is, using a 

canonical measure M such that for x >0 

    

  

(3.17) M{0, x} = Cp2z**, = M{—a, 0} = Cqa**, 

Here p > 0, ¢ >0 and p +q = 1. From what was said it is clear that the 
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corresponding characteristic function w = e” is given by 

T3—a) TH . 7a 
3.18 = |f|/* C ———~ — — a 

( ) y(f) = 12 ne 5 + i(p—q) sin | 

ifO<ae<1orl<a<2, while for «=1 

(3.19) p(t) = —|C] -C[4a + i(p—gq) log |Z1); 

here the upper sign applies when ¢€ > 0, the lower for £ <0. Note that 
for «=2 we get y(Z) = —4(p + q)C?, that is, the normal distribution. 

It corresponds to a measure M concentrated at the origin. | 
It will be shown in section 5 that (neglecting arbitrary centerings) these 

formulas yield the most general stable characteristic functions. In particular, 

all symmetric stable distributions have characteristic functions of the form 

ea" with a > 0. > 

4. SPECIAL PROPERTIES 

In this section w =e stands for an infinitely divisible characteristic 
function with p given in the standard form 

+0 ett _ 

(4.1) y(S) -[ oat SE Mae } + ibe 

where M is a canonical measure and 6 a real constant. By the definition 

of canonical measures the integral 

(4.2) | M*(x) = [ “y? Mi dy} 
converges for all x > 0, and a similar statement holds for x < 0. 

_ The probability distribution with characteristic function will be denoted 

by U. 
(a) Existence of moments. It was shown in XV,4 that the second moment 

of U is finite iff w is twice differentiable, that is, iff yp” exists. The same 

argument shows that this is the case iff the measure M is finite. In other 

words, for a second moment of U to exist it is necessary and sufficient that the 

measure M be finite. 
A similar reasoning (see problem 15 of XV,9) shows more generally that 

for any integer k > 1 the 2kth moment of U exists iff M has a moment of 

order 2k — 2. 

(b) Decompositions. Every representation of M=M,+ M, of M as 

the sum of two measures induces in an obvious manner a factorization 

w = ee % of w into two infinitely divisible characteristic functions. If 
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M is concentrated at a single point the same is true of M, and M,; in 
other words, if @ is normal or Poisson,? the same will be true of the two 
factors e”! and e*?, But any other infinitely divisible w can be split into 
two essentially different components. In particular, any non-normal stable 
characteristic function can ‘be factorized into non-stable infinitely divisible 
characteristic functions. 

A particularly useful decomposition w = ebiehs is obtained by represent- 
ing M as a sum of two measures concentrated on the intervals |z| < n 

and |z| > 7, respectively. For the latter we express M in terms of the 

measure N defined by N{dx} = 2-2 M{dzx}. Thus we write 

(4.3) vO = vil) + val + 180 
where 

(4.4) wo=~ = uaa) 

(4.5) vAd=| (et —1N{ae} 
and the difference 5 — f accounts for the changed centering terms in (4.4) 
and (4.5). 

Note that e”? is the characteristic function of a compound Poisson distri- 
bution generated by a probability distribution F such that F{dx} = c N{dzx}, 

or 

(4.6) 1 — F(x) =c M*(z), z>0. 

The function e* is infinitely differentiable. We see thus that every infinitely 
divisible distribution U is the convolution of a distribution U, possessing 

moments of all orders and a compound Poisson distribution U, generated by 
a probability distribution F with tails proportional to M+ and M-. It 
follows in particular that U possesses a kth moment iff the kth moment of 
F exists. 

(c) Positive variables. We proceed to prove that U is concentrated on 

0,0 iff? 

(4.7) yf) = { ° ool P{dx} + ib¢ 

2 By theorem 1 of XV,8 the normal characteristic function does not admit of any factor- 
ization into non-normal characteristic functions. An analogous statement holds for the 
Poisson distribution (Raikov’s theorem). 

3 This remark was made by P. Lévy and is also an immediate consequence of the Laplace 
transform version XIII,(7.2). It is interesting that without probabilistic arguments a formal 
verification of the assertion is cumbersome (see G. Baxter and J. M. Shapiro, Sankhya, 

vol. 22.) 
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where b >0 and P is a measure such that (1+x)~ is integrable with 
respect to P. (In the original notation of (4.1) we have P{dx} = x7 
M{dzx}.) 

Assume U concentrated on [0, 00) and consider the decomposition 

described by (4.3)-(4.5). The origin is a point of increase for the compound 

Poisson distribution U,. The distribution U, has zero expectation, and 

therefore some point of increase s < 0. It follows that s + 8 isa point of 

increase for U, and hence f > 0. The same argument shows that U, can 
have no normal component, and therefore the contribution of U, must 
tend to0 as 7-0. Finally, if f¢ is a point of increase for the probability 
distribution F generating U,, then nt is a point of increase for U, itself. 

It follows that F, and hence N, are concentrated on the positive half-axis, 

and so the integral in (4.5) actually extends only over x > 7. The integrand 
vanishes at the origin, and therefore in the passage to the limit 7— 0 the 

measure N need not remain bounded. However, for x > 7 we can switch 

from the measure N to P{dx} = x N{dx} (which is the same as x~1 M{dzx}). 

Near the origin the new integrand (e%*—1 2! is bounded away from 0, 

and hence P must assign finite values to neighborhoods of the origin. 

In this way we obtain the representation (4.7). 
Conversely, if w is defined by (4.7) then our argument shows e” to be 

the limit of characteristic functions of compound Poisson distributions 

concentrated on 0, 0. The same is therefore true of the limit distribution U. 
(d) Asymptotic behavior. The result concerning the existence of moments 

appears to indicate that the asymptotic behavior of the distribution function 
U as x» +00 depends only on the behavior of the canonical measure M 

near +00 or, what amounts to the same, on the asymptotic behavior of the 

functions M+ and M~. Rather than attempting to prove this conjecture 

in the greatest possible generality we consider a typical situation. 

Suppose that M+ varies regularly at oo, that is, 

(4.8) M*(x) = 2 L(x) 

where € >0 and L is slowly varying. Then 

(4.9) 1 — U(x) ~~ Mt(z), Z—> 0. 

Proof. Let S be a random variable having U for distribution function. 

Consider the canonical measure M as a sum M, + M, + Mj, of three 
——_ +-———| —___—_ 

measures concentrated on the intervals 1,0, —1,1, and —o, —1. As 

shown under (b), this induces a representation S = X, + X, + X,; + # asa 
sum of three independent random variables such that: X, has a compound 
Poisson distribution U, generated by a probability distribution F concen- 

trated on 1, © and defined by (4.6); the canonical measure corresponding 
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+—1 
to X, is concentrated on —I,1; finally X3 is defined as X, except that 

—0oo, 1 takes over the role of 1, 00. It is not difficult to show that 

(4.10) P{X, > 2} ~ M+(2), bm» 
(see theorem 2 of VIII,9). To prove the assertion (4.9) it suffices therefore 
to show that 

(4.11) P{S > 2} ~ P{X, > 2}, 2 —> 0. 

In this connection the centering constant plays no role and we assume 
fp =0. Then for every « > 0 

(4.12) P{S > z} > P{X, > (I+e)z} - P{X, + X; > —ez}. 

On the other hand, since X, <0 

(4.13) P{S > 2} < P{X, > (1 — ex} + P(X, > ez}. 

As x-> 0 the last probability in (4.12) tends to 1, while the last probability 
in (4.13) decreases faster than any power x~* because X, has moments of 

all orders. Thus (4.12) and (4.13) imply the truth of (4.11). 
(e) Subordination. if e” is infinitely divisible, so is es” for every s > 0. 

By randomization of the parameter s we obtain a new characteristic function 
of the form . 

(4.14) | yf) = [er {as} 
0 

where G is an arbitrary probability distribution concentrated on 0, ©. 

The characteristic function g need not be infinitely divisible, but it is easily 
verified that if G = G, *% G, is the convolution of two probability distribu- 
tions then (with obvious notations) g = 9,9. It follows that if G is 
infinitely divisible then (4.14) defines an infinitely divisible characteristic 
function. 

This result has a simple probabilistic interpretation. Let {X(t)} stand for 

the variables of a process with independent increments such that X(t) has 
the characteristic function e’. If T is a positive variable with distribution 
G then may be interpreted as the characteristic function of the composite 
random variable X(T). Suppose then that G is infinitely divisible with 
characteristic function e’. We may envisage a second process {T(t)} with 
independent increments such that T(t) has the characteristic function e’’. 
For each t > 0 we get a new variable X(T(t)), and these are again the 

variables of a process with independent increments.* Thus T(t) serves as 

4If G has the Laplace t transform e—?(4) then T(t) corresponds to the Laplace trans- 
form e—te(4) and it is easily verified that the characteristic function of X(T(r)) is given by 
e—tpe(—y),
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operational time. In the terminology of X,7 the new process {X(T(5))} is 
obtained by subordination, with {T(1)} as directing process. We have now 
found a purely analytic proof that the subordination process always leads to 
infinitely divisible distributions. 

5. STABLE DISTRIBUTIONS AND THEIR 
DOMAINS OF ATTRACTION 

Let {X,} be a sequence of mutually independent random variables with a 
common distribution F, and put S,=X,+---+xX,. Let U be a 
distribution not concentrated at one point. According to the terminology 
introduced in VI,1 we say that F belongs to the domain of attraction of U 
iff there exist constants a, >0O and 5b, such that the distribution of. 
a71S,, — nb, tends to U. The exclusion of limit distributions concentrated 
at a single point serves to eliminate the trivial situation where 5, — 0 
while a, increases so rapidly that a,1S,, tends in probability to zero. 

We wish to rephrase the definition in terms of the characteristic functions 
g and w of the distributions F and U. According to lemma 4 of XV,]1 
the distribution U is concentrated at one point iff |w(Q)| = 1 for all C. 
Accordingly, gy belongs to the domain of attraction of the characteristic 
function w if |@| is not identically one, and there exist constants a, > 0 
and b, such that 

(5.1) (p(Cla,)e?"*)" —> o(f). 
It was shown in VI,1 that the limit w is necessarily stable, but we shall now 

develop the whole theory anew as a simple consequence of the basic limit 
theorem of section 2. In conformity with the notations used there we put 

(5.2) Rab) = P(Cla,e Pr", F(x) = F(a,(+b,)). 
According to theorem 1 of section | the relation (5.1) holds iff 

(5.3) nlvn(S)—1] > y(2) 
for all £, where w = e”. 

Consider first the special case of a symmetric F. Then b, = 0. We know 
from theorem | of section 2 that (5.3) implies the existence of a canonical 
measure M such that nz F,{dx} —~ M{dx}. To express this we introduce 
the truncated moment function 

(5.4) w(x) = [ y’ F{dy}, x > 0. 
Then at all points of continuity ~ 

  

(5.5) = H(a,x) > M{—za, x} 
a, 
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and 

(5.6) n{1—F(a,x)] > Mt(z) 

where . 

(5.7) Mee) =["y? May} 
The relation p(C/a,) > 1 implies a,—> oo, and therefore S,/a, and 

S,/@n4: have the same limit distribution U. It follows that the ratio a,,,,/a, 
tends to 1, and hence lemma 3 of VIII,8 applies to (5.5). We conclude that 
fe varies regularly and the carfonical measure M is of the form 

(5.8) M{—a, z} = C2**, z>0 

with a <2. (The exponent is denoted by 2— a in conformity with a 
usage introduced by P. Lévy.) If « = 2 the measure M is concentrated at 
the origin. The convergence of the integral i in (5.7) requires that « > 0; for 
0<a<2 we find 

(5.9) M*(2) = C2—% 
a 

  x, x> 0. 

A similar argument applies to unsymmetric distributions F, but instead of 
(5.6) we get the less appealing relations 

(5.10) all — Fla,(x-+5,)]> M+), nF(a,(—2-+6,)) > M-(—2), 
and an analogous modification applies to (5.5). However, the fact that 

- Pr()—> 1 and a,—> co implies 6,0, and so (5.10) is actually fully 
equivalent to (5.6) and the analogous relation for the left tail. 

We see thus that (5.6) holds whenever F belongs to a domain of attraction 
In view of lemma 3 of VIII,8 this means that either M+ vanishes identically, 
or else the tail 1 — F varies regularly and M+(x) = Ax-*. Then (5.7) 
shows that on the positive half-axis the measure M has the density Aaz'—*, 
The same argument applies to the left tail and also to the tail sum;' the 
exponent « must therefore be common to the two tails. 

If both tails vanish identically M is concentrated at the origin. In no 
other case can M havean atomat theorigin. Thisis so because the canonical 
measure °M corresponding to the symmetrized distribution °U is the sum of 
M and its mirror image with respect to the origin, and we saw that °M is 
either atomless or concentrated at the origin. Accordingly, when a < 2 
the canonical measure M is uniquely determined by its densities on the two 

half-axes and these are proportional to |z|!~*. For intervals —y,z con- 

taining the origin we have therefore 

(5.11) M{=y, =} = C(qy?* + px), 
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where 0<a<2, C>0, and p+q=1. For «a =2 the measure is 
concentrated at the origin. In accordance with (5.7) this is equivalent to 

—- 
  

  

—-a — oo, M(—2)= 
a a 

(5.12) M*(2) = x 

The characteristic function corresponding to these measures are given by 
(3.18) and (3.19). They show clearly that our distributions are stable in 

the sense that U"* differs from U only by location parameters. This means 
that each stable distribution belongs to its own domain of attraction, and we 

have therefore solved the problem of finding all distributions possessing a 
domain of attraction. We record this in 

Theorem 1. A distribution possesses a domain of attraction iff it ix stable. 
(i) The class of stable distributions coincides with the class of infinitely 

divisible distributions with canonical measures given by (5.11). 
(it) The corresponding characteristic functions. are of the form w(t) = 

= et with w defined by (3.18)-(3.19), and 0 < « <2. 

_ (iti) As x —> oo the tails of the corresponding. distribution U satisfy 

2—% 2-4 
(5.13) x[1—U(x)]} + Cp—— , —- x#°U(— 2) + Cq ; 

x are 

  

  

The last statement is a direct corollary of (5.6) if one remembers that U 
belongs to its own domain of attraction with norming constants given by 
a, = nl*, [Alternatively, (5.13) represents a special case of the result obtained 

in 4(d).]. | : 
Note that each of the three descriptions ‘ in the theorem determines U 

uniquely up to an arbitrary centering. . 

_, Before returning to the investigation of the conditions under which a 
distribution F belongs to the domain of attraction of a stable distribution 

we recall a basic result concerning regular variation. According to the 

definition in VIIT,8 a function L varies slowly at infinity if for each fixed 
z>0 a 

(5.14) . Liz) oy -  t—> 0.- 
~ L(t) _ 

In this case we have for arbitrary 5 > 0 and all x sufficiently large 

(5, 15) Fe La) < 2? 

A function | varies regularly if it is of the form u(t) = x L(x), We con- 

sider in particular the truncated moment function y defined by (5.4). 

Applying theorem 2 of VIII,9 with {= 2 and 7» = 0 to the distribution 

function on 0, co defined by F(z) — F(—x), we obtain the following 
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important result: 

If uw varies regularly with exponent 2 ~ « (where 0 <a <2) then 

o{l.— F(x) + F(—2)] 2-2 

[(x) | a 
Conversely, if (5.16) is true with « <2, then pw and the tailsum 

1 — F(z) + F(—z) 

(5.16)   

vary regularly with exponents 2— «a and — 4, » respectively. If (5. 16) holds 
with a= 2 then mw varies slowly. 

In deriving (5.7) we saw that for a symmetric. F to belong to a domain of 

attraction it is necessary that the truncated moment function yu varies 
regularly: 

(5.17) (2) ~ x?* L(2), x—> 00, 

where L varies slowly. We shall now see that this ts true also. for un- 

symmetric distributions. When « = 2. this condition turns out to be 
sufficient, but when a < 2 the canonical measure (5.11) attributes to the 

positive and negative half-axes weights in the proportion p:q and it turns 

out the two tails of F must be similarly balanced. 
We are now in a position to prove the basic 

Theorem 2. (a) In order that a distribution F belong to some domain of 
attraction it is necessary that the truncated moment function pw varies 

regularly with an exponent 2— a (0<a< 2). [That is, (5.17) holds.] 
(b) If « = 2, this condition is also sufficient provided F is not concentrated 

at one point. 
(c) If (5.17) holds with O0<a <2 then F belongs to some domain of 

attraction iff the tails are balanced so thatas x > © 

L—F@) F(-) 
1—F@a)+F(—2) 1 — F(a) + F(—2) 

‘Note that nothing 1s assumed concerning the centering of F. The theorem 

therefore implies that (5.17) either holds with an arbitrary centering or with 
none. The truth of this is easily verified directly except that when F 1s 
concentrated at a single point ¢ the left side in (5.17) vanishes identically for 

the centering at rf, and varies regularly for all other centerings. 
The theorem was formulated so as to cover also convergence to the normal 

distributions. When a <2 it appears more natural to express the main 
condition in terms of the tailsum of F rather than '.oo. The following 

corollaries restate the theorem in equivalent forms. 

(5.18) 
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Corollary 1. A distribution F not concentrated at one point belongs to the 
domain of attraction of the normal distribution iff varies slowly. 

This is the case iff (5.16) holds with « = 2. 

Needless to say, yz varies slowly whenever F has a finite variance. 

Corollary 2. A distribuition F belongs to the domain of attraction of a stable 
distribution with exponent « < 2 iff its tails satisfy the balancing condition 
(5.18) and the tailsum varies regularly with exponent «a. 

The latter condition is fully equivalent to (5.16). 

Proof. (a) Necessity. Suppose that the canonical measure of the limit 
distribution U is given by (5.11). In the process of deriving this relation 
we saw that a distribution belonging to the domain of attraction of U 
satisfies (5.6) and its analogue for the left tail, and so 

(5.19) nll — F(a,2) + F(—a,x)] > M*(x) + M-(—2.) 
Assume first « < 2, so that the right side is not identically zero. As 

already mentioned, lemma 3 of VIII,8 then guarantees that the tailsum 
1 — F(x) + F(—2) varies regularly with exponent —«. But then (5.16) 

holds and so yw varies regularly with exponent 2 — «. The balancing con- 

dition (5.18) is now an immediate consequence of (5.6). 
There remains the case « = 2. The left side in (5.19) then tends to zero, 

and thus the probability that |X,| > a, for some k <n tends to zero. In 
order that S,/a,, does not tend in probability to zero it is therefore necessary 
that the sum of the truncated second moments of X,a_>! be bounded away 

from 0. But 

(5.20) Han) > © 
: 1 — F(a,) + F(—a,) 

  

and hence (5.16) holds with « = 2. This implies the slow variation of y, 
and so our conditions are necessary. 

(b) Sufficiency. We shall not only prove that our conditions are sufficient, 
but shall at the same time specify norming constants a, and 5, that will 

guarantee convergence to a prescribed stable distribution. This is done in 

theorem 3. > 

The formulation of theorem 3 assumes knowledge of the fact that distri- 
butions in any domain of attraction with « > 1 possess expectations. In 
the proof we shall require additional information concerning the truncated 
first moments. It is natural to formulate these results in a more general 
setting, although we shall require only the special case B = 1. 

Lemma. A distribution F belonging to a domain of attraction with index 
a possesses absolute moments m, of all orders. B < a. If « <2 no moments 

of order B > « exist. 
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More precisely, if B <a thenas t—> @ 

  

  

t?- 2—a 
5.21 — xl? F{dx} > (5.21) Odeo et 
while for «<2 and B>«a 

(5.22) [ |x|? F{dx} ~ * {1 — F(t) + F(—)). 
jal <t p-—« 

(Note that in each case the integral is a regularly varying function with 
exponent # — «.) 

Proof. The relations (5.21) and (5.22) represent the general form (5,15) | 

and are direct consequences of theorem 2 in VIII,9 applied to the distribution 

defined on 0, 00 by F(x) + F(—z). For (5.21) set €¢.=2 and » = B and 
n= O. > 

It is implicit in the proof of theorem 2 that the norming constants a, must 
satisfy the condition 

(5.23) Mn) _, 
an 

If uw varies regularly [satisfies (5.17)] such a, exist: one may define a,, 
as the lower bound of all x for which nx~*u(x) < C. Because of the regular 
variation we have then for x > 0 

(5.24) midan?) _, Cx 
a 

This means that the mass attributed by the measure nz? F{a, dx} to any 

symmetric interval —z, x tends to M{—z, x}. In view of (5.16) the relation 
(5.24) automatically entails the analogous relation (5.19) for the tailsum of F. 

When « = 2 the right side is identically zero; when a <2 the balancing 
condition (5.18) guarantees that also the individual tails satisfy the required 
conditions 

    

2—a _« 2—a _, 
x (5.25) nfl — F(a,x)]— Cp x nF(—a,2) > C, , 

a . 

the right sides being identical with M*+(z) and M(x). [Incidentally, when 

a <2 the relations (5.25) in turn imply (5.24).] 
We have thus shown that the measures nz” F{a, dx} tend properly to the 

canonical measure M. By theorem 2 of section 2 this implies that 

(5.26) | 
+o (2 1 _ ave +o ptt 4 — jl sj . { Maia ibsins a pig da} —> [ eet ie sin uate}. 2 2 J~oco x" x 

From this it is now easy to derive 
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Theorem 3. Let U be the stable distribution determined (including centering) 
by the characteristic function (3.18) if « #1 or (3.19) if a =1. 

Let the distribution F satisfy the conditions of theorem 2, and let {a,} 

satisfy (5.23). 
(i) I O<a<1 then o*(Cfa,) > wo(F = er. 

(ii) Jf 1<a<2 the same is true provided F is centered to zero 
expectation. 

(iii) If « = 1 then 

(5.27) (p(E/a,)eP*8)" — w(t) = er, 
where ‘ese . 

(5.28) b, =| sin — F{dz}. 
. —2 a, 

We have thus the pleasing result that when « < 1 no centering procedure 
is required, while for « > | the natural centering to zero expectation suffices. 

Proof. (1) Let a <1. The integral defining p(¢) in (3.18) differs from the 

right side in (5.26) in that the term if sinz is missing. We show that these 
terms may be omitted also in (5.26) so that 

  

+00 eft — 1 

(5.29) I -nz* F{a,, dz} + 
x —o 

         

Outside a neighborhood of the origin the integrand’ is continuous, and since 
nx? F{a, dx} —» M{dz} the relation (5.29) holds if an interval |x| <6 1s 
cut out of the domain of integration. It suffices therefore to show that the 
contribution of |x| <6 to the integral on the left can be made arbitrarily 
small by choosing 6 sufficiently small. Now this contribution is dominated 

by 

(5.30) n { |z| F{a,, dz} = 2 | ly| Fay}, 
Jal <6 An Jly| <and 

and (5.22) with B = 1 shows that the right side is ~(2 — a/(1 — «))Cor* 

which tends to zero with 6. 

Thus (5.29) holds. It can be rewritten in the form n[p(C/a,) ~ 1] > (2), 
and by theorem 1 of section 1 this is equivalent to the assertion 

p"(L/a,,) + log p(Q). 
(ii) Let « > 1. The argument used under (i) carries over except that the 

modified version of (5.26) now takes the form 

+o lx ; co ice ; 

(5.31) [ ee al = ile Bla, dx} > { ee ee tae. 
zx — 00 v ew — 

To justify it we have to show that the contribution of |z| > ¢ to the integral 
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on the left can be made arbitrarily small by choosing ¢ sufficiently large. 
This follows directly from (5.21). 

(iii) Let a = 1. No modification is required in (5.26), but to show that 
this relation is equivalent to the assertion (5.27) it is necessary to prove that 
for fixed Co 

(5.32) @(Lla,) ~~ erlolS/an)—A1 

or, what amounts to the same, that 

(9.33) n|p(E/a,) — 1? +0. 
For 8 <1 the absolute moment m, Of F is finite. From the obvious 

inequality |e‘ — 1| <2 |t\/* we conclude that |p(C/a,) — 1| < 2m, \C|%a_* 
and so the left side in (5.33) is O(na_*). But the defining relation (5.23) 
Shows that n = O(a'**) for every «€ > 0, and so (5.33) is true. > 

Concluding remark. The domain of attraction of the normal distribution must not be 
confused with the notion of the “domain of normal attraction of a stable distribution U 
with exponent a* introduced by B. V. Gnedenko. A distribution F is said to belong to _ 
this domain if it belongs to the domain of attraction of U with norming coefficients 
a, = ml*, The delimitation of this domain originally posed a serious problem, but 
within the present setup the solution is furnished by the condition (5.23) on the norming 
constants. A distribution F belongs to the “normal’’ domain of attraction of U iff 
x“[1 — F(z)] > Cp and x*F(—z)-—»Cq as «oo. Here C>0 isaconstant. (Note, 
incidentally, that in this.terminology the normal distribution possesses a domain of non- 
normal attraction.) ~ 

*6, STABLE DENSITIES 

It seems impossible to express stable densities in a closed form, but 
series expansions were given independently by Feller (1952) and H. Berg- 
strém (1953). They contain implicitly results discovered later by more compli- 
cated methods, and they provide a good example for the use of the Fourier 
inversion formula (although complex integration is used). We shall not 
consider the exponent a = 1. 

For ¢>0 we can put the stable characteristic functions in the form 
e~%", where a is acomplex constant. Its absolute value affects only a scale 
parameter so that we are free to let a have a unit modulus and write 
a = e7/2 with y real.. Thus we put 

(6.1) y(0) = — ILI + et" 
where in + the upper sign prevails for ¢ > 0, the lower for <0. [See 
the canonical form (3.18).] The ratio of the real and imaginary parts are 

* This section treats a special topic and should be omitted at first reading. 
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subject to inequalities evident in (3.18); with the present notations for -e 
to be stable it is necessary and sufficient that 

a if 0<a<il 
(6.2) lvls . 

2—4 if t<a<2. 

Since e¥ is absolutely integrable the corresponding distribution has a 
density. It will be denoted by p(x; a, y),. and we proceed to calculate it 

from the Fourier inversion formula XV,(3.5). Knowing that p_ is real and 
that y(—¢) is the conjugate of (¢) we get 

(6.3) P(z34, y) = wt Re| en tae etR 

0 

It suffices to calculate this function for x > 0 since 

(6.4) P(—2; &, vy) = p(z; a, —y). 

(a) The.case « <1. Consider the integrand as a function of the complex 
variable £. When x >0 and Im £-» —oo the integrand tends to 0 owing 
to the dominance of the linear term in the exponent. This enables one to 
move the path of integration to the negative imaginary axis, which amounts 
to using the substitution ¢ = (t/x)e—#" and proceeding as if all coefficients 

were real. ‘The new integrand is of the form e~t-**. The exponential expan- 

‘sion for e~** and the familiar gamma integral lead without further artifice to 

(6.5) p(—x;a,y) =,Re— se (-= exp [FZ -29). 

(b) The case 1 < «<2. The use of the formal substitution 

¢ = t* exp (—firy/a) 

can be justified as in the case «a <1. The new integrand is of the form 
—1 - . aol . . 

et ett ya a, Expanding e~* into an exponential series we get 

P(—%3 % y) = | 

(6.6) = = Re exp (-1 2) see (ie exp |i sl). 

Changing the summation index n to k —1 and using the familiar recursion 
formula ['(s+1) = sI(s) leads to 

(6.1) p(—2;a,y) =— Re grt th) (—s exp [i = y—a))). 
Wx k! 

We have thus proved 
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Lemma 1. For x >0 and 0<a<1 

(6.8) p(z; a, y) = SEGA) (_ 
TWirml k! 

For x >0 and ca? 

a*)* sin a (y—«). 

(6.9) pa; a, y) = = StH ( aff sin £7 (ya). 
WL k=l 

The values for x <0 are given by (6.4). 

Note that (6.8) provides asymptotic estimates for 2-—> oo. A curious 
by-product of these formulas is as follows: 

Lemma 2. If }<a <1 and x >O0 then 

1 of1 1. | 
(6.10) ce | et de 2 on .7) = P(x; a, y*) 

where y* = a(y+1) — 1. 

A trite check shows that y* falls within the range prescribed by (6.2). 
The identity (6:10) was first noticed. (with a complicated proof} by V. M. 
Zolotarev. . 

7. TRIANGULAR ARRAYS 

The notion of a triangular array was explained in VI,3 as follows. For 
each n we are given finitely many, say r,, “independent random variables 
X,.n (k = 1,2,...,7,) with distributions F,,, and characteristic functions 

Yx.n. We form the row sum S, = X,, +:-'+X,_,, and denote its 
distribution and it characteristic function by U, and w,, respectively. 

For reasons explained in VI,3 we are interested primarily in arrays where the 
‘influence of individual components is asymptotically negligible. To ensure 
-this we imposed the condition VI,(3.2) that the variables X,,,, tend in 
probability to zero uniformly in k = 1,...,7,. In terms of characteristic 
functions this means that given « > 0 and t, >0 one has for all 7 

sufficiently large 

(7.1) I — Geni <e for \N< Gy k=l... ate 
Such an array is called a null array. 

In effect sections | and 2 are concerned with triangular arrays in which the 

distributions F,,,, do not depend on k, and such arrays are automatically 

null arrays. The condition (7.1) enables.us to use the theory developed in the 

first two sections. In particular, it will be now shown that the main result 

carries over to arbitrary-null-arrays: if the distributions of the row-sums S,, 
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tend to a limit, the latter is infinitely divisible.’ We shall find precise criteria 
for the convergence to a specified infinitely divisible distribution. 

For the reader’s convenience we recall that a measure M is canonical if it 
attributes finite masses M{I} to finite intervals and is such that the integrals 

(7.2) M?(x) = [ y* M{dy}, m(—2) =[ y~* M{dy} 

exist for each x > 0. (Definition | of section 1.) 
To simplify notations we introduce a measure M,, defined by 

(7.3) M, {dz} => 2? F,,{dz}. 

This is the analogue to the measures nz? F,{dzx} in the preceding sections. By 
analogy to (7.2) we put for x > 0 | 

(14) MA) = SIL — Fh Mi) = 3 FPral—2). 
Extensive use will be made of truncated variables, but the standard trun- 

cation procedure will be modified slightly in order to avoid trite complications 
resulting from the use of discontinuous functions. The modified procedure 
will replace the random variable X by the truncated variable 7(x) where 7 

is the continuous monotone function such that 

(7.5) t(x)=2 for |x| <a, t(x)== +a for |x| <a 

[obviously 7(—2x) = —7(x)]. For the expectations of the truncated variables 

we. write 

Baym = E(7(X,.,n)) 

b,, = ¥ Bes B, => Few 

Theoretically it would be possible to center the. X,,, in such a way that 
all 8, vanish. This would simplify arguments, but the resulting criterion 
would not be directly applicable in many concrete situations. However, it is 

usually possible to center the X,,,, so as to render the #,,, small enough 

that B, 0. Inthis case the conditions of the following theorem reduce to 
the condition M,,— M familiar from the preceding sections. In the general 
case we still have M,{/}—> M{J} for intervals J at a positive distance from 

the origin, but neighborhoods of the origin are affected by B,. (The choice 

of the truncation point a has no effect.) 

(7.6) 

  

* Concerning the implications of this result for processes with independent but non- 
Stationary increments, see the concluding remarks to section 1. 
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Theorem. Let {X,,} bea null array. If it is possible to find constants b,, 
such that the distributions of S, — b, tend toa limit distribution U, the b,, 
of (7.6) will do.® The limit distribution U is infinitely divisible.’ 

In order that convergence takes place to a limit U with canonical measure 

M it is necessary and sufficient that at all points of continuity x > 0 

    

(7.7) M;(z) > M*(z),  M{(—2) > M(2) 
and that for some s >-0 

(7.8) M,{—s, s} — B, ~ M{—s, s}. 

In this case the distribution of S, — b,, tends to the distribution with character- 
istic function o» = e¥ defined by 

—o jz — itr 

(7.9) WO) = [ eet HH) ata}, 
o 

[The condition (7.8) will automatically hold at a/l points of continuity.] 

Proof. We proceed by steps. 
(a) Suppose first that all variables X, ,, are symmetric so that the distri- 

butions of S, must converge without preliminary: centering. The character- 
istic functions 9, , are real, and in view of (7.1) the Taylor expansion 

(7.10) log Gx, n(S) = [1 — Ge n(O) + $l — me ACOP + 

nolds for arbitrary ¢ provided only that n is sufficiently large. The question 
is whether 

(7.11) Sloe 4. v0). 
All the terms of the expansion in (7.10) are positive, and hence (7.11) requires 
that the sum of the linear terms remains bounded. In view of (7.1) this implies 

that the contribution of the higher-order terms is asymptotically negligible 

and we conclude that (7.11) holds iff 

(7.12) Slria® ~ i> v0. 
The left side may be written inthe form r,[y,—I] where », isthe character- 

istic function of the arithmetic mean of the distributions F, ,. We are thus 

§ The theorem remains valid also with standard truncation, that is, if + is replaced by the 

truncation function vanishing outside |x| > a. To avoid notational complications it is 
then necessary to assume that there are no atoms of M at +a. [Part (b) of the proof gets 

more involved since it may not be possible to find @ such that E(r(X+6) = 0.] 

7 A distribution concentrated at a single point is infinitely divisible, the corresponding 

canonical measure being identically zero. 
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concerned with a special case of theorem 2 of section 2 and conclude that a 
relation of the form (7.12) holds iff there exists a canonical measure M such 

that M,— M. When B, = 0 the conditions (7.7)-(7.8) are equivalent to 

M,,— M because for an interval J at a positive distance from the origin 
the relation M,{J}— M{(J} is implied by (7.7). This proves the theorem 
for symmetric distributions. 

(5) Suppose next that #,, = 0 for all k and n. We shall prove that 
(7.11) cannot take place unless 

(7.13) = Pe n(L) — 11 < C(O, 

that is, unless the sum on the left remains bounded. In this case (7.11) and 
(7.12) are again equivalent, and the concluding argument used under (a) 
again reduces the assertion to theorem 2 of section 2. It is true that this 

theorem refers to a centering b, using sin instead of +(x), but this is 
compensated by the corresponding change for the limit distribution since 

| toy gt tony gt 
(7.14) b, — b= [ T(z) — sing — SE M fda} — [ r(2) — sin ne Miz}. 

To derive (7.13) from (7.11) we start from the identity 

(7.15) Pant) -1= [oe — 1 — ilr(a)\Fy {dz} 

valid because 8, , = 0. For. |x| <a the integrand equals e#* — 1 — ita 

and is dominated by 47x. Since |7(x)| < ait follows that 

  

(7.16) Shun) — 1 < OM, =B a} + (2a [EDM Ya) + M5(—a)). 
k=1 

_ Toshow that M}(a) must remain bounded we consider the array {°X,.,} 
obtained by symmetrization of {X,,,}. The condition (7.1) for null arrays 
implies that for 7 sufficiently large the probability of the event 

Xen > Xx n —~e€ 

exceeds } for all kK <r,. Thus 4M*(a) <°M+(a), and we know that the 
latter quantity remains bounded if convergence takes place. We conclude 
that in case of convergence M7 (a) + M;(—a) remains bounded, and hence 

  

(7.17) Slo,.(0) — 11? = M,{—a, a} -,(0), 
k=1 

where e, stands for a quantity tending to zero. On the other hand, the real 
part of the integrand in (7.15) does not change sign. For |x| <a and ¢ 
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sufficiently small it is in absolute value >4l%2?, and hence 

(7.18) —ReS(o, o- 1) 3 40M,{—a, a}. 

The last. two inequalities show that the left side in (7.11) ¢annot remain 

bounded unless M,{—a,a} remains bounded, and in this case (7.13) is 
implied by (7.16). 

(c) We turn finally to an arbitrary null- -array {X,,}. Since E(r(X,.,,—9)) 

is a continuous monotone function of 6 going from a to —a there exists 
a unique value 6,,, such that the variable Y,,,, = Xz... — 9,,, satisfies the 

condition E(r(Y,,,)) = 0. Clearly {Y,,,} is a null-array and hence the 

theorem applies to it. 

We have thus found the general form: of the possible. limit distributions, 

but-the conditions for convergence are expressed in terms of the measure 
N, {dx} = > 2*F;, n{9,,., + dz}. of the artificially centered distributions of the 

Yun: Ini other words, we have proved the theorem with M,, replaced by N, 
in (7.7) and (7.8), and B, replaced by 0. 

To eliminate the centering constants 6,, we recall that they tend uniformly 
to 0 and so ultimately 

| Mi(ate) <.NA(2) < Mia). 
It follows that the condition (7.7) applies interchangeably to both arrays. 

Before turning to condition (7.8) we show that the arrays {Y,,,} and 

{Xin — Pr.n} have the same limit distribution, that is, 

(7.19) bh 5 Onn +0. 
k=1 

Let Zyin = TV gn) — TXe.n) + 9, From the definition of 7 it is 

clear that Z,,, vanishes unless X,,| >a—16,,,| and even there 

[Z.nl < 19,1 ~ 0. Condition (7.7) therefore guarantees that 

(7.20) SEC)! = SlBen — Seal 0. 
and this is stronger than (7.19). 

Finally, we turn to condition (7.8). We use the sign ~ to indicate that the 
difference of the two sides tends to 0 as m — oo. When (7.7) and (7.20) hold 

it is easily séen that 

  

M,{—a, a} — B, © > (x—6,, os F,,,{dx} 
|x| <a 

~w> [ y? Fy ndyt4y.n} © Na{—a, a}, 
k=1 J|u|<a@ 

(7.21) 
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and thus (7.8) is equivalent to the corresponding condition for the array 

{Y,..n}- > 

Example. The role of centering. For k = 1,...,n let X,,, be normally 

distributed with expectation.n-4 and variance m7’. With the centering to 
zero expectations the limit distribution exists and is normal. But with the 

centering constants f,,, = ~* we have B, ~ 2/n— o. It follows that 

M,{—a,a}— o. This example shows that the non-linear form of the 
theorem iS unavoidable if arbitrary centerings are permitted. It shows also 

that in this case it does not suffice to consider the linear term in the expansion 
(7.10) for log %x. n- a > 

For further results see problems 17 and 18. 

{8 THE CLASS L 

As an illustration of the power of the last theorem we give a simple proof 

of a theorem discovered by P. Lévy. We are once more concerned with partial 

sums S, = X, + -::+ X, of a sequence of mutually independent random 
variables but, in contrast to section 5, the distribution F,, of X,, is permitted 
to deperid on n. We put’ S* = (S, — 5,)/a, and wish to characterize the 

possible limit distributions of {S*}, under the assumption that 

a 
(8.1) a,—>~o, —tH-1,. 

a, 

The first condition eliminates convergent series > X, which are treated in 
section 10. Situations avoided by the second condition are best illustrated 
by the | 

Example. Let X,, have an exponential distribution with expectation 7!. 

Put a, =n! and b, =0. Obviously the distribution of S* tends to the 
exponential distribution with expectation 1, but the convergence is due 

entirely to the preponderance of the term X,,. > 

Following Khintchine it is usual to say that a distribution belongs to the 
class L if it is the limit distribution of a sequence {S*} satisfying the con- 

ditions (8.1). . 
‘In this formulation it is not clear that all distributions of the class L are 

infinitely divisible, but we shall prove this as a consequence of the 

Lemma. A characteristic function w belongs to the class L iff for each 

0<s<1 the ratio w(l)/w(st) is a characteristic function. 

t This section treats a special topic. 
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Proof. (a) Necessity. Denote the characteristic function of S* by 

w, and let n > m. The variable S* is the sum of (a,,/a,)S* and a-variable 
depending only on X,,,,,...,X,- Therefore 

(8.2) w,(6) = O (CA m/ An) , Pm, nS) 

where @m,, is a characteristic function. Now let n— co and m— oo in 

such a way that a,,/a,—>s <1. [This is possible on account of (8.1).] 

The left side tends to o(¢) and the first factor on the right tends to w(s¢) 

because the convergence of characteristic functions is uniform in finite 
intervals. (Theorem 2 of XV,3.) We conclude first that « has no zeros. 

In fact, since ¢,,,, remains bounded w(y) = 0 would imply w(s%,) = 0, 

and hence w(s*f,) for all k >0, whereas actually c(s*f,) > 1. Accord- 
ingly, the ratio cv(¢)/w(s¢) appears as the continuous limit of the character- 

istic functions ,,,,, and is therefore a characteristic function. 

(b) Sufficiency. The above argument shows that has no zeros, and 

hence we have the identity 

(2%) co(ng) 8.3 ) = w(t)  - (8.3) (nC) = w(2) w(t) a(n 

Under the conditions of the lemma. the factor w(k{)/w((k—1)¢) is the 

characteristic function of a random variable X, .aud hence w() is the 

characteristic function of (X,+-°--+X,,)/n. > 

We have not only proved the theorem but have found that @ is the 
characteristic function of the mth row sum in a triangular array. The 
condition (7.1) for null arrays is trivially satisfied, and hence w is infinitely 
divisible. To find the canonical‘measure M cetermining w we note that 
the ratio w(l)/w(s¢) is infinitely divisible as can be seen from the factoriz- 
ation (8.3). The canonical measure N determining «(¢)/w(s%) is related 

to M by the identity 

(8.4) | N{de} = M{dz} — s°M{s~ dr}. 
In terms of the functions M+ and M- this relation reads | 

(8.5), N*(z) = M*(x) — M*(2/s), N~{(—2) = M~(—2) — M~(—2]s). 
We have shown that if the canonical measure M determines a character- 

istic function w of class L, then the functions N+ and N- defined in 

(8.5) must be monotone for each 0 < 5s < 1. Conversely, if this is true then 

(8.4) defines a canonical measure determining c(¢)/w(s¢). We have thus 

proved the 

Theorem. A characteristic function w belongs to the class L iff it is 
infinitely divisible and its determining canonical measure M_ is such that the 

two functions in (8.5) are monotone for every fixed O0<s <1. 
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Note. It is easily verified that the functions are monotone iff M+(e*) 

and M-~(—e") are convex functions. 

*9. PARTIAL ATTRACTION. “UNIVERSAL LAWS” 

As we have seen, a distribution F need not belong to any domain of 
attraction, and the question arises whether there exist general patterns in 
the asymptotic behavior of the sequence {F"*} of its successive convolutions. 

The sad answer is that practically every imaginable behavior occurs and no 
general regularity properties are discernible. We describe a few of the 

possibilities principally for their curiosity value. 
‘The characteristic function is said to belong to the domain of partial 

attraction of y iff there exist norming constants a,,6, and a sequence of 
integers n,— 00 such that 

(9.1) [p(Sla,jePs]"” — 92). 
Here it is understood that |y| is not identically 1, that is, the corresponding 

distribution is not concentrated at one point. Thus (9.1) generalizes the notion 
of domains of attraction by considering limits of subsequences. 

The Jimit y is necessarily infinitely divisible by virtue of theorem 2 of 
section 1- The following examples will show that both extremes are possible: 
there exist distributions that belong to no domain of partial attraction and others 

that belong to the domain of partial attraction of every infinitely divisible 
distribution. 

Examples. (a) Example 3(f) exhibits a characteristic function g which 

is not stable but belongs to its own domain of partial attraction. 
(b) A symmetric distribution with slowly varying tails belongs to no domain 

of partial attraction. Suppose that L(x) = 1— F(x) + F(—*) varies 

slowly at infinity. By theorem 2 of VITI,9 in this case 

fx 

(9.2) | U(x) =| y’ F{dy} = o(2°L(2)), a> OO. 

By the theorem of section 7, for F to belong to some domain of partial 
attraction it is necessary that as m runs through an appropriate sequence 

n{1 — F(a,x) + F(—a,x)] and na? U(a,x) converge at all points of 
continuity. The first condition requires that n L(a,) ~ 1, the second that 

n L(a,) > ©. . 
(c) An infinitely divisible y need not belong to its own domain of partial 

attraction. Indeed, it follows from theorem ! of section 1 that if y belongs 
to the domain of attraction of y so does the characteristic function e?~?, 

  

* This section treats special topics. 
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which is infinitely divisible. The last example shows that e'-! need not 
belong to any do.nain of partial attraction. 

(d) As a preparation to the oddities in the subsequent examples we prove 
the following proposition. Consider an arbitrary sequence of infinitely 
divisible characteristic functions w, = e”* with bounded exponents. Put 

(9.3) | MO) = S vela) ne 

It is possible to choose the constants a, >0 and integers m, such that as 
r—> 00 

(9.4) n,A(Cla,) — y,(£) > 0 
for all Z. 

Proof. Choose for {#,} a monotone sequence of integers increasing so 
rapidly that 7,/n,_, > 2* max |p,|. The left side in (9.4) is then dominated by 

(9.5) n Sivdala, JI + y 24 
spf 

We choose the coefficients a, recursively as follows. Put a, = 1. Given 
a;,.-.,@,., Choose a, so large that the quantity (9.5) is <l1/r for all 

[| <r. This is possible because the first sum depends continuously on ¢ 
and vanishes for ¢ = 0. 

(e) Every infinitely divisible characteristic function w = e” possesses a 
domain of partial attraction. Indeed, we know that w is the limit of a 
sequence. of characteristic functions O = e"k of the compound Poisson 
type. Define A by (9.3) and put g =e. Then » is a characteristic function 
and (9.4) states that 

(9.6) lim g”’(Z/a,) = lim e”"™™ = @(Z). 

(f) Variants. Let e* and e’ be two infinitely divisible characteristic 
functions and choose the terms in (9.3) such that y,—->« and wy,,,— PB. 
It follows from (9.4) easily that if a sequence »,A(C/a,) converges, the limit 

is necessarily a linear combination of « and £. In other words, & belongs 

to the domain of partial attraction of all characteristic functions of the form 
e?*+08 | and to no.others. This example generalizes easily. In the terminology 

of convex sets it shows that a distribution F may belong to the domains of 
partial attraction of all distributions in the convex hull of n prescribed 
infinitely divisible distributions. 

(g) Given. a sequence of infinitely divisible characteristic functions e*! 
e2,... there exists a yp = e* belonging to the domain of partial attraction 
of each of them. Partition the integers into infinitely many subsequences. 
(For example, let the mth subsequence contain all those integers that are 
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divisible by 2"-? but not by 2".) Wecan then choose the y, in example (d) 

such that y,—» a, when r runs through the mth subsequence. With this 
choice (9.4) shows that g = e’ has the desired property. 

(4) Doblin’s “‘universal laws.” It is possible that gm belongs to the domain 
of partial attraction of every infinitely divisible w. Indeed, it is obvious 

that if q belongs to the domain of partial attraction of w,, w,,... and 
w, + w, then g belongs also to the domain of partial attraction of «w. 
Now there exist only countably many infinitely divisible characteristic 

functions whose canonical measures are concentrated at finitely many 
rational points and have only rational weights. We can therefore order these 

functions in a simple sequence e*!, e%?,.... Then every infinitely divisible 
w: is the limit of a subsequence of {e**}. The characteristic function @ of the 

last example belongs to the domain of partial attraction of each «,, and 
therefore also of w. 

{Note. The last result was obtained by W. Doblin in a masterly study in 1940, following 
previous work by A. Khintchine in 1937, The technical difficulties presented by the problem 
at that time were formidable. The phenomenon of example (5) was discovered in special 
cases by B. V. Gnedenko, A. Khintchine, and P. Lévy. It is interesting to observe the 
complications encountered in a special example when the underlying phenomenon of regular 
variation is not properly understood. } 

*10. INFINITE CONVOLUTIONS 

Let X,, X,,... be independent random variables with characteristic 

functions 9, g,,.... Asin (7.5) we denote by 7 the monotone continuous 
truncation function defined by r(x) =z for |z| << a@ and r(x) = +a for 

|z| > a. The basic theorem on infinite convolutions states that the distributions 

of the partial sums X, + --- + X,, converge to a probability distribution U 

iff 

(10.1) S$ Var(r(X,)) < 0, SPX >a} < 
k=l k=l 

and “ 

(10.2) 2ZEC(X)) —b 

where b is a number. 

The special case of finite variance was treated in -VIII,5 together with 

examples and applications. In full generality the theorem appears in IX,9 

where the result is also extended by proving the convergence of the series 

> X,, (the “‘three-series theorem’). The theorem was shown to be a simple 
corollary to the basic theorems concerning triangular arrays, and it is not 
  

* This section treats a special topic. 
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necessary to repeat the argument. We shall therefore be satisfied with 
examples illustrating the use of characteristic functions. 

Examples. (a) Factorization of the uniform distribution. Let X, = +27* 
with probability $. It was shown in example I,11(c) informally that > X, 

may be interpreted as “a number chosen at random between | and ~1.” 
This amounts to the assertion that the characteristic function (sin Q/¢ of 

the uniform distribution is the infinite product of the characteristic functions 

cos (¢/2*). For an analytic proof we start from the identity 

(10.3) sing cose cos 2+ cos & - Hn 5/2") 
¢ 2 4 2” £2” 

which is proved by induction using the formula sin 2x = 2 sin « cos a. 
As n-—> © the last factor tends to 1 uniformly in every finite interval. 

Note that the product of the even-numbered terms again corresponds to a 
sum of independent random variables. We know from example I,11(d) 
that this. sum has a singular distribution of the Cantor type.® 

(See problems 5, 7, and 19.) 

(b) Let Y, have density }e~'*! with characteristic function 1/(1 + €?). 

Then > Y,/k converges. For the characteristic function we get the canonical 
product representation for 7¢/sinh wf where sinh denotes the hyperbolic 
sine. Using problem 8 in XV,9 we find that the density of > Y,/k is given by 
1/(2 + e* + e-*) = 1/4(cosh (2/2))?. 

11. HIGHER DIMENSIONS 

The theory developed in this chapter carries over without essential changes 
to higher dimensions, and we shall not give all the details. In the canonical 

form for infinitely divisible distributions it is best to separate the normal 
component and consider only canonical measures without atom at the origin. 

The formulas then require no change provided {2 is interpreted as an inner 
product in the manner described in XV,7. For definiteness we spell out the 
formula in two dimensions. 

A measure without an atom at the origin is canonical if it attributes finite 

masses to finite intervals and if 1/(L+2?+22) is integrable with respect 

8 It is a good exercise to verify directly that the conditions (10.1)-(10.2) assure that the 

products ~,°°* %, converge uniformly in every finite interval. The necessity of the con- 
ditions is less obvious, but follows easily on observing that the triangular array whose nth 
row is X,,Xn41.---»Xn4r, must satisfy the conditions of the theorem of section 7 with 

M=0. 

° G. Choquet gave a charming geometric proof applicable to more general infinite con- 

volutions. It is given in A. Tortrat, J. Math. Pures. Appl., vol. 39 (1960) pp. 231-273. 
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to it, and if it has no atom at the origin. Choose an appropriate centering 
function in one dimension, say r(x) = sin x or the one defined in (7.5). Put 

i(Craitfewe) oy _; 

ai1) we.to=[* ter) ar) vata}, 
Xi + 2 

the integral extending over the whole plane. Then w = e” is an infinitely 
divisible bivariate characteristic function. The most general infinitely divisible 
characteristic function is obtained by multiplication by a normal characteristic 
function. 

A reformulation in polar coordinates may render the situation more 
intuitive. Put 

  

(11.2) ¢, = pcos 9, Co = psin g, x=rcos@, y =rsiné@. 

Define the canonical measure in polar coordinates as follows. . For each 
6 with —a2<6@<7 choose a one-dimensional canonical measure A, 
concentrated on 0,0; furthermore, choose a finite measure W on 

—7 <6<7 (the circle). Then. M may be defined by randomization of 
the parameter 6, and (with a trite change in centering) (11.1) may be. recast 
in the form 

(11.3) 
7 oo ,iprcos(g—é) __ — ipr _ 

w(C;, Ss) = {" {a0} {" en 1 f (r) cos (9 ®) A {dr}. 
r 
  

(This form permits one to absorb the normal component by adding an atom 
at the origin to A,,.) | 

Example. Stable distributions. By analogy with one dimension we put 
A, {dr} = r-*+) dr. One could add an arbitrary factor C,, but this would 
merely change the measure W. As we have seen in example 3(g), with this 

measure (11.3) takes on the form 

r 

(11.4) (La, &) = —Co* { [cos (7H (1 = tan x) W {d0}, 

where the upper or lower sign prevails according as g—@>0 or 
g —6<0. This shows that e” is a strictly stable characteristic function, 

and as in section 5 one sees that there are no others. However, just as in one 
dimension, the exponent « = 1 leads to characteristic functions that are 
stable only in the wide sense and have a logarithmic term in the exponent. 

When a =1 and W is the uniform distribution we get the characteristic 
function e~*? of the symmetric Cauchy distribution in R*® [see example 
XV,7(e) and problems 21-23]. > 
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12, PROBLEMS FOR SOLUTION 

1. It was shown in section 2 that if y is the logarithm of an infinitely divisible 
characteristic function, then 

(12.1) v(%) — 1 [ v(S—s) dx = x(2) 

is a real multiple of a characteristic function. Prove the converse: Suppose that y 
is a continuous function such that 7(¢)/z(O) is a characteristic function for eve 
choice of A > 0. Then y differs only by a linear function from the logarithm 
of an infinitely divisible characteristic function. Furthermore, y is such a logarithm 

if it satisfies the further conditions y(0) = 0 and »(—2) = y(Q). 
[Hint; Prove that the solutions of the homogeneous equation (with x = 0) 

are linear.] 

2. Show that problem 1 and the argument of section 2 remain valid if in (12.1) 
or (2.13) the uniform distribution is replaced by a distribution concentrated at the 
points: 

(12.2) v(2) — $ly(S+A) + w(S—A)] = x(8). 

However, there arises a slight complication from the fact that the density corre- 
sponding to x is not strictly positive. 

3. Generalization. Let R_ be an arbitrary even probability distribution with 
finite variance. If e¥ is an infinitely divisible characteristic function and 

(12.3) . xr=y—-R*Y, 

then x(¢)/z(0) isa characteristic function. The argument of section 2 goes through 
using (12.3) instead of (2.13). 

In particular, if R has the density $e7!*! one is led directly to Khintchine’s 
normal form for y. (See the concluding note to section 2.) However, some care 
is required by the fact that y is unbounded. 

4. If @ is an infinitely divisible characteristic function then there exist constants 
a and b such that |log w(£)| <a + 5¢? forall ¢. 

5. Shot noise in vacuum tubes. In example VI,3(A) we considered a triangular 
array in which X;,, had the characteristic function 

Fen(S) = 1 + ahfesrom —1}, 
where / = n~?. Show that the characteristic functions of S, =X, n + cep Xan 

tend to ev where 

Ho =e [ste nde 
0 

ev is the characteristic function of the random variable X(t), and by differentiation 
one gets Campbell’s theorem V1,(3.4). 

6. Let U => X,/n where the variables X, are independent and have the 
common density }$e7/#!, Show that’® U is infinitely divisible with the canonical 
    

10 The characteristic function w is defined by an infinite product which happens to be 
the well-known canonical product of 22 |¢|/erlS! — e775! . 
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e~ |=! . 
measure M{dzx} = |z| Toei dz. [No calculations beyond summing a geometric 

series are required.} 

7. Let P(s) = Xp,s* where p, >0 and Lp, = 1. Assume P(0) > 0 and that 
P(s) I "8 PO) 

function of an arbitrary distribution F show that P(y) is an infinitely divisible 
characteristic function. Find its canonical measure M in terms of F"*. 

1—-b l—ag. . 
-____ i tel loa Tob is an infinitely 

divisible characteristic function. (See also problem 19.) 

8. Continuation. Interpret P(9) in terms of randomization and subordinated 
processes using the fact that P is the generating function of an infinitely divisible 
integral-valued random variable. 

9. Let X be stable with characteristic function eItI*(0 <a <2) and I let Y 
be independent of X. If Y is positive with a distribution G (concentrated on 

0, © show that the characteristic function of XY/* is given by 

is a power series with positive coefficients. If is the characteristic 

  Special case of interest: If 0S a <b <1 then 

I e7ltl*v G{dy}. 
0 

Conclude: Jf X and Y are independent strictly stable variables with exponents 
a and B andif Y >0, then XY¥* is strictly stable with exponent af. 

10. Let w bea characteristic function such that w?(¢) = w(af) and w%(%) = 
= w(bl). Then o is stable. 

{Example 3(f) shows that the first relation does not suffice. The exponents 2, 3 

may be replaced by any two relatively prime integers.] 

11. Show that the simple lemma 3 of VIII,8 applies (not only to monotone 
functions but also) to logarithms of characteristic functions. Conclude that if 
w,(¢) = w(a,¢) forall n then log w(2) = Ag* for £ > 0, where A is acomplex 
constant. 

12. Continuation. Using the result of problem 28 in VIII,10 show directly 
that if w is a stable characteristic function then for ¢ >0 either log w(%) = 
= Al* + ibf or else log w(f) = AC + ibf log ¢ with 6 real. 

13. Let F be carried by 0, c%© and 1 — F(x) = x-*L(x) with 0 <a <1 and 
L slowly varying at infinity. Prove that 1 — 9(Q)~ AL*L(1/Q) as £ + 0+ 

14. Continuation. From the results of section 5 prove the converse, and also 

that A = (1 —a«)e—ize/2, 

15. Continuation. By induction on k prove: inorder that 1 ~ F(x) ~ ax~*L() 
as x ~ o with L slowly varyingand k <« <k +1 itis necessary and sufficient. 
thatas ¢—-+0O+4+ 

Hy S) MES gg [I 

Then automatically A= —al(k —a)e ihre, 
16. Formulate the weak law for triangular arrays as a special case of the general 

theorem of section 7. 
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17. Let {X,.,} bea null array whose row sums havea limit distribution deter- 
mined by the canonical measure M. Show that for x > 0 

P{max [X,,,,-.-,X,,.,] < av} +e, 

Formulate a converse. 

18. Let {X,.,} be a null array of symmetric variables whose row sums have a 
limit distribution determined by the canonical measure M with. an atom of 

weight o? at the origin. Show that the distribution of S* = UX? ,, — 9? con- 
verges to a distribution determined by a measure My without atom ‘at the origin 

and such that My(x) = 2M+(V2) for x > 0. | | 

19. Let O<r,; <1 and =r, < o. For arbitrary real a, the infinite product 

I-r, I-hr 
  

]- ryeiaal 1 — roeiaxt 

converges and represents an infinitely divisible characteristic function. (Hint; 
Each factor is infinitely divisible by problem 7.) 

20. Use the method of example 9(@) to construct a distribution F such that 

lim sup F”*(z) = 1 and lim inf F"*(x) = 0 at all points. 

21. In (11.4) let W stand for the uniform distribution. Then 

v(t, fo) = —c[? + 2}, 

and e¥ is a symmetric stable distribution. 

22. In (11.4) let W attribute weight } to each of the four points 0, 7, $7, —}7. 
Then (11.4) represents the bivariate characteristic function of two independent 
one-dimensional stable variables. 

23. In (11.4) let W be concentrated on the two points o and o + 7. Then 
(11.4) represents a degenerate characteristic function of a pair such that 

X, sino — X,coso = 0. 

More generally, any discrete W leads to.a convolution of degenerate distributions. 
Explain (11.4) by a limiting process. 

 



CHAPTER XVIII 

Applications of Fourier Methods 

to Random Walks 

To a large extent this chapter treats topics already covered in chapter 
XII, for which reason applications are kept to a minimum. A serious 
attempt has been made to make it self-contained and accessible with a 
minimum of previous knowledge except the Fourier analysis of chapter XV. 

The theory is entirely independent of the last two chapters. Section 6 is 
independent of the preceding ones. 

1. THE BASIC IDENTITY 

Throughout this chapter X,, X,,... are mutually independent random 
variables with a common distribution F and characteristic function g. As 

_usual we put Syg=0O and S, = X,+---+X,; the sequence {S,} 

constitutes the random walk generated by F. 
Let A bean arbitrary set on the line and A’ its complement. (In most 

applications A’ will be a finite or infinite interval.) If J is a subset (interval) 

of A’ and if . 

(LD — «SEA,...,8,,€4,8, 67 (Ic A’) 

we say that the set A’ is entered (for the first time) at epoch n and at a point 
of I. Since A’ need not be entered at all the epoch N of the entry is a 
possibly defective random variable, and the same is true of the point Sy of 

first entry. For tie joint distribution of the pair (N, Sy) we write 

(1.2) P{N = 1, Sy El} = H,{hh, n=1,2,. 

Thus H,,{7} is the probability of the event (1.1), but the distribution (1.2) 

is defined for all sets 7 on the line by the convention that H,{7} = 0 if 

I< A. The probabilities (1.2) will be called hitting probabilities. Their 

598 
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study is intimately connected with the study of the random walk prior 
to the first entry into A’, that is, the random walk restricted to A. For: 
[CA and n=1,2,... put 

(1.3) Gi = P{IS,€4,...,8,1€4,8, 6B; 

in words, this is the probability that at epoch n the set J < A is visited and 
up to epoch ” no entry into A’ took piace: We extend this definition to 
all sets on the line by letting G,{J} =0 if I< A’. 

(1.4) G,{A} = 1 — P{N < n}. 

The variable N is not defective iff this quantity tends to 0 as n — o. 
Considering the position S, of the random walk at epochs n = 1, 2,. 

it is obvious that for [ < A’ 

(1.5a) Haawaf{l} = | G,{ay) F{I—y} 

whereas for [ < A 

(1.58) Guarll} = | Galdy} Fy}, 
We now agree to let Go stand for the probability distribution concentrated 

at the origin. Then the relations (1.5) hold for » = 0,1,2,... and deter- 

mine recursively all the probabilities H,, and G,. The two relations can be 
combined in one. Given an arbitrary set J on the line we split it into the 
components JA’ and JA and apply (1.5) to these components. Recalling 
that H, and G, are concentrated, respectively, on A’ and A we get 

(1.6) Hysall} + Garill} =| Galdy} FU) 
for n=0,1,... and arbitrary J. : 

The special case A = 0, 00 was treated in XII,3, the relation XII,(3.5) 
being the same as the present (1.5). We could retrace our steps and derive 
an integral equation of the Wiener-Hopf type analogous to XII,(3.9) and 

again possessing only one probabilistically possible solution (though the 
uniqueness is not absolute). It is preferable, however, to rely this time on the 

powerful method of Fourier analysis. 
We are concerned with the distribution of the pair (N, Sy). Since N is 

integral-valued we use generating functions for N and characteristic 

functions for Sy. Accordingly we put 

7 x,0=35" euH{da}, ys = Ss" eG fda}. 
n=1 2=0 

(The zero terms of the t two series equal 0 and 1, respectively.) These series 

converge at least for {s| <1, but usually in a wider interval. 
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The effective domains of integration are inserted for clarity, but the limits 
of integration may be given.as well as —oo and +00. In particular, the 
integral in (1.6) is an ordinary convolution. On taking Fourier-Stieltjes 
transforms the relation (1.6) therefore takes on the form 

(1.8) AXnrt(S) + YnsilS) = ya(2) pC). 

Multiplying by s"*+? and adding over n =0,1,... we get 

xs, ) + vs, 6) — 1 =s (2) o(Q) 

for all s for which the series in (1.7) converge. We have thus established 
the basic identity 

(1.9) 1— xy = y{l—sg¢]. 

(For an alternative proof see problem 6.) 
In principle x and y can be calculated recursively from (1.5), and the 

identity (1.9) appears at first glance redundant. In reality direct calculations 

are rarely feasible, but much valuable information can be extracted directly 

from. (1.9). 

Example. Let F stand for the bilateral exponential distribution with 
density }e7!! and characteristic function g(f) = 1/(1+2), and let 

-——— 
A = -—a,a. For x >a we get from (1.5a) 

(110) Hygaf® ©} = Haga, =z} = 3 [" Gyldy}ene” = eye 
with c, independent of zx. It follows that the point S, of first entry into 
|x| > a is independent of the epoch of this entry and has a density pro- 

portional to e'=! (for |z| > a). This result accords intuitively with the 

jack of memory of the exponential distribution described in chapter I. The 

independence means that the joint characteristic function 7 must factor, 
and from. the form of the density for S, we conclude that 

    

ial ~iat 

(LAL) (5,0) = 4P@)| — + S| 

where P is the generating function of the epoch N of the first entry into 

|x] > a. [The proportionality factor is deduced from the fact that 

x1, 0) = 1.) 
A direct calculation of P(s) would be cumbersome, but an explicit 

expression can be easily deduced from (1.9). In fact, with our form of the 

characteristic function the right side in (1.9) vanishes for ¢ = +iV1 —s, 
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and so for this value y(s, €) must reduce to 1. Thus 

-~aV 1-5 av I-s -1 
(1.12) P(s) = 2] fog | . 

l+J/i-s 1-ji-s 

From this it follows that the epoch N of the first entry into |z| >a has 
expectation 1 + a + 4a’. 

(For further examples see problems 1-5.) > 

  

  

*2. FINITE INTERVALS. WALD’S APPROXIMATION 

Theorem. Let A = —a,b be a finite interval containing the origin and 
let (N, Sy) be the hitting point for the complement A’. 

The variables N and Sy are proper. The generating function 

(2.1) | Ss" PIN>n7}= ys" G,{A} 

converges for some’! s > 1 and hence N has moments of all orders. The 
hitting point Sy has an expectation iff the random-walk distribution F has 
an expectation mu, in which case 

(2.2) E(Sy) = “: E(N). 

The identity (2.2) was first discussed by A. Wald. .In the special case 

A =0, © it reduces to XII,(2.8). | 

Proof. As was already pointed out, G,{A} and P{N > n} are different 

notations for the probability that the random walk lasts for more than a” 

steps, and so the two sides in (2.1) are identical. 
Choose an integer r such that P{|S,|<a+6}=% <1. The event 

{N >» +r} cannot occur unless 

N>n and [X,4,+°°:':+ X,i,|< a+ 

(These two events are independent because {N > n} depends only on the 

variables X,,...,X,. Since X,,, +-°:':+X,,, has the same distribution 

as S, we conclude that 

P{N > a+r} < PIN > n}7,. 
Hence by induction 

(2.3) P{N > kr} < mf, 

‘* This section is included because of its importance in statistics; it should be omitted at 

first reading. 
1 This is known to statisticians as C. Stein’s lemma. For an alternative proof see 

problem 8. 
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which shows that the sequence P{N > n} decreases at least as fast as a 
geometric sequence with ratio 7". It follows that N is a proper variable 
and that the series in (2.1) converge at least for |s| < 4". This proves the 
first assertion. 

It follows also that (1.9) is meaningful for |s| << _47-”". For s=1 we 
conclude 

(2.4) I= 70,0 =701, OI-oDL. 
But y(1, ¢) is the characteristic function of S,, and the fact that (1,0) = 
= 1 shows that S, is proper. 

The event |S,| >¢+ a+ 65 cannot occur unless for some 2 one has 

N>n-—1 and |X,|>+. As already remarked, these two events are 

independent, and since the X,, are identically distributed we conclude that 

P{|Sx}] > t+ a + b} 

< SP{N > n= 1}: POX > 1} = E(N): P(X! > 4. 
The expectation « = E(X,) exists iff the right side is integrable over 0, 00. 

In this case the same is true of the left side, and then E(S,) exists. On the 

other hand, 

P{IS,| > 7} > P{|X,| > ++ a+ 5} 

because the occurrence of the event on the right implies S, = X,. Thus the 
existence of E(S,) implies the existence of = E(X,). When these 

_ expectations exist we can differentiate (2.4) to obtain 

0x1, 0) _ 
ae 

We proceed .now to derive a variant of the basic identity (1.9) known as 
Wald’s identity. To avoid the use of imaginary arguments we put 

(2.5) i E(Sy) = (0) y(1, 0) = in E(N). > 

(2.6) IA) = [Tew F{dz}. 

Suppose that this integral converges in some interval —Ay<A< A, 

about the origin. The characteristic function is then given by (id) = f(A), 

this function being analytic in a complex neighborhood of each 4 in the given 

interval. Wald’s identity is obtained formally from (1.9) letting ¢ = iA and 

s = 1/@(iA). For these particular values the right side vanishes and hence 

v(s, 6) = 1. In view of the definition of x this relation may be restated in 

probabilistic terms as follows. 
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Wald’s lemma.’ Jf the integral (2.6) converges for —Ay <A < Ay, then in 
this interval 

(2.7) E(f~N(A)e~4Sn) = 1. 
Proof. We repeat the argument leading to (1.9). As the measures G, are 

concentrated on_a finite interval their Fourier transforms x, converge for 
all ¢ in the complex plane. By assumption (iA) = f(A) exists, and hence 
it is seen that the Fourier version (1.8) of (1.6) is valid for € = iA. On 
multiplication by f—"—!(A) this relation takes on the form 

(2.8) FA) dng A) = f£AY™ valid) — fA) Yn A). 

If f-"(A) y,(@iA) — 0 the right sides add to unity due to the obvious can- 

cellation of terms. In this case summation of (2.8) leads to the assertion (2.7) 

and hence it suffices to show that 

(2.9) f-"(A) G, {A} — 0. 

Now if f(y) < © . 

G,{A} < P{-a <S, <b} < estoin. { * et® Fe {der} 
—a 

< eat) lal -f"(n). 

Thus (2.9) is true if S(A) >f(n). As we are free to choose 7 this proves 
(2.7) for all A excepting values where f assumes its minimum. But being 

convex f has at most one minimum, and at it (2.7) follows by continuity. p 

‘Example. Estimates concerning N. Wald was led to his lemma from 
problems in sequential analysis where it was required to find approximations 
to the distribution of the epoch N of the first exit from <A, as well as 
estimates for the probabilities that this exit takes place to the right or left of 
this interval. Wald’s method is a generalization of the procedure described 
in 1; XIV,8 for arithmetic distributions with finitely many jumps. (There it 
is also shown how strict inequalities can be obtained.) Put 

(2.10) Py = P{N=k,Sy>b}, = P{N=k, Sy<—a} 

and write for the corresponding generating functions P(s) and Q(s). 
(Then P + @ is the generating function for N.) Suppose now that @ and 
b are large in comparison with the expectation and variance of F. The 

2 Wald used (2.7) in connection with sequential analysis. This was before 1945 and 
before the general random walks were systematically explored. It is therefore natural 
that his conditions were severe and his methods difficult, but unfortunately they still 
influence the statistical literature. The argument of the text utilizes an idea of H. D. Miller 
(1961). 
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hitting point Sy, is then likely to be relatively close to either 5 or —a. If 
these were the only possible values of Sx the identity (2.7) would take on 
the form 

(2.11) PCLLF(A)er” + QU/SA)e** = 1, 
and one expects naturally that under the stated assumptions (2.11) will 

be satisfied at least approximately. The function f is convex and it is 

usually possible to find an interval sy < s <s, such that in it the equation 

(2.12) sf) =1 

admits of two roots A,(s) and 4,(s) depending continuously on s. Sub- 

stituting into (2.11) we get two linear equations for the generating functions 
P and Q, and thus we get (at least approximately) the distribution of N 
and the probabilities for an exodus to the right and left. > 

3. THE WIENER-HOPF FACTORIZATION 

In this section we derive by purely analytical methods various consequences 
of the basic identity (1.9). It turns out that they contain, in a more flexible 
and sharper form, many of the results derived in chapter XII by combinatorial 

methods. This may produce the false impression of a superiority of the Fourier 
methods, but in reality it is the interplay of the two methods that characterizes 
the recent progress of the theory. Each method leads to results which seem 
inaccessible to the other. (For examples in one direction see section 5; the 
arc sine law for the number of positive partial sums as well as generalizations 
of the whole theory to exchangeable variables illustrate advantages of the 
combinatorial approach.) 

From now on N and Sy, will denote the epoch and the point of first 

entry into the open half-line 0, 00. Their joint distribution 

PIN =7,SyeN =H} 
is given by . 

(3.1) H,{D = P{S, <0,...,S,, <9,8,€N, 1c 0,0 

with the understanding that H) = 0 and that H,, is concentrated on 0, ©. 

Instead of the bivariate characteristic function we introduce as before 

the more convenient combination of generating and characteristic function 

(3.2) 5, 6) = E(sNe®Sy), 
namely, 

(3.3) x(s, 6) = Sst | “et H {dz}. 
n=1 0 
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(The integration is over the open half-axis, but nothing changes if the lower 
limit is replaced by — oo.) For brevity we shall refer to x as “the transform” 
of the sequence of measures H,. 

For the epoch and point of first entry into the open negative half-axis we 
write N~ and Sy-; then {H,} and xy denote the corresponding distribu- 
tion and transform. 
When the underlying distribution F is discontinuous we must distinguish 

between first entries into open and closed half-axes. It is therefore necessary 
to consider the evént of a return to the origin through negative values. Its 

probability distribution {/,} is given by | 

(3.4) fr = PIS, < 0,...,8,., < 0,8, = 0}, n>1, 

and we put f(s) = > f,s". It will be seen presently that the right side 
=1 . 

in (3.4) remains unchanged if all the inequalities are reversed. Clearly 

Lh SPX < 0} <1. 
With these notations we can now formulate the basic 

Wiener-Hopf factorization theorem. For |s| < 1 one has the identity 

3.5) t—se(Q = Uf): Ux, O1-U-x-G, O1 
The proof will lead: to explicit expressions for f and yx which we state 

in the form of separate lemmas.* 
Lemma 1. For 0< 5 <1 

(3.6) log —i__. YL] et Fda}. 
1—yx(s,0) a=1 n Jo+ 

An analogous formula for x— follows by symmetry. 

Lemma 2. For 0< 5s <1 

  

1 “G5 => 5 n “PIS, = 0}. 

Since no inequalities enter the right side it follows that (3.4) remains valid 
with all inequalities reversed. This result was obtained in example XII,2(a) 

as a consequence of the duality principle. 
The remarkable feature of the factorization (3.5) is that it represents an 

arbitrary characteristic function g in terms of two (possibly defective) 

(3.7) log 

3For ¢ = 0 lemma | reduces to theorem 1 of XII,7. The generalized version XII,(9.3) 

is equivalent to lemma 1, but is clumsy by comparison. Lemnmia 2 restates XII,(9.6). It is 
due to G. Baxter. A greatly simplified (but still rather difficult) proof was given by F. 
Spitzer, Trans. Amer. Math. Soc., vol. 94 (1960), pp. 150-169. 
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distributions concentrated on the two half-axes. Lemma | shows that this 
representation is unique. 

The proof is straightforward for continuous distributions, but for the 
general case we require the analogue to lemma | for the entrance probabilities 

-— 

into the closed interval 0, 00. These will be denoted by R,{J}, that is, 

(3.8) R,{I} = P{S, <0,...,8,.,<0,8,€9 
  

. . t— 

for any interval J in 0, 0. Of course, Ry =O and R,{—o, 0} = 0. 

Lemma 3. For 0 < s <1 the transform p of {R,} is given by 

| oO s® oO 
lo — e ett F"™* dx ; 

ey — p(s, ¢) 2 nJo-— — {dz} 
'—_~— 

Proof. We start from the basic identity (1.9) applied to 4 = 0, oo. With 
our present notation the entrance probabilities are R, rather than H,,, and 
so (1.9) reads 

(3.10) | 1 — p(s, 6) = v(s, OU — sp(Q). 

Here y is the transform of the sequence of probabilities G, defined on 

—o,0 by . 

(3.9) 

  

(3.11)  G,{1} = PS, <0,...,8,,<0,S, <0,S,€%, 

that is 
<0 o— 

(3.12) (s,Q —-1= 3s" [ eG {da}. 
n=1 "00 . 

For fixed |s| <1 the functions 1 — spy(€) and | — y(s, 2) can have no 

zeros, and hence (see XVII,1) their logarithms are uniquely defined as 
continuous functions of ¢ vanishing at the origin. We can therefore rewrite 
(3.10) in the form 

1 _ 1 ; 
(3.13) log bowl sab) log bowed aD + log y(s, €) 

or 

cg” Fo ite nk _ co 5” ny © (—1)" n 

(3.14) 2, 1° F {dz} = p> ~ e%s, £) + > [y(s, 2)—1]". 

Consider this relation for a fixed value O<s<l. Then p%s, ¢) is the 
characteristic function of a defective probability distribution concentrated on 
-—-——_ 

0, co, and hence the first series on the right is the Fourier-Stieltjes transform 
+——- 

of a finite measure concentrated on 0, oo. Similarly, (3.12) shows that 
p(s, ©) — 1 is the Fourier-Stieltjes transform of 2 finite measure concentrated 
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on —0oo,0. The same is therefore true of [p(s, )—1]", and so the last 

series is the transform of the difference of two measures on —00,0. It 

follows that, when restricted to sets in 0, oo, the first two series in (3.14) 

represent the same finite measure, namely > (s"/n)F"*. The assertion (3.9) 

restates this fact in terms of the corresponding transforms. > 

Proof of lemma 2. This lemma is contained in lemma 3 inasmuch as the 

two sides in (3.7) are the weights of the atoms at the origin of the measures 
whose transforms appear in (3.9). This is obviously true of the right sides. 
As for the left sides, by. the definition (3.8) the atom of R,, at the origin has 

weight f,. Thus f(s) is the weight attributed to the origin by the measure 

> s"R, with transform p(s, ¢). The measure with transform > p"(s, {)/n 
therefore attributes to the origin the weight > f”(s)/n = log (1—f(s))7}. 

Proof of lemma 1. We may proceed in two ways. 
(i) Lemma | is the analogue of lemma 3 for the open half-axis and exactly 

the same proof applies. If both lemmas are considered known we may 
subtract (3.6) from (3.9) to conclude that 

(3.15) p(s, 6) = f(s) + 1-f@]x(s, 9). 
'— 

(This identity. states that the first entry into 0, co can be a return to the 
origin through negative values and that, whea such a return does not take 

'«— 

place, the (conditional) distribution of the point of first entry into 0, oo 

reduces to the distribution {H,,} of the first entry into 0, ©.] . 
(ii) Alternatively we may prove (3.15) directly from the definitions (3.1) 

and (3.8) of H,, and R,. [For that it suffices in (3.8) to consider the /ast 

index k <7 for which S, = 0 and take (k, 0) as new origin.] Substituting 

(3.15) into (3.9) we get lemma 1 as a corollary to lemmas 2 and 3. > 

Proof of the factorization theorem. Adding the identities of lemmas 1-2 

and the analogue of lemma | relating to — 00, 0, we get (3.5) in its logarithmic 
form. That (3.5) holds also for s = 1 follows by continuity. 

Corollary. 

1 
(3.16) (s, ¢) = ———— 

1— x (s, g) 

Proof. In view of (3.13) and lemma.3 
<0 n fo— 

(3.17) y(s, 6) = exp (> =I ete F™*(dz}), 
n=1 N J—o ’ 

and by lemma | the right sides in (3.16) and (3.17) are identical. > 
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Examples. (a) Binomial random walk. Let 

P{X,=1}=p and P{X, = —1} =g. 

The first entries into the two half-axes necessarily take place at +1, and hence 

(3.18) x(s,£) = P(s)e", —-x(s, 2) = Q(s)e™ 

where P and Q are the generating functions of the epochs of first entry. 
The two sides of the factorization formula (3.5) are therefore linear com- 

binations of three exponentials e* with kK =0,+1. Equating the coeffi- 

cients one gets the three equations 

UI—f(s)1+P(s)Q(s)] =1, — [1—f(s)]P(s) = sp,. 
(3.19) [1—f(s)]O(s) = 59. 

This leads to a quadratic equation for 1 — f(s), and the condition f(0) =0 
implies that f is given by 

(3.20) f(s) = 40 — V1—4p 92). 

The generating functions P and Q now follow from (3.19). If p>4q we 

have f(1) = q and hence Q(1) < 1. In this way the factorization theorem 

leads directly to the first passage and recurrence time distributions found by 
other methods in 1; XI and1; XIV. 

(6) Finite arithmetic distributions. In principle the same method applies 
if F is concentrated on the integers between —a and b. Thetransforms 7 
and y— together with f are now determined by a +6 + 1 equations, but 

explicit solutions are hard to come by [see example X11,4(c)]. 

(c) Let F be the convolution of exponential distributions concentrated on 

the two half-axes, that is, let 

  

5b 
3.21 a>0O, b>0O. 

( ) ts) = ait b= it” 

Because of the continuity of F we have f (s) = 0 identically. ‘Ihe left 

side in the factorization formula (3.5) has a pole at ¢ = —ib, but x-(s, 4) 
is regular around any point ¢ with negative imaginary part. (This is so 

because. y~ is the transform of a measure concentrated on —0o,0.) It 

follows that y must be of the form y(s,-¢) = (6—if) U(s, 2), with U 
regular for all ¢. One may therefore surmise that U will be independent of 
C, that is, that y and y~ will be of the form 

=) - Os) 
it’ 4 (3,9 = abit’   (3.22) x(s, $) = 
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For this to be so we must have 

(3.23) I= sg 7 (po (t- a: 
(a+il)(b—il) b — il at+il 

Clearing the denominators and equating the coefficients we find that P(s) = 
= Q(s) and that P(s) satisfies a quadratic equation. The condition 

P(0) = 0 eliminates one of the two roots, and we find finally 

(3.24) P(s) = Q(s) = }[a + 6 — V(at+b)?—4abs]. ~ 

Assume a>b. Then P(1) = 6, and hence P(s)/b and Q(s)/a are 

generating functions of a proper and a defective probability distribution. 
The function y defined in (3.22) is therefore the transform of a pair (N, Sy) 

such that S, is independent of N and has the characteristic function 
b/(6—it). A similar statement holds for y—, and because of the uniqueness 

of the factorization P(s)/b and Q(s)/a are indeed the generating functions 

of the epochs N and N~ of first entries. [That S, and S,- are expon- 
entially distributed was found also in example XIJ,4(a). Recall from example 
VI,9(e) that distributions of the form (3.21) play an important role in queueing 

theory.] > 

For further examples see problems 9-11. 

4. IMPLICATIONS AND APPLICATIONS 

We proceed to analyze the preceding section from a probabilistic point of 
view and to relate it to certain results derived in chapter XII. 

(1) The duality principle. We begin by showing that the corollary (3.16) 
is equivalent to 

Lemma 1. For any interval I in 0, «© 

(4.1) PIS, <S,,...,8,.41.<58,,8,¢€) = 

. = P{S,>0,...,S8,.,>0,S,ef. 

This fact was derived in XIJ,(2.1) by considering the variables X,,..., X, 
in reverse order. Viewed in this way the lemma appears almost self-evident, 
but we saw that many important relations are simple consequences of it. 
In the Fourier analytic treatment it plays no role, but it is remarkable that it 
comes as a byproduct of a purely analytic theory.*. [For a reminder of the 
      

4 Our Fourier analytic arguments are rather elementary, but historically the original 
Wiener-Hopf theory served as point of departure. Most-of the literature therefore uses 

deep complex variable techniques which are really out of place in probability theory 
because even the original Wiener-Hopf techniques simplify greatly by a restriction to 
positive kernels. See the discussion in XII ,3a. 
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fantastic consequences of lemma | concerning fluctuations the reader may 
consult example XII,2(6).] 

Proof. The corollary (3.16) refers to the negative half-axis and for a direct 
comparison all inequalities in (4.1) should therefore be reversed. - The prob- 
ability on the right in (4.1) then coincides with the probability G,,{7} 
introduced in (3.11), and y(s, ¢) is simply the corresponding transform. To 
prove the lemma we have therefore to show that [l—y(s, 4)]-? is the 
transform of the sequence of probabilities appearing on the left side in (4.1). 
Now yx(s, ¢) was defined as the transform of the distribution of the point 

AN, Sy) of first entry into 0, 00, and hence y* is the transform of the rth 

ladder point (N,, Sy). It follows that 
1 . 

(4.2) —— —lL=x+7°4+- 
1— x 

is the transform of the sequence of probabilities that n be a ladder epoch and 
S, €J/. But these are the Provepunes appearing on the left in (4.1), and this 
concludes the proof. > 

(ii) The epoch N of the first entry into 0, co has the generating function 

7 given by 7(s) = x(s, 0). Thus by (3.6) 

  

=55 “ P{S, > 0}. 
(43) - log 1 — =a n=l MN 

This formula was derived by combinatorial methods in XII,7 where various 

consequences were discussed. For example, letting s-—>1 in (4.3) it is seen 
that the variable N is proper iff the series } n—P{S, > 0} diverges; in 

case of convergence the random walk drifts to —o. On adding 

log (1 — s) =’ —> s"/n to (4.3) and letting s—-1 one finds that 

(4.4): log E(N) = logr'(1) = 5 4 P{S, <0} 
n=1 Nh 

provided only that N is proper. But we have just observed that the last 

‘series converges iff the random walk drifts to 00, and hence we have 

Lemma 2. A necessary and sufficient condition that N be proper and 
E(N) < 00 is that the random walk drifts to ow. 

This result was derived by different methods in XII,2. For further pro- 
perties of the distribution of N the reader is referred to XII,7. 

(iii) On the expectation of the point Sy of first entry. With the methods of 

chapter XII not much could be said about the distribution of S,, but now 

we get the characteristic function of Sy by setting s = 1 in (3.6). However, 
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it is preferable to derive some pertinent information directly from the 
factorization formula. 

Lemma 3. If both Sy and S,y- are proper and have finite expectations 
then F has zero expectation and a variance o? given by 

(4.5) to? = —[1—f(1)] : E(Sy) - E(S-). 

Theorem |. of the next section shows that the converse is also true. The 

surprising implication is that the existence of a second moment of F is: 
necessary to ensure a finite expectation for Sy. 

Proof. For s = 1 we get from (3.5) 

(4.6) HS). I pay Ba! a= 1 
C. C 

As £0 the fractions oni the right tend to the derivatives of the characteristic 
functions y and’ y-, that is, to /E(S,) and iE(S,-). The left side has 

therefore a finite limit o?, which means that g’(0) =0 and g’(0) = }o?. 
It follows that o? is the variance of F (see the corollary in XV,4). > 

We turn to the case of a drift toward oo. It follows from lemmas 1-2 of 

section 3, together with (4.5) that in this case as s—>1 and (¢—0 

4.1) JOT" 1 7607+ en (FTPs, < 0}) = BO) < o. 
Now by the factorization theorem 

    

(438) 10,9 = 1 @Q)— 1. 1 
C [1—f(1)) - 1-7, 2) 

‘Letting ¢-+0 we get the important result that 

(4.9) E(Sy) = E(X,) - E(N) 

provided E(Sy) and E(X,) exist (the latter -is positive because of the 

assumed drift to oo). 

We can go a Step further. Our argument shows that the left side in (4.8) tends to a finite 
limit iff g’(0) = iu exists. Now it was shown in XVII,2a that this is the case iff our random 

walk obeys the generalized weak law of iarge numbers, namely iff 

1 Pp 
(4.10) on 

(*, signifying convergence in probability). It was shown also that for positive variables 

this implies that 2 coincides with their expectation. Thus in (4.8) the left side approaches 
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a limit iff E(N) < 0, and the right iff ’(0) exists. We have thus 

Lemma 4. When the random walk drifts to 0, then E(N) < © iff there exists a number 

& > 0 such that (4.10) holds. 

In XII,8 we could only show that the existence of E(X,) suffices, and even for this weaker 

result we required the strong Jaw of large numbers together with its converse. 

5. TWO DEEPER THEOREMS 

To illustrate the use of more refined methods we derive two theorems of 
independent interest. The first refines lemma 3 of. the preceding section; 

the second has applications in queueing theory. The proofs depend on deep 

Tauberian theorems, and the second uses Laplace transforms. 

Theorem 1. If F has zero expectation and variance o* ‘the series 
co - 

(5.1) > = (P{s, > 0) — =e 
n=l N 

converges at least conditionally, and 

(5.2) E(Sx) = 7 ee. 

This theorem is due to F. Spitzer. The convergence of the series played a 

role in theorems 1a of XII,7 and.8. 

Proof. Differentiating (3.6) with respect to ¢ and setting ¢ = 0 one gets 

d x(s, 0) — yo x F"*{dx} - exp |- > = P{s, > 0} |. 
df n=1 nN n=1'n . 

Both series converge sbsolutely for |s| <1 since the coefficients of s” 

remain bounded. Indeed, by the central limit theorem the moments of* 

order <2 of S,/o,/n tend to the corresponding moments of the normal 
distribution, which means that as _n—» oo . 

(5.3) —i- 

(5.4) { 2 F™{d2}~a |. 
0 27 

Accordingly, by the easy part of theorem 5 of XIII,5 as s—> 1 
oo 5” nk : +4 : 

5). — F°™sdz —=~—=(1-s 
(9.9) 2, n f {dz} ~ 27 $35 n a! ) 

The left side in (5.3) tends to E(Sy) which may be finite or infinite, but 

cannot be zero. Combining. (5.3) and (5.5) we get therefore 

gt . 

(5.6) E(Sx) = Te Him exp > @- PIS, > 0))]. 
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The exponent tends to a finite number or to +00. The same argument 
applies to N-, that is, to the exponent with S, >0 replaced by S, < 0. 
But the sum of the two exponents equals > (s"/n) P{S, = 0} and remains 
bounded as s->1. It follows that the exponent in (5.6) remains bounded, 

and hence tends to a finite limit —c. Since its coefficients are o(n-1) this 

implies® thatfor s = 1 the series converges to —c. This concludes the proof. 
> 

Next we consider random walks with a drift to —oo and put 

(5.7) | M,, = max {0,S,,..., S,}. 

It may be recalled from VI,9 that in applications to queueing theory M,, 

represents the waiting time of the mth customer. However, the proof of the 
following limit theorem is perhaps more interesting than the theorem itself. 

Theorem 2. If the random walk drifts to —0o the distributions U,, of 
M,, tend to a limit distribution U with characteristic function w given by 

(5.8) w(C) = exp [> 2 ( (et) F™* (dx) |. 

Note that > n—P{S, > 0} < oo in consequence of (4.3), and so the 

series in (5.8) converges absolutely for all ¢ with positive imaginary part. 

Proof. Let w, denote the characteristic function of U,. We begin by 
showing that for |s| < 1 

i exp > =| (e%* — 1) Fe {dz} | 
l-—s n=l NJO . 

The event {M, ¢J} occurs iff the following two conditions are satisfied. | 

First, for some 0 <n < » the point (7,S,) is a ladder point with S, €7; | 

second, S,—S, <0 forall »<k< vy. The first condition involves only . 

  (5.9) Bi s*wa(6) = 

X,,..., X,, the second only X,,,,...,X,. The two events are therefore 

independent and so . 

(5.10) P{M, € 7} = aob, + -** + a,bo 

where 

(5.11) a, =P{S, <S,,...,8,,<S,S,¢€, 6, =P{N>n}. 

The probabilities a,, occur on the left in (4.1), and we saw that their trans- 
form is given by [{1—xz(s, ¢)}"?. The generating function of {b,} is given by 

{1—7(s)]/(i—s) with 7 defined in (4.3). In view of the convolution property 

5 By the elementary (original) theorem of Tauber. See, for example, E. C. Titchmarsh, 
Theory of Functions, 2nd ed., Oxford 1939, p. 10. 
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(5.10) the product of these functions represents the transform of the prob- 
abilities P{M, €J}, and (5.9) merely records this fact. 

We have already noticed that the exponents in (5.8) and (5.9) are regular 
for all ¢ with positive imaginary part. For 2 >0 we may therefore put 
¢ = id which leads us to the Laplace transforms 

(5.12) w,,(iA) -{" e** U {dz} = af" e** U, (2x) dz. 

From the monotone character of the sequence of maxima M,,, it follows that 
for fixed x the sequence {U,(x)} decreases, and hence for fixed A the 
Laplace transforms w,(iA) form a decreasing sequence. In view of (5. 9) 

we have as s—> 1 

(5.13) ¥ s"w,(i2) ~ — alia), 
n=0 . 

and by the last part of the Tauberian theorem 5 of XIII,5 this implies that 
w,(iA) -> w(id). This implies the asserted convergence U,, — U. > 

6. CRITERIA FOR PERSISTENCY 

The material of this section is independent of the preceding theory. It 
is devoted to the method developed by K. L. Chung and W. H. J. Fuchs 
(1950) to decide whether a random walk is persistent or transient. Despite 

the criteria and methods developed in chapters VI and XII the Fourier- 
analytic method preserves its methodological and historical interest and is 
at present the only method applicable in higher dimensions. In the following 
F stands for a one-dimensional distribution with characteristic function 

p(t) = u(Z) + iv(@). 
For 0 < s <1 we introduce the finite measure 

(6.1) U, = Ss"F™. 
n=0 

According to the theory developed in VI,10 the distribution F is transient iff 

_for some open interval J about the origin U,{7} remains bounded as s— 1; 

in this case U,{7} remains bounded for every open interval J. Non-transient 

distributions are called persistent. 

Criterion. The distribution F is transient iff for some a>0 

1 — su 
6.2 [(—"s d 

(6-2) (1—su)? + s*v? ‘ 

remains bounded as s—>1 from below. 

(It will be seen that in the c>ntrary case the integral tends to oo.) 
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Proof. (i) Assume that the integral (6.2) remains bounded for some fixed 

a>0. The Parseval relation XV,(3.2) applied to F"* and a triangular 
density (number 4 in XV,2) reads 

(6.3) 2[- =$9882 prota am: ‘LC — BY grat. 
= OD a*a? 

Muitiplying by s” and adding over 1 we get 

2p “gat gai / (- Ee 
(6.4) 

2 {° C 1 — su 
=" (1 ~*) oe ee | a Jo a} (1—su)* + s*v 

(because the real part of @ is even and the imaginary part is odd). Let J 
stand for the interval |x| < 2/a. For xeJ the integrand on the left is >4 

and so U,{7} remains bounded. The condition of the theorem is therefore 
sufficient. 

(ii) To prove the necessity of the condition we use Parseval’s relation with 
the distribution number 5 in XV,2 which has the characteristic function 

1 — |{\/a for |<] <a. This replaces (6.4) by 

yy | 1 — su 
6.5 f U,{dz} = . dt. 65) | (1-2) vide} of dame il! 
For a transient F the left side remains bounded, and so the integral (6.2) 
remains bounded. . > 

             

  

As an application we prove a lemma which was proved by different methods 
in theorem 4 of VI,10. For further examples see problems 13-16. 

Lemma 1.° A probability distribution with vanishing expectation is persistent. 

Proof. The characteristic function has a derivative vanishing at the origin, 

and hence we can choose a. so small that 

0<g1l—u(O < <, for 0g ¢% <a. 

Then 1 — su(f)<1—s-+e€ and using the inequality 2 |xy| < x? + y? 

it is seen that the integral in (6.2) is 

> [ Ua) ae =F arctan = +2, 
(1-—sy +" 3€ l1—-s 6€ 

  

~ 6 The fact that The fact that E(X;) = 0 implies persistency was first established by Chung and Fuchs, 
It is interesting to reflect that in 1950 this presented a serious problem and many attempts 
to solve it had ended in failures. Attention on this problem was focused by the surprise 
discovery of the unfavorable “fair’’ random walk in which P{S,, > n/log n} +1. See 1; 

X,3 and problem 15 in 1; X,8. Fora related phenomenon see the footnote to problem 13. 
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The right side can be made arbitrarily large, and so the integral (6.2) tends 

to o. > 

The passage to the limit involved in the criterion is rather delicate, and it is therefore 
useful to have the simpler sufficient conditions stated in the following 

Corollary. The probability distribution F is persistent if 

  

(6.6) “ITY . —_—_O = © 

0 (1—u)? + v? 

for every a > 0, and transient if for some a > 0 

a ad. 
(6.7) [ b <0. 

, 0 l—u 

Proof. The integrand in (6.2) is decreased when 1 — su in the numerator is replaced by 

1 —u, and sv in the denominator by v. Then (6.6) follows by monotone convergence. 
Similarly, the integrand in (6.2) increases when the term s*v® is dropped, and then (6.7) 
follows by monotone convergence. > 

These criteria apply without change in higher dimensions except that then u and v 
become functions of several variables ¢;, and the integrals are extended over spheres 
centered at the origin. In this way we prove the following criteria. 

Lemma 2. A truly two-dimensional probability distribution with zero expectations and 
finite variances is persistent. 

Proof. The characteristic function is twice continuously differentiable, and from the 
two-term Taylor expansion it is seen that in a neighborhood of the origin the integrand of 
(6.6) is >6/(¢?+ 2%). The integral corresponding to (6.6) therefore diverges. > 

Lemma 3. Every truly three-dimensional distribution is transient. 

Proof. On considering the Taylor expansion of cos (2,f,+2lo+2%3¢3) im some 2- 
neighborhood of the origin one sees that for any characteristic function there exists a 
neighborhood of the origin in which 

1 — u(L,, Lo, fg) > (02 +224 22). 
The three-dimensional analogue to (6.7) is therefore dominated by an integral of 
(7+ 23+¢2)? extended over a neighborhood of the origin, and in three dimensions this 
integral converges. > 

7. PROBLEMS FOR SOLUTION 

1. Do the example of section 1 for the case of an unsymmetric interval —a, b. 
(Derive two linear equations for two generating functions corresponding to the 
two boundaries. Explicit solutions are messy.) 

Problems 2-5 refer to a symmetric binomial random walk, that is, g(¢) = cos ¢. 
The notations are those of section 1. 

2. Let A consist of the two points 0,1. Show by elementary considerations 
1 Ss s? 1 Ss . 

that x5, 9D = [4 (3 i +7 e and y({s, 4) Poise j (: +5e Verify 

(1.9). 
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3. If in the preceding problem the roles of A and A’ are . interchanged one gets 

Vis —1 

xs, ) = Ze +40 — VI=s), 96,9 -[1- ee - , 
Interpret probabilistically. 

_ 4. If A’ consists of the origin alone x depends only on s and y must be the 
sum of two power series in e and e-‘, respectively. Using this information 
derive x and y directly from (1.9). 

5. If A’ consists of the origin alone one has x = sp and y=. 

6. Alternative proof of the identity (1.9). With the notations of section 1 show that 

(*) Feat }=s s Hy {dy} FHT ~y} + G,{T} 
k=1A/ . 

(a) by a direct probabilistic argument, and (b) by induction. Show that (*) is 

equivalent to (1.9). 

7. In the case of a (not necessarily symmetric) binomial random walk Wald’s 
approximation in section 2 leads to a rigorous solution. Show that (2.12) reduces 
to a quadratic equation for + = e~4 and that one is led to the solution known 
from 1; XIV,(4.11).' Specifically, Q(s) agrees with U, except that the latter 

refers to a basic interval 0,a rather than —a, b, and to a starting point z. 

8. As in section 2 let G,{Z} be the probability that S,¢ZC A and that no. 
exit from A = —a, 6 has taken place previously. Show that if two distributions 
F and F*# agree within the interval. \z| <a + b they lead to the same probabilities 
G,,. Use this and an appropriate truncation for an alternative proof that the series 
(2.1) converges for some s > 1. 

_ 9. Random walks in which’'the distribution F is concentrated on finitely many 
integers were treated in example XII,4(c). Show that the formulas derived there: 
contain implicitly the Wiener-Hopf factorization for 1 — 9. 

10. (Khintchine-Pollaczek formula.) Let F be the convolution of an exponential 

with expectation .1/a concentrated on 0, © and a distribution B concentrated 

on —,0. Denote the characteristic function of B by 8, its expectation by 
—b <0. We suppose that the expectation a! — b of F is positive. Then 

a 1 — (2) = (1 -z2q) (1-2 $2), 
Note: This formula plays an important role in queueing theory. For alternative 

treatments see examples XII,5(a—b) and XIV,2(5). 

11. (Continuation.) If ab > 1 show that there exists a unique positive number 
« between 0 and a such that 

aB(—ix) =a —k. 

a—« —aB(%) 
il—k 

random walk with characteristic function *9({) = g({ — ix). Recall that 

x, $) =%x-U, ¢ — ix). [See example -XII,4(6).] 

i — 9({%) =            

Prove that y7(1, O = . Hint: Apply problem 10 to the associated 
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12. Let U, = max [0,S,,...,S,] and V, =S, — U,. By a very slight 
change of the argument used for (5.9) show that the bivariate characteristic function 
of the pair (U,, V,) is the coefficient of s* in’ 

! exp s ~ | [eee —pre tae) +? (ot —1) Pref} | 
0 —a 

l—-s 

  

13.8 Suppose that in a neighborhood of the origin .|1 — ¢(2)| < A-|f|. Then 
F is persistent unless it has an expectation u = 0. 

. . % ig : 
Hint: The integral in (6.6) exceeds [ dt ae F{dzx}. Substitute £ = 1/r 

. . . ov, . 
and interchange the order of integration to see that this integral diverges unless 
“exists. 

t 

14. Using the criterion (6.7) show that if 1-1? I a F{dz} — o for some 
; —t 

p >O as t + © the distribution F is transient.® 

15. The distribution with characteristic function g(f) = ei) 1/n! cos (n!2) 
is transient. 

Hint: Use (6.7) and the change of variable ¢ = (1/n!)r. 

16. The unsymmetric stable distributions with characteristic exponent « = 1 are 
transient, but the Cauchy distribution is persistent. 

? First derived analytically by F. Spitzer, Trans. Amer. Math. Soc., vol. 82 (1956) 
pp. 323-339. 

8 This problem commands theoretical interest. It applies whenever gy has a derivative 
at the origin. We saw in XVII,2a that this is possible even without F having an expectation, 
and that in this case the weak law of large numbers applies nevertheless. Thus we get 
examples of random walks in which for each sufficiently large n there is an overwhelming 
probability that S, > (1 — «mu with w > 0, and yet there is no drift to co: the random 
walk is persistent. 

® This shows that under slight regularity conditions F is transient whenever an absolute 
moment of order p <1 diverges. The intricacies of the problem without any regularity 

conditions are shown in L. A. Shepp, Bull. Amer. Math. Soc., vol. 70 (1964) pp. 540-542. 

 



CHAPTER XIX 

Harmonic Analysis 

This chapter supplements the theory of characteristic functions presented 
in chapter XV and gives applications to stochastic processes and integrals. 
The discussion of Poisson’s summation formula in section 5 is practically 
independent of the remainder. The whole theory is independent of chapters 
XVI-XVHUI. 

1. THE PARSEVAL RELATION 

Let U bea probability distribution with characteristic function 

(1.1) w(t) = [  * Uda}. 

Integrating this relation with respect to some other probability distribution 
F we get 

(1.2) [Pow Flay = [9 Uta), 
where ¢ is the characteristic function of F. This is one form of the Parseval 
relation from which the basic results of XV,3 were derived. Surprisingly 
enough, a wealth of new information can be obtained by rewriting Parseval’s 
formula in equivalent forms and considering special cases. A simple example 
of independent interest may illustrate this method, which will be used 
repeatedly. 

Example. The formula 

(1.3) [Ce co(C) F{d¢} =["o@ U{a + dx} 

differs from (1.2) only notationally. We apply the special case where f 

is the uniform distribution in —?,t and g(x) = sin ta/tx. This function 

does not exceed | in absolute value and as t— oo it tends to 0 at all points 

619 
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x #0. By bounded convergence we get therefore 
t 

(1.4) U(a) — U(a—) = lim > eM ey(L) dt. 
t-* co —t 

This formula makes it possible to decide whether a is a point of continuity 
and to find the weight of the atom at a, if any. The most interesting result 
is obtained by applying (1.4) to the symmetrized distribution °U with 
characteristic function |w|?. If p,, ps,... are the weights of the atoms of 
U then °U has an atom of weight > p? at the origin (problem 11 in V,12) 
and so 

1 ft 

(1.5) = | |oo(S)|? dl > ¥ pie. 
2t J-t 

This formula shows, in particular, that the characteristic functions of 
continuous distributions are, on the average, small. > 

A versatile and useful variant of the Parsevai formula (1.2) is as follows. 
If A and B are arbitrary probability distributions with characteristic functions 
a and B, respectively, then 

+00 +o 

(1.6) I | w(s—ty A{ds} Bfdt} = I a(x) Bla) U{de} 

where # is the conjugate of f. For a direct. verification it suffices to integrate 
+00 

(1.7) w(s—t) -[ es-2 US day 

with respect to A and B. This argument produces the erroneous impression 
that (1.6) is more general than (1.2), whereas the relation (1.6) is in reality 

the special case of the Parseval relation (1.2) corresponding to F = A*-B 
where ~B is the distribution with characteristic function f [that is, 
~B(x) = 1 — B(—z) at all points of continuity].. Indeed, F has the 
characteristic function = af, and so the right sides in (1.2) and (1.6) 

are identical. That the left sides differ only notationally is best seen using 
two independent random variables X and Y with distributions A and B, 

respectively. The left side in (1.6) represents the direct definition of the 
expectation E(w(X—Y)), whereas the left side in (1.2) expresses this 

expectation in terms of the distribution F of X — Y. 
(We return to Parseval’s formula in section 7.) 

2. POSITIVE DEFINITE FUNCTIONS 

An important theorem due to S. Bochner (1932) makes it possible to 
describe the class of characteristic functions by intrinsic properties. The 
following simple criterion will point the way. 
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Lemma 1. Let w be a bounded continuous (complex-valued) function that 
is integrable’ over — oo, ©. Define u by 

1 +O 

(2.1) u(z) = +f e~ 8 @(L) dl. 

In order that « be a characteristic function it is necessary and sufficient that 
(0) = 1 and that u(x) >0 for all x. In this case u is the probability 
density corresponding to w. 

Proof. The Fourier inversion formula XV,(3.5) shows that the conditions 

are necessary. New choose an arbitrary even density f{ with integrable 
characteristic function » > 0. Multiply (2.1) by g(tx)e* and integrate 
with respect to x. Since the inversion formula XV,(3.5) applies to the pair 

Sf, ¢ the result is 

(2.2) [Eu ptaye da = | 7 201(5 a\ a 
—co _ 

  

The right side is the expectation of w with respect to a probability distri- 
bution, and hence it is bounded by the maximum of ||. For the particular | 
value a =0 the integrand on the left is non-negative and tends to u(z) 
as t-+0. The boundedness of the integral therefore implies that u is 

integrable. Letting t—>0 in (2.2) we get therefore 

+o 

(2.3) [ u(x)e'** dx = w(4) 

(the left side by bounded convergence, the right side because the prcbability 
distribution involved tends to the distribution concentrated at the point a). 

For a= 0 we see that u is a probability density, and w is indeed its 

characteristic function. > 

The integrability condition of the lemma looks more restrictive than it is. 
In fact, by the continuity theorem a continuous function w is characteristic 
iff w(Qe- is a characteristic function for every fixed « > 0. It follows 

that a bounded continuous function with w{(0) = 1 is characteristic iff for 

all x and «>0 
+00 3 

(2.4) { e 8 u(Lye" dl > 0. 
—a 

This criterion is perfectly general, but it is not easy to apply in individual 

situations; moreover, the arbitrary choice of the convergence factor e~®" isa 

drawback. For this reason we restate the criterion in a form in which the 

condition is sharpened. 

1 As elsewhere this means absolute integrability. 
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Lemma 2. 4 bounded continuous function w is characteristic iff w(0) = 1 
and if for every probability distribution A and all x 

+o | 
(2.5) [er#oce *atag} > 0 

—o2 

where °A = AA is the distribution obtained by symmetrization. 

Proof. (a) Necessity. If « is the characteristic function of A then °A has 
the characteristic function |a|? and the necessity of (2.5) is implicit in the 
Parseval relation (1.3). 

(6) Sufficiency. It was shown in (2.4) that the condition is sufficient if A 
is. restricted to normal distributions with arbitrary variances. > 

We have seen that (2.5) may be rewritten in the form (1.6) with B= A. 
In particular, if 4 is concentrated at finitely many points 1%), fey... , tq 
with corresponding weights p,, Po,..., Pn, then (2.5) takes on the form 

(2.6) > ot; te" pp, > 0. 
a ; 

If this inequality ts valid for all choices of t; and p,; then (2.5) is satisfied 
for all discrete distributions A with finitely many atoms. As every distri- 
bution is the limit of a sequence of such discrete distributions the condition 
(2.6) is necessary and sufficient. With the change of notation z; = p,e~***s 
it takes on the form 

(2.7) _ Yoaltj;—t)z% > 0. 
: ik 

For the final formulation of our criterion we introduce a frequently used term. 

Definition. A complex-valued function w of the real variable t is called 
positive definite iff (2.7) holds for every choice of finitely many real numbers 
t,...,¢, and complex numbers 2, ... , Zn. 

Theorem. (Bochner.) A continuous function w is the characteristic function 

of a probability distribution iff it is positive definite and w(0) = 1. 

Proof. We have shown that the condition is necessary, and also that it is 

sufficient when.w is bounded. The proof is completed by the next lemma 
which shows that all positive definite functions are bounded. > 

Lemma 3. For any positive definite w 

(2.8) w(0)>0, — |w(t)| < w(0) 

(2.9) w(—t) = o(0). 
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Proof. We use (2.7) with n = 2 letting 4 =0 and z = 1. Dropping 
the unnecessary subscripts we get 

(2.10) oO) [1 +122] + (2 + w(—12 > 0. 

For z= 0 it is seen that w(0) > 0. For positive z we get (2.9) and it 
follows that w =0 if w(0)=0. Finally, if w(0) #0 and z= —o(t)/ 
w(0) then (2.10) reduces to |w(t)|? < w(0). > 

3. STATIONARY PROCESSES 

The last theorem has important consequences for stochastic processes 
with stationary covariances. By this is meant a family of random variables 
{X,} defined for —oo <t< o and having covariances such that 

(3.1) Cov (X544, Xs) = p(t) 

is independent of s. So far we have considered only real random variables, 
but now the notations will become simpler and more symmetric if we admit 
complex-valued random variables. A complex random variable is, of course, 
merely a pair of real variables written in the form X = U + iV and nothing 
need be assumed concerning the joint distribution of. U and V. The variable 
X = U — iV is called the conjugate of X and the product XX takes over 
the role of X? inthe real theory. This necessitates a slight unsymmetry in the 
definition of variances and covariances: 

Definition. For complex random variables with 

E(X) = E(Y) = 0 
we define 

(3.2) Cov (X, Y) = E(X¥). 

Then Var (X) = E(|X|*) > 0, but Cov(Y,X) is the conjugate of 
Cov (X, Y). 

Theorem. Let {X,} be a family of random variables such that 

(3.3) p(t) = E(X,45X,) 

is a continuous function? independent of s. Then p is positive definite, that is, 

+00 

(3.4) p(t) = ( e**R{ dal 

where R is a measure on the real line with total mass p(0). 

* Continuity is important: for mutually independent variables X, one has p(t}=0 
except when f = 0, and this covariance function is not of the form (3.4). See problem 4. 
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If the variables X, are real the measure R is symmetric and 

“Fao 

(3.5) p(t) =[ cos At R{dA}. 

Proof. Choose arbitrary real points f,,...,f, and complex constants 
Z4,--.+,2,- Then n° 

> P(t; — 1,252, = > E(X,,%,,)2 5% = . 

= E> X1j2jRy,24) = E> X,,2,l") > 0 

and so (3.4) is true by the criterion of the last section. When p is real the 
relation (3,4) holds also for the mirrored measure obtained by changing 

x to —2, and because of the uniqueness R is symmetric. > 

(3.6) 

The measure R is called the spectral measure® of the process; the set 
formed by its points of increase is called the spectrum of {X,}. In most 
applications the variables are centered so that E(X,) = 0, in which case 

— p(t) = Cov (X,4,, X,). For this reason p is usually referred to as the 

covariance function of the process. Actually the centering of X, has no 
influence on the properties of the process with which we shall be concerned, 

Examples. (a) Let. Z,,...,Z, be mutually uncorrelated random 

variables with zero expectation and variances o?,...,0%. Put 

(3.7) xX, = Z, e143! oc Ze" 

with A,,...,A, real. Then 

(3.8) p(t) = oie! + sae + arent 

and so R is concentrated at the n points A,,...,A4,. We shall see that 

the most general stationary process may be treated as a limiting case of this 
example. © oO . Co 

If the process (3.7) is real it can be put into the form | 

(3.9) X, = U,cosAjt-- -+U, cos A,t + V, sin Ayt+--+-+V, sin A,t 

where the U, and V, are real uncorrelated random variables and 

EU) =E(V) =o 
A typical example occurs in III,(7.23). The corresponding covariances are 

p(t) = a? cos At + +--+ + of cos A,t. 

(b) Markovian processes. If the variables X, are normal and the process 
is Markovian, then p(t) = e~*!‘! [see III,(8.14)]. The spectral measure 1s 
proportional to.a Cauchy density. 

3 In communication engineering, also called the “power spectrum.”’ 
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(c) Let X, = Ze” where Y and Z are independent real random 
variables, E(Z) = 0. Then 

p(t) = E(ZZ)E(e#) 

which shows that the spectral measure R is given by the probability 
distribution of Y multiplied by the factor E(ZZ). > 

Theoretically it matters little whether a process is described in terms of its 
covariance function p or, equivalently, in terms of the corresponding 
spectral measure R, but in practice the description in terms of the spectral 
measure R is usually simpler and preferable. In applications to com- 
munication engineering the spectral analysis has technical advantages in 

instrumentation and measurement, but we shall not dwell on this point. 
Of greater importance from our point of view is that linear operations (often 

called “‘filters’”) on the variables X, are more readily described in terms of 
R than of p. 

Example. (d) Linear operations. As the simplest exampie consider the 

family of random variables Y, defined by 

(3.10) ¥, = > Xi, 

where the c, and 7, are constants (7, real) and the sum is finite. The 

covariance function of Y, is given by the double sum 

(3.11) py(t) = > c,C¢ p(t—t;+7,). 

Substituting into (3.4) one finds 

+00 

py(t) =| [> ce? - a4 Rida. 

This shows that the spectral measure Ry is determined by 

(3.12) Ry{da} = |¥ ce")? Rfda}. 

In contrast to (3.11) this relationship admits of an intuitive interpretation: 
the “frequency” / is affected by a “frequency response factor” f(A) which 

depends on the given transformation (3.10). 
This example is of much wider applicability than appears at first sight 

because integrals and derivatives are limits of sums of the form (3.10) and 
therefore a similar remark applies to thern. For example, if X, serves as 

input to a standard electric circuit. the output Y, can be represented by 
integrals involving X,: the spectral measure Ry is again expressible by R 
and a frequency response. The latter depends on the characteristics of the 
network, and our result can be used in two directions; namely, to describe 

the output process and also to conseruct networks which will yield an output 

with certain prescribed properties. > 
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We turn to the converse of our theorem and show that given an arbitrary 
measure R on the line there exists a stationary process {X,} with spectral 
measure R. Since the mapping X,—> aX, changes R into a?R there is no 
loss of generality in assuming that R is a probability measure. We take 
the A-axis equipped with the probability measure R as sample space and 
denote by X, the random variable defined by X,(A) = e*. Then 

(3.13) p(t) = BX X,) =| “e* Rad}, 
and so the spectral measure of our process is given by R. We have thus 
constructed an explicit model of a stationary process with the prescribed 

spectral measure. That such a model is possible with the real line as sample 
space is surprising and gratifying. We shall return to it in section 8. 

It is easy to modify the model so as to obtain variables with zero expectation. Let Y 
be a random variable that is independent of all the X, and assumes the values +1 each 

with probability 3. Put X, = YX,. Then E(X;) =0 and E(X;,X,) = E(¥*) EG, asks 0 
Thus {xi} is a Stationary process with zero expectations, and (3.13) represents its true 

covariance function. 

4. FOURIER SERIES 

An arithmetic distribution attributing probability gy, to the point n 

has the characteristic function 

(4.1) pf) = > Pre 

with period 22. The probabilities g, can be expressed by the inversion 
formula 

1 "i (4.2) m=z [emo at 
. 27 

which is easily verified from.(4.1) [see XV ,(3.14)]. 

We now start from an arbitrary function g with period 27 and define 

gy, by (4.2). Our problem is to decide whether y isa characteristic function, 

that is, whether {y,} is a probability distribution. The method depends on 

investigating the behavior of the family of functions f, defined for0<r<1 

by 
+00 

(4.3) f(b) = S garitle™, 
— 0 

Despite its simplicity the same argument will yield important results con- 

cerning Fourier series and characteristic functions of distributions con- 

centrated on finite intervals. 
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| 
In what follows it is best to interpret the basic interval —7, 7 as a circle 

(that is, to identify the points 7 and —7). Foranintegrable gy the number 
@,, will be called the kth Fourier coefficient of ~. The series occurring in 

(4.1) is the corresponding “formal Fourier series.’’ It need not converge, 
but the sequence {q,,} being bounded, the series (4.3) converges to a con- 
tinuous (even differentiable) function £. When r—>1 it is possible for f, 

to tend to a limit y even when the series in (4.1) diverges. In this case one 

says that the series is “Abel summable” to y. 

Examples. (a) Let 9, =! for n=0,1,2,..., but 9, =0 forn <0. 

Each term of the series in (4.1) has absolute value 1, and so the series cannot 

converge for any value ¢. On the other hand, the right side in (4.3) reduces 

to a geometric series which converges to 

(4.4) L(QO=— 
1—re* 

As r-—>1 a limit exists at all points except ¢ = 0. 
(6) An important special case of (4.3) is represented by the functions 

] +0 . 

(4.5) Pelt) = 5 Britain 

  

7 

obtained when g,, = 1/(27) for all ». The contribution of the terms 

n> 0 was evaluated in (4.4). For reasons of symmetry we get 

1 
  4.6 2mp{t) = : > 1 (4-6) mPe{t) 1—re® 1 — re 

or 

I t-—-r 
(4.7) pt) =—+—— 

In Ll+r?—2rcost 

This function is of constant use in the theory of harmonic functions where 

P,(t—£) is called the ‘“‘Poissen kernel.’ For reference we state its main 

property in the next lemma. 

Lemma. For fixed 0<r-<1 the function p, is the density of a prob- 
ability distribution P, on the circle. As r->1 the latter tends to the probability 

distribution concentrated at the origin. 

Proof. Obviously p, > 0. That the integral of p, over —7, 7 equals 
one is evident from (4.5) because for n #0 the integral of ‘e*”’ vanishes. 

For 6 <t <7 the denominator in (4.7) is bounded away from zero. As 

r—>1 it follows that in every open interval excluding the origin p;{t) > 0 
boundedly as r—+1, and so P, has a limit distribution concentrated at the 

origin. >
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Theorem 1. A continuous function p with period 2m is a characteristic 
function iff its Fourier coefficients (4.2) satisfy gp, >0 and y(0)}=1. In 
this case p is represented by the uniformly convergent Fourier series (4.1). 

[In other words, a formal Fourier series with non-negative coefficients —, 
converges to a continuous function iff S @, < 00. In this case (4.1) holds.] 

Proof. In view of (4.2) and (4.5) the function f, of (4.3) may be put into 
the form 

(4.8)  fKQ= [ " g(t) + p(L—t) at. 
On the right we recognize the convolution of g and the probability distri- 
bution P,, and we conclude 

(4.9) FE) > 92), | r— I. 

Furthermore, if mm. is an upper bound for |g] then by (4.8) 

(4.10) | f(0) = ¥ opr! < m. 

The terms of the series being non-negative it follows for r—>-1 that 

> e, <m. Therefore > ¢,e*"* converges uniformly and it is evident from 
(4.3) that f,(¢) tends to this value. Thus (4.1) is true, and this con¢ludes the 

proof. > 

Note that (4.9) is a direct consequence of the convergence properties of 
_convolutions and hence independent of the positivity of the coefficients ¢,. 
As a by-product we thus have 

Theorem 2.4 If is continyous with period 22, then (4.9) holds uniformly 
in ¢. 

(For generalizations to discontinuous functions see corollary 2 and 
problems 6-8.) 

Corollary 1. (Féjer.) A continuous periodic function g is the uniform 

limit of a sequence of trigonometric polynomials. 
  

4 The theorem may be restated as follows: The Fourier series of a continuous periodic 
function yp is Abel summable to py. The theorem (and the method of proof) apply equally 

to other methods of summability. 
The phenomenon was first discovered by L. Féjer using Cesaro summability (see problem 

9) at a time when divergent series still seemed mysterious. The discovery therefore came as 

a sensation, and for historical reasons texts still use Cesaro summability although the Abel 

method is more convenient and unifies proofs. 
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In other words, given « > 0 there exist numbers a_y,...,a@y such that 

N 2 

(4.11) @(f) — 2X ane <e 

for all €. — 

Proof. For arbitrary N and 0<r<1 

  

(4.12) | oe — > garlers 
N n=— 

< lp(¢) —~ f(0)| + % Pal ° rial, 

The claim is that we can choose r so close to 1 that the first term on the 

right will be <e/2 for all ¢. Having chosen r we can choose N so 

large that the last series in (4.12) adds to < e/2. Then (4.11) holds with 
— nl a, = 7,r'™. > 

The following result is mentioned for completeness only. It is actually 
contained in lemma | of section 6. 

Corollary 2. Two integrable periodic functions with identical Fourier 
coefficients differ at most on a set of measure zero (that is, their indefinite 

integrals are the same). 

Proof. For an integrable periodic g with Fourier coefficients y, put 

(4.13) (2) =|" [p@)—oo) a. 
This © is a continuous periodic function, and an integration by parts shows 
that for n #0 its nth Fourier coefficient equals —ip,,/n. 

The relations (4.9) and (4.3) together show that a continuous function 

is uniquely determined by its Fourier coefficients g,. The coefficients ¢, 
with n #0 therefore determine up to an additive constant. For an 
arbitrary integrable q it follows that its Fourier coefficients determine the 
integrai ©, and hence is determined up to values on a set of measure 
zero. > 

+5, THE POISSON SUMMATION FORMULA 

In this section g stands for a characteristic function such that || is 

integrable over the whole line. By the Fourier inversion formula XV,(3.5) 

- this nplies the existence of a continuous density f. By the Riemann-Lebesgue 
lemma 3 of XV,4 both f and vanish at infinity. If gp tends to zero 
sufficiently fast it is possible to use it tc construct periodic functions by a 

method that may be described roughly as wrapping the ¢-axis around a 

* This section treats important special topics. It is not used in the sequel, and it is 

independent of the preceding sections except that it uses theorem 1 of section 4. 
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circle of length 24. The new function may be presented in the form 

+00 

(5.1) yo) = > (S+2kd). 
kk==— 00 

(The sum ofa doubly infinite series }*°.. a, is here defined as lim }*__,, a, 
when this limit exists.) In case of convergence the function y is obviously 
periodic with period 24. In its simplest probabilistic form the Poisson 
summation formula asserts that whenever y is continuous w(¢)/w(O) is a 

characteristic function of an arithmetic probability distribution with atoms of 
weight proportional to f (n/a) at the points n7aj/A. (Here n=0, +1, 
"+2,....) At first sight this result may appear as a mere curiosity, but it 
contains the famous sampling theorem of communication theory and many 

Special cases of considerable interest. 

Poisson summation formula.’ Suppose that the characteristic function 
is absolutely integrable, and hence. the corresponding probability density f 
continuous. Then 

(5.2) - S ot¢+-2ka) _ 2S S00 mfayein(a/ ans 

provided the series on the left converges to a continuous function vw. 

-For ¢ = 0 this implies that 

(5.3) S P2KA) = (w/a) Efnm/d) 
is a positive number A, and so y(¢)/A is a characteristic function. 

Proof. It suffices to show that the right side in (5.2) is the formal Fourier 

series of the periodic function yp on the left, that is 

1 , —in(a/A)l — 2 mn (5.4) + [Qe ae = Zftnn’), 
In fact, these Fourier coefficients are non-negative, and y was assumed 
continuous; by theorem | of the preceding section the Fourier series there- 

fore converges to y, and so (5.2) is true. 
The contribution of the kth term of the series (5.1) for py to the left side 

in (5.4) equals 

1 [(zetDa 1 A ; _— 
5.5 _. +2kA —inla/Aye —_ — s)e in(a/A)s ds 

5) 2A [« Je é 2A Seka Hs) 

. > The identity (5.2) is usually established under a variety of subsidiary conditions. Our 
simple formulation, as well as the greatly simplified proof, are made possible by a systematic 
exploitation of the positivity of f. For variants of the theorem and its proof see problems 
12 and 13. 
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and is in absolute value less than 

(2k+1)4 

(5.6). [ Io(s)| ds. 
2k-1)A 

The intervals (2k — lA<s< (2k + 1)A cover the real axis without 

overlap, and so the quantities (5.6) add up to the integral of || which is 
finite. Summing (5.5) over —N<k< WN and letting N--o we get 
therefore by dominated convergence 

1 +00 ; 
5.7 —in(r/A)l d=— “f- —in(r/A)s ds. DL woeorata sl [Tao enema 
The right side equals (a/A)f(n7/A) by the Fourier inversion theorem and this 

concludes the proof. > 

The most interesting special case arises when q@ vanishes identically for 

|<] >a where a< A. The infinite series in (5.1) reduces to a single term, 

and y is simply the periodic continuation of » with period 2A. Then (5.2) 
holds. In (5.3) the left side reduces to 1 which shows that y is the character- 

istic function of a probability distribution. We have thus the 

Corollary. If a characteristic function vanishes for |C| > a_ then all its 
periodic continuations with period 2A > 2a are again characteristic functions. 

This corollary is actually somewhat sharper® than the “sampling theorem” 

as usually stated in texts on communication engineering and variously 
ascribed to H. Nyquist or C. Shannon. 

‘*Sampling theorem.” A probability density f whose characteristic function 

g vanishes outside —a,a is uniquely determined’ by the values (m/A)f (n7/A) 

6 Usually unnecessary conditions are introduced. because the proofs rely on standard 
Fourier theory which neglects the positivity of f germane to probability theory. 

7 An explicit expression for f(x) may be derived as follows. For !<| <4 we have 

p(£) = y(£) and hence by the Fourier inversion formula 
| “tO 

f() os p(fje~ #2 al. 

Now y is given by the right side in & 2), and a trite integration leads to the final formula 

f(x) =r SG Fz (’ senna ise ac 

sin Ax £2 (-1)” 

~ A > r(r i) x—anlA- 

This expansion is sometimes referred to as ‘‘cardinal series.”’ It has many applications. 

[See theorem 16 in J. M. Whittaker, /nterpolarory function theory, Camoridge Tracts No. 33 

1935. For an analogue in higher dimensions see D. P. Petersen and D. Middleton, 

Information and Control, vol. 5 (1962) pp. 279-323.] 
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for any fixed A>a. (Here n=0,4+1,....) (These values induce a 
probability distribution whose characteristic function is the periodic con- 
tinuation of y with period 2A.) 

Examples. (a) Consider the density f(x) = (1—cos x)/(7x?) with the 
characteristic function g(¢) = 1 — |¢| vanishing for |£} > 1. For A= 1 
and {= 1 we get from (5.3) remembering that f(0) = 1/(27) 

1,4 1 
(5.8 ~+ 

(6:8) 2 aw 20 (27+1)" 

  

_ The periodic continuation of g with period *24 = 2 is graphed in figure 
2 of XV,2, a continuation with period A > 2 in figure 3. 
(©) For a simple example for (5.2) see problem I]. > 

As usual in similar situatiens, formula (5.2) may be rewritten in a form 

that /ooks more general. Indeed, applying (5.2) to the density f(z+5) we 
get the alternative form of the Poisson summation formula 

to. | 

df no Ls ae se einlalar 

—0 ; : 

Examples. (c) Applying (5.9) to the normal density and using only the 
special value ¢ = a one gets 

+00 
; 

(59) Sol+rkaewe = 2 Yy 

(5.10) | Se ~3(2k-+1)? 27 cos (2k-+ Was — iS S(- 1)*n (+ s) 

This is a famous formula from the theory of theta functions which was 
proved in X,5 by more elementary methods. In fact, differentiation with 
respect to x shows that the identity of X (5.8) and X CO. 9) is equivalent to 

(5.10) with 2 = (xjay/t and 5 = av’. : 

_(@) For the density f(@) =a (1+2*)"! with characteristic function 

p(t) =e"! we get from (5.2) for £= 0 | 

tet +2 A 
5.11 _—_ = 

( ) e _ e? ok + na” 

This is the partial fraction decomposition for the hyperbolic cotangent. . 
(e) Densities on the circle of length 27 may be obtained by wrapping the 

rea] axis around the circle as described in II,8. To a given density f on the 
line there corresponds on the circle the density given by the series 
> f(2an +s). From (5.9) with € = 0 we get a new representation of this 
density in terms of the original characteristic function. In the special case 
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J =n we get the analogue to the normal density on the unit circle in the form 

1 ] +00 

5.12 = — —(s+2n7 ‘) =— Ye — int cos ns. 
(6-12) J2at + dex one (-5 i ) 2a =e _ 

The second representation shows clearly that the convolution of two normal 
densities with parameters t, and ¢, is a normal density with parameter 

th. > 

6. POSITIVE DEFINITE SEQUENCES 

_ This section is. concerned with probability distributions on a finite interval; 
for definiteness its length will be taken to be 22. As in section 4 we identify 
the two endpoints of the interval and interpret the latter as a circle of unit 
radius. Thus we consider F as a probability distribution on the unit circle 
and define its Fourier coefficients by 

(6.1) Q, =— | &*F {dt}, k =0, +1,.. 
2m Jor 

Note that 9, = y_,. It will now be shown that the coefficients 9, 

uniquely determine the distribution. Allowing for a trivial change of scale 
the assertion 1s equivalent to the following: A distribution concentrated on 

-—A, A is uniquely determined by the knowledge of the values y(n/A) assumed 
by its characteristic function at the multiples of 7/4. The assertion represents 
the dual to the sampling theorem of the preceding section according to which 

a characteristic function vanishing outside —/, A 1s uniquely determined by 
the values f(m7/A) of the density. 

Theorem 1. A distribution F on the circle is uniquely determined by its 

Fourier coefficients 9, 

Proof. As in (4.3) we put for O< r < | 

. +00 

(6.2) SAL) = Sys rll el. 
—% 

The trite calculation that led to (4.8) shows that now 

(63) HO = [ " pe(L—t) Ffdt}, 
where p, stands for the Poisson kernel defined in (4.7). We know that p,.1s 

a probability density, and we denote the corresponding distribution P,. 

Then f,; is the density of the convolution P,% F which tends to F as 

r-—>1, and so F is actually calculable in terms of /,. . > 
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Lemma 1. Let {y,} be an arbitrary bounded sequence of complex numbers. 
In order that there exists a measure F on the circle with Fourier coefficients 
YP, it is necessary and sufficient that for each r <1 the function f, defined in 
(6.2) be non-negative. 

Proof. The necessity is. obvious from (6.3) and the strict positivity of p,. 
Multiply (6.2) by e~* and integrate to obtain 

(6.4) morte +f f(De Mal. 
2a J=r 

For the particular value k = 0 it Is seen that @) > 0 and without loss of 

generality we may assume that 9 = 1/(27). With this norming f, is the 
density of a probability distribution F, on the circle, and (6.5) states that 
q,r'*! is the kth Fourier coefficient of F,. By the selection theorem it. is 
possible to let r—> | in such a manner that F, converges to a probability 
distribution F. From (6.5) it is obvious that g, satisfies (6.1), and this 

completes the proof. > 

Note that this lemma is stronger than corollary 2 in section 4. We proceed 

as in section 2 and derive a counterpart to Bochner’s theorem; it is due to 
G. Herglotz. 

Definition. 4 sequence {y,} is called positive definite if for every choice 

of finitely many complex numbers 2,,... , z 

(6.5) 2 Pin 2% 2 0. 
Ik 

Lemma 2. /f {y,} is positive definite then gy >0 and \,| < ¢o- 

Proof. The proof of lemma 3 of section 2 applies. (See also problem 14.) 

Theorem 2. A sequence {y,} represents the Fourier coefficients of a 

measure F on the circle iff it is positive definite. 

Proof. (a) A trite calculation shows that if the g,; are given by (6.1) the 

left side in (6.5) equals the integral of (1/27) |> e~*'z,|? with respect to F. 

The condition is therefore necessary. 
(b) To show its sufficiency choose z, = r*e*' for k >0 and z, = 0 for 

k <0. With this sequence the sum in (6.5) takes on the form 

+00 

(6.6) S So yr tke Gk) t Ss Pn emt inlet = —P) s Dn plnloint 

j= 0 k= n=—0O n=— 0 

and by the definition (6.2) the last sum equals f[(t). It is true that the in- 

equality (6.5) was postulated only for finite sequences {z,,}, but a simple 
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passage to the limit shows that it applies also to our infinite sequence, and we 
have thus proved that f,(t) > 0. By lemma | this implies that the », are 
indeed the Fourier coefficients of a measure on the unit circle. > 

From this criterion we derive an analogue to the theorem of section 3: 

Theorem 3. Let {X,} be a sequence of random variables defined on some 
probability space such that 

(6.7) Pn = E(X,,X,) 

is independent of v. Then there exists a unique measure R on the circle 
+_—— 

—a,7 such that p,, is its nth Fourier coefficient. 

n+v 

Proof. Clearly 

(6.8) 3 Ps 2% => E(X,2;X,2,) = E(\> X;2;|?) 

which shows that the sequence {p,} is positive definite. > 

The converse is also true: to any measure on the circle there exists a 
sequence {X,} such that (6.7) yields its Fourier coefficients. This can be 

seen by the construction used at the end of section 3, but we shall return to 
this point in section 8. 

Examples. (a) Let the X,, be real identically distributed independent 
variables with E(X,) =m and Var (X,) = o?. Then py =o? + uw? and 

pr = bw’ for all k #0. The spectral measure is the sum of an atom of 

weight w? at the origin plus a uniform distribution with density o?/(27). 
(6) The construction in section 4 shows that the density defined for fixed 

r<1 and 6 by p,(t—6) has Fourier coefficients p, = r'"lein®, 
(c) Markov pracesses. It was shown in III,8 that stationary Markov 

sequences of real normal variables have covariances of the form p, = r!”! 

with 0 <r <1. A similar.argument shows that the covariances of arbitrary 

complex stationary Markov sequences are of the’ form r'"le"®. When 
r <1 the spectral measure has density p,(¢(—6); when r= it is con- 

centrated at the point 6. > 

7. L? THEORY 

For purposes of probability theory it was necessary to introduce character- 
istic functions as transforms of measures, but other approaches to harmonic 
analysis are equally natural. In particular, it is possible to define Fourier 

transforms of functions (rather than measures) and the Fourier inversion 

formula makes it plausible that greater symmetry can be achieved in this way. 

It turns out that the greatest simplicity and elegance is attained when only 
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square integrable functions are admitted. This theory will now be developed 
for its intrinsic interest and because it is extensively used in the harmonic 
analysis of stochastic processes. 

For a complex-valued function u of the real variable x we define the 
norm |lu\| > O by 

(7.1) Ju? = [ u(a)l de. 
— 0D 

Two functions differing only on a set of measure zero will be considered 

identical. (In other words, we are actually dealing with equivalence classes 
of functions, but indulge in a usual harmless abuse of language.) With this 
convention |jui| = 0 iff «= 0. The class of all functions with finite norm 

will be denoted by L?. The distance of two functions u,v in L? is defined 

by ||u — v||. With this definition ZL? is a metric space and a sequence of 

functions u, in L? converges in this metric to u iff |lu, — ull +0. This 

convergence® will be indicated by u = Li.m.u, or u, '@»u. It is also called 

“convergence in the mean square’. {u,} is a Cauchy sequence iff 

lu, — U,|| > as n,m— oo. 

We mention without proof that the metric space L? is complete in the sense 
that every Cauchy sequence {w,} possesses a unique limit ue L?. 

Examples. (a) A function u in L, is integrable over every finite interval 

because |u(x)| < |u(x)|? + 1 at all points. The statement is not true for 

infinite intervals since (1+|z|)~“ isin L* but not integrable. 

(b) Every bounded integrable function is in L? because |u| < M implies 

|u|? <M |u|. The statement is false for unbounded functions since x7! is 

integrable over 0,1, but not square integrable. > 

The inner product (u,v) of two functions is defined by 

+00 

(7.2) (u, v) ={ u(x) v(x) dx. 
—@ 

It exists for every pair of functions in L? since by Schwarz’ inequality — 

ce 

(7.3) [ol de < jl - hol 
— 

In particular, (u,v) = |\ul|2. With this definition of the inner product L’ 

8 Pointwise convergence of u, to a limit v does not imply that u, im., v [see example 

IV,2(e)J. However, if it is known that if also u =IL.i.m. u, exists, then u =v. In fact, 

by Fatou’s lemma 
+00 +H 

| lu(x) — v(a)|2 dz < im | \u(x) — u,(x)|* dz = 0. 
— 0 —7 
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becomes a Hilbert space. The analogy of the inner product (7.2) with the 
covariance of two random variables with zero expectations is manifest and 
will be exploited later on. 

After these preparations we turn to our main object, namely to define 
transforms of the form 

ty =~ [ayer (7.4) u(t) im [ Maye dx. 

When uw is a probability density, a differs by the factor /2n from the 

characteristic function and to avoid confusion @ will be called the Plancherel 

transform of u. The definition (7.4) applies only to integrable functions 

u but we shail extend it to all Z?. The following examples may facilitate an 
understanding of the procedure and of the nature of the generalized transform. 

Examples. (c) Any function uw in L? is integrable over finite intervals, 

and hence we may define the truncated transforms 

a(n) _ 1 . ila u'”’(£) Tin [Tune dz. 

Note that a”) is the true Plancherel transform of the function uw) defined 
by u(x) = u(x) for |x| <n and u(x) = 0 forall other z As n> © 

the values w™(¢) need not converge for any particular ¢, but we shall 

show that {#'™} is a Cauchy sequence and hence there exists an element 

a of LL? such that @=Lim.a@™. This a@ will be defined to be the 

Plancherel transform of u even though the integral in (7.4) need not con- 
verge. The particular mode of truncation plays no role, and the same @ 
might have been obtained by taking any other sequence of integrable functions 

u'™) converging in the mean to u. 

(dq) If u stands for the uniform density in —1,1 then its Plancherel 
A 

transform w@ = sin x|(av/ 27) is not integrable. However, @ isin L? and 

we shall see that its Plancherel transform coincides with the original density 

u. In this way we get a generalization of the Fourier inversion formula 
XV,(3.5) applicable to densities whose characteristic functions are not 

integrable. > 

We proceed to the definition of the general Plancherel transform. For any 

integrable function u the transform ia is defined by (7.4). Such @ is con- 

tinuous (by the principle of dominated convergence) and |i] is bounded by 
(2m)-* times the integral of |u|. In general @ is not integrable. For brevity 

we now agree to call a function u “good” if it is bounded and continuous, 

and @ as well as uw is integrable. Then also @ is good, and both u and 

tt belong to L? [see example (5)}. 
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First we show that the inversion formula 

—ibt g (7.5) Wa =| ate at 

holds for good functions. We repeat the argument used for the inversion 

formula in XV,3. Multiply (7.4) by (1/V2z)e~#-#%* and integrate to 
obtain 

€ € 

(7.6) + |" A Oe BAS ag = [ ua n( 
J2a 

where n denotes the standard normal density. As «0 the integral on 

the left tends to the integral in (7.5) while the convolution on the right tends 
to u(t). Thus (7.5) holds for good functions. 

Now let. v be another good function. Multiply (7.5) by the conjugate 

b(t) and integrate over —o <1 < oo. The left side equals the inner pro- 
duct (u,v) and after interchanging the order of integration the right side 
reduces to (a, 6). Thus good functions satisfy the identity 

(7.7) (a, 6) = (u, v) 

which will be referred to as the Parseval relation for L?. For v= vw it 

reduces to 

(7.8) [||| = |e. 

It follows that the distance of two transforms % and @ is the same as tlie 
distance between u and v. We express this by saying that among good 

functions the Plancherel transform is an isometry: 
Next we show that the relations (7.7) and (7.8) remain valid for arbitrary 

integrable functions u and v belonging to L?: The transforms are not 
necessarily. integrable, but (7.8) implies that they belong to L? [compare 
examples (a) and (d)). 

First we observe that an integrable function w with two integrable 
derivatives is necessarily good; indeed, from lemma 4 of XV,4 one concludes 

that |(2)| = o(f-*) as £-» +00, and so w is certainly integrable. 
Suppose now that u is bounded and integrable (and hence in L?). By 

the mean approximation theorem of IV,2 it is possible to find a sequence of 
good functions u, such that 

  

(7.9) [ue —u,(x)| dx —0. 

If |u| < M these u, may be chosen such that also |y,|< M. Then uw, 
tends in the mean to uw because ||u — u,||2 cannot exceed 2M times the 

integral in (7.9). The isometry (7.8) for good functions therefore guarantees 
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that {%,} 1s a Cauchy sequence. On the other hand, a,(¢) > a(£) for every 
fixed ¢ because |a(¢) — u,(£)| cannot exceed the integral in (7.9). But, as 
pointed out in the last footnote, the pointwise convergence of the elements of 
a Cauchy sequence entails the convergence of the sequence itself, and thus 
we have 

(7.10) i = Lim. i,. 

Applying (7.7) to the pair u, and v and letting n + 0 we see now that 
(7.7) remains valid whenever wu is bounded and integrable while v is good. 
Another such passage to the limit shows that (7.7) remains valid for any pair 
of bounded integrable functions. 

It remains to show that (7.7) is valid also for unbounded functions u 
and v provided they are integrable and belong to L?. For the proof we 
repeat the preceding argument with the sole change that the approximating 
functions uw, are now defined by truncation: u,(x) = u(x) if lu(x)| <n 

and u,(z) = 0 for all other x. Then (7.10) holds and u, =, uw, and the 
proof applies without further change. 

We are now ready for the final step, namely to extend the definition of the 
Plancherel transform to the whole of Z?. As shown in example (c), every 
function u in L? is the limit of a Cauchy sequence of integrable functions 
u, in L?. We have just shown that the transforms a, defined by (7.4) 
form a Cauchy sequence, and we now define i as the limit of this Cauchy 
sequence. Since two Cauchy sequences may be combined into one the limit 
% is independent of the choice of the approximating sequence {u,}. Also, if 
u happens to be integrable we may take u, =u for all n, and thus it is 
seen that the new definition is consistent with (7.4) whenever w is. integrable. 
To summarize: 

A Plancherel transform a is defined for every u in L?; for integrable u 
it is given by (7.4), and in general by the rule that 

(7.11) if u=lim.u, then &@ =1Li.m.u,. 

The Parseval relation (7.7) and the isometry (7.8) apply generally. The mapping 
-u—» ti is one-to-one, the transform of « being given by u(—2). 

The last statement is a version of the Fourier inversion formula (7.5) 

applicable when wu or @ are not integrable so that the integrals in (7.4) and 
(7.5) are not defined in the usual sense. This complete symmetry in the 
relationship between the original functions and their transforms represents 

the main advantage of Fourier theory in Hilbert spaces. 
The theory as outlined ts widely used in prediction theory. As an example 

of a probabilistic application we mention‘ a criterion usually ascribed to A. 
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Khintchine although it appears in the classical work of N. Wiener. For 
reasons of historical tradition even newer texts fail to notice that it is really 
merely a special case of the Parseval formula and requires no elaborate proof. 

Wiener-Khintchine criterion. /n order that a function y be the characteristic 
function of a probability density f it is necessary and sufficient that there exist 
a function u such that |\u\|? = 1 and 

+0 

(7.12) g(A) = u(x) u(a+A) dx 
— 

In this case f = ||tll?. 

Proof. For fixed A put v(x) = u(z+/). Then a(4 = a(De*. The 
Parseval relation (7.7) reduces to 

(7.13), [er edz = [ow u(x-+A) dx. 

and since ||z||? = 1 the left side represents the characteristic function of a 

probability density. Conversely, given a probability density f it is possible 

to choose u such that f = \u\?, and then (7.12) holds. The choice of w is 

not unique. (One problem of prediction theory concerns the possibility of 
choosing uw vanishing on a half-line.) > 

The L? theory for Fourier integrals carries over to Fourier series. The 
functions are now defined on the circle, but to the Fourier (or Plancherel) 
transforms there correspond now sequences of Foujzier coefficients. Except 

for this formal difference the two theories run parallel, and a brief summary 

will suffice. 
To our L? there corresponds now’ the Hilbert space L?(—7,7) of 

square integrable functions on the circle. The norm and inner product are 

now defined by 

1 7 7 ar 

(7:14) ul? =— | w@Pdz, (uv) == { u(t) oa) dx 
. 27 —T Qo —7 

it being understood that the integrals extend over the whole circle (the points 

—za and 7 being identified). The role of “good functions” is played by 
finite trigonometric polynomials of the form 

(7.15) u(x) = > u,e'*, 

whose Fourier coefficients u, are given by 

(7.16) ty = — | uae? de. 
‘ 27 —7 

To a good function there corresponds the finite sequence {u,} of its coeffi- 

cients, and, conversely, to every finite sequence of complex numbers there 
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corresponds a good function. The relations (7.16) and (7.15) define the 
Fourier transform i= {u,} and its inverse. Formal multiplication and 
integration shows that for two good functions 

(7.17) _ [ “yu(2) v(x) dx = DY u,b,. 

We now consider the Hilbert space § of infinite sequences a = {u,}, 

6 = {v,}, etc., with norm and inner product defined by 

(7.18) lal= Dial, (4 6) = Duo, 
This space enjoys properties analogous to L?; in particular, finite sequences 
are dense in the whole space. It follows that there exists a one-to-one 

correspondence between the sequences # = {u,} in § and the functions 

u in L\—m, m). To each sequence {u,} such that > \u,|? << 0 there 
corresponds a square integrable function u with Fourier coefficients u, and 
conversely. The mapping u <-> {u,} is again an isometry, and the Parseval 

relation (u,v) = (a, 6) holds. The Fourier series need not converge but the 

partial sums >”, u,e** form a sequence of continuous functions that 
converges to uw in the L? metric. The same statement is true of other 
continuous approximations. Thus > u,r'*le** tends to u as r—> 1. 

As above, we consider the special case of the Parseval relation represented 
by | 

(7.19) tI u(x) o(x)e*"* dz = F ups nde 
27 —7 k 

Choosing v = uw one sees again that a sequence {y,} represents the Fourier 
+—-—-_——_——- 

coefficients of a probability density on —1, 7 iff it is of the forn 

(7.20) Pn = > Upent, where > |u,|? = 1. 

A covariance of this form occurs in III,(7.4). (See also problem 17.) 

8. STOCHASTIC PROCESSES AND INTEGRALS 

For notational simplicity we refer in this section to sequences {X,} of 

random variables, but it will be evident that the exposition applies to families 
depending on a continuous time parameter with the sole change that the 

spectral measure is not confined to a finite interval and that series are replaced 

by integrals. 

Let, then, {X,} stand for a doubly infinite sequence of random variables 

defined on some probability space G and having finite second moments. 

The sequence is assumed stationary in the restricted sense that 

E(XnayXy) = Pn 
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is independent of ». According to theorem 3 of section 6 there exists a unique 
; -—— 

measure R onthe circle —72z,7 such that 

(8.1) Pn = I e-'"* Rida, n=0, +1,. 
27 J-n 

We shall now elaborate on the idea mentioned in section 3 that the circle 

equipped with the spectral measure R may be used to construct @ concrete 
representation for the stochastic process {X,} (at least for all properties 

depending only on second moments). The description uses Hilbert space 
terminology, and we shall consider two Hilbert spaces. 

(a) The space L},. We construct a space of functions on the circle by 
literal repetition of the definition of L? in section 7, except that the line 

+—__—_- 

is replaced by the circle —a,a and Lebesgue measure by the measure R. 

The norm and the inner product of (complex-valued) functions on the circle 
are defined by 

(8.2) jul? = [ “laa? R(d2}, (uo) = £ tf u(x) 2) R{dz}, 
respectively: The basic convention now is that two functions are considered 

identical if they differ only on a set of R-measure zero. The impact of this 

convention is serious. If R is concentrated on the two points 0 and | thena 
“function” (in our sense) is completely determined by its values at these 
two points. For example, sin nz is the zero function. Even in such radical 
cases no harm is done in using the customary formulas for continuous functions 
and in referring to their graphs. Thus reference to a “‘step function’”’ is always 

meaningful and it simplifies the language. 
The Hilbert space L*, consists of all functions on the circle with finite norm. 

If \\u, — ull +0 the sequence {u,} is said to converge to u in our metric 

(or in mean square with respect to the weight distribution R). The Hilbert 

space L% is a complete metric space in which the continuous functions are 

dense. (For definitions see section 7.) 

(b) The Hilbert space § spanned by {X,}. Denote by §, the family of 

random variables with finite second moments defined in the arbitrary, 
but fixed, sample space G. By Schwarz’s inequality E(UV) exists for any 

pair of such variables, and it is natural to generalize (8.2) from the circle 
to the sample space © using the underlying probability measure instead of 

R. Weaccordingly agree again to identify two random variables if they differ 
only on a set of probability zero and define inner products by E(UV); the 
norm of U is the positive root of E(UU). With these conventions §, again 

_ becomes a Hilbert space; it is a complete metric space in which a sequence of 
random variables U,, is said to converge to U if E(jU,—U|*) — 0. 
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In dealing with a sequence {X,} one is usually interested only in random 
variables that are functions of the X, and in many connections one considers 
only linear functions. This restricts the consideration to finite linear com- 
binations > a,X, and limits of sequences of such finite linear combinations. 

Random variables of this kind form a subspace § of >, called the Hilbert 

space spanned by the X,. In it inner products, norms, and convergence are 
defined as just described and § is a complete metric space. 

In the present context the expectations E(X,) play no role whatever, 
but as “covariance’’ sounds better than “inner product’? we introduce the 

usual convention that E(X,,) = 0. The sole purpose of this is to establish p,, 

as a covariance, and no centering is necessary if one agrees to call E(XY) 

the covariance of X and Y. Wecome now to the crucial point, namely that 

for our purposes the intuitively simple space L?, may serve as concrete model 
for %. Indeed, by definition the covariance p;_, = Cov (X;, X,) of any 
pair equals the inner product of the functions e”* and e** in L%. It 
follows that the covariance of two finite linear combinations U = > a;X; 
and V =)» 5,X, equals the inner product of the corresponding linear 
combinations u = > ae” and v = > b,e**. By the very definition of 
convergence in the two spaces this mapping now extends to all random 
variables. We have thus the important result that the mapping X,+<> e** 
induces a one-to-one correspondence between the random variables in § and 
the functions in L%,, and this correspondence preserves inner products and 
norms (and hence limits). In technical language the two spaces are isometric.® 
We are in a position to study § and {X,} referring explicitly only to the 

concrete space L}. This procedure has theoretical advantages in addition 

to being an aid to intuition. Since functions on the circle are a familiar object 
it is relatively easy to discover sequences {u'")} of functions in L% with 
desirable structural properties. To wu‘) there corresponds a random variable 

Z,, on the original sample space ©; if the Fourier coefficients of u'”) are 
known it is possible to represent Z, explicitly as a limit of finite linear 

® Readers acquainted with Hilbert space theory should note the connection with the 
standard spectral theorem for unitary operators. The linear operator which maps § into 
itself in such a way that X, > X,,, is called a shift operator, and L%, serves as a model 
in which the action of this shift operator becomes multiplication by e. Conversely, given 

an arbitrary unitary operator T on a Hilbert space $, and an arbitrary element Xg€ Dp; 
the sequence of elements X, = T"X, may be treated as a stationary sequence and JT as 
the shift operator on the subspace $ spanned by this sequence. If Xg can be chosen such 
that § = Hq we have obtained the standard spectral theorem for 7 except that we have 
a concrete representation of the ‘‘resolution of the identity’? based on the choice of Xp. 
If § < Hp, then Hp is the direct sum of two invariant subspaces, and the presentation 

applies to each of them. By a simple change of notations one derives the general spectral 

representation, including the theory of multiplicity for the spectrum. 
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combinations of the variables X,. If the joint distributions of the X, are 
normal the same is true for those of the Z,,. 

In practice this procedure is usually reversed. Given a complicated process 
{X,,} Our aim is to express it in terms of the variables Z,, of a simpler process. 

A practical way to achieve this is to proceed in L%, rather than in the original 
space. A few examples will explain this better than a theoretical discourse. 

Examples. (a) Representation of {X,} by independent variables. As 

elsewhere in this section {X,,} stands for a given process with covariances p,, 

and spectral measure R defined by (8.1). In our mapping X,, corresponds 

to the function e’”” on the circle. We show now that for certain functions » 

the random variables corresponding to e’”*/y(x) are uncorrelated. We con- 
sider only the situation when the spectral measure R has an ordinary density 
r. For simplicity’® r will be assumed strictly positive and continuous. 

Choose a function y such that , 

(8.3) ly(=)l? = r(z). 
The Fourier series of y converges inthe L? norm as explained in section 7. 
Denoting the Fourier coefficients of y by », we have > |v,|? << oo and by 

_the Parseval relation (7.20) 
+0 

(8.4) Pn =D Verner 
k=—o 

Consider now the doubly infinite sequence of functions u' defined by 

  

(8.5) : u(x) = £ 
ees a y(2) 

Substituting into (8.2) it is seen that 

(8.6) \jee'™ | _— 1, (ul, u'™) =0 

for mn. For the random variables Z,, corresponding to the functions 
u'”) this implies that they are uncorrelated and of unit variance. In particular, 

if the X,, are normal the Z,, are mutually independent. 
It is interesting that the space spanned by the variables X, contains a 

stationary sequence {Z,} of uncorrelated variables. An explicit expression 

of Z,, in terms of the X, can be obtained from the Fourier expansion of the 

function u‘”), but it is more profitable to proceed in the opposite direction: 
the structure of {Z,} being simpler than that of {X,} it is preferable to 

express the X, in terms of the Z,. Now 

e ka 

  

S 

yre. 

y(2) neon 
10 The restriction is not used except to avoid trite explanations of what is meant by 

r(x)/y(x) when r(x) = y(x) = 0 and of how series converge. 

N 

(8.7) Y yn wa) = 
n=— 
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The sum on the right is a section of the Fourier series for y and tends in the 
Hilbert space metric to y. It follows that the quantity (8.7) tends to e#*. 
In our mapping wu‘"**) corresponds to Z,,,, and so the series dy 
converges, and we can write 

+00 

(8.8) X,= 2 ynZ 

We have thus obtained an explicit representation of X,, as a “moving average”? 
in a Stationary sequence of uncorrelated variables Z,,. 

The representation (8.8) is evidently not unique. The natural question 
arises whether it is possible to express X, solely by the variables Z,, 
Zy-1, Zy-2,-.- (representing the “‘past’’), that is, whether the function y 
in (8.3) can be chosen such that y, =0 for n> 1. This problem is 
fundamental in prediction theory, but lies outside the scope of the present 
volume. For typical examples see II,(7.5), and problem 18. 

(b) The associated process with uncorrelated increments. For each t with 
—a7 <t<7m define y, by 

for x<t 
8.9 (2) = (8.9) ¥ (2) for x>t 

and denote by Y, the corresponding random variable in §. -The increments 
Y,— ¥, for non-overlapping intervals have obviously covariance 0; 

nt+k 

furthermore Var (Y,) = R{—n, t}. Thus {Y,} is a process with uncorrelated 
increments and variances given by R. If the X, are normal, the increments 
of the Y, process are actually independent. 

With every stationary sequence {X,} there is in this way associated a 

process with uncorrelated increments. An explicit expression of Y, in 
terms of the X,, is obtainable in the standard way by expanding the function 
y, in (8.9) into a Fourier series. Once more it is preferable to proceed in the 
opposite direction. This will be done in the next example. 

(c) Stochastic integrals. The representation of a random variable U 

in terms of the X, depends (as we have seen) on the Fourier expansion of 
the function corresponding to U. By contrast, the following representation in 
terms of the variables Y, is almost too simple for comfort. It refers to the 

graph of the function, and for simplicity we assume the latter continuous. 

Consider first a step function w, that is, a function of the form 

(8.10) w= ayy, + AL Y1.— Yr) +e + An Ys —Yt,-1) 

where the a; are constants and —-7r<t,<t,<:+°'<t,,. <7. The 

associated random variable W is obtained on replacing in this expression 
each y,, by ¥,,. Now an arbitrary continuous function w can be approxi- 

mated uniformly by tep functions w'” of the form (8.10). Uniform con- 
vergence of #‘”) to w implies the convergence in the norm of L?, and 
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hence also the convergence of the corresponding random variables W to 
W. This gives us a prescription for finding the image W of an arbitrary 
continuous function w by a simple limiting procedure: approximate w 
by step functions of the form (8.10) and replace ¥:, by Y,,. Remember 
that (8.10) is a function, and not a number, just as the limit w “of w™ isa 
function rather than a number. But (8.10) looks like a Riemann sum and 
our procedure is formally reminiscent of the definition of the Riemann 
integral. It has therefore become standard practice to use the notation 

T 

(8.11) W=| wit) dy, 
f ~~ 

to indicate the described limiting process. The random variable (8.11) is 
calied the stochastic integral of the continuous function w. The name is 

arbitrary and the notation mere shorthand for the limiting procedure which 
we have rigorously defined. By definition the function e*”* corresponds to 
the random variable X,, and hence we can write 

(8.12) xX, =| en dy. 

This is the basic spectral representation of the arbitrary stationary sequence 

{X,,} in terms of the associated process with uncorrelated increments. 
The notation for stochastic integrals is, perhaps, more suggestive than 

logical but we are not concerned with this usage. Our aim was to show that 
this useful concept and the important representation (8.12) are easily 
established by means of Fourier analysis. This illustrates the power of the 

canonical mapping used in this section and first introduced by Cramér.  p 

The theory depends only on the second moments of {X,,} and is in practice 

.applicable only when these moments are truly significant. Such is the case 
when the process is normal, because normal distributions are completely 

determined by their covariances. In other applications one may trust that the 
process is ‘‘not too far off a normal process” just as the oldest regression 

analysis trusted in a universal applicability of methods developed for normal 
variabies. Unfortunately the mere existence of a beautiful theory in no way 

justifies this trust. In example (3.c) the sample functions of the process are 

strictly periodic. The future of an individual path is completely determined 

by the data for a full period, but the prediction theory based on the L’ 
theory takes no account of this fact and identifies all processes with the same 

spectral measure. One who observes the-sequence 1, —1,1, —1,.-. going 

on since time immemorial can safely predict the next observation, but L? 

methods will lead him to predict the miraculous occurrence of 0. This 

example shows that the L? methods are not universally applicable, but they 

are the ideal tool for treating normal processes. 
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9. PROBLEMS FOR SOLUTION 

1. Curious characteristic junctions. Let 7,(x) =1 — |x\/h for |x| <A and 
7,(x) =0 for |z| >A. Put 

(9.1) ale) = San een). 
n=—o 

When the a, arerealand h =1 the graph of « is the polygonal line with vertices 
(n, a,). When h <4 the graph of « consists of segments of the z-axis and the 

sloping sides of isosceles triangles with vertices (n, a,). 
Using the criterion of lemma 1 in section 2 show that «(¢)/«(0) is a characteristic 

function if the a, are real and such that a_, =a, and |a,! +/a.! +::: < 4a. 

2. (Generalization.) The last statement remains true when 7, is replaced by an 
arbitrary even integrable characteristic function. (Using the characteristic functions 
exhibited in fig. 1 of XV,2 you may construct characteristic functions with ex- 
ceedingly weird polygonal graphs.) 

3. (Continuation.) The preceding result is a special case of the following: Let 
+ be an even integrable characteristic function; if the 4, are real, and the a, 

complex constants with > |a,| < ©, then 

(9.2) a(L) = > ayr(f—A,) 

is a characteristic function iff «(0) =1 and > ayes > 0 forall ¢. (It suffices 
actually that the last series be Abel summable to a positive function.) 

4. The covariance function p defined in (3.3) is continuous everywhere iff it 
is continuous at the origin. This is the case iff E(X,—X))? ~0 as tr +0. 

5. (Difference ratios and derivatives). Let {x,} be a stationary process with 

p(t) = E(X,,,X,) and spectral measure R. For A >0 a new process is defined 

by X) = (Kj, — Xp/h. 
(a) Show that the spectral measure R‘) of the new process is given by 

R {dx\ = 2h-*[1 —cos Ax]R{dx}. The covariances p™)(t) tend toalimitas 4 >0 
iff a continuous second derivative p”(t) exists, that is, if the measure x? R{dz} 
is finite. 

(b) In the latter case E(|X{*) — X(9)/?) +0 as «-+0 and 6 +0. 
Note: In the Hilbert space terminology of section 7 this means that for fixed 

t as «, ->0 thesequence {X‘‘)} is Cauchy, and hence a derivative X; = 1.i.m.X(” 
exists. 

6. (See theorem 2 of section 4.) If y is continuous except for a jump at the origin, 
then /,(f) ~ 9(¢) uniformly outside a neighborhood of the origin and 
fr(0) > 4[p(0+) — p(O—)]. 

7. Continuation. If is the difference between two monotone functions then 

FAD > ale +) — y(E—)] at all points. 
8. A bounded periodic function g with non-negative Fourier coefficients 9, 

is necessarily continuous and > Pn < ©. The example 9, = 1/n shows that 
this is false if gy is only supposed to be integrable. Hint: Use the main idea of the 
proof of theorem 1 in section 4. 
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9. Cesaro summability. Replace (4.3) by 

f(D => gnane™ 

where a, = 1 — |n|(2N + 1)? for |n| <2N and a, =0 for |n| > 2N. Show that 
the theory of section 4 goes through with p,(t) replaced by 

1 sin? (N+4)r 

2N+1 © sin? dr 
  

qnit ) = 

which is again a probability density. 

10. Continuation. Show, more generally, that the theory goes through if the 
a, are the Fourier coefficients of a symmetrized probability density on. the circle. 

11. Use the Poisson summation formula (5.2) to show that 

tO (y—x+2ka YAe+IZKA [to oT ant a 
> ((-) +(e) => exp —4e 3) cos Zz FOS Ys 
—00 

—a 

where n stands for the standard normal density. [This is the solution of the 
reflecting barrier problem in example X,5(e).] 

12. In the Poisson summation formula (5.2) the condition that > p({ + 2A) 
converges to a continuous function y may be replaced by the condition that 
> f(az/a) < «©. Hint: y is under any circumstances an integrable function. 
Use coroliary 2 in section 4. 

13. Alternative derivation of the Poisson summation formula. Let oy be the 

characteristic function of an arbitrary probability distribution F. If p, stands 
for the Poisson kernel of (4.5) and (4.7) show (without further calculations) that 
for O¢r<il 

+o 2 . 
(9.3) = > AE+n)rinlet™4 = [- eX p, (x +4) F{dzx}. 

—c 

Hence the left side is a characteristic function. Letting r—1 conclude that if F 
has a density f then 

1 te ind — une ig(—A+2k7) (9.4) 55 2. p(S+njem = 2. e f(—A+4+2k7) 

whenever > f(-44+2kz) < «. Show that (9.4) is equivalent to the general 
version (5.9) of the summation formula. 

Note: The result may be restated to the effect that the left side in (9.4) is Abe/ 
summable to the right side whenever the latter is continuous. 

14. The sequence {y,} is positive definite iff {g,ri"l} is positive definite for 
every 0<r< 1. Necessary and sufficient is that > paritle™4 >0 for all A 
and 0<r<l. 

15. From problems 1 and 14 derive (without calculations) the following theorem 
(observed by L. Shepp): Let {9,} be positive definite and denote by « the piecewise 
linear function with vertices at (n, p,). Then « is positive definite. 

16. Let p be a characteristic function and denote by « the piecewise linear 
function with vertices (n, p(n)). Then « is a characteristic function. (This merely 
paraphrases problem 15 and is a special case of probiem | for # = 1.) Use the 
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other cases of problem | to describe other curious characteristic functions obtainable 
from 9. . , 

17. If r <1 the covariances p, = rinle'"® of Markov sequences satisfy (7.20) 

with uz, = V1 — rrke*® for k >0 and uw, =0 for k <0. Find alternative 

representations. 

18. Continuation. Let {X,} be Markovian with covariances py, = rinle'n®, 

if r <1 onehas X, = V1 —r? >2 , r*e*°Z,,_, where the Z, are uncorrelated. 
If r=1 onehas X, = eZ. 

 



16. 

18. 

Answers to Problems 

CHAPTER I 

(i) _— enaxt (ii) 5 eee ayia for z>3 
x 

(iii) seals, all x (iv) ae, z>0 

1 1 _ 3 
(v) “(1 + aya) ame ae 

ry aenae pF ast _ TL) | aeast (vi) “e + = ¢ o(1 +3 Va e 

~1 1 - 
O BTS for |z| <1 (ii) } for 1<t<5 

Gi) £(1 — 2) tor tat <2 (iv) 1-7 for 0 2 5 5 Vv 5 or <2< 

(VY) 4 deh + ort for Ie] <1 Wi) d4+4eh+ pet for bel <1. 
(i) A141 —e**) for 0 <a <A, and A-(e*—1)e-™ for x > h. 

_ (ii) Ad —e7***") for —h <2 <0, and A-W(1—e-#*)e-2" for x > 0. 

(i) A/3 if kh $1 and 1/BVhk) if k>1. 

(ii) Van et@(1 —M(Va/2)). 

.@ 1 —2” for « >1; (ii) 24@4+1)-?. 

. P{Z <2} =1—e- for z <t and =1 for x >¥¢. 

10. (b) The platoon together with cars directly ahead or trailing form a sample in 
which the smallest element is at the last place, the next smallest at the second. 

mol (" +k—-1 
P= k jer For m =1,n =2 one gets p =}. 

0 

nte — (n—1)2". 

651 
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1 1 

0 x 

(ii) The density is 2¢ — 1? for 0 <4 <1 and (2-1) for i <1 <2 
(iii) The density is 222 for 0 <1 <1 and again (2-1)? for 1 <1 <2. 

1 

20. 2 { x(1—x) dx =}. Two out of six permutations produce an intersection. 
0 

1 . 

21. Xi: 4 log for « <4; Xj. and X,: 4log2 for z<t, 4 log = for 

<a <4; Xoo: 4 log 4z for 4 <a <j, 4 log ~ for 4 <a <1. The 
expectations are ;1;, 335, 7°¢- 

  
27. Distributions 2 arcsin#z and 42?; densities 21 and 42 for 

O<z<2 7” | 7 V4 — 2? 
28. 271 arc sin $2. © 

1 2, 1+V1-2 
30. (a) log = , (db) = log —_— where 0 <@ <1. 

4 
31. - { sin? 6d@ = ‘/ V1—y? dy = 2n-[arc sin +2V1—2? ] 

0<cos @<z 7 JO 

where 0 <2 <1. 

32. Fa) = ['v(— (1 —cos 26) dé . wyj=-- —_—_— —cos . 
2 { (= i) 

35. The substitution s = F(y) .reduces the integral to the corresponding integral 
_ for the uniform distribution. Note that F(m +2) ~ 4 + f(n)z for small z. 

CHAPTER II 

4. g « g(x) = te lal(1 +\[z1) 
ge*(z) = ree 1G +3 |x] +27) 

git) = s5e7 l2l(S +5 |x| +22? +4 |x|). 

10. (a) que-at—e-H4) (4 — —A) as a convolution of two exponentials. (b) Using 

_ (a) one gets Ae~4t. 
12. For a person arriving at random the density is 1 — 442 for 0 <t <1 and 

3(2—1)? for all 1 <t <2. The expectation equals +4. 

3 (ne 

J m—J] m 

of CHAPTER III 

7. (a) ‘e@and 1 — eo —e +e for x >0,y > 0. 

l+at+ax 

(lax? ’ 
1 2a a 

(1 +azx)* + (l+ax)3  (1+azx)" 

(6) E(Y | X) = 

  Var (Y | X) = 

 



10. 

11. 

12. 

13. 

15. 

16, 

17. 

20. 

21. 

22. 

ANSWERS TQ PROBLEMS §53 

If f has expectation w and variance o* then E(X) = E(Y) = 3z, 
Var (X) = Var (Y) = $07 + 4u?, Cov (X, Y) = 407 — +47. 

Density 2x, in unit square. In variables (m — 1)!X,X3:--X2-2. 

te“) for y>2>0 and te for y > x, x <0. Interchange z and 
y when y <2. 

jaf" sor) ¢. O<x <f. 
22 

0 arora 
where 0 <x <}<y <1 and the domain of integration satisfies the con- 
ditions that 2x <s <} andalso 1 —2y<s<1-—-y. 

Bivariate normal with variances m,n and covariance Vm/n. Conditional 

  density has expectation af and variance m- as is clear intuitively. 

X? +--+: +X; has the gamma density fi/e,n/2 [see II,(2.2)]. From (3.1) 
therefore 

r n 

3) 2\am—1 z\tin—m)—1 J 

= am (7 ( -) e 
()"(F) 2)° (72 

For m =2,n =4 we get example 3(q). 

  

(a) 4ay when t=+y <1, z2>0,y>0 

4cy —4(z+y—-1)? when t+y>1,0<2,y <1 

42(2 —a—y) when y>1,z2+y<2, 2>0 

4y(2 —z —y) when z= >1, e+y <2, y>0. 

(b) 20 —z-y)? for 0O<2, y<1,rz+y9<1 

21 —2)? for «>0, y <0, x+y>0. 

241 +y)* for x= >0, 4¥ <0, 7+y <0. 

For z <0 by symmetry. 

1 ror: or 
2 24 ( ate 085 —5 1 -4)- 

2 27 

{ f(e)p do g(Vr? + p? — 2rp cos 8) dé. 
0 0 : 

(a) X, = Ucos $an + Vsin }an 
(6) U + V(-1)" 
(c) Ucos $n + V sin $an + W. | 

(a) Var (¥n,1) — Var (Y,) = Var (C,) — 2 Cov (Y,, C,) + 1 whence 
(b) «2 — 2aop +1 =0 

1 n-—1 

(c)o= 3(« + :): Yn = > FXnre +97Vo + (Op — a) — 9")p wher. 
k=0 . 

q=>1-—p. 
1 1 

a 
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CHAPTER VI 

11. Not necessarily. It is necessary that n[1—F(en)] 0. 

12; For x > 0 the densities are given by 1 and 3(1—e~*). 
13. gU(z} = 1 — ge~***. The cumber of renewal epochs is a/ways geometrically 

distributed. | 

19. Z =z2+F%Z where 2(t) =1 —e“ for t < &, z(t) = 2(4) for t > £ and. 
F(t) = e~¢ — c- for t > &. 

20. V=A+B% V.where A{dx} = [1—G(2)] F{dz} and B{dx} = G(x) F{dz}. 

1 1 
23. The arc sine density g(y) = -————— . 

: 7 Vy(1—y) 

CHAPTER VII 

6. (a) (<) pel —p)?-* with ‘F concentrated at p. 

(6 density f(z) = 1. 
1 

n+1’ 

2(k+1) 

Gerd density 22. 
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for jump processes, 327-328, 484-487 
of KOLMOGOROV, 327-328 
minimal solution of, 329-331, 322, 486 

for semi-groups, 352, 356-357 
for semi-MARKOV processes, 497 

Bad luck, 15-17 

BAIRE functions, 104-106, 109, 114, 130, 

3065, 351 
BANACH space, 257, 350, 487, see also 

HILBERT space 

Barriers, see Absorbing barriers; Boundary 
‘conditions; and Reflecting barriers 

BARUCHA-REID, A.T., 656 

BAXTER, G., 404, 424, 571, 605 
BAYES, T., 56 

BENES, V.E., 379, 656 
BENFORD, F., 63 

BERGSTROM, H., 581 - 
BERNOUILLI trials, 1, 141-142 

BERNSTEIN, S., 79, 439 
BERNSTEIN polynomials, 222-223 

in R?, 245 
BERRY, A. C., 531, 536, 542 
BERRY-ESSEEN theorems, 538, 542-546, 

551 
BESSEL functions, 58-61, 523 

characteristic function of, 503 

and infinite divisibility, 177, 451, 566 
and LAPLACE transfo. ms, 437, 438, 479- 

482 
and related distributions, 58-61, 149, 166 

657 
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in stochastic processes, 58-61, 323 
BESSEL density, 502 
Beta density, 50. 

in renewal, 471 

Beta integral, 47 

BICKEL, P. J., 388 
Bilateral exponential, 49-50, 502 

_ characteristic function of, 503 
Bilateral LAPLACE transform, 434 

BILLINGSLEY, P., 39, 265, 343 
Binary orbits, 33 

Binomial random walks, 608-609 

Birth processes, 41, 266-267; 488-491 

_bilaterial, 491 , 
Birth-and-death processes, 479-483, 496 

busy periods in, 482-483 
and diffusion, 496 

see also Randomized random walks 

Bivariate normal density, 70 

BIZLEY, M. T. L., 420 

BLACKWELL, D., 360, 381 

BLUM, J. R., 287 
BOCHNER, S., 321, 347, 454, 620, 622, 

634, 655 
BOCHNER integral, 455 
BOHL, 268 . 
BOREL algebra, 113, 119 

measurable functions, 116 

BOREL set, 114, 116, 117, 123, 125, 130 
approximation of, 115, 124 
convention for, 127 

‘BOREL-CANTELLI, 105, 317 

BOTTS, T. A., 203 — 
BOUDREAU, P. E., 196 
Boundary conditions, 337-343, 477 

BOURBAKI, N., 103 
Branching processes, 244, 441, 474-475 
_BRELOT, M., 244 
BROWNIAN motion, 99, 181, 322-349, 

475-479 
continuity of paths in, 181, 332 

with elastic force, 335 
first-passage times in, 174-175, 340, 476 

one absorbing barrier, 340, 477 

in R’, 175, 344 
subordination of CAUCHY process to, 348 

two.absorbing barriers, 341, 478 

BUFFON’s needle problem, 61-62 

BUHLMANN, H., 229 
Buses, 22, 55, 188 

Busy periods, 194-195, 198-20Q, 473-474, 

482-483 

CAMPBELL’s theorem, 179, 287, 595 
Cancnical measures, 560-565 
CANTELLI, see BOREL-CANTELLI 
CANTOR, G., 267 
CANTOR distribution, 35-36, 141, 593 

convolutiocns cof, 146 

CANTOR’s diagonal method, 267-268 
Cap and cup, 104 

_CARLEMAN, T.; 227, 515 
CAUCHY, A., 172,.509 

CAUCHY distribution, 50, 64, 173, 502 

bivariate, 524 

in BROWNIAN metion, 175, 348 

in R’, 70-71, 73, 100, 524, 594 

and random walks, 204, 618 

and stability, 173, 555 
CAUCHY semi-groups, 303 
Centering, 45; 137, 584-588 

in infinitely divisible distributions, 559 
Central limit theorem. 258-265, 287, 291. 

529-530 
applications of, 209, 529-530 
for densities, 533-536 

for equal components, 515-518 ~ 
expansions related to, 531-553 
with infinite variances, 260 
and large deviations, 548-553 
in renewal, 372 

CESARO summability, 628, 648 
Chains, random, 206-207 

strength of, 9 

CHANDRASEKHAR, S., 32 
CHAPMAN-KOLMOGOROV equations, 60 

334, 338, 346-347, 353, 566 | 

continuous time, 322, 486-488 

discrete time, 98 

and semi-groups, 351 
CHAPMAN-KOLMOGOROV identity, 98 

Characteristic exponents of R, 170 
Characteristic functions, 498-526 

derivatives of, 565-566 

factorization of, 506, 593, 631 

finitely divisible, 557 
infinitely divisible, 554-557, 560-564 

logarithms and roots of, 554-555 
periodic; 511, 626, 630, 631 

in RY, 521-524 
TAYLOR development of, 514-515 

see also POISSON summation 
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CHEB YSHEV-HERMITE polynomials, 533 
CHEBYSHEV’s inequality, 151-152, 310, 

354 
generalized, 234 

for martingales, 246 
Checkerboard partitions, 133 

CHERNOFF, H., 287 
Chi-square density, 48 
CHOQUET, G., 382, 593 
CHOW, Y. S., 360 

CHUNG, K. L., 105, 167, 231, 355, 381, 

483,614, 615, 655 
Circles, covering theorem for, 28-29 

densities on, 632-633 

distributions on, 29, 61-64, 627 

equidistribution on, 268, 273 

probability distribution on, 274 
Coin-tossing, 210, 211-212, 405, 417 

and random choice, 35 

Coincidences, 217 

Collisions of particles, 206, 322-323, 325 

Compactness of triangular arrays, 309 
Complete monotonicity, 224-227. 439-442, 

450, 464 
abstract, 454 

Completion of measures, 126 

Composition of kernels, 206 

Compound POISSON processes, 180-181, 
305, 326 

and ruin problems, 182-184, 198, 469-470 

and semi-groups, 295, 299-300 

and subordination, 348-349 

Concentration, 4, 45, 137 

Concave functions, 153 

Concordant functions, 210-211, 244 

Conditional distributions and expectations, 
71-74, 156-159, 160-165 

Conditional probability, 157 
Contagion, 57-58 

Continuity of semi-groups, 353; see also 
Fixed discontinuities 

Continuity theorem, 431-433, 508. 

characteristic function of, 508-509, 510° 

for densities, 510 

and LAPLACE transforms, 433 

and quasi-characteristic functions of, 557 
and semi-groups, 460 

Contractions, 350, 456 

Convergence, of densities, 252 

dominated, 111 

in the mean square, 636 
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of measures, 247-252, 267-270, 284-285 
notations.and principles of, 248-251 
of moments, 251-252, 269 

in norm = strong, 257, 352 

of operators, 257, 285, 352 
in probability, 253-254 

Convex functions, 153-155 

of martingales, 214-215 
Convex polygons, 505 

Convolutions, 143-148, 272, 278 

on circles, 64, 143, 273-274 
and covering theorems, 26-29 
definition of, 7, 8 

of densities, 7-8, 46, 71 

infinite, 265-267, 317, 592-593 
and LAPLACE transforms, 434-435 

of singular distributions, 146 

Convolution semi-groups, 293-296 
Coordinate variables, 4, 68 

Correlation, 68 

Countably many intervals, 108 

Counters for particles, 372; see also 
GEIGER counters; Queues | 

Covariance, 68 

matrix, 82-83 
-of processes, 88-94, 623-626, 643-646 

Covering theorems, 76, 216, 469 

_ and convolutions, 26-29 

CRAMER, H., 182, 403, 522. 531, 542, 
_ 546, 548, 552, 646,.656 

CRAMER’s estimate for rain, 182, 377-378, 
403, 411-412 

CRAMER-LEVY theorem, 525 
Cup, 104 

Dams, 195 

DARLING, D. A:, 465 
Decision functions, 213 

Decompositions, 570-571 
Defective distributions, 115, 129, 130, 205 

in renewal, 187 _ 

de FINETTI, B., 179, 230 
Degenerate distributions, 83, 87 

Degenerate processes, 90-91 
Delayed renewal processes, 187, 368 

Delays in traffic, 190, 380, 387, 474-475, 
496 

Densities, 3-6, 49-53, 66-71, 138-143 
notations and conventions for, 45-46 

Denumberable sample spac, 331-332 
DENY, J., 382 
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Derivatives and LAPLACE transforms, 435 
DERMAN, C., 493 

Descending ladder. variables, 393-394 
Differences, notation for, 221-222 

Differential equations, KOLMOGOROV, 

483-488 

Diffusion processes, and birth-and-death 

processes, 496 . 
with elastic force, 335-336 
in genetics, 336-337 
in higher dimensions, 344-345 

-in R®, 332-337, 344-345, 436, 461, 464, 

475-479, 496 
Digits, distribution of, 34, 63-64 

Directing process, 347 — 

Directional changes of particles, 323 
Directions, random, 29-33 

Directly RIEMANN integrable functions, 
362-363 

DIRICHLET integral, 511 

Discontinuities,-318 _ 
Discontinucus semi-groups, 305 
Discrepancies, see Empirical distributions 
Discrete distributions, 55-58 

Distance function for distributions, 285 
Distribution functions, definition of, 3 
DOBLIN, W., 173, 592 
DOBLIN’s “Universal laws,” 590-592 
Domain of attraction, 172 

criteria for, 312-316, 320, 448, 574-581 

normal, 581 

partial, 320, 568, 590-592 

and stable distributions, 574-581 
Dominated convergence, 111 

DONSKER, M. F., 39, 343 

DOOB, J. L., 103, 164, 210, 244, 656 

Drift, in diffusion, 335 — 
in random walks, 397, 610-611 

Duality, 394-398, 609-610 
Duplication formula, 64 

Duration, of birth processes, 490 
of busy period, 473-474, 482-483 

of dead period, 190 

of diffusion, 341-342 

of renewal process, 187, 216, 374-377 
estimates for, 377 

DVORETZRY, A., 274 
DYNKIN, E. B., 321, 333, 472, 655 

Economics, stable distributions in, 175 
EDGEWORTH expansion, 535, 542 

EINSTEIN, Albert Jr., 182, 333 

Elastic forces, 335-336 

Electric transmission lines, 208-209 

Empirical distributions, 36-39 

Empirical interpretations, 22 
Endomorphisms, 350 

Energy losses, 25, 323; see also Collisions 

Ensembles, of circles and spheres, 9-10 

random, of points in space, 9 

Entrance probability, see Hitting points 
Equicontinuity , 252, 270 

Equidistribution theorem, 268 | 
Equivalent functions, 125, 636, 642 

ERDOS, P., 343, 360 
Ergodic limits, 491-493 
Ergodic stochastic kernels, 271 
Ergodic theorems, 270-274, 491 
ESSCHER, F., 552. 
ESSEEN, G., 540, 542, 544, 545; see also 

BERR Y-ESSEEN 
Estimator, 41 

Exchangeable variables, 228-230, 423 

central limit theorem for, 287 

Expansions, and the central limit theorem 
. 531-553 

for. distributions, 538-542 

involving varying components, 546-548 
Expectations, 117-118, 133 

-conditional, 162-165 

definition of, 5 

Explicit expressions, 193 

Exponential distributions, 1, 8-21, 39-43, 

74-77 
bilateral, 49, 148 

bivariate, 100 

as limits, 24, 43, 370 

reduvtion to, 25-26 

and uniform distributions, 44,:74-77 

see also Gamma distributions 
Exponential formula of semi-groups, 231, 

353-355 
Extension theorem, 118-121, 123 

Fair, absolutely, 210 

FATOU’s theorem, 110-111, 636 

for boundary values, 244 

FEJER, L., 628 
FELLER, W., 53, 61, 179, 194, 262, 279, 

289, 325, 331, 333, 337, 360, 381, 
430, 483, 496, 497, 546, 552, 581 

Filters, 88, 625 
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FINETTI, B. de., 42, 179, 230 

Finite arithmetic distributions, 608-609 

First entry, see Hitting points; Ladder 
variables 

First passages, birth-and-death processes, 
‘t 60-61, 481, 494-495 
'in diffusion, 174-175, 340-341, 475-476 
and MARKOV chains, 492 

First return, 391, 424, 495 
FISHER, R. A., 77, 277, 336 
FISHER’s Z-statistic, 49 

Fishing, 182 
Fixed discontinuities, 324-326, 328 
FOKKER-PLANCK equation, 296, 323, 

324, 325, 328 
Forward equations, 337-343, 484 

and diffusion, 337-343, 475-479 

and jump processes, 324, 328 
of KOLMOGOROV, 324, 328 
minimal solution for, 329, 331-332, 

485-488 
and semi-groups, 352 | 

FOURIER analysis, applications of to random 
walks, 598-616 

FOURIER coefficients, 628, 634, 647-648 
FOURIER inversions, 509-510, 511, 639 
FOURIER series, 626-629, 641 

FOURIER transforms, 499, 532 

FOURIER-STIELTJES transform, 499, 606 

Fractional parts, 148, 268 

FRECHET’s.maximal distribution, 166 
Free paths, 10-11 
Frequency functions, definition of, 8 

FUBINI’s theorem, 111, 122, 144 

FUCHS, W. H. J., 614, 615 
Functional, linear, 120 

GALTON, F., 73 
Gamma distributions, 11, 47-48, 176, 435, 

502, 503 , 
alternate name for, 48 

approximation by, 220 
infinitelv divisible, 176, 451, 567 
limit of order stz*istics, 24 

randomized, 58-59 

subordination, 336-337 

Gamma functions, 47 . 

Gamma process, direction of by POISSON 

process, 349 
direction of POISSON process by, 348- 

349 
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Gaps, large, 188, 378, 468 

small, 217 
GEARY, R. C., 86 

GEIGER counters, 189, 190, 372-373, 387, 
468 

Generating functions, characterization of, 
223 

mortality interpretation for, 424 

Generation, of algebras, 163 . 

of exponentially distributed variables, 44 
Generators, 294-296, 356-357, 456-457, 

476 
Genetics, diffusion in, 336-337 

GILBERT, E.N., 217 
GNEDENKO, B. V., 38, 39, 277, 531, 540, 

581, 592, 656 
GNEDENKO-KOROLJUK theorem, 43 
GOOD, I. J., 473 
Gravitational fields, 173-174, 215 

Green function, 334, 476, 496 
GREENWOOD, M., 57 
GRENANDER, U., 77, 655, 656 
GRIFFIN, J. S., Jr., 196 
Grouping of data, 4-5 
Growth, logistic, 52 

GUMBEL, E. J., 165 

HADAMARD’s factorization theorem, 525 

HALMOS, P. R., 103, 213 
HAMEL equation, 298, 305 

HARDY, G. H., 155, 268, 445 

Harmonic analysis, 619-646 
Harmonic functions, 244 

HARRIS, T. E., 244 

HAUSDORFF, F., 226 

Height distribution, 73 

HEITLER, W., 323 

HELLY, E., 267 

HENNEQUIN, E., 103 

HERGLOTZ, G., 634 

HERMITE pcolynomials, 523-533, 535 
expansion of, 542 

HEWITT, E., 124, 229 

HEYDE, C. C., 227 

Hidden periodicities, 76 
HILBERT spaces, 271, 637, 639-643, 645 

HILLE, E., 231, 294, 408, 454, 525, 656 

HILLE-YOSIDA theorem, 458-463, 476 

Hitting points, in random walks, 426, 598- 

599 
in renewal, 188, 371-372, 426 
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see also Ladder variables 

HOBBY, C., 389 
HOLDER’s inequality, 155 

-HOLTSMARK distribution, 172,.173-174, 
215 

HOPF, E., 403; see also WIENER-HOPF 
HUNT, G., 210 
HUYGENS’ principle, 51 

Hyperbclic functions and densities, 502- 
503, 527, 567, 632-633 

IBRAGIMOV, I. A., 167 

Idle servers, 200 

Images, methed of, 340 

Imbedded renewal processes, 191-193, 379 

Improper, see Proper distributions 

Increase, point of, 137, 147 

Independence of random variables, 6, 69, 71, 

121-125, 134 

and complex variables, 498 
criterion for, 136 

Independent increments, 95-96, 179-182, 

293, 304/317, 645 
and discontinuities, 305, 317-318 

and subordination, 347 
Index of the first maximum, 417 

Indicators, 104 

Induced partitions, 22 

Induced random walks, 390 

Inequalities, 152-156 

of HOLDER, 155 
of JENSEN, 153-154 
of KOLMOGOROV, 156 

moment, 155 

of SCHWARZ, 152-153 

Infinite convolutions, 265-267, 317, 592- 

593 

Infinite differentiability, 256, 293 
Infinitely divisible distributions, 176-179, 

292-293, 449-452, 554-595 

in R', 593, 596 

and semi-groups, 290-318, 457-458 
special properties of, 570-574 

Infinitesimal generators, 456 
Infinitesimal speed and variance, 335 
Inner products, 636 
Inspection paradox, 187, 372 

Insurance, see Risk theory 

Integrals, stochastic, 645-646 
Integration by parts, 150-151 

and LAPLACE transforms, 435-436 

Interval functions, 106-112, 128, 129 
Interval of continuity, 248 

Invariance principle, 343 
Inventories, 195-196 

Inversion formulas, 140, 221-222, 638 

characteristic functions for, 510-511, 524 
for LAPLACE transforms, 232-234, 440- 

441, 462 

and moment problems, 227 
Ionization, 323 

Isometry, 638 

ITO, K., 333, 655 

JACOBI’s theta functions, 342, 345, 632 

JANOSSY, L., 323 
JENSEN’s inequality, 153-154, 214 

Joint distributions, 68, 423-425 

JORDAN decomposition, 138, 142 
JOSEPH, A. W., 420 
Jump processes, 326-332 

with infinitely many jumps, 331, 484 

KAC, M., 79, 196, 343 
KARAMATA, J., 173, 247, 275, 279, 445 © 
KARLIN, S., 228, 381, 656 

KATZ, M. L., 545 
. KELVIN; Lord, 340 

KEMPERMAN, J. H. B., 655 
KENDALL, D. G., 194, 231, 473 
Kernels, stochastic, 159, 205, 270-272 

KHINTCHINE A., 137, 173,179, 406, 527, 

565, 588, 592, 639-640, 656 
KHINTCHINE-POLLACZEK formula, 410, 

470,617 
KHINTCHINE’s criterion, 639-640 
KHINTCHINE?’s law of large numbers, 235, 

436 
KHINTCHINE’s unimodality criterion, 158, 

527 
KIEFER, J.,.200 
KINGMAN, J. F.C., 184 
KOLMOGOROV, A. N., 39, 123, 124, 179, 

325, 333, 531, 540, 656; see also 
CHAPMAN-KOLMOGOROV 

KOLMOGOROV-SMIRNOV theorem, 39, 

342-343 . 

KOLMOGOROV’s backward equation, 327 

328 
KOLMOGOROW’s differential equations, 

331, 483-488 
KOLMOGOROV’s forward equation, 
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324, 328 
KOLMOGOROV'’s inequality, 156, 246 

for martingales, 242 

for positive submartingales, 241-242 
KOLMOGOROV'’s three-series theorem, 317 

KOROLJUK, V. S., 33, 38, 39, 43; see also 
GNEDENKO-KOROLJUK 

KRICKEBERG, K., 103, 655 
KRONECKER delta kernel, 206, 424 

KRONECKER’s lemma, 239, 243 

Ladder epochs, distribution of, 413-417 

Ladder heights, 191, 398-400 

Ladder indices, 412-413 
Ladder points, 390 

Ladder variables, ascending, strict, 391 

weak, 392-393 
descending, 393-394 

LAHA, R. G., 655 
LAMPERTI, A., 189 

LANDAU, E., 342, 446 
LANDAU, L., 323 
LAPLACE-STIELTJES transferm, 432, 

470, 495, 496 
LAPLACE transforms, 232-233, 429-458 
applications of, 466-495 
and convolutions, 434-435. 

and derivatives, 435 

elementary properties of, 434-436 
examples of, 436-439 

‘and integration by parts, 435-436 

inversion formulas for, 232-234 

and moments, 435 

in R, 452-454 
and random walks, 614 

for semi-groups, 454-458 
LAPLACE’s second law, 50 

Last come first served, 190 

Lattice distributions, 138 

central limit theorem for, 517-518, 540 

characteristic functions for, 511 

see also POISSON’s summation formula 

Lattices (algebraic), 350 
Law ot large numbers, 219-246, 286, 

436, 513 

converse, 241 

for identically distributed variables, 234- 

237 
KHINTCHINE’s law, 235 

for stationary sequences, 245 

strong law, 237-241 
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for triangular arrays, 316-317, 596 
weak law, 235-236 

LEBESQUE completion, 126 
LEBESQUE decomposition theorem, 142 
LEBESQUE measure, 33-36, 126 
LEBESQUE-NIKODYM theorem, 140; see 

also RIEMANN-LEBESQUE theorem 
LEBESQUE-STIELTJES integral, 110, 119, 

121, 131-132 
LE CAM, L., 286 
LEFFLER, see MITTAG-LEFFLER 
LEGENDRE’s duplication formula, 64 

Length of random chains, 206-207 | 
LEVY, P., 173, 179, 181, 210, 262, 274,. 

285, 305, 314, 318, 497, 515, 525, 

565, 567-568, 571, 575, 588, 592, 

655, 656; see also CRAMER-LEVY 

_ theorem . 
LEVY-PARETO distribution, 172; see also 

, PARETO distribution 

LEVY’s canonical measure, 564 

LEVY’s examples, 215, 319, 567-568 

LEVY’s metric, 285 

Lifetime, see Duration; Recurrence time 

Light, absorption of, 31 
HUYGENS’ principle of, 51 
intensity of, 25 

in stellar systems, 206, 325-326 

transmission of through matter, 25, 31, 43 

Likelihood ratios, 211 | 
Limit theorems, 24, 342-343 

and arc sine distributions, 470-473 

basic, 247-288 

and queues, 380 
LINDEBERG, J. W., 515 

LINDEBERG conditions, 262, 263, 286, 

518-521, 530 

in diffusion, 333 

LINDLEY, D. V., 194,389 

Linear functional, 120 

Linear increments,in jump processes, 324- 

326 

Linear operators on stochastic processes, 

625-626 

LITTLE, J. D.C., 474 

LITTLEWOOD, J. E., 155, 445 

LJ APUNOV’s condition, 286 

Locally compact spaces, 120, 123, 248 

Locked period, 189 
LOEVE, M., 103, 104, 229, 265, 321, 655 

_ Logarithmic distribution, 63 

 



664 

Logistic distribution and growth, 52-53 

Lost calls, 190, 495. 

Luck, persistence of, 15-17 

LUKACS, E., 86, 655 

LUNDBERG, F., 182 

MC KEAN, H. P. Jr., 333, 655 

MC SHANE, E. J., 103 

MANDELBROT, B., 175, 288 

Marginal distribution, 67, 134, 157 

normal, 100 , 

prescribed, 165 

MARKOV, A., 228 

MARKOV processes with continuous 
time, 96, 321-345, 624-625 

in countable spaces, 483-488 

and érgodic theorems, 369, 491-492 
and semi-groups, 349-357, 454-458 
see also Birth-and-death processes; Semi- 

MARKOV processes 

MARKOV processes with discrete time, 94- 

99, 101-102, 205-209, 217 

and ergodic theorems, 270-274 

and martingales, 244 

and spectral aspects, 635, 649 

MARKOV property, 8-9 
strong, 20 

MARSHALL, A. W., 246 

Martingales, 209-215, 241-244 

inequalities for, 241-242, 246 

Matrix calculus, 82-83, 484-485 

Maximal partial sums, 198, 402, 408-412, 
419-423 

estimate of, 412 

see also Duration 

Maximal recurrence time, 189, 386 

Maximal row sums, 320, 597 

Maximal term, 172, 277, 287, 465; see also 
Order statistics; Record values 

MAXWELL distribution, 32, 48, 78-79 

Mean approximation theorem, 111-112 

Mean square convergence, 636 

Mean value theorem, 109 

Measurability, 113-115 
Measure space, 115 

- Median, 17,137 

Metrics for distributions, 285; see also 

BANACH space; HILBERT spaces 
Microscopes, 31 
MIDDLETON, D., 631 

Milky Way brightness, 325 

INDEX | 

MILLER, H. D., 603 

MILLS, H. D., 101 

Minimal solutions, and diffusions, 339. 
and jump proccess, 329-331 
of KOLMOGOROV differential equations, 

485-488 

and semi-MARKOV processes, 497 
and WIENER-HOPF equation, 402 

Mirror experiment, 51 

MITTAG-LEFFLER function, 453-454 

Mixtures, 53-55, 73, 159, 167 

and transforms, 437, 504 

Moments, 5, 136, 151, 570 

convergence of, 251-252, 269 

and derivatives, 435 

generating function, 434 
HAUSDORFFE moment problems, 224- 

228, 245 

inequalities, 155 
in renewal, 375 

uniqueness problem, 227, 233, 514-515 
in RI, 529 

Monctone convergence principle, 110 
property of, 350-352 

Monctone functions, 275-277 

Monotone sequences, 105 | 

Mortality, random walks with, 424 

Moving average processes, 88-89, 645 

Multivariate normal characteristic functions, 

_ 522-523 

MUNTZ, H. Ch., 245 

Natural scale in diffusion, 333 

Nearest neighbors, 10 
Needle problems, BUFFON’s, 61-62 
NELSON, E., 100, 347 

NEUMANN, J. V., 44 
NEUMANN, K.., identity of, 60 

NEVEU, J., 103, 655 

NEWELL, G. F., 40 

NEYMAN, J., 182 
NIKODYM, see RADON-NIKODYM; 

LEBESQUE-NIKODYM 

Noise, see Shot effect 

Nonlinear renewals,387 
Norm, 256, 350, 636, 642 

topology, 286 
Normal distributions, 46, 64, 87, 173, 503, 

566 

bivariate, 70, 72, 101 

characterization of, 77-80, 85, 525-526 

 



INDEX 

degenerate, 87 

domain of attraction, 313, 577-578 

marginal, 99-100 
MARKOVIAN, 94 

inR’, 83-87, 522 

“Normal” domain of attraction, 581 
Normal semi-groups, 299, 307, 319 

Normal stochastic processes, 87-94, 641-646 

Nucleons, 323 

Null arrays, 177-178, 583-588 

Null sets, 125-126, 140 

NYQUIST, N., 631 

Operational time, 181, 345 

Operators associated with distributions, 

254-258 

Optional stopping, 213 
Orbits, binary, 33 
Order relation in R*, 82, 132 
Order statistics, 18, 20-21, 100 

application to estimations, 41 
and limit theorems, 24, 43 
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