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Preface to the Third Edition

WHEN THIS BOOK WAS FIRST CONCEIVED (MORE THAN 25 YEARS AGO)

few mathematicians outside the Soviet Union recognized probability as a

legitimate branch of mathematics. Applications were limited in scope,
and the treatment of individual problems often led to incredible com-
plications. Under these circumstances the book could not be written for
an existing audience, or to satisfy conscious needs. The hope was rather
to attract attention.to little-known aspects of probability, to forge links
between various parts, to develop unified methods, and to point to

potential applications. Because of a growing interest in probability, the

book found unexpectedly many users outside mathematical disciplines.
Its widespread use was understandable as long as its point of view was
new and its material was not otherwise available. But the popularity

seems to persist even now, when the contents of most chapters are avail-
able in specialized works streamlined for particular needs. For this reason

the character of the book remains unchangedin the new edition. I hope

that it will continue to serve a variety of needs and, in particular, that
it will continue to find readers who read it merely for enjoyment and
enlightenment.

Throughoutthe years I was the grateful recipient of many communica-
tions from users, and these led to various improvements. Manysections

were rewritten to facilitate study. Reading is also improved by a better
typeface and the superior editing job by Mrs. H. McDougal: although
a professional editor she has preserved a feeling for the requirements of
readers and reason.
The greatest change is in chapter HII. This chapter was introduced

only in the second edition, which was in fact motivated principally by
the unexpected discovery that its enticing material could be treated by
elementary methods. But this treatment still depended on combinatorial
artifices which have now been replaced by simpler and more natural
probabilistic arguments. In essence this chapter is new.
Most conspicuous among other additions are the new sections on

branching processes, on Markov chains, and on the De Moivre-Laplace

theorem. Chapter XIII has been rearranged, and throughout the book

vii

 



Viii PREFACE TO THE THIRD EDITION

there appear minor changes as well as new examples and problems.
I regret the misleading nature of the author index,but I felt obliged to

state explicitly whenever an idea or example could be traced to a particular
source. Unfortunately this means that quotations usually refer to an
incidental remark, and are rarely indicative of the nature of the paper
quoted. Furthermore, many examples and problems were inspired by

reading non-mathematical papers in which related situations are dealt
with by different methods. (That newer texts now quote these non-mathe-

matical papers as containing my examples shows how fast probability
has developed, but also indicates the limited usefulness of quotations.)
Lack of space as well as of competence precluded more adequate
historical indications of how probability has changed from the semi-
mysterious discussions of the ’twenties to its present flourishing state.
For a number ofyears I have been privileged to work with students

and younger colleagues to whose help and inspiration I owe much.
Muchcredit for this is due to the support by the U.S. Army Research
Office for work in probability at Princeton University. My particular

thanks are due to Jay Goldman for a thoughtful memorandum abouthis
teaching experiences, and to Loren Pitt for devoted help with the proofs.

WILLIAM FELLER

July, 1967

 



Preface to the First Edition

IT WAS THE AUTHOR’S ORIGINAL INTENTION TO WRITE A BOOK ON
analytical methods in probability theory in which the latter was to be
treated as a topic in pure mathematics. Such a treatment would have
been more uniform and hence moresatisfactory from an aesthetic point
of view; it would also have been more appealing to pure mathematicians.
However, the generous support by the Office of Naval Research of work
in probability theory at Cornell University led the author to a more
ambitious andless thankful undertakingofsatisfying heterogeneousneeds.

It is the purpose of this book to treat probability theory as a self-
contained mathematical subject rigorously, avoiding non-mathematical
concepts. At the same time, the book tries to describe the empirical
background and to develop a feeling for the great variety of practical
applications. This purpose is served by many special problems, numerical
estimates, and examples which interrupt the main flow of the text. They
are clearly set apartin print and are treated in a more picturesque language
and with less formality. A number of special topics have been included
in order to exhibit the power of general methods and to increase the
usefulness of the bookto specialists in variousfields. To facilitate reading,
detours from the main path are indicated by stars. The knowledge of
starred sections is not assumed in the remainder.
A serious attempt has been made to unify methods. The specialist

will find many simplifications of existing proofs and also new results.
In particular, the theory of recurrent events has been developed for the
purpose of this book. It leads to a new treatment of Markov chains
which permits simplification even in thefinite case.
The examples are accompanied by about 340 problems mostly with

complete solutions. Some of them are simple exercises, but most of

them serve as additionalillustrative material to the text or contain various
complements. One purpose of the examples and problemsis to develop
the reader’s intuition and art of probabilistic formulation. Several
previously treated examples show that apparently difficult problems may
become almost trite once they are formulated in a natural way and put
into the proper context.

ix

 



X PREFACE TO THE FIRST EDITION

There is a tendency in teaching to reduce probability problems to pure
analysis as soon as possible and to forget the specific characteristics of
probability theory itself. Such treatments are based on a poorly defined
notion of random variables usually introduced at the outset. This book

goes to the other extreme and dwells on the notion of sample space,
without which random variables remain anartifice.

In order to present the true background unhampered by measurability
questions and other purely analytic difficulties this volume is restricted

to discrete sample spaces. This restriction is severe, but should be welcome
to non-mathematical users. It permits the inclusion of special topics
which are not easily accessible in the literature. At the same time, this

arrangement makes it possible to begin in an elementary way and yet to
include a fairly exhaustive treatment of such advanced topics as random
walks and Markov chains. The general theory of random variables and
their distributions, limit theorems, diffusion theory,etc., is deferred to a

succeeding volume.
This book would not have been written without the support of the

Office of Naval Research. One consequence ofthis support wasa fairly
regular personal contact with J. L. Doob, whose constantcriticism and
encouragement were invaluable. To him go my foremost thanks. The
next thanks for help are due to John Riordan, who followed the manu-
script through two versions. Numerous corrections and improvements
were.suggested by my wife who read both the manuscript and proof.
The author is also indebted to K. L. Chung, M. Donsker, and S.

Goldberg, who read the manuscript and corrected various mistakes;
the solutions to the majority ofthe problems were prepared by S. Goldberg.
Finally, thanks are due to Kathryn Hollenbach for patient and expert
typing help; to E. Elyash, W. Hoffman, and J. R. Kinney for help in
proofreading.

WILLIAM FELLER

Cornell University

January 1950

 



Note on the Use of the Book

THE EXPOSITION CONTAINS MANY SIDE EXCURSIONS AND DOES NOT ALWAYS
progress from the easy to the difficult; comparatively technical sections
appear at the beginning and easy sections in chapters XV and XVII.

Inexperienced readers should not attempt to follow manyside lines, lest
they lose sight of the forest for too many trees. Introductory remarks
to the chapters and stars at the beginnings of sections. should facilitate

orientation and the choice of omissions. The unstarred sections form a
self-contained whole in which the starred sections are not used.
A first introduction to the basic notions of probability is contained in

chapters I, V, VI, IX; beginners should cover these with as few digressions

as possible. Chapter II is designed to develop the student’s technique
and probabilistic intuition; some experience in its contents is desirable,
but it is not necessary to cover the chapter systematically: it may prove
moreprofitable to return to the elementary illustrations as occasion arises

at later stages. For the purposesof a first introduction, the elementary
theory of continuousdistributions requires little supplementary explana-
tion. (The elementary chapters of volume 2 now provide a suitable
text.)

From chapter [IX an introductory course may proceed directly to
chapter XI, considering generating functions as an example of more
general transforms. Chapter XI should be followed by someapplications
in chapters XIII (recurrent events) or XII (chain reactions, infinitely

divisible distributions). Without generating functions it is possible to
turn in one of the following directions: limit theorems and fluctuation
theory (chapters VIII, X, III); stochastic processes (chapter XVII);

random walks (chapter III and the main part of XIV). These chapters

are almost independent of each other. The Markov chains of chapter
XV depend conceptually on recurrent events, but they may be studied
independently if the reader is willing to accept without proof the basic

ergodic theorem.
Chapter III stands by itself. Its contents are appealing in their own

right, but the chapter is also highly illustrative for new insights and new

methods in probability theory. The results concerning fluctuations in

xi

 



Xil NOTE ON THE USE OF THE BOOK

coin tossing show that widely held beliefs about the law of large numbers
are fallacious. They are so amazing and so at variance with common
intuition that even sophisticated colleagues doubted that coins actually
misbehave as theory predicts. The record of a simulated experimentis
therefore included in section 6. The chapter treats only the simple coin-
tossing game, but the results are representative of a fairly generalsituation.
The sign > is used to indicate the end of a proofor of a collection of

examples.
It is hoped that the extensive index will facilitate coordination between

the several parts.
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INTRODUCTION

The Nature

of Probability Theory

1. THE BACKGROUND

Probability is a mathematical discipline with aims akin to those, for

example, of geometry or analytical mechanics. In each field we must

carefully distinguish three aspects of the theory: (a) the formal logical

content, (b) the intuitive background,(c) the applications. The character,
and the charm, of the whole structure cannot be appreciated without

considering all three aspects in their properrelation.

(a) Formal Logical Content

Axiomatically, mathematics is concerned solely with relations among
undefined things. This aspect is well illustrated by the game of chess. It
is impossible to “define” chess otherwise than by stating a set ofrules.
The conventional shape of the pieces may be described to some extent,
but it will not always be obvious which piece is intended for “king.” The
chessboard andthe pieces are helpful, but they can be dispensed with.
Theessential thing is to know howthe pieces move andact. It is meaning-

less to talk about the ‘‘definition”’ or the “‘true nature” of a pawnor a king.
Similarly, geometry does not care what a point and a straightline “really
are.”’ They remain undefined notions, and the axioms of geometry specify

the relations among them: two points determine line, etc. These are

the rules, and there is nothing sacred about them. Different forms of

geometry are based ondifferentsets of axioms, and thelogical structure of

non-Euclidean geometries is independent of their relation to reality.

Physicists have studied the motion of bodies under laws of attraction

different from Newton’s, and such studies are meaningful even if Newton’s

law of attraction is accepted as true in nature.

1

 



2 THE NATURE OF PROBABILITY THEORY

(b) Intuitive Background

In contrast to chess, the axioms of geometry and of mechanics have

an intuitive background. In fact, geometricalintuition is so strong thatit
is prone to run ahead oflogical reasoning. The extent to which logic,
intuition, and physical experience are interdependent is a problem into
which we need not enter. It is certain that intuition can be trained and

developed. The bewildered novice in chess moves cautiously, recalling
individual rules, whereas the experienced player absorbs a complicated
situation at a glance and is unable to accountrationally for his intuition.
In like manner mathematical intuition grows with experience, and itis
possible to develop a naturalfeeling for concepts such as four-dimensional
space.

Eventhe collective intuition of mankind appears to progress. Newton’s
notions ofa field of force and of action at a distance and Maxwell’s con-
cept of electromagnetic waves were at first decried as “unthinkable” and
“contrary to intuition.”” Modern technology and radio in the homes have

popularized these notions to such an extent that they form part of the
ordinary vocabulary. Similarly, the modern student has no appreciation

of the modes of thinking, the prejudices, and other difficulties against
which the theory of probability had to struggle when it was new. Nowa-
days newspapers report on samples of public opinion, and the magic of
statistics embracesall phases of life to the extent that young girls watch
the statistics of their chances to get married. Thus everyone has acquired
a feeling for the meaning of statements such as “the chances are three in
five.” Vagueasitis, this intuition serves as background and guidefor the
first step. It will be developed as the theory progresses and acquaintance
is made with more sophisticated applications.

(c) Applications

The concepts of geometry and mechanicsare in practice identified with

certain physical objects, but the processis so flexible and variable that no

general rules can be given. The notion of a rigid body is fundamental and
useful, even though no physical object is rigid. Whether a given body
can be treated as if it were rigid depends on the circumstances and the
desired degree of approximation. Rubberis certainly not rigid, but in
discussing the motion of automobiles on ice textbooks usually treat the
rubbertires as rigid bodies. Depending on the purpose of the theory, we
disregard the atomic structure of matter and treat the sun now as ball of

continuous matter, now as a single mass point.
In applications, the abstract mathematical models serve as tools, and

different models can describe the same empirical situation. The manner

in which mathematical theories are applied does not depend on preconceived



PROCEDURE 3

ideas; it is a purposeful technique depending on, and changing with, experi-
ence. A philosophical analysis of such techniquesis a legitimate study,
but is is not within the realm of mathematics, physics, or statistics. The

philosophy of the foundations of probability must be divorced from
mathematics andstatistics, exactly as the discussion of our intuitive space
concept is now divorced from geometry.

2. PROCEDURE

The history of probability (and of mathematics in general) shows a

stimulating interplay of theory and applications; theoretical progress
opens new fields of applications, and in turn applications lead to new
problems andfruitful research. The theory of probability is now applied
in many diverse fields, andthe flexibility of a general theory is required to
provide appropriate tools for so great a variety of needs. We must
therefore withstand the temptation (and the pressure) to build the theory,

its terminology, and its arsenal too close to one particular sphere of
interest. We wish instead to develop a mathematical theory in the way
which has proved so successful in geometry and mechanics. ~

Weshall start from the simplest experiences, such as tossing a coin or
throwing dice, where all statements have an obvious intuitive meaning.
This intuition will be translated into an abstract model to be generalized
gradually and by degrees. Illustrative examples will be provided to
explain the empirical backgroundofthe several models and to develop the
reader’s intuition, but the theory itself will be of a mathematical character.
Weshall no more attempt to explain the “true meaning’’ of probability
than the modern physicist dwells on the ‘“‘real meaning’? of mass and
energy or the geometer discusses the nature of a point. Instead, we shall

prove theorems and show howtheyare applied.
Historically, the original purpose of the theory of probability was to

describe the exceedingly narrow domain of experience connected with
games of chance, and the main effort was directed to the calculation of
certain probabilities. In the opening chapters we too shall calculate a
few typical probabilities, but it should be borne in mind that numerical
probabilities are not the principal object of the theory. Its aim is to

discover general laws and to constructsatisfactory theoretical models.
Probabilities play for us the same role as masses in mechanics. The

motion of the planetary system can be discussed without knowledge of the
individual masses and without contemplating methods for their actual

measurements. Even models for non-existent planetary systems may be
the object of a profitable and illuminating study. Similarly, practical and
usefulprobability models may refer to non-observable worlds. For example,

 



4 THE NATURE OF PROBABILITY THEORY

billions of dollars have been invested in automatic telephone exchanges.
These are based on simple probability models in which various possible

systems are compared. Thetheoretically best system is built and the others
will never exist. In insurance, probability theory is used to calculate the

probability of ruin; that is, the theory is used to avoid certain undesirable

situations, and consequently it applies to situations that are not actually
observed. Probability theory would beeffective and useful even if not a
single numerical value were accessible.

3. “STATISTICAL”? PROBABILITY

The success of the modern mathematical theory of probability is bought
at a price: the theory is limited to one particular aspect of “chance.”
The intuitive notion of probability is connected with inductive reasoning
and with judgments such as “Paul is probably a happy man,”“Probably
this book will be a failure,” “‘Fermat’s conjecture is probably false.”

Judgments of this sort are of interest to the philosopher andthe logician,
and they are a legitimate object of a mathematical theory.1 It must be
understood, however, that we are concerned not with modes of inductive

reasoning but with something that might be called physical or statistical
probability. In a rough way we may characterize this concept by saying
that our probabilities do not refer to judgments but to possible outcomes
of a conceptual experiment. Before we speak of probabilities, we must
agree on an idealized model of a particular conceptual experimentsuch as

tossing a coin, sampling kangaroos on the moon,observinga particle under
diffusion, counting the numberoftelephone calls. At the outset we must
agree on the possible outcomesof this experiment (our sample space) and
the probabilities associated with them. This is analogous to the procedure
in mechanics wherefictitious models involving two, three, or seventeen

mass points are introduced, these points being devoid of individual
properties. Similarly, in analyzing the coin tossing game we are not
concerned with the accidental circumstances of an actual experiment:

the object of our theory is sequences (or arrangements) of symbols such as -
“head, head, tail, head,....” There is no place in our system for

speculations concerning the probability that the sun will rise tomorrow.
Before speaking of it we should have to agree on an (idealized) model
which would presumably run alongthelines “outof infinitely many worlds

* B. O. Koopman, The axioms andalgebra ofintuitive probability, Ann. of Math.(2),

vol. 41 (1940), pp. 269-292, and The bases ofprobability, Bull. Amer. Math. Soc., vol. 46
(1940), pp. 763-774.

For a moderntext based on subjective probabilities see L. J. Savage, Thefoundations
of statistics, New York (John Wiley) 1954.
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one is selected at random. ...’’ Little imagination is required to construct

such a model, but it appears both uninteresting and meaningless.
The astronomer speaks of measuring the temperature at the center of

the sun orof travel to Sirius. These operations seem impossible, and yet

it is not senseless to contemplate them. By the sametoken, we shall not
worry whether or not our conceptual experiments can be performed; we

shall analyze abstract models. In the back of our minds we keep an

intuitive interpretation of probability which gains operational meaning in
certain applications. We imagine the experiment performed a great many
times. An event with probability 0.6 should be expected, in the long run,
to occur sixty times out of a hundred. This description is deliberately

vague but supplies a picturesque intuitive background sufficient for the

more elementary applications. As the theory proceeds and grows more
elaborate, the operational meaning andtheintuitive picture will become
more concrete.

4. SUMMARY

Weshall be concerned with theoretical models in which probabilities
enter as free parameters in much the same way as masses in mechanics.

They are applied in many and variable ways. The technique of applica-
tions and the intuition develop with the theory.

This is the standard procedure accepted and fruitful in other mathe-
matical disciplines. No alternative has been devised which could
conceivably fill the manifold needs and requirementsofa// branchesofthe
growing entity called probability theory and its applications.
We mayfairly lamentthatintuitive probability is insufficient for scienti-

fic purposes, butit is a historical fact. In exampleI, (6.5), we shall discuss
random distributions of particles in compartments. The appropriate, or
“natural,” probability distribution seemed perfectly clear to everyone and

has been accepted withouthesitation by physicists. It turned out, however,
that physical particles are not trained in human commonsense, and the
“natural” (or Boltzmann) distribution has to be given up for the Einstein-

- Bose distribution in somecases, for the Fermi-Dirac distribution in others.

No intuitive argument has been offered why photons should behave

differently from protons and why they do not obey the “‘a priori” laws.
If a justification could now be found, it would only show that intuition

develops with theory. At any rate, even for applications freedom and
flexibility are essential, and it would be pernicious to fetter the theory to

fixed poles.
It has also been claimed that the modern theory of probability is too

abstract and too general to be useful. This is the battle cry once raised
by practical-minded people against Maxwell’s field theory. The argument
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could be countered by pointing to the unexpected new applications

opened by the abstract theory of stochastic processes, or to the new

insights offered by the modern fluctuation theory which once morebelies

intuition andis leading to a revision of practical attitudes. However, the
discussion is useless; it is too easy to condemn. Only yesterday the

practical things of today were decried as impractical, and the theories
which will be practical tomorrow will always be branded as valueless
games by the practical men of today.

5. HISTORICAL NOTE

The statistical, or empirical, attitude toward probability has been

developed mainly by R. A. Fisher and R. von Mises. The notion of sample

space? comes from von Mises. This notion madeit possible to build up a

strictly mathematical theory of probability based on measure theory.

Such an approach emerged gradually in the twenties under the influence

of many authors. An axiomatic treatment representing the modern

development was given by A. Kolmogorov.’ Weshall follow this line,

but the term axiom appears too solemn inasmuch as the present volume

deals only with the simple case ofdiscrete probabilities.

2The German word is Merkmalraum (label space). von Mises’ basic treatise

Wahrscheinlichkeitsrechnung appeared in 1931. A modernized version (edited and

complemented by Hilda Geiringer) appeared in 1964 under the title Mathematical

theory of probability and statistics, New York (Academic Press). von Mises’ philo-

sophical ideas are best known from his earlier booklet of 1928, revised by H. Geiringer:

Probability, statistics and truth, London (Macmillan), 1957.

8 A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, Berlin (Springer)

1933. An English translation (by N. Morrison) appeared in 1956: Foundations of the

theory ofprobability, New York (Chelsea).

 



CHAPTER I

The Sample Space

1. THE EMPIRICAL BACKGROUND

The mathematical theory of probability gains practical value and an
intuitive meaning in connection with real or conceptual experiments such
as tossing a coin once, tossing a coin 100 times, throwing three dice,

arranging a deck of cards, matching two decksofcards, playing roulette,

observing the life span of a radioactive atom or a person,selecting a
random sample of people and observing the numberofleft-handers init,

crossing two species of plants and observing the phenotypes of the
offspring; or with phenomena such as the sex of a newborn baby,the

numberof busy trunklines in a telephone exchange, the numberofcalls
on a telephone, random noise in an electrical communication system,
routine quality control of aproduction process, frequency of accidents,

the numberofdouble stars in a region ofthe skies, the position of a particle
under diffusion. All these descriptions are rather vague, and, in order to

render the theory meaningful, we have to agree on what we mean by
possible results of the experiment or observation in question.

Whena coinis tossed, it does not necessarily fall headsortails; it can

roll away or stand on its edge. Nevertheless, we shall agree to regard

‘‘head” and “tail” as the only possible outcomes of the experiment. This
convention simplifies the theory without affecting its applicability.

Idealizationsof this type are standard practice. It is impossible to measure
the life span of an atom or a person without someerror,butfor theoretical

purposesit is expedient to imagine that these quantities are exact numbers.
The question then arises as to which numbers can actually represent the
life span of a person. Is there a maximal age beyond whichlife is impos-
sible, or is any age conceivable? We hesitate to admit that man can grow
1000 yearsold, and yet current actuarial practice admits no boundsto the

possible duration oflife. According to formulas on which modern mor-
tality tables are based, the proportion of men surviving 1000 yearsis of the

7
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order of magnitude of one in 10%°*°—a number with 1027 billions of zeros.
This statement does not makesense from a biological or sociological point
of view, but considered exclusively from statistical standpointit certainly
does not contradict any experience. There are fewer than 101° people born
in acentury. Totest the contentionstatistically, more than 10” centuries
would be required, which is considerably more than 10” lifetimes of the
earth. Obviously, such extremely small probabilities are compatiblewith
our notion of impossibility. Their use may appear utterly absurd, but
it does no harm and is convenient in simplifying many formulas. More-
over, if we were seriously to discard the possibility of living 1000 years,
we should have to accept the existence of maximum age, and the assump-
tion that itshould be possible to live x years and impossible to live x years
and two secondsis as unappealing as the idea of unlimited life.
Any theory necessarily involves idealization, and ourfirst idealization

concerns the possible outcomes of an “experiment” or “observation.”
If we want to construct an abstract model, we mustat the outset reach a

decision about what consitutes a possible outcome of the (idealized)

experiment.
For uniform terminology, the results of experiments or observations

will be called events. Thus we shall speak of the event that of five coins
tossed more than three fell heads. Similarly, the “experiment’’ of distrib-

uting the cards in bridge’ mayresult in the “event” that North has two
aces. The composition of a sample (“twoleft-handers in a sample of 85”’)
and the result of a measurement(‘‘temperature 120°,” ‘“‘seven trunklines
busy’’) will each be called an event.

Weshall distinguish between compound (or decomposable) and simple
(or indecomposable) events. For example, saying that a throw with two
dice resulted in “sum six’? amounts to saying that it resulted in “(1, 5) or

(2, 4) or (3, 3) or (4, 2) or (5, 1),” and this enumeration decomposes the

event “‘sum six”’ into five simple events. Similarly, the event “two odd
faces” admits of the decomposition “(1, 1) or (1, 3) or... or (5, 5)” into

nine simple events. Note that if a throw results in (3, 3), then the same

throw results also in the events “sum six’”’ and “‘two odd faces’’; these

events are not mutually exclusive and hence may occur simultaneously.

1 Definition of bridge andpoker. A deck of bridge cards consists of 52 cards arranged
in four suits of thirteen each. There are thirteen face values (2, 3,..., 10, jack, queen,

king, ace) in each suit. The four suits are called spades, clubs, hearts, diamonds.

The last two are red, the first two black. Cards of the same face value are called of

the same kind. For our purposes, playing bridge meansdistributing the cards to four
players, to be called North, South, East, and West (or N,S, E, W,for short) so that

each receives thirteen cards. Playing poker, by definition, meansselecting five cards

out of the pack.
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As a second example consider the age of a person. Every particular value
a represents a simple event, whereas the statement that a personis in his

fifties describes the compoundevent that x lies between 50 and 60. In
this way every compoundeventcan be decomposedinto simple events, that

is to say, a compoundeventis an aggregate of certain simple events.
If we want to speak about “experiments” or “observations” in a

theoretical way and without ambiguity, we mustfirst agree on the simple
events representing the thinkable outcomes; they define the idealized

experiment. In other words: The term simple (or indecomposable) event
remains undefined in the same way as the terms point and line remain
undefined in geometry. Following a general usage in mathematics the
simple events will be called samplepoints, or points for short. By definition,
every indecomposable result of the (idealized) experiment is represented by

one, and only one, sample point. The aggregate of all sample points will

be called the sample space. All events connected with a given (idealized)
experiment can be described as aggregates of sample points.

Before formalizing these basic conventions, we proceed to discuss a

few typical examples which will play a role further on.

2. EXAMPLES

(a) Distribution of the three balls in three cells. Table 1 describes all

possible outcomes of the “‘experiment”’ of placing three balls into three
cells.

Each of these arrangements represents a simple event, that is, a sample
point. The event A “one cell is multiply occupied”is realized in the

arrangements numbered 1-21, and weexpress this by saying that the event
A is the aggregate of the sample points 1-21. Similarly, the event B “‘first
cell is not empty” is the aggregate ofthe sample points 1, 4-15, 22-27.

 

TABLE 1

1. {abe| - | -} 10. {a | be| -} 19.{-|a | be}
2. { - | abc] -} 11.{ 6 |ac| -} 20.{- | b |ac}
3. {- | - | abc} 12. { clab | -} 21.{- | clab}
4. {ab | c| -} 13. {a | - | bc} 22. {a | b| c}
5. {ac| b | -} 14.6 | - jac} 23. {a | c| b}
6. { be]a | -} 15. { c| - | ab} 24.{b la | ¢}
7. {ab | - | oc} 16.{- |ab | c} 25.{b | cla }
8. {ac] - | b} 17.{- |ac| b} 26.{ cla | b}
9. { be] - |a } 18.{- | bela } 27. { c| b la }.
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The event C defined by “both A and B occur”is the aggregate of the
thirteen sample points 1, 4-15. In this particular exampleit so happens that
each of the 27 points belongs to either A or B (orto both); therefore the
event “either A or B or both occur”is the entire sample space and occurs
with absolute certainty. The event D defined by ‘“‘A does not occur”
consists of the points 22-27 and can be described by the condition that
no cell remains empty. The event “‘first cell empty and no cell multiply
occupied”’ is impossible (does not occur) since no sample point satisfies

these specifications.

(b) Random placement of r balls in n cells. The more general case of
r balls in n cells can be studied in the same manner, except that the
number of possible arrangements increases rapidly with r and n. For
r=4 balls in n =3 cells, the sample space contains already 64 points,

and for r= n= 10 there are 10° sample points; a complete tabulation
would require some hundred thousand big volumes.

Weuse this example to illustrate the important fact that the nature of
the sample points is irrelevant for our theory. To us the sample space
(together with the probability distribution defined in it) defines the
idealized experiment. We use the picturesque languageofballs andcells,
but the same sample space admits of a great variety of different practical
interpretations. To clarify this point, and also for further reference, we
list here a numberofsituations in whichthe intuitive background varies; all

are, however, abstractly equivalent to the schemeofplacing r balls into n
cells, in the sense that the outcomes differ only in their verbal description.
The appropriate assignment of probabilities is not the same in all cases

and will be discussed later on.

(b,1). Birthdays. The possible configurations of the birthdays of r
people correspond to the different arrangements of r balls in n=

365 cells (assuming the year to have 365 days).
(b,2). Accidents. Classifying r accidents according to the weekdays

whenthey occurred is equivalent to placing r balls into n =7 cells.

(b,3). Infiring at n targets, the hits correspondto balls, the targets to

cells.
(b,4). Sampling. Let a group of r people be classified according to,

say, age or profession. Theclassesplay therole of ourcells, the people

that of balls.
(b,5). Irradiation in biology. Whenthecells in the retina of the eye

are exposed to light, the light particles play the role of balls, and the
actual cells are the “cells” of our model. Similarly, in the study of
the genetic effect of irradiation, the chromosomes correspond to the

cells of our model and «-particles to the balls.
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(5,6). In cosmic ray experiments the particles reaching Geiger counters
represent balls, and the counters function ascells.

(5,7). An elevator starts with r passengers and stops at n floors.
The different arrangements of discharging the passengersare replicas
of the different distributions of r balls in n cells.

(b,8). Dice. The possible outcomes of a throw with r dice corre-

spond to placing r balls into n = 6, cells. Whentossing a coin we are
in effect dealing with only n = 2 cells.

(0,9). Random digits. The possible orderings of a sequence of r
digits correspondto the distribution of r balls (= places) into ten cells
called 0,1,...,9.

(5,10). The sex distribution of r persons. Here we have n = 2 cells

and r balls.

(6,11). Coupon collecting. The different kinds of couponsrepresent
the cells; the couponscollected representthe balls.

(0,12). Aces in bridge. The four players represent four cells, and

we have r = 4 balls.
(5,13). Genedistributions. Each descendantof an individual (person,

plant, or animal) inherits from the progenitor certain genes. If a
particular gene can appear in n forms A;,...,A,, then the descend-

ants maybe classified accordingto the type of the gene. Thedescendants
correspondtothe balls, the genotypes A,,...,A, to the cells.

(5,14). Chemistry. Suppose that a long-chain polymer reacts with
oxygen. An individual chain may react with 0,1,2,... oxygen
molecules. Here the reacting oxygen molecules play the role of balls
and the polymer chains the role of cells into which the balls are put.

(5,15). Theory of photographic emulsions. A photographic plate is
covered with grains sensitive to light quanta: a grain reacts if it is
hit by a certain number, r, of quanta. For the theory of black-white
contrast we must know how manycells are likely to be hit by the r
quanta. We have here an occupancy problem where the grains corre-
spondto cells, and the light quanta to balls. (Actually the situation is
more complicated since a plate usually contains grains of different
sensitivity.)

(b,16). Misprints. The possible distributions of r misprints in the
n pages of a book correspondtoall the different distributions of r balls
in n cells, provided r is smaller than the numberofletters per page.

(c) The case of indistinguishable balls. Let us return to example (a)
and suppose that the three balls are not distinguishable. This means
that we no longer distinguish between three arrangements suchas4,5,

6, and thus table 1 reduces to Table 2. The latter defines the sample space
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of the ideal experiment which wecall “placing three indistinguishable balls
into three cells,” and a similar procedure applies to the case of r balls

in 7 cells.

 

TABLE 2

1. {xe | - | - } 6.{ * |** | - }
2. { - | *a*| - } 7.{ * | - | a#« }

3. {- | — | xxx} 8.{ -— |** | « }

4, {xx | « | - } 9.{- | «* | e« }
5. {ex | - | * } 10.{ * | « | «*}

 

Whether or not actual balls are in practice distinguishableis irrelevantfor
our theory. Even if they are, we may decide to treat them as indistinguish-
able. The aces in bridge [example (5,12)] or the people in an elevator

[example (,7)] certainly are distinguishable, andyet it is often preferable
to treat them as indistinguishable. The dice of example (5,8) may be
colored to make them distinguishable, but whether in discussing a par-

ticular problem we use the modelof distinguishable or indistinguishable
balls is purely a matter of purpose and convenience. The nature of a
concrete problem may dictate the choice, but under any circumstances our

theory begins only after the appropriate model has been chosen,thatis,
after the sample space has been defined.

In the scheme above we have considered indistinguishable balls, but

table 2 still refers to a first, second, third cell, and their orderis essential.

We can go a step further and assumethat even thecells are indistinguish-
able (for example, the cell may be chosen at random withoutregardto its
contents). With both balls andcells indistinguishable, only three different

arrangementsare possible, namely {x**|—|—}, {**|*|—}, {*| *|*}.

(d) Sampling. Suppose that a sample of 100 people is taken in order

to estimate how many people smoke. The only property of the sample of

interest in this connection is the number x of smokers; this may be an

integer between 0 and 100. In this case we may agree that our sample

space consists of the 101 “points” 0, 1,..., 100. Every particular sample

or observation is completely described by stating the corresponding point

«. An example of a compoundeventis the result that “the majority of the

people sampled are smokers.” This means that the experimentresulted in

oneofthefifty simple events 51, 52,..., 100, but it is not stated in which.

Similarly, every property of the sample can be described in enumerating

the corresponding cases or sample points. For uniform terminology we

speak of events rather than properties of the sample. Mathematically, an

event is simply the aggregate of the corresponding sample points.
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(e) Sampling (continued). Suppose now that the 100 people in our

sample are classified not only as smokers or non-smokers but also as
males or females. The sample may now be characterized by a quadruple

(M,, F,, M,, F,) of integers giving in order the number of male and

female smokers, male and female non-smokers. For sample points we

take the quadruples of integers lying between 0 and 100 and adding to
100. There are 176,851 such quadruples, and they constitute the sample

space (cf. II, 5). The event “relatively more males than females smoke”

meansthat in our sample the ratio M,/M, is greater than F,/F,. The

point (73, 2, 8, 17) has this property, but (0, 1, 50, 49) has not. Our event

can be described in principle by enumerating all quadruples with the
desired property.

(f) Coin tossing. For the experiment of tossing a coin three times, the

sample space consists of eight points which may conveniently be represented
by HHH, HHT, HTH, THH, HTT, THT, TTH, TTT. The event 4A,
“two or more heads,” is the aggregate of thefirst four points. The event
B, “just one tail,” means either HHT, or HTH, or THH; weSaythat

B contains these three points.
(g) Ages of a couple. An insurance companyis interested in the age

distribution of couples. Let x stand for the age of the husband, y for
the age of the wife. Each observation results in a number-pair (2, y).

For the sample space we take the first quadrant of the x,y-plane so that
each point > 0, y > 0 is a sample point. The event A, ‘“‘husbandis
older than 40,” is represented byall points to the right of the line x = 40;

the event B, ‘“‘husbandis older than wife,” is represented by the angular

region between the x-axis and the bisector y = x, that is to say, by the
ageregate of points with «> y; theevent C, “wife is older than 40,”is
represented by the points above the line y = 40. A geometric representa-

tion of the joint age distributions of two couples requires a four-dimen-
sional space.

(h) Phase space. In statistical mechanics, each possible “‘state” of a

system is called a “‘point in phase space.” This is only a difference in
terminology. The phase space is simply our sample space; its points are

our sample points.

3. THE SAMPLE SPACE. EVENTS

It should be clear from the preceding that we shall never speak of
probabilities except in relation to a given sample space (or, physically, in
relation to a certain conceptual experiment). We start with the notion of a
sample space and its points; from now on they will be considered given.

They are the primitive and undefined notions of the theory precisely as the
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notions of “points” and “‘straight line”? remain undefined in an axiomatic
treatment of Euclidean geometry. The natureof the sample points does
not enter our theory. The sample space provides a model of an ideal
experiment in the sense that, by definition, every thinkable outcomeof the
experiment is completely described by one, and only one, sample point. It
is meaningful to talk about an event A only whenit is clear for every
outcomeof the experiment whether the event A has or has not occurred.
The collection of all those sample points representing outcomes where
A has occurred completely describes the event. Conversely, any given
aggregate A containing one or more sample points can be called an
event; this event does, or does not, occur according as the outcomeofthe
experimentis, or is not, represented by a point of the aggregate A. We
therefore define the word event to mean the same as an aggregate of sample
points. We shall say that an event A consists of (or contains) certain points,
namely those representing outcomes of the ideal experiment in which A
occurs.

Example. In the sample space of example (2.a) consider the event
U consisting of the points number1, 7, 13. This is a formal and straight-

forward definition, but U can be described in many equivalent ways.
For example, U may be defined as the event that the following three
conditionsare satisfied: (1) the secondcell is empty, (2) the ball a is in the

first cell, (3) the ball b does not appear after c. Each of these conditions

itself describes an event. The event U, defined by the condition (1) alone
consists of points 1, 3, 7-9, 13-15. The event U, defined by (2) consists

of points 1, 4, 5, 7, 8, 10, 13, 22, 23; and the event U, defined by (3)
contains the points 1-4, 6, 7, 9-11, 13, 14, 16, 18-20, 22, 24, 25. The

event U can also be described as the simultaneous realization ofall three
events U,, U,, U3. >

The terms “sample point” and “event’’ have an intuitive appeal, but
they refer to the notions of point and point set commontoall parts of
mathematics.

Wehaveseen in the preceding example andin (2.a) that new events can

be defined in terms of two or more given events. With these examples in

mind we nowproceedto introduce the notation of the formal algebra of
events (that is, algebra of pointsets).

4. RELATIONS AMONG EVENTS

We shall now suppose that an arbitrary, but fixed, sample space G is
given. We use capitals to denote events, that is, sets of sample points.
The fact that a point x is contained in the event A is denoted by xe A.
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Thus x€ © for every point x. We write A = B only if the two events
consist of exactly the same points.

In general, events will be defined by certain conditions on their points,
and it is convenient to have a symbol to express the fact that no point
satisfies a specified set ofconditions. The next definition serves this purpose.

Definition 1. We shall use the notation A=O to express that the
event A contains no sample points (is impossible). The zero must be
interpreted in a symbolic sense and not as the numeral.
To every event A there corresponds another event defined by the

condition “A does not occur.” It contains all points not contained in A.

Definition 2. The event consisting of all points not contained in the
event A will be called the complementary event (or negation) of A and will
be denoted by A’. In particular, S' = 0.

 

Figures 1 and 2. Illustrating relations among events. In Figure 1 the domain within
heavy boundaries is the union A. UBWUC. The triangular (heavily shaded) domain is
the intersection ABC. The moon-shaped(lightly shaded) domain is the intersection of
B with the complement of AU C.

With any two events A and B we can associate two new events
defined by the conditions “both A and B occur” and “either A or B or
both occur.’ These events will be denoted by AB and A UB, respec-
tively. The event AB contains all sample points which are common to
A and B. If A and B exclude each other, then there are no points
common to A and B andtheevent AB is impossible; analytically, this
situation is described by the equation

(4.1) AB =0

which should be read “A and B are mutually exclusive.” The event
AB’ means that both A and 8B’ occur or, in other words, that A but

not 8 occurs. Similarly, A’B’ means that neither A nor B occurs.
The event A U B meansthat at least one of the events A and 8 occurs;
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it contains all sample points except those that belong neither to A nor
to B.

In the theory of probability we can describe the event AB as the
simultaneous occurrence of A and 8B. In standard mathematical ter-
minology AB is called the (logical) intersection of A and B. Similarly,
A U B isthe union of A and B. Our notion carries over to the case of
events A, B,C, D,....

Definition 3. To every collection A, B,C,... of events we define two
new events as follows. The aggregate of the sample points which belong to
all the given sets will be denoted by ABC... and called the intersection?
(or simultaneous realization) of A, B, C,.... The aggregate of sample
points which belong to at least one of the given sets will be denoted by
AUBUC... and called the union(orrealization of at least one) of the
given events. The events A, B, C,... are mutually exclusive if no two
have a point in common,that is, if AB = 0, AC=0,..., BC=0,....

Westill require a symbol to express the statement that A cannot
occur without B occurring, that is, that the occurrence of A implies the
occurrence of B. This means that every point of A is contained in B.
Think of intuitive analogies like the aggregate of all mothers, which
forms a part of the aggregate of all women: All mothers are women but
not all women are mothers.

Definition 4. The symbols ASB and B>A are equivalent and
signify that every point of A is contained in B; they areread, respectively,
“A implies B’ and “B is implied by A’’. If this is the case, we shall
also write B— A instead of BA’ to denote the event that B but not A
occurs.

The event B — A contains all those points which are in B but not
in A. With this notation we can write A’ = SG — A and A—A=0O.

Examples. (a)If A and 8 are mutually exclusive, then the occurrence
of A implies the non-occurrence of B and vice versa. Thus AB = 0
means the same as A © B’ andas Bc J’. .

(6) The event A — AB means the occurrence of A but not of both

A and B. Thus A — AB= AB’.

(c) In the example (2.2), the event AB means that the husband is |

older than 40 and older than his wife; AB’ means that he is older than

2? The standard mathematical notation for the intersection of two or moresets is

AMB or ANBOC, etc. This notation is more suitable for certain specific

purposes (see IV, 1 of volume 2). At present we use the notation AB, ABC, etc.,

since it is less clumsy in print.
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40 but not older than his wife. AB is represented by the infinite trapezoidal
region between the x-axis and the lines = 40 and y=, and the
event AB’ is represented by the angular domain between the lines
x= 40 and y =z,thelatter boundary included. The event AC means
that both husbandand wife are older than 40. The event A U C means
that at least one of them is older than 40, and A UB meansthat the
husbandis either older than 40or, if not that, at least older than his wife
(in official language, “‘husband’s age exceeds 40 years or wife’s age,
whichever is smaller’).

(d) In example (2.a) let E; be the event that the cell number 7 is
empty (here i= 1, 2,3). Similarly, let S,, D,, T;, respectively, denote
the event that the cell number i is occupied simply, doubly, ortriply.
Then E,FE,=T73, and S,S,< S3, and D,D,=0. Note also that
T, © £,, etc. The event D, U D, U Dy is defined by the condition that
there exist at least one doubly occupied cell.

(e) Bridge (cf. footnote 1). Let A, B, C, D be the events, respectively,
that North, South, East, West have at least one ace. It is clear that at
least one player has an ace, so that one or more of the four events must
occur. Hence 4 UBUCUD= is the whole sample space. The
event ABCD occurs if, and only if, each player has an ace. The event
“West has all four aces’? means that none of the three events A, B, C

has occurred; this is the same as the simultaneous occurrence of A’ and
B’ and C’ or the event A’B’C’.

(f) In the example (2.2) we have BC < A: in words, “if husband is
older than wife (B) and wife is older than 40 (C), then husbandis older
that 40 (4). How can the event A — BC be described in words? >

5. DISCRETE SAMPLE SPACES

The simplest sample spaces are those containing only a finite number,
n, of points. If n is fairly small (as in the case of tossing a few coins),

it is easy to visualize the space. The space of distributions of cards in

bridge is more complicated, but we may imagine each sample point repre-
sented on a chip and maythen consider the collection of these chips as
representing the sample space. An event A (like “‘North has two aces’’)
is represented by a certain set of chips, the complement A’ by the re-
maining ones. It takes only one step from here to imagine a bowl with
infinitely many chips or a sample space with an infinite sequence of points
E,, Ex, Ey ...-

Examples. (a) Let us toss a coin as often as necessary to turn up one

head. The points of the sample space are then F, = H, E, = TH,

E, = TTH, E, = TTTH, etc. We may or may not consider as thinkable
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the possibility that H never appears. If we do, this possibility should be
represented by a point Ep.

(5) Three players a, b,c take turns at a game, suchaschess, according
to the following rules. At the start a and 5 play while c is out. The
loser is replaced by c andatthe secondtrial the winner plays against c
while the loser is out. The game continues in this way until a player wins
twice in succession, thus becoming the winner of the game. Forsimplicity
we disregard the possibility of ties at the individual trials. The possible
outcomes of our gameare then indicated by the following scheme:

(*) aa, acc, acbb, acbaa, acbacc, acbacbb, acbacbaa,...

bb, bec, bcaa, bceabb, bcabcc, bcabcaa, bcabcabb,....

In addition, it is thinkable that no player ever wins twice in succession, in
which case the play continues indefinitely according to one ofthe patterns

(**) acbacbacbacb ..., bcabcabcabca....

The sample space corresponding to ourideal “experiment’’ is defined by
(*) and (**) and is infinite. It is clear that the sample points can be
arranged in a simple sequence by taking first the two points (**) and
continuing with the points of (*) in the order aa, bb, acc, bcc,.... [See
problems 5-6, example V,(2.a), and problem 5 of XV,14.] >

Definition. A sample spaceis called discrete if it contains only finitely
many points orinfinitely many points which can be arranged into a simple
sequence E£,, Es, .

Not every sample space is discrete. It is a known theorem (due to
G. Cantor) that the sample space consisting ofall positive numbersis not
discrete. We are here confronted with a distinction familiar in mechanics.

There it is usual first to consider discrete mass points with each individual
point carrying a finite mass, and then to passto the notion of a continuous
mass distribution, where each individual point has zero mass. In thefirst
case, the mass of a system is obtained simply by adding the masses of the
individual points; in the second case, masses are computedbyintegration
over mass densities. Quite similarly, the probabilities of events in discrete

sample spaces are obtained by mere additions, whereas in other spaces
integrations are necessary. Except for the technical tools required, there
is no essential difference between the two cases. In orderto present actual -
probability considerations unhampered by technical difficulties, we shall

take up only discrete sample spaces. It will be seen that even this special
case leads to manyinteresting and importantresults.

In this volume we shall consider only discrete sample spaces.
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6. PROBABILITIES IN DISCRETE SAMPLE
SPACES: PREPARATIONS

Probabilities are numbersof the same natureas distances in geometry or
masses in mechanics. The theory assumes that they are given but need
assume nothing about their actual numerical values or how they are
measured in practice. Some of the most important applications are of a
qualitative nature and independent of numerical values. In therelatively
few instances where numerical values for probabilities are required, the
procedures vary as widely as do the methods of determining distances.
Thereis little in commonin the practices of the carpenter, the practical
surveyor, the pilot, and the astronomer when they measure distances.
In ourcontext, we may consider the diffusion constant, which is a notion
of the theory of probability. To find its numerical value, physical con-
siderations relating it to other theories are required; a direct measurement
is impossible. By contrast, mortality tables are constructed from rather
crude observations. In most actual applications the determination of
probabilities, or the comparison of theory and observation, requires
rather sophisticated statistical methods, which in turn are based on a
refined probability theory. In other words, the intuitive meaning of
probability is clear, but only as the theory proceeds shall we be able to see
how it is applied. All possible “definitions” of probability fall far short
of the actual practice.
Whentossing a “‘good”’ coin we do nothesitate to associate probability

3 with either head or tail. This amounts to saying that when a coin is
tossed n times all 2” possible results have the same probability. From a
theoretical standpoint, this is a convention. Frequently, it has been
contended that this convention is logically unavoidable and the only
possible one. Yet there have been philosophers andstatisticians defying
the convention and starting from contradictory assumptions (uniformity
or non-uniformity in nature). It has also been claimed that the probabili-
ties } are due to experience. As a matter of fact, wheneverrefined statistical

~ methods have been used to check on actual coin tossing, the result has been
invariably that head andtail are not equally likely. And yet we stick to
our model of an “‘ideal’’ coin, even though no good coins exist. We

preserve the model not merely forits logical simplicity, but essentially for
its usefulness and applicability. In many applications it is sufficiently
accurate to describe reality. More important is the empirical fact that
departures from our scheme are always coupled with phenomenasuch as
an eccentric position of the center of gravity. In this way our idealized
model can be extremely useful even if it never applies exactly. For ex-
ample, in modernstatistical quality control based on Shewhart’s methods,

\
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idealized probability models are used to discover “‘assignable causes’’ for
flagrant departures from these models and thus to remove impending
machine troubles and processirregularities at an early stage.

Similar remarks apply to other cases. The number of possible dis-
tributions of cards in bridge is almost 10°°. Usually we agree to consider
them as equally probable. For a check of this convention more than 10%
experiments would be required—thousandsofbillions of years if every
living person played one game every second, day and night. However,
consequences of the assumption can be verified experimentally, for

example, by observing the frequency of multiple aces in the hands at
bridge. It turns out that for crude purposes the idealized model describes
experience sufficiently well, provided the card shuffling is doe better than
is usual. It is more important that the idealized scheme, when it does not

apply, permits the discovery of “assignable causes’’ for the discrepancies,
for example, the reconstruction of the mode of shuffling. These are
examples of limited importance, but they indicate the usefulness of
assumed models. More interesting cases will appear only as the theory

proceeds.

Examples. (a) Distinguishable balls. In example (2.a) it appears

natural to assumethat all sample points are equally probable, that is, that
each sample point has probability #. We can start from this definition and
investigate its consequences. Whether or not our model will come
reasonablyclose to actual experience will depend on the type ofphenomena
to which it is applied. In some applications the assumption of equal
probabilities is imposed by physical considerations; in othersit is intro-

duced to serve as the simplest model for a general orientation, even though
it quite obviously represents only a crude first approximation [e.g.,

consider the examples (2.b,1), birthdays; (2.b,7), elevator problem; or

(2.b,11) coupon collecting].

(b) Indistinguishable balls: Bose-Einstein statistics. We now turn to the
example (2.c) of three indistinguishable balls in three cells. It is possible

to argue that the actual physical experimentis unaffected by ourfailure to
distinguish between the balls; physically there remain 27 different possi-
bilities, even though only ten different forms are disinguishable. This
consideration leads us to attribute the following probabilities to the ten
points of table 2.

Point number: 12 3 45678 9 10

Probability: w 2 oh4 1

o
|
-

o
|
-

o
|
-

o
|
-

o
|
-

o
l

l
r

It must be admitted that for most applications listed in example (2.0)
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this argument appears sound and the assignment of probabilities rea-
sonable. Historically, our argument was accepted for a long time without
question and servedin statistical mechanics as the basis for the derivation
of the Maxwell-Boltzmannstatistics for the distribution of r balls in n
cells. The greater was the surprise when Bose and Einstein showed that
certain particles are subject to the Bose-Einstein statistics (for details see
11,5). In our case with r = n = 3, this model attributes probability jy
to each of the ten sample points.

This example shows that different assignments of probabilities are
compatible with the same sample space andillustrates the intricate

 

TABLE 3

Trials

number Numberof heads Total

0- 1,000 54 46 53 55 46 54 41 48 51 53] 501
— 2,000 48 46 40 53 49 49 48 54 53 45 485
— 3,000 43 52 58 51 Sl $0 52 50 53 49 509
— 4,000 58 60 54 55 50 48 47 57 52 55 536
— 5,000 48 51 Sl 49 44 52 50 46 53 41 485
— 6,000 49 50 45 52 52 48 47 47 47 51 488
~ 7,000 45 47 41 51 49 59 50 55 53 50 500
— 8,000 53 52 46 52 44 S51 48 S51 46 54 497
— 9,000 45 47 46 52 47 48 59 57 45 48 494
—10,000 47 41 S51 48 59 $1 52 55 39 41 484   

interrelation between theory and experience. In particular, it teaches us
not to rely too much on a priori arguments and to be prepared to accept
new and unforeseen schemes.

(c) Coin tossing. A frequency interpretation of the postulate of equal
probabilities requires records of actual experiments. Nowinreality every
coin is biased, and it is possible to devise physical experiments which
come muchcloser to the ideal modelofcoin tossing than real coinsever do.
To give an idea ofthe fluctuations to be expected, we give the record of
such a simulated experiment corresponding to 10,000 trials with a coin.
Table 3 contains the numberof occurrences of “‘heads”’ in a series of 100
experiments each corresponding to a sequence of 100 trials with a coin.
The grand total is 4979. Looking at thesefigures the readeris probablyleft
with a vague feeling of: So what? The truth is that a more advanced

3 The table actually records the frequency of even digits in a section of A million
random digits with 100,000 normal deviates, by The Ranpd Corporation, Glencoe,

Illinois (The Free Press), 1955.
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theory is necessary to judge to what extent such empirical data agree with
our abstract model. (Incidentally, we shall return to this material in
III,6.) >

7. THE BASIC DEFINITIONS AND RULES

Fundamental Convention. Given a discrete sample space GS with
sample points Ey, Es,..., we shall assume that with each point E, there
is associated a number,called the probability of E, and denoted by P{E,}. It
is to be non-negative and such that

(7.1) P{Ey} + P{Ey} + +++ = 1.

Note that we do notexcludethe possibility that a point has probability
zero. This convention may appearartificial but is necessary to avoid
complications. In discrete sample spaces probability zero is in practice
interpreted as an impossibility, and any sample point known to have
probability zero can, with impunity, be eliminated from the sample space.
However, frequently the numerical values of the probabilities are not
known in advance, and involved considerations are required to decide
whetheror not a certain sample point has positive probability.

Definition. The probability P{A} of any event A is the sum of the
probabilities of all sample points in it.

By (7.1) the probability of the entire sample space © is unity, or
P{S} = 1. It follows that for any event A

(7.2) OS Pi<1.

Consider now two arbitrary events A, and A,. To compute the
probability P{A,UA,} that either A, or A, or both occur, we have to

add the probabilities of all sample points contained either in A, orin As,
but each point is to be counted only once. Wehave, therefore,

(7.3) P{A, VA} < P{A)} + P{A3}.

Now, if £ is any point contained both in A, and in A,, then P{E}

occurs twice in the right-hand member but only once in the left-hand
member. Therefore, the right side exceeds the left side by the amount
P{A,A,}, and we have the simple but important

Theorem. For any two events A, and A, the probability that either
A, or A, or both occur is given by

(7.4) P{A, VA} = P{A,} + P{A2} — PLA,AG}.
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If A,A, = 0, that is, if A, and A, are mutually exclusive, then (7.4)
reduces to

(7.5) . P{A, UAg} = P{A,} + P{A,}.

Example. A coin is tossed twice. For sample space we take the four
points HH, HT, TH, TT, andassociate with each probability 4. Let A,
and A, be, respectively, the events “head at first and secondtrial.”
Then. A, consists of HH and HT, and A, of TH and HH. Further-
more A = A,UA, containsthe three points HH, HT, and TH, where-
as A,A, consists of the single point HH. Thus

P{A, VA} =F +4—fF=2. >

The probability P{A,UA,U::+ UA,} of the realization of at least
one among n events can be computed by a formula analogousto (7.4),
derived in IV,1. Here we note only that the argument leading to (7.3)
applies to any number of terms. Thus for arbitrary events Aj, Ao, .
the inequality

(7.6) P{A,UAgU +++} < P{Ay} + Pfs} + °°:

holds. In the special case where the events A, Az,... are mutually

exclusive, we have

(7.7) P{4,UA,U ++} = PLA} + PLA} Hee

Occasionally (7.6) is referred to as Boole’s inequality.
Weshall first investigate the simple special case where the. sample

space hasa finite number, N, of points each having probability 1/N. In
this case, the probability of any event A equals the number ofpoints
in A divided by N. In the olderliterature, the points of the sample space

were called “cases,’’ and the points of A “favorable’’ cases (favorable

for A). Jfall points have the same probability, then the probability of an
event A is the ratio of the numberof favorable cases to the total number
of cases. Unfortunately, this statement has been much abused to provide
a “definition” of probability. It is often contended that in every finite
sample space probabilities of all points are equal. This is not so. For a
single throw of an untruecoin, the sample spacestill contains only the two

points, head andtail, but they may have arbitrary probabilities p and
g, with p +q = 1. A newborn babyis a boyorgirl, but in applications
we have to admit that the two possibilities are not equally likely. A

further counterexample is provided by (6.5). The usefulness of sample
spaces in which all sample points have the same probability is restricted
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almost entirely to the study of games of chance and to combinatorial
analysis.

8. PROBLEMS FOR SOLUTION

1. Amongthedigits 1, 2, 3, 4, 5 first one is chosen, and then a secondselection
is made amongthe remaining fourdigits. Assumethatall twenty possible re-
sults have the same probability. Find the probability that an odd digit will
be selected (a) the first time, (6) the second time, (c) both times.

2. In the sample space of example (2.a) attach equal probabilities to all 27
points. Using the notation of example (4.d), verify formula (7.4) for the two
events A; = S; and A, = S;. How manypoints does S,S, contain?

3. Consider the 24 possible arrangements (permutations) of the symbols
1234 and attach to each probabilityxgq. Let A; be the eventthat the digit i
appearsat its natural place (where i = 1, 2, 3, 4). Verify formula (7.4).

4. A coin is tossed until for the first time the same result appears twice in
succession. To every possible outcome requiring n tosses attribute probability
1/2"-1. Describe the sample space. Find the probability of the following events:
(a) the experiment ends before the sixth toss, (6) an even numberof tosses is
required.

5. In the sample space of example (5.5) let us attribute to each point of (*)
containing exactly k letters probability 1/2*. (In other words, aa and bb
carry probability 4, acb has probability 3, etc.) (a) Show thatthe probabilities -
of the points of («) add up to unity, whence the two points (**) receive proba-
bility zero. (6) Show. that the probability that a wins is 3%. The probability
of 5 winning is the same, and c has probability $ of winning. (c) The proba-
bility that no decision is reached at or before the kth turn (game) is 1/2*~1.

6. Modify example (5.6) to take account of the possibility of ties at the
individual games. Describe the appropriate sample space. How would you
define probabilities ?

7. In problem 3 show that A,A,43 © Ay and A,A,A43 © Aj.
8. Using the notations of example (4.d) show that (a) $,S,D3 =0; (6)

SD, < E33; (c) Es — DpSy > S_Dy.

9. Two dice are thrown. Let A be the event that the sum of the faces is
odd, B the event of at least one ace. Describe the events AB, A UB, AB’.
Find their probabilities assuming that all 36 sample points have equal proba-
bilities.

10. In example (2.g), discuss the meaning of the following events:
(a) ABC, (b) A — AB, (c) AB‘C.

11. In example (2.g), verify that AC’ ¢ B.

12. Bridge (cf. footnote 1). For k = 1, 2, 3,4 let Me be the event that
North hasat least k aces. Let S,, E,, W, be the analogous events for South,
East, West. Discuss the number x of aces in West’s Possession 1in the events

(e) NiS\£,W,, (f) N32, (8) (Ny U Sp)E>.
13. In the preceding problem verify that

(a) Ss cS So, (b) S3W, = 0, (c) NASEy W, = 0,

(d) NS, = Wi, (e) (NK, YU S)W3=0, (Cf) Wa = MSIE.
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14, Verify the following relations.‘
(a) (A U BY = A’B’. (b) (A UB) — B =A — AB = AB’.
(c) AA=AUA=A, (d) (A—AB) UB=AUB.
(e) (A UB) — AB = AB’ UAB. (f) A’ U BY = (ABY.
(g) (A UB)C = AC UBC.

15. Find simple expressions for
(a) (A U BA VB), (6) (A UBYA UBYA UB), (D(A UBB U C).

16. State which of the following relations are correct and which incorrect:
(a) (AUB)—CH=A U(B-C).
(6) ABC = AB(C U B).

(c) AUBUC=A U(B-AB) V(C-_AC).
(d) AUB =(A-AB) VB.
(e) ABU BC UCA > ABC.
() (ABU BC UCA) SC (AUBUO).
(g) (AUB)-AZ=B.
(h) ABC CA UB.
(@) (AUBUCY =A’BC.
G) (AV BYCH=ATC UBC.
(k) (A UBYC =A'BC.
() AVYVBYC=C-—C(A VB).

17. Let A, B, C be three arbitrary events. Find expressions for the events
that of A, B,C:

(a) Only A occurs. (6) Both A and B, but not C, occur.
(c) All three events occur. (d) At least one occurs.
(e) At least two occur. (f) One and no moreoccurs.
(g) Two and no moreoccur. (A) None occurs.
(i) Not more than two occur.

18. The union A UB of two events can be expressed as the union of two

mutually exclusive events, thus: A U B = A U(B—AB). Express in a similar
way the union of three events A, B, C.

19. Using the result of problem 18 prove that
P{AUBUCH=

= P{A} + P{B} + P{C} — P{AB} — P{AC} — P{BC} + P{ABC}
[This is a special case of IV, (1.5).]

4 Notice that (A U B)’ denotes the complement of A U B, which is not the same

as A’ U B’, Similarly, (AB)’ is not the same as A’B’.

 



 

CHAPTER II

Elements

of Combinatorial Analysis

This chapter explains the basic notions of combinatorial analysis and
develops the corresponding probabilistic background; the last part
describes some simple analytic techniques. Not much combinatorial
analysis is required for the further study of this book, and readers without
special interest in it should pass as soon as possible to chapter V, where
the main theoretical thread of chapter I is taken up again. It may be best
to read the individual sections of the present chapter in conjunction with
related topics in later chapters.

In the study of simple gamesof chance, sampling procedures, occupancy

and order problems,etc., we are usually dealing with finite sample spaces
in which the same probability is attributed to all points. To compute the
probability of an event A we have then to divide the number of sample
points in A (‘favorable cases’’) by the total number of samp!e points

(‘possible cases’’). This is facilitated by a systematic use of a few rules
which we shall now proceed to review. Simplicity and economy of
thought can be achieved by adhering to a few standard tools, and weshall
follow this procedure instead of describing the shortest computational
method in each special case."

1. PRELIMINARIES

Pairs. With m elements ay,...,@, and n elements b,,...,6,, it is

possible toform mn pairs (a;, b,) containing one elementfrom each group.

1 The interested reader will find manytopics of elementary combinatorial analysis

treated in the classical textbook, Choice and chance, by W. A. Whitworth, fifth edition,

London, 1901, reprinted by G. E. Stechert, New York, 1942. The companion volume

by the same author, DCCexercises, reprinted New York, 1945, contains 700 problems

with complete solutions.

26



II.1] PRELIMINARIES 27

Proof. Arrange the pairs in a rectangular array in the form of a multi-
plication table with m rows and n columnsso that (a,, b,) stands at the

intersection of thejth row and kth column. Then each pair appears once

and only once, and the assertion becomesobvious. >

Examples. (a) Bridge cards (cf. footnote | to chapter I). As sets of

elements take the four suits and the thirteen face. values, respectively.

Eachcard is defined byits suit and its face value, and there exist 4:13 = 52

such combinations, or cards.

(b) “Seven-way lamps.’ Some floor lamps so advertised contain 3

ordinary bulbs and also anindirect lighting fixture which can be operated
on three levels but need not be used at all. Each of these four possibilities
can be combined with 0, 1, 2, or 3 bulbs. Hence there are 4-4 = 16

possible combinations of which one, namely (0, 0), means that no bulb is

on. There remain fifteen (not seven) ways of operating the lamps. >

Multiplets. Given n, elements a,,...,a,. and nz, elements b,,...,
1

bp,» etc., up to n, elements x4,...,%,; it is possible to form nyn,° ++ n,

ordered r-tuplets (a;,,b;,...,%;.) containing one element of each kind.

Proof. If r= 2, the assertion reduces to the first rule. If r= 3,

take the pair (a,, b,;) as element of a new kind. There are m,n, such pairs

and ng elements c,. Each triple (a;, b,,c,) is itself a pair consisting of
(a,,6,) and an element c,; the number oftriplets is therefore 714,73.

Proceeding, by induction, the assertion followsfor every r. >

Manyapplications are based on the following reformulation ofthe last

theorem: r successive selections (decisions) with exactly n, choices
possible at the kth step can produce a total of nyn,--*n, different

results.

Examples. (c) Multiple classifications. Suppose that people are
classified according to sex, marital status, and profession. The various

categories play the role of elements. If there are 17 professions, then we

have 2: 2-17 = 68 classesin all.

(d) In an agricultural experiment three different treatments are to be

tested (for example, the application of a fertilizer, a spray, and tempera-

ture). If these treatments can be applied on ry, rz, and rz levels or

concentrations, respectively, then there exist a total of ryrors combina-

tions, or ways of treatment.
(e) “Placing balls into cells’ amounts to choosing onecell for each ball.

With r balls we have r independent choices, and therefore r balls can

be placed into n cells in n* different ways. It will be recalled from ex-

ample I,(2.5) that a great variety of conceptual experimentsare abstractly
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equivalent to that ofplacingballs into cells. For example, considering the
faces of a die as “‘cells,”’ the last proposition implies that the experiment of
throwing a die r times has 6” possible outcomes, of which 5” satisfy the
condition that no ace turns up. Assumingthat all outcomes are equally
probable, the event “no ace in r throws’’ has therefore probability (3)’.
We might expect naively that in six throws “‘an ace should turn up,”’ but
the probability of this event is only 1 — (8)or less than %. [Cf. example

(3.5).]
(f) Display offlags.2 For a more sophisticated example suppose that r

flags of different colors are to be displayed on n poles ina row. In how

many ways can this be done? Wedisregard, of course, the absolute

position of the flags on the poles and the practical limitations on the
numberofflags on a pole. We assumeonly thatthe flags on each pole are
in a definite order from top to bottom.
The display can be planned by making r successive decisions for the

individual flags. For the first flag we choose one among the n_ poles.
This pole is thereby divided into two segments, and hence there are now

n+ 1 choices possible for the position of the second flag. In like manner
it is seen that m + 2 choices are possible for the third flag, and so on. It
follows that n(n + 1)(n + 2)+-++ (2 +r —1) different displays are possible.

>

2. ORDERED SAMPLES

Consider the set or “population” of n elements a, a,,...,a,. Any

ordered arrangement a,,4;,...,4;, of r symbols is called an ordered

sample ofsize r drawn from our population. Foran intuitive picture we
can imagine that the elements are selected one by one. Two procedures
are then possible. First, sampling with replacement; here each selection

is made from the entire population, so that the same element can be
drawn more than once. The samples are then arrangements in which
repetitions are permitted. Second, sampling without replacement; here an

element once chosen is removed from the population, so that the sample
becomes an arrangement withoutrepetitions. Obviously, in this case, the
sample size r cannot exceed the population size n.

In sampling with replacement each of the r elements can be chosen
in n ways: the numberof possible samples is therefore n’, as can be seen
from the last theorem with ny =n,=-+-*=n. In sampling without

replacement we have x possible choices for the first element, but only

2H. M.Finucan, A teaching sequence for "H,, The Math. Gazette, vol. 48 (1964),
pp. 440-441.
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n — | for the second, n — 2 forthe third, etc., and so there are n(n—1)---
(n—r-+1) choices in all. Products of this type appear so often thatit is
convenient to introduce the notation?

(2.1) (n), = n(n—1)---(n—r+1).

Clearly (1), = 0 for integers r, n such that r > n. We have thus:

Theorem. For a population of n elements and a prescribed sample
size r, there exist n" different samples with replacement and (n), samples
without replacement.

We note the special case where r =n. In sampling without replace-
ment a sample of size n includes the whole population and represents a
reordering (or permutation) of its elements. Accordingly, n elements
a,...,4, can be ordered in (n), =n-(n—1)+-+2:+1 different ways.
Instead of (),, we write n!, which is the more usual notation. We see
that our theorem hasthe following

- Corollary. The number of different orderings of n elementsis

(2.2) ~ nl=n(n—1)-++2°1,

Examples. (a) Three persons A, B, and C form an ordered sample

from the human population. Their birthdays are a sample from the
population of calendar days; their ages are a sample of three numbers.

(5) If by “ten-letter word’’ is meant a (possibly meaningless) sequence
of ten letters, then such a word represents a sample from the population

of 26 letters. Since repetitions are permitted there are 26!° such words.
On the other hand,in a printing press letters exist not only conceptually
but also physically in the form of type. For simplicity let us assume that
exactly 1,000 pieces of type are available for each letter. To set up a
word in type the printer has to choose ten pieces of type, and here re-
petitions are excluded. A word can therefore be set up in (26,000),,

different ways. This numberis practically the same as 26,000! and
exceeds 10*.

(c) Mr. and Mrs. Smith form a sample of size two drawn from the

human population; at the same time, they form a sample of size one
drawn from the population of all couples. The example shows that the
sample size is defined only in relation to a given population. Tossing a
coin r times is one way of obtaining a sample of size r drawn from the

° The notation (7), is not standard but will be used consistently in this book even

when n is not an integer.
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population of the two letters H and 7. The same arrangement of r
letters H and T isa single sample point in the space corresponding to
the experiment of tossing a coin r times.

(d) Concerning ordering and sampling in practice. When the smoking
habits of a population are investigated by sampling onefeels intuitively
that the order within the sample should be irrelevant, and the beginner
is therefore prone to think of samples as not being ordered. But con-
clusions from a sample are possible only on the basis ofcertain probabilistic
assumptions,andforthese it is necessary to have an appropriate modelfor
the conceptual experiment of obtaining a sample. Now such an experiment
obviously involves choices that can be distinguished from each other,
meaning choices that are labeled in some way. For theoretical purposesit
is simplest to use the integers as labels, and this amounts to ordering the
sample. Other procedures may be preferable in practice, but even the
reference to the “third guy interviewed by Jones on Tuesday’’ constitutes
a labeling. In other words, even though the order within the samples. may
be ultimately disregarded, the conceptual experiment involves ordered
samples, and weshall nowseethatthis affects the appropriate assignment
of probabilities. >

Drawing in succession r elements from a population of size n is an
experiment whose possible outcomesare samples of size r. Their number
is n” or (n),, depending on whether or not replacementis used. In either

case, our conceptual experiment is described by a sample space in which
each individual point represents a sample ofsize _r.

So far we have not spokenof probabilities associated with our samples.

Usually we shall assign equal probabilities to all of them and then speak
of random samples. The word “random’’ is not well defined, but when

applied to samples or selections it has a unqiue meaning. The term
random choice is meant to imply that all outcomes are equally probable.
Similarly, whenever we speak of random samples of fixed size r, the
adjective random is to imply that all possible samples have the same proba-
bility, namely, n~” in sampling with replacement and 1/(n), in sampling
without replacement, n denoting the sizeof the population from which the

sample is drawn. If n is large and r relatively small, the ratio (),/n" is
near unity. This leads us to expectthat,for large populationsandrelatively
small samples, the two ways of sampling are practically equivalent (cf.

. problems 11.1, 11.2, and problem 35 of VI, 10).

We have introduced a practical terminology but have made nostate-
ments about the applicability of our model of random samplingtoreality.

Tossing coins, throwing dice, and similar activities may be interpreted as
experiments in practical random sampling with replacements, and our
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probabilities are numerically close to frequencies observed in long-run
experiments, even though perfectly balanced coins or dice do not exist.
Random sampling without replacementis typified by successive drawings
of cards from a shuffled deck (provided shuffling is done muchbetter than
is usual). In sampling human populations the statistician encounters
considerable and often unpredictabledifficulties, and bitter experience has
shownthatit is difficult to obtain even a crude imageof randomness.

Exercise. In sampling without replacement the probability for any fixed element of
the population to be included in a random sampleofsize r is

(n—1), nr
=|—-——=<

r

(n), n n ,

 

In sampling with replacementthe probability that an elementbe included at least once
is 1 — (1 — I/n)*.

3. EXAMPLES

The examples of this section represent special cases of the following
problem. A random sample of size r with replacement is taken from a
population of n elements. We seek the probability of the event that in
the sample no element appears twice, that is, that our sample could have

been obtained also by sampling without replacement. The last theorem
showsthat there exist n” different samples in all, of which (n), satisfy

the stipulated condition. Assuming that all arrangements have equal
probability, we conclude that theprobability ofno repetition in our sample is

 

n(n—1)-++(n—r+1)
r

(3.1) p = Wr =
n n

The following concreteinterpretations ofthis formula will reveal surprising
features.

(a) Random sampling numbers. Let the population consist of the ten

digits 0, 1,...,9. Every succession offive digits represents a sample of
size r = 5, and we assume that each such arrangement has probability
10-°. By (3.1), the probability that five consecutive random digits are all

different is p = (10);10-5 = 0.3024.

We expect intuitively that in large mathematical tables having many
decimalplacesthelast five digits will have many properties of randomness.
(In ordinary logarithmic and many other tables the tabular difference is
nearly constant, and the last digit therefore varies regularly.) As an
experiment, sixteen-place tables were selected and the entries were counted
whose last five digits are all different. In the first twelve batches of a

 



32 ELEMENTS OF COMBINATORIAL ANALYSIS [II.3

hundred entries each, the number of entries with five different digits
varied as follows: 30, 27, 30, 34, 26, 32, 37, 36, 26,.31, 36, 32. Small-
sample theory showsthat the magnitude ofthe fluctuations is well within
the expected limits. The average frequency is 0.3142, which is rather close
to the theoretical probability, 0.3024 [cf. example VII, (4.g)].

Consider next the number e = 2.71828.... The first 800 decimals*
form 160 groups offive digits each, which we arrange in sixteen batches
of ten each. In these sixteen batches the numbers of groups in whichall

five digits are different are as follows:

343441444423 15 4 6 3

The frequencies again oscillate around the value 0.3024, and small-
sample theory confirms that the magnitudeofthe fluctuationsis not larger
than should be expected. The overall frequency of our event in the 160
groups is és = 0.325, which is reasonably close to p = 0.3024.

(b) If n balls are randomly placed into n cells, the probability that each
cell will be occupied equals n\/n". It is surprisingly small: For n = it
is only 0.00612 .... This meansthat if in a city seven accidents occur each

week, then (assuming that all possible distributions are equally likely)

practically all weeks will contain days with two or more accidents, and on the
average only one week out of 165 will show a uniform distribution of one
accident per day. This example reveals an unexpected characteristic of
pure randomness. (All possible configurations of seven balls in seven cells
are exhibited in table 1, section 5. The probability that two or more cells
remain empty is about 0.87.) For n= 6 the probability n!n~” equals
0.01543 .... This shows how extremely improbableit is that in six throws
with a perfect die a// faces turn up. [The probability that a particular face

does not turn up is about 4; cf. example (1.e).] .
(c) Elevator. An elevator starts with r= 7 passengers and stops at

n= 10 floors. What is the probability p that no two passengers leave
at the same floor? To render the question precise, we assume thatall
arrangements of discharging the passengers have the same probability

(which is a crude approximation). Then

p = 10-7(10), = (10-9-8-7-6-5-4)10-7 = 0.06048.

Whenthe event was once observed, the occurrence was deemed remarkable

4 For farther-going results obtained by modern computers see R. G. Stoneham,
A studyof 60,000 digits of the transcendental e, Amer. Math. Monthly, vol. 72 (1965),

pp. 483-500 and R. K. Pathria, A statistical study of the first 10,000 digits of 7,

Mathematics of Computation, vol. 16 (1962), pp. 188-197.
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and odds of 1000 to 1 were offered against a repetition. (Cf. the answer to

problem 10.43.)

(d) Birthdays. The birthdays of r people form a sample of size r from

the population ofall days in the year. The years are not of equal length,
and we know that the birth rates are not quite constant throughout the
year. However,in first approximation, we may take a randomselection

of people as equivalent to random selection of birthdays and consider the
year as consisting of 365 days. _
With these conventions wecan interpret equation (3.1) to the effect that

the probability that all r birthdays are different equals®

36 _—
(3.2) pa Sere (35 1-— (iat *)

365° 365 365 365

Again the numerical consequences are astounding. Thus for r = 23
people we have p < 3, that is, for 23 people the probability that at least

two people have a commonbirthday exceeds 4.
Formula (3.2) looks forbidding, but it is easy to derive good numerical

approximations to p. If r is small, we can neglect all cross products and

have in first approximation®

 

P+2+-°+0—-)_,_ r=)
3.3 wile =
(3-3) P 365 730
 

For r = 10 the correct value is p = 0.883... whereas (3.3) gives the

approximation 0.877.
For larger r we obtain a much better approximation by passing to

logarithms. For small positive x we have log (1—x) = —2z, and thus

from (3.2)

 
1+2+:::+(r—1) r(r—1)

- 3.4 log py — = —-——.
C4 oP 365 730

For r = 30 this leads to the approximation 0.3037 whereas the correct
value is p = 0.294. For r < 40 theerrorin (3.4)is less than 0.08. (For

a continuation see section 7. See also answer to problem 10.44.)

5 Cf. R. von Mises, Ueber Aufteilungs- und Besetzungs-Wahrscheinlichkeiten, Revue
de la Faculté des Sciences de l'Université d’Istanbul, N. S. vol. 4 (1938-1939), pp. 145-
163.

® The sign ~ signifies that the equality is only approximate. Products of the form
(3.2) occur frequently, and the described method of approximationis of wide use.
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4. SUBPOPULATIONS AND PARTITIONS

Asbefore, we use the term population ofsize n to denote an aggregate
of n elements without regard to their order. Two populations are con-
sidered different only if one contains an element not contained in the other.

Consider a subpopulation ofsize r of a given population consisting of
n elements. An arbitrary numberingofthe elements ofthe subpopulation
changesit into an ordered sample of size r and, conversely, every such
sample can be obtained in this way. Since r elements can be numberedin
r! different ways, it follows that there are exactly r! times as many
samples as there are subpopulations of size r. The number of sub-
populations of size r is therefore given by (n),/r!. Expressions of this
kind are knownas binomial coefficients, and the standard notation for
them is

(4.1) (" — Mr _ n(n—1)-++(n—r + 1)

r r! 1°2---(r—1)-r

We have now proved

Theorem 1. A population of n elements possesses (") different sub-
populations ofsize r <n. r

. n ;
In other words, a subset of r elements can be chosen in ( different

r

ways. Such a subset is uniquely determined by the » — r elements not
belonging to it, and these form a subpopulation of size n — r. It follows
that there are exactly as many subpopulationsof size r as there are sub-
populations of size n — r, and hence for 1 <r<an we must have

“ (0)
To prove equation (4.2) directly we observe that an alternative way of
writing the binomial coefficient (4.1) is

(4.3) (") ~ Teor
[This follows on multiplying numerator and denominator of (4.1) by
(n—r)!.] Note that the left side in equation (4.2) is not defined for r = 0,
but the right side is. In order to make equation (4.2) valid for all integers
r such that O< r <n, we now define

(4.4) (") =1, O!=1,

and (mo = 1.
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Examples. (a) Bridge andpoker(cf. footnote 1 of chapter J). The order
of the cards in a handis conventionally disregarded, and hence there exist

52 52
(*") = 635,013,559,600 different handsat bridge, and ( | = 2,598,960

handsat poker. Let us calculate the probability, x, that a hand at poker

contains five different face values. These face values can be chosen in

13
( 5 ways, and corresponding to each card weare free to choose one of

52 . .
the four suits. It follows that x = 45- (2)/( 5 ), which is approxi-

mately 0.5071. For bridge the probability of thirteen different face values
52

is 438/ ( i) or, approximately, 0.0001057.

(6) Each of the 50 states has two senators. We consider the events that

in a committee of 50 senators chosen at random: (1) a givem state is

represented, (2) all states are represented.

In the first case it is better to calculate the probability g of the comple-

mentary event, namely, that the given state is not represented. There are

100 senators, and 98 not from the given state. Hence,

q= <0) | 100) _ 50°49 _ 924747....
50)/\ 50} 100-99

Next, the theorem of section 2 shows that a committee including one
senator from each state can be chosen in 2°° different ways. The proba-
bility that a// states are included in the committee is, therefore, p =

 

100
.

2°0/ ( 50 ) UsingStirling’s formula (cf. section 9), it can be shown that

pw V2m- 5+ 2-9 ws 4.126 - 10-4,
(c) An occupancy problem. Consider once more a random distribution

of r balls in n cells (i.e., each of the n” possible arrangements has proba-

bility n~*). To find the probability, p,, that a specified cell contains
exactly k balls (k = 0,1,...,1r) we note that the k balls can be chosen

in (") ways, and the remaining r—k balls can be placed into the

remaining n — 1 cells in (n—1)"-* ways. It follows that

9 melee(bb
This is a special case of the so-called binomial distribution which will be
taken up in chapter VI. Numerical values will be found in table 3 of

chapter IV. >
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The distinction between distinguishable and indistinguishable elements
has similarities to the relationship between a subpopulation and -the
corresponding ordered samples. Deleting all subscripts in an arrangement
(or grouping) of r elements a,,...,a, yields an arrangement of r

indistinguishable letters. Conversely, an arbitrary numbering ofthe r
letters in an arrangement ofthe latter kind produces an arrangement of

the letters a,,...,a,. This procedure yields r! different arrangements
provided, of course, that any interchange of a, and a, counts as re-
arrangement. The following examples show howthis principle can be
applied and extended to situations in which the elements a,~are only
partially identified.

Examples. (d) Flags of one or two colors. In example (1.f) it was
shown that r flags can be displayed on n poles in N=n(n+1)---

(n4+r—1) different ways. We now consider the same problem forflags of
one color (considered indistinguishable). Numbering the flags of such a
display yields exactly r! displays of r distinguishable flags and hence r
flags of the same color can be displayed in N/r! ways.

Suppose next that p amongtheflags are red (and‘indistinguishable) and
g are blue (where p+q =r). It is easily seen that every “splay of r

numbered flags can be obtained by numbering the‘red flags from 1 to p
and the blue flags from p+ 1 to p+q. It followsthat the number of

different displays is now N/(p!q!).
(e) Orderings involving two kinds ofelements. Let us-consider the number

of sequences of length p-+q consisting of p alphas and q_ betas.

Numbering the alphas from 1 to p and the betasifrom-p + 1 to p+q
yields an ordered sequence of p + q distinguishable elements. There are

(p+q)! such sequences, and exactly p!g! among'them correspond to the
same ordering of alphas and betas. Accordingly, p”alphas and q betas

can be arrangedin exactly

wa (88) = (88)
distinguishable ways.
The sameresult follows directly from theorem: J-andthefact that all

orderings of p alphas and qg betas can be‘obtainéd by choosing p
among p +q available places and assigning 'thém:to thealphas.

(f{) The number of shortest polygonal paths! (with "horizontal and
vertical segments) joining two diagonally opposite ‘verticésof¢chessboard

1
equals ( | = 12,870. - p>
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Theorem 2. Let r,,...,r, be integers such that

(4.6) tre tec tr =n, r; > 0.

The number ofways in which a population of n elements can be dividedinto
k ordered parts (partitioned into k subpopulations) of which the first con-
tains. r, elements, the second r, elements, etc., is

nt.
(4.7)

ryirghess r,t

[The numbers(4.7) are called multinomial coefficients.]

Note that the order of the subpopulations is essential in the sense that

(r; = 2, re = 3) and (r, = 3, r, = 2) represent different partitions; how-

ever, no attention is paid to the order within the groups. Notealso that

0! = so that the vanishing r,; in no way affect formula (4.7). Sinceit
is permitted that r;=0, the n elements are divided into k. or fewer

subpopulations. The case r; > 0 of partitions into exactly k classes

is treated in problem 11.7.

Proof. A repeated use of (4.3)will show that the number (4.7) may

be rewritten in the form

wo RICmy
On the other hand,in order to effect the desired partition, we havefirst

to select r, elements out of the given n; of the remaining n —r,

elements we select a second group of size rz, etc. After forming the
(k—1)st group there remain n—r, —rg —+*'’ —%_1 =r, elements,

and these form the last group. We concludethat (4.8) indeed represents the
number of ways in which the operation can be performed. >

Examples. (g) Bridge. At a bridge table the 52 cards are partitioned

into four equal groups and therefore the numberofdifferent situationsis
52!-(13!)-* = (5.36...) + 1078. Let us now calculate the probability that
each player has an ace. The four aces can be ordered in 4! = 24 ways,
and each orderrepresents onepossibility of giving one ace to each player.
The remaining 48 cards can bedistributed in (48!)(12!)~* ways. Hence the

required probability is 24 - 48! - (13)4/52! = 0.105....
(h) Dice. A throw of twelve dice can result in 6)? different outcomes, to

all of which we attribute equal probabilities. The event that each face
appears twice can occur in as many ways as twelve dice can be arranged in

six groups of two each. Hence the probability ofthe event is 12!/(2°-6**) =
0.003438 ....
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*5, APPLICATION TO OCCUPANCY PROBLEMS

The examples of chapterI, 2, indicate the wide applicability of the model

ofplacing randomly r balls into n cells. In manysituationsit is necessary
to treat the balls as indistinguishable. For example,instatistical studies of
the distribution of accidents among weekdays, or of birthdays among

calendar days, one is interested only in the numberof occurrences, and
not inthe individuals involved. Again, throwing r dice is equivalent to a

placement of r balls into n = 6 cells. Although it would be possible to
keep track of the r individual results, one prefers usually to specify only
the numbersofaces, twos, etc. In such situations we maystill suppose the

balls numbered, but we focus ourattention on events that are independent

of the numbering. Such an event is completely described by its occupancy
numbers ry, fo;.--51n, Where r, stands for the numberofballs in the

kth cell. Every n-tuple of integers satisfying

(5.1) tre to try, =r, r, = 0

describes a possible configuration of occupancy numbers. With indis-
tinguishable balls two distributions are distinguishable only if the corre-
sponding n-tuples (r,...,1,) are not identical. We now provethat:

(i) The numberofdistinguishable distributions[i.e. the number ofdifferent

solutions of equation (5.1)] is’

(5.2) Ana = (a _ ("7"),

r n—l

(ii) The numberof distinguishable distributions in which no cell remains

(‘~")
empty is n—-1)

Proof. Werepresent the balls by stars and indicate the n cells by the
n spaces between n+ 1 bars. Thus | ***|*||||****| is used as a

symbol for a distribution of r = 8 balls in n = 6 cells with occupancy
numbers3, 1, 0, 0, 0, 4. Such a symbol necessarily starts and ends with a

bar, but the remaining m — 1 bars and stars can appearin an arbitrary
order. In this way it becomes apparent that the numberof distinguishable

distributions equals the number of ways of selecting r places out of
n+r—1, namely 4,,.

* The material of this section is useful and illuminating but will not be used explicitly
in the sequel.

” The special case r = 100, = 4 has been used in example J, (2.e).
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The condition that no cell be empty imposestherestriction that no two

bars be adjacent. The r stars leave r — 1 spaces of which n — 1 areto
r—1

be occupied by bars: thus we have ( ) choices and the assertion is

proved. >
5

Examples. (a) There are (" distinguishable results of a throw

with r indistinguishabledice.
(b) Partial derivatives. The partial derivatives of order r of an analytic

function f(%,...,2,) of n variables do not depend on the order of

differentiation but only on the numberof times that each variable appears.
—1

Thus each variable correspondsto a cell, and hence there exist (" .

different partial derivatives of rth order. A function of three variables has
fifteen derivatives of fourth order and 21 derivatives of fifth order. >

Consider now n fixed integers satisfying (5.1). The number of place-
ments of r ballsin n cells resulting in the occupancy numbers r,...,1y
is given by theorem 4.2. Assuming that all n” possible placements are
equally probable, the probability to obtain the given occupancy numbers

I, +++ 5 ln equals

(5.3) rt -r,
rylretsccr,!

This assignment of probabilities was used in all applications mentioned
so far, and it used to be taken for granted thatit is inherent to the intuitive
notion of randomness. Noalternative assignment has ever been suggested
on probabilistic or intuitive grounds. It is therefore of considerable
methodological interest that experience compelled physicists to replace the
distribution (5.3) by others which originally came as a shock to intuition.
This will be discussed in the next subsection. [In physics (5.3) is known as

the Maxwell-Boltzmann distribution.]

In various connections it is necessary to go a step farther and to considerthecells

themselves as indistinguishable; this amounts to disregarding the order among the

occupancy numbers. The following example is intended to explain a routine method

of solving problemsarising in this way.

Example. (c) Configurations of r =7 balls in n=7 cells, (The cells may be

interpreted as days of the week,the balls as calls, letters, accidents, etc.) For the sake

of definiteness let us consider the distributions with occupancy numbers2, 2, 1, 1, 1, 0, 0

appearing in an arbitrary order. These seven occupancy numbers inducea partition of
the seven cells into three subpopulations (categories) consisting, respectively, of the

two doubly occupied, the three singly occupied, and the two empty cells. Such a
partition into three groups of size 2, 3, and 2 can be effected in 7! + (2!-3!-2)
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ways. To each particular assignment of our occupancy numbersto the seven cells there
correspond 7! +(2!-2!-1!-1!-1!-0!-0!)=7!+(2!-2!) different distributions

of the r = 7 balls into the seven cells. Accordingly, the total numberof distributions
such that the occupancy numbers coincide with 2, 2, 1, 1, 1, 0, 0 in some orderis

7! 7!

(3.4) a13t2! ~*~ ar

It will be noticed that this result has been derived by a double application of (4.7),
namely to balls and to cells. The sameresult can be derived and rewritten in many ways,

TABLE 1

RANDOM DISTRIBUTIONS OF 7 BALLS IN 7 CELLS
 

 

Number of Probability (number
Occupancy arrangements equals of arrangements
numbers 7! x 7! divided by divided by 7’)

1,1,1,1,1,1,1 7! x 1! 0.006 120
2,1, 1,1, 1, 1,0 5! x 2! 0.128 518
2, 2, 1, 1, 1, 0, 0 2!3!2! x 212! 07321 295
2, 2,2, 1, 0, 0,0 313! x 2!2!2! 0.107 098
3,1, 1,1, 1, 0, 0 412! x 3! 0.107 098

3, 2, 1, 1, 0, 0, 0 213! x 3!2! 0.214 197
3, 2, 2, 0, 0, 0, 0 2!4! x 31212! 0.026 775
3, 3, 1, 0, 0, 0, 0 2!4! x 3!3! 0.017 850
4, 1, 1, 1, 0, 0, 0 3!3! x 4! 0.035 699
4, 2, 1, 0, 0, 0, 0 4! x 412! 0.026 775
4, 3, 0, 0, 0, 0, 0 5! x 413! . 0.001 785
5,1, 1, 0, 0, 0, 0 2!4! x 5! 0.005 355
5, 2, 0, 0, 0, 0, 0 5! x 5!2! 0.001 071
6, 1, 0, 0, 0, 0, 0 5! x 6! 0.000 357
7, 0, 0, 0, 0, 0, 0 6! x 7! 0.000 008. vy . . . .

 

but the present method provides the simplest routine technique for a great variety of
problems. (Cf. problems 43-45 of section 10.) Table 1 contains the analogue to (5.4)
and the probabilities for all possible configurations of occupancy numbersin the case
r=n=7, >

(a) Bose-Einstein and Fermi-Diracstatistics

Consider a mechanical system of r indistinguishable particles. In
statistical mechanics it is usual to subdivide the phase space into a large
number, n, of small regionsorcells so that each particle is assigned to one
cell. In this way the state of the entire system is described in terms of a
random distribution of the r particles in n cells. Offhand it would seem
that (at least with an appropriate definition of the n cells) all n” arrange-
ments should have equal probabilities. If this is true, the physicist speaks
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of Maxwell-Boltzmann statistics (the term ‘‘statistics’’ is here used in a
sense peculiar to physics). Numerous attempts have been madeto prove

that physical particles behave to accordance with Maxwell-Boltzmann
Statistics, but modern theory has shown beyond doubtthat this statistics
does not apply to any knownparticles;nocaseare all n” arrangements
approximately equally probable. Two different probability models have

been introduced, and each describessatisfactorily the behavior of one type
of particle. The justification of either model depends on its success.
Neither claims universality, and it is possible that some day a third model
may be introduced for certain kinds of particles.

Remember that we are here concerned only with indistinguishable
particles. We have r particles and n cells. By Bose-Einstein statistics
we meanthat only distinguishable arrangements are considered and that each
is assigned probability 1/A,, with A,, defined in (5.2). Itis shown in
Statistical mechanics that this assumption holds true for photons, nuclei,

and atoms containing an even numberofelementary particles. To describe

other particles a third possible assignment of probabilities must be intro-
duced. Fermi-Dirac statistics is based on these hypotheses: (1) it is
impossible for two or more particles to be in the same cell, and (2) all

distinguishable arrangements satisfying the first condition have equal
probabilities. The first hypothesis requires that r <n. An arrangement
is then completely described by stating which of the » cells contain a
particle; and since there are r particles, the corresponding cells can be

n
chosen in ( ways. Hence, with Fermi-Dirac statistics there are in all

rn n\*
( possible arrangements, each having probability ( 1 . This model

rr
applies to electrons, neutrons, and protons. We have here an instructive

example of the impossibility of selecting or justifying probability models by
a priori arguments. In fact, no pure reasoning could tell that photons and
protons would not obey the same probability laws. (Essential differences
between Maxwell-Boltzmann and Bose-Einstein statistics are discussed in
section 11, problems 14-19.)

To sum up: the probability that cells number 1,2,...,” contain

ry, fo,+ ++, ln balls, respectively (where r, +°+* +1, = 1) is given by (5.3)

under Maxwell-Boltzmann Statistics; it is given by 1/A,, under Bose-
-1n

Einstein statistics; and it equals ( under Fermi- Diracstatisticsprovided

each r; equals 0 or 1. r

® Cf. H. Margenau and G. M. Murphy, The mathematics ofphysics and chemistry,

New York (Van Nostrand), 1943, Chapter 12.
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Examples. (a) Let 1 = 5, r= 3. The arrangement (* | — | * | * | -)

has probability 73s, 3's, OF yo, according to whether Maxwell-Boltzmann,

Bose-Einstein, or Fermi-Dirac statistics is used. See also example

I, (6.5).

(b) Misprints. A book contains n symbols(letters), of which r are
misprinted. The distribution of misprints correspondsto a distribution of
r ballsin n cells with no cell containing more than oneball. It is therefore
reasonable to suppose that, approximately, the misprints obey the Fermi-
Diracstatistics. (Cf. problem 10.38.) >

(b) Application to Runs

In any ordered sequence of elements of two kinds, each maximal subsequence of

elements oflike kind is called a run, For example, the sequence auxPaxfhBa opens
with an alpha run of length 3; it is followed by runs of length 1, 2, 3, 1, respectively.

The alpha and beta runs alternate so that the total numberofruns is always one plus

the numberof conjunctions of unlike neighbors in the given sequence.

Examples ofapplications. The theory of runsis appliedin statistics in many ways, but
its principal uses are connected with tests of randomnessortests of homogeneity.

(a) In testing randomness, the problem is to decide whether a given observation is
attributable to chance or whether a search for assignable causes is indicated. As a
simple example suppose that an observation® yielded the following arrangement of
empty and occupied seats along a lunch counter: EOEEQEEEQEEEOEOE. Note
that no two occupied seats are adjacent. Can this be due to chance? With five occupied
and eleven empty seats it is impossible to get more than eleven runs, and this number
was actually observed. It will be shown later that if all arrangements were equally
probable the probability of eleven runs would be 0.0578 .... This small probability to
some extent confirms the hunch that the separations observed were intentional. This
suspicion cannot be proved by statistical methods, but further evidence could be

collected from continued observation. If the lunch counter were frequented by families,
there would be a tendency for occupants to cluster together. and this would lead to
relatively small numbers of runs. Similarly counting runs of boys andgirls in a class-
room mightdisclose the mixing to be better or worse thanrandom. Improbable arrange-
ments give clues to assignable causes; an excess of runs points to intentional mixing, a
paucity of runs to intentional clustering. It is true that these conclusions are never
foolproof, but efficient statistical techniques have been developed which in actual
practice minimize the risk of incorrect conclusions.
The theory of runs is also useful in industrial quality control as introduced by

Shewhart. As washers are produced, they will vary in thickness. Long runs of thick
washers may suggest imperfections in the production process and lead to the removal
of the causes; thus oncoming trouble may be forestalled and greater homogeneity of
product achieved.

In biologicalfield experiments successions of healthy and diseased plants are counted,

* F. S. Swed and C, Eisenhart, Tablesfor testing randommess ofgrouping in a sequence

of alternatives, Aim, Math.Statist., vol. 14 (1943), pp. 66-87.
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and long runs are suggestive of contagion. The meteorologist watches successions of
dry and wet months”® to discover clues to a tendency of the weatherto persist.

(b) To understand a typical problem of homogeneity, suppose that two drugs have
been applied to twosets of patients, or that we are interested in comparingthe efficiency
of two treatments (medical, agricultural, or industrial). In practice, we shall have two
sets of observations, say, «1, %,...,a«, and f,,Bs,..., B, correspondingto the two
treatments or representing a certain characteristic (such as weight) of the elements of
two populations. The alphas and betas are numbers which we imagine ordered in increas-
ing order of magnitude: a) <a, <---< a, and f, <f,.<--: < B,. We now pool
the two sets into one sequence ordered according to magnitude. An extremecase is
that all alphas precede all betas, and this may betaken asindicative of a significant
difference between the two treatments or populations. On the other hand, if the two
treatments are identical, the alphas and betas should appear more or less in random
order. Wald and Wolfowitz! have shown that the theory of runs can be often advan-
tageously applied to discover small systematic differences. (An illustrative example,
but treated by a different method, will be found in II, 1.6.) >

Many problems concerning runs can be solved in an exceedingly simple manner.
Given a indistinguishable alphas and 6 indistinguishable betas, we know from

a+b
example (4.e) that there are ( distinguishable orderings. If there are 7, alpha

a
runs, the number of beta runs is necessarily one of the numbers 1, +1 or m.
Arranging the a alphas in n, runsis equivalent to arranging them into 7, cells, none

a—1
of which is empty. By the last lemma this can be done in ( distinguishable

ny—l

a—1 b-1
arrangements with ny,

nm—l ny

alpha runs and n,+1 beta runs (continued in problems 20-25 of section 11).

ways. It follows, for example, that there are (

(c) In physics, the theory of runs is used in the study of cooperative phenomena. In
Ising’s theory of one-dimensionallattices the energy depends on the numberof unlike
neighbors, that is, the numberofruns. >

6. THE HYPERGEOMETRIC DISTRIBUTION

Many combinatorial problems can be reduced to the following form.
In a population of n elements n, are red and n, =n — n, are black.
A group of r elements is chosen at random. Weseek the probability
q, that the group so chosen will contain exactly k red elements. Here
k can be any integer between zero and n, or r, whichever is smaller.
To find g,, we note that the chosen group contains k red and r—k

" W. G. Cochran, An extension of Gold’s method of examining the apparent per-
sistence of one type of weather, Quarterly Journal of the Royal Meteorological Society,
vol. 64, No. 277 (1938), pp. 631-634.
"A. Wald and J. Wolfowitz, On a test whether two samples are from the same

population, Ann. Math.Statist., vol. 2 (1940), pp. 147-162.
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n
black elements. The red ones can be chosen in || different ways and the

n—n
black ones in ( | ways. Since any choice of k red elements may be

r-—

combined with any choice of black ones, we find

ny n—ny,

k}\ r—k

()
The system of probabilities so defined is called the hypergeometric distri-
bution.? Using (4.3), it is possible to rewrite (6.1) in the form

(7,)
Note. The probabilities g, are defined only for k not exceeding r or

(6.1) qn =

(6.2) qq, =

a
n,, but since ( = 0 whenever b> a, formulas (6.1) and (6.2) give

b

g, = 0 ifeither k >n, or k > r. Accordingly, the definitions (6.1) and
(6.2) may be used for all k > O, provided the relation qg, = 0 is inter-

preted as impossibility.

Examples. (a) Quality inspection. In industrial quality control, lots

of size n are subjected to sampling inspection. The defective items in the
lot play the role of “red’’ elements. Their number 7, is, of course,
unknown. A sample of size r is taken, and the number k of defective

items in it is determined. Formula (6.1) then permits us to drawinferences”

about the likely magnitude of ,; this is a typical problem ofstatistical
estimation, but is beyond the scope of the present book.

(b) In example (4.5), the population consists of m = 100 senators of
whom n, = 2 represent the given state (are “red’’). A group of r = 50
senators is chosen at random. It may include k = 0,1, or 2 senators

from the given state. From (6.2) we find, remembering (4.4),

— 50°49 _ oyo47a7..., gp = 2 = 0.50505...
100 - 99 79

The value g) was obtained in a different way in example (4.8).

 

do = We

12 The name is explained by the fact that the generating function (cf. chapter XI)
of {qx} can be expressed in terms of hypergeometric functions.
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(c) Estimation of the size of an animal population from recapture data."

Suppose that 1000 fish caught in a lake are marked by red spots and
released. After a while a new catch of 1000 fish is made, and it is found

that 100 among them have red spots. What conclusions can be drawn

concerning the numberoffish in the lake? This is a typical problem of

statistical estimation. It would lead us too far to describe the various
methods that a modernstatistician might use, but we shall show how the
hypergeometricdistribution gives us a clue to the solution of the problem.
Weassumenaturally that the two catches may be considered as random
samples from the population of all fish in the lake. (In practice this
assumption excludes situations where the two catches are made at one
locality and within a short time.) We also suppose that the numberoffish
in the lake does not change between the two catches.
Wegeneralize the problem by admitting arbitrary sample sizes. Let

n = the (unknown) numberoffish in the lake.

ny, = the numberoffish in the first catch. They play therole ofredballs.
r = the numberoffish in the second catch. —
k = the numberofred fish in the second catch.

g,(n) = the probability that the second catch contains exactly k red fish.

In this formulation it is rather obvious that q,(m) is given by (6.1).
In practice n,, r, and k can be observed, but m is unknown. Notice that

we consider n as an unknownfixed number which in no way depends on

chance. We know that n, + r — k differentfish were caught, and therefore
n>n+r—k. This is all that can be said with certainty. In our
example we had n, = r = 1000 and k = 100; it is conceivable that the
lake contains only 1900 fish, but starting from this hypothesis, we are
led to the conclusion that an event of a fantastically small probability
has occurred. In fact, assuming that there are n = 1900 fish in all, the
probability that two samples of size 1000 each will between them exhaust

the entire populationis by (6.1),

1000\ /900\ /1900\-? (1000)?
(00 (500 (+000) 100! 1900! °

13 This example wasused in the first edition without knowledge that the methodis

widely used in practice. Newer contributions to the literature include N. T. J. Bailey,

On estimating the size of mobile populations from recapture data, Biometrika, vol. 38

(1951), pp. 293-306, and D. G. Chapman, Some properties of the hypergeometric

distribution with applications to zoological sample censuses, University of California

Publications in Statistics, vol. 1 (1951), pp. 131-160.
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Stirling’s formula (cf. section 9) showsthis probability to be of the order

of magnitude 10-*°, andin this situation commonsensebidsusto reject
our hypothesis as unreasonable. A similar reasoning would induce us to
reject the hypothesis that n is very large, say, a million. This consideration
leads us to seek the particular value of n for which 4q,(n) attains ‘its

largest value, since for that m our observation would have the greatest
probability. For any particular set of observations n,, r, k, the value of
n for which q,() is largest is denoted by f andis called the maximum
likelihood estimate of n. This notion was introduced by R. A.Fisher.
To find # consider the ratio

gn) _ (n=m)(n—r)
(6.3) .

gd(n—1l)  (n—ny—r+k)n
 

A simple calculation showsthat this ratio is greater than or smaller than
unity, according as mk <mr or nk >mr. This means that with

increasing n the sequence q,(n) first increases and then decreases; it
reaches its maximum when 7 is the largest integer short of n,r/k, so
that A equals about mr/k. In our particular example the maximum
likelihood estimate of the numberoffish is 7 = 10,000.

The true number 7 maybelarger or smaller, and we may askforlimits
within which we may reasonably expect n to lie. For this purpose let
us test the hypothesis that 1 is smaller than 8500. We substitute in (6.1)

n = 8500, ny = r = 1000, and calculate the probability that the second

sample contains 100 or fewer red fish. This probability is x = q+
Gg: +°**+4100- A direct evaluation is cumbersome,but using the normal

approximation of chapter VII, we find easily that x = 0.04. Similarly, if

n = 12,000, the probability that the second sample contains 100 or more

red fish is about 0.03. These figures would justify a bet that the true
number n offish lies somewhere between 8500 and 12,000. There exist

other ways of formulating these conclusions and other methods ofesti-
mation, but we do not propose to discuss the details. >

From the definition of the probabilities g, it followsthat

PtnAtget =.

Formula (6.2) therefore implies that for any positive integers n, 1, r

r\ (n—r r\(n—r r\(n—r n
6.4 = —(CN)Va)#0) =
This identity is frequently useful. We have proved it only for positive

integers n and r, butit holds true without this restriction for arbitrary
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positive or negative numbers n and (it is meaningless if m, is not a

positive integer). (An indication of two proofs is given in section 12,
problems8 and 9.)

The hypergeometric distribution can easily be generalized to the case
wherethe original population of size n contains several classes ofelements.
For example, let the population contain three classes of sizes m,, n,, and

nm — My, — Mg, respectively. If a sample of size r is taken, the probability
that it contains k, elements ofthe first, k, elements of the second, and

r — k, — k, elements of thelast class is, by analogy with (6.1),

69 eee).
It is, of course, necessary that

ky Sm, ko< ne, r—k,—k,gn—n — np.

Example. (d) Bridge. The population of 52 cards consists of four

classes, each of thirteen elements. The probability that a hand ofthirteen
cards consists of five spades, four hearts, three diamonds, and oneclubis

(s) Ce) (3)(0)/ Gs)s)\a)\3)\a1)/ Mah >

7. EXAMPLES FOR WAITING TIMES

In this section we shall depart from the straight path of combinatorial
analysis in order to consider some sample spaces of a novel type to which
we are led by asimple variation of our occupancy problems. Consider
once more the conceptual “experiment’’ of placing balls randomly into

n cells. This time, however, we do notfix in advance the number r of

balls but let the balls be placed one by one as long as necessary for a
prescribedsituation to arise. Two such possible situations will be discussed
explicitly: (i) The random placing of balls continues untilfor the first time
a ball is placedinto a cell already occupied. The process terminates when the
first duplication of this type occurs. (ii) Wefix a cell (say cell number1)

and continue theprocedure ofplacing balls as long as this cell remains empty.
The process terminates when a ball is placed into the prescribedcell.
A few interpretations of this modelwill elucidate the problem.

Examples. (a) Birthdays. In the birthday example (3.d), the n = 365
days of the year correspond to cells, and people to balls. Our model(i)
now amountsto this: If we select people at random oneby one, how many
people shall we have to sample in order to find a pair with a common
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birthday? Model (ii) corresponds to waiting for my birthday to turn up
in the sample.

(5) Key problem. A man wants to open his door. He has n keys, of
which only onefits the door. For reasons which can only be surmised,
he tries the keys at random so that at each try each key has probability
n~) ofbeing tried and all possible outcomes involving the same numberof
trials are equally likely. What is the probability that the man will succeed
exactly at the rth trial? This is a special case of model(ii). It is interesting
to compare this random search for the key with a more systematic
approach (problem 11 of section 10; see also problem 5 in V,8).

(c) In the preceding example we can replace the sampling of keys by a
sampling from an arbitrary population, say by the collecting of coupons.
Again we ask whenthefirst duplication is to be expected and when a
prescribed element will show upfor thefirst time.

(d) Coins and dice. In example I, (5.a) a coin is tossed as often as neces-

sary to turn up one head. This is a special case of model (ii) with n = 2.
When die is thrown until an ace turns up forthefirst time, the same
question applies with n = 6. (Other waiting times aretreated in problems
21, 22, and 36 of section 10, and 12 of section 11.) >

Webegin with the conceptually simpler model (i). It is convenient to
use symbols of the form (jj, jz, ...,/,) to indicate that thefirst, second,...,
rth ball are placed in cells number jj, j.,..., Jr and that the process

terminates at the rth step. This meansthat the j, are integers between 1
and n; furthermore, j,,...,j,-1 are all different, but ;, equals one
among them. Every arrangementof this type represents a sample point.
For r only the values 2,3,...,2+1 are possible, since a doubly

occupied cell cannot appear before the secondball or after the (n+1)st
ball is placed. The connection of our present problem with the old model

of placing a fixed numberofballs into the n cells leads us to attribute to
each sample point (j;,...,/,) involving exactly r balls the probability
n-". Weproceedto show that this convention is permissible(i.e., that our
probabilities add to unity) and thatit leads to reasonable results.
For a fixed r the aggregate ofall sample points (j,,...,/,) represents

the event that the process terminates at the rth step. According to (2.1) the
numbers j;,...,/,-; can be chosen in (m),_, different ways; for j, we

have the choice of the r—1 numbers j;,...,/,1. It follows that the

probability of the process terminating at the rth step is

(7.1) a=

Mra

POY() 2)... () P=?) tet,
  

nN n n n

with q, = 0 and qz = 1/n. The probability that the process lasts for more
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than r steps is p, =1 —(q,+q2.+°:'+4q,) or py = 1 and

(7.2) p= Ge = (1-2)... (1-24)

n" n n

 
 

as can be seen by simple induction. In particular, p,,,=0 and
Qi t+** +441 = 1, as is proper. Furthermore, when n = 365, for-

mula (7.2) reduces to (3.2), and in general our new model leads to the same

quantitative results as the previous modelinvolvinga fixed numberofballs.

The model(ii) differs from (i) in that it depends on an infinite sample

space. The sequences (j,,...,/,) are now subjected to the condition that

the numbers j,,...,/,_; are different from a prescribed numer a < 2,

but j, = a. Moreover,there is no a priori reason why the process should
ever terminate. For fixed r we attribute again to each sample point of
the form (j,,...,j,) probability n~*. For j,,...,j,. we have n — 1

choices each, and for j, no choice at all. For the probability that the

process terminates at the rth step we get therefore

 

_ r—1

(7.3) q* = (" * JF r=1,2,..
n n.

Summing this geometric series we find g* + q¥ +-:-:= 1. Thus the
probabilities add to unity, and thereis no necessity of introducing a sample
point to represent the possibility that no ball will ever be placed into the

prescribed cell number a. For the probability

pp =1—(qi +---4+ 4%)

that the process lastsfor more than r steps we get

(7.4) p= (1—'), r=1,2,...
nN

as was to be expected.

The median for the distribution {p,} is that value of r for which p, +

12+ Ppa <4 but ppt+...+p,>4; it is about as likely that the

process continues beyond the median as that it stops before. [In the
birthday example (3.d) the median is r = 23.] To calculate the median

for {p,} we pass to logarithms as we did in (3.4). When r is small as
compared to n, we see that —log p, is close to r?/2n. It follows that

the median to {p,} is close to Jn-2:log 2 or approximately s/n. It is
interesting that the median increases with the square root of the population
size. By contrast, the median for {p*} is close to n-\og2 or 0.7n and
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increases linearly with n. The probability of the waiting time in model
(ii) to exceed n is (1 — n™!)” or, approximately, e~! = 0.36788 ....

8. BINOMIAL COEFFICIENTS

We have used binomial coefficients ( only when n is a positive
r

integer, butit is very convenient to extend their definition. The number
(x), introduced in equation (2.1), namely

(8.1) (x), = a(x—1)---(e—r+1)

is well defined for all real x provided only that r is a positive integer.
For r=0O we put (%)) = 1. Then

r r! r!
(8.2) (*) _ (2), _ e(w—1)-- + (w@—r41)

defines the binomialcoefficientsfor all values of x and all positive integers

r. For r=0O we put, as in (4.4), 0 =1 and 0!=1. For negative
integers r we define

(8.3) (7) =o r<0.

We shall never use the symbol (*) if r is not an integer.

It is easily verified that with this definition we have, for example,

—1 ; a) ;(8.4) (S)=cu (7) =Coetn.

Three important properties will be used in the sequel. First, for any
positive integer n

(8.5) (") = 0 ifeither r>n or r<0.
r

Second, for any number x and any integer r

09 (5) +()=(4)
These relations are easily verified from the definition. The proof of the
next relation can be found in calculus textbooks: for any number a and
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alldalues —l1<t<1, we have Newton’s binomialformula

Teh aspen g (‘)i+ (S)e+ Glee
If a is a positive integer, all terms to the right containing powers higher
than f? vanish automatically and the formulais correct for all 4. If a
is not a positive integer, the right side represents an infinite series.

Using (8.4), we see that for a = —1 the expansion (8.7) reduces to the
geometric series

(8.8) + Hipp Pl py p_y...
1+t

Integrating (8.8), we obtain another formula which will be useful in the
sequel, namely, the Taylor expansion of the natural logarithm

(8.9) log(+n=r—42+ih-—144.---

Two alternative forms for (8.9) are frequently used. Replacing ¢ by
—t we get

 (8.10) log - I =t+4P4+4P4hr+---.

Adding the last two formulas we find

(8.11) loge te gh + ah to.
—Tt

All these expansionsare valid only for —1 <t <1.
Section 12 contains many usefulrelations derived from (8.7). Here we

mention only that when a=~n is an integer and ¢=1, then (8.7)
reduces to

- (8.12) 6 + (7) + (>) peeeg (" _9n

This formula admits of a simple combinatorial interpretation: Theleft
side represents the number of ways in which a population of n elements
can be divided into two subpopulations if the size of the first group is
permitted to be any number k = 0,1,...,m. On the other hand, such

a division can beeffected directly by deciding for each element whetherit
is to belongto thefirst or second group. [A similar argument showsthat

the multinomial coefficients (4.7) add to k”.]
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9. STIRLING’S FORMULA

An important tool of analytical probability theory is contained in a
classical theorem14 knownas

Stirling’s formula:

(9.1) nim J20 nthe”

where the sign ~ is used to indicate thatthe ratio of the two sides tends to
unity as n—> ©.

This formula is invaluable for many theoretical purposes and can be
used also to obtain excellent numerical approximations. It is true that
the difference of the two sides in (9.1) increases over all bounds, butit is
the percentage error which really matters. It decreases steadily, and
Stirling’s approximation is remarkably accurate even for small n. In
fact, the right side of (9.1) approximates 1! by 0.9221 and 2! by 1.919
and 5! = 120 by 118.019. The percentage errors are 8 and 4 and 2,
respectively. For 10! = 3,628,800 the approximation is 3,598,600 with
an error of 0.8 per cent. For 100! the error is only 0.08 percent.

Proofof Stirling’s formula. Ourfirst problem is to derive somesort of
estimate for

(9.2) logn! = log 1 + log2 +--- +4 logan.

Since log x is a monotone function of x we have

k k+1

(9.3) I log xdx < logk <| log x dx.
kk-1

Summing over k = 1,...,” we get

n n+1

(9.4) I log x dx < logn! <| log x dx
0 1

or |

(9.5) nlogn —n < logn! < (n+1) log (n4+1) — 7.

This double inequality suggests comparing logn! with some quantity
close to the arithmetic mean of the extreme members. The simplest such

“4 JamesStirling, Methodus differentialis, 1730.
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quantity is (n+) logn — n, and accordingly we proceed to estimate the
difference?

 

 

 

 

(9.6) d, = logn! — (n+$)logn +n.

Note that
. . L

(9.7) d, — dys, = (n+$) log nyt _ 1. EV

But ,

1

(9.8) n+1 _ 2n+1

n i— 1

2n+1

and using the expansion (8.11) we get

1 1= + +
3(2n+1)? 5(2n+1)4

By comparisonoftheright side with a geometric series with ratio (2n+1)?
one sees that

 (9.9) d,, —_ Anat

c 1 —1 1
“ 31Q2n+1)?—1] 12n 12(n+1)°
 (9.10) O<d,—d

From (9.9) we conclude that the sequence {d,} is decreasing, while (9.10)

shows that the sequence {d, — (12n)-1} is increasing. It followsthat a

finite limit stB

. ee(9.11) Calimd, Omaa 9,
h (2yu

exists. But in view of(9.6) the relation d, —> C is equivalent to

(9.12) niw ee nto,

This is Stirling’s formula, except that the constant C is not yet specified.

That e° = J2m will be proved in VII, 2. The proof is elementary and
independentof the material in chapters IV-VI; it is postponed to chapter
VII because it is naturally connected with the normal approximation
theorem.?®

1° The following elegant argument and the inequality (9.14) are due to H. E. Robbins,

Amer. Math. Monthly, vol. 62 (1955), pp. 26-29.

16 The usual proof that e° = V2n relies on the formula of Wallis. For a simple
direct proof see W. Feller, Amer. Math. Monthly (1967).
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Refinements. The inequality (9.10) has a companion inequality in ‘the reverse
direction. Indeed, from (9.9) it is obvious that

1 1 1
9.13 d, — dy — ;
0.13) nH? 3(2n+1)? > Tn +1  12%n+1) 41
 

It follows that the sequence dn — (12n+1)"}__decreases. Since {d, — (12n)-}

increasesthis implies the doubleinequality~a ee

 
1

<4, fC+—.9.14 C
0.14) + 12n +1 12n

CcSubstituting into (9.6), and anticipating that e© = VAQn, we get

(9.15) Vn nrttenn - ef2nty7) cyt c V2q nrttenn - elt2n)-}
No a

This double inequality supplements Stirling’s formula in a remarkable manner. The
ratio of the extreme members is close to 1 — (12n)-, and hence the right-hand

member in (9.15) overestimates n!, but with an error of less thanaQn-* per cent. In
reality the error is much smaller;*” for n = 2 therightside in (9.15) yields 2.0007, for
n=5 we get 120.01.

PROBLEMS FOR SOLUTION

Note: Sections 11 and 12 contain problems of a different character and
diverse complementsto thetext.

10. EXERCISES AND EXAMPLES

Note: Assumein each case that all arrangements have the same probability.

1. How manydifferentsets of initials can be formed if every person has one
surname and (a) exactly two given names, (b) at most two given names, (c) at
most three given names?

2. Letters in the Morse code are formed by a succession of dashes and dots
with repetitions permitted. How manyletters is it possible to form with ten
symbols orless?

3. Each dominopieceis marked by two numbers. Thepieces areSymmetrical
so that the number-pair is not ordered. How many different pieces can be
made using the numbers 1, 2, ..., 1?

4. The numbers 1, 2,..., are arranged in random order. Find the proba-
bility that the digits (a) 1 and 2, (6) 1, 2, and 3, appear as neighbors in the order

named.

17 Starting from (9.9) it is possible to show that d, = C + (12n)~? — (360n°)* +

where the dots indicate terms dominated by a multiple of x‘.
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5. A throwssix dice and winsif he scores at least one ace. B throws twelve
dice and wins if he scores at least two aces. Whohasthe greater probability
to win 218

Hint: Calculate the probabilities to lose.

6. (a) Find the probability that among three random digits there appear
exactly 1, 2, or 3 different ones. (6) Do the same for four random digits.

7. Find the probabilities p, that in a sample of r random digits no two are
equal. Estimate the numerical value of Pio, using Stirling’s formula.

8. Whatis the probability that among k random digits (a) 0 does not appear;
(6) 1 does not appear; (c) neither 0 nor 1 appears; (d) at least one of the two
digits 0 and 1 does not appear? Let A and B represent the events in (a) and
(6). Express the other events in terms of A and B.

9. If n balls are placed at random into n cells, find the probability that
exactly one cell remains empty.

10. At a parking lot there are twelve places arranged in a row. A man ob-
served that there were eight cars parked, and that the four empty places were
adjacent to each other (formed one run). Given that there are four empty
places, is this arrangement surprising (indicative of non-randomness) ?

11. A man is given n keys of which only onefits his door. He tries them
successively (sampling without replacement). This procedure may require 1,
2,..., trials. Show that each of these n outcomes has probability n7!.

12. Suppose that each of n sticks is broken into one long and oneshortpart.
The 2n parts are arranged into n pairs from which new sticks are formed.
Find the probability (a) that the parts will be joined in the original order, (6)
thatall long parts are paired with short parts.1®

137Testing a statistical hypothesis. A Cornell professor got a ticket twelve
times forillegal overnight parking. All twelve tickets were given either Tuesdays
or Thursdays. Find the probability of this event. (Was his renting a garage
only for Tuesdays and Thursdaysjustified ?)

14. Continuation. Of twelve police tickets none was given on Sunday. Is
this evidence that no tickets are given on Sundays?

15. A box contains ninety good and ten defective screws. If ten screws are

used, whatis the probability that none is defective?

16. From the population of five symbols a, b, c, d, e, a sample ofsize 25 is
taken. Find the probability that the sample will contain five symbols of each

18 This paraphrases a question addressed in 1693 to I. Newton by the famous
Samuel Pepys. Newton answered that ‘‘an easy computation” shows A to be at an
advantage. On prodding he later submitted the calculations, but he was unable to

convince Pepys. For a short documented account see E. D. Schell, Samuel Pepys,
Isaac Newton, and probability, The Amer.Statistician, vol. 14 (1960), pp. 27-30. There
reference is made to Private correspondence and miscellaneous papers of Samuel Pepys,
London (G. Bell and Sons), 1926.

19 Whencells are exposed to harmful radiation, some chromosomes break and play
the role of our “sticks.” The “long” side is the one containing the so-called centromere.
If two “long” or two “short” parts unite, the cell dies. See D. G. Catcheside, The

effect of X-ray dosage upon the frequency of induced structural changes in the chromo-
somes of Drosophila Melanogaster, Journal of Genetics, vol. 36 (1938), pp. 307-320.
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kind. Check the result in tables of random numbers,” identifying the digits
0 and 1 with a, the digits 2 and 3 with 4,etc.

17. If m men, among whom are A and B, stand in a row, whatis the
probability that there will be exactly r men between A and B? If they stand
in a ring instead of in a row, show that the probability is independent of r and
hence 1/(z—1). (in the circular arrangement consider only the arc leading
from A to B in the positive direction.)

18. What is the probability that two throws with three dice each will show
the same configuration if (a) the dice are distinguishable, (b) they are not?

19. Show thatit is more probable to get at least one ace with four dice than
at least one double ace in 24 throws of two dice. The answer is known as
de Méré’s paradox.”!

20. From a population of » elements a sample of size r is taken. Find the
probability that none of N prescribed elements will be included in the sample,
-assuming the sampling to be (a) without, (6) with replacement. Compare the
numerical values for the two methods when (i) n = 100, r = N =3, and
(ii) n = 100, r = N = 10.

21. Spread ofrumors. Inatown of n + 1 inhabitants, a persontells a rumor
to a second person, who in turn repeats it to a third person, etc. At each step
the recipient of the rumor is chosen at random from the x people available.
Find the probability that the rumorwill be told r times without: (a) returning
to the originator, (b) being repeated to any person. Do the same problem when
at each step the rumoris told by one person to a gathering of N randomly
chosen people. (The first question is the special case N = 1.)

, > 22. Chain letters. In a population of n + 1 people a man,the “progenitor,”
—= —|- 7sends out letters to two distinct persons, the “‘first generation.” These repeat the
* |" “performanceand, generally, for eachletter received the recipient sends out two
“ letters to two persons chosen at random withoutregard to the past development.

Find the probability that the generations number 1, 2,..., r will not include

the progenitor. Find the median of the distribution, supposing 7 to be large.

>.t-" 23, A family problem. In a certain family four girls take turns at washing
°°“ dishes. Out of a total of four breakages, three were caused by the youngestgirl,

and she wasthereafter called clumsy. Was she justified in attributing the fre-
uency of her breakages to chance? Discuss the connection with random

placements of balls.

24. Whatis the probability that (a) the birthdays of twelve people will fall

in twelve different calendar months (assume equal probabilities for the twelve

months), (b) the birthdays of six people will fall in exactly two calendar months?

\

=

20 They are occasionally miraculously obliging: see J. A. Greenwood and y. E.

Stuart, Review of Dr. Feller’s critique, Journal for Parapsychology, vol. 4 (1940),

pp- 298-319,in particular p. 306.
21 An often repeated story asserts that the problem arose at the gambling table and

that in 1654 de Méré proposed it to Pascal. This incident is supposed to have greatly

stimulated the development of probability theory. The problem was in fact treated by

Cardano (1501-1576). See O. Ore, Pascal and the invention ofprobability theory, Amer.

Math. Monthly, vol. 67 (1960), pp. 409-419, and Cardano, the gambling scholar,

Princeton (Princeton Univ. Press), 1953.
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25. Given thirty people, find the probability that among the twelve months
there are six containing two birthdays and six containing three.

26. A closet contains n pairs of shoes. If 2r shoes are chosen at random
(with 2r <n), what is the probability that there will be (a) no complete pair,
(6) exactly one complete pair,(c) exactly two complete pairs among them?

27. A car is parked among cars in a row,not at either end. Onhis return
the owner finds that exactly r of the N places are still occupied. Whatis the
probability that both neighboring places are empty?

28. A group of 2N boys and 2N girls is divided into two equal groups. Find
the probability p that each group will be equally divided into boys andgirls.
Estimate p, using Stirling’s formula.

29. In bridge, prove that the probability p of West’s receiving exactly k
aces is the same as the probability that an arbitrary hand of thirteen cards
contains exactly k aces. (This is intuitively clear. Note, however, that the
two probabilities refer to two different experiments, since in the second case
thirteen cards are chosen at random andinthefirst case all 52 are distributed.)

30. The probability that in a bridge game East receives m and South n
spades is the same as the probability that of two handsofthirteen cards each,
drawn at random from a deck of bridge cards, the first contains m and the
second n spades.

31. What is the probability that the bridge hands of North and South to-
gether contain exactly k aces, where k = 0, 1, 2, 3, 4?

32. Let a, b, c,d be four non-negative integers such that a+b+c+d=
13. Find the probability p(a, b,c, d) that in a bridge game the players North,
East, South, West have a, b, c, d spades, respectively. Formulate a scheme of
placing red and black balls into cells that contains the problem asa specialcase.

33. Using the result of problem 32, find the probability that some player
receives a, another b, a third c, and the last d spades if (a)a =5, 6 =4,
c=3, d=1; ®a=b=c =4, d=1; ()a=b=4, c =3, d=2.
Note that the three cases are essentially different.

34, Let a,b, c,d be integers with a + b + c + d = 13. Find the probability
q(a, b, c,d) that a hand at bridge will consist of a spades, b hearts, c dia-
monds, and d clubs and show that the problem does not reduce to one of
placing, at random,thirteen balls into four cells. Why?

35. Distribution of aces among r bridge cards. Calculate the probabilities
Polr), Pilr),---, pa(r) that among r bridge cards drawn at random there are
0,1,...,4 aces, respectively. Verify that po(r) = p4(52 —r).

36. Continuation: waiting times. If the cards are drawn one by one, find
the probabilities (7), ..., /fa(r) that the first,..., fourth ace turns up at the
rth trial. Guess at the medians of the waiting times forthe first, ... , fourth ace
and then calculate them.

37. Find the probability that each of two hands contains exactly k aces if
the two hands are composed of r bridge cards each, and are drawn (a) from
the same deck, (6) from two decks. Show that when r = 13 the probability
in part (a) is the probability that two preassigned bridge players receive exactly
k aces each.

38. Misprints. Each page of a book contains N symbols, possibly mis-
prints. The book contains n = 500 pages and r = 50 misprints. Show that
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(a) the probability that pages number 1, 2,..., ” contain, respectively, ry,
ro,..++51, Misprints equals

(Je)Cr)
(5) for large N this probability may be approximated by (5.3). Concludethat
the r misprints are distributed in the n pages approximately in accordance with a
randomdistribution of r balls in n cells. (Note. The distribution of the r
misprints among the N available places follows the Fermi-Diracstatistics.
Our assertion may be restated as a general limiting property of Fermi-Dirac
Statistics. Cf. section 5.a.)

Note: The following problems refer to the materialof section 5.
39. If r, indistinguishable things of one kind and rz indistinguishable things

of a second kind are placed into x cells, find the number of distinguishable
arrangements.

40. If r,; dice and r, coins are thrown, how manyresults can be distin-
guished ?

41. In how manydifferent distinguishable ways can r, white, r, black, and
rs red balls be arranged?

42. Find the probability that in a random arrangement of 52 bridge cards no
two aces are adjacent.

43. Elevator. In the example (3.c) the elevator starts with seven passengers
and stops at ten floors. The various arrangements of discharge may be denoted
by symbolslike (3, 2, 2), to be interpreted as the event that three passengers leave
together at a certain floor, two other passengers at another floor, andthelast
twoatstill another floor. Find the probabilities of the fifteen possible arrange-
ments ranging from (7) to (1, 1, 1, 1, 1, 1, 1).

44, Birthdays. Find the probabilities for the various configurations of the
birthdays of 22 people.

45, Find the probability for a poker hand to be (a) royal flush (ten, jack,
queen, king, ace in a single suit); (b) four of a kind (four cards of equal face
values); (c) full house (one pair and onetriple of cards with equal face values) ;
(d) straight (five cards in sequence regardless of suit); (e) three of a kind (three
equal face values plus two extra cards); (/) two pairs (two pairs of equal face
values plus one other card); (g) one pair (onepair of equal face values plus three
different cards). .

11. PROBLEMS AND COMPLEMENTS OF A
THEORETICAL CHARACTER

1. A population of » elements includes np red ones and nq black ones
(p +q =1). A random sample of size r is taken with replacement. Show
that the probability of its including exactly k red elementsis

r
11.1 he rkau (")
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2. A limit theorem for the hypergeometric distribution. If n is large and

n,/n = p, then the probability g, given by (6.1) and (6.2) is close to (11.1).
Moreprecisely,

k — [\r-k —r

a (ieVe-SP <a <(dev (i)
A comparisonof this and the preceding problem shows: Forlarge populations

there is practically no difference between sampling with and without replacement.

 

3. Arandom sample of size r without replacement is taken from a population
of n elements. The probability u, that N given elementswill all be included
in the sampleis

a “= (AVC),
[The corresponding formula for sampling with replacement is given by (11.10)
and cannotbe derived by a direct argument. For an alternative form of (11.3)
cf. problem 9 of IV,6.]

4. Limiting form. If n— © and r—o so that r/n>p, then u, >pn
(cf. problem 13).

Note: Problems 5-13 refer to the classical occupancy problem (Boltzmann-
Maxwell statistics): That is, r balls are distributed among n cells and each
of the n" possible distributions has probability n~.

5. The probability p, that a given cell contains exactly k balls is given by
the binomial distribution (4.5). The most probable numberis the integer »
such that (r—n+1)/n <» <(r4+1)/n. (in other words, it is asserted that
Po <Pi <*** <Pya S Py > Pvir > ° °° > pr; cf. problem 15.)

6. Limiting form. If n+ co and r—>o so that the average number
4 =r/n of balls per cell remains constant, then

(11.4) Pa > CPIKA,

(This is the Poisson distribution, discussed in chapter VI; for the corresponding
limit theorem for Bose-Einstein statistics see problem 16.)

7. Let A(r,n) be the numberof distributions leaving none of the n cells

empty. Show by a combinatorial argumentthat

(11.5) Ar, nt) => (7) A(r—k, n).
k=1

2 Problems 5-19 play a role in quantumstatistics, the theory of photographic plates,
G-M counters, etc. The formulasare therefore frequently discussed and discovered in
the physical literature, usually without a realization of their classical and essentially
elementary character. Probably all the problems occur (although in modified form) in

the book by Whitworth quoted at the opening of this chapter.
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Concludethat

(11.6) A(r, n) = > (-1)” (") (n—-y)".
v=0 v

Hint: Use induction; assume (11.6) to hold and express A(r—k,n) in
(11.5) accordingly. Change the order of summation and use the binomial
formula to express A(r,n+1) as the difference of two simple sums. Replace
in the second sum ¥ + 1 by a new index of summation and use(8.6).

Note: Formula (11.6) provides a theoretical solution to an old problem but
obviously it would be a thankless task to useitfor the calculation of the probability
x, say, that in a village of r = 1900 people every day of the year is a birthday.
In IV,2 we shall derive (11.6) by another method andshall obtain a simple approxi-
mation formula (showing, e.g., that x = 0.135, approximately).

8. Show that the numberofdistributions leaving exactly m cells empty is

(11.7) Ep(r,n) = (") A(r, n—m) = (") "Ss (=) (" m
m m v=0 v

(n—m—?),

9. Show without using the preceding results that the probability

Pol, n) =nE,,(r, n)

offinding exactly m cells empty satisfies

n—m m+1
+ Pmi™, n)
  (11.8) Pol +1, 2) = Prlr, 1) 7

10. Using the results of problems 7 and 8, show by direct calculation that
(11.8) holds. Show that this method provides a new derivation (by induction
on r) of (11.6).

11. From problem 8 conclude that the probability x,,(r,n) offinding m or
more cells empty equals

n\ n=m y n—m m+ m

(11.9) (”) 2, (—1) ( » )(1 7 yh.

(For m>n this expression reduces to zero, as is proper.)

 

 

Hint: Show that L(t, 2) — Poll, 2) = miy(7, 2).

12. The probability that each of N given cells is occupiedis,

(11.10) ur, n) =a > (;) Ak, N\n—Ny-*
k=0

Conclude that

N N y\"

(11.11) u(r, n) =2 cor (")(1 -7),
v=0
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[Use the binomial theorem. For N=n we have u(r,n) = nTA(r, n).
Note that (11.11) is the analogue of (11.3) for sampling with replacement.
Foran alternative derivation see problem 8 of IV, 6.]

13. Limiting form. For the passage to the limit described in problem 4 one
has u(r, n) > (1—e7-?),

Note: In problems 14-19, r and n have the same meaning as above, but we
assume that the balls are indistinguishable and thatall distinguishable arrange-
ments have equal probabilities (Bose-Einstein statistics).

14. The probability that a given cell contains exactly k balls is

(11.12) a = (Vi).

r—k r

15. Show that when n > 2 zero is the most probable numberof balls in
any specified cell, or more precisely, gy > q, > «+ ° (cf. problem 5).

16. Limit theorem. Let n > © and r— o,so that the average number of
particles per cell, r/n, tends to A. Then

3 qk
11.1 >,( ) qk (+aeH

(The right side is known as the geometric distribution.)

17. The probability that exactly m cells remain emptyis

one ma (MSLYCT)
18. The probability that group of m prescribed cells contains a total of

exactly 7 balls is

(11.15) qm) = (Mme[mere |

m—l r~] r

*° Note that u(r,n) may be interpreted as the probability that the waiting time

up to the moment when the Nth elementjoins the sampleis less than r. The result may
be applied to random sampling digits: here u(r, 10) — u(r—1, 10) is the probability

that a sequence of r elements must be observed to include the completeset ofall ten
digits. This can be used as a test of randomness. R. E. Greenwood [Couponcollector’s
test for random digits, Mathematical Tables and Other Aids to Computation, vol. 9

(1955), pp. 1-5] tabulated the distribution and compared it to actual counts for the

corresponding waiting times forthe first 2035 decimals of a andthefirst 2486 decimals

of e. The median of the waiting time for a completeset ofall ten digits is 27. The

probability that this waiting time exceeds 50is greater than 0.05, and the probability of

the waiting time exceeding 75 is about 0.0037.
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19. Limiting form. For the passage to the limit of problem 4 we have

m+j-1 Pp?
11.16 ; > —_——\——..( ) qi(m) ( m—1 Ne +p)mti

(The right side is a special case of the negative binomial distribution to be intro-
duced in VI, 8.)

Theorems on Runs. In problems 20-25 we consider arrangements of r, alphas
and ra betas and assume thatall arrangements are equally probable [see example
(4.e)]. This group ofproblems refers to section Sb.

20. The probability that the arrangement contains exactly k runs of either
kind is

_ ry—-1\ /re-1 rytreoraICI
when k = 2is even, and

ry—1\ [rg-1 ry—1\ (re—-1
(11.18) Panna = {(" \(" )+(" )(” Wire")

v y—l vy—l v ry

when k = 27 + 1 is odd.

21. Continuation. Conclude that the most probable number of runs is an
2 2
me <k< Ane +3. (Hint: Consider the ratios

tls tr,

Poyio/Poy and Poy+1/Poy_1.)
22. The probability that the arrangement starts with an alpha run of length

vy >0 is (ry)yfe/(ry+re)yi1- (Hint: Choose the » alphas and the beta which
must follow it.) What does the theorem imply for » = 0?

23. The probability of having exactly k runsof alphasis

ry—1)\ (re +1 tr,
(11.19 = .
Ont) "s (a) k MI r

Hint: This follows easily from the second part of the lemma ofsection 5.
Alternatively (11.19) may be derived from (11.17) and (11.18), but this procedure
is more laborious.

24. The probability that the mth alpha is preceded by exactly m betasis

rytre—n—m\ (m+n—-1 ntr

may (EE)
25. The probability for the alphas to be arranged in k runs of which k,

are of length 1, k, oflength2,..., k, of length »(with ky +--+: +k, =k)is

k! retl\

[

(nt.(11.21) aed Oy").

integer k such that
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12. PROBLEMS AND IDENTITIES INVOLVING
BINOMIAL COEFFICIENTS

(i) +()- +
(") +2(2) 430) een

(1) -2(3) #33) = +
2° (7) +3: 2 (3) 4-3/

Hint: Use the binomial formula.

2. Prove that for positive integers n, k

(00) (VO+GD)
Moregenerally”4

(12.3) > (") (7) ya (7) (1+4)*

3. Forany a>0

a), ~)
(12.4) (5) =« pe k .

If a is an integer, this can be proved also by repeated differentiation of the
geometric series > at = (1—2)-!,

4. Prove that

_1

(12.5) ) g-2n (4) ( ‘)
n n

1
1 2n—2 Q-entt — (—j)1 2).

n\n-—-I n

5. For integral non-negative n and r and allreal a

n (a—v atl a—n
12.6 = _ .
oe) 3 ( r (1) 1)

Hint: Use (8.6). The special case n = is frequently used.

1. For integral n > 2

(12.1)

") bee n(n12-2
4

* The reader is reminded of the convention (8.5): if » runs through all integers,

only finitely many terms in the sum in (12.3) are different from zero.
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6. For arbitrary a and integral n > 0

n 1(12.7) > (-1) (*) =(-1)" (* .
v=0 n

Hint: Use (8.6).

7. For positive integers r, k

r f/vy+k—1 rt+k
12.8 = .
O28) 2, ( k-] ( k

(a) Prove this using (8.6). (6) Show that (12.8) is a special case of (12.7). (c)
Show by an inductive argument that (12.8) leads to a new proofofthefirst part
of the lemmaof section 5. (d) Show that (12.8)is equivalent to

n j ](12.82) > (/) = ("r):
i=

8. In section 6 we remarkedthat the termsof the hypergeometric distribution
Should add to unity. This amounts to saying that for any positive integers
a, b, A,

(12.9) a\ (b + a b + + a\ (b a+b

O/ \n 1/\n-1 n}\o) \n }-

Prove this by induction. Hint: Prove first that equation (12.9) holds for a = 1
and all 5.

9. Continuation. By a comparison ofthe coefficients of ¢” on both sides of

(12.10) 08)+2)? =2

prove more generally that (12.9) is true for arbitrary numbers a, b (and in-
tegral n).

10. Using (12.9), prove that

(12.11) (0) + (;) #3) +4 (") =()-
11. Using (12.11), prove that

(12.12) > ni 8 ("").
v=0 (v '?(n ~ v) " n

12. Prove that for integers 0<a<b

Ba (2 pai) = ’)
(12.13) >( 1) Vers ai)"

Hint: Using (12.4) show that (12.11) is a special case of (12.9). Alternatively,
compare the coefficients of #7 in (1—1)*(1—-1t)°-2 = (1-2,
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13. By specialization derive from (12.9) the identities

ay ({)-(.2,) #-#({) er (P71)
and

" (12.15) yy (*) (""’) = ("~*).
v v r n—-r

valid if k, n, and r are positive integers. Hint: Use (12.4).

14. Using (12.9), prove that®> for arbitrary a,b and integral k

(12.16) 3(I\(?2) _ (“heey

k-j J k

Hint: Apply (12.4) back and forth. Alternatively, use (12.10) with changedsigns
of the exponents.
Note the important special cases 6 = 1, 2.

15. Referring to the problems of section 11, notice that (11. 12), (11.14),

(11.15), and (11.16) define probabilities. In each the quantities should therefore
add to unity. Showthat this is implied, respectively, by (12.8), (12.9), (12.16),

and the binomial theorem.

16. From the definition of A(r, n) in problem 7 of section 11 it follows that
A(r,n) =0 if r <n and A(n,n) =n!. In other words

(12.17) > (—1)"-* (7)« _ 0 if r<n

= ni if r=n.

(a) Prove (12.17) directly by reduction from n to n — 1. (6) Next prove (12.17)
by considering the rth derivative of (1—e*)” at t =0. (c) Generalize (12.17)
by starting from (11.11) instead of (11.6).

17. If 0 < N <n prove by induction that for each integer r > 0

(12.18) S (yp (") (n—»), = (") r',
v=0 r—N

(Note that the right-hand member vanishes when r < N and when r > n.)
Verify (12.18) by considering the rth derivative of *"-*(t—1)” at t=1.

18. Prove by induction (using the binomial theorem)

n\ I n\ I ni(”\! 1 1 1
so * wae _4)\n— - =] = = os

(12-19) ("); (*)5+ tC) ("); tz 43 Ff hn
n-1

Verify (12.19) by integrating the identity  (1—s)¥ = {1-1 —-1)"}r7.
0

*5 For a moreelegant proof see problem 15 of IX, 9.
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19. Show that for any positive integer m

(12.20) (vtytz)"™=> xrybze
albte!

where the summation extends over all non-negative integers a, b, c, such that
atb+c=m.

20. Show that I'(a+1) = ala) for all a > 0, whence

ee

21. Prove that for any positive integers a and b

(at+1)(a+2)---(at+n) 2b!

(b+1)(b+2)--(b +n) al”
a—b(12.22)  

22. The gamma function is defined by

(12.23)  T@) -| ttle~* dt
0

where x > 0. Show that T(~) ~ V727 e-*xt-?, [Notice that if x =n is an
integer, I'(n) = (n—1)!-]

23. Let a and r be arbitrary positive numbers and n a positive integer.
Show that

(12.24) a(a+r)(a+2r) +++ (atnr) ~ CrmyntHayr,

Vln
Par)

24. Using the results of the preceding problem, show that

a(atr)(at+2r)::-(a tar) T/r) aa) yr

(12.25) Bbrb42n) (bem) ~ Tain

|The constant C is equal to

 

25. From (8.10) conclude

(12.26) - eH4-) <1 —t =e, 0<r<l.

 



 

CHAPTER III*

Fluctuations in Coin Tossing

and Random Walks

This chapter digresses from our main topic, which is taken up again
only in chapter V. Its material has traditionally served asa first orientation
and guide to more advanced theories. Simple methods will soon lead us
to results of far-reaching theoretical and practical importance. We shall
encounter theoretical conclusions which not only are unexpected but
actually come as a shockto intuition and commonsense. Theywill reveal
that commonly accepted notions concerning chancefluctuations are without
foundation and that the implications of the law of large numbers are
widely misconstrued. For example, in various applications it is assumed
that observations on an individual coin-tossing game during a long time
interval will yield the samestatistical characteristics as the observation of
the results of a huge numberof independent gamesat onegiven instant.
This is not so. Indeed, using a currently popular jargon we reach the
conclusion that in a population of normal coins the majority is necessarily
maladjusted. [For empirical illustrations see section 6 and example (4.6).]

Until recently the material of this chapter used to be treated by analytic
methods and, consequently, the results appeared rather deep. The
elementary method! used in the sequel is therefore a good example of the
newly discovered power of combinatorial methods. Theresults are fairly
representative of a wider class of fluctuation phenomena? to be discussed

* This chapter may be omitted or read in conjunction with the following chapters.
Reference to its contents will be made in chapters X (laws of large numbers), XI (first-

passage times), XIII (recurrent events), and XIV (random walks), but the contents

will not be used explicitly in the sequel.

+ The discovery of the possibility of an elementary approach was the principal
motivation for the second edition of this book (1957). The present version is new and

greatly improvedsince it avoids various combinatorial tricks.

2 See footnote 12.
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in volume 2. All results will be derived anew,independently, by different
methods. This chapter will therefore serve primarily readers who are not
in a hurry to proceed with the systematic theory, or readers interested in
the spirit of probability theory without wanting to specialize in it. For
other readers a comparison of methods should prove instructive and
interesting. Accordingly, the present chapter should be read at the reader’s
discretion independently of, or parallel to, the remainder of the book.

1. GENERAL ORIENTATION.
THE REFLECTION PRINCIPLE

From a formal point of view we shall be concerned with arrangements
offinitely manyplus ones and minus ones. Consider n = p + q symbols
€\,.-.,€,, each standing either for +1 or for —1; supposethat there
are p plus ones and q minus ones. Thepartialsum s, = «, +--- + €,
represents the difference between the number of pluses and minuses
occurring at the first k places. Then

(1.1) S,—- Sy1 = & = £1, So = 0, Sn =P —4,

where kK = 1,2,...,n.

Weshall use a geometric terminology and refer to rectangular coordinates
t,x; for definiteness we imaginethe r-axisis horizontal, the x-axisvertical.
The arrangement (¢,,...,¢€,) will be represented by a polygonal line
whose kth side has slope «, and whose kth vertex has ordinate s,. Such
lines will be called paths.

Definition. Let n>0O and x be integers. A path (sy, 59,..., 5p)
from the origin to the point (n, x) is a polygonalline whose vertices have
abscissas 0,1,...,n and ordinates 5,51, ..., 8» satisfying (1.1) with
Sy = &.

Weshall refer to n as the /ength of the path. There are 2” paths of
length n. If p among the e«, are positive and q are negative, then

(1.2) n=pt+q, *“=p-—q.

A path from the origin to an arbitrary point (n, x) exists only if n and
« are of the form (1.2). In this case the p places for the positive «, can
be chosen from the n = p +q available places in

(1.3) Nye = ("7") _ ("7")

different ways. For convenience we define N,, = 0 whenever n and x
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are notof the form (1.2). With this convention there exist exactly Nw
different pathsfrom theorigin to an arbitrary point (n, x).

Before turning to the principal topic of this chapter, namely the theory
of random walks, weillustrate possible applications of our scheme.

Examples. (a) The ballot theorem. The following amusing proposition
was proved in 1878 by W. A. Whitworth,and again in 1887 by J. Bertrand.

Suppose that, in a ballot, candidate P scores p votes and candidate Q
scores q votes, where p >q. The probability that throughout the counting
there are always more votesfor P than for Q equals (p—q)|(p+q).

Similar problems of arrangements haveattracted the attention of students
of combinatorial analysis under the nameofballot problems. The recent
renaissance of combinatorial methods hasincreased their popularity, and
it is now realized that a great many important problems may be reformu-
lated as variants of some generalized ballot problem.?

 

 Vv

Oo N

Figure 1. Illustrating positive paths. The figure shows also that there are exactly as
manystrictly positive paths from the origin to the point (2,0) as there are non-
negative paths from the origin to (2n—2, 0).

The whole voting record may be represented by a path of length p +4
in which «, = +1 if the kth vote is for P; conversely, every path from
the origin to the point (p + g, p — q) can be interpreted as a record of
a voting with the given totals p and q. Clearly s, is the numberofvotes
by which P leads,or trails, just after the kth vote is cast. The candidate

P leads throughoutthe voting if, and only if, 5, >0,...,5, >0, that

is, if all verticeslie strictly above the t-axis. (The path from 0 to A, in
figure 1 is of this type.) The ballot theorem assumestacitly that all
admissible paths are equally probable. The assertion then reduces to. the
theorem provedat the end of this section as an immediate consequence of
the reflection lemma. |

(b) Galton’s rank order test.4 Suppose that a quantity (such as the height

* A survey of the history and the literature may be found in Some aspects of the
random sequence, by D. E. Barton and C. L. Mallows [Ann. Math. Statist., vol. 36

(1965), pp. 236-260]. These authors discuss also various applications. The most recent

generalization with many applications in queuing theory is due to L. Takacs.
‘J. L. Hodges, Biometrika, vol. 42 (1955), pp. 261-262.
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of plants) is measured on each of r treated subjects, and also on each of
r control subjects. Denote the measurements by a,,...,a, and b,,...,
b,, respectively. To fix ideas, suppose that each group is arranged in
decreasing order: a, >a,>°-: and b>6,>.... (To avoid
trivialities we assume that no two observations are equal.) Let us now
combine the two sequences into one sequence of n = 2r numbers ar-
ranged in decreasing order. For an extremely successful treatment all the
a’s should precede the b’s, whereas a completely ineffectual treatment
should result in a random placement of a’s and b’s. Thustheefficiency
of the treatment can be judged by the number of different a’s that
precede the 5 of the same rank, that is, by the number of subscripts
kK for which a, > b,. This idea wasfirst used in 1876 by F. Galton
for data referred to him by Charles Darwin. In this case r equaled
15 and the a’s were ahead 13 times. Without knowledge of the actual
probabilities Galton concluded that the treatment was effective. But,
assuming perfect randomness, the probability that the a’s lead 13
times or more equals 33;. This meansthat in three out of sixteen cases a
perfectly ineffectual treatment would appear as good orbetter than the
treatmentclassified as effective by Galton. This showsthat a quantitative
analysis may be a valuable supplementto our rather shaky intuition.
For an interpretation in terms ofpaths write «, = +1 or —1 according

as the kth term of the combined sequence is an a ora b. Theresulting
path of length 2r joins the origin to the point (2r,0) of the t-axis.
The event a, > b, occurs if, and onlyif, s.,, contains at least k plus
ones, that is, if sy,,; > 0. This entails s., > 0, and so the (2k—1)st and

the 2kth sides are abovethe #-axis. It follows that the inequality a, > b,

holds » times if, and only if, 2» sides lie above the f-axis. In section 9
we shall prove the unexpected result that the probability for thisis 1/(r+1),
irrespective of ». (For related tests based on the theory ofrunsseeII, 5.5.)

(c) Tests of the Kolmogorov-Smirnov type. Suppose that we observe two
populations of the same biological species (animals or plants) living at
different places, or that we wish to compare the outputs of two similar
machines. For definiteness let us consider just one measurable charac-
teristic such as height, weight, or thickness, and suppose that for each of
the two populations we are given a sample of r observations, say
a,,...,a, and b,,...,5, The question is roughly whether these data

are consistent with the hypothesis that the two populationsarestatistically
identical. In this form the problem is vague, but for our purposesit is
not necessary to discuss its more precise formulation in modernstatistical
theory. It suffices to say that the tests are based on a comparison of the
two empirical distributions. For every ¢ denote by A(t) the fraction
k/n of subscripts i for which a; < ¢. The function so defined over the
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real axis is the empirical distribution of the a’s. The empirical distribution
B is defined in like manner. A refined mathematical theory originated
by N. V. Smirnov (1939) derives the probability distribution of the maxi-.

mum ofthe discrepancies |A(t) — B(t)| and of other quantities which can

be used for testing the stated hypothesis. The theory is rather intricate,
but was greatly simplified and made moreintuitive by B. V. Gnedenko
who had the lucky idea to connect it with the geometric theory of paths.

Asin the preceding example we associate with the two samples a path of
length 2r leading from the origin to the point (2r,0). To say that the
two populationsare statistically indistinguishable amounts to saying that
ideally the sampling experiment makesall possible paths equally probable.
Nowit is easily seen that |A(t) — B(t)| > & for some ¢ if, and onlyif,
ls,| > ¢r for some k. The probability of this event is simply the proba-
bility that a path of length 2r leading from the origin to the point (0, 2r)
is not constrained to the interval between +ér. This probability has

been knownfor a long time becauseit is connected with the ruin problem
in random walksand with the physical problem ofdiffusion with absorbing
barriers. (See problem 3.)

This example is beyond the scope of the present volume,butit illustrates
how random walks can be applied to problems of an entirely different
nature.

(d) The ideal coin-tossing game andits relation to stochastic processes.

A path of length n can be interpreted as the record of an ideal experiment
consisting of n successive tosses of acoin. If +1 stands for heads, then
s, equals the (positive or negative) excess of the accumulated number of
headsover tails at the conclusion of the kth trial. The classical description
introduces the fictitious gambler Peter who at each trial wins or loses a
unit amount. The sequence s,,5:,...,5, then represents Peter’s succes-

sive cumulative gains. It will be seen presently that they are subject to
chance fluctuations of a totally unexpected character.
The picturesque language of gambling should not detract from the

general importance of the coin-tossing model. In fact, the model may
serve as a first approximation to many more complicated chance-dependent
processes in physics, economics, and learning theory. Quantities such as

the energy of a physical particle, the wealth of an individual, or the
accumulated learning of a rat are supposed to vary in consequence of
successive collisions or random impulses of some sort. For purposes of a
first orientation one assumesthat the individual changes are of the same
magnitude, andthattheir sign is regulated by a coin-tossing game. Refined
models take into account that the changes andtheir probabilities vary from
trial to trial, but even the simple coin-tossing model leads to surprising,
indeed to shocking, results. They are of practical importance because they
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show that, contrary to generally accepted views, the laws governing a
prolonged series of individual observations will show patterns and averages
far removed from those derived for a whole population. In other words,
currently popular psychological tests would lead one to say that in a
population of “normal’’ coins most individual coins are “maladjusted.”’

It turns out that the chance fluctuations in coin tossing are typical for

more general chance processes with cumulative effects. Anyhow,it stands
to reason that if even the simple coin-tossing game leads to paradoxical
results that contradict our intuition, the latter cannot serve as a reliable

guide in more complicated situations. <

 

Figure 2. Illustrating the reflection principle.

It is as surprising asit is pleasing that most important conclusions can be
drawn from the following simple lemma.

Let A=(a,x) and B=(b, f) be integral points in the positive
quadrant: b>a>0, «>0, 6 >0. By reflection of A on the t-axis

is meant the point A’ = (a, —a). (See figure 2.) A path from A to B

is defined in the obvious manner.

Lemma.® (Reflection principle.) The number of paths from A to B
‘which touch or cross the x-axis equals the numberofallpathsfrom A’ to B.

Proof. Consider a path (s, = 4, 5g41,-.-,5, = 6) from A to B
having one or more vertices on the f-axis. Let ¢ be the abscissa of the

first such vertex (see figure 2); thatis, choose ¢ so that s, >0,...,5,4>0,

s,=0. Then (—5,, —Sosi,- ++ 5 Spas Sy = 9, Sia, Stzas +++, Sp) IS. a

5 The reflection principle is used frequently in various disguises, but without the
geometrical interpretation it appears as an ingenious but incomprehensibletrick. The
probabilistic literature attributes-it to D. André (1887). It appears in connection with
the difference equations for random walks in XIV, 9. These are related to some

partial differential equations where the reflection principle is a familiar tool called

method of images. \t is generally attributed to Maxwell and Lord Kelvin. For the use
of repeated reflections see problems 2 and 3.
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path leading from A’ to B and having 7 (t, 0) asits first vertex on
the t-axis. The sections AT and A’T being reflections of each other,
there exists a one-to-one correspondence between all paths from A’ to
B and such paths from A to B that have a vertex on the z-axis. This
proves the lemma. >

As an immediate consequence we prove the result discussed in example
(a). It will serve as starting point for the whole theory of this chapter.

The ballot theorem. Let n and «x be positive integers. There are
x

exactly 7 Nu paths (S,...,8, = 2) from the origin to the point (n, x)

such that s,>0,...,8, > 0.

Proof. Clearly there exist exactly as many admissible paths as there
are paths from the point (1, 1) to (n, x) which neither touch or cross the
t-axis. By the last lemma the number of such paths equals

+q-1 p+q-1
Ny-t,e~1 _ Ny-te+1 = 5 ~ ( p

with p and q defined in (1.2). A trite calculation shows that the right

side equals N,.(p—q)/(p+q), as asserted. >

2. RANDOM WALKS: BASIC NOTIONS AND

NOTATIONS

The ideal coin-tossing game will now be described in the terminology
of random walks which hasgreater intuitive appeal and is better suited
for generalizations. As explained in the preceding example, when a path

(s1,...,5,) is taken as record of p successive coin tossings the partial
sums 5,,...,5, represent the successive cumulative gains. For the
geometric description it is convenient to pretend that the tossings are
performed at a uniform rate so that the nth trial occurs at epoch® n. The
successive partial sums s,,..., 5, will be marked as points on the vertical
x-axis; they will be called the positions of a “‘particle’’ performing a

random walk. Note that the particle movesin unit steps, up or down, ona

° Following J. Riordan, the word epoch is used to denote points on the time axis
because some contexts use the alternative terms (such as moment, time, point) in

different meanings. Whenever used mathematically, the word time will refer to an
interval or duration. A physical experiment may take some time, but ourideal trials

are timeless and occur at epochs.



74 | RANDOM WALKS {III.2

line. A path represents the record of such a movement. For example, the
path from O to N in figure 1 stands for a random walk ofsix steps
terminating by a returnto the origin.

Each path of length p can be interpreted as the outcome of a random
walk experiment; there are 2? such paths, and weattribute probability

2~* to each. (Different assignments will be introduced in chapter XIV.
To distinguish it from others the present random walkis called symmetric.)
We have now completed the definition of the sample space and of the

probabilities in it, but the dependence on the unspecified numberp is

disturbing. To see its role consider the event that the path passes through
the point (2,2). The first two steps must be positive, and there are 2°-?
paths with this property. As could be expected, the probability of our

event therefore equals ¢ regardless of the value of p. More generally, for
any k < p it is possible to prescribe arbitrarily the first k steps, and
exactly 2°-* paths will satisfy these k conditions. It follows that an
event determined by the first k < p steps has a probability independent of
p. In practice, therefore, the number p plays no role provided it is
sufficiently large. In other words, any path of length n can be taken as

the initial section of a very long path, and there is no need to specify the
latter length. Conceptually and formally it is most satisfactory to consider

unending sequences oftrials, but this would require the use of non-
denumerable sample spaces. In the sequel it is therefore understood that
the length p of the paths constituting the sample spaceis larger than the
number of steps occurring in our formulas. Except for this we shall be
permitted, and glad, to forget about p.
To conform with the notations to be used later on in the general theory

we shall denote the individual steps generically by X,, X,,... and the
positions of the particle by S,,S,,.... Thus

(2.1) S,=Xit-°''+X, S,=0.

From any particular path one can read off the corresponding values of

X,, X,,... 3 that is, the X, are functions of the path.? For example,

for the path of figure 1 clearly X, = X,=X,=1 and X;= X;=

= X,= —1.
Weshall generally describe all events by stating the appropriate con-

ditions on the sums S,. Thus the event “‘at epoch n the particle is at the
point r’’ will be denoted by {S,, =r}. For its probability we write p,,,.

(For smoother language we shall describe this event as a “‘visit” to r at

"In the terminology to be introduced in chapter 1X the X, are random variables.
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epoch n.) The number N,,, of paths from the origin to the point (m,r)
is given by (1.3), and hence

n

(2.2) Par = PIS, =r =(ntrj2,

2
 

whereit is understood that the binomial coefficientis to be interpreted as
zero unless (n+r)/2 is an integer between 0 and n, inclusive.
A return to the origin occurs at epoch k if S, = 0. Here k is neces-

sarily even, and for k = 2y the probability of a return to the origin equals
P2y,90. Because of the frequent occurrence of this probability we denote it
by u,,. Thus

(2.3) lp, = (72.
Y .

Whenthe binomialcoefficient is expressed in terms of factorials, Stirling’s
formula II, (9.1) shows directly that

 (2.4) U,, ~ —=
. TY

where the sign ~ indicates that the ratio of the two sides tends to | as
vy —> 00; the right side serves as excellent approximation® to u,, even for
moderate. values of ».
Among the returns to the origin the first return commandsspecial

attention. A first return occurs at epoch 2y if

(2.5) S,#0,...,5,,.,40, but S,,=0.

The probability for this event will be denoted by /f2,. By definition
\o = 0.

The probabilities f,, and u,, are related in a noteworthy manner. A
visit to the origin at epoch 2n may bethefirst return, or else the first
return occurs at an epoch 2k < 2n andis followed by a renewed return
2n — 2k time units later. The probability of the latter contingency is
Soxtan—ox because there are 2?*f,, paths of length 2k ending with first

return, and 22”-**y,,_,, paths from the point (2k,0) to (2n,0). It
follows that

(2.6) Uon = follen—o + fallen—a + vee + fonto» Hl > 1.

(See problem 5.)

8 For the true value uw.) = 0.2461 we get the approximation 0.2523; for uso =

0.1762 the approximation is 0.1784. The per cent error decreases roughly in inverse
proportion to ».
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The normal approximation. Formula (2.2) gives no direct clue as to the range within
which §S,, is likely to fall. An answer to this question is furnished by an approximation
formula whichrepresents a special case ofthe central limit theorem andwill be proved®
in VII, 2.

The probability that a <S, <b is obtained by summing probabilities p,,, over
all r between a and b. Forthe evaluationit suffices to know the probabilities forall
inequalities of the form S, >a. Such probabilities can be estimated from the fact
that for all x as no

_ 1 0
(2.7) P{S,, > avn} —>1—-— R(x) = |. e-3” dt

where 9 stands for the normaldistribution function defined in VII, 1. Its nature is of
no particular interest for our present purposes. The circumstance that the limit exists

shows the importantfact that for large n theratios S,/Wn are governed approximately
by the same probabilities and so the same approximation can be used forall large 7.
The accompanyingtable gives a good idea of the probable range of S,. More and

better values will be found in table 1 of chapter VII.

 

 

TABLE 1

x 0.5 1.0 1.5 2.0 2.5 3.0

P{s, > avny 0.309 0.159 0.067 0.023 0.006 0.001        

3. THE MAIN LEMMA

As wesaw, the probability of a return to the origin at epoch 2» equals
the quantity u,, of (2.3). As the theory of fluctuations in random walks

began to take shapeit came as a surprise that almostall formulas involved
this probability. One reason for this is furnished by the following simple
lemma, which has a mild surprise value of its own and provides the key
to the deeper theorems of the next section.

Lemma 1.1° Theprobability that noreturnto theoriginoccurs up to and
including epoch 2n is the same as the probability that a return occurs at
epoch 2n. In symbols,

(3.1) P{S, 4 0,..., Son, ¥ 0} = P{S., = 0} = up,

® The special case required in the sequel is treated separately in VII, 2 without
reference to the general binomial distribution. The proofis simple and can beinserted

at this place.
10 This lemma is obvious from the form of the generating function &f,,s* [see

XI, (3.6)] and has been noted forits curiosity value. The discoveryofits significance

is recent. For a geometric proof see problem 7.
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Here, of course, n > 0. Whenthe event onthe left occurs eitherall the

S; are positive, or all are negative. The two contingencies being equally

probable we canrestate (3.1) in the form

(3.2) P{S, > 0, wees Son > 0} = 4Ugn-

Proof. Considering all the possible values of S,, it is clear that

(3.3) P{S, >0,...,S., >0} = ¥ P{S, > 0,...,S,-1 >0,S2, = 2r}

r=1

(where all terms with r > vanish). By the ballot theorem the number

of paths satisfying the condition indicated on the right side equals
Non-1,2r-1 — Non—1,2r415 and so the rth term of the sum equals

3(Pon—1,2r—1 - P2n-1,2r41):

The negative part of the rth term cancels against the positive part of the
(r+1)st term with the result that the sum in (3.3) reduces to $pon11. It

is easily verified that pj,1,1 = Ue, and this concludes the proof. >

The lemmacanberestated in several ways; for example,

(3.4) P{S, > 0,..., Se, > O} = uaon-

Indeed, a path of length 2n with all vertices strictly above the x-axis passes
through the point (1, 1). Taking this point as new origin we obtain a path
of length 2n — 1 with all vertices above or on the new z-axis. It follows

that

(3.5) P{S, > 0,..., Se, > 0} = SP{S, > 0,..., Sopa > OF.

But S,,-1 is an odd number, and hence S,,_; > 0 implies that also

Se, 2 9. The probability on the right in (3.5) is therefore the same as

(3.4) and hence (3.4) is true. (See problem 8.)

Lemma1 leads directly to an explicit expression for the probability
distribution for the first return to the origin. Saying that a first return
occurs at epoch 2m amounts to saying that the conditions

S, ~0,...,S #0

are satisfied for kK =n—1, but not for k =n. In view of (3.1) this

meansthat

(3.6) Son = Ugn-2 — Uons A= l, 2, see
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A trite calculation reduces this expression to

J
= u

2n —1

 
(3.7) Fon an°

Wehave thus proved

Lemma 2. The probability that the first return to the origin occurs at
epoch 2n is given by (3.6) or (3.7).

It follows from (3.6) that fp +/4+:*:= 1. In the coin-tossing
terminology this means that an ultimate equalization of the fortunes
becomespractically certain if the gameis prolonged sufficiently long. This
wasto be anticipated on intuitive grounds, except that the great numberof
trials necessary to achieve practical certainty comes as a surprise. For

example, the probability that no equalization occurs in 100 tosses is about
0.08.

4. LAST VISIT AND LONG LEADS

We are now prepared for a closer analysis of the nature of chance
fluctuations in random walks. The results are startling. According to
widespread beliefs a so-called law of averages should ensure that in a
long coin-tossing game each player will be on the winning side for about
half the time, and that the lead will pass not infrequently from one player
to the other. Imaginethen a huge sample of records of ideal coin-tossing
games, each consisting of exactly 2n trials. We pick one at random and
observe the epoch of the last tie (in other words, the numberofthe last
trial at which the accumulated numbers of heads and tails were equal).
This number is even, and we denote it by 2k (so that O< k <7).

Frequent changes of the lead would imply that k islikely to berelatively
close to n, but this is not so. Indeed, the next theorem reveals the

amazing fact that the distribution of k is symmetric in the sense that any

value k has exactly the same probability as n —k. This symmetry
implies in particular that the inequalities k >n/2 and k <n/2 are
equally likely.1!_ With probability 4 no equalization occurred in the second
half of the game, regardless of the length of the game. Furthermore, the
probabilities near the end points are greatest; the most probable values
for k are the extremes 0 and n. These results show thatintuition leads
to an erroneouspicture of the probable effects of chance fluctuations. A
few numerical results may be illuminating.

11 The symmetryofthe distribution for k was found empirically by computers and
verified theoretically without knowledgeof the exact distribution (4.1). See D. Blackwell,

P. Dewel, and D. Freedman, Ann. Math.Statist., vol. 35 (1964), p. 1344.
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Examples. (a) Suppose that a great many coin-tossing gamesare con-
ducted simultaneously at the rate of one per second, day and night, for a
whole year. Onthe average, in one out of ten gamesthe last equalization
will occur before 9 days have passed, andthelead will not change during
the following 356 days. In one out of twenty cases the last equalization
takes place within 2} days, and in one out of a hundred cases it occurs
within the first 2 hours and 10 minutes.

(5) Suppose that in a learning experiment lasting one year a child was
consistently lagging except, perhaps, during the initial week. Another
child was consistently ahead except, perhaps, during the last week. Would
the two children bejudged equal? Yet, leta groupof 11 children be exposed
to a similar learning experimentinvolving no intelligence but only chance.
One,among the 11 would appearas leaderforall but one week, another as
‘lagpard for all but one week.

The exact probabilities for the possible values of k are given by

Theorem 1. (Arc sine lawfor last visits.) The probability that up to and
including epoch 2n thelastvisit to the origin occurs at epoch 2k is given by

(4.1) k =0,1,.Koran = Uoylon—ox

Proof. We are concerned with paths satisfying the conditions S,, = 0

and Sgi140,...,S,, 40. The first 2k vertices can be chosen in

27*u,, different ways. Taking the point (2k, 0) as new origin and using
(3.1) we see that the next (2n—2k) vertices can be chosen in 22"-%*y,9.

ways. Dividing by 2?” weget (4.1). >

It follows from the theorem that the numbers (4.1) add to unity. The

probability distribution which attaches weight a2, to the point 2k

will be called the discrete arc sine distribution of order n, because the
inverse sine function provides excellent numerical approximations. The
distribution is symmetric in the sense that 2,2, = %en—ox.on. For n = 2
the three values are 2, 2, 2; for m = 10 see table 2. The central term is

always smallest.

The main features of the arc sine distributions are best explained by

 

 

TABLE 2

DISCRETE ARC SINE DISTRIBUTION OF ORDER 10

k =0 k=1 k =2 k =3 k=4 k=5

k =10 k=9 k=8 k=7 k=6

hor29 0.1762 0.0927 0.0736 0.0655 0.0617 0.0606      
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means of the graph of the function

i
a./a(1— 2)

UsingStirling’s formulait is seen that up, is close to 1/an, except when

Do @

(4.2) f(x) = O<ar<l.
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Figure 3. Graph off(x) ==== . The construction explains the approximation

(4.3). mV a1 — x)

n is very small. This yields the approximation

k(4.3) conan © Sf(ty), where a =<;
n n

the error committed is negligible except when k is extremely close to 0
or n. The right side equals the area of a rectangle with height /(z,)

whose basis is the interval of length 1/n centered at x, (see figure 3).
For 0<p<q<_1 and large nm thesum of the probabilities «4, with

pn <k < qn is therefore approximately equal to the area underthe graph
of f and above the interval p << x <q. This remainstrue also for p = 0
and g = 1 because the total area under the graph equals unity which is
also true of the sum overall a,2,. Fortunately (4.2) can be integrated
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explicitly and we conclude that for fixed 0<x<1 and n sufficiently
large

(4.4) Dd Hsp2n © 2 are sin ,/x
k<un 7

approximately. Note that the right side is independent of n which means

TABLE 3

2 . -
THE CONTINUOUS ARC SINE DISTRIBUTION A(x) = — arc sin Va

7

 

 

x A(x) x A(x) x A(x)

0.00 0.000 0.20 0.295 0.40 0.236

0.01 0.064 0.21 0.303 0.41 0.442
0.02 0.090 0.22 0.311 0.42 0.449

0.03 0.111 0.23 0.318 0.43 0.455

0.04 0.128 0.24 0.326 0.44 0.462

0.05 0.144 0.25 0.333 0.45 0.468

0.06 0.158 0.26 0.341 0.46 0.474

0.07 0.171 0.27 0.348 0.47 0.481

0.08 0.183 0.28 0.355 0.48 0.487

0.09 0.194 0.29 0.362 0.49 0.494

0.50 0.500

0.10 0.205 0.30 0.369

0.11 0.215 0.31 0.376

0.12 0.225 - 0.32 0.383

0.13 0.235 0.33 0.390

0.14 0.244 0.34 0.396
0.15 0.253 0.35 0.403

0.16 0.262 0.36 0.410

0.17 0.271 0.37 0.416

0.18 0.279 0.38 0.423

0.19 0.287 0.39 0.429
 

For x > }use A(] — x) = 1 — A(@).
 

that table 3 suffices for all arc sine distributions of large order. (Actually
the approximationsare rather good evenforrelatively small values of 7.)

Wesawthat, contrary to popular notions,it is quite likely that in a long
coin-tossing game one of the players remains practically the whole time
on the winning side, the other on the losing side. The next theorem
elucidates the same phenomenonbyananalysis of the fraction of the total
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time that the particle spends onthepositive side. Onefeels intuitively that
this fraction is most likely to be close to 4, but the opposite is true: The
possible values close to 4 are least probable, whereas the extremes k = 0

and k =n havethe greatest probability. The analysis is facilitated by the
fortunate circumstance that the theorem again involves the discrete arc
sine distribution (4.1) (which will occur twice morein section 8).

Theorem 2. (Discrete arc sine law for sojourntimes.) The probability
that in the time intervalfrom 0 to 2n the particle spends 2k time units on
the positive side and 2n — 2k time units on the negative side equals cxon-

(The total time spent on the positive side is necessarily even.)

Corollary. If 0 <2 <1, the probability that < xn time units are

spent on the positive side and = (1 — x)n on the negative side tends to
2 fT
< arcsinV/x as n—> co.
7

Examples. (c) From table & it is seen that the probability that in
20 tossings the lead never passes from one player to the other is about
0.352. The probability that the luckier player leads 16 times or moreis
about 0.685. (The approximation obtained from the corollary with
xz = #4 is 0.590.) The probability that each player leads 10 times is only
0.06.

(d) Let n be large. With probability 0.20 the particle spends about
97.6 per cent of the time on the sameside of the origin. In one out of ten
cases the particle spends 99.4 per cent of the time on the sameside.

(e) In example (a) a coin is tossed once per secondfora total of 365 days.
The accompanying table gives the times ¢, such that with the stated

12 Paul Lévy [Sur certains processus stochastiques homogénes, Compositia Mathe-

matica, vol. 7 (1939), pp. 283-339] found this arc sine law for Brownian motion and

referred to the connection with the coin-tossing game. A generalarcsine limit law for
the numberof positive partial sums in a sequence of mutually independent random
variables was proved by P. Erdés and M.Kac, On the number ofpositive sums of inde-
pendent random variables, Bull. Amer. Math. Soc., vol. 53 (1947), pp. 1011-1020. The

wide applicability of the arc sine limit law appeared at that time mysterious. The
whole theory was profoundly reshaped when E. Sparre Andersen madethe surprising
discovery that many facets of the fluctuation theory of sums of independent random
variables are of a purely combinatorial nature. [See Mathematica Scandinavica, vol. 1

(1953), pp. 263-285, and vol. 2 (1954), pp. 195-223.] The original proofs were exceed-

ingly complicated, but they opened new avenues of research and are now greatly

simplified. Theorem 2 wasfirst proved by K. L. Chung and W.Feller by complicated
methods. (See sections XIJI,5-6 of the first edition of this book.) Theorem 1 is new.
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probability p the less fortunate player will be in the lead for a total time
less than f,.

 

 

p ty P ty

0.9 153.95 days 0.3 19.89 days
0.8 126.10 days 0.2 8.93 days
0.7 99.65 days 0.1 2.24 days
0.6 75.23 days 0.05 13.5 hours
0.5 53.45 days 0.02 2.16 hours
0.4 34.85 days 0.01 32.4 minutes

>

Proof of Theorem 2. Consider pathsof the fixed length 2 and denote
by 62,2, the probability that exactly 2k sides lie above the f-axis. We
have to prove that

(4.5) boxy = Kop 2ev-

Now (3.4) asserts that 65,2, = uz, and for reasons of symmetry we have
also by0, = Uy. It suffices therefore to prove (4.5) for l1<k<yv—1.
Assumethen that exactly 2k out of the 2n time units are spent on the

positive side, and 1 << k < y—1. In this case first return to the origin
must occur at some epoch 2r < 2n, and two contingencies are possible.
First, the 2r time units up tothe first return may bespent on the positive

side. In this case r < k <n —1, andthesection of the path beyond the

vertex (2r,0) has exactly 2k — 2r sides above the axis. Obviously the

number of such paths equals }-2?"f,,-2?"-?"b,oo,2. The other
possibility is that the 2r time units upto thefirst return are spent on the
negative side. In this case the section beyond the vertex (27,0) has

exactly 2k sides above the axis, whence n — r > k. The numberof such
paths equals } - 2?7f,,-2?”-?"b.,.,,»,, Accordingly, when 1 << k <n—1

1 k 1 ™*

(4.6) boxon = 5 & Sarbax—ar.an—er + > > SerDex,2n—20-
r=1 r=1

We now proceed by induction. The assertion (4.5) is trivially true for
y =], and we assumeit to be true for » <n — 1. Then (4.6) reduces to

k n—-k

(4.7) boxen = 2Uonox > fortlon—or + Zuo, > fortlen—2¢-2r
r=1 r=1

In viewof (2.6) the first sum equals us, while the second equals us,2.
Hence (4.5) is true also for vy = n. >
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[A paradoxical result connected with the arc sine law is contained in
problem 4 of XIV,9.]

*5. CHANGES OF SIGN

The theoretical study of chance fluctuations confronts us with many
paradoxes. For example, one should expect naively that in a prolonged
coin-tossing game the observed numberof changes of lead should increase
roughly in proportion to the duration of the game. In a gamethatlasts
twice as long, Peter should lead about twice as often. This intuitive

reasoning is false. We shall show that, in a sense to be madeprecise, the

number of changesof lead in n trials increases only as Vn: in 100n
trials one should expect only 10 times as many changes of lead as in n
trials. This proves once more that the waiting times between successive
equalizations are likely to be fantastically long.

Werevert to random walk terminology. A change of sign is said to
occur at epoch vn if S,_, and S,,, are of opposite signs, that is, if the

path crosses the axis. In this case S,, = 0, and hence n is necessarily an
even (positive) integer.

Theorem 1.4%) The probability ©,on41 that up to epoch 2n + 1 there
occur exactly r changes ofsign equals 2Pon11,2,41- In other words

(5.1) Eontt = 2P{S2,41 = 2r + 1}, r= 0, 1, ae ee

Proof. We begin by rephrasing the theorem in a more convenient

form. If the first step leads to the point (1, 1) we take this point as the
origin of a new coordinate system. To a crossing of the horizontal axis

in the old system there now correspondsa crossing of the line below the
new axis, that is, a crossing of the level —1. An analogous procedureis
applicable when S, = —1, and it is thus seen that the theorem is fully
equivalent to the following proposition: The probability that up to epoch
2n the level —I1 is crossed exactly r times equals 29,41 ,9,41:

Considerfirst the case r = 0. To say that the level —1 has not been
crossed amounts to saying that the level —2 has not been touched (or
crossed). In this case S,, is a non-negative even integer. For k > 0 we

conclude from the basic reflection lemmaofsection 1 that the numberof
paths from (0,0) to (2n, 2k) that do touch the level —2 equals the

number of paths to (2n,2k + 4). The probability to reach the point

* This section is not used explicitly in the sequel.

18 For an analogous theorem for the numberof returns to the origin see problems 9-10.

For an alternative proof see problem 11.
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(2n, 2k) without having touched the level —2 is therefore equal to

Pen.2k — Pen,2x+4. The probability that the level —2 has not been touched

equals the sum of the quantities for k = 0, 1,2,.... Most terms cancel,

and we find that our probability equals pono + Pon,2 This proves the

assertion when r = 0 because

(5.2) Penis = 3(Pon.o+Pan,2)

as is obvious from the fact that every path through (2 + 1,1) passes
through either (2n,0) or (2n, 2).

Next let r= 1. A path that crosses the level —1 at epoch 2» — 1
may be decomposedinto the section from (0,0) to (2v, —2) and a path
oflength 2n — 2y starting at (2v, —2). To the latter section we apply the

result for r =O but interchanging the roles of plus and minus. We
conclude that the numberofpaths of length 2n — 2y starting at (2v, —2)

and not crossing the level —1 equals the numberof paths from (2, —2)

to (2n + 1, —3). But each path of this kind combines with the initial

section to a path from (0,0) to (2n + 1, —3). It follows that the number

of paths of length 2n that cross the level —1 exactly once equals the
numberof paths from the origin to (2n + 1, —3), that is, 2?”*"po,41,3.

This proves the assertion for r = 1.
The proposition with arbitrary r now follows by induction, the argu-

ment used in the second part of the proof requiring no change. (It was
presented for the special case r = 1 only to avoid extraletters.) >

An amazing consequence of the theorem is that the probability &,

of r changes ofsignin n trials decreases with r:

(5.3) bon = bin > bsin > “ee

This meansthat regardless of the numberoftosses, the event that the lead
never changes is more probable than any preassigned numberof changes.

Examples. (a) The probabilities x, for exactly r changes of sign in

99 trials are as follows:

 

r Ly r Ly

0 0.1592 7 0.0517
1 0.1529 8 0.0375
2 0.1412 9 0.0260

3 0.1252 10 0.0174
4 0.1066 11 0.0111

5 0.0873 12 0.0068
6 0.0686 13 0.0040
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(b) The probability that in 10,000 trials no change of sign occurs is about
0.0160. The probabilities x, for exactly r changes decrease very slowly;
for r = 10, 20, 30 the values are x, = 0.0156, 0.0146, and 0.0130. The

probability that in 10,000 trials the lead changes at most 10 times is about
0.0174; in other words, one out of six such series will show not more than

10 changes oflead. >

A pleasing property of the identity (5.1) is that it enables us to apply the normal

approximation derived in section 2. Suppose that 2 is large and = fixed positive

number. The probability that fewer than Vn changes of sign occur before epoch n

is practically the same as 2P{S, < 2nVin }, and accordingto (2.7) the last probability

tends to N(2x) — 4 as n> oo!) We have thus

Theorem 2. (Normal approximation.) The probability that fewer than avn changes

of sign occur before epoch n tends to 2%(QQx) —1 as no,

It follows that the median for the number of changes of sign is about 0.337Vn;

this means that for 7m sufficiently large it is about as likely that there occur fewer than

0.337Vn changesof sign than that occur more. With probability +5 there will be fewer

than 0.0628Vn changesofsign,etc.

7 6. AN EXPERIMENTAL ILLUSTRATION

Figure 4 represents the result of a computer experiment simulating
10,000 tosses of a coin; the same material is tabulated in example I, (6.c).

The top line contains the graph ofthe first 550 trials; the next two lines

represent the entire record of 10,000 trials the scale in the horizontal
direction being changed in the ratio 1:10. The scale in the vertical
direction is the same in the two graphs.

Whenlooking at the graph most people feel surprised by the length of

the intervals between successive crossings of the axis. As a matter offact,
the graph represents a rather mild case history and was chosen as the
mildest among three available records. A more startling example is

obtained by looking at the same graph in the reverse direction; that is,
reversing the order in which the 10,000trials actually occurred (see section
8). Theoretically, the series as graphed and the reversed series are equally
legitimate as representative of an ideal random walk. The reversed random

14 This approximation gives ;7s for the probability of at most 6 equalizations in 10,000
trials, This is an underestimate, the true value being about 0.112.
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°walk has the following characteristics. Starting from the origin

the path stays on the

negative side positive side
for the first 7804 steps next 8 steps
next 2 steps next 54 steps
next 30 steps next 2 steps
next 48 steps next 6 steps
next 2046 steps

Total of 9930 steps Total of 70 steps

Fraction of time: 0.993 Fraction of time: 0.007

This /ooks absurd, and yet the probability that in 10,000 tosses of a
perfect coin the lead is at one side for more than 9930 trials and at the
other for fewer than 70 exceeds 35. In other words, on the average one

record out of ten will look worse than the one just described. By contrast,
the probability of a balance better than in the graph is only 0.072.
The original record offigure 4 contains 78 changes of sign and 64 other

returns to the origin. The reversed series shows 8 changes of sign and 6
other returns to the origin. Sampling of expert opinion revealed that even
trained statisticians expect much more than 78 changes of sign in 10,000
trials, and nobody counted on the possibility of only 8 changes of sign.
Actually the probability of not more than 8 changes of sign exceeds 0.14,
whereas the probability of more than 78 changes of sign is about 0.12.
Asfar as the numberof changesofsign is concerned the two records stand
on a par and, theoretically, neither should cause surprise. If they seem
startling, this is due to our faulty intuition and to our having been exposed

to too many vague references to a mysterious “law of averages.”

7. MAXIMA AND FIRST PASSAGES

Most of our conclusions so far are based on the basic lemma 3.1, which

in turn is a simple corollary to the reflection principle. We now turn our
attention to other interesting consequencesof this principle.

Instead of paths that remain above the x-axis we consider paths that
remain below the line x =r, that is, paths satisfying the condition

(7.1) So <1, Si<r,...,8, <r.

Wesay in this case that the maximum of the path is <r. (The maximum
is >0 because Sj=0.) Let A=(u,k) be a point with ordinate

k <r. A path from 0 to A touches or crosses the line x=,r if it
violates the condition (7.1). By the reflection principle the numberof such

 



II.7] MAXIMA AND FIRST PASSAGES 89

paths equals the number of paths from the origin to the point A’ =
= (n, 2r — k) whichis the reflection of A onthe line x = r. This proves

Lemma 1. Let k< r. The probability that a path of length n leads

to A =(n,k) andhasamaximum > r equals p,.2,-, = P{S, = 2r — k}.

The probability that the maximum equals r is given by the difference
Pn.2r-k — Pn.tr+2-k- Summing over all k <r we obtain the probability

that an arbitrary path of length m has a maximum exactly equalto r.
The sum is telescoping and reduces to py, + Pn.ri1. NOW p,,, vanishes

unless » and r have the sameparity, and in this case p,4; = 0. We
have thus

Theorem 1. The probability that the maximum of a path of length n
equals r > coincides with the positive member of the pair p,,, and

Po,r+1-

For r =0 and even epochsthe assertion reduces to

(7.2) P{S, < 0,8, < 0,..., Sy, < 0} = ue,

This, of course, is equivalent to the relation (3.4) which represents one

version of the basic lemma. Accordingly, theorem | is a generalization of

that lemma.
We next come to a notion that plays an important role in the general

theory of stochastic processes. A first passage through the point r > 0 is
said to take place at epoch n if

(7.3) Si<r,...,8,41 <4, S, =r.

In the present context it would be preferable to speak ofjafirst-visit,, but
the term first passage, which originates in the physical literature, is well
established; furthermore, the term visit is not applicable to continuous
processes.

Obviously a path satisfying (7.3) must pass through (m — 1,r — 1) and
its maximum up to epoch n —1 must equal r — 1. We saw that the
probability for this event equals Py—1,,-1 — Pn-1,rs1» and so we have

Theorem 2. Theprobability y,, that thefirstpassage through r occurs

at epoch n is given by

(7.4) Prn = 3[Pn—1.7-1 — Pn-r.r41]-

A trite calculation shows that

n

(7.5) Prin = (nie)

n
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[as always, the binomial coefficient is to be interpreted as zero if (n+r)/2

is not an integer]. For an alternative derivation see section 8.5.

The distribution (7.5) is most interesting when r is large. To obtain the probability
that the first passage through r occurs before epoch N we must sum @,,, overall
n<QN. It follows from the normal approximation (2.7) that only those terms will
contribute significantly to the sum for which r°/n is neither very large nor very close
to 0. For such terms the estimates of VII, 2 provide the approximation

(7.6) Prin ™ FE_ e77? /2n .
TT A/3

In the summation it must be borne in mind that m must have the same parity as F.

The sum is the Riemann sumto the integral in (7.7), and oneis led to

Theorem 3. (Limit theoremfor first passages.) For fixed t the probability that the
first passage through r occurs before epoch tr’ tends to®

(7.7) Jel et ds = a1 — (7)|
7 ave Vt

as roo, where N is the normaldistribution defined in VI1,1.

It follows that, roughly speaking, the waiting time for the first passage through r
increases with the square of r: the probability of a first passage after epoch 3r? has a
probability close to 3. It follows that there must exist points & <r such that the
passage from & to & +1 takes a time longer than it took to go from 0 to k.

The distribution of the first-passage times leads directly to the distribu-
tion of the epoch when the particle returns to the origin for the rth time.

Theorem 4. The probability that the rth return to the origin occurs at
-epoch n is given by the quantity ,,,-, of (7.5).

In words: Anrth return at epoch n has the same probability as first
passage through r at epoch n—r.

Proof.!® Consider a path from the origin to (7, 0) with all sides below
the axis and exactly r — 1 interior vertices on the axis. For simplicity
we shall call such a path representative. (Figure 5 showssuch a path with
n = 20 and r=5.) representative path consists of r sections with

endpoints on the axis, and we may construct 2” different paths by assign-
ing different signsto the vertices in the several sections(that is, by mirroring
sections on the axis). In this way we obtain all paths ending with an rth
return, and thus there are exactly 2” times as many paths ending with an
rth return at epoch n as there are representative paths. The theorem may

1° (7.7) defines the so-called positive stable distribution of order 3. For a general-

ization of theorem 3 see problem 14 of XIV,9.

*° For a proof in terms of generating functions see X1,(3.17).
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be therefore restated as follows: There are exactly as many representative
paths of length n as there are paths of length n — r ending with a first
passage through r. This is so, because if in a representative path we delete

the r sides whose left endpoints are on the axis we get a path of length
n—r ending with a first passage through r. This procedure can be
reversed by inserting r sides with negative slope starting at the origin and

the r—1 vertices marking the first passages through 1,2,...,r—l.

See figure 5. . If .( g ) ae \ coe vd eve| Le >

f
“ “ie ey 7

ify vy ? - 5

4La ,é

  
eyey, \ dm, !

Jy 7

 

Figure 5. Illustrating first passages and returns to the origin.

It follows that the limit theorem for first returns is also applicable to
rth returns as r-—> co: the probability that the rth return to the origin
occurs before epoch tr? tends to the quantity (7.7).

This result reveals another unexpected feature of the chancefluctuations
inrandom walks. In the obvious sense the random walk starts from scratch
every time when the particle returns to the origin. The epoch of the rth
return is therefore the sum of r waiting times which can beinterpreted as
‘“‘measurements of the same physical quantity underidentical conditions.”’
It is generally believed that the average of r such observationsis bound to
converge to a “‘true value.’’ But in the present case the sum is practically

certain to be of the order of magnitude r?, and so the average increases
roughly in proportion to r. A closer analysis reveals that one among the

r waiting timesis likely to be of the same order of magnitude as the whole
sum, namely r?. In practice such a phenomenon would beattributed to an

“experimental error’’ or be discarded as “‘outlier.’’ It is difficult to see

what one does not expectto see.

8. DUALITY. POSITION OF MAXIMA

Every path correspondsto finite sequence of plus ones and minusones,
andreversing the orderofthe terms one obtains a new path. Geometrically
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the new path is obtained by rotating the given path through 180 degrees
aboutits right endpoint, and taking thelatter as origin of a new coordinate
system. To every class of paths there correspondsin this way a newclass
of the same cardinality. If the steps of the original random walk are

X,, X,,...,X,, then the steps of the new random walk are defined by

(8.1) Xv =X,,...,X*=X,.

The vertices of the new random walk are determined by the partial sums

(8.2) Sy =X +---+xX>=S,-S,,

(whence S* = 0 and S* =S,,). Weshall refer to this as the dual random
walk. To every event defined for the original random walk there cor-
responds an event of equal probability in the dual random walk, and in
this way almost every probability relation has its dual. This simple method
of deriving new relations is more useful than might appearat first sight.
Its full power will be seen only in volume 2 in connection with general
random walks and queuing theory, but even in the present context we can
without effort derive some interesting new results.
To show this we shall review a few pairs of dual events, listing in each

case the most noteworthy aspect. In the following list n is considered

given and,to simplify language, the endpoint (n,S,) of the path will be
called terminal point. It is convenient to start from known events in the
dual random walk.

(a) First-passage times. From (8.2) it is clear that the events defined,

respectively, by

(8.3) Si >0, j=1,2,...,2,

and

(8.4) S, > Sj j=0,1,...,n-1

are dual to each other. The secondsignifies that the terminal point was not
visited before epoch n. We know from (3.2) that the first event has prob-

ability $u,, when n = 2vy>0 iseven; for n = 2» +1 the probability
is the same because S*¥, > 0 implies S¥,,, > 0. Accordingly, the prob-
ability that a first passage through a positive point takes place at epoch n
equals }u,, where » = 3n or v= 3(n—1). (This is trivially true also

for n= 1, but false for n = 0.) The duality principle leads us here to

an interesting result which is not easy to verify directly.

(b) Continuation. In the preceding proposition the terminal point was
not specified in advance. Prescribing the point r ofthe first passage means
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supplementing (8.4) by the condition S, =r. The dual event consists of
the path from the origin to (n, r) with all intermediate vertices above the
axis: The numberofsuch paths follows directly from the reflection lemma
[with 4 = (1,1) and B= (n,r)], and weget thus a new prooffor(7.4).

(c) Maximum at the terminalpoint. A new pair of dual events is defined
whenthestrict inequalities > in (8.3) and (8.4) are changed to >. The

second event occurs whenever the term S, is maximal even when this
maximum wasalready attained at some previous epoch.!’ Referring to

(3.4) onesees that the probability of this event equals u,, where v = $n or

vy = 3(n+1). It is noteworthy that the probabilities are twice the prob-
abilities found under(a).

(d) The event that k returns to the origin have taken place is dual to the

event that k visits to the terminal point occurred before epoch n. A
similar statement applies to changes of sign. (For the probabilities see

section 5 and problems 9-10.)

(e) Arc sine law for the first visit to the terminal point. Consider a
randomly chosen path of length n = 2v. We saw under (a) that with

probability ju,, the value S,, is positive and such that no term of the
sequence S,Sj,...,S_,, equals S,,. The same is true for negative

S.,, and hence the probability that the value S,, is not attained before
epoch 2y equals u,,; this is also the probability of the event that S,, = 0

in which the terminal value is attained already at epoch 0. Consider now
more generally the event that thefirst visit to the terminal point takes place
at epoch 2k (in other words, we require that S,, = S,, but S;4 S,, for

j < 2k). This is the dual,to the event that the last visit to the origin took
place at epoch 2%, “dndWesaw in section 4 that suchvisits are governed by
the discrete aresine distribution. We have thus the unexpected result
that with probability 24,9, = Usgllsy—o, the first visit to the terminalpoint
S2, took place at epoch 2v— 2k (k = 0,1,.., 7). It follows, in particular,

that the epochs 2k and 2v — 2k are equally probable. Furthermore, very
early and very late first visits are much more probable thanfirst visits at

other times.

(f) Arc sine lawfor the position ofthe maxima. As a last example of the
usefulness of the duality principle we show that the results derived under
(a) and (c) yield directly the probability distribution for the epochs at which

the sequence So, S,,...,8, reaches its maximum value. Unfortunately

the maximum value can beattained repeatedly, and so we must distinguish

17 In the terminology used in chapter 12 of volume 2 we are considering a weak
ladder point in contrast to the strict ladder points treated under(a).
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between the first and the last maximum. Theresults are practically the
same, however.

For simplicity let n = 2v be even. Thefirst maximum occurs at epoch
k if

(8.52) S.<S,  ..-,Sii<S,

(8.55) Sy41 < Si, cre ’ Soy < S;.-

Let us write k in the form k= 2p or k=2p +1. According to (a)

the probability of (8.5a) equals }u.,, except when #=0. The event
(8.55) involves only the section of the path following the epoch k and
its probability obviously equals the probability that in a path of length

2v — k all vertices lie below or on the ¢-axis. It was shown under (c)
that this probability equals u,,-»,. Accordingly, if 0 << k < 2» the prob-
ability that in the sequence So, ..., Sey thefirst maximum occurs at epochs
k=2p or k=2p +1 is given by 3ue,Uz,-2,. For k =0 and k = 2v

the probabilities are ug, and }$ug,, respectively.

(For the /ast maximum the probabilities for the epochs 0 and 2y are
interchanged; the other probabilities remain unchanged provided k is
written in the form k = 2p or k = 2p — 1.)

Wesee that with a proper pairing of even and oddsubscripts the position
of the maxima becomessubject to the discrete arc sine distribution. Con-

trary to intuition the maximal accumulated gain is much morelikely to
occur towards the very beginning or the very end of a coin-tossing game
than somewhere in the middle.

9. AN EQUIDISTRIBUTION THEOREM

We conclude this chapter by proving the theorem mentioned in connec-
tion with Galton’s rank ordertest in example (1.5). It is instructive in that
it shows how an innocuousvariation in conditions can change the character

of the result.
It was shownin section 4 that the numberofsides lying above the x-axis

is governed bythe discrete arc sine distribution. We now consider the same

problem but restricting our attention to paths leading from the origin to a

point of the x-axis. The result is unexpected in itself and because of the
striking contrast to the arc sine law.

Theorem. The number ofpaths of length 2n such that So, =0 and
exactly 2k of its sides lie above the axis is independent of k and equal to
27"us,|(n+1) = 2?"+1f,,10. (Here k =0,1,...,n.)
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Proof. We consider the cases k =0 and k =n separately. The
number of paths to (2n,0) with all sides above the z-axis equals the
numberofpaths from (1, 1) to (2n, 0) which do not touchthe line directly
below the z-axis. By the reflection principle this number equals

(9.1) (") _ (7) = 1 ("").

n n+l n+1

This proves the assertion for k =n and, by symmetry, also for k = 0.
For 1<k<n-—1J1 we use induction. The theorem is easily verified

when n = I, and we assumeit correct for all paths of length less than 2n.
Denote by 2r the epoch ofthe first return. There are two possibilities.
If the section of the path up to epoch 2r is on the positive side we must
have 1 <+r<k andthe second section has exactly 2k — 2r sides above
the axis. By the induction hypothesis a path satisfying these conditions
can be chosen in

 

Qen—er g2n—2

9.2 2r-y, - ——__ yw,», = ———(9.2) fr nord er ppd Usr_2Uon—or

different ways. On the other hand,if the section up tothefirst return to the
origin is on the negative side, then the terminal section of length 2n — 2r
contains exactly 2k positive sides, and hence in this case n —r>k.
For fixed r the numberofpathssatisfying these conditions is again given
by (9.2). Thus the numbers of paths of the two types are obtained by
summing (9.2) over 1<r<k and 1<r<n-—k, respectively. In

the second sum change the summation index r to p=n+1—r. Then
p runs from k + 1 to n, and the termsof the sum are identical with (9.2)
when r isreplaced by p. It follows that the numberofpaths with k posi-
tive sides is obtained by summing (9.2) over 1 <r <n. Since k does not
appearin (9.2) the sum is independent of k as asserted. Since the total
number of paths is 2?"u., this determines the number of paths in each
category. (Fora direct evaluation see problem 13.) >

An analogous theorem holdsalso for the position of the maxima. (See
problem 14.)

10. PROBLEMS FOR SOLUTION

1. (@) If a >0 and 6 > 0, the number of paths (s,, 5,...,5,) such that
5) > —b,..., 5,1 > —b, 5, =a equals Nia — Nn,ar20-

(6) If 6b >a>O there are Ni — Nnov-a paths satisfying the conditions
Sy <b, 6.5 S5n1 <b, 5, =a.

2. Let a >c>O0 and 6>0. The numberof paths which touch the line
« =a and then lead to (n, c) without having touched the line x = —b equals
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Nn.2a—~e — Nn,2a+204+e- (Note that this includes paths touching the line z = —5
before the line x = a.)

3. Repeated reflections. Let a and b be positive, and —b <c <a. The
numberof paths to the point (n, c) which meet neither the line x = —6 nor
x = a@ is given bythe series

> (Nn,ox(a+b)4¢ ~ n,2k(a-+b)+2a—c)s

the series extending over all integers k from —o to oo, but having onlyfinitely
many non-zero terms.

Hint: Use and extend the method of the preceding problem.

Note. This is connected with the so-called ruin problem which arises in
gambling whenthe two players have initial capitals a and 5 so that the game
terminates when the accumulated gain reaches either a@ or —b. For the
connection with statistical tests, see example(1.c).

(The method of repeated reflections will be used again in problem 17 of
XIV,9 and in connection with diffusion theory in volume 2; X,5.)

4. From lemma3.1 conclude (without calculations) that

Ugllen + Uglan_2 + °° * + Ugnly = 1.

ton = (=D( fn = (-0(?),

Derive the identity of the preceding problem as well as (2.6) from II, (12.9).

6. Prove geometrically that there are exactly as many paths ending at
(2n + 2,0) and having all interior vertices strictly above the axis as there are
paths ending at (2n,0) and havingall vertices above or on the axis. Therefore
P{S, > 0,..., Sony = 0, Son = 0} = 2fanie.

Hint: Referto figure 1.

7. Prove lemma 3.1 geometrically by showing that the following construc-
tion establishes a one-to-one correspondence between the twoclasses of paths:

Given a path to (2,0) denote its /eftmost minimum point by M = (k, m).
Reflect the section from the origin to M on the vertical line ¢ = & and slide
the reflected section to the endpoint (2n,0). If M is taken as origin of a
new coordinate system the new path leads from the origin to (2n, 2m) and has
all vertices strictly above or on the axis. (This construction is due to E. Nelson.)

8. Prove formula (3.5) directly by considering the paths that never meet the
line x = —1.

9. The probability that before epoch 2n there occur exactly r returns to
the origin equals the probability that a return takes place at epoch 2n andis
preceded by at least r returns. Hint: Use lemma 3.1.

10. Continuation. Denote by Z,,., the probability that exactly r returns to
the origin occur up to and including epoch 2n. Using the preceding problem
show that z,on = Pron + Pri1an +°°* Where p;o, is the probability that the
rth return occurs at epoch 2n. Using theorem 7.4 conclude that

1 2n—r
zron = a2n—7 ° n .

5. Show that

w
h
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11. Alternative derivationfor the probabilities for the number ofchanges of sign.
Show that

] n—1

Son= 3 >,fanl€r—1.2na2e + €,on—1-24]-
k=

Assuming by induction that (5.1) holds forall epochs prior to 2n — 1 show
that this reduces to

n-1

Sr,Qn—1 =2 > SoxPon—2k,2r

1

whichis the probability of reaching the point(2x,2r) after a return to theorigin.
Considering the first step and using the ballot theorem conclude that (5.1) holds.

12. The probability that S,, = 0 and the maximum of S,,..., Sen} equals
k is the same as P{S,, = 2k} — P{S,, = 2k + 2}. Prove this by reflection.

13. In the proof of section 9 it was shownthat

a 1 I
p> r(n—r+1) Uor_QUon_or = n+l Uon- 

Show that this relation is equivalent to (2.6). Hint: Decompose the fraction.

14. Consider a path of length 2” with S,, =0. We order the sides in
circular order by identifying 0 and 2n with the result that the first and the
last side become adjacent. Applying a cyclical permutation amounts to viewing
the same closed path with (k,S,) as origin. Show that this preserves maxima,
but moves them & steps ahead. Conclude that when all 2” cyclical permuta-
tions are applied the numberof times that a maximum occurs at r is independent
of r.

Consider now a randomly chosen path with S,, = 0 and pick the place of
the maximum if the latter is unique; if there are several maxima, pick one at
random. This procedure leads to a number between 0 and 2n — 1. Show
thatall possibilities are equally probable.

 



CHAPTER IV*

Combination of Events

This chapter is concerned with events which are defined in termsof cer-
tain other events A,, As,..., Ay. For example, in bridge the event 4A,

“at least one player has a complete suit,”’ is the union of the four events
A,, “player number k has a complete suit’’ (kK = 1, 2, 3, 4). Of the events

A, one, two, or more can occur simultaneously, and, because of this over-

lap, the probability of A is not the sum of the four probabilities P{A,}.
Given a set of events 4;,...,Ay, we shall show how to compute the

probabilities that 0, 1, 2,3,... among them occur."

1. UNION OF EVENTS

If A, and A, are two events, then A = A, U A, denotes the event

that either A, or A, or both occur. From I, (7.4) we knowthat

(1.1) P{A} = P{A;} + P{A,} — P{A,A}.

Wewantto generalize this formula to the case of N events A), As,..-,

Ay; that is, we wish to compute the probability of the event that at least
one among the A, occurs. In symbolsthis eventis

A= A, UA, U+** UAx.

For our purposeit is not sufficient to know the probabilities of the indi-
vidual events A,, but we must be given complete information concerning
all possible overlaps. This means that for every pair (i,j), every triple
(i, j, k), etc., we must know the probability of A; and A;, or A;, A;, and

* The material of this chapter will not be used explicitly in the sequel. Only the
first theorem is of considerable importance.

1 For further information see M. Fréchet, Les probabilités associées a un systéme

d’événements compatibles et dépendants, Actualités scientifiques et industrielles, nos.

859 and 942, Paris, 1940 and 1943.

98
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A,, etc., occurring simultaneously. For convenience of notation we shall
denote these probabilities by the letter p with appropriate subscripts. Thus

(1.2) Pi = PLAY, Pixs = P{A,Aj}, Pin = P{A,A;A,},.---

The orderofthe subscriptsis irrelevant, but for uniqueness we shall always
write the subscripts in increasing order; thus, we write P3.7.11 and not
Pz,3.11- Two subscripts are never equal. For the sum ofall ps with r
subscripts we shall write S,, that is, we define

(1.3) S,= >Pe So = >Piss S3 = >Pies see

Here i<j<k<:---<N, so that in the sums each combination

r

Sy, reduces to the single term p,55,y, Which is the probability of the
simultaneousrealization of all N events. For N = 2 we have only the
two terms S, and S,, and (1.1) can be written

appears once and only once; hence S, has ( terms. The last sum,

(1.4) P{A} = S, — Sy.

The generalization to an arbitrary number N of events is given in the
following

Theorem. The probability P, of the realization of at least one among

the events A,, Ag,..., Ay is given by

(1.5) P, = S;— S,+ S;—S,+ —-+++ + Sy.

Proof. We prove (1.5) by the so-called method of inclusion and ex-

clusion (cf. problem 26). To compute P, we should add the probabilities
of all sample points which are contained in at least one of the A,, but each
point should be taken only once. To proceed systematically wefirst take
the points which are contained in only one A,, then those contained in
exactly two events A,, and so forth, and finally the points (if any) con-

tained in all A, Now let E be any sample point contained in exactly n
among our N events A;. Without loss of generality we may number the
events so that E is contained in A, As,..., A, but not contained in

Anst» Ansas+++,Ay. Then P{E} appears as a contribution to those

Pw Pai Piixs --- Whose subscripts range from 1 to n. Hence P{E} appears

n times as a contribution to S,, and (") times as a contribution to

S,, etc. In all, when the right-handside of (1.5) is expressed in terms of
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the probabilities of sample points we find P{£} with the factor

(1.6) n—(3)+ (5) -t0#(")

It remains to show that this number equals 1. This follows at once on
comparing (1.6) with the binomial expansion of (1—1)” [cf. II, (8.7)]. The
latter starts with 1, and the termsof (1.6) follow with reversed sign. Hence
for every n > 1 the expression (1.6) equals 1. >

Examples. (a) In a game ofbridge let A; be the event “‘player number
52

13
and player j have complete suits can occur in 4-3 ways and has prob-

52\ (3
ability p;; = 2/(*) (*): similarly we find

von(3)GN68)
Finally, p1,2,3,4 = P1,2,3. since whenever three players have a completesuit
so does the fourth. The probability that some player has a completesuitis
therefore P; = 4p; — 6P1.2 + 4P1.2,3 — Pi23,4. Using Stirling’s formula,

we see that P,; = ¢° 107! approximately. In this particular case P, is
very nearly the sum of the probabilities of A,;, but this is the exception
rather than the rule. oo

(b) Matches (coincidences). The following problem with manyvariants *
and a surprising solution goes back to Montmort (1708). It has been
generalized by Laplace and many other authors.

Two equivalent decks of N different cards each are put into random
order and matched against each other. Ifa card occupies the same place in
both decks, we speak of a match (coincidence or rencontre). Matches may
occur at any of the N places andat several places simultaneously. This
experiment may be described in more amusing forms. For example, the

two decks may be represented by a set of N letters and their envelopes,
and a capricioussecretary may perform therandom matching. Alternatively

we may imagine the hats in a checkroom mixed anddistributed at ran-
dom to the guests. A match occurs if a person gets his own hat. Itis

instructive to venture guesses as to how the probability of a match depends
on N: How does the probability of a match of hats in a diner with 8
guests compare with the corresponding probability at a gathering of
10,000 people? It seems surprising that the probability is practically
independent of N and roughly 3. (Forless ‘frivolous applications cf.
problems 10 and 11.) eS

i has a complete suit.”” Then p; = 4/ ( ); the event that both player i
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The probabilities of having exactly 0, 1, 2, 3, ... matches will be cal-
culated in section 4. Here we shall derive only the probability P, of at
least 1 match. For simplicity of expression let us renumber the cards
1,2,..., N in such a way that one deck appearsin its natural order, and

assume that each permutation of the second deck has probability 1/N!.

Let A, be the event that a match occurs at the kth place. This means that

card number k is at the kth place, and the remaining N — 1 cards may
be in an arbitrary order. Clearly p, = (N—1)!/N! = 1/N. Similarly, for
every combination i,j we have p,; = (N—2)!/N! = 1/N(N—1), etc.

N
The sum S;, contains( terms, each of which equals (N—r)!/N}.

r

Hence S, = 1/r!, and from (1.5) we find the required probability to be

1 1 1
(1.7) Ppal-S+z7t ao

Note that 1 — P, represents the first N + 1 terms in the expansion

| a_yozui_i1,ti_....(1.8) e =1 I+5 31 aI + >

and hence

(1.9) P,x~1l1—e1?= 0.63212...,

approximately. The degree of approximation is shown in the following
table of correct values of P:

N= 3 4 5 6 7

P, = 0.66667 0.62500 0.63333 0.63196 0.63214 >

2. APPLICATION TO THE CLASSICAL

OCCUPANCY PROBLEM

Wenowreturn to the problem of a random distribution of r balls in

n cells, assuming that each arrangementhas probability n—’. We seek the
probability p,,(r,) of finding exactly m cells empty.”

Let A, be the event that cell number k is empty (k = 1, 2,..., 7).
In this event all r balls are placed in the remaining m — 1 cells, and this

can be done in (n—1)" different ways. Similarly, there are (n—2)"

* This probability was derived, by an entirely different method, in problem 8 in

II, 11. Compare also the concluding remark in section 3.
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arrangements, leaving two preassigned cells empty, etc. Accordingly

1Vv avr 3\"

(2.1) p= (1--), ps= (1), Pw (1-2)...
n n n

and hence for every vy <n

(2.2) S,= (”) (1 _ *).

The probability that at least one cell is empty is given by (1.5), and hence
we find for the probability that all cells are occupied

(23) porn) =1—-S,+S,—4--- =sc-17(") ( _ *y.
nA

Consider now a distribution in which exactly m cells are empty. These

m cells can be chosen in (") ways. The r balls are distributed among

the remaining n — m cells so that each of these cells is occupied; the

number of such distributions is (n—m)'p,(r,n — m). Dividing by n” we

find for the probability that exactly m cells remain empty

(2.4) Pals 2) = (") ( _ =)par n—m) =

= (")So("") (1Y
Mm] v=0 v n

We have already used the model of r random digits to illustrate the
random distribution of r thingsin n = 10 cells. Empty cells correspond
in this case to missing digits: if m cells are empty, 10 — m different
digits appear in the given sequence. Table 1 provides a numerical illustra-
tion.

It is clear that a direct numerical evaluation of(2.4)is limited to the case

of relatively small n and r. On the other hand, the occupancyproblemis
of particular interest when n is large. If 10,000 balls are distributed in
1000cells, is there any chanceoffinding an empty cell? Ina group of 2000
people, is there any chance of findinga day in the year which is not a
birthday? Fortunately, questions of this kind can be answered by means
of a remarkably simple approximation with an error which tends to zero
as n—> oo. This approximation and the argumentleadingto it are typical
of many limit theorems in probability.
Our purpose, then, is to discuss the limiting form of the formula (2.4)

as n— oo and r— oo. The relation between r and n is,in principle,
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TABLE |

PROBABILITIES p,,(r, 10) ACCORDING TO (2.4)
 

 

m r=10 r=18

0 0.000 363 0.134 673

1 0.016 330 0.385 289

2 0.136 080 0.342 987

3 0.355 622 0.119 425

4 0.345 144 0.016 736

5 0.128 596 0.000 876

6 0.017 189 0.000 014

7 0.000 672 0.000 000

8 0.000 005 0.000 000

9 0.000 000 0.000 000
 

Pr, 10) is the probability that exactly m of
the digits 0,1,...,9 will not appear in a

sequence of r random digits.

arbitrary, but if the average number r/n of balls per cell is excessively
large, then we cannot expect any empty cells; in this case p,(r,n) is

near unity and all p,,(r,n) with m> 1 are small. On the other hand,if
r[n tends to zero, then practically all cells must be empty, and in this case
Prlt,n)—> 0 for every fixed m. Therefore only the intermediate case is of

real interest.
Webegin by estimating the quantity S, of (2.2). Since

(n—0)" <(n), <n”
we have

v+r r

(2.5) (1 _ *) <vlS,< (I _ *).
n n

For 0 <¢ <1 itis clear from the expansionII, (8.10) that —log (1—r)

lies between ¢ and ¢/(1—t). Therefore

(2.6) {neNOM at Ss {new},

Nowput for abbreviation

(2.7) ne-"'™ = A

and suppose that r and n increase in such a way that 4 remains con-
strained to a finite interval 0 < a < A <b. Foreachfixed » the ratio of
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TABLE 2

PoISSON APPROXIMATION (2.11) TO THE PROBABILITIES OF FINDING EXACTLY m Empty CELLS WHEN r BALLS ARE RANDOMLY
DISTRIBUTED IN 2 = 1000 CELLS

 

pim; A)
 

r A m=0O0 !|!m=1 m=2| m=3| m=4|]m=5|m=6!|m=7| m=8| m=9 m=10 m=i11

 

5000 6.74 [0.0012 0.0080 0.0269 0.0604 0.1017 0.1371 0.1540 0.1482 0.1249 0.0935 0.0630 0.0386

5500 4.09 |0.0167 0.0685 0.1400 0.1909 0.1951 0.1596 0.1088 0.0636 0.0325 0.0148 0.0060 0.0023

6000 2.48 {0.0838 0.2077 0.2575 0.2128 0.1320 0.0655 0.0271 0.0096 0.0030 0.0008 0.0002

6500 1.50 {0.2231 0.3347 0.2510 0.1255 0.0471 0.0141 0.0035 0.0008 0.0001

7000 0.91 |0.4027 0.3661 0.1666 0.0506 0.0115 0.0021 0.0003

7500 0.55 [0.5777 0.3163 0.0873 0.0162 0.0023 0.0003

8000 0.34 {0.7126 0.2406 0.0414 0.0049 0.0004

8500 0.20 |0.8187 0.1637 0.0164 0.0011 0.0001

9000 0.12 (0.8869 0.1064 0.0064 0.0003             
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the extreme membersin (2.6) then tends to unity, and so

(2.8) o<%_s,-0,
v!

This relation holds trivially when A-»0, and hence (2.8) remains true
whenever r and n increase in such way that 2 remains bounded. Now

(2.9) e+ — pr, n) =yy - s,

and (2.8) implies that the right side tendsto zero. Furthermore, the factor
of po(r,n — m) in (2.4) may be rewritten as S,,, and we have therefore

for each fixed m

m

(2.10) Plt, n) — ee? a —> 0.
m!

This completes the proof of the

Theorem.? If n and r tend toinfinity so that 1 = ne!" remains

bounded, then (2.10) holdsfor each fixed m.

The approximating expressions
A™

(2.11) p(m; A) = e& *# —
m!}

define the so-called Poisson distribution, which is of great importance and

describes a variety of phenomena; it will be studied in chapter VI.
In practice we may use p(m; A) as an approximation whenever n is

great. For moderate values of m an estimate of the error is required, but
weshall not enter intoit.

Examples. (a) Table 2 gives the approximate probabilities of finding
m cells empty when the numberofcells is 1000 and the numberofballs
varies from 5000 to 9000. For r = 5000 the median value of the number

of empty cells is six: seven or more emptycells are about as probable as
six or fewer. Even with 9000 balls in 1000 cells we have about one chance

in nine to find an emptycell.
(b) In birthday statistics [example II, (3.d)] n = 365, and r is the

number of people. For r = 1900 we find 4 = 2, approximately. In a
village of 1900 people the probabilities P.,, offinding m days of the year

° Due (with a different proof) to R. von Mises, Uber Aufteilungs- und Besetzungs-
wahrscheinlichkeiten, Revue de la Faculté des Sciences de Il’ Université d’Istanbul, N.S.,

vol. 4 (1939), pp. 145-163.

 



106 COMBINATION OF EVENTS [IV.3

which are not birthdays are approximately as follows:

Pro = 0.135, Puy = 0.271, Pry, = 0.271, Pg, = 0.180,
Pry = 0.090, Psy = 0.036, Pry = 0.012, PP,= 0.003.

(c) When nlogn + an balls are placed into n cells and n is large,
the probability of finding all cells occupied is 1 — e~?. >

Instead of empty cells one may consider cells containing exactly k balls.
The argument used above for the special case k = 0 applies with minor
changes. As von Mises has shown,the probability of finding exactly m
cells with k-tuple occupancy can again be approximated by the Poisson
distribution (2.11), but this time 4 must be defined as

evn r\*

(2.12) A=n 7 (*).
A,

 

3. THE REALIZATION OF m AMONG

N EVENTS

The theorem of section 1 can be strengthened as follows.

Theorem. For any integer m with 1<m<N the probability P_,.)
that exactly m among the N events A,,..., Ay occur simultaneously is
given by

1 2 N
(3.1) Pim) = Sn — (” )Sm + ("* )Smu — tots ( )Sx.

m m m

Note: According to (1.5), the probability Po, that none among the
A; occursis

(3.2) Pop =1—Pr=1—S,+S.—S,4°°° F Sy.

This showsthat (3.1) gives the correct value also for m = 0 provided we

put S,=1.

Proof. We proceed as in the proof of (1.5). Let E be an arbitrary
sample point, and suppose that it is contained in exactly n among the
N events A;. Then P{E} appears as a contribution to P,,,, only if

n=m. To investigate how P{£} contributes to the right side of (3.1),

note that P{E£} appears in the sums S,,S,,...,5, but not in S,44,

., Sy. It follows that P{£} does not contribute to the right side in
(3.1) if n<m. If n=™m, then P{E} appears in one and only one term
of S,,. To complete the proof of the theorem it remains to show that for

n> the contributions of P{E} to the terms S,,, Sm41,...,S, onthe

right in (3.1) cancel. Now P{E} appears in S, with the factor (7),

o
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namely the number of k-tuplets that can be formed out of the n events

containing the point E. For n> m the total contribution of P{E} to

the right side in (3.1) is therefore

9 ()- CEG) (beta)
When the binomial coefficients are expressed in terms of factorials, it is

seen that this expression reduces to

09 (Wli("o") = (2")+Coad
ae AdeN . . ;

Within the braces we have the binomial expansion of (1—1)"~™ so that

(3.3) vanishes, as asserted. >

The reader is asked to verify that a substitution from formula (2.2)

into (3.1) leads directly to (2.4).

4. APPLICATION TO MATCHING AND

GUESSING

In example (1.5) we considered the matching of two decks of cards and

found that S, = 1/k!. Substituting into (3.1), we find the followingresult.

In a random matching of two equivalent decks of N distinct cards the

probability Pim, of having exactly m matches is given by

  

  

 

 

 

 

 

Py I-1tSotteepEM

(4.1) Py 11+ -3ttea

Patall-t+5-y+—tqeqcyl

Pa=3;{[-1+ 5-3 4-7 tqoyil

9 =Wopl| -1+5]

Lv-1] = iL — 1} =0 Pai=
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TABLE 3

PROBABILITIES OF m CORRECT GUESSES IN CALLING A DECK OF NDISTINCT CARDS
 

N=3 N=4 N=5 N=6 N= 10
 

P{m]) bm Pim] bm Pim] bm Plm]) bm P(m] bm Pm
 

O 0.333 0.296 0.375 0.316 0.367 0.328 0.368 0.335 0.36788 0.34868 0.367879
1 0.500 0.444 0.333 0.422 0.375 0.410 0.367 0.402 0.36788 0.387421 0.367879
2 +++ 0.222 0.250 0.211 0.167 0.205 0.187 0.201 0.18394 0.19371 0.183940
3 0.167 0.037 --- 0.047 0.083 0.051 0.056 0.053 0.06131 0.05740} 0.061313
4 0.042 0,004 --+ 0.006 0.021 0.008 0.01534 0.01116

|

0.015328
5 0.008 0.000 --- 0,001 0.00306 0.00149

|

0.003066
6 0.001 0.000 0.00052 0.00014

|

0.000511
7 0.00007 0.00001 0.000073
8 0.00001 ..... 0.000009
nae0.000001
a0.000000   
The P[m] are given by(4.1), the 5,, by (4.4). The last column gives the Poisson limits (4..3)
 

The last relation is obvious.’ The vanishing of P,y_,; expresses the
impossibility of having N— 1 matches without having all N cards in
the same order.
The braceson theright in (4:1) contain the initial terms of the expansion

of e~*. For large N we have therefore approximately

el

(4.2) Pim © mal

In table 3 the columns headed P,,,) give the exact values of P,,,, for
N = 3, 4, 5, 6, 10. The last columngives the limiting values

(4.3) Pm = —-
m!

The approximation of p,, to Pim, is rather good even for moderate
values of N.

For the numbers p,, defined by (4.3) we have

1 1
>Pe = e(iititat ‘ = ete = 1,

Accordingly, the p, may be interpreted as probabilities. Note that (4.3)

represents the special case 4 = 1 of the Poisson distribution (2.11).

Example. Testing guessing abilities. In wine tasting, psychic experi-
ments, etc., the subjectis asked to call an unknownorder of N things,say,

cards. Any actual insight on the part of the subject will appear as a depar-
ture from randomness. To judge the amount of insight we must appraise
the probability of turns of good luck. Now chance guesses can be made
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according to several systems among which we mention three extreme
possibilities. (1) The subject sticks to one card and keeps calling it. With

this system he is sure to have one, and only one, correct guess in each

series; chance fluctuations are eliminated. (ii) The subject calls each card
once so that each series of N guesses corresponds to a rearrangement of
the deck. If this system is applied without insight, formulas (4.1) should
apply. (iil) A third possibility is that N guesses are made absolutely
independently of each other. There are N* possible arrangements. It is

true that every person hasfixed mental habits andis proneto call certain
patterns more frequently than others, but in first approximation we may

assume all N' arrangements to be equally probable. Since m correct

and N—m incorrect guesses can be arranged in ( ) wan"
m

different ways, the probability of exactly m correct guesses is now

(4.4) b, = (a.

[This is a special case of the binomial distribution and has been derived
in example II, (4.c).]

Table 3 gives a comparison of the probabilities of success when guesses

are madein accordance with system (ii) or(iii). To judge the merits of the
two methods werequire the theory of mean values and probable fluctua-
tions. It turns out that the average numberofcorrect chance guessesis one
under all systems; the chance fluctuations are somewhat larger under

system (ii) than (ili). A glance at table 3 will show that in practice the
differences will not be excessive. >

5. MISCELLANY

(a) The Realization of at Least m Events

With the notations of section 3 the probability P,, that m or more of
the events A,,...,Ay occur simultaneously is given by

(5.1) Pin = Pemy + Pemiay $0 + Pry

To find a formula for P,, in terms of S, it is simplest to proceed by
induction, starting with the expression (1.5) for P, and using the recur-

rence relation Pz.) = P, — Pim; We get for m> 1

(5.2) Pa =Sm— (,." 1) Sms +
2 N-11 (71)Sei _ (ane peg ( JS.

m—1 m—1
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It is also possible to derive (5.2) directly, using the argument which led

to (3.1).

(b) Further Identities

F 1,he coefficients S, can be expressed in terms of either Py, or P, as

ollows
Nk(5.3) s,= (3) Pea
k=v

and
N k _ 1

(5.4) S, =>(; — ‘ P,.

Indication of proof. For given values of P,,,, the equations (3.1) may
be taken as linear equations in the unknowns S,, and we have to prove
that (5.3) represents the unique solution. If (5.3) is introduced into the
expression (3.1) for Prmj, the coefficient of Py, (m < k < N)to the right

is found to be

v9 Zew(,)()=()Seo-(2)
If k = m this expression reduces to 1. If k > m the sum is the binomial

expansion of (1—1)*-™ and therefore vanishes. Hence the substitution

(5.3) reduces (3.1) to the identity Pim; = Prmj. The uniqueness of the

solution of (3.1) follows from the fact that each equation introduces only

one new unknown,so that the S, can be computedrecursively.. The truth

of (5.4) can be proved in a similar way.

(c) Bonferroni’s Inequalities

A string of inequalities both for P,,,; andfor P,, can be obtainedin the

following way. Jf in either (3.1) or (5.2) only the terms involving Sm Smiis

.5 Sintr_1 are retained while the terms involving Sinir, Smirtis+ ++» SN

are dropped, then the error(i.e., true value minus approximation) has the

sign of the first omitted term [namely, (—1)"], and is smaller in absolute

value. Thus, for r=1 and r=2:

(5.6) Sim — (M#I)Sinst S Pim S Sm

and

(5.7) Sm — MSingi < Pm < Sm:

Indication of Proof. The identity (3.1) for P,,,, shows that the

assertion (5.6) is equivalent to
NY

(5.8) y or'(”)s, > 0,
v=t
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for every t. Now use (5.3) to write the left side as a linear combination
of the Pj). For t<k < WN the coefficient of P,,; equals

Eor(A)() = (A)ZC)
The last sum equals ( and is therefore positive (problem 13 of

t—m—|]

II, 12). For further inequalities the reader is referred to Fréchet’s mono-
graph cited at the beginning of the chapter.

6. PROBLEMS FOR SOLUTION

Note: Assume in each case that all possible arrangements have the same
probability.

1. Ten pair of shoes are in a closet. Four shoes are selected at random. Find
the probability that there will be at least one pair amongthe four shoesselected.

2. Five dice are thrown. Find the probability that at least three of them show
the same face. (Verify by the methodsofII, 5.)

3. Find the probability that in five tossings a coin falls heads at least three
times in succession.

4. Solve problem 3 for a head-run ofat least length five in ten tossings.

5. Solve problems 3 and 4 for ace runs whena die is used instead of a coin.

6. Two dice are thrown r times. Find the probability p, that each of the
six combinations (1, 1),..., (6,6) appears at least once.

7. Quadruples in a bridge hand. By a quadruple we shall understand four
cards of the same face value, so that a bridge hand of thirteen cards may contain
0, 1, 2, or 3 quadruples. Calculate the corresponding probabilities.

8. Sampling with replacement. A sample of size r is taken from a population
of n people. Find the probability u, that N given people will all be included
in the sample. (This is problem 12 ofII, 11.)

9. Sampling without replacement. Answer problem 8 for this case and show
that u, > pN. (This is problem 3 of II, 11, but the present method leads to a
formally entirely different result. Prove their identity.)

10. In the general expansion of a determinant of order N the number of
terms containing one or more diagonal elements is N!P, defined by (1.7).

11. The number of ways in which 8 rooks can be placed on a chessboard so
that none can take another and that none stands on the white diagonalis
8!(1—P,), where P, is defined by (1.7) with N = 8.

12. A sampling (coupon collector's) problem. A pack of cards consists of
s identical series, each containing n cards numbered 1,2,...,”. A random
sample of r >n cards is drawn from the pack without replacement. Calculate
the probability u, that each number is represented in the sample. (Applied
to a deck of bridge cards we get for s = 4, n = 13 the probability that a hand
of r cards contains all 13 values; and for s = 13, n = 4 weget the probability
that all four suits are represented.)
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13. Continuation. Show that as s— o one has u,—> Polr, ) where the
latter expression is defined in (2.3), This means that in the limit our sampling
becomes random sampling with replacement from the population of the numbers
12,...,n.

14. Continuation. From the result of problem 12 conclude that

n

k=

if r<n andfor r=n

y (—D"(Jors—Ks), = s'n!,
k=0 k

(-D(7)os—K0, =0

Verify this by evaluating the rth derivative, at « =0, of

1

15. In the sampling problem 12 find the probability that it will take exactly
r drawings to get a sample containing all numbers. Pass to the limit as s > ©,

16. A cell contains N chromosomes, between any two of which an inter-

change of parts may occur. If r interchanges occur (which can happen in
N r

(*) distinct ways), find the probability that exactly m chromosomeswill be

involved.*

17, Find the probability that exactly & suits will be missing in a poker hand.

18. Find the probability that a hand ofthirteen bridge cards contains the
ace-king pairs of exactly k suits.

19. Multiple matching. Two similar decks of N distinct cards each are
matched simultaneously against a similar target deck. Find the probability
U,» Of having exactly m double matches. Show that uy—-1 as N— ©
(which implies that u,, —-0 for m > 1).

20. Multiple matching. The procedure of the preceding problem is modified
as follows. Out of the 2N cards N are chosen at random, and only these N
are matched against the target deck. Find the probability of no match. Prove
that it tends to l/e as N> ~,

21. Multiple matching. Answer problem 20 if r decks are used instead of
two.

22. In the classical occupancy problem, the probability P/,,,(k) of finding
exactly m cells occupied by exactly & things is

 

(-D"alr! ¥ (-1)! (n—j)"*
Pim 1G) = ml! nw 7 (j-m)! (1 —j)! (r —jk)! (k!)?

the summation extending over those j > m for which j <n and kj <r.

4For N = 6 see D. G. Catcheside, D. E. Lea, and J. M. Thoday, Types of chromo-

some structural change introduced by the irradiation of tradescantia microspores, Journal
of Genetics, vol. 47 (1945-46), pp. 113-149. ~. ye
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23. Prove the last statement of section 2 for the case kK = 1.

24. Using (3.1), derive the probability of finding exactly #: empty cells in
the case of Bose-Einstein statistics.

25. Verify that the formula obtained in 24 checks with I, (11.14).

26. Prove (1.5) by induction on N.

 



CHAPTER V

Conditional Probability.

Stochastic Independence

With this chapter we resume the systematic exposition of the funda-
mentals of probability theory.

1. CONDITIONAL PROBABILITY

The notion of conditional probability is a basic tool of probability
theory, and it is unfortunate that its great simplicity is somewhat obscured

by a singularly clumsy terminology. The following considerations lead in
a natural way to the formal definition.

Preparatory Examples

Suppose a population of N people includes N, colorblind people and
Nj, females. Let the events that a person chosen at random is colorblind
and a female be A and H, respectively. Then (cf. the definition of ran-
dom choice,II, 2)

(1.1) Play =", P(H} = “2,

We may nowrestrict our attention to the subpopulation consisting of
females. The probability that a person chosen at random from this sub-
population is colorblind equals Nj,4/Ny, where Nj,4 is the numberof

colorblind females. We have here no new notion, but we need a new

notation to designate which particular subpopulation is underinvestiga-
tion. The most widely adopted symbol is P{A | H}; it may be read “the
probability of the event A (colorblindness), assuming the event H (that
the person chosenis female).’” In symbols:

(1.2) P(A | H} = Nan — Plan}
Nu P{H}
114
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Obviously every subpopulation may be considered as a population inits
own right; we speak of a subpopulation merely for convenience oflan-
guageto indicate that we have a larger population in the back of our minds.

Aninsurance company maybeinterested in the frequency of damages of a
fixed amount caused bylightning (event A). Presumably this company

has several categories of insured objects such as industrial, urban, rural,

etc. Studying separately the damagesto industrial objects meansto study
the event A only in conjunction with the event H—‘‘Damageis to an
industrial object.” Formula (1.2) again applies in an obvious manner.
Note, however, that for an insurance company specializing in industrial

objects the category H coincides with the whole sample space, and
P{A | H} reduces to P{4}.

Finally consider the bridge player North. Once the cards are dealt, he

knowshis hand andis interested only in the distribution of the remaining
.39 cards. It is legitimate to introduce the aggregate ofall possible distribu-
tions of these 39 cards as a new samplespace,but it is obviously more con-
venient to consider them in conjunction with the given distribution of the
13 cards in North’s hand (event H) and to speak of the probability of an
event A (say South’s having two aces) assuming the event H. Formula

(1.2) again applies. >

By analogy with (1.2) we nowintroduce the formal

Definition. Let H be an event with positive probability. For an arbi-

trary event A we shall write

P{AH}
1.3 P(A H} = ——.(1.3) (4|H} =F
The quantity so defined will be called the conditionalprobability of A on the
hypothesis H (or for given H). When all sample points have equal
probabilities, P{A| H} is the ratio N4,,/Ny of the number of sample
points common to A and H, to the numberofpoints in H.

Conditional probabilities remain undefined when the hypothesis has
zero probability. This is of no consequencein the case of discrete sample

spaces but is important in the general theory.
Though the symbol P{A | H} itself is practical, its phrasing in wordsis

So unwieldy that in practice less formal descriptions are used. Thus in our
introductory example we referred to the probability that a female is

colorblind instead of saying “‘the conditional probability that a randomly
chosen personis colorblind given that this person is a female.’’ Often the
phrase “on the hypothesis H” is replaced by “if it is known that H
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occurred.”? Jn short, our formulas and symbols are unequivocal, but
phrasings in words are often informal and must be properly interpreted.

Forstylistic clarity probabilities in the original sample space are some-
times called absolute probabilities in contradistinction to conditional ones.
Strictly speaking, the adjective “absolute’’ is redundant and will be

omitted.
Taking conditional probabilities of various events with respect to a

particular hypothesis H amounts to choosing H as a new sample space
with probabilities proportional to the original ones; the proportionality
factor P{H} is necessary in order to reduce the total probability of the

new sample space to unity. This formulation shows that all general
theorems on probabilities are valid also for conditional probabilities with
respect to any particular hypothesis H. For example, the fundamental
relation for the probability of the occurrence of either A or B or both

takes on the form

(1.4) P{A U B| H} = P{A| H} + P{B| H} — P{AB| Hy}.

Similarly, all theorems of chapter IV concerning probabilities of the real-
ization of m among N events carry over to conditional probabilities,
but we shall not need them.
Formula (1.3) is often used in the form

(1.5) P{AH} = P{A | H}- PL}.

This is the so-called theorem on compoundprobabilities. To generalize
it to three events A, B, C wefirst take H = BC as hypothesis and then

apply (1.5) once more; it follows that

(1.6) P{ABC} = P{A | BC}: P{B | C}- P{C}.

A further generalization to four or more eventsis straightforward.
We conclude with a simple formula which is frequently useful. Let

H,,..., H, beaset of mutually exclusive events of which one necessarily
occurs (that is, the union of H,,..., HH, is the entire sample space).

Then any event A can occur only in conjunction with some H;, or in

symbols,

(1.7) A= AH, U AH, U-++ UAH,

Since the AH, are mutually exclusive, their probabilities add. Applying
(1.5) to H = H, and adding, we get

(1.8) P{A} = > P{A | H,} - {A}.
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This formula is useful because an evaluation of the conditional probabili-
ties P{A | H,} is frequently easier than a direct calculation of P{A}.

Examples. (a) Sampling without replacement. From a population of
the n elements 1,2,...,n an ordered sample is taken. Let i and j be
two different elements. Assuming that / is the first element drawn (event
H), what is the probability that the second element is j (event A)?
Clearly P{AH} = 1/n(n—1) and P{A|H} = 1/(n—1). This expresses
the fact that the second choicerefers to a population of n — 1 elements,
each of which has the same probability of being chosen. In fact, the most
natural definition of random sampling is: “Whatever the first r choices,
at the (r+1)st step each of the remaining n — r elements has probability
I/(a—r) to be chosen.” This definition is equivalent to that given in
chapter II, but we could not have stated it earlier since it involves the
notion of conditional probability.

(6) Fourballs are placed successively into fourcells, all 44 arrangements
being equally probable. Given thatthefirst two balls are in differentcells
(event H), whatis the probability that one cell contains exactly three balls
(event A)? Given H, the event A can occur in two ways, and so
P{A| HH} =2-4-% =}. (It is easy to verify directly that the events H
and AH contain 12-4? and 12-2 points, respectively.)

(c) Distribution of sexes. Consider families with exactly two children.
Letting band g stand for boy andgirl, respectively, and thefirst letter for
the older child, we have four possibilities: bb, bg, gb, gg. These are the
four sample points, and weassociate probability } with each. Given that a
family has a boy (event H), whatis the probability that both children are
boys (event A)? The event AH means bb, and H means 5b, or bg,
or gb. Therefore, P{A | H} = 4; in about one-third of the families with
the characteristic H wecan expect that A also will occur. It is interesting
that most people expect the answerto be 3. This is the correct answerto a
different question, namely: A boyis chosen at random and found to come
from a family with two children; whatis the probability that the other child
is a boy? The difference may be explained empirically. With ouroriginal
problem we mightrefer to a cardfile of families,with the secondto file of
males. In the latter, each family with two boys will be represented twice,
and this explains the difference between the tworesults.

(d) Stratified populations. Suppose a human population consists of
subpopulations or strata Hy, H,,.... These may be races, age groups,
professions, etc. Let p, be the probability that an individual chosen at
random belongs to H;. Saying “gq; is the probability that an individual
in H, is left-handed”’ is short for “‘q, is the conditional probability of the
event A (left-handedness) on the hypothesis that an individual belongs to
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H,.” The probability that an individual chosen at randomisleft-handedis
P19i + Pod2 + Pas + °**, Which is a special case of (1.8). Given that an

individualis left-handed, the conditional probability of his belonging to

stratum H, 1s

P593
(1.9) PtH, A} =+". >

| Pid1 + Podo t°''

2. PROBABILITIES DEFINED BY CONDITIONAL

PROBABILITIES. URN MODELS

In the preceding section we have taken the probabilities in the sample
space for granted and merely calculated a few conditional probabilities.
In applications, many experiments are described by specifying certain
conditional probabilities (although the adjective “‘conditional’’ is usually
omitted). Theoretically this means that the probabilities in the sample
space are to be derived from the given conditional probabilities. It has
already been pointed out [example (1.a)] that sampling without replace-
ment is best defined by saying that whatever the result of the r first
selections, each of the remaining elements has the same probability ofbeing
selected at the (r+l)st step. Similarly, in example (1.d) our stratified

population is completely described by stating the absolute probabilities
p; of the several strata, and the conditional probability q,; of the charac-
teristic “‘left-handed”’ within each stratum. A few more examples will
reveal the general scheme moreeffectively than a direct description could.

Examples. {a) We return to example 1,(5.5) in which three players

a, b, and c take turns at a game. The scheme (*) on p. 18 describes the
points of the sample space, but we have not yet assigned probabilities to
them. Suppose nowthat the gameis such thatat each trial each of the two

partners has probability 4 of winning. This statement does not contain the
word “conditional probability”’ but refers to it nonetheless. For it says
that if player a participates in the rth round (event H), his probability
of winning that particular roundis 4. It follows from (1.5) that the prob-

ability of a winning at the first and secondtry is }; insymbols, P{aa} = }.
A repeated application of (1.5) shows that P{acc} = 4, P{acbb\ = %,
etc.; that is, a sample point of the scheme (*) involving r letters has
probability 2~". This is the assignmentof probabilities used in problem 5
in Chapter 1,8 but now the description is more intuitive. (Continued in
problem 14.)

(b) Families. We want to interpret the following statement. ‘“‘The
probability of a family having exactly k children is p, (where > p, = 1).

For any familysize all sex distributions have equal probabilities.”’ Letting
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6 stand for boy and g forgirl, our sample space consists of the points 0
(no children), 6, g, bb, bg, gb, gg, bbb, .... The second assumption in
quotation markscan be stated more formally thus: If it is knownthat the
family has exactly n children, each of the 2” possible sex distributions has
conditional probability 2-". The probability of the hypothesis is p,, and
we see from (1.5) that the absolute probability of any arrangement of n
letters band g is p,- 27”.
Note that this is an example ofa stratifiedpopulation, the families ofsize

j forming the stratum H;. As an exercise let A stand for the event “the
family has boys but no girls.” Its probability is obviously P{A} =
= pi° 2+ p.- 2-* +--+ which isa special case of (1.8). The hypothesis
H, in this caseis “family has j children.’” We now ask the question: Ifit
is known that a family has no girls, what is the (conditional) probability
that it has only one child? Here A is the hypothesis. Let H be the
event “only one child.” Then AH means “onechild and no girl,’ and

P{AH} _ p27"

P(A} py2* + ped + pyr? + °°:
 (2.1) P{H | A} =

which is a special case of(1.9).

(c) Urn models for aftereffect. For the sake of definiteness consider an
industrial plant liable to accidents. The occurrenceof an accident might
be pictured as the result of a superhuman gameof chance: Fate has in
storage an urn Containing red and black balls; at regular timeintervals a
ball is drawn at random,a redball signifying an accident. If the chance of
an accident remains constant in time, the composition of the urn is always
the same. Butit is conceivable that each accident has an aftereffect in that
it either increases or decreases the chance of new accidents. This cor-
responds to an urn whose composition changes accordingto certain rules
that depend on the outcomeofthe successive drawings. It is easy to invent
a variety of such rules to cover varioussituations, but we shall be content
with a discussion of the following!

Urn model: An urn contains 6 black and r red balls. A ball is drawn
at random. It is replaced and, moreover, c balls of the color drawn and d
balls of the opposite color are added. A newrandom drawing is madefrom

' The idea to use urn models to describe aftereffects (contagious diseases) seems to
be due to Polya His scheme [first introduced in F. Eggenberger and G. Polya, Uber
die Statistik verketteter Vorgadnge, Zeitschrift fiir Angewandte Mathematik and
Mechanik, vol. 3 (1923), pp. 279-289] served as a prototype for many models discussed
in the literature. The model described in the text and its three special cases were

proposed by B. Friedman, A simple urn model, Communications on Pure and Applied
Mathematics, vol. 2 (1949), pp. 59-70.
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the urn (now containing r+b+c+d balls), and this procedure is
repeated. Here c and d are arbitrary integers. They may be chosen
negative, except thatin this case the procedure may terminateafterfinitely
many drawings for lack of balls. In particular, choosing c= —1 and
d= 0 we have the model of random drawings without replacement which
terminates after r + 5 steps.

To turn our picturesque description into mathematics, note that it
specifies conditional probabilities from which certain basic probabilities
are to be calculated. A typical point of the sample space corresponding to
n drawings may be represented by a sequence of v letters B and R.
The event “black at first drawing”’ (i.e., the aggregate of all sequences
starting with B) has probability 5/(6+r). If the first ball is black, the

(conditional) probability of a black ball at the second drawing is

(b4+c)(b+r+ce+d).

The (absolute) probability of the sequence black, black(i.e., the aggregate
of the sample points starting with BB) is therefore, by (1.5),

b b+e

b+r b+r+cec4+d

The probability of the sequence black, black, black is (2.2) multiplied by
(6+2c)((6+r+2c+2d), etc. In this way the probabilities of all sample
points can be calculated. It is easily verified by induction that the prob-
abilities of all sample points indeed add to unity.

Explicit expressions for the probabilities are not readily obtainable
except in the most important and best-knownspecial case, that of

 (2.2)

Polya’s urn scheme which is characterized by d= 0, c > 0. Here after
each drawing the numberofballs of the color drawn increases, whereas
the balls of opposite color remain-unchanged in number. In effect the
drawingof either color increases the probability of the same colorat the
next drawing, and we have a rough model of phenomena such as con-
tagious diseases, where each occurrence increases the probability of further
occurrences. The probability that of m =n, + ny drawings the first n,
ones result in black balls and the remaining n, onesin redballs is given by

b(b+c)(b+2c) +++ (b+nyc—c)* (rte) +++ (r+ngc—c)

(b+r\(b+r+c)(b+r+2c) +++ (b+r+ne—c)

Consider now any other ordering of n, black and n, red balls. In cal-
culating the probability that nm drawings result in this particular order of
colors we encounter the samefactors as in (2.3) but rearranged in a new

 (2.3)
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order. It follows that all possible sequences of n, black and n, red balls
have the same probability. The analytical simplicity (and hence the easy
applicability) of Polya’s urn scheme is due mainly to this characteristic
property. To obtain the probability p,,, that m drawingsresult in 7,

black and ne red balls in any order we must multiply the quantity (2.3)

by (” ), namely the number of possible orderings. The use of general
ny

binomialcoefficients permits us to rewrite this probability in either of the
following forms:

(ren no—1L+rc a (52)

Ny \( Neg _ ( ny Ng

(nthetnle 7 (“Orne
no n

 

(2.4) Prin =

(The discussion of the Polya scheme is continued in problems 18-24.

See also problems 9 and 10 of XVII, 10.)
In addition to the Polya scheme our urn model contains anotherspecial

case of interest, namely the

Ehrenfest model’ of heat exchange between twoisolated bodies. In
the original description, as used by physicists, the Ehrenfest model en-
visages two containers I and II and k particles distributed in them. A
particle is chosen at random and movedfrom its container into the other

container. This procedure is repeated. What is the distribution of the
particles after n steps? To reduce this to an urn modelit suffices to call
the particles in containerI red, the others black. Then at each drawingthe
ball drawnis replaced by a ball of the opposite color, that is, we have

c= —1, d=1. Itis clear that in this case the process can continue as
long as we please (if there are no red balls, a black ball is drawn auto-
matically and replaced by a red one). [Weshall discuss the Ehrenfest

model in another way in example XV,(2.e).]

The special case c = 0, d>0 has been proposed by Friedman as a

model of a safety campaign. Every time an accident occurs(i.e., a red ball
is drawn), the safety campaign is pushed harder; whenever no accident

occurs, the campaign slackens and the probability of an accidentincreases.
(d) Urn modelsfor stratification. Spurious contagion. To continuein the

vein of the preceding example, suppose that each personis liable to ac-
cidents and that their occurrence is determined by random drawings from

2p. and T. Ehrenfest, Uber zwei bekannte Einwiinde gegen das Boltzmannsche

H-Theorem, Physikalische Zeitschrift, vol. 8 (1907), pp. 311-314. For a mathematical

discussion see M. Kac, Random walk and the theory of Brownian motion, Amer. Math.

Monthly, vol. 54 (1947), pp. 369-391.
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anurn. This time, however, we shall suppose that no aftereffect exists, so
that the composition of the urn remains unchanged throughoutthe process.
Now the chance of an accident or proneness to accidents may vary from
person to person or from profession to profession, and we imagine that
each person (or each profession) has his own urn. In order not to compli-
cate matters unnecessarily, let us suppose that there are just two types of
people (two professions) and that their numbersin the total population
stand in the ratio 1:5. We consider then an urn I containing r, red and
6, black balls, and an urn II containing r, red and 6, black balls. The
experiment “choose a person at random and observe how manyaccidents
he has during n time units’ has the following counterpart: A die is
thrown, if ace appears, choose urn |, otherwise urn I}. In each case n ran-\ eeet

dom drawings with

1

replacement.are selectedfrom the urn.Our experimentAtaewe

describesthe situation of an insurance company accepting :a new subscriber.
By using (1.8) it is seen that the probability of red at thefirst drawingis

 
 

5
2.5 P{R} =- 42-1
Co) iR} 6 hon, 6 bet ry

and the probability of a sequence red, red

1 n YY. 5 rr \*
2.6 P{RR} =-- [(——) 4+ =: [——
C6) 6 (7 + 7] 6 ‘(; + =):

No mathematical problem is involved in our model, but it has an inter-
esting feature which has caused great confusion in applications. Suppose
our insurance company observes that a new subscriber has an accident
during the first year, and is interested in the probability of a further
accident during the secondyear. In other words,given thatthefirst drawing
resulted in red, we ask for the (conditional) probability of a sequencered,
red. This is clearly the ratio P{RR}/P{R} and is different from P{R}.
For the sake ofillustration suppose that

r,/(6, +r) = 0.6 and ro[(bo+re) = 0.06.

The probability of red at any drawingis 0.15, but if the first drawing re-
sulted in red, the chancesthat the next drawing also results in red are 0.42.
Note that our model assumesnoaftereffect in the total population, and yet
the occurrence of an accident for a person chosen at random increases the
odds that this same person will have a second accident. This is, however,
merely an effect of sampling: The occurrence of an accident has noreal
effect on the future, but it does serve as an indication that the person in-
volved has a relatively high proneness to accidents. Continued observa-
tions enable us for this reason to improve our predictions for the future
even thoughin reality this future is not atall affected by the past.
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In the statistical literature it has become customary to use the word

contagion instead of aftereffect. The apparent aftereffect of sampling was
at first misinterpreted as an effect of true contagion, and sostatisticians
now speak of contagion (or contagious probability distributions) in a

vague and misleading manner. Take, for example, the ecologist searching
for insects in a field. If after an unsuccessful period he finds an insect,
it is quite likely that he hasfinally reached the proximity of a litter, and in
this case he may reasonably expect increased success. In other words, in
practice every success increases the probability for further success, but once

more this is only a side effect of the increased amount of information
provided by the sampling. No aftereffect is involved, andit is misleading

whenthestatistician speaks of contagion.
(e) The following example is famous and illustrative, but somewhat

artificial. Imagine a collection of N + 1 urns, each containing a total of
N red and white balls; the urn number k contains k red and N—k

white balls (k = 0,1,2,...,N). An urn is chosen at random and n

random drawings are made from it, the ball drawn being replaced each
time. Suppose that all n balls turn out to be red (event A). We seek the
(conditional) probability that the next drawing will also yield a red ball
(event B). If the first choice falls on urn number k, then the probability

of extracting in succession n red balls is (k/N)”. Hence, by (1.8),

(2.7) poaya bbe tot NO
N*(N+1)

The event AB means that n + 1 drawingsyield red balls, and therefore

 

{71 + gnti + tee + N™71

(2.8) P{AB} = P{B} = NED

The required probability is P{B | A} = P{B}/P{4}.
When is large the numeratorin (2.7) differs relatively little from the

area between the z-axis and the graph of x” between 0 and N. We have

then approximately

_ N11
“N+in+t1 n+.
 

1 N

A similar calculation applies to (2.8) and we conclude that for large N

approximately

n+1
2.10 P{B| Ab x .

( ) {B | } n+2
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Thisresult can be interpreted roughly as follows: If all compositions of an
urn are equally probable, and if a trials yielded red balls, the probability
of a red ball at the next trial is (n+1)/(n+2). This is the so-called law of
succession of Laplace (1812).

Before the ascendance of the modern theory, the notion of equal
probabilities was often used as synonymousfor “no advance knowledge.”’
Laplace himself hasillustrated the use of (2.10) by computing the prob-
ability that the sun will rise tomorrow, given that it has risen daily for
5000 years or n = 1,826,213 days. It is said that Laplace was ready to
bet 1,826,214 to 1 in favor of regular habits of the sun, and we should be
in a position to better the odds since regular service has followed for
another century. A historical study would be necessary to appreciate
what Laplace had in mind andto understandhis intentions. His successors,
however, used similar arguments in routine work and recommended
methodsofthis kind to physicists and engineers in cases where the formu-
las have no operational meaning. Weshould have to reject the method
even if, for sake of argument, we were to concede that our universe was

chosen at random from collection in which all conceivable possibilities
were equally likely. In fact, it pretends to judge the chances of the sun’s
rising tomorrow from the assumedrisings in the past. But the assumed
rising of the sun on February 5, 3123 B.c., is by no means morecertain
than that the sun will rise tomorrow. Webelieve in both for the same
reasons. >

Note on Bayes’s Rule. In (1.9) and (2.2) we have calculated certain conditional

probabilities directly from the definition. The beginneris advised always to do so and
not to memorize the formula (2.12), which we shall now derive, It retraces in a general
way what we did in special cases, but it is only a way of rewriting (1.3). We had a
collection of events Hy, H2,... which are mutually exclusive and exhaustive, that is,
every sample point belonging to one, and only one, among the H;. We were interested in

P{AH;}
(2.11) P{H,| A} = Pid} 

If (1.5) and (1.8) are introduced into (2.11), it takes the form

P HPA;
(2.12) P{H,,| A} = {4 | Hy}PtA)

PLAAP}
}

If the events H;, are called causes, then (2.12) becomes “‘Bayes’s rule for the probability

of causes.”” Mathematically, (2.12) is a special way of writing (1.3) and nothing more.

The formula is useful in manystatistical applications of the type described in examples
(b) and (d), and we have used it there. Unfortunately, Bayes’s rule has been somewhat

discredited by metaphysical applications of the type described in example (e). In
routine practice this kind of argument can be dangerous. A quality control engineeris
concerned with one particular machine and notwith an infinite population of machines
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from which one was chosen at random. He hasbeen advised to use Bayes’s rule on the
groundsthat it is logically acceptable and corresponds to our way of thinking. Plato
used this type of argument to prove the existence of Atlantis, and philosophers usedit
to prove the absurdity of Newton’s mechanics. But for our engineer the argument
overlooks the circumstance that he desires success andthat he will do better by estimating
and minimizing the sources of various types of errors in prediction and guessing. The
modern methodofstatistical tests and estimationis less intuitive but morerealistic. It

may be not only defended but also applied.

3. STOCHASTIC INDEPENDENCE

In the examples above the conditional probability P{A | H} generally
does not equal the absolute probability P{A}. Popularly speaking, the

information whether H has occurred changes our way of betting on the
event A. Only when P{A | H} = P{A} this information does not permit
any inference about the occurrence of A. In this case we shall say that A

is stochastically independent of H. Now (1.5) shows that the condition

P{A | H} = P{4} can be written in the form

(3.1) P{AH} = P{A}: P{H}.

This equation is symmetric in A and H and showsthat whenever A is
stochastically independent of H, sois H of A. It is therefore preferable

to start from the following symmetric

Definition 1. Two events A and H aresaid to be stochastically inde-

pendent(or independent, for short) if equation (3.1) holds. This definitionis

accepted also if P{H}= 0, in which case P{A | H} is not defined. The
term statistically independent is synonymous with stochastically inde-

pendent.

In practice one usually has the correct feeling that certain events must be
stochastically independent, or else the probabilistic model would be
absurd. As the following examples will show, there exist nevertheless
situations in which the stochastic independence can be discovered only by

computation.

Examples. (a) A card is chosen at random from a deck of playing

cards. For reasons of symmetry we expect the events “‘spade’’ and “ace”’

to be independent. As a matter of fact, their probabilities are ; and is,

and the probability of their simultaneousrealization iS hr.

(b) Twotrue dice are thrown. The events “‘ace withfirst die’ and “even

face with second”’ are independentsince the probability of their simultan-

eous realization, +3; = jx, is the product of their probabilities, namely

g and 3.
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(c) In a random permutation ofthe fourletters (a, b, c, d) the events
“a precedes b” and “c precedes d”’ are independent. Thisis intuitively
clear and easily verified.

(d) Sex distribution. We return to example (1.c) but now consider
families with three children. We assumethat each ofthe eight possibilities
bbb, bbg, ... , ggg has probability 3. Let H be the event “the family has
children of both sexes,’ and A the event“there is at most onegirl.’’ Then
P{H} = §, and P{A} = §. The simultaneous realization of A and H
means one of the possibilities bbg, bgb, gbb, and therefore P{AH} =
= 3 = P{4}- P{H}. Thus in families with three children the two events
are independent. Note that this is not true for families with two or four
children. This showsthat it is not always obvious whetheror not we have
independence. >

If H occurs, the complementary event H’ does not occur, and vice
versa. Stochastic independence implies that no inference can be drawn
from the occurrence of H to that of A; therefore stochastic independence
of A and H should meanthe same as independence of A and H’ (and,
because of symmetry, also of A’ and H, and of A’ and H’). This
assertionis easily verified, using the relation P{H’} = 1 — P{H}. Indeed,
if (3.1) holds, then (since AH’ = A — AH)

(3.2) P{AH"} = P{A} — P{AH} = P{4} — P{A} - P{Ax} =

= P(A}: P{H"’},
as expected.
Suppose now that three events A, B, and C are pairwise independent

so that

P{AB} = P{A4} - P{B}

(3.3) P{AC} = P{A}- P{C}

P{BC} = P{B} - P{C}.

One might think that these three relations should imply that also

P{ABC} = P{A}P{B}P{C},

in other words, that the pairwise independence ofthe three events should
imply that the two events AB and C are independent. This is almost
alwaystrue, but in principle it is possible that (3.3) holds and yet

P{ABC} = 0.

Actually such occurrences are so rare that their possibility passed un-

noticed until S. Bernstein constructed an artificial example. It still takes
some search to find a plausible natural example.
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Example. (e) Consider the six permutations of the letters a,b,c as
well as the three triples (a, a,a), (b,b,b), and (c,c,c). We take these
nine triples as points of a sample space andattribute probability 4 to each.
Denote by A, the event that the kth place is occupied by the letter a.
Obviously each of these three events has probability 4 while

P{A,A}} = P{A,A3} = P{A,A3} = 3.

The three events are therefore pairwise independent, but they are not
mutually independent because also P{A,A,A3} = 3. (The occurrence of
A, and A, implies the occurrence of As, and so Aj is not independent
of A,A,.)

Weobtain further examples by considering also the events B, and C,
consisting, respectively, in the occurrence of the letters 6 and c at the
Ath place. We have now nine events in all, each with probability 4.
Clearly P{A,B} = 5 and generally any two events with different subscripts
are independent. On the other hand,the letters appearing at the first two
places uniquely determine the letter at the third place, and so C, is not
independent of any amongthe nine events A,Ay,..., CC, involving the

first two places. Weshall return to this example at the end of IX, 1. A
further example is contained in problem 26. >

It is desirable to reserve the term stochastic independence for the case
where notonly (3.3) holds, but in addition

(3.4) P{ABC} = P{A}P{B}P{C}.

This equation ensures that A and BC are independent andalso that the
same is true of B and AC, and C and AB. Furthermore, it can now

be proved also that A UB and C are independent. In fact, by the
fundamentalrelation I, (7.4) we have

(3.5) P{A U B)C} = P{AC} + P{BC} — P{ABC}.

Again applying (3.3) and (3.4) to the right side, we can factor out P{C}.
The other factor is P{A} + P{B} — P{AB} = P{A U B} and so

(3.6) PLA U B)C} = P(A VU B)}P{C}.

3 The construction generalizes to r-tuples with r > 3. The sample space then contains
r! +r points, namely of the r! permutations of the symbols a,,...,a, and of the r

repetitions of the same symbol a;. To each permutation weattribute probability
1/r(r — 2)!, and to each repetition probability 1/r?. If A, is the event that @, occurs

at the kth place, then the events A, are pairwise independent, but no three among
them are mutually independent.
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This makesit plausible that the conditions (3.3) and (3.4) togethersuffice
to avoid embarrassment; any event expressible in terms of A and B will
be independentof C.

Definition 2. The events A, Ao,..., A, are called mutually inde-

pendentiffor all combinations 1 <i<j<k<-+-++<n the multiplica-
tion rules

P{A;A;} = P{A;} P{A;}

P{A,A;A,} = P{A;} P{A;} P{A;}
(3.7) oem oem were weer weer rece en mer eon ersevns

P{A,A, +++ A,} = P{A,} P{A,} +: > P(A}
apply

Thefirst line stands for 4) equations, the second for (5). etc. We
have, therefore, 3

(+(e Caoer(jae
conditions which mustbesatisfied. On the other hand, the (") conditions

stated in the first line suffice to insure pairwise independence. The whole
system (3.7) looks like a complicated set of conditions, but it will soon

become apparent that its validity is usually obvious and requires no

checking. It is readily seen by induction [starting with n = 2 and (3.2)]

that

In definition 2 the system (3.7) may be replaced by the system of the 2”
equations obtainedfrom the last equation in (3.7) on replacing an arbitrary
number of events A, by their complements A,’

4, PRODUCT SPACES. INDEPENDENT TRIALS

Weare nowfinally in a position to introduce the mathematical counter-
part of empirical procedures which are commonly described by phrases
such as continued experimentation, repeated observation, merging of two
samples, combining two experiments and treating them as parts of a whole,
etc. Specifically, the notion of independent trials corresponds to the
intuitive concept of “experiments repeated under identical conditions.”’
This notionis basic for probability theory and will add morerealism to the

examples treated so far.
Wefirst require a notion that is by no meansspecific for probability
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theory. The combinatorial product of two sets A and B istheset ofall
ordered pairs (a,b) of their elements. We shall denote? it by (A, B).
The definition carries over trivially to triples (A, B,C), quadruples
(A, B, C, D), and eventoinfinite sequences.
The notion of combinatorial productis so natural that we haveusedit

implicitly several times. For example, the conceptual experimentoftossing
a coin three times is described by a sample space ofeight points, namely
the triples that can be formed with two letters H and 7. This amountsto
saying that the sample space is the combinatorial product of three spaces,
each of which consists of the two points (elements) H and TJ. More
generally, when we speak of two successive trials we refer to a sample
space © whose points represent the pairs of possible outcomes, and so
© is the combinatorial product of the two sample spaces correspondingto
the individual trials. Given any two conceptual experiments with sample
spaces YU and 8, it is possible to consider them simultaneously or in
succession. This amounts to considering pairs of possible outcomes,that
is, to introduce the combinatorial product (U, 8) as a new samplespace.
The question then arises as to how probabilities should be defined in this
new sample space. The answervaries with circumstances, but before con-
sidering this point we turn to two examples which will clarify ideas and
explain the prevalent terminology.

Examples. (a) Cartesian spaces. When the points of the plane are
represented by pairs (%,y) of real numbers, the plane becomes the com-
binatorial product of the two axes. (The fact that geometry in the plane
can be studied withoutuse of coordinates shows that the same space can be
considered from different viewpoints.) The three-dimensional space with
points (x, y, 2) may be viewedeither as the triple product of the three axes,
or else as the product of the x,y-plane and the z-axis.

In the plane, the set of points satisfying the two conditions 0 <2 <1
and 0 < y <1 is the combinatorial product of two unit intervals. Note,
however, that such a description is not possible for arbitrary sets such as
triangles and ellipses. Finally we note that in the (2, y, z)-space the set
defined by the same two inequalities is an infinite cylinder with a square
cross-section. More generally, when interpreted in space, any set whose
definition involves only the «- and y-coordinates may be viewed as a
cylinder with generators parallel to the z-axis.

(b) Alphabets and words. Let A consist of the 26 standard letters. The

triple product (A, A, A) is then the aggregateofall triples of letters or, as

* Another commonly used notation is Ax B. The terms combinatorial product
and Cartesian product are synonymous.
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we shall say,all three-letter “words.”” This viewpoint is used in communi-
cation and coding theory, but thenit is not natural to consider wordsof a
fixed length. Indeed, a message of arbitrary length may be considered a
“word” provided a new symbol for separation (a blank) is added to the
alphabet. It is then no longer necessary to introduce any assumptions con-
cerning the length of words: Anyfinite message may be consideredas the
beginning of a potentially unending message, just as any written word is
potentially the first of a series. Incidentally, communication theory uses
arbitrary codes, and underits influence it has become common usage to
refer to arbitrary symbols as letters of an alphabet. In this sense one
describes the outcome of n repeated trials as a “‘message”’ or “word” of
length n. >

If S is an arbitrary sample space with points E,, E,,... the n-fold
combinatorial product (©, S,..., S) of GS with itself is referred to as

sample space for a succession of n trials corresponding to G. It is con-
venient to describe its points generically by symbols such as (2,,...,2,)

where each 2, stands for some point of S. By analogy with example(a)
it is usual to refer to the x; as coordinates. The terms set and event are,

of course, interchangeable. What we describe as an event that depends only
on the outcomeofthefirst twotrials is generally called a set depending only
on the first two coordinates.*®

As already mentioned, all these notions and notations carry over to
infinite sequences. Conceptually these present no difficulties; after all, the

decimal expansion 3.1415... represents the number 7 as a point in an
infinite product space, except that one speaksof the nth decimal rather than
of the mth coordinate. Infinite product spaces are the natural habitat of
probability theory. It is undesirable to specify a fixed number of coin
tossings or a fixed length for a random walk. The theory becomes more

flexible and simpler if we conceive of potentially unending sequences of
trials and then direct our attention to events depending only onthefirst
few trials. This conceptually simpler and more satisfactory approach
unfortunately requires the technical apparatus of measure theory. The

plan of this volumeis to present the basic ideas of probability theory un-

obscured by technical difficulties. For this reason weare restricted to
discrete sample spaces and mustbesatisfied with the studyoffinitely many
trials. This means dealing with unspecified or variable sample spaces as
the price for technical simplicity. This solution is unsatisfactory theoreti-
cally, but has little practical effect.

> That is to say, if (%,,22,...) is a point of this set so are all points (xi, 23,...)

such that «, =2, and x, = x». By analogy with example (a), sets depending only on

specified coordinates (in any number) are called cylindrical.
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We turn to the assignment of probabilities in product spaces. The

various urn models of section 2 can be rephrased in terms of repeated
trials and we have seen that probabilities of different types can be defined

by meansof conditional probabilities. Intuitively speaking, various forms
of dependence between successive trials can be imagined, but nothing

surpasses in importance the notion of independenttrials or, more generally,

independent experiments.
To be specific, consider two sample spaces %& and %, with points

01, %,... and f,, 8,,... carrying probabilities p,, po,... and 4, 42,
.., respectively. We interpret the product space (2, 8) as the sample

space describing the succession of the two experiments corresponding to
UW and 8%. Saying that these two experiments are independent implies
that the two events “‘first outcome is «,’’ and ‘‘second outcome is f,”

are stochastically independent. But this is so only if probabilities in

(4, B) are defined by the productrule

(4.1) P{(a:, Bed} = Pie

Such an assignmentof probabilities is legitimate® because these probabili-
ties add to unity. In fact, summation overall points leads to the double
sum >>pig, which is the product of the two sums > p,; and > q,.
We nowestablish the convention that the phrase “two independent

experiments” refers to the combinatorialproduct of two sample spaces with
probabilities defined by the product rule (4.1). This convention applies

. equally to the notion of n successive independent experiments.
We speak of repeated independenttrials if the component sample spaces

(and the probabilities in them) are identical.

This convention enables us, for example, to speak of n independent

coin tossings as an abbreviation of a sample space of 2" points, each

carrying probability 2-”.
An intuitively obvious property of independent experiments deserves

mention. Let A be an event in YM containing the points Oss Uggs 5

let similarly B be an event in 8 containing the points f,,, ;,,..--

Then (A, B) is the event in (2,8) which consists of all pairs («,., F:,),

and clearly

(4.2) P{(A, B)} = YD Ps9n, = (2 PsMX U,) = P{A}P{B}.

The multiplication rule thus extends to arbitrary events in the two com-
ponent spaces. This argument applies equally to 1 independent experi-
ments and showsthat if a system of n events A,,...,A, is such that

® Measures defined similarly occur outside probability theory and are called product

measures.
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A, depends exclusively on the kth experiment, then the events A,,..., A,
are mutually independent.

The theory of independent experimentsis the analytically simplest and most advanced
part of probability theory. It is therefore desirable, when possible, to interpret compli-

cated experiments as the result of a succession of simpler independent experiments.
The following examplesillustrate situations where this procedure is possible.

Examples. (c) Permutations. We have considered the n! permutations of a,

@2,..+, 4, as points of a sample space andattributed probability 1/n! to each. We

may consider the same sample space as representing n— 1 successive independent
experiments as follows. Begin by writing down a,. Thefirst experiment consists in
putting a, either before or after a,. This done, we have three places for a3 and the

second experiment consists of a choice among them,deciding on the relative order of
ay, @2, and az. In general, when a,,..., a, are put into somerelative order, we

proceed with experiment number k, which consists in selecting one of the & + 1

places for az4,. In other words, we have a succession of n — 1 experiments of which
the Ath can result in k different choices (sample points), each having probability

1/k. The experiments are independent, that is, the probabilities are multiplicative.
Each permutation of the » elements has probability 4-4--+-1/n, in accordance with

the original definition.

(d) Sampling without replacement. Let the population be (a,,...,a,). In sampling

without replacement each choice removes an element. After k steps there remain
n —k elements, and the next choice can be described by specifying the number » of
the place of the element chosen (vy = 1, 2,...,2—k). In this way the taking of a

sample of size r without replacement becomesa succession of r experiments where the
first has n_ possible results, the second n —1, the third m — 2, etc. We attribute

equal probabilities to all results of the individual experiments and postulate that the r
experiments are independent. This amounts to attributing probability 1/(n), to each
sample in accordance with our definition of random samples. Note that for n = 100,

r =3, the sample (@13, aso, @s:) means choices number 13, 39, 79, respectively: At

the third experiment the seventy-ninth element of the reduced population of n — 2 was
chosen. (With the original numbering the outcomes of the third experiment would
depend on the first two choices.) We see that the notion of repeated independent

experiments permits us to study sampling as a succession of independent operations.
>

*5, APPLICATIONS TO GENETICS

The theory of heredity, originated by G. Mendel (1822-1884), provides
instructive illustrations for the applicability of simple probability models.
Weshall restrict ourselves to indications concerning the most elementary
problems. In describing the biological background, we shall necessarily
oversimplify and concentrate on such facts as are pertinent to the mathe-
matical treatment.

Heritable characters depend on special carriers, called genes. All cells
of the body, except the reproductive cells or gametes, carry exact replicas

* This section treats a special subject and may be omitted.
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of the same gene structure. The salient fact is that genes appearin pairs.
The reader may picture them as vast collection of beads on short pieces
of string, the chromosomes. These also appear in pairs, and paired genes
occupy the same position on paired chromosomes. In the simplest case
each gene of a particular pair can assume two forms(alleles), A and a.

Thenthree different pairs can be formed,and, with respectto this particular
pair, the organism belongs to one of the three genotypes AA, Aa, aa
(there is no distinction between Aa and aA). For example, peas carry a
pair of genes such that A causes red blossom color and a causes white.
The three genotypesarein this case distinguishable as red, pink, and white.

Each pair of genes determines one heritable factor, but the majority of
observable properties of organisms depend on several factors. For some
characteristics (e.g., eye color and left-handedness) the influence of one
particular pair of genes is predominant, and in such cases the effects of
Mendelian laws are readily observable. Other characteristics, such as
height, can be understood as the cumulative effect of a very large number
of genes [cf. example X, (5.c)]. Here we shall study genotypes andinherit-
ance for only oneparticular pair of genes with respect to which We have the
three genotypes AA, Aa, aa. Frequently there are N different forms
A,,...,Ay for the two genes and, accordingly, N(N+1)/2 genotypes
A,Ay, A,}A2,...,AyAy. The theory applies to this case with obvious

modifications (cf. problem 27). The following calculations apply also to
the case where A is dominant and a recessive. By this is meant that

Aa-individuals have the same observable properties as AA, so that only
the pure aa-type showsan observable influence of the a-gene. All shades of
partial dominance appearin nature. Typical partially recessive properties
are blue eyes, left-handedness,etc.
The reproductivecells, or gametes, are formedby splitting process and

receive one gene only. Organisms of the pure AA- and aa-genotypes
(or homozygotes) produce therefore gametes of only one kind, but Aa-
organisms(hybrids or heterozygotes) produce A- and a-gametes in equal

numbers. New organisms are derived from two parental gametes from
which they receive their genes. Therefore each pair includes a paternal
and a maternal gene, and any gene can be traced back to one particular
ancestor in any generation, however remote.
The genotypes of offspring depend on a chance process. At every

occasion, each parental gene has probability 4 to be transmitted, and the
successivetrials are independent. In other words, we conceive of the geno-
types of n offspring as the result of n independenttrials, each of which
correspondsto the tossing of two coins. For example, the genotypes of

descendants of an Aa x Aa pairing are AA, Aa, aa with respective
probabilities 4, 4,4. An AA x aa union can have only Aa-offspring,etc.
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Looking at the population as a whole, we conceive of the pairing of
parents as the result of a second chance process. Weshall investigate only
the so-called random mating, which is defined by this condition: If r
descendants in the first filial generation are chosen at random, then their
parents form a random sample of size r, with possible repetitions, from
the aggregate of all possible parental pairs. In other words, each descen-
dant is to be regarded as the product of a randomselection of parents, and
all selections are mutually independent. Random mating is an idealized
model of the conditions prevailing in many natural populations and in
field experiments. However, if red peas are sown in one corner of the

field and white peas in another, parents oflike color will unite more often

than under random mating. Preferential selectivity (such as blondes
preferring blondes)also violates the condition of random mating. Extreme
non-random mating is represented byself-fertilizing plants and artificial
inbreeding. Some such assortative mating systems will be analyzed
mathematically, but for the most part we shall restrict our attention to
random mating.

The genotype of an offspring is the result of four independent random
choices. The genotypes of the two parents can beselected in 3 - 3 ways,
their genes in 2+ 2 ways. It is fortunately possible to combine twoselec-

tions and describe the process as one of double selection thus: The pater-
nal and maternal genes are each selected independently and at random
from the population ofall genes carried by males or females, respectively,
of the parental population.

Suppose that the three genotypes AA, Aa, aa occur among males and
females in the same ratios, u:2v:w. Weshall suppose u + 20 + w = 1

and call u, 2v, w, the genotypefrequencies. Put

(5.1) pH=utv, gqae=v+w.

Clearly the numbers of A- and a-genes are as p:g, and since p+q = 1
we shall call p and gq the gene frequencies of A and a. In eachof the
two selections an A-gene is selected with probability p, and, because of
the assumed independence, the probability of an offspring being AA is p?.
The genotype Aa can occurin two ways, and its probability is therefore
2pq. Thus, under random mating conditions an offspring belongs to the

genotypes AA, Aa, or aa with probabilities

(5.2) u, = p*, 2v, = 2pq, Wy = q.

Examples. (a) All parents are Aa (heterozygotes); then u = w = 0,

2v=1, and p=q=+#. (8) AA- and aa-parents are mixed in equal
proportions; then u=w=3, v=0, and again p=q=}4. (c)
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Finally, u=w=4, 2v=4; again p=q =. In all three cases we
have forthefilial generation u, = }, 20; = 4, w, = #. >

For a better understanding of the implications of (5.2) let us fix the gene
frequencies p and q (p+q = 1) and considerall systems of genotype
frequencies u, 2v, w for which u+v =p and v+w-=dq: Theyall lead

to the same probabilities (5.2) for the first filial generation. Among them
there is the particular distribution

(5.3) u= p*, 2v = 2pq, w= q’.

Consider now a population—as in example (c)—in which the frequencies
u,v, w of the three genotypes are given by (5.3). In accordance with (5.2)

these frequencies are then transmitted unchanged as genotype probabilities
in the next generation. For this reason genotypedistributions of the par-
ticular form (5.3) are called stationary or equilibrium distributions. To
every ratio p:g there correspondssuch a distribution.

In a large population the actually observed frequencies of the three
genotypesin thefilial generation will be close to the theoretical probabilities
as given by (5.2).” It is highly remarkablethatthis distribution is stationary
irrespective of the distribution w:2v:w in the parental generation. In
other words, if the observed frequencies coincided exactly with the cal-
culated probabilities, then thefirstfilial generation would havea stationary

genotype distribution which would perpetuate itself without changein all
succeeding generations. In practice, deviations will be observed, but for
large populations we can say: Whatever the composition of the parent
population may be, random mating will within one generation produce an
approximately stationary genotype distribution with unchanged gene fre-
quencies. From the second generation on, there is no tendency toward a
systematic change; a steady state is reached with thefirstfilial generation.
This was first noticed by G. H. Hardy,® who thus resolved assumed diffi-

culties in Mendelian laws. It follows in particular that under conditions

of random mating the frequencies of the three genotypes must stand in the
ratios p®:2pq:q?. This can in turn be used to check the assumption of

random mating.

7 Without this our probability model would be void of operational meaning. The
statement is made precise by the law of large numbers and the central limit theorem,

which permit us to estimate the effect of chance fluctuations.
®G. H. Hardy, Mendelian proportions in a mixed population, Letter to the Editor,

Science, N.S., vol. 28 (1908), pp. 49-50. Anticipating the language of chapters IX and

XV, we can describe the situation as follows. The frequencies of the three genotypesin

the nth generation are three random variables whose expected values are given by (5.2)

and do not depend on n. Their actual values will vary from generation to generation

and form a stochastic process of the Markovtype.
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Hardy also pointed out that emphasis must be put on the word “‘approxi-
mately.’’ Even with a stationary distribution we must expect small changes
from generation to generation, which leads us to the following picture.
Starting from any parent population, random mating tends to establish
the stationary distribution (5.3) within one generation. For a stationary
distribution there is no tendency toward a systematic change of any kind,.
but chance fluctuations will change the gene frequencies p and g from
generation to generation, and the genetic composition will slowly drift.
There are no restoring forces seeking to re-establish original frequencies.
Onthe contrary, our simplified model leads to the conclusion[ef. example
XV, (2.i)] that, for a population bounded in size, one gene should ulti-
mately die out, so that the population would eventually belong to one of
the pure types, AA or aa. In nature this does not necessarily occur be-
cause of the creation of new genes by mutations, selections, and many
othereffects.

Hardy’s theoremis frequently interpreted to imply strict stability for
all times. It is a commonfallacy to believe that the law of large numbers
acts as a force endowed with memory seeking a return to theoriginalstate,
and many wrong conclusions have been drawn from this assumption.
Note that Hardy’s law does not apply to the distribution of two pairs of
genes (e.g., eye color andleft-handedness) with the nine genotypes AABB,
AABb,...,aabb. There is still a tendency towarda stationarydistribution,
but equilibrium is not reachedin the first generation (cf. problem 31).

*6. SEX-LINKED CHARACTERS

In the introductionto the preceding section it was mentioned that genes
lie on chromosomes. These appearin pairs and are transmitted as units,
so that all genes on a chromosomestick together.? Our scheme for the
inheritance of genes therefore applies also to chromosomesas units. Sex
is determined by two chromosomes; females are XX, males XY. The

mother necessarily transmits an X-chromosome,and the sex of offspring
depends on the chromosometransmitted by the father. Accordingly, male
and female gametes are produced in equal numbers. The difference in
birth rate for boys andgirls is explained by variations in prenatal survival
chances.

Wesaid that both genes and chromosomesappearin pairs, but thereis
an exception inasmuchasthe genessituated on the Y-chromosome have

* This section treats a special topic and may be omitted.

* This picture is somewhat complicated by occasional breakings and recombinations
of chromosomes(cf. problem 12 of II,10).
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no corresponding gene on Y. Females have two X-chromosomes, and

hence two of such X-linked genes; however, in males the X-genes appear

as singles. Typical are two sex-linked genes causing colorblindness and
haemophilia. With respect to each of them, females canstill be classified
into the three genotypes, AA, Aa, aa, but, having only one gene, males
have only the two genotypes A and a. Note that a son always has the

father’s Y-chromosomesothat a sex-linked character cannot be inherited
from father to son. However,it can pass from father to daughter and from
her to a grandson.

We now proceed to adapt the analysis ‘of the preceding section to the
present situation. Assume again random mating andlet the frequencies of
the genotypes AA, Aa, aa in the female population be u, 2v, w, respec-
tively. As before put p=u+v, gq =v+w. The frequencies of the two

male genotypesAA_and_a_will be denoted by.PL andq' (p' +q' = 1).
Then p and p’are thefrequencies of the A-genein thefemale and male
populations, respectively. The probability for a female descendant to be
of genotype AA, Aa, aa will be denoted by w,, 2v,, w,; the analogous

probabilities for the male types A and a are p,,q,. Nowa maleoffspring
receives his X-chromosomefrom the female parent, and hence

(6.1) P=P, = 4.

For the three female genotypes wefind, as in section 5,

(6.2) uy = pp’, vy = pq + ap’, wi = 49.

Hence

(6.3) Pi = Wy + vy = pty’), N=y+wW,= #(q+q').

This means that among the male descendants the genes A and a appear
approximately with the frequencies p, q of the maternal population;

the gene frequencies among female descendants are approximately p,
and q,, or halfway between those of the paternal and maternal popula-
tions. We discern here a tendency toward equalization of the gene fre-

quencies. In fact, from (6.1) and (6.3) we get

(6.4) P—-P=HP-P) =~— 21 = 89-9);

and so random mating will in one generation reduce approximately by
one-half the differences between gene frequencies among males and females.
However, it will not eliminate the differences, and a tendency toward

further reduction will subsist. In contrast to Hardy’s law, no stationary

situation is reached after one generation. We can pursue the systematic
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component of the changes from generation to generation by neglecting

chance fluctuations and identifying the theoretical probabilities (6.2) and
(6.3) with corresponding actual frequencies in the first filial generation.
For the second generation we obtain by the same process

(6.5) po=AQpitp:) = fpt+dp, go = ait) = ig + dd’,

and, of course, p, == Py, J, = 4. A few moretrials will lead to the general
expression for the probabilities p, and qg, amongfemales of the nth
descendant generation. Put

(6.6) a= 4(2p+p'), B= 4(2q+q’).
2 a ee

Then 2 OTOH? an
Pn—-1 t+ Pn-1 nP—- Pp=re? + —1 ’Pn 5 (~-1) ype

(6.7)
Gn—1 + Yn-1 n4—-~— = 1)” +—_+In = 5 B+ (~I" "ne >

and p, = PnGn =4n-1- Hence

(6.8) Pn—%  Pn—->% Gn—>B, Gr.

The genotype frequencies in the female population, as given by (6.2), are

(6.9) uy = PnPnv 2v, = Pn—~Vn-1 + In—-Pn—1 Wr = Gn-1Un-1"

Hence

(6.10) U,—> 0%, 2v,—> 2a, Wy > BR
(Note that « + f = 1.)

These formulas show that there is a strong systematic tendency, from
generation to generation, toward a state where the genotypes A and a
appear among males with frequencies « and f, and the female genotypes
AA, Aa, aa have probabilities «?, 2«/, 6%, respectively. In practice, an
approximate equilibrium will be reached after three or four generations.

To be sure, small chancefluctuations will be superimposed on the described

changes, but the latter represent the prevailing systematic tendency.
Our main conclusion is that under random mating we can expect the

sex-linked genotypes A and a among males, and AA, Aa, aa among

10 In the terminology introduced in footnote 8, p, and g, are the expected values
of the gene frequencies in the nth female generation. With this interpretation the
formulas for p, and g, are no longer approximationsbut exact.
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females to occur approximately with the frequencies «, f, «2, 2af, f?,
respectively, where « + $3 = 1.

Application. Many sex-linked genes, like colorblindness, are reces-
sive and cause defects. Let a be such a gene. Thenall a-males andall
aa-females show the defect. Females of Aa-type may transmit the defect
to their offspring but are not themselves affected. Hence we expect that a
recessive sex-linked defect which occurs among males with frequency «
occurs amongfemales with frequency «. If one man in 100 is colorblind,
one woman in 10,000 should be affected.

*7, SELECTION

Asa typical example of the influence of selection weshall investigate the
case where aa-individuals cannot multiply. This happens when the a-gene
is recessive andlethal, so that aa-individuals are born but cannotsurvive.

Another case occurs whenartificial interference by breeding or by laws

prohibits mating of aa-individuals.
Assume random mating among AA- and Aa-individuals but no mating

of aa-types. Let the frequencies with which the genotypes AA, Aa, aa
appearin the total population be u, 2v, w. The corresponding frequencies
for parents are then

u 2v o
  7.1 u* = ,

(7-1) 1—-w 1—w

Wecan proceed as in section 5, but we must use the quantities (7.1) instead

of u, 2v, w. Hence, (5.1) is to be replaced by

u+ov v
== 5 q =

1—w

  (7.2) Pp =
1—w

The probabilities of the three genotypes in the first filial generation are
again given by (5.2); that is, u, = p®, 2v, = 2pq, and w, = q’.

Asbefore, in order to investigate the systematic changes from generation

to generation, we have to replace u,v, w by wu, v;, w, and thus obtain

probabilities us, v2, w, for the second descendant generation, etc. In

general we get from (7.2)

 

un, +t v . vy7.3 ,=—a, =(7.3) Pp iw, In 7 Wy,

and

(7.4) Unt = Pa 2Un41 = 2Pndns Wrti = qn:

* This section treats a special subject and may be omitted.
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A comparison of (7.3) and (7.4) showsthat

(7.5) Poti == Unti + Unt = Pn = 1

" 1 — Ways 1 —~ qi, 1+ q,

 

and similarly

Vp, In
(7.6) ii

" 1— Wrti 1+ Qn

From (7.6) we can calculate q, explicitly. In fact, taking reciprocals we
get

 

(7.7) Tri = 1+,"

whence successively

Qt =1l+q", gi=2+q",

 
 

(7.8) 4 4 4 :
4, =3+q , ..-, Gq, =nt+q

or

q q_\7.9 no , Wat 2 .(7.9) q 1+ nq +1 (5)

Wesee that the unproductive (or undesirable) genotype gradually drops
out, but the process is extremely slow. For g = 0.1 it takes ten genera-
tions to reduce the frequency of a-genes by one-half; this reduces the
frequency of the aa-type approximately from 1 to } percent. (If a is sex-
linked, the elimination proceeds much faster; see problem 29. For a
generalized selection scheme see problem 30.)

8. PROBLEMS FOR SOLUTION

1. Three dice are rolled. If no two show the sameface, what is the probability
that one is an ace?

2. Given that a throw with ten dice produced at least one ace, what is the
probability p of two or more aces?

3. Bridge. In a bridge party West has no ace. What probability should he
attribute to the event of his partner having (a) no ace, (6) two or more aces?
Verify the result by a direct argument.

4. Bridge. North and South have ten trumps between them (trumps being
cards of a specified suit). (a) Find the probability that all three remaining
trumps are in the same hand(thatis, either East or West has no trumps). (5)

11 For a further analysis of various eugenic effects (which are frequently different
from the ideas of enthusiastic proponents of sterilization laws) see G. Dahlberg,
Mathematical methods for population genetics, New York and Basel, 1948.
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Ifit is known that the king of trumps is included among the three, what is the
probability that he is “unguarded”(thatis, one player has the king, the other the
remaining two trumps)?

5. Discuss the key problem in example II, (7.5) in terms of conditional
probabilities following the pattern of example (2.a).

. 6. In a bolt factory machines A, B, C manufacture, respectively, 25, 35,
and 40 per cent of the total. Of their output 5, 4, and 2 per cent are defective
bolts. A bolt is drawn at random from the produce andis found defective.
Whatare the probabilities that it was manufactured by machines A, B, C?

7. Suppose that 5 men out of 100 and 25 women outof 10,000 are colorblind.
A colorblind person is chosen at random. Whatis the probability of his being
male? (Assume males and females to be in equal numbers.)

8. Seven balls are distributed randomly in seven cells. If exactly two cells
are empty, show that the (conditional) probability of a triple occupancy of some
cells equals 7. Verify this numerically using table 1 of IJ, 5.

9. A die is thrownaslong as necessary for an ace to turn up. Assuming that
the ace does notturnup atthefirst throw, whatis the probability that more than
three throws will be necessary?

10. Continuation. Suppose that the number, n, of throws is even. Whatis
the probability that n = 2? .

11. Let’? the probability p, that a family has exactly n children be ap"
when n 21, and py = 1 — ap(1+p+p?+---). Supposethat all sex distribu-
tions of n children have the same probability. Show that for k >1 the
probability that a family has exactly k boys is 2ap*/(2—p)**}.

12. Continuation. Given that a family includes at least one boy, what is
the probability that there are two or more?

13. Die A has four red and two white faces, whereas die B has two red and
four white faces. A coin is flipped once. If it falls heads, the game continues
by throwing die A alone; ifit falls tails, die B is to be used. (a) Show that the
probability of red at any throw is $. (6) If the first two throwsresulted in red,
whatis the probability of red at the third throw? (c) If red turns upat thefirst
n throws, what is the probability that die A is being used? (d) To which
urn modelis this game equivalent?

14. In example (2.a) let xz, be the conditional probability that the wiriner
of the nth trial wins the entire game given that the game does not terminate
at the nth trial; let y, and z, be the corresponding probabilities of victory for
the losing and the pausing player, respectively, of the mth trial. (a) Show that

(x) wy, = 4 + EYn415 Yn = Sens. en = 3ns:

(b) Show bya direct simple argumentthat in reality 7, = 2, Y, =Y, %, =2%
are independent of n. (c) Conclude that the probability that player a wins
the gameis i%; (in agreement with problem 5 in I, 8). (d) Show that x, = 4,
Yn = %%n =% is the only boundedsolution of(*).

2 According to A. J. Lotka, American family statistics satisfies our hypothesis with
Pp = 0.7358. See Théorie analytique des associations biologiques II, Actualités scien-

tifiques et industrielles, no. 780, Paris, 1939.
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15. Let the events A,, Aj,..., A, be independent and P{A;} = p,. Find
the probability p that none of the events occurs.

16. Continuation. Show that always p < e~*»,

17. Continuation. From Bonferroni’s inequality IV, (5.7) deduce that the
probability of & or more of the events 4,,..., A, occurring simultaneously
is less than (p, +++ -+p,)*/k!.

18. To Polya’s urn scheme, example (2.c). Given that the second ball was

black, what is the probability that the first was black?

19. To Polya’s urn scheme, example (2.c). Show by induction that the prob-
ability of a black ball at any trial is b/(6 +r).

20. Continuation. Prove by induction: for any m <n the probabilities that
the mth and the nth drawings produce (black, black) or (black, red) are

b(6 +c) br

(b+r)(b+r+c)’ (b+r)(b+rt+c)’

respectively. Generalize to more than two drawings.

21. Time symmetry of Polya’s scheme. Let A and B standforeither black
or red (so that AB can be any of the four combinations). Show that the
probability of A at the nth drawing, given that the mth drawing yields B, is
the same as the probability of A at the mth drawing when the nth drawing
yields B.

22. In Polya schemelet p;(m) be the probability of k black balls in the
first n drawings. Prove the recurrencerelation

_ r+(n—he b + (k—I)e
PAOD =PO TTEne TPOEFne

where p_,(n) is to be interpreted as 0. Use this relation for a new proof of
(2.3).

23. The Polya distribution. In (2.4) set

  

 

b r c

(8.1) bar © b+r bar 7

Show that

rn)ny No
2 ge———5(8 ) P ly —lfy

n

remains meaningful for arbitrary (not necessarily rational) constants p > 0,
g > 0, y > Osuch that p +q =1. Verify that p,,, > 0 and

>Pyn = 1.
v=0

In other words, (8.2) defines a probability distribution on the integers 0,1,...,
n. It is called the Polya distribution.
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24. Limiting form of the Polya distribution. If n> «0, p—>0, y—0 so
that np — 4, ny — p™, then for fixed n,

Ap+n,—1 p Ap 1 \1

Payn ny 1+p) \l +p) |

' Verify this and show thatfor fixed 4, p the terms on the right add to unity.
(The right side represents the so-called negative binomial distribution; cf. VI,
8, and problem 37 in VI, 9.)

25. Interpret II, (11.8) in terms of conditional probabilities.

26. Pairwise but nottotally independent events. Two dice are thrown and three
events are defined as follows: A means “odd face with first die’; 8B means
“odd face with second die”’; finally, C means “odd sum”(one face even, the
other odd). If each of the 36 sample points has probability ;4, then any two of
the events are independent. The probability of each is }. Nevertheless, the three
events cannot occur simultaneously.

  

Applications in Biology

27. Generalize the results of section 5 to the case where each gene can have
any of the forms A), As,..., Az, So that there are k(k +1)/2 genotypes instead
of three (multiple alleles).

28. Brother-sister mating. Two parentsare selected at random from a popu-
lation in which the genotypes AA, Aa, aa occur with frequencies u, 2v, w. This
process is repeated in their progeny. Find the probabilities that both parents of
the first, second, third filial generation belong to AA [cf. examples XV,(2./)
and XVI, (4.5)].

29. Selection. Let a be a recessive sex-linked gene, and suppose that a
selection process makes mating of a-males impossible. If the genotypes AA,
Aa, aa appear among females with frequencies u, 2v, w, show that for female
descendants of the first generation 4, =u +v, 20, =v +w, w, =0, and
hence p, =p + 39, 9, = 39. Thatis to say, the frequency of the a-gene among
females is reduced to one-half.

_A0. The selection problem of section 7 can be generalized by assuming that
only the fraction 4 (0 < 4 < 1) ofthe aa-classis eliminated. Show that

 

_ utov _v+(— Aw

PTT yw’ 1-~TIaw

Moregenerally, (7.3) is to be replaced by

Pn 1 — 4p
Pri = Aq? > 9Qnua ~ 7 Ag? qn

(The general solution of these equations appears to be unknown.)

_ 31. Consider simultaneously two pairs of genes with possible forms (A, a)

and (B,b), respectively. Any person transmits to each descendant one gene

of each pair, and we shall suppose that each of the four possible combinations

has probability 4. (This is the case if the genes are on separate chromosomes;

otherwise there is dependence.) There exist nine genotypes, and we assumethat
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their frequencies in the parent population are U4spp, Usaee, U4sry» Una
2U4aBB; 2Ugay, 2U44By 2Uaan, 4UsaK>-

Pap = Ugape t+ Usapy + Usapp + Usanr,

Pév = U4ay + Usa + Usany + Usage,

PaB = Ugaee + Usap, + Usage + Usarns,

Pav = savy + Usavy + Urawy + Usa.

Compute the corresponding quantities for thefirst descendantgeneration. Show
that forit ;

PAB =pas—,>p'% =pay t 6,

Pop =Pap +6, pS) =py — 6
with 26 = p4pPar — PAvPaBp. The stationary distribution is given by

Pap — 26 = pay + 26, ete.

(Notice that Hardy’s law does not apply; the composition changes from gener-
ation to generation.)

32. Assume that the genotype frequencies in a population are u = p*, 2v =
2pq, w =q’. Given that a man is of genotype Aa, the probability that his
brother is of the same genotype is (1 +pgq)/2.

Note: The following problems are on family relations and give a meaning
to the notion of degree of relationship. Each problem is a continuation of the
preceding one. Random mating and the notations of section 5 are assumed. We
are here concernedwith a special case ofMarkov chains (cf. chapter XV). Matrix
algebra simplifies the writing.

33. Number the genotypes AA, Aa, aa by 1, 2, 3, respectively, and let
Pu (i,k = 1, 2, 3) be the conditional probability that an offspring is of genotype
kK if it is known that the male (or female) parent is of genotype 7. Compute the
nine probabilities p,,, assuming that the probabilities for the other parent to
be of genotype 1, 2, 3 are Pp”, 2pq, 9°, respectively.

34. Show that pj, is also the conditional probability that the parent is of
genotype & if it isknown thatthefirst offspring is of genotype i.

35. Prove that the conditional probability of a grandson (grandfather) to
be of genotype & if it is known thatthe grandfather (grandson) is of genotype
i is given by

Pe = PaPir + Pispor + PisPre-

[The matrix (p%)) is the square of the matrix (Pir]

36.% Show that p'® is also the conditional probability that a manis of geno-
type & if it is known thata specified half-brotheris of genotype i.

 

”? Thefirst edition contained an error since the word brother (two common parents)
Was used where a half-brother was meant. This is pointed out in C. C. Li and Louis
Sacks, Biometrika, vol. 40 (1954), pp. 347-360.
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37. Showthat the conditional probability of a man to be of genotype k when
it is knownthat a specified great-grandfather (or great-grandson)is of genotype
i is given by

p2 = PPPip + P?Por + PSPsr = Pap+Pips? + Pipsz:
[The matrix (p‘3)) is the third powerof the matrix (p,,). This procedure gives
a precise meaning to the notion of the degree of family relationship.]

38. More generally, define probabilities p‘*) that a descendant of the nth
generation is of genotype k if a specified ancestor was of genotype i. Prove
by induction that the pt) are given by the elements of the following matrix:

P+pql2"* —-2pg +. g(q—p)[2"* gq? — g2/2"
P* + Pq—pyl2” pq + (1—4pq)l2”—g? + g(p—q)/2"}.
p? — p?/2"-1 2pq + p(p—g/2" gq? + pq/2"

(This shows that the influence of an ancestor decreases from generation to
generation by thefactor 4.)

39. Consider the problem 36 for a full brother instead of a half-brother.
Show that the corresponding matrix is

a(1+p)? 4d9¢(1t+p) 49?
apUt+p) 40+pq9) 49(1+9)}.
tp" sp(lt+q) 4(1+g9)?

40. Showthat the degree of relationship between uncle and nephewis the same
as between grandfather and grandson.

 



CHAPTER VI

The Binomial

and the Poisson Distributions

1. BERNOULLI TRIALS!

Repeated independenttrials are called Bernoulli trials if there are only
two possible outcomesfor each trial and their probabilities remain the same
throughoutthetrials. It is usual to denote thetwo probabilities by p and
q, andto refer to the outcome with probability p as “‘success,’’ S, and to

the other as “‘failure,’ F. Clearly, p and g must be non-negative, and

(1.1) ptq=l.

The sample space of each individual trial is formed by the two points
S and F. The sample space of » Bernoulli trials contains 2” points or
successions of n symbols S and F, each point representing one possible
outcome of the compound experiment. Since the trials are independent,
the probabilities multiply. In other words, the probability of any specified
sequence is the product obtained on replacing the symbols S and F by p
and q, respectively. Thus P{(SSFSF--- FFS)} = ppgpq- - + qqp.

Examples. The most familiar example of Bernoulli trials is provided
by successive tosses of a true or symmetric coin; here p = q = 3. If the
coin is unbalanced,westill assumethat the successive tosses are independ-
ent so that we have a modelof Bernoulli trials in which the probability p
for success can have an arbitrary value. Repeated random drawings from

an urn of constant composition represent Bernoulli trials. Suchtrials arise
also from more complicated experiments if we decide not to distinguish
amongseveral outcomes and describe any result simply as A or non-A.
Thus with good dice the distinction between ace (S) and non-ace (F) leads

* James Bernoulli (1654-1705). His main work, the Ars conjectandi, was published
in 1713.

146
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to Bernoulli trials with p = %, whereas distinguishing between even or

odd leads to Bernoulli trials with p = 4. If the die is unbalanced, the

successive throwsstill form Bernoulli trials, but the corresponding prob-
abilities p are different. Royal flush in poker or double acein rolling dice
may represent success; calling all other outcomesfailure, we have Ber-

 noulli trials with p = and p = xg, respectively. Reductions of
1

649,740
this type are usual in statistical applications. For example, washers pro-
duced in mass production mayvary in thickness, but, on inspection, they

are classified as conforming(S)or defective (F) accordingas their thickness
is, or is not, within prescribedlimits. >

The Bernoulli schemeoftrials is a theoretical model, and only experience

can show whetherit is suitable for the description of specified observations.
Our knowledge that successive tossings of physical coins conform to the
Bernoulli scheme is derived from experimental evidence. The manin the
street, and also the philosopher K. Marbe,? believe that after a’ run of
seventeen heads tail becomes more probable. This argument has nothing
to do with imperfections of physical coins; it endows nature with memory,
or, in our terminology, it denies the stochastic independence of successive

trials. Marbe’s theory cannotbe refuted bylogic butis rejected because of

lack of empirical support.
In sampling practice, industrial quality control, etc., the scheme of

Bernoulli trials provides an ideal standard even though it can never be
fully attained. Thus, in the above example of the production of washers,

there are many reasons why the output cannot conform to the Bernoulli
scheme. The machinesare subject to changes, and hence the probabilities
do not remain constant; there is a persistence in the action of machines,

and therefore long runs of deviations of like kind are more probable than
they would beif the trials were truly independent. From the point of view
of quality control, however,it is desirable that the process conform to the
Bernoulli scheme, and it is an important discovery that, within certain

limits, production can be madeto behavein this way. The purpose of con-
tinuous control is then to discover at an early stage flagrant departures

from the ideal scheme and to use them as an indication of impending

trouble. |.

2. THE BINOMIAL DISTRIBUTION

Frequently we are interested only in the total number of successes
produced in a succession of n Bernoulli trials but not in their order.

® Die Gleichférmigkeit in der Welt, Munich, 1916. Marbe’s theory found wide

acceptance; its most prominent opponent was von Mises.
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The number of successes can be 0,1,...,2, and ourfirst problem is to
determine the corresponding probabilities. Now the event “n trials result
in k successes and n — k failures’? can happen in as many ways as k
letters S can be distributed among n places. In other words, our event

contains (7) points, and, by definition, each point has. the probability

p*q”*. This proves the

Theorem. Let b(k;n, p) be the probability that n Bernoulli trials with
probabilities p for success and q = 1 — p forfailure result in k successes
and n—k failures. Then

(2.1) b(k; n, p) = (;) pigh*,

In particular, the probability of no success is g”, and the probability ofat
least one success is 1 — q”. >

Weshall treat p as a constant and denote the numberofsuccesses in n

trials by S,; then b(k;n, p) = P{S, =k}. In the general terminology
S,, is a random variable, and the function (2.1) is the “‘distribution”’ ofthis
random variable; we shall refer to it as the binomial distribution. The

attribute “binomial”’ refers to the fact that (2.1) represents the kth term
of the binomial expansion of (q¢+p)”. This remark showsalso that

b(0; n, p) + BU; n, p) + +++ + b(n; n, p) = (qtp)” = 1,

as is required by the notion of probability. The binomial distribution has
been tabulated.

Examples. (a) Weldon’s dice data. Let an experiment consist in

throwing twelve dice and let us count fives and sixes as “‘success.’’ With
perfect dice the probability ofsuccess is p = 4 and the numberofsuccesses
should follow the binomial distribution b(k; 12,4). Table 1 gives these

probabilities, together with the corresponding observed average fre-
quencies in 26,306 actual experiments. The agreement looks good, but for
such extensive datait is really very bad. Statisticians usually judge close-
ness of fit by the chi-square criterion. According toit, deviations as large

as those observed would happen with true dice only once in 10,000 times.
ee

* For n < 50, see National Bureau of Standards, Tables of the binomial probability
distribution, Applied Mathematics Series, vol. 6 (1950). For 50<n< 100, see
H. Cc, Romig, 50-100 Binomial tables, New York (John Wiley and Sons), 1953. Fora °*

wider range see Tables ofthe cumulative binomialprobability distribution, by the Harvard
Computation Laboratory, 1955, and Tables of the cumulative binomialprobabilities, by
the Ordnance Corps, ORDP 20-11 (1952).
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TABLE 1

WELDON’s DICE DATA

 

 

Observed

k b(k; 12, 4) frequency b(k; 12, 0.3377)

0 0.007 707 0.007 033 0.007 123

1 0.046 244 0.043 678 0.043 584
2 0.127 171 0.124 116 0.122 225

3 0.211 952 0.208 127 0.207 736

4 0.238 446 0.232 418 0.238 324
5 0.190 757 0.197 445 0.194 429

6 0.111 275 0.116 589 0.115 660

7 0.047 689 0.050 597 0.050 549

8 0.014 903 0.015 320 0.016 109

9 0.003 312 0.003 991 0.003 650

10 0.000 497 0.000 532 0.000 558

1] 0.000 045 0.000 152 0.000 052

12 0.000 002 0.000 000 0.000 002
 

It is, therefore, reasonable to assumethat the dice were biased. A bias with
probability of success p = 0.3377 would fit the observations.*

(b) In IV, 4, we have encountered the binomial distribution in connec-

tion with a card-guessing problem, and the columns b,, of table 3 exhibit
the terms of the distribution for n = 3, 4, 5,6,10 and p=n". In the

occupancyproblem II, (4.c) we found anotherspecial case of the binomial

distribution with p = n7.
(c) How manytrials with p = 0.01 must be performed to ensure that

the probability for at least one success be 4 or greater? Here we seek the
smallest integer n for which 1 — (0.99) > 3, or —n log (0.99) > log 2;

therefore n > 70.

(d) A power supply problem. Suppose that n = 10 workers are to use
electric power intermittently, and weare interested in estimating the total
load to be expected. For a crude approximation imagine that at any given
time each worker has the same probability p of requiring a unit of power.

If they work independently, the probability of exactly k workers requiring
power at the same time should be b(k;n, p). If, on the average, a worker

uses powerfor 12 minutes per hour, we would put p = 3. The probability
of seven or more workers requiring current at the same time is then

4R. A. Fisher, Statistical methods for research workers, Edinburgh-London, 1932,

p- 66.
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B(7; 10,°0.2) + +++ + b(10; 10, 0.2) = 0.0008643584. In other words, if
the supply is adjusted to six power units, an overload has probability
0.00086 . . . and should be expected for about one minute in 1157,thatis,
about one minute in twenty hours. The probability of eight or more
workers requiring current at the same time is only 0.0000779264 or about
eleven timesless. ~ :

(e) Testing sera or vaccines.* Suppose that the normalrate ofinfection

 

serum 7 healthy animals are injected with it. How are weto evaluate the
result of the experiment? For an absolutely worthless serum the prob-
ability that exactly k ofthe n test animals remainfree from infection may
be equated to b(k;n, 0.75). For k =n = 10 this probability is about
0.056, and for k = n = 12 only 0.032. Thus, if out of ten or twelve test
animals none catches infection, this may be taken as an indication that the
serum has had aneffect, although it is not a conclusive proof. Note that,
without serum, the probability that out of seventeen animals at most one
catches infection is about 0.0501. It is therefore stronger evidence in favor
of the serum if out of seventeen test animals only onegets infected thanif
out of ten all remain healthy. For n = 23 the probability of at most two
animals catching infection is about 0.0492, and thus twofailures out of
twenty-three is again better evidence for the serum than one out of seven-
teen or none outoften.

(f) Anotherstatistical test. Suppose n people havetheir blood pressure
measured with and without a certain drug. Let the observations be
U,...,%, and x,...,2'. We say that the ith trial resulted in successif
a“, <«;, and in failure if x, > x{. (For simplicity we may assume that no
two measurements lead to exactly the same result.) If the drug has no
effect, then our observation should correspond to n Bernoulli trials with
p = 4%, and an excessive numberof successes is to be taken as evidence
that the drug hasaneffect. >

3. THE CENTRAL TERM AND THE TAILS

From (2.1) wesee that

 

(3.1) b(k; n, p) _ (n—k+1)p _ 1+ (n+1)p —k

b(k—1; n, p) kq kq

Accordingly, the term b(k;n, p) is greater than the preceding one for

k <(n+l1)p and is smaller for k > (n+1)p. If (n4+1)p = mhappens

> P. V. Sukhatme and V. G. Panse, Size of experiments for testing sera or vaccines,
Indian Journal of Veterinary Science and Animal Husbandry,vol. 13 (1943), pp. 75-82.
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os |

. be an integer, then b(m;n, p) = b(m — 1;n, p). There exists exactly
-one integer m such that

S Se .2) (n+l)pp —-1<m<(nt+l)p,
 

and wehave the

Theorem. As k goesfrom 0 to n, the terms b(k; n, p) first increase

monotonically, then decrease monotonically, reaching their greatest value

when k =m, except that b(m—1;n, p) = b(m;n, p) when m = (n+1)p.

Weshall call b(m;n, p) the central term. Often m is called “the

most probable numberof successes,”’ but it must be understood that for
large values of n allterms b(kK;n, p) aré small. In 100 tossings of a true
coin the most probable numberof heads is 50, but its probability is less
than 0.08. In the next chapter we shall find that b(m;n, p) is approxi-

mately 1/s/27npq.
The probability of having exactly r successesis less interesting than the

probability of at least r successes; that is,

 

(3.3) PS, > rp = S49; 2,p)

(Theseries is only formally infinite since the terms with » > n—r vanish.)

Weshall now derive an upper bound for this probability which is useful
even though moresophisticated estimates will be found in the next chapter.

Suppose r > np. It is obvious from (3.1) that the terms of the series
in (3.3) decrease faster than the terms of a geometric series with ratio

I- (r—np)|rq, and so

(3.4) ope P{S, >r} < br: 1,p)
: } r— np

On the other hand, there are more than r — np integers k such that
-m<k <r. The corresponding terms of the binomial distribution add to

less than unity, and none is smaller than b(r;n, p). It follows that this

quantity is at most (r—np)", and hence

(3.5) P{S, ><

 

 if r>np.
np

The same argumentcould be appliedto theleft tail, but no calculations are
necessary. In fact, saying that there are at most r successes amounts to
saying that there are at least n — r failures; applying the equivalent of

(3.5) for failures we see that

(3.6) PIS, < n<(o=")p if r<np.
(np—r)

 



152 THE BINOMIAL AND THE POISSON DISTRIBUTIONS [V1.4

The next section will illustrate the usefulness of these inequalities for
estimating the probability of large deviations from the most probable
value m.

4. THE LAW OF LARGE NUMBERS

On several occasions we have mentioned that our intuitive notion of

probability is based on the following assumption. If in n identical trials
A occurs y times, and if n is very large, then »/n should be near the
probability p of A. Clearly, a formal mathematical theory can never
refer directly to real life, but it should at least provide theoretical counter-

parts to the phehomeha whichit tries to explain. Accordingly, we require
that the vague introductory remark be made precise in the form of a
theorem. For this purpose we translate “identical trials” as ‘Bernoulli
trials” with probability p for success. If S, is the number of successes

in 1 trials, then S,/n is the average number of successes and should be
near p. It is now easy to give a precise meaning to this. Consider,for
example, the probability that S,/n exceeds p+e, where « >0 is
arbitrarily small but fixed. This probability is the same as P{S,, > n(p+e)},- *
and by (3.5) this is-ggeater than 1/(ne?). It follows that as n increases, (3 :

ttyCS =
P{S, > n(p+6)}— 0. ne-

Wesee in the same way that P{S, < n(p—e«)}— 0, and thus

Sp) <dlon.
n

(4.1) P|
 

In words: As n increases, the probability that the average number of

successes deviates from p by more than any preassigned « tends to zero.

This is one form of the law of large numbers and serves as a basis for the -
intuitive notion of probability as a measure ofrelative frequencies. For
practical applications it must be supplemented by a moreprecise estimate
of the probability on the left side in (4.1); such an estimate is provided by

the normal approximation to the binomial distribution [cf. the typical
example VII, (4.4)]. Actually (4.1) is a simple consequence of the latter

(problem 12 of VII, 7).

The assertion (4.1) is the classical law of large numbers. It is of very
limited interest and should be replaced by the moreprecise and moreuseful
strong law of large numbers (see VIII, 4).

“s Warning. It is usual to read into the law of large numbers things whichit
definitely does not imply. If Peter and Paul toss a perfect coin 10,000
times, it is customary to expect that Peter will be in the lead roughly half
the time. This is not true. In a large number ofdifferent coin-tossing
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gamesit is reasonableto expect that at any fixed momentheadswill be in
the lead in roughly half of all cases. But it is quite likely that the player
whoendsat the winningside has been in the leadforpractically the whole
duration of the game. Thus, contrary. to widespread belief, the time
average for any individual game has nothing to do with the ensemble
average at any given moment. Forcloser study of other unexpected and
paradoxical properties of chance fluctuations the reader is referred to
chapter III, in particular to the discussion of the arc sine laws.

5. THE POISSON APPROXIMATION®

In manyapplications we deal with Bernoulli trials where, comparatively
speaking, 7 is large and p is small, whereas the product

(5.1) A= np

is of moderate magnitude. In such casesit is convenient to use an approxi-
mation to b(k;n, p) which is due to Poisson and which we proceed to

derive. For k =0 we have

(5.2) b(0; n, p) = (1—p)" = ( - “);
n

Passing to logarithms and using the Taylor expansionII, (8.10), we find

A ?
(5.3) log b(0; n, p) = nlog (17) = -2—=

n 2n

so that for large n

(5.4) b(O; n, p) = e’,

where the sign ~ is used to indicate approximate equality (in the present
case up to termsof order of magnitude nn). Furthermore, from (3.1) it is

seen that for any fixed k and sufficiently large 7

b(k; n,p) _ A—(k-Dp |
(5-5) b(k—1; n, p) kq

Ao

From this we conclude successively that

b(1; 1, p) = A+ b(O; n,p) » Ae,

b(2; n, p) ~ 34+ B(1; n, p) ~ Be,

6 Siméon D. Poisson (1781-1840). His book, Recherches sur la probabilité desjuge-
ments en matiére criminelle et en matiére civile, précedées des régles générales du calcul

des probabilités, appeared in 1837.

 



154 THE BINOMIAL AND THE POISSON DISTRIBUTIONS [VI.5

and generally by induction
k

(5.6) b(k; n, p) © < e.

This is the classical Poisson approximation to the binomial distribution.’
In view of its great importance we introduce the notation

(5.7) p(k; 4) = e *— .

With this notation p(k; 4) should be an approximation to b(k; n, A/n)
when nis sufficiently large.

Examples. (a) Table 3 of IV,4 tabulates the Poisson probabilities (5.7)
with 2 = 1 and, for comparison, the binomial distributions with p = 1/n
and n = 3, 4, 5, 6, 10. It will be seen that the agreementis surprisingly

good despite the small values of 7.

(b) An empiricalillustration. The occurrence of the pair (7, 7) among

100 pairs of random digits should follow the binomialdistribution with
n= 100 and p = 0.01. The accompanying table 2 shows actual counts,
N,, in 100 batches of 100 pairs of random digits.? The ratios N,/100 are

TABLE 2

AN EXAMPLE OF THE POISSON APPROXIMATION
 

 

k b(&; 100, 0.01) pk; 1) N,

0 0.366 032 0.367 879 41

1 0.369 730 0.367 879 34
2 0.184 865 0.183 940 16

3 0.060 999 0.061 313 8

4 0.014 942 0.015 328 0

5 0.002 898 0.003 066 1

6 0.000 463 0.000 511 0

7 0.000 063 0.000 073 0

8 0.000 007 0.000 009 0

9 0.000 001 0.000 001 0
 

The first columns illustrate the Poisson approximation to the binomial

distribution. The last column records the number of batches of 100 pairs of

random digits each in which the combination (7, 7) appears exactly k times.
 

* For the degree of approximation see problems 33 and 34,

8M. G. Kendall and Babington Smith, Tables of random sampling numbers, Tracts

for Computers No. 24, Cambridge, 1940.
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compared with the theoretical binomial probabilities as well as with the
corresponding Poisson approximations. The observed frequencies agree

reasonably with the theoretical probabilities. (As judged by the 7?-
criterion, chance fluctuations should, in about 75 out of 100 similar cases,
produce large deviations of observed frequencies from the theoretical
probabilities.)

(c) Birthdays. Whatis the probability, p,, that in a company of 500

people exactly k will have birthdays on New Year’s Day? If the 500
people are chosen at random, we may apply the scheme of 500 Bernoulli
trials with probability of success p = zg. For the Poisson approximation

we put A = 333 = 1.3699....

The correct probabilities and their Poisson approximations are as
follows: |

k 0 It 2 3 4 5 6

Binomial 0.2537 0.3484 0.2388 0.1089 0.0372 0.0101 0.0023

Poisson 0.2541 0.3481 0.2385 0.1089 0.0373 0.0102 0.0023

(d) Defective items. Suppose that screws are produced understatistical
quality control so that it is legitimate to apply the Bernoulli scheme of
trials. If the probability of a screw being defective is p = 0.015, then the
probability that a box of 100 screws does not contain a defective one is
(0.985)! = 0.22061. The corresponding Poisson approximation is
e*° = 0.22313..., which should be close enough for most practical
purposes. We now ask: How manyscrews should a box contain in order
that the probability of finding at least 100 conforming screws be 0.8 or
better? If 100 + x is the required number, then x is a small integer. To
apply the Poisson approximation for n = 100 + x trials we should put
A= np, but np is approximately 100p = 1.5. We then require the

smallest integer x for which

1.5 4 5
(5.8) etely + 7 +: | > 0.8.

x!

In tables we find that for + = 1 theleft side is approximately 0.56, and
for x = 2 it is 0.809. Thus the Poisson approximation wouldlead to the
conclusion that 102 screws are required. Actually the probability offinding
at least 100 conforming screwsin a box of 102 is 0.8022....

° FE. C. Molina, Poisson’s exponential binomial limit, New York (Van Nostrand),

1942, [These are tables giving p(k; A) and p(k; A) + p(k+1; 4) +°--: for & ranging

from 0 to 100.]
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(e) Centenarians. At birth any particular person has a small chance of
living 100 years, and in a large community the numberofyearly birthsis

large. Owing to wars, epidemics, etc., different lives are not stochastically

independent, but as a first approximation we may compare n births to n
Bernoulli trials with death after 100 years as success. In a stable com-

munity, where neither size nor mortality rate changes appreciably, it is
reasonable to expect that the frequency of years in which exactly k
centenarians die is approximately p(k; 4), with A depending onthesize
and health of the community. Records of Switzerland confirm this

conclusion.”
(f) Misprints, raisins, etc. If in printing a book there is a constant

probability of any letter being misprinted, andif the conditionsof printing
remain unchanged, then we have as many Bernoulli trials as there are
letters. The frequency of pages containing exactly k misprints will then
be approximately p(k; A), where A is a characteristic of the printer.

Occasional fatigue of the printer, difficult passages, etc., will increase the
chancesof errors and may produceclusters of misprints. Thus the Poisson
formula may be used to discover radical departures from uniformity or
from the state of statistical control. A similar argument applies in many
cases. For example, if manyraisins are distributed in the dough, we should
expect that thorough mixing will result in the frequency of loaves with
exactly k raisins to be approximately p(k; 4) with A a measureof the

density of raisins in the dough. >

6. THE POISSON DISTRIBUTION

In the preceding section the Poisson probabilities (5.7) appear merely as
a convenient approximation to the binomial distribution in the case of

large n and small p. In connection with the matching and occupancy

problems of chapter IV we havestudied different probability distributions,
which have also led to the Poisson expressions p(k; A) asa limiting form.
Wehave here a special case of the remarkable fact that there exist a few
distributions of great universality which occur in a surprisingly great
variety of problems. The three principal distributions, with ramifications
throughout probability theory, are the binomial distribution, the normal

distribution (to be introduced in the following chapter), and the Poisson
distribution

(6.1) p(k; A) = e*—,

which we shall now consider on its own merits.

10 E, J. Gumbel, Les centenaires, Aktudrske Vedy, Prague, vol. 7 (1937), pp. 1-8.

 



VI.6]} THE POISSON DISTRIBUTION 157

Wenotefirst that on adding the quantities (6.1) for k = 0,1,2,... we

get on the right side e~* times the Taylor series for e*. Hence for any

fixed A the quantities p(k; 4) add to unity, and therefore it is possible
to conceive of an ideal experiment in which p(k; A) is the probability of
exactly k successes. We shall now indicate why many physical experi-

ments andstatistical observations actually lead to such an interpretation
of (6.1). The examplesof the next section will illustrate the wide range and
the importance of various applications of (6.1). The true nature of the
Poisson distribution will become apparent only in connection with the
theory of stochastic processes (cf. the new approaches in XII,2 and
XVII,2).

Consider a sequence of random events occurring in time, such as radio-
active disintegrations, or incomingcalls at a telephone exchange. Each
event is represented by a point on the time axis, and we are concerned with

chance distributions of points. There exist many different types of such
distributions, but their study belongs to the domain of continuous prob-
abilities which we have postponedto the second volume. Here weshall be
content to show that the simplest physical assumptions lead to p(k; A) as
the probability of finding exactly k points (events) within a fixed interval
of specified length. Our methodsare necessarily crude, and weshall return

to the same problem with more adequate methods in chapters XII and
XVI.
The physical assumptions which, we want to express mathematically are

that the conditions of the experiment remain constant in time, and that
non-overlapping time intervals are stochastically independentin the sense
that information concerning the number of events in one interval reveals
nothing aboutthe other. The theory of probabilities in a continuum makes
it possible to express these statements directly, but being restricted to

discrete probabilities, we have to use an approximatefinite model and pass
to the limit.

Imagine a unit time interval partitioned into subintervals of length
I/n. A given collection of finitely many points in the interval may be
regardedasthe result of a chance process such that each subinterval has the

same probability p, to contain one or more points of the collection. A
subinterval is then either occupied or empty, and the assumed independ-
ence of non-overlapping time intervals implies that we are dealing with
Bernoulli trials: We assume that the probability for exactly k occupied
subintervals is given by b(k;1n, p,). We now refine this discrete model

indefinitely by letting »-—» o. The probability that the whole interval
contains no point of the collection must tend to a finite limit. But this is
the event that no cell is occupied, and its probability is (1—p,)”. Passing
to logarithms it is seen that this quantity approachesa limit only if np,
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does. The contfhgency np,—» © is excluded because it would imply
infinitely many points of the collection in even the smallest interval.
Accordingly our model requires that there exists a number 4 such that
np, — A. In this case the probability of exactly k occupied subintervals
tends to p(k; 4), and since we are dealing with individual points, the

number of occupied cells agrees in the limit with the number of points of
the collection contained in our unit time interval."

In applications it is necessary to replace the unit time interval by an
interval of arbitrary length ¢. If we divide it again into subintervals of

length I/n then the probabilities p,, remain unchanged, but the numberof
subintervals is given by the integer nearest to nt. The passageto thelimit

is the same except that A is replaced by At. This leads us to consider

k

(6.2) p(k; it) = eZ

as the probability offinding exactly k points in afixed interval of length t.

In particular, the probability of no pointin an interval of length t is

(6.3) pO; At) = e**,

and the probability of one or more points is therefore 1 — e~*%,
The parameter A is a physical constant which determines the density

of points on the f-axis. The larger A is, the smaller is the probability
(6.3) of finding no point. Suppose that a physical experimentis repeated
a great number JN oftimes, and that each time we count the numberof
events in an interval of fixed length ¢. Let N, be the numberoftimes that
exactly k events are observed. Then

(6.4) Not Ny t+ Note =N.

The total number of points observed in the N experiments is

(6.5) N, + 2N, + 3N3+°°: = J,

and J/N is the average. If N is large, we expect that

(6.6) iN, & Np(k; At)

11 Other possibilities are conceivable. Our model may be a reasonable approximation
in the study of automobile accidents, but it does not apply when one counts the number
of cars smashed rather than the numberof accidents as such. This is so because some

accidents involve more than onecar, and soit is necessary to consider single points,

- doublets, triplets, etc. In the limit we are lead to the compound Poisson distribution

of XII,2. From the point of view of more general processes one could say that we are
counting only the numberofjumps, but leave their magnitude out of consideration.
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(this lies at the root of all applications of probability and will be justified
and made moreprecise by the law of large numbers in chapter X). Sub-

stituting from (6.6) into (6.5), we find

(6.7) T » N{p(1; Ath+2p(2; At)+3p(3;A)+ +--+} =

ae= ne*el144AEAD +--+: = NAt

and hence

(6.8) At» TIN.

This relation gives us a means of estimating A from observations and
of comparing theory with experiments. The examples of the next section

will illustrate this point.

Spatial Distributions

Wehaveconsidered the distribution of random events or points along

the f-axis, but the same argument applies to the distribution of points in
plane or space. Instead of intervals of length t we have domains of area
or volume ¢, and the fundamental assumption is that the probability of

finding k points in any specified domain depends only on the area or
volume of the domain but not on its shape. Otherwise we have the same
assumptions as before: (1) if ¢ is small, the probability of finding more
than one point in a domain of volume ¢ is small as compared to ¢; (2)
non-overlapping domains are mutually independent. To find the prob-
ability that a domain of volume ¢ contains exactly k random points, we
subdivide it into n subdomains and approximate the required probability

by the probability of k successes in n trials. This means neglecting the
possibility of finding more than one point in the same subdomain,but our

assumption (1) implies that the error tends to zero as n —> ©. In thelimit
we get again the Poisson distribution (6.2). Stars in space, raisins in cake,
weed seeds amonggrass seeds,flaws in materials, animal litters in fields
are distributed in accordance with the Poisson law. See examples (7.5)

and (7.e).

7. OBSERVATIONS FITTING THE POISSON
DISTRIBUTION”

(a) Radioactive disintegrations. A radioactive substance emits «-

particles; the numberofparticles reaching a given portion of space during

12 The Poisson distribution has become known as the law of small numbers or of

rare events. These are misnomers which proved detrimental to the realization of the

fundamentalrole of the Poisson distribution. The following examples will show how

misleading the two namesare.
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time ¢ is the best-known example of random events obeying the Poisson
law. Of course, the substance continues to decay, and in the long run the
density of «-particles will decline. However, with radium it takes years
before a decrease of matter can be detected; for relatively short periods
the conditions may be considered constant, and we have anideal realiza-
tion of the hypotheses which led to the Poisson distribution.

In a famous experiment’® a radioactive substance was observed during
N = 2608 time intervals of 7.5 seconds each; the numberofparticles
reaching a counter was obtained for each period. Table 3 records the

TABLE 3

EXAMPLE (a): RADIOACTIVE DISINTEGRATIONS
 

 

k Nz  Np(k; 3.870) k Nz  Np(k; 3.870)

0 57 54.399 5 408 393.515
1 203 210.523 6 273 253.817
2 383 407.361 7 139 140.325
3 525 525.496 8 45 67.882
4 532 508.418 9 27 29.189

k >10 16 17.075
Total 2608 2608.000

number N, of periods with exactly k particles. The total number of
particles is T= )kN, = 10,094, the average T/N = 3.870. The
theoretical values Np(k; 3.870) are seen to be rather close to the observed
numbers N,. To judge the closeness of fit, an estimate of the probable
magnitude of chancefluctuations is required. Statisticians judge the close-
ness offit by the y®-criterion. Measuring by this standard, we should
expect that under ideal conditions about 17 out of 100 comparable cases
would show worse agreementthan exhibited in table 3.

(0) Flying-bomb hits on London. As an example ofa spatial distribution
of random points considerthe statistics of flying-bombhits in the south
of London during World War II. The entire areais divided into N = 576
small areas of t= 4 square kilometers each, and table 4 records the

number N, of areas with exactly k hits.14 The total numberofhitsis
T = > kN, = 537, the average At = T/N = 0.9323.... Thefit of the

** Rutherford, Chadwick, and Ellis, Radiations from radioactive substances, Cam-
bridge, 1920, p. 172. Table 3 and the x*-estimate of the text are taken from H. Cramér

Mathematical methodsof statistics, Uppsala and Princeton, 1945, p- 436.

4 The figures are taken from R. D. Clarke, An application of the Poisson distribution,

Journal of the Institute of Actuaries, vol. 72 (1946), p. 48.
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Poisson distribution is surprisingly good; as judged by the y*-criterion,
under ideal conditions some 88 per cent of comparable observations should

show a worse agreement. It is interesting to note that most people believed

in a tendency of the points of impact to cluster. If this were true, there
would be a higher frequency of areas with either manyhits or no hit and a
deficiencyin the intermediate classes. Table 4 indicates perfect randomness
and homogeneity of the area; we have here aninstructive illustration of
the established fact that to the untrained eye randomness appears as

regularity or tendency to cluster.

TABLE 4

EXAMPLE (b): FLYING-BoMB HITs ON LONDON

 

k 0 ] 2 3 4 5 and over

N, 229 211 93 35 7 1

Np(k; 0.9323) 226.74 211.39 98.54 30.62 7.14 1.57

 

(c) Chromosomeinterchanges in cells. Irradiation by X-rays produces
certain processes in organic cells which we call chromosomeinterchanges.
As long as radiation continues, the probability of such interchanges re-
mains constant, and, according to theory, the numbers N, ofcells with

exactly k interchanges should follow a Poisson distribution. The theory
is also able to predict the dependence of the parameter A ontheintensity
of radiation, the temperature, etc., but we shall not enter into these details.

Table 5 records. the result of eleven different series of experiments.”
These are arranged according to goodnessoffit. The last columnindicates

the approximate percentage of ideal cases in which chance fluctuations
would produce a worse agreement (as judged by the y*-standard). The

agreement between theory and observationis striking.
(d) Connections to wrong number. Table 6 showsstatistics of telephone

connections to a wrong number.!® A total of N = 267 numbers was

observed; N, indicates how many numbers had exactly k wrong con-
nections. The Poisson distribution p(k; 8.74) shows again an excellent

fit. (As judged by the y?-criterion the deviations are near the median
value.) In Thorndike’s paper the readerwill find other telephonestatistics

15D, G. Catcheside, D. E. Lea, and J. M. Thoday, Types of chromosomestructural

change induced by the irradiation of Tradescantia microspores, Journal of Genetics,
vol. 47 (1945-46), pp. 113-136. Our table is table IX of this paper, except that the
x’-levels were recomputed, using a single degree of freedom.

16 The observations are taken from F. Thorndike, Applications ofPoisson’sprobability
summation, The Bell System Technical Journal, vol. 5 (1926), pp. 604-624. This paper

contains a graphical analysis of 32 different statistics.

 



 

TABLE 5

EXAMPLE (c): CHROMOSOME INTERCHANGES INDUCED BY X-RAY

IRRADIATION

 

 

 

       

Experi- Cells with k interchanges x
t Total level

. Sé o men 1 N in per
4-7 Number 0 1 2 >3 cent

a 1 Observed N, 753 266 49 5 1073 95
‘y Np(k; 0.35508) 752.3 267.1 47.4 6.2
food - Kur

2 Observed Nj, 434 195 44 9 682 85
Nptk; 0.45601) 432.3 197.1 44.9] 7.7

3 Observed N,;, 280 75 12 1 368 65
Nptk;, 0.27717) 278.9 77.3 10.7 1.1

4 Observed N, {2278 273 15 0 2566] 65
Np(k&; 0.11808) 2280.2 269.2 15.9 0.7

5 Observed N;, 593 143 20 759 45

Nptk ; 0.25296) 589.4 149.1 18.8 1.7

6 Observed N;, 639 141 13 0 793 45

Nplk; 0.21059) 642.4 135.3 14.2 1.1

7 Observed N;, 359 109 13 482 40

Nptk; 0.28631) 362.0 103.6 14.9 1.5

8 Observed Nj, 493 176 26 2 697 35

Np(k;.0.33572) 498.2 167.3 28.1} 3.4

9 Observed N;, 793 339 62 5 1199 20

Np(k; 0.39867) 804.8 320.8 64.0 9.4

10 Observed N; | 579 254 47 3 883 20

Nptk; 0.40544) 588.7 238.7 48.4 7.2

11 Observed N;, 444 252 59 1 756 5

Nptk ; 0.49339) 461.6 227.7 56.2 10.5
 

162
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TABLE 6

EXAMPLE (d): CONNECTIONS TO WRONG NUMBER
 

 

 

k N,  Nplk; 8.74) k N,  Nptk; 8.74)

0-2 1 2.05 1 20 24.34
3 5 4.76 12 18 17.72
4 11 10.39 13 12 11.92
5 14 18.16 14 7 7.44
6 22 26.45 15 6 4,33
7 43 33.03 >16 2 4.65
8 31 36.09 267 267.00
9 40 35.04
10 35 30.63
 

following the Poisson law. Sometimes (as with party lines, calls from
groups of coin boxes,etc.) there is an obvious interdependence amongthe

events, and the Poisson distribution no longerfits.
- (e) Bacteria and blood counts. Figure 1 reproduces a photograph of a

Petri plate with bacterial colonies, which are visible under the microscope
as dark spots. Theplate is divided into small squares. Table 7 reproduces
the observed numbers of squares with exactly k dark spots in eight
experiments with as manydifferent kinds of bacteria.1? We have here a

 

| 7 [tane

0 Mbeh

3

 sleet3.174 2 jel
s
 

~
o
R
. . °

° .

 

.
.

oe
j
e
t

 

 

   
      

Figure 1. Bacteria on a Petriplate.

17 The table is taken from J. Neyman, Lectures and conferences on mathematical

statistics (mimeographed), Dept. of Agriculture, Washington, 1938.
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TABLE 7

EXAMPLE (e): COUNTS OF BACTERIA

 

 

1 2 3 4] 5 6 7 x
k 0 Level

Observed N;, 5 19 26 26 |21 |/13 8 97
Poisson theor. 6.1} 18.0] 26.7] 26.4} 19.6] 11.7] 9.5
 

Observed N;, 26 40 38 17 7 66

Poisson theor. 27.5 42.2] 32.5] 16.7] 9.1

 

Observed Nj, 59 86 49 30 20 26

Poisson theor. 55.6 82.2| 60.8] 30.0] 15.4

 

Observed N;, 83 134 135 101 40 16 7 63

Poisson theor. 75.0 144.5 139.4} 89.7 43.3 16.7 7.4

 

Observed N;, 8 16 18 15 9 7 97

Poisson theor. 6.8 16.2] 19.2] 15.1! 9.0) 6.7

 

Observed N;, 7 11 11 11 7 8 53

Poisson theor. 3.9} 10.4] 13.7} 12.0] 7.9] 7.1

 

Observed N;, 3 7 14 21 |20 |19 7 9 85

Poisson theor. 2.1 8.2} 15.8} 20.2] 19.5115 9.6 9.6
  

Observed N;, 60 80 45 16 9 78

Poisson theor. 62.6| 75.8| 45.8] 18.5 7.3          
The last entry in each row includesthe figures for higher classes andshould be

labeled “‘k” or more.”
 

representative of an important practical application of the Poisson dis-
tribution to spatial distributions of random points. >

8. WAITING TIMES. THE NEGATIVE
BINOMIAL DISTRIBUTION

Consider a succession of 1 Bernoulli trials and let us inquire how long

it will take for the rth success to turn up. Here r isa fixed positive integer.
The total numberof successes in n trials may, of course, fall short of r,

but the probability that the rth success occurs at the trial number » <n
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is clearly independent of » and depends only on », r, and p. Since
necessarily » > r, it is preferable to write » =k +r. The probability
that the rth success occurs at the trialnumber r + k (where k =0,1,...)

will be denoted by f(k;r, p). It equals the probability that exactly k
failures precede the rth success. This event occurs if, and only if, among
the r+ k — trials there are exactly k failures and the following, or
(r+k)th, trial results in success; the corresponding probabilities are

r+k—1 a
( k ). p’ *q" and p, whence

(8.1) f(k3r, p) = (“) pq’.

Rewriting the binomial coefficient in accordance with I1,(12.4), we find

the alternative form

(8.2) f(kir, p) = 7) p'(—4)', k= 0,1,2,....

Suppose now that Bernoulli trials are continued as long as necessary for

r successes to turn up. A typical sample point is represented by a sequence
containing an arbitrary number, k, of letters F and exactly r letters S,

the sequence terminating by an S; the probability of such a pointis, by
definition, p’g*. We must ask, however, whether it is possible that the
trials never end, that is, whether aninfinite sequence oftrials may produce

fewer than r successes. Now )f(k;r, p) is the probability that the rth
k=0

success occursafter finitely manytrials; accordingly, the possibility of an
infinite sequence with fewer than r successes can be discounted if, and
onlyif,

(8.3) > f(ks 7, p) = 1.
k=0

This is so because by the binomial theorem

(8.4) > ({")-o =(l-q)" =p"
n=0\ k .

Multiplying (8.4) by p” we get (8.3).
In our waiting time problem r is necessarily a positive integer, but the

quantity defined by either (8.1) or (8.2) is non-negative and (8.3) holds for

any positive r. For arbitrary fixed real r>0 and 0O<p<1_ the

sequence {f(k;r, p)} is called a negative binomial distribution. It occurs

in many applications (and we have encountered it in problem 24 of V, as
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TABLE 8
THE PROBABILITIES (8.5) IN THE MATCH Box PROBLEM

 

 

r Up U, r Uy, U,

0 0.079 589 0.079 589 15 0.023 171 0.917 941
1 0.079 589 0.159 178 16 0.019 081 0.937 022
2 0.078 785 0.237 963 17 0.015 447 0.952 469
3 0.077 177 0.315 140 18 0.012 283 0.964 752

. 4 0.074 790 0.389 931 19 0.009 587 0.974 338

5 0.071 674 0.461 605 20 0.007 338 0.981 676
6 0.067 902 0.529 506 21 0.005 504 0.987 180
7 0.063 568 0.593 073 22 0.004 041 0.991 220
8 0.058 783 0.651 855 23 0.002 901 0.944 121
9 0.053 671 0.705 527 24 0.002 034 0.996 155

10 0.048 363 0.753 890 25 0.001 392 0.997 547
11 0.042 989 0.796 879 26 0.000 928 0.998 475
12 0.037 676 0.834 555 27 0.000 602 0.999 077
13 0.032 538 0.867 094 28 0.000 379 0.999 456

0.894 770 29 0.000 232 0.999 68814 0.027 676

 

u, is the probability that, at the momentforthefirst time a match boxis found
empty, the other contains exactly r matches, assumingthatinitially each box
contained 50 matches. U, =u) +4, +°+* +4, is the corresponding prob-
ability of having not more than r matches.
 

the limiting form of the Polya distribution). When r is a positive integer,
{f(k; r, p)}. may be interpreted as the probability distribution for the
waiting time to the rth success; as suchitis also called the Pascal distribu-
tion. For r = 1 it reduces to the geometric distribution {pq"}.

Examples. (a) The problem of Banach’s match boxes® A certain
mathematician always carries one matchboxin his right pocketand one in
his left. When he wants a match,heselects a pocket at random,the suc-
cessive choices thus constituting Bernoulli trials with p = 4. Suppose that
initially each box contained exactly N matches and consider the moment

_ when,forthe first time, our mathematician discovers that a box is empty.

*® This example wasinspired by a humorousreference to Banach’s smoking habits
made by H.Steinhaus in an address honoring Banach. It became unexpectedly popular
in the literature and for this reason I leave the name unchanged. References to Banach’s
Oeuvres completes are, of course, spurious.
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At that moment the other box may contain 0,1, 2,..., N matches, and
we denote the corresponding probabilities by u,. Let us identify “success”
with choice ofthe left pocket. The left pocket will be found empty at a
moment whenthe right pocket contains exactly r matches if, and onlyif,
exactly N—r failures precede the (N+1)st success. The probability of

this event is f(N—r; N+1, 4). The same argument applies to the right
pocket and therefore the required probability is

(8.5) u, = 2f(N—r; N+1,4) = ("y) Q-2N+r

Numerical values for the case N = 50 are given in table 8. (Cf. problems
21, and 22, and problem 11 of IX,9).

(b) Generalization: Table tennis. The nature of the preceding problem

becomes clearer when oneattributes different probabilities to the two

boxes. For a change weinterpret this variant differently. Suppose that
Peter and Paul play a game which may be treated as a sequence of
Bernoulli trials in which the probabilities p and q serve as measures for
the players’ skill. In ordinary table tennis the player who first accumulates
21 individual victories wins the whole game. For comparison with the
preceding example we consider the general situation where 2y + 1 indi-

vidual successes are required. The gamelasts at least 2y + 1 and at most
4y +1 trials. Denote by a, the probability that Peter wins at thetrial
number 4v + 1 — r. This event occurs if, and onlyif, in the first 4v — r

trials Peter has scored 2y successes and thereafter wins the (2v+1)st

trial. Thus

(8.6) a, = ("..") prtig?,

av

In our game a) +-°*-+ dey is the probability that Peter wins. The

probability that the game ends exactly at the trial number 4v +1 —r
is given by a,+6,, where 5, is defined by (8.6) with p and q inter-

changed.
If we put 2y = N and p=q =},the probabilities a, +b, reduce

to the probabilities u, of the preceding example. >

9. THE MULTINOMIAL DISTRIBUTION

The binomial distribution can easily be generalized to the case of n
repeated independent trials where each trial can have one of several
outcomes. Denote the possible outcomesof eachtrial by £,,..., E,, and

suppose that the probability of the realization of E,; in each trial is
)
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pi G@=1,...,r). For r=2 we have Bernoulli trials; in general, the
numbers p, are subject only to the condition

The result of n trials is a succession like E,E,E,.... The probability

that in n trials E, occurs k, times, E, occurs k, times, etc., is

n!} ky kek k2 nS 1 2 3 ere °

(9.2) klkel-+- kt? Ps DP,

here the k, are arbitrary non-negative integers subject to the obviousi y § & )]
condition

(9.3) kytkhytos tk, =n.

If r = 2, then (9.2) reduces to the binomial distribution with p, = p,

P2=4, ky =k, kz =2"—k. The proof in the general case proceeds
along the samelines, starting with II, (4.7).

Formula (9.2) is called the multinomial distribution because the right-
hand member is the general term of the multinomial expansion of
(pit ++: +p,)". Its main applicationis to sampling with replacement when

the individuals areclassified into more than twocategories (e.g., according
to professions).

Examples. (a) In rolling twelve dice, whati$ the probability of getting
each face twice? Here £,,...,£, represent the six faces, all k, equal

2, and all p; equal %. Therefore, the answer is 12! 2-66-12 = 0.0034....
(6) Sampling. Let a population of N elements be divided into sub-

classes E,,...,£, of sizes Np,,..., Np, The multinomial distribution

gives the probabilities of the several possible compositions of a random
sample with replacement of size n taken from this population.

(c) Multiple Bernoulli trials. Two sequences of Bernoulli trials with
probabilities of success and failure p,, q,, and ps, q2, respectively, may

be considered one compound experiment with four possible outcomesin
each trial, namely, the combinations (S, S), (S, F), (F, S), (F, F). The
assumption that the two original sequences are independentis translated

into the statement that the probabilities of the four outcomes are pps,
P1425 9iP2 9192, Tespectively. If ky, ka, kz, k, are four integers adding to
n, the probability that in n trials SS will appear k, times, SF ky

times, etc., is

n} ky the _k kytks
(9.4) py agathaptt Betheki! ke! ke! kg!
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A special case occurs in sampling inspection. An item is conforming or

defective with probabilities p and qg. It may or may not beinspected with
corresponding probabilities p’ and gq’. The decision of whether an item
is inspected is made without knowledge ofits quality, so that we have
independenttrials. (Cf. problems 25 and 26, and problem 12 of IX, 9.)

10. PROBLEMS FOR SOLUTION

1. Assuming all sex distributions to be equally probable, what proportion
of families with exactly six children should be expected to have three boys and

three girls?

2. A bridge player had no ace in three consecutive hands. Did he have

reason to complain of ill luck?)

3. How long hasa series of random digits to be in order for the probability
of the digit 7 appearing to be at least 75?

4. How many independent bridge dealings are required in order for the

probability of a preassigned player having four aces at least once to be $ or

better? Solve again for some player instead of a given one.

5. If the probability ofhitting a target is $ and ten shotsarefired independently,

whatis the probability of the target being hit at least twice?

6. In problem 5, find the.conditional probability that the targetis hit at least

twice, assuming that at least one hit is scored.

7. Find the probability that a hand ofthirteen bridge cards selected at random

contains exactly two red cards. Compare it with the corresponding probability

in Bernoulli trials with p = 4. (For a definition of bridge see footnote1,in I, 1.)

8. Whatis the probability that the birthdays of six peoplefall in two calendar

months leaving exactly ten months free? (Assume independence and equal

probabilities for all months.)

9. In rolling six true dice, find the probability of obtaining (a) at least one,

(6) exactly one, (c) exactly two, aces. Compare with the Poisson approximations.

10. If there are on the average 1 per cent left-handers, estimate the chances

of having at least four left-handers among 200 people.

11. A book of 500 pages contains 500 misprints. Estimate the chances that

a given page contains atleast three misprints.

12. Colorblindness appearsin 1 per cent of the people in a certain population.

How large must a random sample (with replacements) be if the probability of

its containing a colorblind personis to, be 0.95 or more?

13. In the preceding exercise, what is the probability that a sample of 100

will contain (a) no, (b) two or more, colorblind people?

14. Estimate the numberof raisins which a cookie should contain on the

averageif it is desired that not more than one cookieoutof a hundred should be

withoutraisin.
4: ; ; 1

15. The probability of a royal flush in poker is p = ¢45,740" How large 

has n to be to render the probability of no royalflush in n hands smaller than

1/e ~ 4? (Note: Nocalculations are necessary for the solution.)
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16. A book of n pages contains on the average A misprints per page. Esti-
mate the probability that at least one page will contain more than k misprints.

17. Suppose that there exist two kinds of stars (or raisins in a cake, or flaws
in a material). The probability that a given volume contains ; stars of thefirst
kind is p(j; a), and the probability that it contains k stars of the second
kind is p(k; 5); the two events are assumed to be independent. Prove that
the probability that the volume contains a total of n stars is P(n; a+b).
(Interpret the assertion and the assumptions abstractly.)

18. A trafficproblem. Theflow oftraffic at a certain street crossing is described
by saying that the probability of a car passing during any given secondis a con-
stant p; andthat thereis no interaction between the passing ofcarsat different
seconds. Treating seconds as indivisible time units, the model of Bernoulli
trials applies. Suppose that a pedestrian can crossthe street only if no caris to
pass during the next three seconds. Find the probability that the pedestrian
has to wait for exactly k = 0, 1, 2, 3, 4 seconds. (The corresponding general
formulas are not obvious and will be derived in connection with the theory of
success runs in XIII, 7.)

19. Two people toss a true coin » times each. Find the probability that
they will score the same numberof heads.

20. In a sequence of Bernoulli trials with probability p for success, find the
probability that a successes will occur before 6 failures. (Note: Theissue is
decided after at most a + 5 —1 trials. This problem played a role in the
classical theory of games in connection with the question of how to divide
the pot when the gameis interrupted at a moment when one player lacks a
points to victory, the other 5 points.)

21. In Banach’s match boxproblem [example (8.a)] find the probability that at
the moment whenthefirst box is emptied (not found empty) the other contains
exactly r matches (where r = 1,2,...,N).

22. Continuation. Using the preceding result, find the probability x ‘that
the box first emptied is not the one first found to be empty. Show that the

expression thus obtained reduces to x = ( Ja or 3(Nz)4, approxi-
mately. N

23. Proofs of a certain book were read independently by two proofreaders
who found, respectively, k, and k, misprints; k,». misprints were found by
both. Give a reasonable estimate of the unknown number, n, of misprints in the
proofs. (Assume that proofreading corresponds to Bernoulli trials in which
the two proofreaders have, respectively, probabilities p; and p, of catching a
misprint. Use the law of large numbers.)
Note: The problem describes in simple terms an experimental setup used

by Rutherford for the count of scintillations.-

24. To estimate the size of an animal population by trapping,!® traps are
set r times in succession. Assuming that each animal has the same probability
qg of being trapped; that originally there were n animals in all; and that the
only changes in the situation between the successive settings of traps are that

** P. A. P. Moran, A mathematical theory of animal trapping, Biometrika, vol. 38
(1951), pp. 307-311.
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animals have been trapped (and thus removed); find the probability that
the r trappingsyield, respectively, m,, mg,...,”, animals.

25. Multiple Bernoulli trials. In example (9.c) find the conditional prob-
abilities p and qg of (S, F) and (F,S), respectively, assuming that one of these
combinations has occurred. Show that p > $ or p < 3, according as p, > pz
OF Pz > Pr.

26. Continuation.© If in n pairs of trials exactly m resulted in one of the
combinations (S,F) or (F,S), show that the probability that (S,/) has

occurred exactly &k times is b(k; m,p).

27. Combination of the binomial and Poisson distributions. Suppose that the
probability of an insect laying r eggs is p(r; 4) and that the probability of an

egg developing is p. Assuming mutual independence of the eggs, show that
the probability of a total of & survivors is given by the Poisson distribution
with parameter Ap. ;

Note: Another example for the samesituation: the probability of k chromo-
some breakages is p(k; 4), and the probability of a breakage healing is p.
[For additional examples of a similar nature see IX, (1.d) and XI, 1.]

28. Prove the theorem:24 The maximal term of the multinomial! distribution

(9.2) satisfies the inequalities

(10.1) mp, —-1 <k; <(n+r—lpx, i=1,2,...,r.

Hint: Prove first that the term is maximal if, and only if, pk; < p«k;+1)

for each pair (i,j). Add these inequalities for all j, and also for all i #7.

29. The terms p(k; 4) of the Poisson distribution reach their maximum

when k is the largest integer not exceding 4.

Note: Problems 30-34 refer to the Poisson approximation of the binomial

distribution. It is understood that 4 = np.

30. Show that as k goes from 0 to o the ratios a, = d(k; n, P)Iptk; A)

first increase, then decrease, reaching their maximum when & is the largest
integer not exceeding A + 1.

31. As k increases, the terms b(k; n, p) are first smaller, then larger, and

then again smaller than p(k; 4).
32. If n> © and p->0 so that np = 4 remains constant, then

b(k; n, p) —p(k; 4)

uniformly for all k.

20 A. Wald, Sequential tests of statistical hypotheses, Ann. Math. Statist., vol. 16

1945), p. 166. Wald uses the results given above to devise a practical method of

comparing two empirically given sequencesoftrials (say, the output of two machines),

with a view ofselecting the one with the greater probability of success. He reducesthis

problem to the simpler one of finding whether in a sequence of Bernoulli trials the

frequency of successdiffers significantly from 4.

21 In the first edition it was only asserted that |k;—mp:| <r. The present improve-

ment andits elegant proof are due to P. A. P. Moran.
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33. Show that

ak ayr* ak ky a\r-*
nN

34. Conclude from (10.2) that

(10.3) pk; Aekaln > b(k; n, p) > plk; AemHMn-k)-22/(n—a),

Hint: Use I, (12.26).

Note: Although (10.2) is very crude, the inequalities (10.3) provide excellent
error estimates. It is easy to improve on (10.3) by calculations similar to those
used in II, 9. Incidentally, using the result of problem 30,it is obvious that the
exponenton theleft in (10.3) may be replaced by mA/n which is <(p+n7A,

Further Limit Theorems

35. Binomial approximation to the hypergeometric distribution. A population
of N elements is divided into red and black elements in the proportion p:q
(where p +q =1). A sample of size n is taken without replacement. The
probability that it contains exactly k red elements is given by the hyper-
geometric distribution of II, 6. Show thatas N — oo this probability approaches
b(k; n, p).

36. In the preceding problem let p be small, n large, and 4 = np of mod-
erate magnitude. The hypergeometric distribution can then be approximated by
the Poisson distribution p(k; 4). Verify this directly without using the binomial
approximation.

37. In the negative binomial distribution {f(k; r, p)} of section 8 let g-—-0
and r— o in such a way that rg = 4 remains fixed. Show that

f(K; r, p) >plk; 4).

(Note: This provides a limit theorem for the Polya distribution: cf. problem 24
of V,8.)

38. Multiple Poisson distribution, When n is large and np; = A; is moderate
for 7 =1,...,7 — 1, the multinomialdistribution (9.2) can be approximated by

Ky ky... k,_
e—(Art et +aen) Ay 1d, A,4 rt

kl kyl ka!

Prove also that the terms of this distribution add to unity. (Note that prob-
lem 17 refers to a double Poisson distribution.)

39. (a) Derive (3.6) directly from (3.5) using the obvious relation

b(k; n, p) = b(n—k; n, q).

(5) Deduce the binomial distribution both by induction and from the general
summation formula IV,(3.1).

40. Prove > kb(k;n, p) = np, and > k*b(k; n, p) = n®p? + npg.
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41. Prove > k*p(k; 4) = # + 4.
42. Verify the identity

ke
(10.4) > 40>; m, p)b(k —¥; ng, p) = b(k; my +e, P)

v=0

and interpret it probabilistically. Hint: Use II, (6.4).
Note: Relation (10.4) is a special case of convolutions, to be introduced in

chapter XI; another example is (10.5).

43. Verify the identity

k
(10.5) >Pe; A,)plk —¥; 4g) = p(k; Ay +g)

44, Let =

k
(10.6) B(k; n, p) = > bv; n,p)

v=0

be the probability of at most k successes in n trials. Then

(10.7) Bk; n+1, p) = Blk; n, p) — phtk; n,p),

Bik +1; n+1, p) = Blk; n, p) + gb(k +1; x,p).

Verify this (a) from the definition, (5) analytically.

45. With the same notation”?

(10.8) Btk; n, p) = (n—k) (7)[—1)F dt

0

and

— (10.9) 1 — Bk; n, p) = n(",)[Pc —t)y-*dt.
0

Hint: Integrate byparts or differentiate both sides with respect to p. Deduce
one formula from the other.

46. Prove
] wo

(10.10) pO; 4) +°-+- + p(n; 4) = =| etx” dx.
Ja

2 The integral in (10.9) is the incomplete beta function. Tables of 1 — B(k; n, p) to

7 decimals for k and n up to 50and p = 0.01, 0.02, 0.03,... are given in K. Pearson,
Tables of the incomplete beta function, London (Biometrika Office), 1934.

 



CHAPTER VII

The Normal Approximation

to the Binomial Distribution

The normal approximation to the binomial distribution is of consider-
able theoretical and practical value. It played an importantrole in the

developmentofprobability theory becauseit lead to thefirst limit theorem.
From a modern point of view it is only a special case of the central limit
theorem to which weshall return in chapter X, but whose full treatment
must be postponed to volume 2.
The special case p = 4 wasused in chapterIII to obtain limit theorems

for first passages, the number of changesofsign, etc. This special case is

particularly simple, and is therefore treated separately in section 2.

1. THE NORMAL DISTRIBUTION

In order to avoid later interruptions we pause here to introduce two
functions of great importance.

Definition. The function defined by

  2“pote

27
(1.1) n(x) =

 

is called the normal densityfons its integral

(1.2) Re) = °My
=|

is the normaldistribution function.

The graph of n(x) is the symmetric, bell-shaped curve shownin figure 1.
Note that different units are used along the two axes: The maximum of

n(x) is 1/27 = 0.399, approximately, so that in an ordinary Cartesian

174
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system the curve y = n(x) would be muchflatter. [The notations n and
Jt are not standard. Inthe first two editions the more customary ¢ and
® were used, but in volume 2 consistency required that we reserve these
letters for other purposes.]

Lemma. The domain boundedby the graph of n(x) and the x-axis has
unit area, thatis,

 

+0

(1.3) [ n(x) dx = 1.

Proof. We have

+o 2 +a f7+0

(1.4) {| n(x) de} =| [ n(x)n(y) dx dy =

+o rto 2,2
‘ =_ i { eke +y") dx dy.

2a —~o J-@

This double integral can be expressed in polar coordinates thus:

27 0 2 0 2 2 °

(1.5) x | as| er dr =| et rdr= —e* =1
27 JO 0 0 0

which proves the assertion. . >

It follows from the definition and the lemma that Q(x) increases

steadilyfrom 0 to 1. Its graph (figure 2) is an S-shaped curve with

(1.6) M(—x) = 1 — Nz).

Table 1 gives the values! of Jt(x) for positive x, and from (1.6) we get
N(—-x).
For many purposesit is convenient to have an elementary estimate of

the “tail,” 1 — M(x), for large x. Such an estimate is given by

Lemma 2. As x—> ©

(1.7) 1 — R(x) ~ en);

more precisely, the double inequality

(1.8) [e*—a*In(z) < 1 — Rx) < zn(x)

holdsfor everyx > 0. (See problem 1.)

1 For larger tables cf. Tables of probability functions, vol. 2, National Bureau of

Standards, New York, 1942. There n(x) and J(x) — M(—zx) are given to 15 decimals

for x from 0 to 1 in steps of 0.0001 and for x > 1 in steps of 0.001.
2 Here and in the sequel the sign ~ is used to indicate that the ratio of the two

sides tends to one.
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TABLE 1. NORMAL DISTRIBUTION FUNCTION SU(x)
 

 

          

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5159 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 . 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7518 0.7549
0.7 0.7580 0.7612 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8016 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8380

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8718 0.8729 0.8749 0.8770 0.8790 0.8810 0.8836
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9083 9.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319



 

LL
T

1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4

2.5
2.6
2.7
2.8
2.9

3.0
3.1
3.2  

0.9332
0.9452
0.9554
0.9641
0.9713

0.9773
0.9821
0.9861
0.9893
0.9918

0.9938
0.9953
0.9965
0.9974
0.9981

0.9986
0.9990
0.9993  

0.9345
0.9463
0.9564
0.9649
0.9719

0.9778
0.9826
0.9865
0.9896
0.9920

0.9940
0.9955
0.9966
0.9975
0.9982

0.9987
0.9991
0.9993  

0.9357
0.9474
0.9573
0.9656
0.9726

0.9783
0.9830
0.9868
0.9898
0.9922

0.9941
0.9956
0.9967
0.9976
0.9983

0.9987
0.9991

0.9993  

0.9370
0.9485
0.9582
0.9664
0.9732

0.9788
0.9834
0.9871
0.9901
0.9925

0.9943
0.9957
0.9968
0.9977
0.9984

0.9988

0.9991
0.9994  

0.9382
0.9495
0.9591
0.9671
0.9738

0.9793
0.9838
0.9875
0.9904
0.9927

0.9945
0.9959
0.9969
0.9977
0.9984

0.9988
0.9992
0.9994  

0.9394
0.9505
0.9509
0.9678
0.9744

0.9798
0.9842
0.9878
0.9906
0.9929

0.9946
0.9960
0.9970
0.9978
0.9984

0.9988

0.9992
0.9994  

0.9406
0.9515
0.9608
0.9686
0.9750

0.9803
0.9846
0.9881
0.9909
0.9931

0.9948
0.9961
0.9971
0.9989
0.9985

0.9989
0.9992
0.9994  

0.9418
0.9525
0.9616
0.9693
0.9758

0.9808
0.9850
0.9884
0.9911
0.9932

0.9949
0.9962
0.9972
0.9980
0.9985

0.9989
0.9992
0.9994  

0.9430
0.9535
0.9625
0.9699
0.9762

0.9812
0.9854
0.9887
0.9913
0.9934

0.9951
0.9963
0.9973
0.9980
0.9986

0.9989
0.9993
0.9995  

0.9441
0.9545
0.9633
0.9706
0.9767

0.9817
0.9857
0.9890
0.9916
0.9936

0.9952
0.9964
0.9974
0.9981
0.9986

0.9990
0.9993
0.9995
 

For x <0 use the relation 3(—z) = 1 — R(x).
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Figure 1. The normal density function n.
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Figure 2. The normal distribution function Jt.
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Proof. Obviously Soy eo " . oo

(1.9) [1 —3e-4]n(x) < n(x) < [1+2-2In(2). ,
The membersare the negatives of the derivatives of those in (1.8), and so
(1.8) follows by integration between x and oo, >

Note on Terminology. The term distribution function is used in the mathematical
literature for never-decreasing functions of x which tend to 0 as x ~ —oo, and to
las x—>o. Statisticians currently prefer the term cumulative distribution function,
but the adjective “cumulative” is redundant. A density function is a non-negative
function f(x) whose integral, extended over the entire x-axis, is unity. The integral
from —© to zx of any density function is a distribution function. The older term
frequencyfunction is a synonym for density function.

The norma!distribution function is often called the Gaussian distribution, but it was
used in probability theory earlier by DeMoivre and Laplace. If the origin and the
unit of measurement are changed, then I(x) is transformed into N((z—a)/b); this
function is called the normal distribution function with mean a and variance 5? (or

standard deviation |b|). The function 29%(xV2) — 1 is often called error function.

2. ORIENTATION: SYMMETRIC DISTRIBUTIONS

Weproceed to explain the use of the normaldistribution as an ap-
proximation to the binomial with p = }.
There are two reasonsfor treating the special case p = } separately.

First, the calculations are much simpler and therefore convey a better
idea of how the normal distribution enters the problem. Second, this
special case was used in connection with random walks(seeIII,2), anditis
therefore desirable to supply a proof which is not obscured by the tech-
nidalities required for unsymmetric distributions.
For definiteness we take n = 2 even, and to simplify notations we put

(2.1) a, = bv+k; 2», 4);

that is, the a, are the terms of the symmetric binomial distribution
renumbered so asto indicate the distance from the central term; ay is the
central term, and & runs from —y to »y. Since a,=a, we shall
consider only k > 0.

(In the notation of chapter III we have a, = poy.o,; the following proof
does not depend on notions developed after IJI,2 and could beinserted
there.)

To get an idea concerning the behavior of the sequence dp, a, d2,...

we shall compareits general term with a) using the relation

_ wv—l)- +: ~—k+1)

° +142) * +++k)

which followstrivially fromthe definition.

 (2.2) a, =a
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Weareinterested only in large values of v, andit will turn out that we
need consider only values k such that k/y is small, because for other k
the terms a, will be negligible. On dividing numerator and denominator
by y* the individual factors take on the form 1 + j/y with 7 running
from —(k—1) to k. Now

(2.3) 142 = eit |
v -

where the dots indicate terms which add to less than (j/v)?. Within this
approximation the fraction in (2.2) reduces to an exponential with

exponent

2 k ke—=[lt+--+k-D] - ===,
v v v

and the error is less than k*/», Accordingly, if »— o and k varies —
within a range 0 << k < K, such that

(2.4) Kr2+0 kl L-:

we have the approximation

2

(2.5) - a, ~ age* ",

Whenthe binomial coefficient is expressed in termsof factorials it is seen
from Stirling’s formula? II,(9.1) that

(2.6) a, = (7)2"~ 1
v Ja

 

Substituting into (2.5) we get

(2.7) a, ~ hn(kh)
/ - ° 1 . ‘ ~

3 Note on the constant in Stirling’s formula, It will be recalled from II,9 that we

have not yet proved that the constant in Stirling’s formula coincides with V27. We
nowfill this gap as follows. The constant 7 in (2.6) must be replaced by an unknown
constant; this does not affect the approximation theorem except that the right side in
(2.10) must be multiplied by an unknown constant c, and we have to prove that

c= 1. We use the amended form with z, = 0. The ratio of the two sides tends to 1

as n—» oo, But the tail estimate VI,(3.5) shows that the left side lies between }$ and

4 — 4z,°, whereasfor the right side (1.8) yields the double inequality

where h = ./2/v = 2/,/n.
no ed

c > c[{R(z.)—4] = de — c[l — N(z,)] > 4c — cn(ze)/22.

For 2, sufficiently large the two sides are arbitrarily close to 4 and to $c, respectively,

and hence c = 1 asasserted.
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This basic relation is valid when »v—»0o and k is restricted to values
k < K, satisfying (2.4). Weshall use (2.7) principally for values k of the

order of magnitude of J», and then (2.4) is trivially satisfied.
In practice we require approximations for the probabilities carried by

various intervals, that is, to partial sums of the form‘

(2.8) A(x,,%)= DY a,
wkxe

the summation extending overall integers between 0 and z, inclusive.
We now show how A(x) can be approximated by an area under the graph
of n which,in turn, can be expressed in terms of the integral Jt. Because
of the monotone character of n it is clear that the area under the
graph of n between kh and (k+1)h is smaller than hn(kh), but larger
than An((A+1)h). It follows that ~ os DAES. . ;

Logh-+h OD ee teh nee . .

(2.9) [ n(s)ds< > hn(kh) <i n(s) ds.
xyh eySkSax,e xyh—h

In view of (2.9) the middle term is an approximation to A(2, 22); it is
good when » is large and k?/y moderate, that is, when fA is small and
xh moderate. The two extreme members in(2.9)equal N(x,h+h) — N(x,h)
and M(x,h) — N(x,h—h), respectively; their difference tends to 0 with

h, and so we can replace them by N(xh) — N(x,h).

Weexpress this result in the form of a limit theorem, but replace the

variable x by z= wh.

Approximation Theorem. Forfixed z, < 22

(2.10) > a> NG) — NE).
dzyVNSkStegV2

Weshall see presently that this result extends meaningfully to certain

situations in which z, and z, are allowed to vary with n without
remaining bounded. Note that the limit theorem ofIII, (2.7) is contained

in (2.10), and thatthis is only a special case of the general theorem ofthe

next section.

Bounds for the Error. , We need not concern ourselves with the error committed in

replacing the sum byan integral because (2.9) contains upper and lower bounds.

* Werefrain from referring to S, because this letter appears in different meanings
in chapters III and VI. In the terminology of random walks A(%,,22) is the proba-

bility that at epoch n= 2» the particle is between 27, and 2z,; in the present

terminology A(z,, 22) is the probability that n = 2v; trials yield a numberofsuccesses

between vy +2, and »+2,. In the next section this number will be again denoted

by S,.
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To estimate the error in the approximation (2.7) we put

(2.11) Ay = age“P"+4, = hn(kh)e%1-*2

so that «, represents the error committed by dropping the higher-order termsin (2.3)
while «, derives from (2.6). From our derivation it is clear that

k—-1 1 ; 2;

(2.12) a S(vee 2 - ~) + (to (+5) _ *).

The error estimates are most interesting for relatively small », and to cover such cases
we shall assume only that k < 3v. Comparing the expansionII, (8.11) with a geometric
series with ratio 1/3 it is seen that the general term in theseries in (2.12) is positive and
is less than (j/)®. The whole series is therefore positive and less than k*/(4v). From
II,(8.9) it is similarly seen that the last term is negative and greater than —3k?/(4v?),
Thus

 

3k? 2k4
(2.13) —-—<a<— provided k < $n.’n? n3

In most applications k and Vn are of comparable magnitude, and. the condition
k < n/6 is then trivally satisfied. Under such circumstances (2.13) is rathersharp,

Asfor (2.6), it follows from the improved version ofStirling’s formula II,(9.15) that

a better approximation for a» is obtained on multiplying the right side by e7/@"), and
that under any circumstances

1 1 1 1
Ce <—+2. —_—— .

(2.14) 4n 20n?® 4n 360n®
  

Wehave thus found precise bounds for the error in the approximations (2.7) and (2.10).
These estimates are applicable even for relatively small values of n.
The main result of this investigation is that the percentage errorin (2.7) is of the order

k?/n? or k‘j/n®, whichever is larger. In practice the estimate is usually applied when
k*/n is large, and in this case the relative error is of the order k*/n*, Our estimates
also point the way how to improve the approximation by appropriate correction terms
(problem 14).

3. THE DEMOIVRE-LAPLACE LIMIT THEOREM

We proceed to show how our approximations can be extended to the
general binomialdistribution with p # 3. The procedureis the same, but

the calculations are more involved. The first complication arises in
connection with the central term of the distribution. As we saw in VI,

(3.2), the index m of the central term is the unique integer of the form

(3.1) m=np +6 with —q<d<p.

The quantity 6 will be ultimately neglected, but it occurs in the calcula-
tions. (In the case p = 3 this was avoided by assuming n = 2y even.)
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Asin the preceding section we now renumberthe termsof the binomial
distribution and write

3.2 a, = b(m+k;n, = n mle gn—m—k(3.2) | n= 5( n, P) (nin)? q

For definiteness we consider k > 0, but the same argument applies to
k <0. (Alternatively, the range k <0 is covered by interchanging p

and gq.) In analogy with (2.2) we have now

3.3) a ag,nm=1)++ (n—m—kt). k 0 (m+1)(m+2) +++ (m+k)q*
 

This can be rewritten in the form

(3.4) a, = ay (1—pt))(1—pt,) --*(—pt,_1)

, (1+qt))(1+qt,)-:-(1+qt,_1)

where we put for abbreviation

, oi tdt+a
(n+1)pq

Weshall use (3.4) only for values of k for which ¢, is small, say 4, < 4.

From the Taylor expansion II,(8.9) for the logarithm it is then clear that

(3.5)

(3.6) BPEete
1+ qt;

where the omitted quantity is in absolute value less than 77. Thus

(3.7)
a, = ayetotHeat

where the dots indicate a quantity that is in absolute value less than®
kt?_, < k?/(npq)?. Now

(3 8) t + t + eee + t —+
. 0 1 k-1 ~~ .

(n+1)pq

For simplicity we replace the right side by k?/(2npq) thereby committing

an error less than 2k/(npq). Thus, if we write

2

(3.9) Ay = age* (OnPa+ee,

® Weshall besatisfied with very rough boundsforthe error term.
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the error term p, satisfies the inequality

 

 

 

k3 2k(3.10) lel < Tot
Wenext show that

n! 1
(3.11) a=Op~~ )

° m!(n—m)! V2nnpq

which generalizes the analogousrelation (2.6) in the symmetric case. In
the ideal case where p = m/n the estimate (3.11) is an immediate conse-

quence of Stirling’s formula II,(9.1). A straightforward differentiation
showsthat the middle term in (3.11) assumes its maximum when p = m/n.

For given m we need consider only values of p such that (3.1) holds, and
the minimum of a, is then assumed at one of the endpoints, that is, for
p=m[(n+l) or p= (m+1)/+1). With these values for p a direct
application of Stirling’s formula again leads to (3.11) except that n is
replaced by n + 1. It follows that (3.11) holds for all possible values of
p. If we put for abbreviation

1

VJ npq

 (3.12) h=
 

then (3.9) showsthat

(3.13) a, ~ hn(kh)

provided only that k varies with n in such a way that p,—> 0. We have
thus proved

Theorem 1. If n— © and k is constrained to an interval k< K,,
such that K3/n* — 0, then (3.13) holds® uniformly inUk; that is, for every
«> O0and n sufficiently large

 

(3.14) l-—e< <i+te.
ink

Example. Figure 3 illustrates the case n=10 and p=% where
npq = 1.6. Considering that n is extremely small the approximation
seems surprisingly good. For k =0,...,6 the probabilities b(k; n, p)

are 0.1074, 0.2684, 0.3020, 0.2013, 0.0880, 0.0264, 0.0055. The ‘corre-

sponding approximations (3.13) are 0.0904, 0.2307, 0.3154, 0.2307, 0.0904,

0.0189, 0.0021. >

* When & varies with n in such a way that k*/n? + oo the normal approximation
is replaced by a limit theorem of a different type; see problems 13 and 15.
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0 1 2. 3 4 5 6

Figure 3. The normal approximation to the binomial distribution. The step function
gives the probabilities b(k; 10,4) of k successes in ten Bernoulli trials with p=
The continuous curve gives for each integer k the corresponding normal approximation.

The main application of theorem | is to obtain approximations to
probabilities of the form

B p—m

(3.15) Pia <S, <p} => 5032, p)= Dd gy.
v=o k=a-—m

Within the range of applicability of theorem | we obtain a good approxi-
mation when wereplace a, by hn(kh). This quantity may be interpreted
as the area of a rectangle with height n(kh) whosebasis is an interval of
length A centered at kh (see figure 3). As usual wereplace thearea ofthe
rectangle by the corresponding area between the z-axis and thegraph of
n; as is well known,the error thus committedis negligible in the limit when
h—0. When « and £ are integers we arrive thus at the approximation

(3.16) Pia <8, < 6} © N(a—m+9)h) — N(B—m—}Hh).

It is advisable to use the normal approximation in this form when A is
‘only moderately small and the greatest possible accuracy is desired. For

the final formulation, however, it is preferable to replace the arguments
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on the right by the simpler expressions 2; = (a —np)h and z,=(B —np)h;

the error introducedbythis simplification obviously tends to zero with A.
Wehave thus proved the fundamental

Theorem 2. (DeMoivre-Laplace limit theorem.) For fixed’ z, and.
22 as N—-> ©

G.17)  Pinp-+aV/npq < 8, < np+z/ngp} > Nz.) — Ke).
Besides being of theoretical importance this theorem justifies the use of

the right side as an approximation to the left. From (3.10) it is easy to
obtain good estimates of the error, but we shall not dwell on this point.
Practical examples will be found in the next section.

Thelimit relation (3.17) takes on a morepleasing form if S, is replaced
by the reduced numberof successes S* defined by

Ss,=p

J/npq

This amounts to measuring the deviations of S, from np in units of

Vnpq. In the terminology of random variables (chapter IX) np would be
called the expectation, and npq the variance of S,. (The square root

<Vnpq is the standard deviation.) The inequality on the left side in (3.17)

is the same as z, < S* < z, and hence we canrestate (3.17) in the form

(3.18) s* =

(3.19) Pia < Sz < 2%} > NE) — NE).

In most cases weshall refer to the limit theorem in this form. It shows,in

particular, that for large n the probability on the left is practically
independent of p. This permits us to compare fluctuations in different

series of Bernoulli trials simply by referring to our standard units.

Note on Optional Stopping

It is essential to note that our approximation theoremsare valid only if the number
n oftrials is fixed in advance independently of the outcomeofthetrials. If a gambler
hasthe privilege of stopping at a moment favorable to him, his ultimate gain cannot
be judged from the normal approximation, for now the duration of the game depends
on chance. Forevery fixed 1 it is very improbable that S¥* is large, but, in the long
run, even the most improbable thing is bound to happen, and weshall see that in a
continued game S* is practically certain to have a sequence of maximaof the order of

magnitude v2 log log n (this is the law of the iterated logarithm of VIII, 5).

7 It is obvious from theorem 1 that this condition can be weakened. See also section 6

as well as problems 14 and 16.
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4. EXAMPLES

(a) Let p=} and n= 200. Weconsider P{95 < S, < 105}, which

is the probability that in 200 tosses of a coin the numberof headsdeviates

from 100 by at most 5. Here h = 1/50 = 0.141421 --- is relatively

large, and it pays to be careful aboutthe limits of the interval. The use of

(3.16) leads us to the approximation

PI95 <S, < 105} w N(5.5h) — N(—5.5h) =

= 29(0.7778 +++) — 1 = 0.56331.

Thetrue value is 0.56325 .... The smallness of the erroris due largely to

the symmetry of the distribution.

(b) Let p=7s and n=500. Here h = 1/V45 = 0.14907....
Proceeding as before we get

P{50 < S, < 55} w N(5.5h) — N(—0.5h) =

= N(5.5h) + N(0.5h) — 1 = 0.3235--*

against the correct value 0.3176.... The error is about 2 per cent.

(c) The probability that S,, lies within the limits np + 2,/npq is about

(2) — N(—2) = 0.9545; for np +3Vnpq the probability is about
0.9973. It is surprising within how narrow limits the chance fluctuations
are likely to lie. For example in 10° tosses of a coin the probability that

the numberof heads deviates from the mean 500000 by more than 1000

is less than 0.0455.
(d) Let n= 100, p =0.3. Table 2 shows in a typical example (for

relatively small n) how the normal approximation deteriorates as the

interval («,.8) moves away from the central term. Me

(e) Let us find a number a suchthat, for large n, the inequality

|S*| > a has a probability near 4. Forthis it is necessary that

Na) — N(—a) = 3

or (a) = 2. From tables of the normal distribution we find that

a = 0.6745, and hence the two inequalities

(4.1) |S, — np| < 0.6745/npq and |S, — np| > 0.6745/npq

are about equally probable. In particular, the probability is about } that
in n tossings of a coin the number of heads lies within the limits

int 0.337/n, and, similarly, that in n throws of a die the number of

aces lies within the interval 4n + 0.2514/n.
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TABLE 2

COMPARISON OF THE BINOMIAL DISTRIBUTION FOR n = 100,

Pp = 9.3 AND. THE NORMAL APPROXIMATION
 

 

Numberof Normal Percentage

successes Probability approximation error

9<S, <1] 0.000 006 0.000 03 +400

12 < S, < 14 0.000 15 0.000 33 +100

15 <S, <17 0.002 01 0.002 83 +40

18 < S, < 20 0.014 30 0.015 99 +12

21<S, < 23 0.059 07 0.058 95 0

24 <S, < 26 0.148 87 0.144 47 —3

27 < 8, < 29 0.237 94 0.234 05 —2

31 < S, < 33 0.230 13 0.234 05 +2

34 < S, < 36 0.140 86 0.144 47 +3

37 < S, < 39 0.058 89 0.058 95 0

40 < S, < 42 0.017 02 0.015 99 “—6

43 < S, < 45 0.003 43 0.002 83 —18

46 < S, < 48 0.000 49 0.000 33 — 33

49 < S, < 51 0.000 05 0.000 03 —40

 

(f) A competition problem. This example illustrates practical appli-

cations of formula (3.17). Two competing railroads operate one train
each between Chicago and Los Angeles; the two trains leave and arrive
simultaneously and have comparable equipment. We suppose that n
passengersselect trains independently and at random so that the number
of passengers in each train is the outcome of 1 Bernoulli trials with
p =}. Ifa train carries s <n seats, then there is a positive probability
f(s) that more than s passengers will turn up, in which case notall
patrons can be accommodated. Using the approximation (3.17), we find

 (4.2) f@xit— n(= = *).
Jn

If s isso large that:f(s) < 0.01, then the numberofseats will be sufficient

in 99 out of 100 cases. More generally, the company may decide on an

arbitrary risk level « and determine s so that f(s)< a. For that

purposeit suffices to put

(4.3) s> n+1,Vn),
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where 7, is the root of the equation « = 1 — N(t,), witich can be found
from tables. For example, if 1 = 1000 and « = 0.01, then t, & 2.33
and s = 537 seats should suffice. If both railroads accept the risk level
a = 0.01, the two trainswill carry a total of 1074 seats of which 74 will be
empty. The loss from competition (or chance fluctuations) is remarkably
small. In the same way, 514 seats should suffice in about 80 percentofall
cases, and 549 seats in 999 out of 1000 cases.

Similar considerations apply in other competitive supply problems.
For example, if m movies compete for the same n patrons, each movie
will put for its probability of success p = 1/m, and (4.3) is to be replaced
by s > m[n+t,Vn(m—1)]. The total number of empty seats under this

system is ms —n ®& t,/n(m—1). For « = 0.01, n = 1000, and m = 2,
3, 4, 5 this numberis about 74, 105, 126, and 147, respectively. The loss
of efficiency because of competition is again small.

(g) Random digits. In example II, (3.a) we considered n = 1200trials
with p = 0.3024 and an average of 0.3142 successes pertrial. The
discrepancy is « = 0.0118. Here

"| Sn
— —?p
n

 

> | = P{|S, — np| > en} x
 

~~ P{IS, — np| > 0.880/npg} ~ 21 — N(0.88)) ~ 0.379.

This means that in about 38 out of 100 similar experiments the average
numberof successes should deviate from p by more than it does in our
material.

(h) Sampling. An unknown fraction p of a certain population are
smokers, and random sampling with replacementis to be used to determine
p. It is desired to find p with anerror not exceeding 0:005. How large
should the sample size n be?

Denotethe fraction of smokers in the sample by p’. Clearly no sample
size can give absolute guarantee that |p’ — p| < 0.005 because it is
conceivable that by chance the sample contains only smokers. The best
we can do is to render an error exceeding the preassigned bound 0.005
very improbable. For this purpose wesettle for an arbitrary confidence

level «, say « = 0.95, and choose n solarge that the event |p’ — p| <

< 0.005 will have a probability >a. Since np’ can beinterpreted as the
numberof successes in n trials we have

(4.4) P{|p’ — p| < 0.005} = P{|S,, — np| < 0.005n}

and we wish to choose n solarge that this probability is >a. From the
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tables we first find the number z, for which M(z,) — N(—z,) = a.
Relying on the normal approximationit is then necessary to choose n so

0.005Vn
large that pq = 2%, or n > 40,000pqz?. This involves the unknown

probability p, but we have under any circumstances pg < }, and soa
sample size n > 10,000z2 should suffice.
For the confidence level « = 0.95 we find z, = 1.960 and hence a

sample size of n = 40,000 would certainly suffice. A sample ofthis size
would becostly, but the requirementthat |p’ — p| < 0.005 is exceedingly
stringent. If it is only required that |p’ — p| < 0.01, a samplesize of
10,000 will suffice (on the same confidence level). The so-called accuracy to
four percentage points means theevent |p’ — p| < 0.045 and requires only
a sample size of 475: On the average only five out of one hundred random
samples of this size will result in an estimate with a greater error. (The
practical difficulty is usually to obtain a representative sample ofanysize.)

>

5. RELATION TO THE POISSON APPROXIMATION

The error of the normal approximation will be small if npq is large.
Onthe other hand, if is large and p small, the terms b(k; 7, p) will be
found to be nearthe Poisson probabilities p(k; 2) with 2 = np. For small
A only the Poisson approximation can be used, but for large 2 we can
use either the normalor the Poisson approximation. This implies that for
large values of A it must be possible to approximate the Poisson distri-
bution by the normal distribution, and in example X, (1.c) we shall see
that this is indeed so (cf. also problem 9). Here we shall be content to
illustrate the point by a numerical anda practical example.

Examples. (a) The Poisson distribution with A= 100 attributes to
the set of integers a,a + 1,...,5 the probability

P(a, b) = p(a; 100) + p(a+1; 100) + +++ + p(b; 100).

This Poisson distribution may be considered as an approximation to the
binomial distribution with n= 100,000,000 and p=10-*. Then

npg ~ 100 and soit is not far-fetched to approximate this binomial
distribution by the normal, atleast for values close to the central term 100.

But this means that P(a, b) is being approximated by

N((b—99.5)/10) — I((a—100.5)/10).
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The following sample gives an idea of the degree of approximation.

Correct values Normal approximation

P(85, 90) 0.113 84 0.110 49

P(90, 95) 0.184 85 0.179 50
P95, 105) 0.417 63 0.417 68
P(90, 110) 0.706 52 0.706 28
P(110, 115) 0.107 38 0.110 49

P(115, 120) 0.053 23 0.053 35

(5) A telephone trunking problem. The following problem is, with some
simplifications, taken from actual practice. A telephone exchange A is
to serve 2000 subscribers in a nearby exchange B. It would be too
expensive and extravagantto install 2000 trunklines from A to B. It
suffices to make the number N oflines so large that, under ordinary
conditions, onlyone out of every hundredcalls will fail to find an idle
trunkline immediately at its disposal. Suppose that during the busy hour
of the day each subscriber requires a trunkline to B for an average of 2
minutes. Ata fixed momentof the busy hour we comparethesituation to
a set of 2000 trials with a probability p = 3/5 in each that line will be
required. Under ordinary conditions these trials can be assumed to be

independent(althoughthis is not true whenevents like unexpected showers
or earthquakes cause many peopleto call for taxicabs or the local news-
paper; the theory no longer applies, and the trunks will be ‘‘jammed’’).
We have, then, 2000 Bernoulli trials with p= 35, and the smallest

number WN is required such that the probability of more than N “suc
cesses” will be smaller than 0.01; in symbols P{Sooo0 = NV} < 0.01.

For the Poisson approximation we should take A = 233° ~ 66.67.
From the tables we find that the probability of 87 or more successes is
about 0.0097, whereas the probability of 86 or more successes is about
0.013. This would indicate that 87 trunklines should suffice. For the
normalapproximation wefirst find from tables the root x of 1 — N(x) =
= 0.01, which is x = 2.327. Thenit is required that

(N—4$—np)/Vnpgq > 2.327.

Since n = 2000, p = 3, thismeans N > 67.17 + (2.327)(8.027) = 85.8.

Hence the normal approximation would indicate that 86 trunklines should
suffice.

8 E. C. Molina, Probability in engineering, Electrical Engineering, vol. 54 (1935),

pp. 423-427, or Bell Telephone System Technical Publications Monograph B-854.
There the problem is treated by the Poisson methodgiven in the text, which is preferable
from the engineer’s point ofview.

 

 



192 NORMAL APPROXIMATION [VII.6

For practical purposes the two solutions agree. They yield further
useful information. For example, it is conceivable that the installation

might be cheaperif the 2000 subscribers were divided into two groups of
1000 each, and two separate groups of trunklines from A to B were
installed. Using the method above, we find that actually some ten
additional trunklines would be required so that the first arrangementis
preferable. >

*6. LARGE DEVIATIONS

The DeMoivre-Laplace theorem describes the asymptotic behavior of
P{z, < S* < z,} for fixed z, and 2. From its derivation it is clear that

the theorem applies also when z, and z, are permitted to vary with n
in such a way that z,—> 00, provided that the growth issufficiently slow.

In this case both sides in (3.17) tend to 0, and the theorem is meaningful

only if the ratio of the two sides tends to unity. The next theorem showsto
what extent this is true. To simplify the formulation the double inequality
z, < S* < z, is replaced by S* > z,. This is justified by the following
lemma, which showsthat when z,—> 00 the upperlimit z, plays norole.

Lemma. If x, —> © then for everyfixed? n > 0

hy

P{s* x |(6.1) tat},9 |
P{S;, > 2,} |b.

. -_— eT
that is, d

 

A
t
e

“T
w
a
e

(6.2) Pix, <Si <2, +7} ~P{S, > 2,}. |

In other words: When S* exceeds 2, it is likely to be very close to
z,, and larger values play norole in the limit.
nd

Proof. With the notation(3.2) for the binomial distribution we have

(6.3) P{S; > tn} = > 4,49» P{S;, > Ln + n} = > sity
v=0 v=0

where r, and s, are integers that differ at most by one unit from

z,Nnpqg and (x,+%7)Vnpg, respectively. Now it is obvious from (3.4)

* The theorem ofthis section is in general use, but in this volumeit will be applied
only in VII, 4 and VIII,5.

® The proof will show that it suffices that x,7-> oo, For a stronger and more

interesting version see problem 18.
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that for large n

a k64) et <1 — pyctw
k n

and hence

(6.5) Gswty 6 gnlsa-radrnln & g-bnen pa
ayy

By assumption x, —> oo, andsothe termsofthe secondseries in (6.3) tend
to become negligible iin comparison with the corresponding terms of the
first series. >

Weare nowin a position to extend the limit theorem asfollows.

 

Theorem. If x, —> 00 in such a way that 23 [s/n>0, then _— +,

(6.6) P{S* > x,}~1— N(2,). NR

In view of (1.7) the asymptotic relation (6.6) isfully equivalent to

I I
(6.7) P{S* > 2,} ~ —=- — eT",

Jn Ly oT fy. .

Proof. In view of the preceding lemma and theorem 3.1 AcA(1

neemfie t= J.

(6.8) P{S, 2, X,} ~~>hr(ecpnaboc Kok Xe wt

; $ IXn2h .
where r, is an integer such that lr,A — x,|<h. The sum onthe right

therefore lies between ls— Nw,—2h) and 1 — N@,+2h). For the

difference of these two quantities we get\using (1.7), |e-)i¢(“+2 1

(6.9) Na,+2h) —N(e,—2h) <4hm(z,—-2h) > 0, 2

and so the sum in (6.8) is ~1 — 3(x,), as asserted. >

For generalizations see problems 14 and 16.

7. PROBLEMS FOR SOLUTION

1. Generalizing (1.7), prove that

(7.1) 1 —-R@)~ foe
  

1 f 1 1:33 1:3°5
— e-%*

3 0 77 x x av x

300+ (2k—1
+(e
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and that for « >0 the right side overestimates 1 — N(x) if k is even, and
underestimates if k is odd.

2. For every constant a > 0

1 — R(x +a/x) a
(7.2) Rx) —~e

as 7% —> ©,

3. Find the probability that among 10,000 random digits the digit 7 appears
not more than 968 times.

4, Find an approximation to the probability that the number of aces obtained
in 12,000 rollings of a die is between 1900 and 2150.

5. Find a number & such that the probability is about 0.5 that the number
of heads obtained in 1000 tossings of a coin will be between 490 and k.

6. A sample is taken in orderto find the fraction f of females in a population.
Find a sample size such that the probability of a sampling error less than 0.005
will be 0.99 or greater.

7. In 10,000 tossings, a coin fell heads 5400 times. Is it reasonable to assume:
that the coin is skew?

8. Find an approximation to the maximal term of the trinomial distribution

ni

kirtG@—kaon! PEPP
apa)"

9. Normal approximation to the Poissondistribution. Using Stirling’s formula,
show that, if A — oo, then for fixed « < B

(7.3) > pk; 2) > RB) — Na).
A+aVA<k<A+pr/a

10. Normal approximation to the hypergeometric distribution. Let n,m, k be
positive integers and suppose that they tendto infinity in such a waythat

r n
>t

n+m > n+m
   (7.4) > Ps —>q, h{k—-rp} >

n+m

where A = 1/V(n + m)pqt(1 — t). Prove that

co (YLTCT"am
Hint: Use the normal approximation to the binomial distribution rather than
Stirling’s formula.

11. Normaldistribution and combinatorial runs. In I, (11.19) we found that
in an arrangement of n alphas and m betas the probability of having exactly

10 A, Wald and J. Wolfowitz, On a test whether two samples arefrom the same popu-

lation, Ann. Math.Statist., vol. 11 (1940), pp. 147-162. For more generalresults, see

A. M. Mood,Thedistribution theory of runs, ibid., pp. 367-392.
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k runs of alphasis

co weNCECT)
Let n — «©, m—>» © sothat (7.4) holds.. For fixed « < f the probability that the
numberof alpha runslies between ng + aq Vpn and nq + Bq Vpn tends to
RB) — Na).

12. A new derivation of the law of large numbers. Derive the law of large
numbers of VI, 4 from the de Moivre-Laplace limit theorem.

Limit Theorems for Large Deviations

13. Using the notations of section 3 show that if k varies with n in such a
way that k4/n?-—0, then

1(7.7) ay, =b(k + m3 n, p) ~ hn(kh) - e-(P-wenays, h=——.
Vinpq

 

This generalizes theorem 3.1.
14, Using the preceding problem and the lemma of section 6 prove the

following
Theorem. Jf x, varies with n in such a way that x[n +0 but x, > ©,

then

(7.8) P{S* > x,} ~ [1—N(x_)]e—(P —D2n-v/mp9).

15. Generalization ofproblem 13. Put

_SPtcg v-2nv Pf ~ 73 P+ ape Lae(7.9) f@) =2 Sern" Ao =wh +awh +

where A = 1/Vmpd. If k varies with n in such a way that k/n > 0 then

(7.10) ay, ~ An(kh) « eWf(kh),

[When k?/n? +0 this reduces to theorem 3.1; when k4/n? +0 we get(7.7);
when k*/n* +0 we get (7.7) with a fourth-degree term added in the exponent,
etc. ]

16. Generalization ofproblem 14. If x, varies with n in such a way that

Ly, —> 0 but x,/Vn +0, then

(7.11) P{ST > x,} ~ 11-R@,)]e7).

When x4/n —0 this reduces to (7.8). When x5/n} one may replace f(@n3)

by the fourth-degree polynomial appearing on theright in (7.9), etc.

17. If p >q then P{S* > 2} > P{S} < —x} for all large x. Hint: Use
problem 15.

18. If x, > © and 2,/Wn—0 show that

(7.12) P{x, <S* <x, + a/x,} ~ (1—e)P{S# > 2,}.

In words: The conditional probability of the event {Sz >, + a/z,} given
that Sf >a, tends to e~*. (A weaker version of this theorem was proved by
Khintchine.)

 



CHAPTER VIII*

Unlimited Sequences

of Bernoulli Trials

This chapter discusses certain properties of randomness and the im-

portant law of the iterated logarithm for Bernoulli trials. A different

aspect of the fluctuation theory of Bernoulli trials (at least for p = 2)

is covered in chapter III.

1. INFINITE SEQUENCESOF TRIALS

In the preceding chapter we have dealt with probabilities connected

with n Bernoulli trials and have studied their asymptotic behavior as

n—» oo. We turn now to a more general type of problem where the

events themselves cannot be defined in a finite sample space.

Example. A problem in runs. Let « and § be positive integers, and

consider a potentially unlimited sequence of Bernoulli trials, such as

tossing a coin or throwing dice. Suppose that Paul bets Peter that a run of

& consecutive successes will occur before arun of 8 consecutive failures.

It has an intuitive meaning to speak of the event that Paul wins, butit

must be remembered that in the mathematical theory the term event

stands for “aggregate of sample points’’ and is meaningless unless an

appropriate sample space has been defined. The model.ofa finite number

oftrials is insufficient for our present purpose, butthe difficulty is solved

by a simple passage to the limit. In n trials Peter wins orloses, or the

game remains undecided. Let the corresponding probabilities be 2,, Yn,

(x, + Yn + 2%, = 1). As the number n oftrials increases, the probability

z, of a tie can only decrease, and both x, and y, necessarily increase.
nr

Hence x=limz,, y=limy,, and z= limz, exist. Nobody would

* This chapter is not directly connected with the material covered in subsequent

chapters and may be omittedatfirst reading.

196
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hesitate to call them the probabilities of Peter’s ultimate gain orloss or of
a tie. However, the corresponding three events are defined only in the
sample spaceof infinite sequences oftrials, and this space is not discrete.

The example was introduced for illustration only, and the numerical values of
Xn, Yn, 2, are not our immediate concern. Weshall return to their calculation in
example XIII, (8.5). The limits x, y, z may be obtained by a simpler method which is
applicable to more general cases. Weindicate it here because ofits importance and
intrinsic interest.

Let A be the event that a run of « consecutive successes occurs before a run of B
consecutive failures. In the event A Paul wins and z = P{A}. If uw and v are the
conditional probabilities of A under the hypotheses, respectively, that the first trial
results in success or failure, then x = pu + qu [see V, (1.8)]. Suppose first that the

first trial results in success. In this case the event A can occur in « mutually ex-
clusive ways: (1) The following « — 1 trials result in successes; the probability for
this is p%-1. (2) The first failure occurs at the vth trial where 2 < » < «. Let this
event be H,. Then P{H,} = p’-*q, and P{A| H,} =v. Hence (using once more the
formula for compoundprobabilities)

(1.1) u = p*" + qultpt+ +++ +p**) = p** + vo(1—p*”*).

If the first trial results in failure, a similar argumentleads to

(1.2) v = pu(lt+q+--- +q-*) = u(l—q?).

Wehavethus two equationsfor the two unknowns u and v and find for x = pu + qv

1—¢
(1.3) rs= tOor

P pt + go — p 18-1

To obtain y we haveonlyto interchange p and g, and « and B. Thus

] — n&

— 78-1 P(1.4) y¥=q paPtghtpeigha

Since x +y = 1, we have z=0; the probability of a tie is zero.

For example, in tossing a coin (p = 4) the probability that a run of two heads

appears before a run ofthreetails is 0.7; for two consecutive heads before four con-
secutive tails the probability is §, for three consecutive heads before four consecutive
tails 3. In rolling dice there is probability 0.1753 that two consecutive aces will appear
beforefive consecutive non-aces,etc. >

In the present volume weare confined to the theory of discrete sample
spaces, and this means a considerable loss of mathematical elegance. The
general theory considers n Bernoulli trials only as the beginning of an
infinite sequence oftrials. A sample point is then represented by an
infinite sequence of letters S and F, and the sample space is the aggregate
of all such sequences. A finite sequence, like SSFS, stands for the
aggregate of all points with this beginning, thatis, for the compound event
that in an infinite sequence of trials the first four result in S, S, F, S,
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respectively. In the infinite sample space the game of our example can be
interpreted withouta limiting process. Take any point, that is, a sequence
SSFSFF.... In ita run of « consecutive S’s may or may not occur.
If it does, it may or may not be preceded by arun of f consecutive F's.
In this way we get a classification of all sample points into three classes,
representing the events “Peter wins,”’ “Peter loses,” “‘no decision.”? Their
probabilities are the numbers z, y, z, computed above. The only trouble
with this sample spaceis thatit is not discrete, and we have notyet defined
probabilities in general sample spaces.
Note that we are discussing a question of terminology rather than a

genuine difficulty. In our example there was no question aboutthe proper
definition or interpretation of the number x. The trouble is only that for
consistency we musteither decide to refer to the number x as“the limit
of the probability x, that Peter wins in n trials’or else talk of the event
“that Peter wins,” which meansreferring to a non-discrete sample space.
We propose to do both. For simplicity of language we shall refer to
events even when they are defined in the infinite sample space; for
precision, the theoremswill also be formulated in termsoffinite sample
spaces and passagesto the limit. The events to be studied in this chapter
share the following salient feature of ourexample. The event “Peter wins,”
although defined in an infinite space, is the union ofthe events “‘Peter wins

at the nth trial’ (n = 1, 2,...), each of which depends only on finite

numberoftrials. The required probability x is the limit of a monotonic
sequence of probabilities x, which depend only onfinitely manytrials.
Werequire no theory going beyond the model of n Bernoulli trials; we
merely takethe liberty of simplifying clumsy expressions? bycalling certain
numbers probabilities instead of using the term “‘limits of probabilities.”’

2. SYSTEMS OF GAMBLING

The painful experience of many gamblers has taught us the lesson that
no system of betting is successful’ in improving the gambler’s chances. If
the theory of probability is true to life, this experience must correspond
to a provable statement.

For orientation let us consider a potentially unlimited sequence of
Bernoulli trials and suppose that at each trial the bettor has the free choice

* For the reader familiar with general measure theorythe situation may be described
as follows. We consider only events which either depend on a finite numberoftrials or
are limits of monotonic sequences of such events. We calculate the obvious limits of
probabilities and clearly require no measure theory for that purpose. But only general
measure theory shows that ourlimits are independentof the particular passage to the
limit and are completely additive.
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of whether or not to bet. A “‘system”’ consists in fixed rules selecting those
trials on which the player is to bet. For example, the bettor may make up

his mind to bet at every seventh trial or to wait as long as necessary for
seven heads to occur between two bets. He maybet only following a head
run of length 13, or bet for thefirst time after the first head, for the second

time after the first run of two consecutive heads, and generally, for the kth
time, just after k heads have appeared in succession. In thelatter case he

would betless and less frequently. We need not consider the stakes at the
individualtrials; we want to show that no “‘system’’ changesthe bettor’s
situation and that he can achieve the same result by betting every time.
It goes withoutsaying that this statement can be proved only for systemsin
the ordinary meaning where the bettor does not know the future (the

existence or non-existence of genuine prescience is not our concern). It
mustalso be admitted that the rule “go homeafter losing three times’’ does
change the situation, but we shall rule out such uninteresting systems.

We define a system as a set offixed rules which for every trial uniquely
determine whether or not the bettor is to bet; at the kth trial the decision

may dependon the outcomesofthefirst k — 1 trials, but not on the outcome
of trials number k, k +1, k +2,...; finally the rules must be such as to

ensure an indefinite continuation of the game. Since the set of rules is
fixed, the event “‘in n trials the bettor bets more than r times’ is well

defined and its probability calculable. The last condition requires that
for every r, as n—» oo, this probability tendsto 1.
We now formulate our fundamental theorem to the effect that under

any system the successive bets form a sequence of Bernoulli trials with

unchangedprobabilityfor success. With an appropriate change of phrasing
this theorem holdsfor all kinds of independenttrials; the successive bets

form in each case an exactreplica of the originaltrials, so that no system

can affect the bettor’s fortunes. The importance of this statement was
first recognized by von Mises, who introduced the impossibility of a
successful gambling system as a fundamental axiom. The present formu-
lation and prooffollow Doob.? Forsimplicity we assume that p = 4.

Let A, be the event “‘first bet occurs at the kth trial.’’ Our definition '

of system requires that as n — oo the probability that the first bet has

occurred before the nth trial tends to 1. This meansthat

P{A,} + P{A.} + °°+ + P{A,} > 1,
or

(2.1) > P{A,} = 1.

Next, let B, be the event ‘“‘head at kth trial’ and B the event “‘thetrial

* J, L. Doob, Note onprobability, Annals of Mathematics, vol. 37 (1936), pp. 363-367.
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of the first bet results in heads.’’ Then the event B is the union of the

events A,B,, A,B,, A3B3,... which are mutually exclusive. Now A,
depends only. on the outcomeofthe first k — 1 trials, and B, only on
the trial number k. Hence A, and B, are independent and P{A,B,} =

= P{A,}P{B,} = $P{A,}. Thus P{B} = > P{A,B,} = 3 > P{A,} = 3.
This shows that under this system the probability of headsat thefirst bet
is 4, and the same statement holdsfor all subsequentbets.

It remains to show that the bets are stochastically independent. This
meansthat the probability that the coin falls heads at both thefirst and the
second bet should be } (and similarly for all other combinations and for
the subsequenttrials). To verify this statement let A* be the event that
the second bet occurs at the kth trial. Let E represent the event “heads
at the first two bets’; it is the union of allevents A,B,A*B, where j < k
(if j7>k, then A, and A* are mutually exclusive and A,A* = 0).

Therefore

(2.2) PiE}=> 2 P{A;B;A,B,}.
j=l k=j41

As before, we see that for fixed j/ and k >/j/, the event B, (heads at
kthtrial) is independent of the event A,B,A~ (which depends only on the
outcomesofthe first k — 1 trials). Hence

> P{A;B,A;} =
k=J+1

(2.3) P{E} =}

L
M
s

®%
.

P{A,B,} > P{A* | A,B}
k=j+1

I
n
i

M
s

3 l NA

[cf. V, (1.8)]. Now, wheneverthe first bet occurs and whateverits outcome,

the gameis sure to continue, that is, the second bet occurs soonerorlater.

This means that for given A,B; with P{A,B,} > 0 the conditional
probabilities that the second bet occurs at the kth trial must add to unity.
The secondseries in (2.3) is therefore unity, and we have already seen that

> P{A,B;} = 4. Hence P{E} =} as contended. A similar argument
holds for any combinationoftrials. >

Note that the situation is different when the player is permitted to vary
his stakes. In this case there exist advantageousstrategies, and the game

depends onthe strategy. Weshall returnto this point in XIV,2.

3. THE BOREL-CANTELLI LEMMAS

Two simple lemmas concerning infinite sequences of trials are used so
frequently that they deserve special attention. We formulate them for

Bernoulli trials, but they apply to more generalcases.
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Werefer again to an infinite sequence of Bernoulli trials. Let A,, A.,...

be an infinite sequence of events each of which depends only ona finite
numberoftrials; in other words, wesuppose that there exists an integer

n, such that A, is an event in the sample space ofthe first , Bernoulli
trials. Put Po fk. 28.

(3.1) a, = P{A,}. . as

(For example, A,Axmaybetheevent that the2kthtrialconcludesarunof —

atleast, k, “consecutive successes, Then n, = 2k and a;, = p*.)

For every infinite sequence of letters S and itis possible to establish
whether it belongs to 0,1, 2,... or infinitely many among the {4A,}.
This means that we can speak of the event U,, that an unending sequence
of trials produces more than r among the events {A,}, and also of the
event U,,, that infinitely many among the {A,} occur. The event U,

is defined only in the infinite sample space, and its probability is the limit
of P{U,,,}, the probability that m trials produce more than r among the
events {A,}. Finally, P{U,,} = lim P{U,}; this limit exists since P{U,}

decreases as r increases. so

Lemma 1. If Sa, converges, then with probability one only finitely _. e~
many events A, occur. Moreprecisely,it is claimed that for r sufficiently ~~'
large, P{U,} <€ or: to every «> it is possible to find an integer r

such that theprobability that n trialsproduce one or more among the events | ~

Arit, Apia, +++ iS less than «€ forall n.

Proof. Determine r so that a,,,+4,,.+°':<; this is possible “2
since > a, converges. Without loss of generality we may suppose that

ad

the A, are ordered in such a way that n,) <n,< nz <.... Let N be Po
the last subscript for which ny <n. Then A;,..., Ay are defined inthe --»
space of n trials, and the lemma asserts that the probability that one
or more among the events A,.1, A,i2,..-,Ay occur is less than «. This ~
is true, since by the fundamental inequality I, (7.6) we have

(3.2) P{Any U Ape Urs UAy} SO + a42+ °° + ay Ss

as contended.
pore

A satisfactory converse to the lemmais known only for the special case
of mutually independent A,. This situation occurs whenthetrials are
divided into non-overlapping blocks and A, depends only onthetrials
in the kth block (for example, A, may be the event that the kth thousand
of trials produces more than 600 successes).

Lemma 2. If the events A, are mutually independent, and if > a,

diverges, then with probability one infinitely many A, occur. In other

 



202 UNLIMITED SEQUENCES OF BERNOULLI TRIALS [VIII.4

words,it is claimed that for every r the probability that n trials produce
more than r among the events A, tends to 1 as n— o.

Proof. Assume the contrary. There exists then an n such that with
positive probability u noevent A, with k >n is realized. But

(3.3) u < (1—a,)(1—a,41) “fe (1—a,,,,)

because the product on the right is the probability that no A, with

n<k<n+r occurs. Since 1 —2<e™ the product on theright is
Se(ant Fan47), and the sum in the exponent can be madearbitrarily large
by choosing r sufficiently large. Thus u = 0 against the hypothesis. >

Examples. (a) Whatis the probability that in a sequence of Bernoulli
trials the pattern SS appearsinfinitely often? Let A, be the event that
the trials number k, k +1, and k +2 produce the sequence SFS.
The events A, are not mutually independent, but the sequence 4,, A,,

A,, Ay,... Contains only mutually independent events (since no two
depend on the outcomeof the sametrials). Since a, = p’q is independent
of k, the series a, + a, +a, +> diverges, and hence with probability

one the pattern SFS occursinfinitely often. A similar argument obviously
applies for arbitrary patterns of any length.

(6) Books produced by coin tossing. Consider a message such as PROB-
ABILITY IS FUN written in the Morse code as a finite sequence of dots
and dashes. When we write H for dot and T for dash this messagewill
appear as a finite succession of heads andtails. It follows from the
preceding example that a prolonged tossing of a coin is certain sooner or
later to produce the given messageandtorepeatit infinitely often. By the
same token the record of a prolonged coin-tossing game is bound to
contain every conceivable book in the Morse code, from Hamletto eight-
place logarithmic tables. It has been suggested that an army of monkeys
mightbe trained to pound typewriters at random in the hopethatultimately
great worksofliterature would be produced. Using a coin for the same
purpose may save feeding and training expenses and free the monkeysfor

other monkey business. >

4. THE STRONG LAW OF LARGE NUMBERS

The intuitive notion of probability is based on the expectation that the
following is true: If S,, is the numberof successes in the first 1 trials of
4 sequence of Bernoulli trials, then

S.(4.1) Sn, ».
n

 



VIII.4] THE STRONG LAW OF LARGE NUMBERS 203

In the abstract theory this cannot be true for every sequenceoftrials; in
fact, our sample space contains a point representing the conceptual
possibility of an infinite sequence of uninterrupted successes, and for it
S,/n = 1. However, it is demonstrable that (4.1) holds with probability

one, so that the cases where (4.1) does not hold form a negligible exception.
Note that we deal with a statement muchstronger than the weak law of

large numbers [VI, (4.1)]. The latter says that for every sufficiently large

fixed n the average S,/n is likely to be near p, but it does not say that
S,,/n is bound to stay near p if the numberoftrials is increased. It
leaves open the possibility that in n additionaltrials there occursatleast
one among the events k1S, < p — e« with n < k < 2n. The probability

for this is the sum of a large number of probabilities of which we know
only that they are individually small. We shall now prove that with
probability one S,/n — p becomes and remains small.

Strong Law of Large Numbers. For every « > 0 with probability one

there occur only finitely many of the events

S
Ss _ >| > «
n

(4.2)
 

This implies that (4.1) holdswithprobabilityone. In terms offinite

sample spaces, it is asserted that to every « > 0, 6 > 0 there corresponds
an r such that for all » the probability of the simultaneousrealization
of the » inequalities

(4.3)
 

Spike— <i, k=1,2,...,»,

r+k P

is greater than 1 — 0.

Proof. We shall prove a much stronger statement. Let A, be the

event

S, — kp

Vkpq

where a> 1. It is then obvious from VII, (6.7) that, at least for all k

sufficiently large,

(4.4) SF} = 
   

| > /ZaTeRr,

(4.5) P{A,} < eot}ek = =

Hence > P{A,} converges, and lemma1 ofthe preceding section ensures

that with probability one only finitely many inequalities (4.4) hold. On the
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other hand,if (4.2) holds, then

 

  
(4.6)

 

  
ToaPq

and for large n the right side is larger than ~2alogn. Hence, the
realization of infinitely many inequalities (4.2) implies the realization of
infinitely many A, and has therefore probability zero. >

The strong law of large numbers wasfirst formulated by Cantelli (1917),
after Borel and Hausdorff had discussed certain special cases. Like the
weak law,it is only a very special case of a general theorem on random
variables. Taken in conjunction with our theorem on the impossibility
of gambling systems, the law of large numbers implies the existence of the
limit (4.1) not only for the original sequenceoftrials but also for all subse-
quences obtained in accordance with the rules of section 2. Thus the two

theorems together describe thefundamentalproperties of randomness which
are inherentin the intuitive notion ofprobability and whose importance was
stressed with special emphasis by von Mises.

5. THE LAW OF THE ITERATED LOGARITHM

Asin chapter VII let us again introduce the reduced numberof successes
in n trials

S,— 1—np

Jnpq
The Laplace limit theorem asserts that P{S* > x} ~ 1 — N(x). Thus,
for every particular value of n it is improbable to have a large S*, but
it is intuitively clear that in a prolonged sequenceoftrials S* will sooner

or later take on arbitrarily large values. Moderate values of S* are most
probable, but the maximawill slowly increase. How fast? In the course

of the proof of the strong law of large numbers we have concluded from

(4.5) that with probability one the inequality S* < /2alogn holds for
each a> 1 andall sufficiently large n. This provides us with an upper
bound for the fluctuations of S*, but this bound is bad. Toseethis,let
us apply the same argument to the subsequence S}¥,S*,S*,S*,...;

that is, let us define the event A, by Sh > 2a logk. The inequality

(4.5) implies that Sf < /2alogk holds for a> andall sufficiently
large k. But for n = 2* we have logk ~ loglogn, and we conclude

that for each a> 1 andall n of the form n = 2* the inequality

(5.1) Ss

 

(5.2) S* < V/2a log log n
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will hold from some k onward. It is now fair guess that in reality (5.2)
holds for all n sufficiently large and,in fact, this is one part of the law of

the iterated logarithm. This remarkable theorem’ asserts that J/2 log log n

is the precise upper boundin the sense that foreach a < 1 the reverse of

the inequality (5.2) will hold for infinitely many 2.

Theorem. With probability one we have

s*

(5.3) lim sup —_—_—— = 1.

n> J2 log log n

This means: For 4 > 1 with probability one onlyfinitely many ofthe events

(5.4) S, > np + AV 2npq log log n

occur, for 4 <1 with probability one (5.4) holdsfor infinitely many n.

For reasons of symmetry (5.3) implies that

s*

n> V2 log log n

Proof. Westart with two preliminary remarks.

(1) There exists a constant c > 0 which depends on p, but not on n,

such that

(5.5) P{S, > np} >

for all n. In fact, an inspection of the binomial distribution shows that

the left side in (5.5) is never zero, and the Laplace limit theorem showsthat

it tends to } as n— 00. Accordingly, the left side is bounded away from

zero, as asserted.

(2) We require the following lemma: Let x be fixed, and let A be

the event that for at least one k with k <n

(5.6) S, — kp > x.

Then

(5.7) P{A} < cP{S, — np > 2}.

3A. Khintchine, Uber einen Satz der Wahrscheinlichkeitsrechnung, Fundamenta

Mathematicae, vol. 6 (1924), pp. 9-20. The discovery was preceded by partial results

due to other authors. The present proofis arranged so as to permit straightforward

generalization to more general random variables.
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For a proof of the lemma let A, be the event that (5.6) holds for
k =» but not for k=1,2,...,»—1 (here 1<»<n). The events
A,, Ag,...,A, are mutually exclusive, and A is their union. Hence

(5.8) P{A} = P{A,} +--+ + P{A,}.

Next, for » <n let U, be the event that the total number of successes in
the trials number » +1, 7+ 2,...,n exceeds (n—»)p. If both A,
and U, occur, then S, > S, + (n—»)p > np + x, and since the A,U,
are mutually exclusive, this implies

(5.9) PIS, — np > x} > P{A,U}} + --- + P{A,_1U,_4} + P{A,}.

Now A, dependsonly onthefirst » trials and U, only on the following
n—v trials. Hence A, and U, are independent, and P{A,U,} =
= P{A,}P{U,}. From the preliminary remark (5.5) we know that
P{U,} > c > 0, and so weget from (5.9) and (5.8) .

(5.10) P{S,, — np > x} > c Y P{A,} = cPLA}.

This proves (5.7). |

(3) We now provethe part of the theorem relating to (5.4) with A> 1.
Let y be a numbersuch that

(5.11) l<y<a

and let n, be the integer nearest to y’. Let B, be the event that the
inequality

(5.12) S,, — np > Av/2n,pqlog log n,

holds for at least one n with n, <n <n,,,. Obviously (5.4) can hold
for infinitely many n only if infinitely many B, occur. Using thefirst
Borel-Cantelli lemma, wesee therefore that it suffices to prove that

(5.13) > P{B,} converges.

By the inequality (5.7)

P{B,} <c*P{S,. — 141p > As/2n,.pq log log n,} =
Nett

5.14 -( ) =C 'P(S2.,> 4 [2% togtogn.
Nyt

Now 2,4;/n,~ y <4, and hencefor sufficiently large r

(5.15) P{B,} < ct P{S*> V22 log log n,}.

 



VIII.5] THE LAW OF THE ITERATED LOGARITHM 207

From VII, (5.2) we get, therefore, for large r,

1 15.16) P{B,} < cole~4 og log nm, _ ~
Be c(logn,)* —e(r log y)*
 

Since A> 1, the assertion (5.13) is proved.
(4) Finally, we prove the assertion concerning (5.4) with A <1. This

time we choose for y an integer so large that

—1(5.17) <> a>h

where 74 is a constant to be determined later, and put n, = y". The
second Borel-Cantelli lemma applies only to independent events, and for
this reason we introduce

r—1?
(5.18) . D, =S,, — S,

D,. is the total numberof successes following trial number n,_, and up to
and includingtrial n,; for it we have the binomial distribution b(k; n, p)

with n =n, —n,_;. Let A, be the event

(5.19) D, — (1,—n,_1)p > nv 2pqn,log log n,.

Weclaim that with probability one infinitely many A, occur. Since the
various A, depend on non-overlapping blocks of trials (namely,
N,4<n<n,), they are mutually independent, and, according to the

second Borel-Cantelli lemma, it suffices to prove that > P{A,} diverges.
Now

(5.20) P{A,} = PPete? > nf2 —**__ log log n,
V(1,—n,_4)pqN1,1)Pq Np —~ Nyy

Here n,/(n,—n,_1) = y/(vy—D < 77, by (5.17). Hence

D, — (1-—Np—1)P

V(,—m,-a)P4
Using again the estimate VII, (6.7) we find for large r

 

(5.21) PLA} > P= > Jn log log n, .

1 —n log lo 15.22 PiA > ——— e" 8 108 Rr — ——____—_______. ,
(9.22) 4} log log n, (log log n,)(log n,)"

Since n, = y’ and » <1, wefind that for large r we have P{A,} > l/r,

which proves the divergence of > P{A,}.
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The last step of the proofconsists in showing that S,,_, in (5.18) can
be neglected. From thefirst part of the theorem, which has already been
proved, we know that to every « >0 we can find an N sothat, with
probability 1 — « orbetter, for all r > N,

(5.23) IS,,, — 2ap < 2V2pqn,_, log log n,_, .Neo

Now suppose that 7 is chosen so close to 1 that

2

(5.24) l—n< (*).

Then from (5.17)

(5.25) 4n,_, = 4n, yy") < n,(n—A)?

and hence (5.23) implies

(5.26) Sn, — Mrap > —(n—A)V2pqn,log log n, .

Adding(5.26) to (5.19), we obtain (5.4) with n =n,. It follows that, with
probability 1 — « orbetter, this inequality holds for infinitely many r,
and this accomplishes the proof. >

Thelaw of the iterated logarithm for Bernoulli trials is a special case of a
more general theorem first formulated by Kolmogorov.‘ Atpresentitis
possible to formulate stronger theorems(cf. problems 7 and 8).

6. INTERPRETATION IN NUMBER THEORY
LANGUAGE

Let x be a real numberin the interval 0 < x < 1, andlet

(6.1) L = .04A,a,°°*°

be its decimal expansion (so that each a; stands for one of the digits
0,1,...,9). This expansion is unique except for numbers of the form
a/10” (where a is an integer), which can be written either by means of
an expansion containinginfinitely many zerosor by meansof an expansion
containinginfinitely many nines. To avoid ambiguities we now agree not
to use the latter form.
The decimal expansionsare connected with Bernoulli trials with P=y7s

the digit 0 representing success andall otherdigits failure. If we replace in

* A. Kolmogoroff, Das Gesetz des iterierten Logarithmus, Mathematische Annalen,
vol. 101 (1929), pp. 126-135.
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(6.1) all zeros by the letter S and all other digits by F, then (6.1) repre-

sents a possible outcome ofan infinite sequence of Bernoulli trials with
Pp =7is- Conversely, an arbitrary sequence of letters S and F can be

obtained in the described manner from the expansion of certain numbers
x. In this way every event in the sample space of Bernoulli trials is

represented by a certain aggregate of numbers x. For example, the event
“successat the nth trial” is represented by all those x whose nth decimal
is zero. This is an aggregate of 10"-1 intervals each of length 10-”, and
the total length of these intervals equals 345, which is the probability of our

event. Every particular finite sample sequence of length n correspondsto
an aggregate of certain intervals; for example, the sequence SFS' is

represented by the nine intervals 0.01 < 2 < 0.011,0.02 <2 < 0.021,...,

0.09 < x < 0.091. The probability of each such sample sequence equals
the total length of the corresponding intervals on the x-axis. Probabilities
of more complicated events are always expressed in terms of probabilities
of finite sample sequences, and the calculation proceeds according to the
same addition rule that is valid for the familiar Lebesgue measure on the
a-axis. Accordingly, our probabilities will always coincide with the measure

of the corresponding aggregate of points on the x-axis. We have thus a
meansoftranslating all limit theorems for Bernoulli trials with p = 35

into theorems concerning decimal expansions. The phrase “with proba-
bility one’’ is equivalent to “for almost all x’’ or ‘‘almost everywhere.”’

Wehave considered the random variable S,, which gives the numberof

successes in n trials. Here it is more convenient to emphasize the fact
that S, is a function of the sample point, and we write S,(x) for the
numberofzeros among thefirst n decimals of x. Obviously the graph of
S,(x) is a step polygon whosediscontinuities are necessarily points of the

form a/10", where a is an integer. The ratio S,(x)/n is called the

frequency of zeros amongthefirst n decimals of 2.
In the language of ordinary measure theory the weak law oflarge

numbersasserts that S,(2)/n > 75 in measure, whereas the strong law

states that S,(x)/n > y5 almost everywhere. Khintchine’s law of the

iterated logarithm shows that

S,,(z) — n/10

Jn log log n

for almost all x. It gives an answer to a problem treated in a series of
papers initiated by Hausdorff® (1913) and Hardy and Littlewood® (1914).

For a further improvementof this result see problems 7 and8.

(6.2) lim sup = 0.3,/2

° F, Hausdorff, Grundziige der Mengenlehre, Leipzig, 1913.
§ Hardy and Littlewood, Some problems of Diophantine approximation, Acta Mathe-

matica. vol. 37 (1914), pp. 155-239.
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Instead of the digit zero we may consider any other digit and can

formulate the strong law of large numbersto the effect that the frequency
of each of the ten digits tends to 3/5 for almost all x. A similar theorem
holds if the base 10 of the decimalsystem is replaced by any other base.
This fact was discovered by Borel (1909) andis usually expressed by saying
that almost all numbers are “normal.”

7. PROBLEMS FOR SOLUTION

1. Find an integer # such thatin rolling dice there are about even chances
that a run of three consecutive aces appears before a non-ace run of length 8.

2. Consider repeated independenttrials with three possible outcomes A, B,
C and corresponding probabilities p,g,r (p +9 +r=1). Find the prob-
ability that a run of « consecutive A’s will occur before a B-run oflength .

3. Continuation. Find the probability that an A-run of length « will occur
before either a B-run of length 8 ora C-run of length y.

4. In a sequence of Bernoulli trials let A, be the event that a run of 2
consecutive successes occurs between the 2th and the 2"Hst trial. If p=
there is probability one that infinitely many A, occur; if p <3, then with
probability one only finitely many A, occur.

5.7 Denote by N, the length of the success run beginning at the nth trial
(i.e, N, =0 if the nth trial results in F, etc.). Prove that with probability

one

; Nn
(7.1) lim sup Logn ~ 1 

where Log denotes the logarithm to the basis 1/p.
Hint: Consider the event A, that the nth trial is followed by a run of more

than aLogn successes. For a > the calculation is straightforward. For
a <1 consider the subsequence of trials number a,,a,,... where a, is an
integer very Close to n Logn.

6. From the law of the iterated logarithm|conclude: With probability one
it will happenforinfinitely many 7 thatall Si with n <k <17n are positive.
(Note: Considerably stronger statements can be proved using the results of
chapterIII.)

7. Let ¢(t) be a positive monotonically increasing function, and let n, be
the nearest integer to e’/losr. If

1
(1)

converges, then with probability one, the inequality

(7.2) > e—434(n,) 

(7.3) S, > np + Vnpg 4(n)

7 Suggested by a communication from D. J. Newman.
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takes place only for infinitely many 1. Note that without loss of generality we

may suppose that ¢(7) < 10Vloglogn; the law of the iterated logarithm
takes care of the larger 4(n).

8. Prove that the series (7.2) converges if, and onlyif,

(7.4) _ en~Fen)

converges. Hint: Collect the terms for which n,_, <n <7, and note that
N, — Nyy ~n,(1—Iflogr); furthermore, (7.4) can converge only if
$*(n) > 2 log log n.

9. From the preceding problem conclude that with probability one

V2 log log n. * _

W
/
2

l
o
o

log

y

n

|(7.5) lim sup [S¥

—

V2 log log x ] log log log n
_ 3
=35-

® Problems 7 and 8 together show that in case of convergence of (7.4) the inequality
(7.3) holds with probability one only for finitely many n. Conversely,if (7.4) diverges,
the inequality (7,3) holds with probability one for infinitely many n. This converse

is much moredifficult to prove; cf. W.Feller, The generalform of the so-called law of
the iterated logarithm, Trans. Amer. Math. Soc., vol. 54 (1943), pp. 373-402, where

more general theorems are proved for arbitrary random variables. For the special
case of Bernoulli trials with p = 4 cf. P. Erdés, On the law of the iterated logarithm,
Ann.of Math.(2), vol. 43 (1942), pp. 419-436. The law ofthe iterated logarithm follows

from the particular case ¢(t) = Av2 log log t.

 



CHAPTER IX

Random Variables; Expectation

1. RANDOM VARIABLES

According to the definition given in calculus textbooks, the quantity
y is called afunction of the real number x if toevery x there corresponds
avalue y. This definition can be extended to cases where the independent
variable is not a real number. Thusthe distanceis a function of a pair of
points; the perimeter of a triangle is a function defined on the set of
triangles; a sequence {a,} is a function defined for all positive integers;

the binomial coefficient (;) is a function defined for pairs of numbers

(x, k) of which the secondis a non-negative integer. In the same sense we
can say that the number S,, of successes in n Bernoulli trials is a function

defined on the sample space; to each of the 2” points in this space there
corresponds a number S,,.

Afunction defined on a sample spaceis called a random variable. Through-
out the preceding chapters we have been concerned with random variables
without using this term. Typical random variables are the number of
aces in a handatbridge, of multiple birthdays in a company of n people,

of success runs in » Bernoulli trials. In each case there is a unique rule
which associates a number X with any sample point. Theclassical theory
of probability was devoted mainly to a study of the gambler’s gain, which
is again a random variable; in fact, every random variable can beinter-
preted as the gainof a real or imaginary gamblerin a suitable game. The

position of a particle under diffusion, the energy, temperature, etc., of
physical systems are random variables; but they are defined in non-
discrete sample spaces, and their study is therefore deferred. In the case of
a discrete sample space we can theoretically tabulate any random variable
X by enumerating in some orderall points of the space and associating
with each the corresponding value of X.
The term random variable is somewhat confusing; random function

212
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would be more appropriate (the independent variable being a point in
sample space, that is, the outcomeof an experiment).

Let X be a random variable andlet X1,X_,... be the values which
it assumes;* in most of what follows the x, will be integers. The
aggregate of all sample points on which X assumesthe fixed value 2;
forms the event that X = x,; its probability is denoted by P{X = 2;}.
The function

(1.1) P{X = x} = f(a,) VG =1,2,...)

is calledthe (probability) distribution? of the random variable X. Clearly

(1.2) f(x) > 0, > f(z) = 1.

With this terminology we cansaythat in Bernoulli trials the number of
successes S,, isa random variable with probability distribution {b(k; n, P)}
whereas the numberoftrials up to and including thefirst success is a
random variable with the distribution {g*—1p}.

Consider now two random variables X and Y defined on the same
sample space, and denote the values which they assume,respectively, by
%,%,..., and 4;,Y2,... 3 let the corresponding probability distri-
butions be {f(2,)} and {g(y,)}. The aggregate of points in which the two
conditions X=z, and Y=y, are satisfied forms an event whose
probability will be denoted by P{X = x,, Y= y,}. Thefunction

(1.3) P{X = x,, Y = y,} = p(x;, yz) GU, k = 1,2,...)

is called the joint probability distribution of X and Y. It is best exhibited
in the form of a double-entry table as exemplified in tables 1 and 2.
Clearly

(1.4), P(®;, 4) 29, > (x;y) = 1.
oe i,k

1 In the standard mathematical terminology the set of values 2,, x,,... should be
called the range of X. Unfortunately the statistical literature uses the term range for the
difference between the maximum and the minimum of X.

* For a discrete variable X the probability distribution is the function f(x,) defined
on the aggregate of values x; assumed by X. This term mustbe distinguished from the
term “distribution function,” which applies to non-decreasing functions which tend to
Oas x + —o andtolas xo. Thedistribution function F(x) of X is defined by

F@)=PX<2}= > fi),
Ljp<z

the last sum extending over all those x; which do not exceed x, Thusthe distribution
function of a variable can becalculated from its probability distribution and vice versa.
In this volume weshall not be concerned with distribution functions in general.

 



TABLE 1

JOINT DISTRIBUTION OF (N, X,) IN EXAMPLE (a)

 

 

 

   

xX .o.
N 1 0 1 2 3 Distribution of N

1 2/27 0 0 1/27 1/9
2 6/27 6/27 6/27 0 2/3

3 0 6/27 0 0 2/9

Distri-

bution 8/27 12/27 6/27 1/27

of X,

E(N) = 19/9, E(N?) = 129/27, Var (N) = 26/81

E(X,) = 1, E(X?) = 45/27, _ Var (X,) = 2/3

E(NX,) = 19/9, Cov (N, X;) = 0.

N is the number of occupied cells, X, the numberofballs in thefirst cell when 3

balls are distributed randomly in 3 cells.
 

TABLE 2

JOINT DISTRIBUTION OF (X,, X,) IN EXAMPLE(a)

 

 

 

   

xX] 0 2 3 Distribution of X,

0 1/27 3/27 3/27 1/27 8/27
1 3/27 6/27 3/27 0 12/27
2 3/27 3/27 0 0 6/27
3 1/27 0 0 0 1/27

Distri-

bution 8/27 12/27 6/27 1/27
of X,

EX, =1, E(X?) = 45/27, Var (X,) = 2/3

E(X,X2) ed 2/3, Cov (X,, X,) a1/3.

X, is the numberofballs in the ith cell when 3 balls are distributed randomly

in 3 cells.
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Moreover, for every fixed

(1.5) P(2j Ys) + P(%3, Yo) + P(e; ¥y) + = P{X = x5} = f(%;)

and for every fixed k

(1.6) P(&1, Yn) + P(%25 Yx) + P(%3, ¥,) t-°* = PLY = Yj = £(Y;,).

In other words, by adding the probabilities in individual rows and
columns, we obtain the probability distributions of X and Y. They may
be exhibited as shown in tables 1 and 2 and are then called marginal
distributions. The adjective “marginal’’ refers to the outer appearance in
the double-entry table and is also used forstylistic clarity when the joint
distribution of two variables as well as their individual (marginal) distri-
butions appear in the same context. Strictly speaking, the adjective
‘marginal’ is redundant.
The notion of joint distribution carries over to systems of more than

two random variables.

Examples. (a) Random placements of 3 balls into 3 cells. Werefer to

the sample space of 27 points defined formally in table 1 accompanying

example I, (2.a); to each point we attach probability 3;. Let N denote

the numberof occupiedcells, and for i = 1, 2, 3 let X; denote the number

of balls in the cell number i. These are picturesque descriptions. Formally
N is the function assuming the value 1 on the sample points number1-3;
the value 2 on the points number 4-21; and the value 3 on the points
number 22-27. Accordingly, the probability distribution of N is defined
by P{N=1} = $3, P{N=2} = 2, P{N=3} = 3%. The joint distributions
of (N, X,) and of (X;, X,) are given in tables 1 and 2.

(b) Multinomial distribution. There are many situations in which the

joint distribution of three random variables is given by the multinomial
distribution (see VI, 9), that is,

(1.7)

n! pip
P xX = k ; xX = k > xX = k =

(Xr ky, Xe ke, Xs a} ky! ke! kg! (n—ky—ky—ks)!
ka33(1 —py—P2—ps)tte

2

here k,,k,, and kg are non-negative integers such that ky + ky + ks <n.

For example if X,, X,, and X, represent the numbers of ones, twos, and

threes scored in n throws of an ideal die, then their joint distribution is
given by (1.7) with p, = p, = ps = %. Again, suppose a sample with
replacementis taken from a population consisting ofseveral subpopulations

or strata. If X, stands for the number of elements in the sample that
belong to thejth subpopulation, thenthe joint distribution of (X,, X2, Xs)
is of the form (1.7).

 



 

“/= + Tn other words, the numberoftrials itself is now a random variable with

216 RANDOM VARIABLES; EXPECTATION [IX.1

To obtain the (marginal) distribution of (X,,X,) we have to keep

k, and k, fixed and sum (1.7) over all possible values of k,, that is,

k, =0,...,n—k,—k,. Using the binomial theorem we get the

trinomial distribution

n! py'ps(1—p,—pa)”
ky!ke!(n—k,—k,)!

Summing over k, = 0,...,2 —k, we get the distribution of X, alone:

It reduces to the binomial distribution with p = py.
(c) Geometric distributions. Consider a sequence of Bernoulli trials

continued atleast as long as necessary to obtain two successes. Let X,
be the numberoffailures preceding the first success, and X, the number
of failures between the first two successes. The joint distribution of
(X,, X,) is given by

(1.9) P{X, = j, Xp = k} = qi?

(see VI, 8). Summing over k weget the obvious geometric distribution
for X,. (This example showsincidentally how the use of random variable
avoids difficulties connected with non-denumerable sample spaces.)

(d) Randomized sampling. A somewhat surprising result is obtained
from a variant‘of example (6). Suppose that the numberoftrials is not
fixed in advance but depends on the outcome of a chance experiment in
such a way that the probability of having exactly n trials equals e~*A"/n!.

 (1.8) P{X, = k,, X, =k,} =

the Poisson distribution {e~7A"/n!}.. Given the number n oftrials, the
event {X, = k,, X, = k,,X;=k;} has the (conditional) probability

given by the right side in (1.7). To obtain the absolute probability of this
event we must multiply the right side in (1.7) by e~4A"/n! and sum over

all possible n. For given k; it is, of course, necessary that

n>k, +k, + ks.

Introducing the difference r as a new summation index weget

(1.10) P{X, = k,, X, = k,, X; = ks} =

— ona (ABs)(Apo)*(As)"* S A'(1=Pi—PaPs)"
ky! ka! kg! r!

r=0

Onthe right we recognize the exponential series and we can write thefinal
result in the form

(1.11) P{X, = k,, X, = k,, X, = k,} =

= an (Ap,)" . ew aes (Ap.)* 1 oT APs (Aps)*

k,! k,! k,!

 



IX. 1] RANDOM VARIABLES 217

Summation over k, and k, eliminates the second andthird factors, and
we see that X, itself has a Poisson distribution. The curiousfact is that
the joint distribution assumes the form of a multiplication table; this will

be described by saying that the three variables X, are mutually independent.
(This exampleis essentially a reformulation ofproblem 27in VI, 10.) >

With the notation (1.3) the conditional probability of the event Y = y,,

given that X = x, [with f(2,;) > 0], becomes

(1.12) PLY = y, | X = 2} — Ati Ye)
F(x;)

In this way a numberis associated with every value of X, and so (1.12)
defines a function of X. It is called the conditional distribution of Y for
given X, and is denoted by P{Y = y,| X}. A glance at tables | and 2
shows that the conditional probability (1.12) is in general different from
g(y,). This indicates that inference can be drawn from the values of X

to those of Y and vice versa; the two variables are (stochastically)

dependent. The strongest degree of dependence exists when Y is a
function of X, that is, when the value of X uniquely determines Y. For
example, if a coin is.tossed n times and X and Y are the numbers of

heads and tails, then Y=n—X. Similarly, when Y = X?, we can

compute Y from X. In the joint distribution this means that in each row
all entries but one are zero. If, on the other hand, p(2;, y,) = /(2,)g(y,)

for all combinations of 2,, y,, then the events X = 2; and Y=y, are

independent; the joint distribution assumes the form of a multiplication
table. In this case we speak of independent random variables. They occur

in particular in connection with independent trials; for example, the -
numbers scored in two throwsof a die are independent. An example of
a different nature is found in example (d).
Note that the joint distribution of X and Y determines thedistributions

of X and Y, but that we cannot calculate the joint distribution of X
and Y from their marginal distributions. If two variables X and Y
have the same distribution, they may or may not be independent. For
example, the two variables X, and X, in table 2 have the samedistri-
bution and are dependent.

All our notions apply also to the case of more than two variables. We
recapitulate in the formal

Definition. A random variable X is a function defined on a given
sample space, that is, an assignment of a real number to each sample point.
The probability distribution of X is the function defined in (1.1). If two
random variables X and Y are defined on the same sample space,their

Joint distribution is given by (1.3) and assignsprobabilities to all combinations
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(x,;, 4) of values assumed by X and ¥. This notion carries over, in an

obvious manner, to any finite set of variables X, Y,..., W defined on the
same sample space. These variables are called mutually independentif,
for any combination of values (x, y,...,W) assumed by them,

(1.13) P{X=2,Y=y,...,.W= n=

= P{X = x} P{Y = y}--- P{W= vw}.

In V, 4 we have defined the sample space corresponding to n mutually
independenttrials. Comparing this definition to (1.13), we see that if
X,, depends only on the outcomeofthe kthtrial, then the variables X,...,X,

are mutually independent. More generally, if a random variable U
depends only on the outcomesofthe first k trials, and another variable
V depends only on the outcomes of the last n—k trials, then U and V
are independent (cf. problem 39).

We may conceive of a random variable as a labeling of the points of the

sample space. This procedure is familiar from dice, where the faces are
numbered, and we speak of numbersas the possible outcomesofindividual

trials. In conventional mathematical terminology we could say that a
random variable X is a mappingof the original sample space onto a new
space whose points are 2, 2,,.... Therefore:

Whenever {f(x;)} satisfies the obvious conditions (1.2) it is legitimate to
talk of a random variable X, assuming the values 2x, X2,... with proba-

bilities f(x), f(®2),... without further reference to the old sample space;

anewoneisformed by the sample points x, %,... Specifying aprobability
distribution is equivalent to specifying a sample space whose points arereal
numbers. Speaking of two independent random variables X and Y with
distributions {f(x;)} and {g(y,)} is equivalent to referring to a sample

space whose points are pairs of numbers (x;, y,) to which probabilities are
assigned by the rule P{(x,, y,)} = f(x,)g(y,). Similarly,for the sample space

corresponding to a set of n random variables (X,Y,..., W) we can take
an aggregate ofpoints (x,y,..., Ww) in the n-dimensional space to which
probabilities are assigned by the joint distribution. The variables are
mutually independentif their joint distributionis given by (1.13).

Example. (e) Bernoulli trials with variable probabilities. Consider n

independenttrials, each of which has only two possible outcomes, S and

F. The probability of S at the kth trial is p,, that of F is g, = 1 — p,.
If p, = p, this scheme reduces to Bernoulli trials. The simplest way of
describing it is to attribute the values 1 and Oto S and F. The modelis
then completely described by saying that we have n mutually independent
random variables X,, with distributions P{X, = 1} = p,, P{X,, = 0} = q,.

_ This scheme is known under the confusing name of “Poisson trials.”’
[See examples (5.5) and XI, (6.d).] >
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It is clear that the same distribution can occur in conjunction with

different sample spaces. If we say that the random variable X assumes

the values 0 and | with probabilities 4, then we refer tacitly to a sample
space consisting of the two points 0 and 1. But the variable X might have
been defined by stipulating that it equals 0 or | according as the tenth
tossing of a coin produces headsortails; in this case X is defined in a
sample space of sequences (HHT...), and this sample space has 21°
points.

In principle, it is possible to restrict the theory of probability to sample
spaces defined in terms of probability distributions of random variables.
This procedure avoids references to abstract sample spaces and also to

terms like “‘trials’? and ‘‘outcomes of experiments.’’ The reduction of
probability theory to random variablesis a short-cut to the use of analysis

and simplifies the theory in many ways. However,it also has the drawback
of obscuring the probability background. The notion of random variable
easily remains vague as “‘something that takes on different values with

different probabilities.”” But random variables are ordinary functions, and
this notion is by no meanspeculiar to probability theory.

Example. (f) Let X be a random variable with possible values

%,%,... and corresponding probabilities f(2,), f(%.),.... If it helps

the reader’s imagination, he may always construct a conceptual experiment
leading to X. For example, subdivide a roulette wheel into arcs /;, J, ....

whose lengths are as f(x,):f(x.):.... Imagine a gambler receiving the

(positive or negative) amount x, if the roulette comesto rest at a point of
i;, Then X is the gambler’s gain. In n trials, the gains are assumed to
be n independentvariables with the commondistribution {/(z,)}. To

obtain two variables with a given joint distribution {p(x,, y,)} let an arc
correspond to each combination (2;,y,) and think of two gamblers

receiving the amounts x, and y,, respectively. >

If X,Y, Z,... are random variables defined on the same sample space,

then any function F(X, Y, Z,...) is again a random variable. Its distri-

bution can be obtained from thejoint distribution of X, Y, Z,... simply

by collecting the terms which correspond to combinationsof (X, Y, Z,. . .)

giving the same value of F(X, Y, Z,...).

Example. (g) In the example illustrated by table 2 the sum X, + X,

is a random variable assumingthe values 0, 1, 2, 3 with probabilities

27, 27,27, and s%. The product X,X, assumesthe values0, 1, and 2 with

probabilities 34, 3%, and 3.

(A) We return to example (c) and consider various functions of X, and

X,. Most interesting is the sum S = X, + X;. To obtain P{S = }
we have to sum (1.9) over all values j,k such that 7 + k =». There are
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vy + 1 such pairs, and in this special case they all have the same proba-

bility p2g% Thus P{X = »} = (v+1)q%* which is a special case of
VI, (8.1).

Next let U be defined as the smaller of the two variables X,, X,; in
other words, U = X, if X, > X, and U = X, if X, < X,. To obtain

P{U = »} we have to sum (1.9) over all pairs (j,k) such that j = » and
k >, orelse 7 >» and k =». This leads to two geometric series and

2v 2 2v+1_2

(1.14) PU a== 2242?= gri4y)p.
1-—q 1-—q

Here v=0,1],....

A similar calculation shows that

 

Iv|
(1.15) P{X, —X, =} = ot »=0,+1,42,....

Note on pairwise independence. As a matter of curiosity we have shown in example

V,(3.e) that three events can be pairwise independent without being mutually inde-

pendent. To formulate an analogous result for random variables we consider the
simplest case, namely a sample space consisting of nine points, each carrying probability
$- Six of these points we identify with the various permutations of the numbers1, 2,-
3 while the remaining three points stand for the triples (1,1, 1), (2,2, 2), and (3, 3, 3).

Wenowintroduce three random variables X,, X,, X3; such that X; equals the number

appearing at the kth place. The possible values of these variables are 1, 2, 3 andit is
easily verified that their distributions andjointdistributions are given by

(1.16) PR==3 PK =X =s} Hh.
[This differs only notationally from the conclusions in example V,(3.e).] It follows

that our three random variables are pairwise independent. On the other hand, the
knowledge of X, and X, uniquely determines X;, and so the variables are not

mutually independent.
To go a step further, define a triple (X,, X;, X,) exactly as the triple (X,, Xe, Xs)

but independentof it. In this way we obtain six pairwise independentvariablessatisfying
(1.16). Continuing in like manner weobtain a sequence ofvariables X,, X2,..., Xn).--

satisfying (1.16) and such that the X, are pairwise independent without being mutually
independent.’ Weshall return to this example in XV,(13.f).

2. EXPECTATIONS

To achieve reasonable simplicity it is often necessary to describe proba-
bility distributions rather summarily by a few “typical values.’’ An
example is provided by the median used in the waiting-time problems of

° The same construction leads to examples in which no three consecutive variables
are independent. Further modifications lead to various counterexamples in the theory
of stochastic processes. See W. Feller, Non-Markovian processes with the semi-group
property, Ann. Math.Statist., vol. 30 (1959), pp. 1252-1253.
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II, 7, and the central term of the binomial distribution. Among the
typical values the expectation, or mean, is by far the most important. It
lendsitself best to analytical manipulations, and it is preferred by statis-
ticians because of a property known as sampling stability. Its definition

follows the customary notion of an average. If ina certain population n,

families have exactly k children, the total number of families is n =
= Ny +n, +n, +++: and the total numberof children

m =n, + 2n, + 3ng+°°°

The average numberof children per family is m/n. The analogy between
probabilities and frequencies suggests the following

Definition. Let X be a random variable assuming the values x1, X»,...

with corresponding probabilities f(x),f(#2),.... The mean or expected
value of X is defined by

(2.1) E(X) = > om(x)

provided that the series converges absolutely. In this case we say that X

has afinite expectation. If > |x,| f(x) diverges, then we say that X has

no finite expectation.

It is sometimes convenient to think of probabilities intuitively as limits
of observable frequencies in repeated experiments. This would lead to the
following intuitive interpretation of the expectation. Let an experiment be
repeated n times “underidentical conditions,” and denote by X;,..., X,

the values of X that were actually observed. For large n the average
(X,+ --:+X,)/n should be close to E(X). The laws of large numbers
give substance and precision to this vague intuitive description.

‘It goes without saying that the most common random variables have
finite expectations; otherwise the concept would be impractical. How-
ever, variables .,,without finite expectations occur in connection with

important recurrence problemsin physics. The terms mean, average, and
mathematical expectation are synonymous. Wealso speak of the mean of
a distribution instead of referring to a corresponding random variable.
The notation E(X) is generally accepted in mathematics andstatistics.

In physics X, (X), and (X),, are commonsubstitutes for E(X).
Wewish to calculate expectations of functions such as X*. This function

isa newrandom variable assuming the values xj; in general, the probability
of X? = x? isnot f(a) but f(x,) + f(—%,) and E(X?) is defined as the
sum of «2{f(%,)+f(—,)}. Obviously underall circumstances

(2.2) E(X*) = DY x;f(%)

provided the series converges. The same procedureleads to the general
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Theorem 1. Any function ¢(x) defines a new random variable 4(X).
If $(X) hasfinite expectation, then

(2.3) E(P(X)) = J Pe)/(%):;

the series converges absolutely if, and only if, E(¢(X)) exists. For any
constant a we have E(aX) = aE(X).

If several random variables X,,...,X, are defined on the same
sample space, then their sum X, +--+ + X, is a new random variable.
Its possible values and the corresponding probabilities can be readily
found from the joint distribution of the X, and thus E(X, + --- +-X,)
can be calculated. A simpler procedure is furnished by the following
important

Theorem 2. If X,, X2,...,X, are random variables with expectations,
then the expectation of their sum exists and is the sum of their expectations:

(2.4) E(X,+ +++ +X,) = E(X;) + --- + E(X,).

Proof. It suffices to prove (2.4) for two variables X and Y. Using
the notation (1.3), we can write

(2.5) . K(X) + EY) = > EsP(Lj, Yy) + 2, YP(s, Yr.)

the summation extending overall possible values 2,, y, (which need not be
all different). The two series converge absolutely; their sum can therefore
be rearranged to give > (x;+y;,)p(x;,y,), which is by definition the

jk

expectation of X + Y. This accomplishes the proof. >

Clearly, no corresponding general theorem holds for products; for
example, E(X?*) is generally different from (E(X))?. Thus, if X is the
numberscored with a balanced die,

E(X) = 4, but E(X%) = (144494 16+25+36)/6 = 91/6.

However, the simple multiplication rule holds for mutually independent
variables.

Theorem 3. If X and Y are mutually independent randomvariables
with finite expectations, then their product is a random variable with finite
expectation and

(2.6) E(XY) = E(X)E(Y).
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Proof. To calculate E(XY) we must multiply each possible value

x,y, With the corresponding probability. Hence

Q.7) ERY) = 3suf(eeu) = [5 xflea|{S nalv)}
j

the rearrangement being justified since the series converge absolutely. >

By induction the same multiplication rule holds for any number of

mutually independent random variables.
It is convenient to have a notation also for the expectation of a con-

ditional probability distribution. If X and Y are two random variables
with the joint distribution (1.3), the conditional expectation E(Y | X) of

Y for given X is the function whichattheplace x; assumes the value

> YP(Xj> Yx)

(2.8) > ¥P{Y = y, X = «;} = +———__;
c kas f(e;)

this definition is meaningful only if the series converges absolutely and
S(%) > 0 for all 7.

The conditional expectation E(Y| X) is a new random variable. To
calculate its expectation we have to multiply (2.8) by f(x,) and sum over

x; The result is

 

eatenprne

Fp = Sibelwe(2.9) ECEY | X)) EW) 428%

' 3. EXAMPLES AND APPLICATIONS

(a) Binomial distribution. Let S, be the number of successes in n

Bernoulli trials with probability p for success. We know that S, has
the binomial distribution {b(k; n, p)}, whence E(S,) = > kb(k; n, p) =
= np > b(k—1;n—1, p). The last sum includesall terms of the binomial
distribution for m — 1 and hence equals 1. Therefore the mean of the

binomial distribution is

(3.1) E(S,,) = np.

The sameresult could have been obtained without calculation by a

method which is often expedient. Let X, be the number of successes

scored at the kth trial. This random variable assumes only the values 0

and 1 with corresponding probabilities g and p. Hence

K(X,) = 0-q+1l-p=p,
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and since

(3.2) S, =X, + X,+°°°4+X
n?

we get (3.1) directly from (2.4).
(b) Poisson distribution. If X has the Poisson distribution p(k; A) =

= e*,*/k! (where k = 0,1,...) then

E(X) = > kp(k; A) = A>p(k—-1; A).

The last series contains all terms of the distribution and therefore adds
to unity. Accordingly, the Poisson distribution {e~*A*/k!} has the mean A.

(c) Negative binomial distribution. Let X be a variable with the
geometric distribution P{X =k}=q*p where k =0,1,2,.... Then

E(X) = gp(1+2¢+3q7+ ---+). On the right we have the derivative of a
geometric series so that E(X) = gp(1—q)"* =q/p. We have seen in VI,
8, that X may beinterpreted as the numberoffailures preceding the first

success in a sequence of Bernoulli trials. More generally, we have studied
the sample space corresponding to Bernoulli trials which are continued
until the mth success. For r <n, let X, = X, and let X, be the number

of failures between the (r—1)st and the rth success. Then each X, has the

geometric distribution {¢*p}, and E(X,) =q/p. The sum

Y,=X,+-°°+X,

is the number offailures preceding the rth success. In other words, Y,

is a random variable whose distribution is the negative binomial defined
by either of the two equivalent formulas VI, (8.1) or VI, (8.2). It follows
that the mean of this negative binomial is rq/p. This can be verified by

direct computation. From VI, (8.2)it is clear that

kf(k; r, p) = rpqf(k—-1; r+, p),

and the terms of the distribution {f(kK—1;r+1, p)} add to unity. This
direct calculation has the advantage that it applies also to non-integral r.
On the other hand, the first argumentleads to the result without requiring

knowledge of the explicit form of the distribution of X, +--+ + X,.
(d) Waiting times in sampling. A population of N distinct elements is

sampled with replacement. Because of repetitions a random sample of

size r will in general contain fewer than r distinct elements. As the
sample size increases, new elements will enter the sample more and more _
rarely. Weare interested in the sample size S, necessary for the acquisi-* -
tion of r distinct elements. (As a special case, consider the population of
N = 365 possible birthdays; here S, represents the number of people
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sampled up to the moment where the sample contains r different birth-

days. A similar interpretation is possible with random placementsofballs

into cells. Our problem is of particular interest to collectors of coupons
and other items where the acquisition can be compared to random
sampling.*)

To simplify language let us call a drawing successful if it results in
adding a new element to the sample. Then S, is the numberof drawings

up to and including the rth success. Put X, = S,,, — S,. Then X, — 1
is the number of unsuccessful drawings between the kth and (k+1)st

success. During these drawings the population contains N — k elements
that have not yet entered the sample, and so X, — 1 is the number of
failures preceding the first success in Bernoulli trials with p = (N—k)/N.
In accordance with example (c) therefore E(X,) = 1 + q/p = N/(N—k).

Since S, = 1+ X,+-:-+X,, wegetfinally

1 1 1(3.3) BS) Mot yt tye}
In particular, E(S,) is the expected number of drawings necessary to
exhaust the entire population. For N= 10 we have E(S;) ~ 6.5 and
E(S,,) ~ 29.3. This means that, on the average, seven drawings suffice

to coverthe first half of a population of 10, but the second half will require
an average of some 23 drawings.

To obtain an approximation to (3.3) we interpret (N—k)! as area of
a rectangle whosebasis is a unit interval centered at N — k, and whose
height is the ordinate of 2! at that point. Replacing the area of this
rectangle by the area under the graph of x1 we get the approximation

N+
(3.4) E(S,) vf a* dx = N logN+e

, N-r+3 N—r+4

Asan application choose « <1 arbitrary and consider the expected
number of drawings to obtain a sample containing the fraction « of the
entire population. This equals E(S,) when r is the smallest integer
>aN. When N— oo the error committed in (3.4) tends to 0, and wefind

for the desired expectation in the limit Nlog(1—«)~1. Note that all
these results are obtained without use of the probability distributionitself.
[The latter can be derived easily from the occupancy probabilities found
in IV, (2.3).]

4G. Polya, Eine Wahrscheinlichkeitsaufyabe zur Kundenwerbung, Zeitschrift fir Ange-
wandte Mathematik und Mechanik, vol. 10 (1930), pp. 96-97. Polya treats a slightly

more general problem with different methods. There exists a huge literature treating
variants of the couponcollector’s problem. (Cf. problems 24, 25; problems 12-14 in

XI,7; and 12 in II,11.)
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(e) An estimation problem. An urn contains balls numbered 1 to N.

Let X be the largest number drawn in n drawings when random sampling
with replacement is used. The event X<k means that each of n
numbers drawn is less than or equal to k and therefore P{X < k} =

= (k/N)". Hence the probability distribution of X is given by

(3.5) Pre=P{IX Hk} = PIX KK - PIX <Sk-=

= {k" — (k-1)N™.
It follows that

N N
(3.6) E(X) _ dks = N-” {qr} _ (k—1)"*1 _ (k—1)"} =

==]

N

= N-"}) Nr>(k-1" ,

For large N the last sum is approximately the area under the curve
y= x" from «=0 to x=N, that is, N"*+1/(n+1). It follows that for

large N

n

n+1
 

(3.7) E(X) + N.

If a town has N = 1000 cars and a sample of n = 10 is observed, the

expected numberof the highest observed license plate (assuming random-
ness) is about 910. The practical statistician uses the observed maximum

in a sample to estimate the unknown true number N. This method was
used during the last war to estimate enemy production (cf. problems 8-9.)

(f) Application to a statistical test. This example’illustrates the practical

use of expectations to avoid cumbersome calculations of probability
distributions.

Spores of the fungus Sordaria are produced in chains of eight. The
chain may break into several parts, and ultimately the spores escape in
projectiles containing from 1 to 8 spores. There are reasons to suppose
that the breakages at the seven links are stochastically independent and

that the links have the same probability p to break. Underthis hypoth-
esis it is theoretically possible to calculate the joint distribution of singlets,
doublets, etc., but this would involve tedious calculations. On the other

hand, for an empirical test of the hypothesis it suffices to know the
expected numbers of singlets, doublets, etc., and these are easily found.

* Taken from the Inaugural Address of D. R. Cox at Birbeck College (London)
1961. Cox refers to C. T. Ingold and S. A. Hadland, New Phytologist, vol. 58 (1959),

pp. 46-57.
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For example, the spores located at the ends of the chain have probability
p to becomesinglets whereas for all other spores this probability equals

p*. By the addition rule therefore the expected numberofsinglets arising
from one chainis given by «, = 2p + 6p?. A similar argument showsthat
the expected number of doublets is ¢, = 2gp + 5qp? where q =1 — p.

In like manner e, = 2q*p + 4qp, ..., €g = gq’. The expected number of
projectiles is «, +--++«,=1+ 7p. (This is obvious without calcu-
lations because the expected number of breaks equals 7p, and each break

increases the numberofprojectiles by 1.)

TABLE 3
OBSERVED NUMBERSf;, AND EXPECTED NUMBERS Ne;

OF PROJECTILES OF SIZE & IN EXAMPLE (/)
 

 

k ti Nex k ti Nex

] 490 458.3 5 200 170.6

2 343 ' 360.8 6 134 131.7

3 265 281.8 7 72 101.1

4 199 219.7 8 272 250.3

 

In an actual field observation a total of 7251 spores were counted,
apparently coming from a total of N= 907 chains (with 5 spores
undetected). If our probabilistic model is applicable we should have
approximately (1+7p)N = Lats or p = 0.168. (This argument depends
on the intuitive meaning of 6 péctation, to be justified by the weak law of
large numbers.) The observed number f, of projectiles should be close
to the expected number Ne,. As table 3 shows, the discrepancies were not
startling and*there is no reason to reject the model. >

4. THE VARIANCE

Let X be a random variable with distribution {f(z,)}, and let r > 0
be aninteger. Jf the expectation of the random variable X", thatis,

(4.1) E(X’) = ¥ aff(x,),
exists, then it is called the rth moment of X about the origin. If the series
does not converge absolutely, we say that the rth moment doesnotexist.
Since |X|"? < |X|" + 1, it follows that whenever the rth moment exists

so doesthe (r—1)st,andhenceall preceding moments.
Moments play an importantrolein the general theory, but in the present

~’ volume weshall use only the second moment. If it exists, so does the mean

(4.2) pb = E(X).
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It is then natural to replace the random variable X byits deviation from
the mean, X — p. Since («—p)*? < 2(@?+y?) the second moment of

X — mw exists whenever E(X?) exists. It is given by

(4.3) E((X—p)’) = > (xj;—2ux, +p")f(x).

Splitting the right side into three individual sums, we find it equal to
E(X?) — 2uE(X) + pw? = E(X*) — pw.

Definition. Let X be a random variable with second moment E(X?)

and let uw = E(X) be its mean. We define a numbercalled the variance of

X by

(4.4) Var (X) = E(X—p)”) = E(X?) — p?.

Its positive square root (or zero)is called the standard deviation of X.
Forsimplicity we often speak of the variance of a distribution without

mentioning the random variable. “Dispersion” is a synonym for the now
generally accepted term “variance.”

Examples. (a) If X assumes the values +c, each with probability

4, then Var (X) = c’?.

(b) If X is the number of points scored with a symmetric die, then

Var (X) = @(1?+2°+ +++ +67) — (2)? = is.
(c) For the Poisson distribution p(k; A) the mean is A [cf. example (3.5)]

and hence the variance > k*p(k;A)—- PR =ADd kp(k—-1;2 -H=
= AD (k-1)p(kK-15A. + ADpk-1;A)-HH=RP+4+4-2 =). In
this case mean and variance are equal.

(d) For the binomial distribution {cf. example (3.a)] a similar computation

showsthat the varianceis

> kb(k; n, p) — (np)? = np > kb(k—-1; n-1, p) — (np)? =

= np{(n—1)p + 1} — (mp)? = npq. >

The usefulness of the notion of variance will appear only gradually,

in particular, in connection with limit theorems of chapter X. Here we
observe that the variance is a rough measure ofspread. In fact, if Var (X) =
= > (x;—)?f(«,;) is small, then each term in the sum is small. A value
x, for which |x; — w| is large must therefore have a small probability
/(@;). In other words, in case of small variance large deviations of X
from the mean w are improbable. Conversely, a large variance indicates
that not all values assumed by X lie near the mean.

Some readers may be helped by the following interpretation in mechanics. Suppose
that a unit mass is distributed on the z-axis so that the mass f(z,) is concentrated at
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the point z;. Then the mean yw is the abscissaof the center ofgravity, and the variance
is the moment ofinertia. Clearly different mass distributions may have the same center
of gravity and the same momentofinertia, but it is well known that some important

mechanical properties can be described in terms of these two quantities.

If X represents a measurable quantity like length or temperature, then
its numerical values depend on the origin and the unit of measurement. A
change of the latter means passing from X to a new variable aX + b,
where a and b areconstants. Clearly Var (X+5) = Var (X), and hence

(4.5) Var (aX +5) = a? Var (X).

The choice of the origin and unit of measurementis to a large degree
arbitrary, and often it is most convenient to take the mean as origin and

the standard deviation as unit. We have doneso in VII, 3 when weintro-

duced the normalized number of successes S*¥ = (S,,—np)|V/npq. In

general, if X has mean mw and variance o?, then X — w has mean zero

and variance o*, and hence the variable

(4.6) X* = (X—p)/o (o > 0)

has mean Q and variance 1. It is called the normalized variable corresponding
to X. In the physicist’s language, the passage from X to X* would be
interpreted as the introduction of dimensionless quantities.

5. COVARIANCE; VARIANCE OF A SUM

Let X and Y be two random variables on the same sample space.
Then X + Y and XY are again random variables, and their distributions
can be obtained by a simple rearrangementof the joint distribution of X
and Y. Our aim nowis to calculate Var(X+Y). For that purpose we
introduce the notion of covariance, which will be analyzed in greater detail
in section 8. If the joint distribution of X and Y is {p(z;, y,)}, then the

expectation of XY is given by

(5.1) E(XY) = > XYP(X55 Yx)s

provided, of course, that the series converges absolutely. Now |x,y,| <

< (#?+y?)/2 and therefore E(XY) certainly exists if E(X?) and E(Y’)

exist. In this case there exist also the expectations

(5.2) Hz = E(X), ym, = EY),

and the variables X — uw, and Y— jy, have means zero. For their

product we have from the addition rule of section 2

(5.3) E((X—pz)(Y—m,)) = ECXY) — 4,E(Y) — 4E(X) + baby =

= E(XY) — p,m,
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Definition. The covariance of X and Y is defined by

(5.4)  Cov(X, ¥) = E(X—p,)(¥—p,)) = E(KY) — yy,
This definition is meaningful whenever X and Y havefinite variances.

We know from section 2 that for independent variables E(XY) =
= E(X)E(Y). Hence from (5.4) we have

Theorem 1. Jf X and Y are independent, then Cov (X, Y) = 0.

Note that the converse is not true. For example, a glance at table 1 shows
that the two variables are dependent, but their covariance vanishes

nevertheless. We shall return to this point in section 8. The next theorem
is important, and the addition rule (5.6) for independent variables is
constantly applied.

Theorem 2. If X;,...,X, are randomvariables with finite variances
o,...,0%, and S, =X, +°::+X,, then

(5.5) Var(S,,) = > ot + 2 > Cov (X,, X,)
k=1 j,k

n
the last sum extending over each of the (i pairs (X,, X,) with j <k.

In particular, if the X, are mutually independent,

(5.6) Var (S,) = of tog t-+'+o2.

Proof. Put yu, = E(X,) and m, = uw,+°:-+ 4, = E(GS,). Then

S, 7m, = > (X;,—x) and

(5.7) (S,—m,)? = > (XiMe)® + 2d Kj—ws)(Ki—oe):

Taking expectations, we get (5.5). >

Examples. (a) Binomial distribution {b(k;n, p)}. In example (3.a),

the variables X, are mutually independent. We have

E(X,) = 8 -¢ + Pp =p,

and E(X,) =p. Hence o? = p — p* = pq, and from (5.6) we see that
the variance ofthe binomialdistribution is npg. The sameresult was derived
by direct computation in example (4.d).

(b) Bernoulli trials with variable probabilities. Vet X,,...,X, be
mutually independent random variables such that X,, assumes the values

1 and 0 with probabilities p, and g,=1—p, respectively. Then
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E(X,) = p, and Var (X,) = p, — Py = Px4x- Putting again

S, =X, +++ +X,
we have from (5.6)

(5.8) Var (S,) = 3Pade
As in example (1.e) the variable S, may be interpreted as the total

number of successes in n independenttrials, each of which results in
success or failure. Then p = (p,+--+-+p,)/n is the average probability
of success, and it seems natural to compare the present situation to
Bernoulli trials with the constant probability of success p. Such a com-

parison leads usto a striking result. We may rewrite (5.8) in the form

Var (S,) = np — >p®.

Next, it is easily seen (by elementary calculus or induction) that among

all combinations {p,} such that }p, = np the sum >p? assumes its
minimum value whenall p, are equal. It follows that, if the average
probability of success p is kept constant, Var (S,,) assumes its maximum
value when p, =+:: =p, =p. Wehave thus the surprising result that
the variability ofp,, or lack ofuniformity, decreases the magnitude ofchance
fluctuations as measured by the variance.6 For example, the number of
annualfires in a community may be treated as a random variable; for a

given average number,the variability is maximalif all households have the
same probability offire. Given a certain average quality p of n machines,
the output will be least uniform if all machines are equal. (An application

to modern education is obvious but hopeless.)
(c) Card matching. A deck of nm numbered cards is put into random

order so that all nm! arrangements have equal probabilities. The number
of matches(cardsin their natural place) is a random variable S, which

assumes the values 0,1,...,m. Its probability distribution was derived

inIV,4. From it the mean and variance could be obtained, but the follow-

ing way is simpler and moreinstructive.
Define a random variable X, which is either 1 or 0, according as card

number & is or.is not at the kth place. Then S, = X, +°°:+ X,,.

Noweach card has probability 1/n to appear at the kth place. Hence
P{X, = 1} =1/n and P{X, = 0} =(n—1)/n. Therefore E(X,) = 1/n,
and it follows that E(S,) = 1: the average is one match per deck. To

® For stronger results in the same direction see W. Hoeffding, On thedistribution of
the number of successes in independent trials, Ann. Math. Statist., vol. 27 (1956),

pp. 713-721. For an approximation by Poisson distributions see example XI, (5.0).

 



232 RANDOM VARIABLES; EXPECTATION | [TX.5

find Var (S,,) we first calculate the variance of of X;,:

2

(5.9) ger (je.
n

Next we calculate E(X,X,). The product X,X, is 0 or 1; the latter is

true if both card number 7 and card number are at their properplaces,
and the probability for that is 1/n(n—1). Hence

 

 

 

  

1
5.10 E(X;X,) = ,(5.10) XX) =

1 1 1
Cov (X,, X,) = ———_ - ==

( s) n(n—1) nn? n(n—1)
Thusfinally

n—1 n 1
5.11 Var (S,,) = +2 = 1.
@-1) Si) =n ()aarn

Wesee that both mean and variance of the number of matches are
equal to one. This result may be applied to the problem of card guessing
discussed in IV, 4. There we considered three methods of guessing, one
of which corresponds to card matching. The second can be described as a
sequence of n Bernoulli trials with probability p = 1/n, in which case

the expected number of correct guesses is mp=1 and the variance
npg = (n—1)/n. The expected numbers are the same in both cases, but
the larger variance with the first method indicates greater chance fluctu-
ations about the mean and thus promises a slightly more exciting game.
(With more complicated decks of cards the difference between the two
variances is somewhatlarger but neverreally big.) With the last mode of

guessing the subject keeps calling the same card; the numberof correct
guesses is necessarily one, and chance fluctuations are completely elimi-

nated (variance 0). Wesee that the strategy of calling cannotinfluence the
expected numberof correct guesses but has someinfluence on the magni-
tude of chance fluctuations.

(d) Sampling without replacement. Supposethat a population consists of
b black and g green elements, and that a random sample of size r is
taken (without repetitions). The number S, of black elements in the
sample is a random variable with the hypergeometric distribution (see II, 6)
from which the mean and the variance can be obtained by direct computa-
tion. However, the following method is preferable. Define the random

variable X,, to assume the values 1 or 0 according as the kth element in
the sample is or is not black (k <r). For reasons of symmetry the
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probability that X, = 1 is b/(b+g), and hence

b bg
5.12 E X,, =—-, V. y= .

@1) OW) =F g ar Oy) (b+g)
Next, if 7 #k, then X,X, = 1 if thejth and kth elements of the sample
are black, and otherwise X;X, = 0. The probability of X;X, = 1 is
b(b—1)/(6+g)(6+g—1), and therefore

 

b(b—1)(5.13) E(X;X,) = ———_>_. ,
es (b+g)(b+g—1)

—bg
Cov (X;X,) = —————_-.
Oe (b+g)'(b+g—1)

Thus

rb rbg 1 r—1
  (5.14) K(S,) = , Var (S,) = — ——— }.

b+e¢g (S,) (b+) b+eg-l1

In sampling with replacement we would have the same mean, but the

variance would beslightly larger, namely, rbg/(b+g)?. >

6. CHEBYSHEV’S INEQUALITY’

Wesaw that a small variance indicates that large deviations from the
mean are improbable. This statement is made more precisely by Cheby-
shev’s inequality, which is an exceedingly useful tool. It presupposes the

existence of a second moment.
. x

Len. ss 5FPF 3 BxKgTheorem. For any t > 0 10a EN -

p lZ|2n {= (4?)(6.1) P{|X| > 1} < t-°E(X?).
ne. DSiyl odt= orgre AS F585

In particular, if E(X) = w then P ‘Z} 27 OTF A> bo

(6.2) P{|X — w| >t} < t-? Var (X). oO

Proof. The second inequality is obtained by applying the first to the

variable X — yw. Using the notations of section 4 we have

(6.3) P{|X| >t} = xfe) < re > eS)
x;)2

the sums extending over those 2; that exceed ¢ in absolute value. The

last sum is <E(X?), and so (6.1) is true. >

7 Pp. L. Chebyshev (1821-1894).
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Chebyshev’s inequality must be regarded as a theoretical tool rather
than a practical method of estimation. Its importance is due to its
universality, but no statement of great generality can be expected toyield
sharp results in individual cases.

Examples. (a) If X is the numberscored in a throw ofa true die, then
[cf. example (4.5)], w = ¢, o? = 28. The maximum deviation of X from

be is 2.5 = 30/2. The probability of greater deviations is zero, whereas
Chebyshev’s inequality only asserts that this probability is smaller than
0.47.

(b) Forthe binomial distribution {b(k; 1, p)} we have [cf. example
(5.a)] « = np, o% = npq. For large n we know that

(6.4) P{|S,, — np| > xV/npq} ~ 1 — N(x) + N(—a).

Chebyshev’s inequality states only that the left side is less than 2-?;
this is obviously a much poorer estimate than (6.4).

*7, KOLMOGOROV’S INEQUALITY

As an example of more refined methods weprove:

Let X,,...,X%, be mutually independent variables with expectations
-y, = E(X,) and variances of. Put

(7.1) S, =X, +°::4+ X,

(7.2) m, = E(S,) = wy too + ee

st = Var (S,) = of + +++ + of.

For every t >0 the probability of the simultaneous realization of the n
inequalities

(7.3) |S, — m,| < tS, k =1,2,...,n,

is at least | — t~*.

For n=1 this theorem reduces to Chebyshev’s inequality. For
n> 1 Chebyshev’s inequality gives the same bound for the probability

of the single relation |S, — m,| < ts,, so that Kolmogorov’s inequality

is considerably stronger.

Proof. We want to estimate the probability x that at least one of the
inequalities (7.3) does not hold. The theorem asserts that 2 < t~*.

* This section treats a special topic and should be omitted at first reading.
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Define random variables Y, as follows: Y, = if

(7.4) IS, —_ m,| > tS,

but

(7.5) IS, —m,|< ts, for kK=1,2,...,—1;

Y, = 0 for all other sample points. In words, Y, equals 1 at those

points in which the vth of the inequalities (7.3) is the first to be violated.

Then at any particular sample point at most one among the Y,, is 1, and

the sum Y, + Y, +-°:-+ Y, can assumeonly the values 0 or 1; it is 1
if, and only if, at least one of the inequalities (7.3) is violated, and therefore

(7.6) x= PLY, +:--+Y,=1}.

Since ¥,; +--+ Y, is 0 or 1, we have > Y, <1. Multiplying by
(S,—m,)*? and taking expectations, we get

(7.7) SE(Y,(S,—m,)*) < 82
k=1

For an evaluation of the terms on the left we put

n

v=ek+1

Then

(7.9) E(Y,(S,—m,)°) = E(Y,(S,—m,)’) + 2E(Y,U,(S,—m,)) + E(Y,U;).

Now, U, depends only on X,,1,...,X, while Y, and S, depend
only on X,,..., X,. Hence U,, is independent of Y,(S,—m,,) and there-

fore E(Y,U,(S,—m,)) = E(Y,(S,—m,))E(U,) = 0, since E(U;,) = 0.

Thusfrom (7.9)

(7.10) E(Y,(S,—m,)") = E(Y,(S,—m,)”).

But Y, +0 only if |S,—m,| > ts, so that Y,(S,—m,)? > ts7Y,.

Combining (7.7) and (7.10), we get therefore

(7.11) s? > t’s?E(Y,+--:+Y,).

Since Y, +::-+ Y, equals either 0 or 1, the expectation to the right

equals the probability x defined in (7.6). Thus xt? <1 asasserted. >
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*8. THE CORRELATION COEFFICIENT

Let X and Y be any two random variables with means mw, and wu,
and positive variances of and o%. We introduce the corresponding
normalized variables X* and Y* defined by (4.6). Their covariance is

called the correlation coefficient of X, Y and is denoted by p(X, Y). Thus,
using (5.4),

(8.1) o(X, Y) = Cov (X*, Y*) = (X, |
OO,

Clearly this correlation coefficient is independent of the origins and
units of measurements, that is, for any constants a, d,, b,, be, with

a, >0, a, > 0, we have p(a,X+b,, a,¥+5,) = p(X, Y).

The use of the correlation coefficient amounts to a fancy way of writing

the covariance. Unfortunately, the term correlation is suggestive of
implications which are not inherent in it. We know from section 5 that

p(X, Y) = 0 whenever X and Y are independent. It is important to
realize that the converse is not true. In fact, the correlation coefficient
p(X, Y) can vanish even if Y is afunction of X.

Examples. (a) Let X assumethe values +1, +2 each with probability

4. Let Y = X*. Thejoint distribution is given by p(—1, 1) = p(l, 1) =
= p(2, 4) = p(—2, 4) = 3. For reasons of symmetry p(X, Y) = 0 even

' though we havea direct functional dependence of Y on X.
(b) Let U and V have the same distribution, and let X = U+V,

Y =U — V. Then E(XY) = E(U’) — E(V?) = 0 and E(Y) = 0. Hence
Cov (X, Y) = 0 andtherefore also p(X, ¥Y) = 0. For example, X and

Y may be the sum anddifference of points on two dice. Then X and Y
are either both odd or both even and therefore dependent. >

It follows that the correlation coefficient is by no means a general
measure of dependence between X and Y. However, p(X, Y) is

connected with the Jinear dependence of X and Y.

Theorem. We have always |p(X, Y)| <1; furthermore, p(X, Y) =

= +1 only if there exist constants a and b such that Y = aX + b,

except, perhaps, for values of X with zero probability.

Proof. Let X* and Y* be the normalized variables. Then

(8.2) Var (X*+Y*) = Var (X*) + 2 Cov (X*, Y*) + Var (Y*) =

= 2(1+ p(X, Y)).

* This section treats a special topic and may be omitted at first reading.
8 The physicist would define the correlation coefficient as ““dimensionless covariance.’’
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Theleft side cannot be negative; hence |p(X, Y)| <1. For p(X, Y) = 1

it is necessary that Var (X* — Y*)=0 which means that with unit
probability the variable X* — Y* assumes only one value. In this case
X* — Y* =const., and hence Y=aX-+const. with a=a,/o,. A

similar argumentapplies to the case p(X, Y) = —1. >

9. PROBLEMS FOR SOLUTION

1. Seven balls are distributed randomlyin seven cells. Let X, be the number
of cells containing exactly i balls. Using the probabilities tabulated in II,
5, write downthe joint distribution of (X,, X,).

2. Two ideal dice are thrown. Let X bethe score on the first die and Y
be the larger of two scores. (a) Write downthe joint distribution of X and Y.
(5) Find the means, the variances, andthe covariance.

3. In five tosses of a coin let X, Y, Z be, respectively, the number of heads,
the number of head runs, the length of the largest head run. Tabulate the 32
sample points together with the corresponding values of X,Y, and Z. By
simple counting derive thejoint distributions of the pairs (X, Y), (X, Z), (Y, Z)
andthe distributions of X + Y and XY. Find the means, variances, covariances
of the variables.

4. Let X,Y, and Z be independent random variables with the same geo-
metric distribution {g*p}. Find (a2) P{X = Y}; (6) P{X > 2Y}; and (c)
P{X + Y < Z}.

5. Continuation, Let U be the smaller of X and Y, and put V =X — Y.
Show that U and V are independent.®

6. Let X, and X, be independent random variables with Poisson distribu-
tions {p(k; 4)} and {p(k; A,)}.

(a) Prove that X, + X, has the Poisson distribution {p(k; 4, + 4,)}.
(6) Show that the conditional distribution of X, given X, + X, is binomial,

namely

9.1 P{X, =kK|X, +X, =n =d(k; Ay(9.1) {X, = |X, + 2=n= Ta)

7. Let X, and X, be independent and have the common geometric distri-
bution {q*p} (as in problem 4). Show withoutcalculations that the conditional
distribution of X, given X, + X, is uniform, thatis,

1
(9.2) P{X, = k | X + X. = n} = n+1 5

8. Let X,,...,X, be mutually independent random variables, each having
the uniform distribution P{X; =k} =1/N for k =1,2,...,N. Let U, be
the smallest among the X,,..., X, and V,, the largest. Find thedistributions of
U, and V,. What is the connection with the estimation problem (3.e)?

® The geometric distribution is the only probability distribution on the integers for
which this is true. See T. S, Ferguson, A characterization of the geometric distribution,
Amer. Math. Monthly, vol. 72 (1965), pp. 256-260.
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9. Continuation to the estimation problem in example (3.e). (a) Find the joint
distribution of the largest and the smallest observation. Specialize to 1 = 2.
(Hint: Calculate first P{X <r, Y > s}.)

(6) Find the conditional probability that the first two observations are J
and k, given that X =r.

(c) Find E(X?) and hence an asymptotic expression for Var (X) as N —> 0
(with 7 fixed).

10. Simulating a perfect coin. Given a biased coin such that the probability
of heads is «, we simulate a perfect coin as follows. Throw the biased coin
twice. Interpret HT as success and TH asfailure; if neither event occurs
repeat the throws until a decision is reached. (a) Show that this model leads to
Bernoulli trials with p = 4. (5) Find the distribution and the expectation of the
number of throws required to reach a decision.

11. The problem of Banach’s match boxes, example VI,(8.a). Show that the
expectation of the distribution {u,} is given by » =(2N+1)uy — 1. Using

Stirling’s formula show that this is approximately 2VN/x — 1. (For N = 50
the mean is about 7.04.)

Hint: Start from the relation

(N—r)u, = $2N4+))upyy — $7 4+1)u,43.

Usethe fact! that Su, = 1.

12. Sampling inspection. Suppose that items with a probability p of being
acceptable are subjected to inspection in such a way that the probability of an
item being inspected is p’. We have four classes, namely, ‘acceptable and
inspected,”“acceptable butnotinspected,” etc. with corresponding probabilities
PP’, PY; PQ, 99° where q=1-—p, g’=1-—p’. We are concerned with
double Bernoulli trials [see example VI,(9.c)]. Let N be the numberof items
passing the inspection desk (both inspected and uninspected) before the first

defective is found, and let K be the (undiscovered) numberofdefectives among
them. Find the jointdistributions of N and K andthe marginaldistributions.

. K
13. Continuation. Find e(4] and Cov (K, N). c industrial practice

the discovered defective item is replaced by an acceptable one so that K/(N+1)
is the fraction of defectives and measures the quality of the lot. Note that

K .
E(x :) is not BOCES +1).

14. In a sequence of Bernoulli trials let X be the length of the run (ofeither
successes or failures) started by thefirst trial. (a) Find the distribution of X,
E(X), Var (X). (6) Let Y be the length of the second run. Find the distribution
of Y, E(Y), Var (Y), andthe joint distribution of -X, Y.

15. Let X and Y have a common negative binomial distribution. Find
the conditional probability P{X = j|X + Y = k} and showthattheidentity
II, (12.16) now becomes obvious without any calculations.

 

1° This fact is not obvious analytically; it may be verified by induction on N.
11 This derivation permits generalizations to more than two factors. It is due to

T. K. M. Wisniewski, Amer, Statistician, vol. 20 (1966), p. 25.
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16. If two random variables X and Y assumeonly two values each, andif
Cov (X, Y) = 0, then X and Y are independent.

17. Birthdays. For a group of n people find the expected numberof days
of the year which are birthdays of exactly k people. (Assume 365 days and
that all arrangements are equally probable.)

18. Continuation. Find the expected number of multiple birthdays. How
large should n be to makethis expectation exceed 1?

19. A man with n keys wants to open his door andtries the keys independ-
ently and at random. Find the mean and variance of the numberoftrials (a)
if unsuccessful keys are not eliminated from further selections; (5) if they are.
(Assumethat only one key fits the door. The exact distributions are given in
II, 7, but are not required for the present problem.)

20. Let (X, Y) be random variables whose joint distribution is the trinomial
defined by (1.8). Find E(X), Var (X), and Cov (X, Y) (a) by direct computa-
tion, (6) by representing X and Y as sumsof 7 variables each and using the
methodsofsection 5.

21. Find the covariance of the number of ones and sixes in n throws of a
die. :

22. In the animal trapping problem 24 of VI, 10, prove that the expected

numberof animals trapped at the »th trapping is nqp’*. ,

23. If X has the geometric distribution P{X = k} =q*p (where k = 0,1,

...), Show that Var (X) =qp~*. Conclude that the negative binomial distri-

bution {f(k; r,p)} has variance rqp~* provided r is a positive integer. Prove

by direct calculation that the statement remainstrue for all r > 0.

24. In the waiting time problem (3.d) prove that

ia
(N-1)? (N—2)? (N—r+1)7}"

Conclude that N“E(Sy) ~~ > k-*. (Incidentally, the value of this series is
72/6.) Hint: Use the variance of the geometric distribution found in the pre-

ceding problem.

25. Continuation. Let Y, be the number of drawings required to include

r preassigned elements (instead of any r different elements as in the text).

Find E(Y,) and Var (Y,). (Note: The exact distribution of Y, was found in

problem 12 of II, 11 but is not required for the present purpose.)

26. The blood-testing problem. A large number, N, of people are subject

to a blood test. This can be administered in two ways. (i) Each person can be

Var (S,) = N

12 This problem is based on a technique developed during World War II by R.

Dorfman. In army practice Dorfman achieved savings up to 80 per cent. When the

problem appearedin thefirst edition it caught widespread attention andled to various

generalizations as well as to new industrial and biological applications. The main

improvementconsists in introducing more than twostages. See, for example, M. Sobel

and P. A. Groll, Group testing to eliminate efficiently all defectives in a binomial sample,

The Bell System Journal, vol. 38 (1959), pp. 1179-1252; G. S. Watson, A study ofthe

froup screening method, Technometrics, vol. 3 (1961), pp. 371-388; H. M. Finucan,

The blood-testing problem, Applied Statistics, vol. 13 (1964), pp. 43-50.
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tested separately. In this case N tests are required. (ii) The blood samples of
k people can be pooled and analyzed together. If the test is negative, this one
test suffices for the k people. If the test is positive, each of the k persons must
be tested separately, and in all & +1 tests are required for the k people.
Assumethe probability p that the test is positive is the same for all people

and that people are stochastically independent.
(a) Whatis the probability that the test for a pooled sample of k people will

be positive?
(b) What is the expected value of the number, X, of tests necessary under

plan (ii)?
(c) Find an equation for the value of & which will minimize the expected

numberof tests under the second plan. (Do not try numerical solutions.)

(d) Showthat this k is closeto 1 Vp, and hence that the minimum expected

numberoftests is about 2NV,p. (This remark is due to M.S. Raff.)

27. Sample structure. A population consists of r classes whosesizes are in
the proportion p,:p,: °°: :p, A random sample of size n is taken with
replacement. Find the expected numberofclasses not represented in the sample.

28. Let X be the number of « runs in a random arrangementof r, alphas
and r, betas. The distribution of X is given in problem 23 of II, 11. Find
E(X) and Var(X).

29. In Polya’s urn scheme [V,(2.c)] let X, be one or zero according as the mth
trial results in black or red. Prove p(X,, Xm) =c/(b+rt+c) for n ¥m. +20

30. Continuation. Let S,, be the total number of black balls extracted in
the first » drawings (that is, S, = X, +--+ +X~,). Find E(S,) and Var (S,).
Verify the result by means of the recursion formula in problem 22 of V,8.
Hint: Use problems 19, 20 of V,8.

31. Stratified sampling. A city has n blocks of which n; have x, inhabit-
ants each (nm, +ng +++: =n). Let m= Xn,x,/n be the mean number of
inhabitants per block and put a? =n1 Xin,x} — m®. In sampling without
replacement r blocks are selected at random,and in each the inhabitants are
counted. Let X,,...,X, be the respective numberof inhabitants. Show that

a*r(n—r)
E(X, +--+: + X,) = mr Var (KX, +:°°: +X) = a

(In sampling with replacement the variance would be larger, namely, ar.)

32. Length of random chains.* A chain in the x,y-plane consists of 7 links,
each of unit length. The angle between two consecutive links is +a where «
is a positive constant; each possibility has probability 3, and the successive
angles are mutually independent. The distance L, from the beginning to the
end of the chain is a random variable, and we wish to prove that

1 + cos « 1 — cos” «
2) — _ —_——(9.3) E(L*) =n Ta cos o 2 cos « cos w2’

Withoutloss of generality the first link may be assumedtolie in the direction
of the positive x-axis. The angle between the Ath link and the positive z-axis

18 This is the two-dimensional analogue to the problem of length of long polymer
molecules in chemistry. The problem illustrates applications to random variables which

- are not expressible as sums of simple variables.
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is a random variable S,_, where S, =0, S; = S,_; +X, andthe X; are
mutually independent variables, assuming the values +1 with probability 4.
The projections on the two axes of the Ath link are cosS,_, and sin S;.4.
Hence for n > 1

2n—1 2 n—1

(9.4) L2 = (‘S cos s.) + ( > sin s:) .
x=0 k=0

Prove by induction successively for m <n

(9.5) E(cos S,,) = cos” a, E(sin S,,) = 0;

(9.6) E((cos Sn) * (cos S,)) = cos"~™a - E(cos? S,,)

(9.7) E((sin S,,,) * (sin S,,.)) = cos"-™ « - E(sin? S,,)

(9.8) E(L2) — E(L2_,) = 1 + 2cos «- £0s"**
1 — cos «

(with Ly = 0) and hencefinally (9.3).

33. A sequence of Bernoulli trials is continued as long as necessary to obtain
r successes, where r is a fixed integer. Let X be the numberoftrials required.
FindE(r/X). (Thedefinition leadsto infinite series for which a finite expression

can be obtained.)

34. In a random placement of r balls into n cells the probability of finding
exactly m cells empty satisfies the recursion formula II,(11.8). Let m, be the
expected number of empty cells. From the recursion formula provethat

1 r

Mp, = (1—n)m,, and conclude m,=n (1 — ;) .

35. Let S, be the numberof successes in 1 Bernoulli trials. Prove

E(\S,, — np|) = 2»gb(r; n, p)

where » is the integer such that np <» < np +1.

v=1

Hint: Theleft side = > (np — k) (;) p*q-*. Alternatively, use VI, (10.7).
k=0

36. Let {X;,} bea sequence of mutually independent random variables with

a commondistribution. Suppose that the X; assumeonly positive values and

that E(X,) =a and E(X;1) = 5b exist. Let S, =X, ++-* + X,. Prove that

E(S;!) is finite and that E(X,S,1) =nfor k = 1,2,...,7.

44 This exampleillustrates the effect of optional stopping. When the number n of

trials is fixed, the ratio of the number N of successes to.the number 7 oftrials is a

random variable whose expectation is p. It is often ertonéously assumed that the same

is true in our example where the number r of successes is fixed and the number of

trials depends on chance. If p= 4 and r= 2, then E(2/X) = 0.614 instead of

0.5; for r=3 we find E(3/X) = 0.579.
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37. Continuation.» Prove that

Ss m
E({(—*) =— i(=) 7? ifm<n

Sn .
E (2) = 1 + (m—n)aK(S;), ifm >n.

38. Let X,,...,X, be mutually independent random variables with a
common distribution; let its mean be m, its variance o% Let X =
= (X,+---+X,)/n. Prove that!®

B( s ,-¥)) = 02,
k=1

39. Let X,,...,X, be mutually independent random variables. Let U be
a function of X,,...,X;, and WV a function of X,,,,...,X,. Prove that
U and V are mutually independent random variables.

1

n—-1
 

40. Generalized Chebyshev inequality. Let ¢(x) >0 for x>0 be mono-
tonically increasing and suppose that E(¢(|X|)) = M exists. Prove that

M
P{[X| >t} < oO

41. Schwarz inequality. For any two random variables with finite variances
one has E(XY) < E(X*)E(Y?). Prove this from the fact that the quadratic
polynomial E((tX+Y)*) is non-negative.

*° The observation that problem 37 can be derived from 36 is due to K. L. Chung.
16 This can be expressed by saying that Y&.—K)P4(n—-1) is an unbiased estimator

of o%.

 



CHAPTER X

Law of Large Numbers

1. IDENTICALLY DISTRIBUTED VARIABLES

Thelimit theorems for Bernoulli trials derived in chapters VII and VII
are special cases of general limit theorems which cannotbetreated in this
volume. However, we shall here discuss at least some cases of the law of

large numbers in order to reveal a new aspect of the expectation of a

random variable.
The connection between Bernoulli trials and the theory of random

variables becomes clearer when we consider the dependence of the

number S,, of successes on the number 7 oftrials. With each trial S,

increases by 1 or 0, and we can write

(1.1) S,=X,+-:-+X,,

where the random variable X, equals 1 if the kth trial results in success
and zero otherwise. Thus S, is a sum of mn mutually independent
random variables, each of which assumesthe values 1 and 0 with proba-
bilities p and qg. From this it is only one step to consider sumsof the
form (1.1) where the X, are mutually independent variables with an

arbitrary distribution. The (weak) law of large numbers of VI,4, states
that for large n the average proportion of successes S,,/n is likely to lie

near p. This is a special case of the following

Law of Large Numbers. Let {X,} be asequence ofmutually independent
random variables with a commondistribution. If the expectation “ = E(X;)

exists, then for every € >0 as n— ©

n

(1.2) P|

 

-+|>4)-0
in words, the probability that the average S,/n will differ from the

expectation by less than an arbitrarily prescribed « tends to one.

243
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In this generality the theorem wasfirst proved by Khintchine.1 Older

proofs had to introduce the unnecessary restriction that the variance
Var (X,) should also befinite.2 For this case, however, there exists a much
more precise result which generalizes the DeMoivre-Laplace limit theorem
for Bernoulli trials, namely the

Central Limit Theorem. Let {X,} be a sequence ofmutually independent
random variables with a commondistribution. Suppose that 4 = E(X,) and
= Var (X,,) existandlet S, =X, ++: +X, Thenfor everyfixed B

(1.3) pps—l< A] > NB)
on

where Q(x) is the normal distribution introduced in VII,1. This theorem

is due to Lindeberg*; Ljapunov andother authors had previously proved

it under morerestrictive conditions. It must be understood that this
theorem is only a special case of a much more general theorem whose
formulation and proof are deferred to the second volume. Here we note
that (1.3) isstronger than (1.2), sinceit gives an estimate for the probability

that the discrepancy nS, — | is larger than ofvn. On the other hand,
the law of large numbers(1.2) holds even when the random variables X,

have no finite variance so that it is more general than the central limit
theorem. Forthis reason we shall give an independentproofof the law of
large numbers, butfirst we illustrate the two limit theorems.

Examples. (a) In a sequence of independent throws of a symmetric

die let X, be the numberscored at the kth throw. Then

E(X,) = (1+2+3+4+4+5+6)/6 = 3.5,

and War (X,) = (1?+2?+3?+4?+ 52+ 67)/6 — (3.5)? = 33. The law of
large numbersstates that for large n the average score S,/n is likely to
be near 3.5. The central limit theorem states that

(1.4) P{|S,, — 3.5n| < aV35n/12} & N(x) — N(— a).

For n = 1000 and « = 1 this reduces to P{3450 < S,< 3550} = 0.68.

For « = 0.6744--- the right side in (1.4) equals 4, and so there are

1 A. Khintchine, Comptes rendus de l’Académie des Sciences, Paris, vol. 189 (1929),

pp. 477-479. Incidentally, the reader should observe the warning given in connection

with the law of large numbers for Bernoulli trials at the end of VI,4.

2 A, Markov showed that the existence of E(|X;,|!+*) for some a > 0 suffices.
5 J. W. Lindeberg, Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlich-

keitsrechnung, Mathematische Zeitschrift, vol. 15 (1922), pp. 211-225.
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roughly equal chances that S, lies within or without the interval
3500 + 36.

(b) Sampling. Suppose that in a population of N families there are

N, families with exactly k children (kK =0,1,...; ) N,=N). Fora

family chosen at random, the numberofchildren is a random variable
which assumes the value » with probability p, = N,/N. A sample of

. size n with replacement represents m independent random variables or

“observations” X,,...,X,, each with the samedistribution; S,/n is

the sample average. The law of large numberstells us that for sufficiently
large random samples the sample averageis likely to be near u = > vp, =
= > »N,/N, namely the population average. The central limit theorem

permits us to estimate the probable magnitude of the discrepancy and to

determine the sample size necessary for reliable estimates. In practice
both « and o? are unknown,butit is usually easy to obtain a preliminary

estimate of o?, andit is always possible to keep to the safe side. Ifit is
desired that there be probability 0.99 or better that the sample average
S,/n differ from the unknown population mean y byless than 3’, then

the sample size should be such that

(1.5) P|=
 

 

< 0] > 0.99.
n 10

The root of N(x) — N(—x) = 0.99 is x = 2.57..., and hence m should

satisfy VJn[10c > 2.57 or n > 66002. A cautious preliminary estimate of
o* gives us an idea of the required sample size. Similar situations occur
frequently. Thus when the experimenter takes the mean of n measure-

ments he, too, relies on the law of large numbers and uses a sample mean

as an estimate for an unknowntheoretical expectation. Thereliability of

this estimate can be judged only in terms of o?, and usually one is com-

pelled to use rather crude estimates for o?.
(c) The Poisson distribution. In VII,5, we found that for large A the

Poisson distribution {p(k; A)} can be approximated by the normal dis-
tribution. This is really a direct consequence of the central limit theorem.

Suppose that the variables X,, have a Poisson distribution {p(k; y)}.
Then S,, has a Poisson distribution {p(k;ny)} with mean and variance

equal to ny. Writing A for ny, we conclude that as n—> 00

(1.6) SY etalk > NB)
KAch. KSAtBYA

ux ~ y . .

the summation extending over all kK upto A+ BVA. It is now obvious
that (1.6) holds also when 4 approaches oo in an arbitrary manner. This

theorem is used in the theory of summability of divergent series and is of
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general interest; estimates of the difference of the two sides in (1.6) are
available from the general theory. >

Note on Variables without Expectation ( wa uth x we

Both the law of large numbers and the central limit theorem become
meaningless if the expectation 4 does not exist, but they can be replaced
by more general theorems supplying the samesort of information. In
the modern theory variables without expectation play an important role
and many waiting and recurrence times in physics turn out-to be ofthis
type. This is true even of the simple coin-tossing game.

Suppose that coins are tossed one by one. Forthe kth coin let X,
be the waiting time upto the first equalization of the accumulated numbers
of heads andtails. The X, are mutually independent random variables
with a commondistribution: each X, assumes only even positive values
and P{X, = 2r} = f;, with the probability distribution {f2,} defined in
III,(3.7). Thesum S, = X, +-:-+X,, has the samedistribution as the

waiting time to the mth equalization of the accumulated numbers of heads

and tails or, what amounts to the same, the epoch of the th return to the

origin in a symmetric random walk. Thedistribution of S,, was found in
theorem 4 of III,7, and it was shown that

(1.7) PIS, < nx} > 2[1—N(1/Vz )].

Wehave here a limit theorem of the same character as the central limit
theorem with the remarkable difference that this time rhe variable S,|n?

_tatherthan S,|n_ possessesalimitdistribution. In the physicist’s language
the X, stand for independent measurements of the same physical quan-

tity, and the theorem asserts that, in probability, the average

(K+ + X,)/n
increaseslinearly with n. This paradoxicalresult cannot be shrugged off as

representing a pathological case because it turns out that our X, are
typical of the waiting times occurring in many physical and economical
processes. The limit theorem (1.7) is also typical of many modern limit
theoremsfor variables without expectation.*

*2. PROOF OF THE LAW OF LARGE NUMBERS

There is no loss of generality in assuming that “ = E(X,) =0, for
otherwise we would replace X, by X, — mu, and this involves merely a

* For an analogue to the law of large numbers for variables without expectation see
section 4 and problem 13. The surprising consequencesof (1.7) were discussed at length
in chapter III.

* This section should be omitted at first reading.
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change of notation. In the special case where o? = Var (X,) exists the
law of large numbersis a trivial consequence of Chebyshev’s inequality

[X,(6.2) according to which
2

(2.1) P{IS,| > 1} <=>.

For ¢ = en the right side tendsto 0, and so (1.2)is true.
The case where the second moment does notexist is more difficult. The

proof depends on the versatile {method of truncation which is a standard
tool in deriving various limit theorems. Let 6 bea positive constant to be

determined later. For each n we define n pairs of random variables as

follows.

(2.2) U, = X,; V, = 0 if |X,| < on,

U;, = 0, V, = X, if |X,| > on.

Here k =1,...,” and the dependence of the U, and V, on m must

be borne in mind. Bythis definition

(2.3) X, = U, + V;

and to prove the law of large numbersit suffices to show that for given

€« > 0 the constant 6 can be chosen so that as n—> co

(2.4) P{JU, +--- + U,| > gen} > 0

= pi ESE!
(2.5) P{[V, + °°: + V,| > gen} > 0. (Ve. 65 | ale (fee, .

eeen
For the proof denote the possible values of the X; by Ly,py .. and

their probabilities by f(@,). Put a = E(|X,|), thatis, <P» | ZU | > Sf}
i nm ‘

(2.6) a => |z)| f(x). ree jee aes
j ; t —

The variable U, is bounded by én andhenceclearly | _— 3, .
EUS EUgy

(2.7) E(U}) < a on. ( Pv eee
Sut -

The variables U,,...,U,, have the same distribution and are mutually ~
independent. Therefore SS

a

(2.8) Var (U, +: + :+U,,) =n Var (U,) < nE(U}) < a én.

On the other hand, by the very definition of the U;, as n— co

(2.9) E(U,) — E(X,) = 0.
~ v S > = =.

SY ty 4 “.B ee z¢ 2
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It follows that for n sufficiently large a n EL, +(n —h ) EU; Ev)

(2.10) E((U,+:--+U,)”) < 2a 6n?.

The relation (2.4) is now an immediate consequence of Chebyshev’s
inequality [X,(6.1) according to which

(2.11) P(U, 4-0 + Ugh > den) >2

By choosing -d small enough we can makethe right side as small as we
please, and so (2.4)is true.

Asfor (2.5), note that

(2.12) . P{V, +:--+ V, 4 0} < mP{V, # 0}

by the basic inequality I,(7.6). For arbitrary 6 > 0 we have

P{V, £0} = PIX) > on} = ¥Y f(a)
ajl>dn

s uslel >on IlHIDPaotat ( EX, CX/

(2.13)

The last sum tends to 0 as m—> co. Therefore also theleft side in (2.12)

tends to 0. This statement is stronger than (2.5) and completes the

proof. >

3. THE THEORY OF ‘FAIR’? GAMES

For a further analysis of the implications of the law of large numbers
we shall use the time-honored terminology of gamblers, but our discussion

bears equally on less frivolous applications, and our two basic assumptions
are morerealistic in statistics and physics than in gambling halls. First,
we shall assume that our gambler possesses an unlimited capital so that no
loss can force a termination of the game. (Dropping this assumption leads
to the problem of the gambler’s ruin, which from the very beginning has

intrigued students of probability. It is of importance in Wald’s sequential
analysis and in the theory of stochastic processes, and will be taken up in
chapter XIV.) Second, we shall assume that the gambler does not have
the privilege of optional stopping; the number n of trials must be fixed in

advance independently of the development of the game. (In reality a player

blessed with an unlimited capital can wait for a run of good luck and quit

at an opportune moment. Heis not interested in the probable state at a

prescribed moment, but only in the maximalfluctuationslikely to occurin
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the long run. Light is shed on this problem by the law ofthe iterated
logarithm rather than by the law of large numbers(see VIII,5).)
The random variable X,, will be interpreted as the (positive or negative)

gain at the kth trial of a player who keeps playing the same type of game
of chance. The sum S, = X, +---+X,, is the accumulated gain in n
independenttrials. If the player pays for each trial an entrance fee p’
(not necessarily positive), then nu’ represents the accumulated entrance
fees, and S,, — nu’ the accumulated net gain. The law oflarge numbers
applies when « = E(X,) exists. It says roughly that for sufficiently large
n the difference S,,— ny is likely to be small in comparison to n.
Therefore, if the entrance fee yw’ is smaller than f, then, for large n,
the player is likely to have a positive gain of the order of magnitude
n(u—y'). For the same reason an entrance fee wu’ > w is practically sure
to lead to a loss. In short, the case wu’ < wu is favorable to the player,
while wu’ > uw is unfavorable.
Note that nothing is said about the case uw’ = yw. The only possible

conclusion in this case is that, for sufficiently large, the accumulated
gain or loss S, — nu will with overwhelming probability be. small in
comparison with n. It is not stated whether S,, — ny is likely to be
positive or negative, that is, whether the gameis favorable or unfavorable.
This was overlooked in the classical theory which called u’ = w a “fair”
price and a game with mw’ = uw “fair.” Much harm was donebythe mis-
leading suggestive power of this name. It must be understood that a
“fair” game may bedistinctly unfavorable to the player. >

In applications to gambling and in other simple situations where the
variables X, have a finite second momentthe notion of “‘fairness’’ can be

justified, but when the varianceis infinite, the term “fair game” becomes
an absolute misnomer. Thereis no reasonto believe that the accumulated
net gain S, — nu’ fluctuates around zero. In fact, there exist examples
of “‘fair”’ games° where the probability tends to one that the player will have
sustained a net loss. The law of large numbersasserts that this netloss is
likely to be of smaller order of magnitude than n. However, nothing more
can be asserted. If a, is an arbitrary sequence such that a,/n— 0, it is

possible to constructa “‘fair’? game where the probability tends to one that
at the nth trial the accumulated net loss exceeds a,. Problem 15 contains
an example where the player has a practical assurance that his loss will
exceed n/logn. This gameis “fair,” and the entrance fee is unity. It is
difficult to imagine that a playerwill find it ‘‘fair’’ if he is practically sure
to sustain a steadily increasingloss.

° W. Feller, Note on the law of large numbers and “‘fair”’ games, Ann. Math.Statist.,

vol. 16 (1945), pp. 301-304.
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It would be a mistake to dismiss such phenomenaas pathological or as
being without practical importance. The neglect of random variables
without expectations has done much harm in applications because such
variables play an essential role even in the simplest stochastic processes. _
For example, the simple random walk (or coin-tossing game) discussed in
chapter III serves as prototype for many stochastic processes in physics
and economics. As was shownin chapterIII, the waiting andfirst-passage
times in this random walk do not have expectations, and they are therefore
subject to chance fluctuations that appear paradoxical and do not accord
with our intuition. This faulty intuition as well as many modern applica-
tions of probability theory are under the strong influence of traditional
misconceptions concerning the meaningofthe law of large numbers and of
a popular mystique concerning a so-called law of averages. These are
inherited from the classical theory in which mathematical analysis was
inevitably interwoven with empirical and metaphysical considerations,
and in which something mystical adhered to the various limit theorems.®

Let us return to the “normal”’ situations where not only E(X,) butalso
Var(X,,) exists. In this case the law of large numbers is supplemented by
the central limit theorem, and thelatter tells us that, with a ‘‘fair’’ game,
the long-run net gain S, — nw is likely to be of the order of magnitude

/n andthat for large n there are about equal oddsforthis net gain to be
positive or negative. Thus, when the central limit theorem applies, the
term “‘fair’’ appears justified, but even in this case we deal with a limit
theorem with emphasis on the words “‘long run.”

Forillustration, consider a slot machine where the player has a prob-
ability of 10-® to win 10® — 1 dollars, and the alternative of losing the
entrance fee mu’ = 1. Here we have Bernoulli trials, and the game is
“fair.” In a million trials the player pays as many dollars in entrance fees.
He may hit the jackpot 0, 1,2,... times. We know from the Poisson
approximation to the binomial distribution that, with an accuracy to
several decimal places, the probability of hitting the jackpot exactly k
times is e~1/k!. Thus the player has probability 0.368 . . . to lose a million,
and the same probability of barely recovering his expenses; he has
probability 0.184... to gain exactly one million, etc. Here 10trials are
equivalent to one single trial in a game with the gain distributed according
to a Poisson distribution. Such a game can berealized, for example, by
matching two large decks of cards as described in IV,4. Nobody would
expect the law of large numbers to becomeoperative in practice after three

* The student of modern probability theory may be astonished to hearthat as late as
1934 leading experts could question the possibility of formulating the basic limit

theoremsof probability in purely analytic terms.
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or'four matchings. By the same token, when applied to our slot machine
_.: the law of large numbersis operationally meaningless unless many millions

Z oftrials are involved. Nowallfire, automobile, and similar insuranceis of
J f/ihe described type; the risk involves a huge sum, but the corresponding

probability is very small. Moreover, the insured plays ordinarily only one
trial per year, so that the number 7 oftrials never grows large. For him
the gameis necessarily “‘unfair,”’ and yet it is usually economically advan-
tageous; the law of large numbersis of no relevance to him. Asfor the
company, it plays a large number of games, but because ofthe large
variance the chancefluctuations are pronounced. The premiums must be
fixed so as to preclude a huge loss in any specific year, and hence the
company is concerned with the ruin problem ratherthan the law oflarge
numbers.

*4. THE PETERSBURG GAME

In the classical theory the notion of expectation was not clearly dis-
associated from the definition of probability, and no mathematical
formalism existed to handle it. Random variables with infinite expecta-
tions therefore produced insurmountable difficulties, and even quite recent
discussions appear strange to the student of modern probability. The
importance of variables without expectation has been stressed in the
preceding sections, and it seems appropriate here to give an example for
the analogue of the law of large numbers in the case of such variables.
For that purpose weuse the time-honoredso-called Petersburg paradox.’

' Asingle trial in the Petersburg gameconsists in tossing a true coin until
it falls heads; if this occursat the rth throw the player receives 2” dollars.
In other words, we are dealing with independent random variables assum-
ing the values 21, 2?, 23, ... with corresponding probabilities 2-1, 2-2,
2~*,.... Their expectation is formally defined by }2,f(x,) withz, = 27 and
f(%,) = 27-7, so that each term ofthe series equals 1. Thusthe gain has no
finite expectation, and the law of large numbersis inapplicable. Now the
game becomesless favorable to the player when amendedbytherule that
he receives nothingif no decision is reached in N tosses (thatis, if the coin

falls tails N times in succession). The gain in this less favorable game has
the finite expectation N, and the law of large numbers applies. It follows
that the original gamewill be “favorable’’ to the player even if he pays the
entrance fee N for each trial. This is true for every N, but the larger
N the longer will it take to render a positive gain probable, andsoit is

* This section should be omitted atfirst reading.

7 This paradox was discussed by Daniel Bernoulli (1700-1782). Note that Bernoulli
trials are named after James Bernoulli.
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meaningless to speak of a “‘favorable’”’ game. The classical theory con-
cluded that uw’ = oo isa “‘fair’’ entrance fee, but the modernstudentwill

hardly understand the mysteriousdiscussionsof this “paradox.”
It is perfectly possible to determine entrance fees with which the Peters-

burg game will have all properties of a “fair’’ gamein the classical sense,

except that these entrance fees will depend on the numberoftrials instead
of remaining constant. Variable entrance fees are undesirable in gambling
halls, but there the Petersburg game is impossible anyway because of
limited resources. In the case of a finite expectation u = E(X,) > 0, a
gameis called “‘fair’”’ if for large n the ratio of the accumulated gain S,,
to the accumulated entrance fees e, is likely to be near 1 (thatis, if the

difference S, — e, is likely to be of smaller order of magnitude than e,,).
If E(X,) does not exist, we cannot keep the entrance fees/constant, but -
must determine e, in another way. Weshall say that a game with accum-
ulated entrance fees e,, is fair in the classical senseiffor every « > 0

 

SPn
en

 

(41) 0. P|

 

>0

This is the complete analogue of the law of large numbers where e, == ny’.
Thelatter is interpreted by the physicist to the effect that the average of n
independent measurements is bound to be near mw. In the present instance

. the average of m measurements is bound to be near e,/n. Our limit

_the base 2, thatis, Qhoe w=.

theorem (4.1), when it applies, has a mathematical and operational mean-
ing which does not differ from the law of large numbers.

Weshall now show® that the Petersburg game becomes “‘fair’’ in the

classical sense if we put where Log n is the logarithm to
ane ie nOteag a

Proof.We use the methodoftruncationofsection 2, this time defining
o>

the variables U, and V;, (k = 1,2,...,m) by

U;, = X, V, = 0 if X, <n Logn;

(4.2)
U, = 0, V, = X, if X, >n Logan.

Then

(4.3) P{\e,’S,, — 1|> e} < P{|U, +:°-:-+U,-—e,|> ee,}

because the event on the left cannot occur unless at least one of the events

8 This is a special case of a generalized law of large numbers from which necessary
and sufficient conditionsfor (4.1) can easily be derived; cf. W. Feller, Acta Scientiarum

Litterarum Univ. Szeged, vol. 8 (1937), pp. 191-201.
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30st ont
on the right is realized. Now fe -

(4.4) P{V, +--:4+V, #Oy<<nP{X, > nLogn}.< — 0.

£2 P07 J.meenyo}To verify (4.3) it suffices therefore to prove that “=n 4MX2

(4.5) P{|U, + +--+ U, —nLogn| > en Logn}— 0.

Put uw, = E(U,) and o2 = Var(U,); these quantities depend on n, but
are common to U,,U;,...,U,. If r is the largest integer such that
27 <nLogn, then uw, =r and hence for‘for sufficientlylarge n

Neneaegteens ome coe

2? tg Lop n>/)
(4.6) Logn < uw, < Logn + Log Log n.

Similarly

(4.7) on < EU) =24 22? 4--- 427 < 21 < Qn Log n.

Since the sum U, +---+ U,, has mean nu, and variance no2, we

have by Chebyshev’sinequality

oe

  (4.8) P{|U,+---+U, — nu,| > enu,} < aerine —> 0.
enu, ¢€Logn

Now by(4.6) uw, ~ Log n, and hence (4.8) is equivalent to (4.5). >

5. VARIABLE DISTRIBUTIONS

Up to now we have considered only variables X, having the same
distribution. This situation correspondsto a repetition of the same game
of chance, butit is more interesting to see what happensif the type of game
changes at each step. It is not necessary to think of gambling places; the
statistician who applies statistical tests is engaged in a dignified sort of
gambling, andin his case the distribution of the random variables changes
from occasion to occasion.
To fix ideas we shall imagine that an infinite sequence of probability

distributionsis given so that foreach n we have n mutuallyindependent_
variables X,,..., X, with the prescribed distributions. We assume that

the means and variances exist and put

(5.1) m= EX), op = Var(X). 750%
The sum S, = X, +---+ X, has mean m,, and variance s? given by

(5.2) M,=Myt ot thy, s, =o te +a,
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- [ef. 1X,(2.4) and IX,(5.6)]. In the special case ofidentical distributions we

had m, = nw, s® = no.

The (weak) law of large numbersis said to holdfor the sequence {X,} if
for every « >0

(5.3) p[Pare > ‘| 0.
n

The sequence {X,} is said to obey the central limit theorem iffor every
fixed ax<B

(5.4) Pie < aT
Sn

< 6} + N(B) — N(a).

It is one of the salient features of probability theory that both the law of
large numbers and the central limit theorem hold for a surprisingly large
class of sequences {X,}. In particular, the lawoflarge numbers_halds.
whenever the X, areQrInythat is, whenever there exists a
constant A such that |X,| <A for all_k. More generally, a sufficient
condition forthe law of large numbers to hold is that

(5.5) Sn _. 9,
1.

This is a direct consequence of the Chebyshev inequality, and the proof
given in the opening passage of section 2 applies. Note, however, that the
condition (5.5) is not necessary (cf. problem 14).

Various sufficient conditions for the central limit theorem have been

discovered, but all were superseded by the Lindeberg® theorem according to

which the centrallimit theorem holds wheneverfor every «€ > 0 the truncated
variables U,, definedby

U, =X. — Me if |X, — Ml S Sy,
(5.6)

U, =0 if |X — Ml > Sn,

satisfy the conditions s,— © andetyuecétt WheBYace it2e

1 n

(5.7) aZERO)—> 1,
Spik=1ade

(2x
If the X, are anitabounded, that is, if |X,| <A, then U, =

= X, — ™ forall n which are so large that s, > 2Ae~1. Theleft side in

(5.7) then equals 1. Therefore the Lindeberg theorem implies that every
uniformly bounded sequence {X,} of mutually independent random variables

® J. W. Lindeberg, /oc. cit. (footnote 3).
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obeys the central limit theorem, provided, of course, that s,—> oo. It was
found that the Lindeberg conditions are also necessary for (5.4) to hold.2°
The proof is deferred to the second volume, where weshall also giveesti-
mates for the difference between the twosidesin (5.4).

Whenvariables X, have a commondistribution we found the central
limit theorem to be stronger than the law of large numbers. This is not so
in general, and weshall see that the central limit theorem may apply to
sequences which do not obey the law of large numbers.

Examples. (a) Let 4>0 be fixed, and let X, = +k*, each with
probability 3 (e.g., a coin is tossed, and at the kth throw the stakes are
+k’). Here uw, = 0, of = k*, and

nari

2A+1-
 (5.8) sp = 14244 3% 4-0 pO

The condition (5.5) is satisfied if 4 < 4. Therefore the law of large num-

bers holds if A < $; we proceed to show that it does not hold if 4 > 4.

For k=1, 2, ..., nm we have |X,| = k+ <n’, so that for

n > (2A+1)e~ the truncated variables U, are identical with the X,.
Hence the Lindeberg condition holds, and so

 

 

n
(5.9) Pla < |SaSo <A} > EB) — MEH)

It follows that S,, is likely to be of the order of magnitude n’+#, so that
the law of large numbers cannot apply for 2 > 4. We see that in this
example the centrallimit theorem appliesfor all 1 > 0, but the law oflarge
numbers only if A < }.

(b) Consider two independent sequences of 1000 tossings of a coin (or

emptying two bags of 1000 coins each), and let us examinethe difference
D of the number of heads. Let the tossings of the two sequences be
numbered from 1 to 1000 and from 1001 to 2000, respectively and define

2000 random variables X, as follows: If the kth coin falls tails, then
X, = 0. If it falls heads, we put X, = 1 for k < 1000 and X, = —1,

for k > 1000. Then D = X, + -+- + Xoo. The variables X, have
mean “= -+3 and variance of =}, and hence E(D) =O and

Var(D) = 500. Thus the probability that the difference D will lie within

10W. Feller, Uber den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung

Mathematische Zeitschrift, vol. 40 (1935), pp. 521-559. There also a generalized
central limit theorem is derived which may apply to variables without expectations.
Note that we are here considering only independent variables; for dependent variables

the Lindeberg condition is neither necessary norsufficient.
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the limits +/500a is N(x) — N(—a«), approximately, and D is com-
parable to the deviation Sxo99 — 1000 of the number of heads in 2000
tossings from its expected number 1000.

(c) An application to the theory of inheritance will illustrate the great
variety of conclusions based on the central limit theorem. In V,5, we
studied traits which dependessentially only on one pair of genes(alleles).
Weconceive of other characters (like height) as the cumulative effect of
many pairs of genes. For simplicity, suppose that for each particular pair
of genes there exist three genotypes AA, Aa, or aa. Let 2, x2, and 2,
be the corresponding contributions. The genotype of an individual is a
random event, and the contribution of a particular pair of genes to the
height is a random variable X, assuming the three values 2,, 25, 7, with
certain probabilities. The height is the cumulative effect of many such
random variables X,, X,,...,X,, and since the contribution of each is
snawe mayin first approximation assume that the height is the sum
X,+-+:+X,. It is true that not a// the X, are mutually independent.

But the central limit theorem holds also for large classes of dependent
variables, and, besides,it is plausible that the great majority of the X,, can
be treated as independent. These considerations can be rendered more
precise; here they serve only as indication of how thecentral limit theorem
explains why many biometric characters, like height, exhibit an empirical
distribution close to the normal distribution. This theory permits also the
prediction of properties of inheritance, e.g., the dependence of the mean
height of children on the height of their parents. Such biometric investiga-
tions were initiated by F. Galton and Karl Pearson." >

*6. APPLICATIONS TO COMBINATORIAL
ANALYSIS

Weshall give two examples of applications of the central limit theorem
to problems not directly connected with probability theory. Both relate
to the n! permutations of the n elements a, a.,...,a,, to each of

which we attribute probability 1/n!.

(a) Inversions. In a given permutation the element a, is said to induce
r inversions if it precedes exactly r elements with smaller index (i.e.,
elements which precede a, in the natural order). For example, in
(a3a,4,a;a,a,) the elements a, and a, induce no inversion, a, induces

two, a, none, a, two, and a, four. In (a,a;a,a,a,a,) the element a,

induces & — 1 inversions and there are fifteen inversions in all. The

11 Sir Francis Galton (1822-1911); Karl Pearson (1857-1936).

* This section treats a special topic and may be omitted.
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number X, of inversions induced by a, is a random variable, and
S, = Xi +°':+X, is the total number of inversions. Here X, as-

sumes the values 0,1,...,4—1, each with probability 1/k, and

therefore

k—1
i=:2

(6.1)

 
ee bbe tetk? k-1"Y kK-1

eo k ( 2 ) 12°

The numberofinversions produced by a, does not depend onthe relative
order of a), dj,..., 4,1, andthe X, are therefore mutually independent.
From (6.1) we get

 

2 4 4

and

12 2n?>+ 3n°?>—Sn~ nn?
6.3 s° = — —]1 =S~~“=n.

(6.3) 125 ae ) 72 36

For large n we have es, >n > U,, and hence the variables U, of the
Lindeberg condition are identical with X,. Therefore the central limit
theorem applies, and we conclude that the number N,, ofpermutations

2
. . . . . a Ts:

for which the numberof inversions lies between the limits 7 + é Jn? is,

asymptotically, given by ni{N(a)—N(—a«)}. In particular, for about one-

half of all permutations the number ofinversions lies between the limits

An? + 0.11Vn°.

(b) Cycles. Every permutation can be broken downinto cycles, that is,

groups of elements permuted among themselves. Thus in (a34g@,4;0.4,)

we find that a, and ag are interchanged, and that the remaining four

elements are permuted among themselves; this permutation contains two
cycles. If an elementis in its natural place, it forms a cycle so that the
identity permutation (a, a,...,a,) contains as manycycles as elements.
On the other hand, the cyclical permutations (a2; d3,..., An, G1), (As,

y,.+ +5 An, Ay, Ay), etc., contain a single cycle each. Forthe study ofcycles

it is convenient to describe the pemutation by means.of arrowsindicating
the places occupied by the several elements. For example, 1+3-4-+1
indicates that a, is at the third place, a, at the fourth, and a, at thefirst,

the third step thus completing the cycle. This description continues with
a,, Which is the next element in the natural order. In this notation the
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permutation (a4, ag, Gy, 43, Az, As, Az, Ag) is described by: 1+3-4-1;
2>5—>6—-8—2; 7>+7. In other words, we construct a permutation
(a,,...,4,) by a succession of n decisions. First we choose the place i
to be occupied by a,, next the place to be occupied by a,, and so forth.
At the Ist, 2nd,...,mth step we have n,n —1,...,1 choices and
exactly one among them completes a cycle.

Let X;,, equal 1 if a cycle is completed at the kth step in this build-up;
otherwise let X, = 0. (In the last example X, = X, = X,=1 and
X, = X, = X, = X, = X, = 0.) Clearly X, =1 if, and onlyif, a, is
at the first place. From our construction it follows that P{X, = 1} =

n—k
= —————_ and P{X, = = ———__—_ ink GI an {X,, 0} Taka’ and that the variables X,,

are mutually independent.!* Their means and variances are

1 n—k
6.4 _=——_ , o, = ———_—
(6.4) Mk+d G1k+ LD?
whence

ii 1
(6.5) m,=1+=-+-+:°°-+-~logn

2 3 n
and

2 z n— k

(6.6) ss, = > ———~ log n.

S, = X,+°+-++X,, is the total number of cycles. Jts average is m,3
 

and the number ofpermutations with cycles between logn + a/log n and
logn + bYlogn is given by n\{N(B)—N(«)}, approximately. The refined
formsof the central limit theorem give more precise estimates.

 

| *7, THE STRONG LAW OF LARGE NUMBERS

The (weak) law of large numbers (5.3) asserts that for every particular

sufficiently large n the deviation |S, — m,| is likely to be small in com-
parison to n. It has been pointed out in connection with Bernoulli trials

* Formally, the distribution of X; depends not only on & butalsoon n. It suffices
to reorder the X,, starting from k =n down to k = 1, to have the distribution

depend only on the subscript. [See also example XI, (2.e).] :

3 A great variety of asymptotic estimates in combinatorial analysis were derived by
other methods by V. Gonéarov, Du domaine d’analyse combinatoire, Bulletin de

Académie Sciences URSS, Sér. Math. (in Russian, French summary), vol. 8 (1944),

pp- 3-48. The present methodis simpler but morerestricted in scope; cf. W. Feller,

The fundamental limit theorems in probability, Bull. Amer. Math. Soc., vol. 51 (1945),
pp- 800-832.

* This section treats a special topic and may be omitted.
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(chapter VIII) that this does not imply that |S, — m,|/n remains small
for alllarge n; it can happenthat the law of large numbersapplies but that
|S, — m,|/n continues to fluctuate between finite or infinite limits. The

law of large numbers permits only the conclusion that large values of

|S, — m,|/n occur at infrequent moments.

We say that the sequence X, obeys the strong law of large numbersif to

every pair « >0, 6 >0, there corresponds an N such that there is prob-

ability 1 — 6 or better thatfor every r >0 all r+ 1 inequalities

IS, —m(7.1) ee n=N,N41,...,N+4r
n

will be satisfied.

Wecan interpret (7.1) roughly by saying that with an overwhelming

probability |S, — m,|/n remains small"for all n > N.

The KolmogoroyCriterion. The convergenceof the series

(7.2) > 9%[°
is a sufficient condition for the strong law of large numbers to apply to the

sequence of mutually independent random variables X, with variances o;.

Proof. Let A, be the event that for atleast one n with 2”"'<n < 2”

the inequality (7.1) does not hold. Obviously it suffices to prove that for

all » sufficiently large and all r

P{A,} + PA} to + P{AyA} <4,

that is, that the series  P{A,} converges. Now the event A, implies

that for some n with 2°!<n < 2°

(7.3) IS, — m,| = €° 2”

and by Kolmogorov’s inequality of [X,7

(7.4) P{A,} < 4e* + sv 27.

Hence
oO oo 2’ oo oo 2

(7.5) YP{A} < 48S2S 02 = 4ePDok Y 2<8D
val v=1 k=l k=l 22k k=1 k

which accomplishes the proof. >

14 The general theory introduces a sample space corresponding to the infinite

sequence {X;}. The strong law then states that with probability one IS, — m,\/n

tends to zero. In real variable terminology the strong law asserts convergence almost

everywhere, and the weak law is equivalent to convergence in measure.
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As a typical application we prove the

Theorem. Jf the mutually independent random variables X,, have a

common distribution {f(x,)} and if u = E(X,) exists, then the strong law
of large numbers applies to the sequence {X,}.

This theorem is, of course, stronger than the weak law ofsection1.

The two theoremsare treated independently because of the methodological
interest of the proofs. For a converse cf. problems 17 and 18.

Proof. We again use the method of truncation. Two new sequences
of random variables are introduced by

U, = Xp V, = 0 if |X| <k,
(7.6) ,

U, = 9, Vi. =X if |X,| = k.

The U,, are mutually independent, and we proceed to show that they
satisfy Kolmogorov’s criterion. For o; = Var(U,) we get

(7.7) o SEU) = X zif(z)).
Jaz] <k

Put for abbreviation

(7.8) a= > lal f(a).
v-1<|a,|<v

Then the series } a, converges since E(X,) exists. Moreover, from (7.7),

(7.9) Oy <a, + 2a, + 3a, +--+ + ka,

and

oO o oO 1 k oO 00 1 oO

(7.10) > = < > ie > va, = >a,> 2 < 2>a, < oO.
k=1 k=1 v=1 yv=1 k=v v=1

Thusthe criterion (7.2) holds for {U,}. Now

(7.11) E(U,,) = 4 ~ > x;f(x5)
. xj) <k

so that w,—> m and hence (4,+.+°+*+,,)/n— uw. From the strong

law of large numbers for {U,} we conclude therefore that with probability

1 — 6 orbetter

(7.12)

  

n> U,—b“| <e
k=1

for all n> N provided N is chosen sufficiently large. It remains to

prove that the same assertion holds true when the U, are replaced by
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X,. It suffices obviously to show that N can be chosen so large that with
a probability arbitrarily close to unity the event U, = X,, occurs forall

k > N. This amounts to saying that with probability one only finitely
many amongthe variables V, are different from zero. Bythefirst Borel-

Cantelli lemma of VIII,3 this is the case wheneverthe series >)’ P{V;, + 0}

converges, and we now complete the proofby establishing the convergence
of this series. Obviously

 7.13) P{V, <0} = x)

<

ome

4

See? yp Gms(7.13) Pf } onf(a)< +o +1 tn 42

and hence

(7.14) SP{V, <0} <>>

as asserted.

  

i
m
e

i
m
s

_— = Dy < ©,

8. PROBLEMS FOR SOLUTION

1. Prove that the law of large numbers applies in example (5.a) also when
4 <0. The central limit theorem holds if 4 > —3.

2. Decide whether the law of large numbers and the central limit theorem
hold for the sequences of mutually independent variables X;, with distributions
defined as follows (k > 1):

(a) PIX, = 425 =4;
(b) P{X, = £24} =2-CD), P(X, = Of = 1 — 2-**;

(c) P{X, = +h} =1RVA, PAX, = 0} =1 — I/Vk.

3. Ljapunov’s condition (1901). Show that Lindeberg’s condition is satisfied
if for some 6 > 0

1 n

—sr3 D>, El(Ki?*+*) > 0.
Sm k=1

4. Let the X; be mutually independent random variables such that X,
assumes the 2k +1 values 0, +Z,, +2L,,..., +kL,, each with probability
1/2k +1). Find conditions on ‘the constants Ly which will ensure that the law
of large numbers and/or the central limit theorem holds for {X;}.

5. Do the same problem if X, assumes the values a,, —a,, and 0 with
probabilities p;, p, and 1 — 2py,.

Note: The following seven problems treat the weak law of large numbers for
dependentvariables.

6. In problem 13 of V, 8 let X, =1 if the Ath throw results in red, and
X, = 0 otherwise. Show that the law of large numbers does not apply.

7. Let the {X,} be mutually independent and have a commondistribution
with mean # andfinite variance. If S, = X, ++:- + X,, prove that the law
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of large numbers does not hold for the sequence {S,} but holds for a,S, if
na, > 0. Hint: Calculate Var (S,,...,S,)/n.

8. Let {X,} bea sequence of random variables such that X, may depend on
X,_, and X;,,, but is independentofall other X;. Show that the law of large
numbers holds, provided the X;, have bounded variances.

9. If the joint distribution of (X,,..., X,) is defined for every n so that the
variances are boundedandall covariancesare negative, the law of large numbers
applies.

10. Continuation. Replace the condition Cov (X;, X;) <0 by the assumption
that Cov (X,, X,) >0 uniformly as |j — &| > oo. Prove that the law oflarge
numbers holds.

11. If |S,| < cn and Var (S,) > «n?, then the law of large numbers does not
apply to {X,}.

12. In the Polya urn scheme[example V,(2.c)] let X;, equal 1 or 0 according
to whether the Ath ball drawn is black or red. Then S,, is the numberof black
balls in n drawings. Prove that the law of large numbers does not apply to
{X,}. Hint: Use the preceding problem and problem 30 of IX, 9.

13. The mutually independent random variables X, assume the values
r = 2, 3,4,... with probability p, = c/(r? logr) where c is a constant such
that > p, = 1. Showthat the generalized law oflarge numbers(4.1) holdsif we
put e, =c-n log logn.

14. Let {X,} be a sequence of mutually independent random variables
such that X, = +1 with probability (1—27")/2 and X, = +2” with prob-
ability 2-""*. Prove that both the weak and the strong law of large numbers
apply to {X,}. [Note: This shows that the condition (5.5) is not necessary.]

15. Example of an unfavorable “fair” game, Let the possible values of the
gain at each trial be 0, 2, 27, 23,...; the probability of the gain being 2* is

1
(8.1) Pk ~ DRI)’

and the probability of 0 is pp = 1 — (py +pet+--*). The expected gain is

(8.2) w= Sp, = (1-9) + E-D + G-DY +0 = 1.

Assume that at each trial the player pays a unit amount as entrance fee, so
that after 7 trials his net gain (orloss) is S, — n. Show that for every « > 0
the probability approaches unity that in n trials the player will have sustained a
loss greater than (1—«)n/Log,n, where Logyn denotes the logarithm to the
base 2, In symbols, prove that

(1-—e)n

Log, n
1—» 1
+>(8.3) PIS,-n<- 

Hint: Use the truncation methodof section 4, but replace the bound n Log n

of (4.2) by n/Logsn. Show that the probability that U, =X, for all k <n
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tends to 1 and prove that

 

  

4 P ve — a} 1.(8.4) Ubon + Uy MOY) <; 1

l+e
8.5 1 —- E — .
(8.5) Log, n 2 EU) 2! Log, 1

Fordetails see the paper cited in footnote 5.

16. Let {X,} be a sequence of mutually independent random variables with
a commondistribution. Suppose that the X, do not have finite expectation
and let A be a positive constant. The probability is one that infinitely many
among the events [X,| > An occur.

17. Converse to the strong law of large numbers. Under the assumption of
problem 16 there is probability one that |S,| > An for infinitely many 2.

18. A converse to Kolmogorov’s criterion. If }o%/k® diverges, then there exists
a sequence {X,} of mutually independent random variables with Var {X,} = of
for which the strong law of large numbers does not apply. Hint: Prove first
that the convergence of > P{|X,| > «} is a necessary condition forthe strong
law to apply.

 



CHAPTER XI

Integral-Valued Variables.

Generating Functions

1. GENERALITIES

Among discrete random variables those assuming only the integral

values k = 0,1, 2,... are of special importance. Theirstudy is facilitated

by the powerful method of generating functions which will later be recog-
nized as a special case of the method of characteristic functions on which

the theory of probability depends to a large extent. More generally, the
subject of generating functions belongs to the domain of operational

methods which are widely used in the theory of differential and integral
equations. In the theory of probability generating functions have been

used since DeMoivre and Laplace, but the power and the possibilities of

the method arerarely fully utilized.

Definition. Let a), a, a,,... be a sequence of real numbers. If

(1.1) A(s) = dy + ays + aos? + °°°

converges in someinterval —Sy <5 < 59, then A(s) is called the generating

function of the sequence {a;}.

The variable s itself has no significance. If the sequence {a,} is

bounded, then a comparison with the geometric series shows that (1.1)
convergesat least for |s| < 1.

Examples. If a; = 1 forall j, then A(s) = 1/(1—s). The generating
function of the sequence (0,0,1,1,1,...) is s?/(1—s). The sequence

a;=1/j! has the generating function e*. For fixed n the sequence

a; = (") has the generating function (1+s)”". If X is the number

scored in a throw ofa perfect die, the probability distribution of X has
the generating function (s+s?+s?+54+5°+5°)/6. >

264
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Let X bea random variable assuming the values 0,1,2,.... It will

be convenient to have a notation both for the distribution of X andforits

tails, and we shall write

(1.2) PIX =j}=p, PIX >j} =4e
Then

(1.3) ue = Pura + Paz2 bo°? k>0.

The generatingfunctions of the sequences {p,} and {q,} are

(1.4) P(s) = po + pas + pas? + pos+
(1.5) O(S) = qo + 918 + G08? + Gas? +-°°.

As P(1)=1, the series for P(s) converges absolutely at least for

—l<s<1l. The coefficients of Q(s) are less than unity, and so the

seriesfor Q(s) converges at least in the open interval —1<s <1.

Theorem 1. For —l<s< 1

1 — P(s(1.6) a(s) = FY,
1-—s

Proof. The coefficient of s” in (l—s)- Q(s) equals Gn — Yn-1 = —Pn

when n> 1, and equals q7=p,+p.+°°':=1—p) when n= 0.

Therefore (1—s)- Q(s) = 1 — P(s) as asserted. >

Next we examinethe derivative

(1.7) P'(s) => kp,s*"*.
k=1

The series converges at least for —1<s< 1. For s = the rightside
reduces formally to kp, = E(X). Whenever this expectation exists, the
derivative P’(s) will be continuous in the closed interval —I1 <s <1.

If Skp, diverges, then P’(s)—> 0 as s—1. In this case we say that X
has an infinite expectation and write P’(1) = E(X) = o. (All quantities

being positive, there is no danger in the use of the symbol 0.) Applying
the mean value theorem to the numeratorin (1.6), we see that Q(s) = P’(c)

where o is a point lying between s and 1. Since both functions are
monotonethis implies that P’(s) and Q(s) have the samefinite or infinite

limit which we denote by P’(1) or Q(1). This proves

Theorem 2. The expectation E(X) satisfies the relations

(1.8) E(X) = 3jp; =D ap
j=1 k=0
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or in terms of the generatingfunctions,

(1.9) | E(X) = P(1) = Q(1).

By differentiation of (1.7) and of the relation P’(s) = Q(s) — (1—s)Q’(s)
we find in the same way

(1.10) E(X(X—1)) = Sk(K—-1)p, = P"(1) = 20'(1).

To obtain the variance of X we have to add E(X) — E*%(X) whichleads

us to

Theorem 3. We have

(1.11) Var (X) = P’(1) + P’(1) — P%(1) =

| = 20"(1) + Q(1) — Q*(1).

In the case of an infinite variance P"(s)—> co as s—1.

Therealtions (1.9) and (1.11) frequently provide the simplest means to
calculate E(X) and Var(X).

2. CONVOLUTIONS

If a random variable X assumes only non-negative integral values, then
s* is a well-defined new random variable, and the generating function of

the distribution of X can be written in the compact form E(s*). If X
and Y are independent, so are s* and s*, and hence

E(s*t¥) = E(s*)E(s°).

Weproceedto give a different proof for this importantresult becauseit will
lead us to a useful generalization.

Let X and Y be non-negative independent integral-valued random
variables with probability distributions P{X = 7} =a, and P{Y = j} =
= 6, The event (X =/, Y =k) has probability a,b,. The sum S =.
= X + Y isa new randomvariable, and the event S = r is the union of

the mutually exclusive events

(X = 0, Y =r), (X=1,Y=r-1),...,(% =r, ¥Y =0).

Therefore the distribution c, = P{S = r} is given by

(2.1) C, = ayb, + ayb,_1 + a2D,_2 bert a,b, + a,b.

The operation (2.1), leading from the two sequences {a,} and {b,} toa

new sequence {c,}, occurs so frequently that it is convenient to introduce
a special name and notationforit.
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Definition. Let {a,} and {b,} be any two numerical sequences (not
necessarily probability distributions). The new sequence {c,} defined by

(2.1) is called the convolution’ of {a,,} and {b,} and will be denoted by

(2.2) {c,} = {a,} * {b,}.

Examples. (a) If a,=6,=1 forall k>0, then c, =k+1. If

a,=k, b=1, then c, =142+---+k =k(kK4+1)/2. Finally, if

a) = a, = 4,a,=0 for k > 2, then c, = (6,+5,_,)/2, etc. >

The sequences {a,} and {b,} have generating functions A(s) = Ya,s*
and B(s) = >6,s*. The product A(s)B(s) can be obtained by termwise

multiplication of the powerseries for A(s) and B(s). Collecting terms
with equal powers of s, wefind that the coefficient c, of s” in the expan-
sion of A(s)B(s) is given by (2.1). We have thus the

Theorem. Jf {a,} and {b,} are sequences with generating functions
A(s) and B(s), and {c,} is their convolution, then the generating function

C(s) = des* is the product

(2.3) C(s) = A(s)B(s).

If X and Y¥ are non-negative integral-valued mutually independent random
variables with generatingfunctions A(s) and B(s), then their sum X + Y

has the generatingfunction A(s)B(s).

Let now {a,}, {b;}, {c,3, {d,},... be any sequences. We can form the

convolution {a,} * {b,}, and then the convolution of this new sequence
with {c,}, etc. The generating function of {a,} * {b,} * {c,} * {d,} is
A(s)B(s)C(s)D(s), and this fact shows that the order in which the convolu-

tions are performed is immaterial. For example, {a,} * {b,} * {c,} =
= {c,} * {b,} * {a,}, etc. Thus the convolution is an associative and com-

mutative operation (exactly as the summation of random variables).

In the study of sums of independent random variables X,, the special
case where the X, have a commondistribution is of particular interest.
If {a,;} is the common probability distribution of the X,, then the distri-
bution of S, = X, +++: + X,, will be denoted by {a,}"*. Thus

(2.4) {a;}?* = {a;} * {aj}, {a;}°* = {a;}?* * {a,},...

and generally

(2.5) {a;}"* = {a,}'"-* * {a;}.

1 Somewriters prefer the German wordfaltung. The French equivalent is composition.
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In words, {a;}"* is the sequence of numbers whose generating function is
A”(s). In particular, {a;}'* is the same as {a,}, and {a,}* is defined as
the sequence whose generatingfunction is A°(s) = 1, that is, the sequence
(1, 0, 0, 0, . . .).

Examples. (5) Binomialdistribution. The generating function of the

binomial distribution with terms b(k; n, p) = (7)p'q”—is

n n _

(2.6) & (7)rsa = (atpsy
n=0\K

The fact that this generating function is the nth power of q + ps shows
that {b(k; n, p)} is the distribution of asum S, = X,+-°--+X, of n
independent random variables with the common generating function
q + ps; each variable X; assumesthe value 0 with probability g and the
value | with probability p. Thus

(2.7) {b(k; n, p)} = {b(k; 1, p)}"*.

The representation S, = X,+-+::+X, has already been used [e.g.,
in examples IX,(3.a) and IX, (5.a)]. The preceding argument may be
reversed to obtain a new derivation of the binomial distribution. The
mutliplicative property (¢+ps)"(q+ps)” = (q+ps)"*" showsalso that

(2.8) {b(k; m, p)} * {b(k; n, p)} = {b(k; m+n,p)}

whichis the same as VI,(10.4). Differentiation of (¢+ps)” leads also to a
simple proof that E(S,) = mp and Var (S,) = npq.

(c) Poisson distribution. The generating function of the distribution
Pk; A) = e-4A*/k! is

© k

(2.9) de? er =eAtss
k=0 !

It follows that

(2.10) (p(k; A)} * (p(k; m)} = {p(k; A+p)},

which is the same as VI,(10.5). By differentiation wefind again that both
mean and variance of the Poisson distribution equal A [cf. example
IX,(4.c)].

(d) Geometric and negative binomial distributions. Let X be a random
variable with the geometric distribution

(2.11) P{X = k} = q"p, k=0,1,2,...

where p and q are positive constants with p + q = 1. The corresponding
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generatingfunction is

(2.12) pd (qs)§ = 2.
k=0 1 — qs
 

Using the results ofsection 1 wefindeasily E(X) = q/p and Var(X) =q/p?,
in agreementwith the findings in example IX,(3.c).

In a sequence of Bernoulli trials the probability that the first success
occurs after exactly k failures [i.e., at the (k+1)sttrial] is g*p, and so X
may be interpreted as the waiting timefor thefirst success. Strictly speak-
ing, such an interpretation refers to an infinite sample space, and the
advantage of the formal definition (2.11) and the terminology of random
variables is that we need not worry about the structure of the original
sample space. The sameis true of the waiting time for the rth success. -
If X, denotes the numberoffailures following the (k—1)st and preceding
the kth success, then S, = X, + X,, + -:- + X, is the total number of
failures preceding the rth success (and S, + r is the numberoftrials up to
and including the rth success). The notion of Bernoulli trials requires that
the X, should be mutually independent with the samedistribution (2.11),

and we can define the X, by this property. Then S, has the generating
function

(2.13) (; # =): 

and the binomial expansion II,(8.7) shows at once that the coefficient of
s* equals

214) fk7) = (—rk pay k=0,1,2,....

It follows that P{S, = k} = f(k;r, p), in agreementwith the distribution

for the numberof failures preceding the rth success derived in VI,8. We

can restate this result by saying that the distribution {f(k;1r, p)} is the
r-fold convolution of the geometric distribution with itself, in symbols

(2.15) {f(k; 1, p)} = {q*p}"*.

So far we have considered r as an integer, but it will be recalled from
VL8, that {f/(k; r, p)} defines the negative binomialdistribution also when

r > is not an integer. The generating functionisstill defined by (2.13)
and wesee that for arbitrary r > 0 the mean andvariance of the negative

binomial distribution are rq/p and rq/p* and that

(2.16) UF(K3 ris p)} *(KS re P)} = (fktre P)}-
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(e) Cycles. In X,(6.6) we studied the numberS,, of cycles in a random permutation of
n elements. It was shownthatit is possible to represent this random variable as the
sum S, = X,+-:--+X, of an independent variables such that X, assumes the
two values 1 and 0 with probabilities (n—k+1)-! and (n—k)(n—k+1)-, respectively.

It follows immediately that the generating function of S, is given by the product

(2.17)  
n—-l+s n—2+5 145 So p>?

n n—1 2 1 nm .

The coefficients of this polynomial determine the probability distribution of S,, but
an explicit representation requires knowledge ofthe Stirling numbers. We have here an
example of a very usual situation, namely that the generating function is simpler than
the probability distributionitself. It is therefore fortunate that much information can

be extracted from the generating function. >

3. EQUALIZATIONS AND WAITING TIMES IN
BERNOULLI TRIALS

Wepause hereto illustrate the power andtheflexibility of the method
of generating functions by a discussion of a few important problemsof

methodological interest. The results play a prominentrole in the theory of
random walks and may be considered the ‘prototypes of related results in

diffusion theory. They will be derived by different methods in chapter
XIV (see, in particular, sections 4 and 9). In the special case p = 4 the
results were derived in a different form by combinatorial methods in
chapter III]. A comparison of the methods should prove illuminating.?

In the following we consider Bernoulli trials with probability p for
success. We put X, = +1 ifthe kth trial results in success, and X, = —1

otherwise. In other words, the object of our investigation is a sequence of
mutually independent random variables assuming the values +1 and —1,
with probabilities p and g, respectively. This description is simplest
and most natural, but since it refers to an unending sequenceoftrials it

leads formally to nondenumerable sample spaces. Actually we shall only
calculate certain probabilities involving a specified finite numberoftrials,
and so there arise no problems of principle. We could speak of a fixed

number N of trials and let N—  o, but this would be unnecessary
pedantry and harmful to probabilistic intuition.

Asusual we put

(3.1) S.=X.¢°''+X, S,=0.

2 It should be clear from this account that the presentsection is inserted for purposes
of illustration as well as for its intrinsic interest, but that it is not a prerequisite for the

remainderof this book.
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In the time-honored gambling terminology Peter and Paulare playing for
unit stakes and S,, represents Peter’s accumulated gain at the conclusion

of the nth trial. In random walk terminology S,, is the position of a
‘‘particle’’ which at regular timeintervals takes a unit step to the rightor to
the left. The random walk is unsymmetric if p ¥ 4.

(a) Waiting Time for a Gain. The event

(3.2) S$, <0,...,S,_, <0, S,=1

signifies in gambling terminology thatthe thtrial is the first to render
Peter’s accumulated gain positive. In random walk terminology the first
visit to +1 takes place at the mth step; a more usual description employs

the language of physical diffusion theory and calls (3.2) a first passage
through 1. We seek the probability 4, of this event. More precisely,
we seek their generating function

(3.3) D(s) = 2ns”

where we put ¢, = 0 for convenience.? By definition ¢, = p. If (3.2)
holds forsome n > 1 then S, = —1 andthereexists a smallest subscript
y <n such that S,=0. The outcomeofthefirst 7 trials may now be
described in gambling terminology as follows. (1) At thefirst trial Peter
loses a unit amount. (2) It takes exactly » — 1 further trials for Peter to

reestablish the initial situation. (3) It takes exactly n — » furthertrials
for Peter to attain a positive net gain. These three events depend on non-
overlapping blocks of trials and are therefore mutually independent.
From the definitionit is clear that the events (2) and (3) have probabilities
dy. and ¢,_,, respectively, and so the probability of the simultaneous

realization ofall three events is given by the product ¢¢,_1¢,_,. Now the

event (3.2) occurs if, and only if, the events (1)-(3) occur for some » <n.

Summingoverall possible » we get

(3.4) Pn = q($ibn—-2+ bobn—st ute +no):

It must be rememberedthatthis relation is valid only for n > 1 and that
éi =p and ¢,=0. Multiplying (3.4) by s” and summing over n =
= 2,3,... we get therefore on the left ®(s) — ps. The quantity within
the parenthesis is the (n—1)st term of the convolution {d,} + {¢,}, and
 

* As will be seen later on, the generating function ® can be obtained directly by a

simple probabilistic argument. The following less elegant derivation is given becauseit
Provides a good exercise in handling convolution equations, which also appear in
various contexts outside probability theory. (See, for example, problem 6.)
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so the right side leads to qs- *(s) by the theorem ofsection 2. Wesee

thus that the generatingfunction satisfies the quadratic equation

(3.5) P(s) — ps = qsD%s).

Of the two roots one is unbounded near s = 0, and our generating

function is given by the unique bounded solution

1 — V1 = 4pqs"(3.6) O(s) = 245

where ./ denotes the positive root. The binomial expansionII,(8.7)
enables us to write down the coefficients in the form

(-1*" (3 ke3.7) bur =S—(,)Ara dn = 0.
2q \k

Weare thus in the possession of explicit expressions for the required
probabilities ¢,, but they are of secondary interest; it is more instructive

to extract the relevant information directly from the generating function.
First we note that the sum >¢,, is given by

(3.8) (1) = |p—4|

2q
and so

pla Sif p<@q

In other words: If p <q theprobability that the sums S,, remain negative

forever equals (q—p)/q. If p>4 this probability is zero so that with
probability one S, will sooner or later become positive. How long will

it take? An easy calculation shows that ®’(1) = (p—q)" if p >q and
©’(1) = o if p=q =}. We conclude that when p = 3 the number of
trials preceding thefirst positive sum S,, has infinite expectation.

It is worthwhile to restate this noteworthy result in gambling termin-

ology. Itimplies that in an ideal coin-tossing gamePeteris theoretically sure
soonerorlater to attain a positive net gain, but the expected numberof

trials required to achieve this goalis infinite. A player with finite capital
is therefore by no meanscertain of ever reaching a positive net gain. We
shall return to this question in connection with the ruin problem in chapter
XIV.

-, The derivation of the quadratic equation (3.5) for ® may be described more

‘contisely in probabilistic terms as follows. Denote by N thefirst subscript for which

Sn > 0. Then N is a random variablein theslightly generalized sense that it is not

defined in the event that S, <0 for all n. (In the terminology of chapter XIII we
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should call N a defective variable.) The generating function © can now bewritten in
the form ®(s) = EGN), If XK, = —1 wehave N=1+N,+ Nz, where N, is the
numberoftrials required to increase the partial sums S, from —1 to 0, and N,is the

number of subsequent trials required for the increase from 0 to 1. These variables
are independent and have the samedistribution as N. For the conditional expectation
of sN weget therefore

E(sN | X,=—1) = E(sttNitNz | X,=—1) = s®%s),

E(sN |X, = 1) =s.
But

(3.10) E(sN) = pE(sN | X, = 1) + qEGN| X. = —1),

which reduces to the quadratic equation (3.5) for D(s) = Ecs§).

(b) Returns to Equilibrium. An equalization of the accumulated

numbersof successes and failures occurs at the kth trial if S, = 0. Bor-

rowing a term from diffusion theory, we describe this event as a return to

equilibrium. The numberoftrials is necessarily even, and the probability

of a return at the 2nthtrial is given by

2n nyn n —% n(3.11) tan = (°")pta® = (—"("*) apa"
n n

From the binomial expansion JJ,(8.7) we get for the generating function

— 1
(3.12) U(s) = Yu,8°" = —————..

mo J1i— Apqs”

Note that {u,} is not a probability distribution because returns to
equilibrium can occurrepeatedly.

(c) The First Return to Equilibrium occurs at the 2vth trial if S,, = 0

but S, #0 for k = 1,...,2n —1. Denote the probability of this event
by fen. (Of course, fo,1 = 0.) We consider separately the two subevents
with X;=1 and X, = —1 and denote their probabilities by f{, and
Jo, From what wassaid under(a)it is clear that ff, = ¢¢en-1 because the
first 2n — 2 partial sums X, + X,+::-+ X, are <0, but the nextis

positive. Using (3.6) we get therefore

1 — V1—4pqs*5 .

For reasons of symmetry the generating function of {f*} is obtained by
interchanging p and q. It follows that F+ = F~ and sofinally*

(3.13) F-(s) = 3 fags= qs(s) =

(3.14) FQ) = fas" = 1 — JT =pgs

4 An alternative derivation will be found in example XIII,(4.4).
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Interesting conclusions can be drawn from this without using an explicit
form for the coefficients f,,. Clearly F(1) equals the probability that a
return to equilibrium occurs sooner or later. Now F(1)=1-—|p-—gq|
and so |p — q| is the probability that no return to equilibrium ever occurs.
that is, S, 40 for all k >0. Only in the symmetric case p = } is a
return to equilibrium certain. In this case {/,,} represents the probability

distribution for the waiting timefor thefirst return. This waiting time has
infinite expectation.

In the symmetric case p = $ we have

(3.15) u(s) = FO |
1-—s*

Since both U and F are powerseries in s* this relation differs only
notationally from (1.6), and by theorem 1.1

(3.16) Uon = fonte + fonta tert.

In words, when p = 4 the probability that S,, = 0 equals the probability
that the 2n sums S,,...,Se, are different from zero. This result was

derived by different methodsin III,3 and played a basic role in the analysis
of the paradoxical nature of the fluctuations in coin-tossing games.

(d) First Passages and Later Returns. We say that a first passage
through r > 0 occurs at the nth trialif S, =r but S, <r forall k <n.
The probability for this will be denoted by ¢‘”. The trials following the
first passage through » >0 form a probabilistic replica of the whole
sequence and hence the numberoftrials following the first passage through

y up to and including the first passage through » + 1 has the samedis-
tribution {¢,} as the numberoftrials up to the first passage through 1.

When p <q the ¢, do not add to unity, butit still makes sense to say
that the waiting time for the first passage is a random variable with the
(possibly defective) distribution {¢,}. The waiting times between the

successive first passages are mutually independent, andsothetotal waiting
timefor thefirst passage through r is the sum of r independentvariables

with the common distribution {¢,}. The generating function of the first-
passage probabilities $7 is therefore given by the rth power of ©. [Begin-
ners shouldverify this statementdirectly by deriving for #®) a convolution

equation similar to (2.4) and proceeding by induction.]
A similar argumentholds for the probability f‘” that the rth return to

equilibrium occurs at the nth trial. The generating function of {f\"} is

given by the rth power F". Comparing (3.6) and (3.14) one sees immediately
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that

(3.17) fir= (24)bree.

In the special case p = gq = this result is contained in theorem 4 of III,7.

From the generating functionsit is easy to derive approximations and limit theorems,

but this depends on the use of Laplace transforms which will be treated only in
chapter XIII of volume 2. There is no systematic way to derive an explicit expression
for fi” from the generating function F’, but a good guess is easily verified from the

form of the generating function. From theorem 4 ofIII, 7 one can guess that

(3.18) iay")26" .
2n—r\ n

To verify this conjecture it suffices to note that the identity

Fr(s) = 2F*-(s) — 4pqs*F"-*(s)

implies the recursion relation

(3.19) me = 2) — Angfn?2n

whichisalso satisfied by the right side in (3.18). The truth of (3.18) therefore follows
by induction. For an equivalent expression of a different outer appearance see problem
13 of XIV,9.

4. PARTIAL FRACTION EXPANSIONS

Given a generating function P(s) = }p,s* the coefficients p, can be
found by differentiations from the obvious formula p, = P)(O)/k!.
In practice it may be impossible to obtain explicit expressions and, anyhow,
such expressions are frequently so complicated that reasonable approxi-
mations are preferable. The most common method for obtaining such
approximationsis based onpartial fraction expansions. It is known from

the theory of complex variables that a large class of functions admits of
such expansions, but we shall limit our exposition to the simple case of

rationalfunctions.
Suppose then that the generating function is of the form

_ Us)(4.1) P(s) = 705)

where U and V are polynomials without commonroots. Forsimplicity
let us first assume that the degree of U is lower than the degree of V, say

m. Moreover, suppose that the equation V(s)=0 has m distinct (real

or imaginary) roots sy, 53,...,5,_- Then

(4.2) V(s) = (s—s,)(S—Se) ° + * (S—Sm)s
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and it is known from algebra that P(s) can be decomposedinto partial
fractions

(4.3) P(s) = —A- 4 Pe es 4 Pm .
S;—-S Sg—S Sm — $

 

m

where 4, Pa,-++, Pm are constants. To find p, multiply (4.3) by
5; — 5; aS s—>s, the product (s,;—s)P(s) tends to p,. On the other

hand, from (4.1) and (4.2) we get

—U(s)
(s—S2)(S—S3) +++ (S—Spm)

As s—>s, the numerator tends to —U(s,) and the denominator to

(s;—S2)(Sy—53)*** (Sj —Sm), Which is the same as V'(s,). Thus p, =
= —U(s,)/V'(s,). The same argumentapplies to all roots, so that for
k<m

 (4.4) (s;—s)P(s) =

_ — U(s;)
(4.5) Px V"(s,) .

Given the p,, we can easily derive an exact expression for the coefficient
of s” in P(s). Write

  (4.6)

For |s| < |s,| we expand the last fraction into a geometric series

2 3

w—=1454 (=)+ (=)+
1 — s/s, Sy Sy Sy

Introducing these expressions into (4.3), we find for the coefficient p,
of s”

(4.8) Pratt+
spt spt}

(4.7)  

  
 

Thus, to get p,, we have first to find the roots s,,...,5,, of the de-
nominator and then to determine thecoefficients p,,..., p» from (4.5).

In (4.8) we have an exact expression for the probability p,. The labor
involved in calculating all m roots is usually prohibitive, and therefore
formula (4.8) is primarily of theoretical interest. Fortunately a single
term in (4.8) almost always provides a satisfactory approximation. In
fact, suppose that s, is a root which is smaller in absolute value thanall

other roots. Then the first denominator in (4.8) is smallest. Clearly, as
n increases, the proportionate contributions of the other terms decrease

 



XI.4] PARTIAL FRACTION EXPANSIONS 277

and thefirst term preponderates. In other words,if s, isa rootof V(s) =0
which is smaller in absolute value than all other roots, then, as n—> oO,

 

p
(4.9). Pn™ ma

Sy

(the sign ~ indicating that the ratio of the twosides tends to 1). Usually
this formula provides surprisingly good approximationseven for relatively
small values of n. The main advantage of (4.9) lies in the fact that it
requires the computation of only one root of an algebraic equation.

It is easy to removethe restrictions under which we have derived the
asymptotic formula (4.9). To begin with, the degree of the numeratorin
(4.1) may exceed the degree m of the denominator. Let U(s) be of
degree m +r (r > 0); adivision reduces P(s) to a polynomial of degree
r plus

a

fraction U,(s)/V(s) in which U,(s) is a polynomial of a degree
lower than m. The polynomial affects only the first r + 1 terms of the
distribution {p,,}, and U,(s)/V(s) can be expandedinto partial fractions as
explained above. Thus (4.9) remains true. Secondly, therestriction that
V(s) should have only simple roots is unnecessary. It is known from
algebra that every rational function admits of an expansion into partial
fractions. If s, is a double root of V(s), then the partial fraction expan-
sion (4.3) will contain an additional term of the form a/(s—s,)?, and this
will contribute a term of the form a(n+1)s,‘"*®) to the exact expression
(4.8) for p,. However, this does notaffect the asymptotic expansion (4.9),
provided only that s, is a simple root. We note this result for future
reference as a

Theorem. If P(s) is a rational function with a simple root s, of the
denominator which is smaller in absolute value than all other roots, then
the coefficient p, of s” is given asymptotically by p,~ prs7("t), where
pi is defined in (4.5).

A similar asymptotic expansion exists also in the case where s, is a
multiple root. (See problem 25.)

Examples.> (a) Let a, be the probability that m Bernoulli trials result
in an even number of successes. This event occurs if an initial failure at
the first trial is followed by an even numberof successesorif aninitial
success is followed by an odd number. Therefore for 2 > 1

(4.10) an = Wan_-1 + pUl—a,_1), ay = 1.

* A goodillustration for the use of partial fractions for numerical approximationsis
provided by the theory ofsuccess runs in XIII, 7. The explicit expressions for the ruin
probabilities in XIV, 5 and for the transition probabilities in XVI, 1 also depend on the
method ofpartial fractions.
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Multiplying by s” and adding over n = 1, 2,... we get for the generating
function the relation

A(s) — 1 = qsA(s) + ps(l—s)7! — psA(s)

or

2A(s) = [1—s]? + [1-—(g—p)s}.

Expanding into geometric series we get finally a, explicitly in the form

(4.11) 2a, = 1+ (q—p)",

which is in every way preferable to the obvious answer

a, = b(0;n, p) + b2;n, p) +-°-.

(b) Let g, be the probability that in n tosses of an ideal coin no run
of three consecutive heads appears. (Note that {g,} is not a probability
distribution; if p, is the probability that the first run of three consecutive
heads ends at the nth trial, then {p,} is a probability distribution, and

Gn ‘Tepresents its “tails,” 4, = Pnsi + Pare +°°*-)
Wecaneasily show that q, satisfies the recurrence formula

(4.12) In = 39n—1 + 44n-2 + 84n~2s n> 3.

In fact, the event that trials produce no sequence HHH can occur only
when the trials begin with 7, HT, or HHT. The probabilities that the
following trials lead to no run HHH are qy_1,4n-2, and qy_3, respec-
tively, and therightside of (4.12) therefore contains the probabilities of the

three mutually exclusive ways in which the event “no run HHH” can

occur.
Evidently q = 4, =42= 1, and hence the g, can be calculated

recursively from (4.12). To obtain the generating function Q(s) = }q,5s”
we multiply both sides by s” and add over n > 3. Theresultis

O(s) —1 —s — 8? = 3s{Q(s)—1—s} + 35°Q(s)—1} + $s°Q(s)

or

2s? + 4s + 8
4.13 s)=—7?

( ) Xs) 8 —4s — 2s? — 5°

The denominator has the root s,; = 1.0873778 ... and two complex roots.

For |s| << s, we have [4s + 2s? + s?| < 45, + 25? + s} = 8, and the

same inequality holds also when |s| = 5s, unless s = s,. Hence the other

two roots exceed s, in absolute value. Thus, from (4.9)

1.2368404.14 woes,(4-14) 4m 10873778)"
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where the numerator equals (2s7+45,+8)/(4+45,+3s?). This is a
remarkably good approximation even for small values of n. It approxi-
mates q3 = 0.875 by 0.8847 and q, = 0.8125 by 0.81360. The percentage
error decreases steadily, and q,. = 0.41626... is given correct to five
decimal places. >

5. BIVARIATE GENERATING FUNCTIONS

Fora pair of integral-valued random variables X, Y with a joint dis-
tribution of the form

(5.1) P{X =7,Y=k} =p, jk =0,1,...

we define a generating function depending on two variables

(5.2) P(S1, S2) = > Dsp5]S2-
i,k

Such generating functions will be called bivariate for short.
The considerations of the first two sections apply without essential

modifications, andit will suffice to point out three properties evident from
(5.2):

(a) The generatingfunction of the marginaldistributions P{X = j} and
P{Y = k} are A(s) = P(s,1) and Bis) = P(l,s).

(b) The generatingfunction of X + Y is P(s, 5).
(c) The variables X and Y are independentif, andonly if, P(s,, 82) =

= A(s,)B(sz) for all sy, So.

Examples. (a) Bivariate Poisson distribution. It is obvious that

(5.3) P(sy, 52) = eHPHasrtasetP, -g > 0b > 0

has a power-series expansion with positive coefficients adding up to unity.
Accordingly P(s,,5,) represents the generating function of a bivariate

probability distribution. The marginal distributions are Poisson dis-
tributions with mean a,+ 6 and a,+5, respectively, but the sum

X + Y has the generating function e~%—%:->+(a:+a2)s+bs? and is not a
Poisson variable. (It is a compound Poisson distribution; see XII, 2.)

(6) Multinomial distributions. Consider a sequence of n independent
trials, each of which resultsin E, E,, or E, with respective probabilities
Po Pi» Po» If X,; is the numberof occurrences of E;, then (X,, X,) has

a trinomial distribution with generating function (pp+pi5,+pe52)”- >
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*6. THE CONTINUITY THEOREM

We knowfrom chapter VI that the Poisson distribution {e-4A*/k!} is
the limiting form of the binomial distribution with the probability P
depending on nv in such a way that np—> A as n—> co. Then

b(k; n, p) > e77A*/k}.

The generating function of {b(k;n, p)} is (q+ps)" = {1 — A(1—s)/n}*.
Taking logarithms, wesee directly that this generating function tends to
e~*(1-s), which is the generating function of the Poisson distribution. We
shall show thatthis situation prevails in general; a sequence of probability
distributions converges to a limiting distribution if and only if the cor-
responding generating functions converge. Unfortunately, this theorem
is of limited applicability, since the mostinteresting limiting forms ofdis-
crete distributions are continuousdistributions (for example, the normal
distribution appears as a limiting form of the binomial distribution).

Continuity Theorem. Suppose that for every fixed n the sequence
Qo,n> 41,29 42,n)+++ IS a probability distribution, thatis,

(6.1) ne Ya, =1.
k=0

In order that a limit

(6.2) a, = lim a,»

existsfor every k > 0 it is necessary and sufficient that the limit

(6.3) A(s) =lim Ya,,,s*
n+ oo k=0

existsfor each s in the open interval 0 < s < 1. In this case automatically

(6.4) A(s) = ¥a,s*.

It is obvious that a, > 0 and that Sa, <1. Note, however, that the
sum maybestrictly less than 1. For example, if a,,, = f,,, then a, = 0
for all k.

* The continuity theorem will be used only in the derivation of the general form for

infinitely divisible distributions in XII, 2 and for the total progeny in branching processes

in XII, 5.
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Proof.° Let A,(s) stand for the series on the right side in (6.3).
(i) Assume (6.2) and define A(s) by (6.4). Since |a,, —a,| <1 we

have for O<s <1

s?

 (6.5) |A,(s) — A(s)| <3lan — al+

If we choose r so large that s* < «(1—s), the right side will be less than
2¢ for all n sufficiently large. Thus the left side can be made as small as
we please, and so (6.3) is true.

(ii) Assume (6.3). Clearly A(s) depends monotonically on s, and so
A(O) exists as the limit of A(s) as s—0. Now

(6.6) I,n SAS) < Mn + 5/(1—S).

It follows that as n> oo all limit values of a), lie between A(O) and
A(s) — s/(1—s). Letting s—+0O we see that a) ,—> A(0), and so (6.2)
holds when k = 0.

This argument extends successively to all k. Indeed, for 0<s <1

An(8) = don | A(s) = AO)
5 5 "

(6.7)

Onthe left we have a power series with nonnegative coefficients, and (6.7)
is in every way analogousto (6.3). Arguing as before wefindfirst that
the derivative A’(0) exists, and then that a,,— A(0). By induction we
get (6.2) for all k. >

Examples. (a) The negative binomial distribution. We saw in example
(2.d) that the generating function of the distribution {Stk; r, py} is
p'(1—qs)". Now let 4 befixed, and let p> 1, g—>0, and r— © so
that q~A/r. Then

(6.8) (;7.) ~ (a):
Passing to logarithms, we see that the right side tends to e~++48, which
is the generating function of the Poisson distribution {e-*A*/k!}. Hence
if r— co and rq— A, then

k

(6.9). (kin, perk.

* The theorem is a special case of the continuity theorem for Laplace-Stieltjes
transforms, and the proof follows the general pattern. In theliterature the continuity
theorem for generating functions is usually stated and proved under unnecessary
restrictions.
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(6) Bernoulli trials with variableprobabilities.” Consider n independent
trials such that the xth trial results in success with probability p, and in
failure with probability g, = 1—p,. The number S, of successes can
be written as the sum S, = X,+-:-+X, of n mutually independent
random variables X, with the distributions P{X, = 0} = q,,

P{X, = 1} = p,.

The generating function of X, is q, + p,s, and hence the generating
function of S,,

(6.10) P(s) = (Qi +Pi8)(Got+Pos) *** (Qn +p,5)-

As an application of this scheme let us assume that each house in a
city has a small probability p, of burning on a given day. The sum
Pi ++++ +p, isthe expected numberoffires inthe city, n being the num-
ber of houses. We have seen in chapter VI that ifall p, are equal andif the
housesare stochastically independent, then the numberoffires is a random
variable whosedistribution is near the Poisson distribution. We show now
that this conclusion remains valid also under the morerealistic assump-
tion that the probabilities p, are not equal. This result should increase
our confidence in the Poisson distribution as an adequate description of
phenomena which are the cumulative effect of many improbable events
(“successes’’). Accidents and telephonecalls are typical examples.

Weuse the now familiar model of an increasing number n ofvariables
where the probabilities p, depend on n in such a waythatthelargest
p, tends to zero, but the sum p, + pz +++: +p, =A remains constant.

Then from (6.10)

(6.11) log P(s) = > log {1 — p,(1—s)}.
k=1

Since p,— 0, we can use the fact that log(1—x) = —a — 6x, where
6—+0 as x—0. It follows that

(612) log Ps) = ~-930,+4.p»)} > -a0—9),
k=1

so that P(s) tends to the generating function of the Poisson distribution.
Hence, S,, has in the limit a Poisson distribution. We conclude that for
large n and moderate values of A = p, + pp +--+ + p, the distribution
of S,, can be approximated by a Poisson distribution. >

* See also examples IX,(1.e) and IX,(5.8).
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7. PROBLEMS FOR SOLUTION

1. Let X be a random variable with generating function P(s). Find the
generating functions of X +1 and 2X.

2. Find the generating functions of (a) P{X < n}, (b) P{X < 7}, (c) P{X > n},
(d) P{X > 7 + 1}, (e) P{X = 2n}.

3. In a sequence of Bernoulli trials let u, be the probability that the com-
bination SF occursforthefirst time at trials number n — 1 and vn. Find the
generating function, mean, and variance.

4. Discuss which of the formulas of II, 12, represent convolutions and where
generating functions have been used.

5. Let a, be the number of ways in which the score n can be obtained by
throwing a die any numberof times. Show that the generating function of
{an} is {1 —s—s?—53 —s4 —55 —5}-1 — 1,

6. Let a, be the number of ways in which a convex polygon Py)P,--- Pr,
with n+ 1 sides can be partitioned into triangles by drawing n — 2 (non-
intersecting) diagonals. Put a, = 1. Show that for n > 2

An = AAn_1 + A.Qyn_9g + °° * + An_1Q4.

Find the generating function and an explicit expression for ap.
Hint: Assume that one of the diagonals passesthrough P, and let k be the

smallest subscript such that P)P; appears among the diagonals.

Note: Problems 7-11 refer to section 3. The generating functions ®, U, and
F refer respectively to first passages through 1, returns to equilibrium, andfirst
returns; see (3.6), (3.12), and (3.14). No calculations are necessary.

7. (a) The probability that a return to equilibrium occursat or before the nth
trial is given by (1 —s)1F(s).

(b) Conclude: The generating function for the probability that S,; #0

for j =1,..., 2” is given by = = (1+5)U(). .

(c) Showthat this is equivalent to the proposition following (3.16).
8. The generating function for the probabilities that no return to equilibrium

occursafter the nth trial (exclusive) is given by (1—s)~1U(s) |p — q| .

9. (a) The generating function for P{S, =r} (with r > fixed) is given by
®"(s)U(s).

(6) When p = $this is also the generating function for the probability that
S, =r for exactly one subscript k < n.

10. (a) Find the generating function for the probabilities that the event
S, = r will occur exactly & times (r > 0 and k > 0 fixed).

(b) Do the same problem with “exactly” replaced by “at most.”
11. (a) Find the generating function for the probability that the first return to

equilibrium following a first passage through r > 0 occurs at trial numberr.
(b) Do the same problem with the words “thefirst’? omitted.

® The problem appears in G. Polya, Mathematics ofplausible reasoning, Princeton

(Princeton University Press), 1954, p. 102.
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12. In thewaiting time example IX, (3.d) find the generating function of S,
(for r fixed). Verify formula IX, (3.3) for the mean and calculate the variance.

13. Continuation. The following is an alternative method for deriving the
same result. Let p,(r) = P{S, =n}. Prove the recursion formula

r—1 N-r+1
(7.1) Pau) = rTPal) +HyPal—D.

Derive the generating function directly from (7.1).

14. Solve the two preceding problems for r preassigned elements (instead
of r arbitrary ones).

15.9 Let the sequence of Bernoulli trials up to the first failure be called a
turn. Find the generating function and the probabiity distribution of the
accumulated numbers S, of successes in r turns.

16. Continuation. (a) Let R be the number of successive turns up to the
vth success (that is, the »th success occurs during the Rth turn). Find E(R)
and Var (R). Prove that

P{R =r} =pq (
r+v—2

y—-1 |]

(b)-Consider two sequences of Bernoulli trials with probabilities p,, 9,,
and po, 2, respectively. Find the probability that the same numberofturnswill
lead to the Nth success.

17. Let X assumethe values 0, 1,...,r — 1 each with the same probability
1/r. When r is a composite number, say r = ab, it is possible to represent
X as the sum of two independentintegral-valued random variables.

18. Let S, = X, +--+ +X, be the sum of mutually independentvariables

 

each assuming the values 1,2,...,a@ with probability 1/a. Show that the
generating function is given by

s(1 —s*))”

P(s) = Fe —s) |

whence for j >n

PS, =/}=a (—irnme(")/( =n
v=0 jrun-a

© n\ [j-av -1
—q-n —1)’ .

“ > (") ( n—l

(Only finitely many termsin the sum are different from zero.)

® Problems 15-16 have a direct bearing on the gameof billiards. The probability p
of success is a measure of the player’s skill. The player continuesto play until he fails.
Hence the number of successes he accumulates is the length of his “turn.”” The game
continues until one player has scored N successes. Problem 15 therefore gives the
probability distribution of the number of turns one player needsto score & successes,
problem 16 the average duration and the probability of a tie between two players. For
further details cf. O. Bottema and S. C. Van Veen, Kansberekningen bij het biljartspel,
Nieuw Archief voor Wiskunde (in Dutch), vol. 22 (1943), pp. 16-33 and 123-158.

 



XI.7] PROBLEMS FOR SOLUTION 285

Note: For a =6 weget the probability of scoring the sum 7 + ” ina throw
with n dice. The solution goes back to De Moivre.

19. Continuation. The probability P{S, <j} has the generating function
P(s)/ —s) and hence

PS <=E(w" ("0").
20. Continuation:, the limiting form. If a—>o and jm, so that

jla >, then
1

PIS, <j} >5d (-" (") (e—0",
the summation extending over all » with 0 <» <a.

Note: This result is due to Lagrange. In the theory of geometric probabilities
the right-hand side represents the distribution function of the sum of a in-
dependent random variables with “uniform” distribution in the interval (0, 1).

21. Let u, be the probability that the number of successes in 1 Bernoulli
trials is divisible by 3. Find a recursive relation for u, and hence the generating
function.

22. Continuation: alternative method. Let v, and w,, be the probabilities that
S, isoftheform 3v + 1 and 3v + 2, respectively (so that up, +v, + w, = 1).
Find three simultaneous recursive relations and hence three equations for the
generating functions.

23. Let X and Y be independent variables with generating functions U(s)
and V(s). Show that P{X — Y =/} is the coefficient of s’ in U(s) V(1/s),
where j = 0, +1, +2,. ,

24. Momentgeneratingfunctions. Let X be arandom variable with generating
function P(s), and suppose that >Prs” converges for some sy > 1. Thenall
moments m, = E(X") exist, and the generating function F(s) of the sequence
m,|r! convergesat least for |s| < log sy. Moreover

F(s) = ye = P(e‘).

Note: F(s) is usually called the moment generating function, although in
reality it generates m,/r!.

25. Suppose that A(s) = Ya,s” is a rational function U(s)/V(s) and that
s, is a root of V(s), which is smaller in absolute value than all other roots.
If s, is of multiplicity r, show that

py (ntr-l

em aee (T)
where p, = (—1)r! UG)/V%(s).

26. Bivariate negative binomial distributions. Show that for positive values
of the parameters p${1—p,5; —p25o}7 is the generating function of the dis-
tribution, of a pair (X, Y) such that the marginal distributions of X, Y, and
X + Y are negative binomial distributions.”®

10 Distributions ofthis type were used by G. E. Bates and J. Neymanin investigations

of accident proneness. See University of California Publications in Statistics, vol. 1,

1952.

 



CHAPTER XII*

Compound Distributions.

Branching Processes

A substantial part of probability theory is connected with sumsof inde-
pendent random variables, and in manysituations the numberof terms in

- such sumsis itself a random variable, We considerherethis situation for
the special case of integral-valued random variables, partly to illustrate
the use of generating functions, partly as a preparation for the study of
infinitely divisible distributions and of processes with independent incre-
ments in volume2.

As a particularly enticing application we describe the elements of the
beautiful theory of branching processes.

1. SUMS OF A RANDOM NUMBER OF VARIABLES

Let {X,} be a sequence of mutually independent random variables with
the common distribution P{X,=j}=/, and generating function

/(s) = Xfjs’. We are often interested in sums

Sn =X + X +++ + Xy,

where the number N ofterms is a random variable independent of the
X;. Let P{N =n} =g, be the distribution of N and g(s) = 2g,5”
its generating function. For the distribution {h,;} of Sy we get from the

fundamental formula for conditional probabilities

(1) hy = P(Sy=J} = SPIN = PKL + +X, =}.
If N assumesonly finitely many values, the random variable Sy is

defined on the sample space of finitely many X,. Otherwise the probabilis-

tic definition of Sy as a sum involves the sample space of an infinite

* The contents of this chapter will not be used in the sequel.

286
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sequence {X;,}, but we shall be dealing only with the distribution function

of S,: for our purposes wetake the distribution (1.1) as definition of the
variable S, on the sample space with points 0,1,2,....

For fixed n the distribution of X, + X,-+°-°+ +X, is given by the

n-fold convolution of {f,} with itself, and therefore (1.1) can be written

in the compact form

(1.2) {hy} =DenlKI™
This formula can be simplified by the use of generating functions. The
generating function of {f,}"* is f"(s) and it is obvious from (1.2) that
the generating function of the sum Sy is given by

(1.3) h(s) = Shys! = g,f%9).
j=0 n=

The right side is the power series for g(s) with s replaced by f(s);
hence it equals g(f(s)). This proves the

Theorem. The generating function of the sum Sy = X, +°°* + Xn

is the compoundfunction g(f(s)).

The proof can be reformulated in terms of conditional expectations. By definition

(1.4) E(sSn| N =n) =f"(5),

and to obtain h(s) = E(sSN) we have to multiply this quantity by P{N = 1} and sum
over n [see IX,(2.9)].

Two special cases are of interest.
(a) If the X, are Bernoulli variables with P{X,;=1}=p and

P{X, = 0} =q, then f(s) =q + ps and therefore A(s) = g(qg+>:s).
(5) If N has Poisson distribution with mean ¢ then A(s) = e7#*/6),

The distribution with this generating function will be called the compound
Poisson distribution. In particular, if the X, are Bernoulli variables and
N has a Poisson distribution, then A(s) = e+; the sum Sy has a

Poisson distribution with mean tp.

Examples. (a) We saw in example VI, (7.c) that X-rays produce

chromosome breakagesin cells; for a given dosage and time of exposure
the number N of breakages in individual cells has a Poisson distribution.
Each breakage hasa fixed probability q of healing whereas with prob-
ability p = 1-—q the cell dies. Here Sy is the number of observable

breakages! and has a Poisson distribution with mean {p.

1 See D. G. Catcheside, Genetic effects of radiations, Advances in Genetics, edited by

M. Demerec,vol. 2, Academic Press, New York, 1948, pp. 271-358, in particular p. 339.
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(6) In animal-trapping experiments? g, represents the probability that

a species is of size n. If all animals have the same probability p of being
trapped, then (assuming stochastic independence) the number of trapped
representatives of one species in the sample is a variable S, with generating

function g(q+ps). This description can be varied in many ways. For
example, let g, be the probability of an insect laying n eggs, and p
the probability of survival of an egg. Then S, is the numberof surviving

eggs. Again, let g, be the probability of a family having n children
and let the sex ratio of boys to girls be p:g. Then Sy, represents the
numberof boys in a family.

(c) Each plant has a large number of seeds, but each seed has only a
small probability of survival, and it is therefore reasonable to assumethat
the numberof survivors of an individual plant has a Poisson distribution.
If {g,} represents the distribution of the number of parent plants,
g(e-**4%) is the generating function of the number of surviving seeds.

(d) Required service time. Consider a telephone trunkline, a counter,

or any other server with the property that the service times required by
the successive customers maybe regardedas independent random variables
X,, X.,... with a commondistribution. The number of customers (or

calls) arriving during a dayis itself a random variable N, and the total
service time required by them is therefore a random sum X, +°-+* + Xy.

2. THE COMPOUND POISSON DISTRIBUTION

Among the random sums Sy = X,+°':+X, by far the most
important are those for which N has Poissondistribution. For reasons
that will presently become apparent we denote the expectation of N by At.

If the X,; have the commondistribution {f;} then S, has the compound
Poisson distribution

At)”
(2.1) {hi}. = eyOe {fi""

n—o0 n!

with the generating function

(2.2) h,(s) = entFess),

Examples. (a) Accumulated damage. Suppose that the numberofhits

by lightning during any time interval of duration ¢ is a Poisson variable

with expectation At. If {f,} is the probability distribution of the damage

2D. G. Kendall, On some modes of population growth leading to R. A. Fisher's

logarithmic series distribution, Biometrika, vol. 35 (1948), pp. 6-15.
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caused by an individual hit by lightning, then (assuming stochastic inde-
pendence) the total damage during time ¢ has the compound Poisson
distribution (2.1).

(5) Cosmic ray showers. It is generally supposed that the number N
of cosmic ray showers during a time interval of length ¢ has a Poisson

distribution with expectation At. For any given counter, the numberof

registrations caused by a showeris a random variable with a distribution
{fj}. The total numberofregistrations during a time ¢ is again a random
sum S, with the compound Poisson distribution (2.1).

(c) In ecology it is assumed that the numberof animallitters in a plot

has a Poisson distribution with expectation proportional to the area f
of the plot. Let {f,} be the distribution of the number of animals in a

litter and assumethatthelitters are independent. Under these conditions
the numberof animals in the plot is subject to the compound Poisson dis-
tribution (2.1). This model is widely used in practice. >

It will be noticed that all three examples are closely related to the phe-

nomenadiscussed in VI,6 in connection with the Poisson distribution. In

the first two examples a variable Sy is associated with every time interval.

[The sameis true of example (c) if we agree to treat the area as operational
time.] It is implicit in the model that when aninterval is partitioned into
two non-overlapping intervals their contributions are stochastically inde-

pendent and add to Sy. In terms of the generating function (2.2) this
meansthat

(2.3) h,,,(s) = A,(s)h,(s).

Every compound Poisson generating function (2.2) satisfies (2.3). We

shall now show that also the converse is true: A family of probability
generating functions h, satisfying (2.3) is necessarily of the form (2.2).
[It must be understood that this statement is true only for integral-valued
random variables. The notion of a compoundPoissondistribution remains
meaningful even when the X, have an arbitrary distribution while an
analogueto (2.3) plays an importantrole in the general theory of stochastic

processes with independent increments. Such processes, however, are not

necessarily subject to compoundPoisson distributions. ]
The following definition and theorem really refer to probability distribu-

tions on the integers 0,1,..., but for simplicity they are formulated in

terms of the corresponding generating functions.

Definition. 4 probability generating function h is called infinitely

divisible iffor each positive integer n thenthroot Wh is again aprobability

generating function.

 



290 COMPOUND DISTRIBUTIONS. BRANCHING PROCESSES [XII.2

It follows from the next theorem that the statement remains true even

if n > 0 is not an integer. If a family of probability generating functions

satisfy (2.3) then Wh, =4,,,, and so f, is infinitely divisible. The
converse to this statement is contained in

Theorem. The only infinitely divisible probability generating functions
are those of theform (2.2) with {f,} a probability distribution on 0,1,...

Proof. Put A(s) = dA,s* and suppose that Wh is a probability

generating function for each n > 1. Then A, > 0, for otherwise the

absolute term in the powerseries for Wh would vanish, and this in turn

would imply that hy = 4, =-+: =4A,_, = 0. It follows that Wh (s) > 1
forevery 0<s<1 andso

(2.4) log Wh(s)/hy = log [1 + (WA(s)/Ap—1)] ~ WA(s)/ho — 1,

where the sign ~ indicates that the ratio of the two sides tends to unity.
Combining this relation with its special case for s=1 we get [since

h(1) = 1]

 

log h(s) — log hy log Vh(s)/hy Vals) — Who
(2.5) = ~ =~,

—log hy log V'1/h, 1— Wh,

Theright side is a power series with positive coefficients and for s = 1 it
is seen that these coefficients add to unity. Thus for each n theright side
represents a probability generating function and so theleft side is the limit

of a sequence of probability generating functions. By the continuity
theorem of XI,6 this impliesthat theleft side itself is the generating function
of a non-negative sequence {fj}. Letting s=1 we see that >f; = 1.

This means that A is of the form (2.2) with At = —log hp. >

The theorem mayberestated in the form of the

Criterion. A function h is an infinitely divisible probability generating
function if, and only if, hl) =1 and

(2.6) log Hs) = da,s* where a, >0, Ya,=A< w.
°1(0) k=1 .

Indeed,in (2.6) it suffices to put f, = a,/4 to reduce A to the canonical

form (2.2) (with ¢ = 1), and this in turn is the generating function of the

compound Poisson distribution defined in (2.1).

’ This is a simple special case of an important theorem ofP. Lévy.
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Examples. (d) Comparing (2.2) with the theorem of the preceding
section weseethat if the distribution of N is infinitely divisible, the same

is true of the distribution of the random sum Sy.
(e) The negative binomial distribution with generating function

 (2.7) hs) = ( ) p+q=l,
1—q

has the property (2.3) and is therefore infinitely divisible. Passing to
logarithms one sees immediately that it is indeed of the form (2.2) with

(2.8) Sn = Q"[An, A = logpt.

{fr} is knownas the Jogarithmic distribution and is used bystatisticians in

various contexts.

(f) From the expansions II,(8.9) and (8.10) it is obvious that when

g=1-—p>p the functions

—— + Ss , J —

(2.9) fo)=Ja=p [#2 ; g(s) =SF

q ps Jq — ps

satisfy the condition (2.6), and so both f and g areinfinitely divisible
probability generatingfunctions. It is interesting to note that

(2.10) f(8) = g(s\(q+ps).

Wehavehere afactorization of the infinitely divisible f into two generating
functions, of which only oneis infinitely divisible. The possibility of such
factorizations cameoriginally as a great surprise and for a while the topic
attracted muchattention. >

 

 

A remarkable property of the compound Poissondistribution has been
the object of some curious speculations. If we put for abbreviation
A, = Af; the generating function h, of (2.2) can be factored in the form

(2.11) hfs) = eas). pigtls-D) . pagtls'—1) os

The product can beinfinite, but this has no bearing on our discussion and
we may supposethat only finitely many A, are positive. The first factor is
the generating function of an ordinary Poisson distribution with expecta-

tion A,t. The second factor is the generating function for two times a
Poisson variable, that is, the familiar probability e~*2'(Agt)"/n! is carried
by the point 2” rather than n. In like manner the kth factor corresponds
to a Poisson distribution attributing probabilities to the multiples of k.

Thus(2.11) gives a new representation of S, as the sum of independent
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variables Y,, ¥Ys,... such that Y, takes on only the values 0,k, 2k,...

but has otherwise a Poisson distribution. The content of (2.11) may be
described as follows. Let N, stand for the number of those variables
among X,,..., Xj, that areequalto 7. Then N=N, +N, +-°-:°> and

(2.11) states that the variables N,, are mutually independent and subject to
Poisson distributions.

Example. (g) Automobile accidents. Interpret X, as the number of

automobiles involved in the nth accident. Under the standard assumption
that the X,, are independent and that the number N ofaccidents has a
Poisson distribution, the total number of cars involved in the accidents is

given by X,+-°--+ Xy and has the compound Poisson distribution
(2.1). We may now consider separately the number N, of accidents in-
volving exactly k cars. According to (2.11) the variables N, are mutually
independent and have Poisson distributions. The practical implications
of this result require no comment. >

[For a generalization of the compoundPoissondistribution see example
XVII,(9.a).]

2a. Processes with independent increments

The preceding results gain in interest through their intimate connections with an
important class of stochastic processes. These will now be indicated informally even
though the theory lies beyond the scope of the present book.
To begin with the simplest example consider the number of incoming calls at a

telephone exchange as a function oftime. The developmentat an individual exchange
is described by recording for each ¢ the number Z(t) ofcalls that arrived between 0

and ¢. If the successive calls arrived at 7; f.,..., then Z(t)=0 for O<¢<h,,

and generally Z(t)= for t, <¢t < tx,1. Conversely, every non-decreasing function

assuming only the values 0, 1, 2,... represents a possible developmentat a telephone

exchange. A probabilistic model must therefore be based on a sample space whose
individual points represent functions “Z(t) (rather than sequences as in the case of

discrete trials). Probabilities must be assigned in a manner enabling us to deal with
intricate events such as the event that Z(t+1) — Z(t) will ever exceed 17 or that
Z(t) will at some time exceed at + b (the latter event is the main object of the ruin

problem in the collective theory of risk), In the following weshall takeit for granted that
such an assignment is indeed possible; our aim is to show that simple and natural
assumptions concerning the nature of the process imply that for every fixed ¢ the
random variable Z(t) must have a compoundPoisson distribution.

Similar considerations apply to a great variety of empirical phenomena. Instead of
the numberof telephone cajJs the variable Z(t) may represent the accumulated length
(or cost) of the ensuing conversations, or the numberofcars involved in accidents, the

accumulated damage due to lightning, the total consumption of electricity, the

accumulated rainfall, etc. Within the framework of the present chapter we must

assume that the variables Z(t) assume only non-negative integral values, but the
theory can be generalized to arbitrary random variables. We focus our attention on
processes satisfying the following two basic assumptions, which seem natural in many
applications.

 



XII.3] EXAMPLES FOR BRANCHING PROCESSES 293

(a) The process is time-homogeneous, that is, the distributions of increments

Z(t+h) — Z(t) depend only on the length of the time interval, but not onits position.‘

(5) The increments Z(t.) — Z(t,) and Z(t,) — Z(to) over contiguoustime intervals

are mutually independent. The results of the preceding section may nowberestated as
follows: Ifthere exists a process satisfying the postulates (a) and (6), then its increments

Z(t+h) — Z(t) have compoundPoissondistributions. In particular, when Z(t) changes

only by unit amounts the variables have simple Poisson distributions. [Cf. (2.11).]
Wehave thus found a characterization of the simple and compoundPoisson distri-

butions by intrinsic properties; by contrast to the derivation in chapter VI the Poisson
distribution no longer appears as an approximation, but stands on its own rights (one
might say: as an expression of a natural law). Of course, we are now faced with the
converse problem to see whether any family of compound Poisson distributions really
correspondsto a stochastic process. The answeris affirmative, but it turns out (some-

what surprisingly) that our two postulates do notsuffice to describe a unique process.
For a uniquedescriptionofan interesting class of processesit is necessary to strengthen
the postulate (6) by requiring that for any n the nm increments corresponding to a
finite partition t) <t,<+*:< 7, be mutually independent. This is the defining

property of processes with independent increments. Any family of compound Poisson
distributions determines uniquely a process with independent increments, and so no
theoretical difficulties arise. But we have assumed the independence property only for
two intervals. This restricted postulate suffices to determinethe form of the distri-
butions of the increments, but it is possible to construct rather pathological processes
with this property.> This example illustrates the difficulties inherent in the construction
of a complete model of a stochastic process.

3. EXAMPLES FOR BRANCHING PROCESSES

Weshall describe a chance process which servesas a simplified model of
many empirical processes andalsoillustrates the usefulness of generating

functions. In words the process may be described as follows.
We consider particles which are able to produce new particles oflike kind.

A single particleforms the original, or zero, generation. Every particle has
probability p, (k =0,1,2,...) of creating exactly k new particles; the

direct descendants of the nth generation form the (n+1)st generation.
The particles of each generation act independently of each other. We are

interested in the size of the successive generations.

* This condition is less restrictive than might appearat first sight. For example,in
a telephone exchange incomingcalls are more frequent during the busiest hour of the
day than, say, between midnight and 1 a.m.; the process is therefore not homogeneous
in time. However, for obvious reasons telephone engineers are concerned mainly
with the “busy hour” of the day, and for that period the process can be considered
homogeneous. Experience shows also that during the busy hour the incomingtraffic
follows the Poisson distribution with surprising accuracy.

5 In such a process the increment Z(t;) — Z(t.) is independent of Z(t.) — Z(t,) as

well as of Z(t,) — Z(t)), and yet may be completely determined bythelatter pair. See

W.Feller, Non-Markovian processes with the semi-group property, Ann. Math.Statist.,

vol. 30 (1959), pp. 1252-1253.
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A few illustrations may precede a rigorous formulation in terms of
random variables.

(a) Nuclear chain reactions. This application becamefamiliar in connec-

tion with the atomic bomb.® Theparticles are neutrons, which are subject
to chancehits by otherparticles. Let p be the probability that the particle
soonerorlater scores a hit, thus creating m particles; then g = 1 — p is
the probability that the particle has no descendants; thatis, it remains
inactive (is removed or absorbed in a different way). In this scheme the

only possible numbers of descendants are 0 and m, andthe correspond-
ing probabilities are gq and p (i€., Py =4, Pm =p, p; =O forall
other 7). At worst, the first particle remains inactive and the process

never starts. At best, there will be m particles of the first generation, m?

of the second, and so on. If p is near one, the numberofparticles is

likely to increase very rapidly. Mathematically, this number mayincrease

indefinitely. Physically speaking, for very large numbers of particles the
probabilities of fission cannot remain constant, and also stochastic inde-
pendenceis impossible. However, for ordinary chain reactions, the mathe-
matical description “indefinitely increasing numberofparticles’? may be

translated by “explosion.”’
(b) Survival offamily names. Here(as often in life), only male descend-

ants count; they play the role of particles, and p, is the probability for

a newborn boy to becomethe progenitor of exactly k boys. Our scheme
introduces twoartificial simplifications. Fertility is subject to secular
trends, and therefore the distribution {p,} in reality changes from genera-
tion to generation. Moreover, commoninheritance and commonenviron-
ment are boundto produce similarities among brothers which is contrary

to our assumption of stochastic independence. Our model can be refined

to take care of these objections, but the essential features remain unaffected.
Weshall derive the probability of finding & carriers of the family name in
the nth generation and, in particular, the probability of an extinction of
the line. Survival of family names appears to have been thefirst chain

reaction studied by probability methods. The problem wasfirst treated
by F. Galton (1889); for a detailed account the reader is referred to A.
Lotka’s book.”? Lotka shows that American experience is reasonably well
described by the distribution py = 0.4825, p, = (0.2126)(0.5893)*?

(k > 1), which, except for the first term, is a geometric distribution.

® The following description follows E. Schroedinger, Probability problems in nuclear
chemistry, Proceedings of the Royal Irish Academy, vol. 51, sect. A, No. 1 (December

1945). There the assumption of spatial homogeneity is removed.
’? Théorie analytique des associations biologiques, vol. 2, Actualités scientifiques et

industrielles, No. 780 (1939), pp. 123-136, Hermannet Cie,Paris.
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(c) Genes and mutations. Every gene of a given organism (V,5) has a

chance to reappear in 1,2,3,... direct descendants, and our scheme

describes the process, neglecting, of course, variations within the popula-
tion and with time. This schemeis of particular use in the study of muta-
tions, or changes of form in a gene. A spontaneous mutation produces a
single gene of the new kind, which plays the role of a zero-generation
particle. The theory leads to estimates of the chances of survival and of

the spread of the mutant gene. Tofix ideas, consider (following R. A.
Fisher) a corn plant which is father to some 100 seeds and mother to an

equal number. If the population size remains constant, an average of two
amongthese 200 seeds will develop to a plant. Each seed has probability 4
to receive a particular gene. The probability of a mutant gene being
represented in exactly k new plants is therefore comparable to the prob-
ability of exactly k successes in 200 Bernoulli trials with probability
P = 300, andit appears reasonable to assume that {p,} is, approximately,

a Poisson distribution with mean 1. If the gene carries a biological
advantage, we get a Poisson distribution with mean A> 1.

(d) Waiting lines.® Interesting applications of branching processes occur
in queuing theory. Roughly speaking, a customer arriving at an empty
server and receiving immediate service is termed ancestor; his direct
descendantsare the customersarriving during his service time and forming
a waiting line. This process continues as long as the queue lasts. We shall
return toit in greater detail in example (5.5), and to an even moreinterest-

ing variant in example(5.c). >

4. EXTINCTION PROBABILITIES IN BRANCHING

PROCESSES

Denote by Z,, the size of the nth generation, and by P,, the generating
function of its probability distribution. By assumption Z, = 1 and

(4.1) P,(s) = P(s) =a

The nth generation can be divided into Z, clans according to the ancestor
in the first generation. This means that Z, is the sum of Z, random
variables Z‘*, each representingthesize of the offspring of one member of
the first generation. By assumption each Z‘* has the same probability
distribution as Z,,, and (for fixed n) the variables Z* are mutually

§ D.G.Kendall, Someproblemsin the theory ofqueues, J. Roy. Statist. Soc. (Series B),

vol. 13 (1951), pp. 151-173, and discussion 173-185.
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independent. The generating function P,, is therefore given by the com-
pound function

(4.2) P,(s) = PPr-a(s)).

This result enables us to calculate recursively all the generating functions.

In view of (4.2) we have P,(s) = P(P(s)), then P,(s) = P(P,(s)), etc.
The calculations are straightforward, though explicit expressions for P,,
are usually hard to come by. Weshall see presently that it is nevertheless
possible to draw important conclusions from (4.2).

Example. (a) Suppose that the numberofdirect descendants is subject

to the geometric distribution {gp*} where p # g. Then P(s) = q/(1—ps)
and an explicit calculation of Pa, Ps, etc., leads us (with some patience)

to the general formula
n

— q” — (p™*—q"")psPp(4.3) P,(s) =q- 24 — ,+1 q +1 _ (p"—q")ps

It is easy to verify that (4.3) indeed satisfies (4.2).

If p=q, we get, letting p — 3,

n—(n—I)s
n+1—ns—

Note that P,(0) > g/p if p >q, but P,(0)— 1 if p<gq. Weshall now
interpret this result and find its analogue for arbitrary distributions

{Py}- . >

Thefirst question concerning our branching process is whetherit will
continue forever or whether the progeny will die out after finitely many

generations. Put

(4.5) x, = P{Z, = 0} = P,(0).

(4.4) P,(s) =

~

This is the probability that the process terminates at or before the nth

generation. By definition x, = py and from (4.2) it is clear that

(4.6) tL, = P(@p_1).

The extreme cases py = 0 and py) = | beingtrivial, we now supposethat
0 < po < 1. From the monotone character of P we conclude then that
t, = P(po) > P(O) = 2,, and henceby induction that x, < 4% <43< °°.

It follows that there exists a limit x <1, and from (4.6) it is clear that

(4.7) x = P(2).

For 0<s<1 the graph of P(s) is a convex curve starting at the
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point (0, p)) above the bisector and ending at the point (1, 1) on the
bisector. Accordingly only twosituations are possible:

Case (i). The graph is entirely above the bisector. In this case x = 1
is the unique root of the equation (4.7), and so x, — 1. Furthermore,in
this case 1 — P(s) < 1 —s forall s, and letting s—1 we see that the

derivative P’(1) satisfies the inequality P’(1) < 1.
Case (ii). The graph of P intersects the bisector at some point

o <1. Since a convex curve intersects a straight line in at most two
points, in this case P(s)>s for s<o but P(s)<s foro<s<l.

Then x, = P(O) < P(c) =, and by induction x, = P(#,_,) < P(o) =a.

It follows that z,—>o andso x =o. Onthe other hand, by the mean
value theorem there exists a point between o and 1 at which the deriva-

tive P’ equals one. This derivative being monotone, it follows that
P’(1) > 1.

Wesee thus that the two cases are characterized by P’(1) <1 and

P’(1) > 1, respectively. But

(4.8) p= PU) =S ky <0
is the expected number of direct descendants, and we have proved the
interesting

Theorem. Jf u <1 the process dies out with probability one. If,

however, > 1 the probability x, that the process terminates at or

before the nth generation tends to the unique root x <1 of the equation
(4.7).

In practice the convergence x, — x is usually rapid and so with a great
probability the process either stops rathersoon,orelse it continues forever.
The expected size of the nth generationis given by E(Z,) = P,(1). From

(4.2) we get by the chain rule P/(1) = P’(1)P,_,(1) = wE(X,_1), and‘

hence?

(4.9) E(X,,) = py”.

e It is not surprising that the process is boundfor extinction when u < I,

but it was not clear a priori that a stable situation is impossible even when
= 1. When « > oneshould expect a geometric growth in accordance

with (4.9). This is true in some average sense, but no matter how large u

there is a finite probability of extinction. It is easily seen that P,(s) > x
for all s < 1 and this meansthat the coefficients of s, s?, 5°, etc., all tend

to0. After a sufficient number ofgenerationsit is therefore likely that there

® For further details see the comprehensivetreatise by T. E. Harris, The theory of

branching processes, Berlin (Springer), 1963.

 



298 COMPOUND DISTRIBUTIONS. BRANCHING PROCESSES [XII.5

are either no descendants or else a great many descendants (the correspond-
ing probabilities being 2 and 1 — 2).

5. THE TOTAL PROGENY IN BRANCHING
PROCESSES

Wenow turn our attention to the random variable?®

(5.1) Y,=142Z2,4+:°°°-4+Z,

which equals the total numberof descendants up to and including the nth

generation and also including the ancestor (zero generation). Letting
n—> co weget the size of the total progeny which maybefinite or infinite.
Clearly, foreach n therandom variable Y,, is well defined and we denote
by , the generating function of its probability distribution. Since
Y, =1+2Z, we have R,(s) = sP(s). A recursion formula for R, can

be derived by the argument of the preceding section, the only difference
being that to obtain Y, we must add the progenitor to the sum ofthe
progenies of the Z, membersofthe first generation. Accordingly

(5.2) R,(s) = sP(R,,_1(5)).

From this recursion formula it is theoretically possible to calculate suc-
cessively R,, R,,..., but the labor is prohibitive. Fortunately it is
possible to discuss the asymptotic behavior of R, by the geometric
argument used in the preceding section to derive the extinction proba-
bility x.

First we note that for each s < 1

(5.3) Rs) = SPRYS)|< sP(s) = R(s)

and by induction it follows HeeRs) < Ry«(s). Accordingly R,(s)
decreases monotonically to a limit p(s), and thelatter satisfies

(5.4) p(s) = sP(p(s)) 0<s<l.

From the continuity theorem of XI,6 we knowthatas limit of probability

generating functions p is the generating function of a sequence of non-
negative numbers p, such that >ip, < 1.

It follows from (5.4) that for fixed s <1 the value p(s) is a root ofthe

equation

(5.5) t = sP(t).

10 This section was inspired by I. J. Good, The number of individuals in a cascade

process, Proc. Cambridge Philos. Soc., vol. 45 (1949), pp. 360-363.
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A x,
Weshowthatthis root is unique. For that purpose we denote again by
x the smallest positive root of x = P(x) (so that x < 1). We observe
that y = sP(t) (with s fixed) is a convex function of ¢ and soits graph

intersects the line y = ¢ in at most two points. But for t = 0 the right

side in (5.5) is greater than the left, whereas the inequality is reversed when
t =x, and also when t = 1; thus (5.5) has exactly one root between 0

and x, and no root between x and 1. Accordingly, p(s) is uniquely
characterized as this root, and we see furthermore that p(s) < x. But

p(1) is obviously a root of t = P(t), and since x is the smallest root of
this equation it is clear that/ p(i) =x. In other words, p is an honest
probability generating function if, and only if, 2 = 1. We can summarize
these findings as follows.

Let p, be the probability that the total progeny consists of k elements.
(a) > p, equals the extinction probability x (and 1—x equals the

probability of an infinite progeny).
(b) The generatingfunction p(s) = > p,s* is given by the uniquepositive

root of (5.5), and p(s) < x.

We know already that with probability one the total progeny is finite Po)
whenever «<1. By differentiation of (5.4) it is now seen that its . 4"—==

expectation equals 1/(1 — uw) when mw <1 andis infinite when uw = 1. :
. ANS h

Examples. (a) In example (4.a) we had P(s) = q/(1—ps), and (5.5)

reduces to the quadratic equation pt? — t + gs =0 from which we con-
clude that /chacto / be

——_——_—s! toP4ji RIBZee
1— V1 — 4pqs ~ Pe zd BIBT(5.6) p(s) =+Pa Cte

2p [OU RRS/

(This generating function occurred also in connection with the first- ~
passage times in XI,3.)

(5) Busy periods. We turn to a more detailed analysis of the queuing
problem mentioned in example (3.d). Suppose for simplicity that customers
can arrive only one at a time and only at integral-valued epochs." We
assumethatthe arrivals are regulated by Bernoulli trials in such a way that
at epoch n a customerarrives with probability p, while with probability
q = 1-—~p noarrival takes place. A customerarriving when theserveris
free is served immediately, and otherwise he joins the queue (waitingline).

The server continues service without interruption as long as there are
customers in the queue requiring service. We suppose finally that the

11 Following a practice introduced by J. Riordan we use the term epochfor points on
the time axis because the alternative terms such as time, moment, etc., are overburdened

with other meanings.
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successive service times are independent (integral-valued) random vari-
ables with a commondistribution {f,} and generating function f(s) =
= >6,5*.
Suppose then that a customerarrives at epoch 0 andfindsthe serverfree.

His service time starts immediately. If it has duration n, the counter
becomes free at epoch n provided that no new customerarrives at epochs
1,2,...,n. Otherwise the service continues without interruption. By
busy period is meant the duration of uninterrupted service commencing at
epoch 0. We show howthe theory of branching process may be used to
analyze the duration of the busy period.
The customerarriving at epoch 0 initiates the busy period and will be

called ancestor. The first generation consists of the customers arriving
prior to or at the epoch of the termination of the ancestor’s service time.
If there are no such direct descendants the process stops. Otherwise the
direct descendants are served successively, and during their service times
their direct descendants join the queue. We havehere a branching process
such that the probability x ofextinction equals theprobability ofa termina-
tion of the busy period, and the total progeny consists of all customers
(including the ancestor) arriving during the busy period. Needless to say,
only queues with x = 1 are feasible in practice.

To apply our results we require the generating function P(s) for the
number of direct descendants. By definition this number is determined
by the random sum X, +-::+ Xy where the X, are mutually inde-

pendent and assumethe values 1 and 0 with probabilities p and g, while
N is the length of the ancestor’s service time. Thusin the presentsituation
P(s) = B(ps+q), and hence uw =po where o = f(1) is the expected
duration of the service time. It follows that the busy period is certain to
terminate only if po < 1. The expected numberofcustomers during a busy
periodisfinite only if po <1. In other words, congestion is guaranteed
when po = 1, and long queues must be the order of the day unless po
is substantially less than 1.

(c) Duration of the busy period. The preceding example treats the num-
ber of customers during a busy period, but the actual duration of the busy
period is of greater practical interest. It can be obtained by the elegant
device? of considering time units as elements of a branching process. We
say that the epoch 7 has no descendants if no customerarrives at epoch n.
If such a customerarrives and his service time lasts r time units, then the
epochs n + 1,...,n + ,r are counted as direct descendantsof the epoch.

Suppose that at epoch 0 the server is free. A little reflection now showsthat

It is due to I. J. Good. See the discussion following Kendall’s paper quoted in

example (3.4).
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the branching processoriginated by the epoch 0 either does not comeoff at
all or else lasts exactly for the duration of the uninterrupted service time
initiated by a new customer. The generating function for the number of
direct descendants is given by

(5.7) P(s) = 4 + pB(s).

The root x gives the probability of a termination of the busy period.
The total progeny equals 1 with probability q while with probability p

“it equals the duration of the busy period commencing at epoch 0. The
duration of the busy period itself has obviously the generating function

given by A(p(s)). >

6. PROBLEMS FOR SOLUTION

1. The distribution (1.1) of the random sum Sy has mean E(N)E(X) and
variance E(N) Var (X) + Var (N)E%(X). Verify this (a) using the generating
function, (5) directly from the definition and the notion of conditional expec-
tations.

2. Animal trapping [example (1.)]. If {g,} is a geometric distribution, so
is the resulting distribution. If {g,} is a logarithmic distribution [cf. (2.8)],
there results a logarithmic distribution with an added term.

3. In N Bernoulli trials, where N is a random variable with a Poisson
distribution, the numbersof successes and failures are stochastically independent
variables. Generalize this to the multinomial distribution (a) directly, (b)
using multivariate generating functions. [Cf. example IX,(1.d).]

4. Randomization. Let N have a Poisson distribution with mean 4, and
let N_ balls be placed randomly into n cells. Show without calculation that

the probability of finding exactly m cells emptyis ( ") e~Am/n[ | —e—A/n] nm,
: m

5. Continuation.* Show that when a fixed numberr of balls is placed ran-
domly into 7 cells the probability of finding exactly m cells empty equals the
coefficient of e~*A’/r! in the expression above. (a) Discuss the connection
with moment generating functions (problem 24 of XI, 7). (6) Use the result for
an effortless derivation of II,(11.7).

6. Mixtures of probability distributions. Let {f;} and {g;} be two prob-
ability distributions, « > 0, 6B >0, «+f =1. Then {af; + fg,} is again a
probability distribution. Discuss its meaning and the connection with the urn
models of V,2. Generalize to more than twodistributions. Show that such a
mixture can be a compoundPoisson distribution.

7. Using generating functions show that in the branching process Var (X,,1) =
= pw Var (X,) + w?"o?, Using conditional expectations prove the equivalent

8 This elegant derivation of various combinatorial formulas by randomizing a
parameter is due to C. Domb, On the use of a random parameter in combinatorial
problems, Proceedings Physical Society, Sec. A., vol. 65 (1952), pp. 305-309.
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relation Var (Xn43) = # Var (X,) + u”o®. Conclude from either form that
Var (X,,) = o2(u2"-2 + pens free pr),

8. Continuation. If n > m show that E(X,X,) = “”—"E(X2).

9, Continuation. Show that the bivariate generating function of (X,, Xn) is
P»(5yPn—-m(S2)). Use this to verify the assertion in problem 8.

10. Branching processes with two types of individuals. Assume that each
individual can have descendants of either kind; the numbers of descendants
of the two types are regulated by two bivariate generating functions P,(sj, 52)
and P2(s;, 59). We have now twoextinction probabilities x,y depending on the
type of the ancestor. Show that the pair (2, y) satisfies the equations

(6.1) x=P(z,y), y =P,(x, y).

Prove that these equations have at most one solution 0 <x <1, O<y <1
different from (1,1). The solution (1,1) is unique if, and only if, 4, <1,

éP,(1, 1)

as;
3

Hyg <1 and (1 — py— Hee) 2 Hizey Where “5; =

 



CHAPTER XIII

Recurrent Events.

Renewal Theory

1. INFORMAL PREPARATIONS AND EXAMPLES

Weshall be concerned with certain repetitive, or recurrent, patterns
connected with repeated trials. Roughly speaking, a pattern & qualifies

for the following theory if after each occurrence of & the trials start from
_scratch in the sense that the trials following an occurrence of & forma

replica of the whole experiment. The waiting times between successive
occurrences of & are mutually independent random variables having the
same distribution.

The simplest special case arises when & stands as abbreviation for “a
success occurs”’ in a sequence of Bernoulli trials. The waiting time up to
the first success has a geometric distribution; whenthefirst success occurs,

the trials start anew, and the numberoftrials between the rth and the

(r+ 1)st success has the same geometric distribution. The waiting time up

to the rth success is the sum of r independent variables [example IX,(3.c)].

This situation prevails also when & stands for “a success followed by
failure’: The occurrence of the pattern SF reestablishes the initial
situation, and the waiting time for the next occurrence of SF is independ-
ent of the preceding trials. By contrast, suppose that people are sampled
one by one and let & stand for ‘‘two people in the sample have the same
birthday.” This & is not repetitive because after its first realization &
persists forever. If we change the definition to “& occurs whenever the
birthday of the newly added personis already present in the sample,” then
& can occur any numberoftimes, but after an occurrence of 6 the process
does not start from scratch. This is so because the increasing samplesize
makes duplications of birthdays more likely; a long waiting time for the
first double birthday promises therefore a shorter waiting time for the
second duplication, andso the consecutive waiting times are neither inde-
pendent nor subject to a commondistribution.

303
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The importance of the theory of recurrent patterns is due to the fact that
such patterns occur frequently in connection with various sequences of
variables (stochastic processes). The laws governing a sequence of random
variables may be so intricate as to preclude a complete analysis but the
existence of a repetitive pattern makes it always possible to discuss essen-
tial features of the sequence, to prove the existence ofcertain limits, etc.
This approach contributes greatly to the simplification and unification of
many theories.
We proceed to review a few typical examples, some of which are of

intrinsic interest. The first examples refer to the familiar Bernoulli trials,
but the last three involve more complicated schemes. In their description
we use terms such as “‘server” and “‘customer,” but in each case we give a
mathematical definition of a sequence of random variables which is com-
plete in the sense that it uniquely determines the probabilities ofall possible
events. In practice, not even the basic probabilities can be calculated
explicitly, butit will turn out that the theoryofrepetitive patterns neverthe-
less leads to significant results.

Examples. (a) Return to equilibrium. In a sequence of Bernoullitrials

let 6 stand as abbreviationfor “the accumulated numbersofsuccesses and
failures are equal.’ As we have donebefore, we describe thetrials in terms
of mutually independent random variables X,, X,,... assuming the
values 1 and —1 with probabilities p and g, respectively. As usual, we
put

(1.1) S=0, S,=X,+-''4+X,.

Then S,, is the accumulated excess of heads overtails, and & occursif,
and only if, S, =0. It goes without saying that the occurrence of this
event reestablishes the initial situation in the sense that the subsequent
partial sums S,.;,S,,2,... forma probabilistic replica of the whole
sequence S,,S,,.... [Continued in example (4.5).]

(6) Return to equilibrium through negative values. We modify the last
example by stipulating that & occurs at the nth trialif

(1.2) S,=0, but S,<0,...,8,1,<0.

Again, it is clear that the occurrence of & implies that we start from
scratch. [Continued in example (4.c).]

(c) Another variant of example (a) is the event & that the accumulated

numberof successes equals A times the accumulated numberoffailures
(where A > 0 is an arbitrary, but fixed, number). If & occurs at the nth

trial, it occurs again at the (n+m)th trial only if amongthe trials number

n+1,...,n-+m there occur exactly A times as many successes as
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failures. The waiting times between successive occurrences of & are

therefore independentandidentically distributed. As a special case consider
the event that 6n throwsofa perfect die yield exactly n aces. (Continued
in problems 4-5.)

(d) Ladder variables. Adhering to the notations of example (a) we

define a new repetitive pattern 6 by stipulating that & occurs at the nth

trial if S,, exceeds all preceding sums, thatis, if

(1.3) S,>0, S,>S,...,8,>S,3.

If & occurs at the nth trial the process starts from scratchin the follow-
ing sense. Assuming (1.3) to hold, & occurs at the (n+ m)thtrialif, and

only if,

(1.4) Sim > Srv + ++3 Snim > Spim-t:

But the differences S,,,, —S,, are simply the partial sums of the residual
sequence X,,,,, X,,9,... andsothe reoccurrence of & is defined in terms

of this residual sequence exactly as & is defined for the whole sequence.
” Tn other words, for the study of & the whole past becomesirrelevant every

time & occurs. [Continued in example (4.4).]
(e) Success runs in Bernoulli trials. In the preceding examples the defini-

tion of & wasstraightforward, but we turn now to a situation in which a
judicious definition is necessary to make the theory of recurrent patterns
applicable. In the classicalliterature a “‘success run of length r” meant an
uninterrupted sequence of either exactly r, or of at least r, successes.

Neither convention leads to a recurrent pattern. Indeed, if exactly r suc-
cesses are required, then a success at the (n+1)st trial may undo the run

completed at the nth trial. On the other hand, if at least r successes are
required, then every run may be prolonged indefinitely and it is clear that
the occurrence of a run does not reestablish the initial situation. The
classical theory ofruns was rather messy, and a more systematic approachis
possible by defining a run of length r in such a waythat it becomes a
recurrent pattern. Afirst run of length r is uniquely defined, and we now

agree to start counting from scratch every time a run occurs. With this
convention the sequence SSS| SFSSS|SSS|F contains three success
runs of length three (occurring at trials number 3, 8, and 11). It contains

five runs of length two(trials number2, 4, 7, 9, 11). The formaldefinition

is as follows: A sequence of n letters S and F contains as many S-runs
of length r as there are non-overlapping uninterrupted blocks containing
exactly r letters S each. With this convention we say that 6 occurs at
the nth trial if a new run of length r is added to the sequence. This defines
a recurrent pattern and greatly simplifies the theory without affectingits

basic features. (Continued in section 7.)
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(f) Continuation: Related patterns. It is obvious that the considera-

tions of the preceding example apply to moregeneral patterns, such as the
occurrence of the succession SFSF. Moreinteresting is that no limitation
to a fixed pattern is necessary. Thus the occurrence of ‘“‘two successes and
threefailures” defines a repetitive pattern, and the sameis true of“either a

success run of length r or a failure run of length p.” (Continued in
section 8.)

lL(g) Geiger counters. Counters of the type used for cosmic rays and «-
particles may be described by the following simplified model.1 Bernoulli
trials are performed at a uniform rate.~A counter is meant to register
successes, but the mechanism is locked for exactly r—1 trials following
each registration. In other words, a success at the nth trialis registeredif,

and only if, no registration has occurred in the preceding r—1 trials. The
counteris then locked at the conclusion of trials number n,..,n +r — 1,

andis freed at the conclusion of the (n+r)thtrial provided this trial results

in failure. The output of the counter represents dependenttrials. Each
registration has an aftereffect, but, whenever the counteris free (not locked)

the situation is exactly the same, andthetrials start from scratch. Letting

& stand for ‘“‘at the conclusion of the trial the counteris free,’’ we have a

typical recurrent pattern. [Continued in example (4.e).]
(h) The simplest queuing process is defined in terms of a sequence of

Bernoulli trials and a sequence of random variables X,, X2,... assuming

only positive integral values. The X, have a common distribution
{B,} and are independent of each other and of the Bernoulli trials. We
interpret success at the nth trial as the arrival at epoch? n of a customerat

a server (or a call at a telephone trunk line). The variable X,, represents
the service time of the nth customerarriving at the server. At any epoch
the server is either “‘free’’ or “‘busy’’ and the process proceeds according

to the following rules. Initially (at epoch 0) the serveris free. A customer
arriving when the counteris free is served immediately, but following his
arrival the server is busy for the duration of the service time. Customers
arriving when the server is busy form a waiting line (queue). The server

serves customers without interruption as long as there is a demand.
These rules determine the process uniquely, for given a sample sequence

(S, F, S, S, S, F, F,...) for the arrival process and a sample sequence
(3, 1, 17, 2,...) for the successive service times, it is not difficult to find

1 This is the discrete analogue of the so-called counters of type I. Type II is described
in problem 8. '

2 We use the term epoch to denote points on the time axis. Terms such as waiting
time will refer to durations. This practice was introduced by J. Riordan because in
queuing theory the several meanings of wordslike time, moment,etc., are apt to cause

confusion.
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the size of the queue at any epoch,and the waiting time ofthe nth customer.
In principle, therefore, we should be able to calculate all pertinent prob-
abilities, but it is not easy to find practicable methods. Nowitis clear that

every time the serveris free the situation is exactly the sameas itis at

epoch 0. In our terminology therefore the contingency “the server is
free’’ constitutes a recurrent pattern. Weshall see that the very existence

of such a recurrent pattern has important consequences; for example,
it implies that the probability distributions for the size of the queue at
epoch n, for the waiting time of the nth customer, and for similar random
variables tend to definite limits when n—> od (theorem 5.2). In other

words, the existence of a recurrent pattern enablesus to prove the existence
of a steady state and to analyze its dominant features.
\. (i) Servicing ofmachines. The scope of the method of recurrent patterns
may beillustrated by a variant of the preceding example in which the

arrivals are no longer regulated by Bernoulli trials. To fix ideas, let us
interpret the “‘customers’”’ as identical machines subject to occasional
breakdowns, and the “server” as a repairman. We adhere to the same
conventions concerning servicing and the formation of queues, but intro-
duce a new chance mechanism forthe “‘arrivals,” that is, for the break-

downs. Suppose thereare N machinesin all, and consider two extreme cases.

(a) Suppose first that as long as a machine is in working condition it
has a fixed probability p to break down at the next epoch; whenit
breaks downit is replaced by an identical new machine, and the serving
time is interpreted as the time required for the installation of a new

machine. Wetreat the machines as independent, and the breakdowns
are regulated by N independent sequences of Bernoulli trials. Note
that the more machines are in the queue, the fewer machines are in

working condition, and hence the length of the queue at any epoch
influences the probability of new arrivals (or service calls). This is in
marked contrast to the preceding example, but the contingency “server

is idle” constitutes nevertheless a recurrent pattern because we are

confronted with precisely the same situation wheneverit occurs.
(6) Suppose nowthat every repair has an aftereffect in that it increases

the probabilities of further breakdowns. This implies that the machines
deteriorate steadily and so once a machine breaks downit is impossible
that the favorable initial situation should be repeated. In this case there
is no recurrent pattern to help the analysis. >

2. DEFINITIONS

We consider a sequence of repeated trials with possible outcomes
E; (j= 1,2,...). They need not be independent (applications to Markov
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chains being of special interest). As usual, we supposethatit is in principle
possible to continue the trials indefinitely, the probabilities P{E;

, E;} being defined consistently for all finite sequences. Let & be an
attribute of finite sequences; that is, we supposethat it is uniquely deter-

mined whether a sequence (E;,...,&;,) has, or has not, the character-

istic 6 We agree that the expression “& occurs at the nth place in the
(finite or infinite) sequence ae .’ is an abbreviation for ‘‘The

subsequence E,,£;,...,£;, has the attribute 6.’ This convention
implies that the occurrence of 6 at the nth trial depends soley on the out-
come ofthe first trials. It is also understood that when speaking of a
“recurrent event &,” we are really referring to a class of events defined by
the property that .6 occurs. Clearly & itself is a label rather than an event.
Weare here abusing the language in the same wayasis generally accepted

in terms such as “‘a two-dimensional problem’; the problem itself is

dimensionless.

Definition 1. The attribute & defines a recurrent eventif:
(a) In ordercat & gocurs at the nth and the (n+m)th place of the

sequence (E,, os ,) it is necessary and CE, that & occurs
at the lastiein eachig"the two subsequences (E,, E,,,..., E,,) and

( Inti? “Int? * °°? ing)"

(b) If & occurs at the nth place thenidentically

P{E,,..-,&,,,,3 = Pté,,- a E§ PLE+++ EngmS

It has now an obvious meaning to say that & occurs in the sequence
(E,,, E,,.--.) for the first time at the nth place, etc. It is also clear that
with each recurrent event & there are associated the two sequences of

numbers defined for n = 1, 2,... as follows

u, = P{& occurs at the nthtrial},
(2.1)

fn = P{€ occurs for the first time at the nth trial}.

It will be convenient to define

J(2.2) fo=0, m=1,

and to introduce the generating functions

(2.3) F(s) = S Sys", U(s) = S u,s*.
k=1 k=0

Observe that -{u,} is not a probability distribution; in fact, in represen-

tative cases we shall have } wm, = oo. However, the events ‘“‘& occurs for
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the first time at the nth trial” are mutually exclusive, and therefore

(2.4) f=FW=Sh< 1.

It is clear that 1 — f should be interpreted as the probaiblity that & does
not occurin an indefinitely prolonged sequenceof trials. If f = 1 we may
introduce a random variable T with distribution

(2.5) P{T =n} =f,

Weshall use the same notation (2.5) evenif f << 1. Then T is an improper,
or defective, random variable, which with probability 1 — f does not assume

a numerical value. (For our purposes we could assign to T the symbol
oo, and it should be clear that no new rules are required.)
The waiting timefor &, that is, the numberoftrials up to and including

the first occurrence of 6, is a random variable with the distribution (2.5);

however, this random variable is really defined only in the space ofinfinite

sequences (E;., Eyys ++ +):

By the definition of recurrent events the probability.that & occurs for
the first time at trial number & and for the second time at the nthtrial
equals fi.f,-»- Therefore the probability f° that € occurs for the second

time at the nth trial equals

(2.6) fr =Sifra theta $7 thal

Theright side is the convolution of {f,} with itself and therefore {f{?)}
represents the probability distribution of the sum of two independent
random variables each having the distribution (2.5). More generally, if
fi” is the probability that the rth occurrence of & takes place at the nth
trial we have

27) $P SASTR FALLto tSa.
This simple fact is expressed in the

Theorem. Let f” be theprobability that the rth occurrence of & takes
place at the nth trial. Then {f'"} is the probability distribution of the sum

(2.8) TO =T,4+T7,+°:°+T,

of r independent random variables T,,...,7T, each having the distribution
(2.5). In other words: Forfixed r the sequence {f'"} has the generating
function F*(s).

 



310 RECURRENT EVENTS. RENEWAL THEORY [XTIT.2

It follows in particular that

(2.9) sr? =F(1I=f"

In words: the probability that & occurs at least r times equals f’ (a fact
which could have been anticipated). We now introduce

Definition 2. A recurrent event & will be called persistent® if f= 1
and transient if f <1.

Foratransient & the probability /” that it occurs at least r times tends

to zero, whereas for a persistent & this probability remains unity. This
can be described by saying with probability one a persistent & is bound
to occur infinitely often whereas a transient & occurs only a finite number
of times. (This statement not only is a description but is formally correct
if interpreted in the sample spaceofinfinite sequences E;, E;,... -)

Werequire one more definition. In Bernoulli trials a return to equilib-
rium [example (1.a)] can occur only at an even-numberedtrial. In this

case fons = Uony1 = 0, and the generating functions F(s) and U(s)

are powerseries in s? rather than s. Similarly, in example (1.c) if 4 is
an integer, 6 can occur at the nth trial only if n is a multiple of 4 +1. We
express this by saying that & is periodic. In essence periodic recurrent
events differ only notationally from non-periodic ones, but every theorem
requires a special mention of the excepiional periodic case. In other words,
periodic recurrent events are a great nuisance without redeeming features

of interest.

Definition 3. The recurrent event & is called periodic if there exists an

integer 24> 1 such that 6 can occur only at trials number A, 2A, 3A,...

(i.e., u, = 0 whenever n is not divisible by 4). The greatest 4 with this

property is called the period of 6.

In conclusion let us remark that in the sample spaceofinfinite sequences
E;,, E;,» ... the numberoftrials between the (r—1)st and the rth occur-

rence of & is a well-defined random variable (possibly a defective one),
having the probability distribution of our T,. In other words, our
variables T, really stand for the waiting times between the successive

occurrences of & (the recurrence times). We have defined the T, analyti-
cally in order not to refer to sample spaces beyond the scope ofthis
volume, but it is hoped that the probabilistic background appearsin all

its intuitive simplicity. The notion of recurrent events is designed to

3 In the first edition the terms certain and uncertain were used, but the present

terminology is preferable in applications to Markov chains.
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reduce fairly general situation to sums of independent random variables.
Conversely, an arbitrary probability distribution {(f,}, n = 1,2,... may
be used to define a recurrent event. We provethis assertion by the

Example. Self-renewing aggregates. Consider an electric bulb, fuse,

or other piece of equipment with finite life span. As soon as the piece
fails, it is replaced by a new piece of like kind, which in due time is
replaced by a third piece, and so on. We assumethat the life span is a

random variable which ranges only over multiples of a unit time interval
(year, day, or second). Each time unit then represents a trial with possible

outcomes “‘replacement” and “no replacement.” The successive replace-
ments may betreated as recurrent events. If f, is the probability that a

new piece will serve for exactly n time units, then {f,} is the distribution
of the recurrence times. ‘Whenit is certain that the life spanis finite, then
>fn = 1 and the recurrent event is persistent. Usually it is known that

the life span cannot exceed a fixed number m, in which case the generating
function F(s) is a polynomial of a degree not exceeding m. In appli-

cations we desire the probability u, that a replacement takes place at
time n. This u, may be calculated from (3.1). Here we have a class of

recurrent events defined solely in terms of an arbitrary distribution {/,}.
The case f <1 is not excluded, 1 — f being the probability of an eternal

life of our piece of equipment. >

3. THE BASIC RELATIONS

Weadhere to the notations (2.1)-(2.4) and propose to investigate the
connection between the {f,} and the {u,}. The probability that 6
occurs forthe first time at trial number » and then again ata latertrial
n>» is, by definition, fu,_,. The probability that & occurs at the nth
trial for the first time is f,, =f,u%po. Since these cases are mutually ex-

clusive we have

(3.1) un = fiUn—1 + fotln—2 + _— + fro n = 1.

At the right we recognize the convolution {f,} * {u,} with the generating

function F(s) U(s). At the left we find the sequence {u,} with the term

Uy missing, so that its generating function is U(s) — 1. Thus U(s) —1 =

= F(s) U(s), and we have proved

Theorem 1. The generating functions of {u,} and {f,} are related by

1
(3.2) U(s) = 1—F() .
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Note. The right side in (3.2) can be expanded into a geometric series
> F"(s) converging for |s| <1. The coefficient f*) of s” in F(s) being
the probability that the rth occurrence of & takes place at the nth trial,
(3.2) is equivalent to

(3.3) Ur=fni tie too;
this expresses the obvious fact that if & occurs at the nth trial, it has
previously occurred 0,1,2,...,n—1 times. (Clearly ff = 0 for
r>n.)

Theorem 2. For 6. to be transient,it is necessary and sufficient that

(3.4) u=Su,

is finite. In this case the probability f that & ever occursis given by

(3.5) potol
u

 

Note. We can interpret u; as the expectation of a random variable
which equals 1 or 0 according to whether & does or does not occur at
the jth trial. Hence u,+u,+-°:++u, is the expected number of
occurrences of & in n trials,and u — 1 canbe interpreted as the expected
number of occurrences of & in infinitely manytrials.

Proof. The coefficients u, being non-negative, it is clear that U(s)
increases monotonically as s—1 and that foreach N

N ©

du, < lim Us) < Du, = u.
n=0 n=0sol

Since U(s)— (1 —f)? when f<1 and U(s)— oo when f= 1, the
theorem follows. >

The next theorem is of particular importance.4 The proof is of an

* Special cases are easily proved (see problem 1) and were knownfora long time. A
huge literature tried to improve on the conditions, but it was generally believed that
Somerestrictions were necessary. In full generality theorem 3 was proved by P. Erdés,
W.Feller, and H. Pollard, A theorem on powerseries, Bull. Amer. Math. Soc. vol. 55
(1949), pp. 201-204. After the appearance of thefirst editior it was observed by
K. L. Chung that the theorem could be derived from Kolmogorov’s results about the
asymptotic behavior of Markov chains. Many prominent mathematicians proved
various extensions of the theorem to different classes of probability distributions.
These investigations contributed to the methodology of modern probability theory.
Eventually it turned out that an analogue to theorem holdsfor arbitrary probability
distributions. For an elementary(if not simple) proof see X1,9 of volume 2.
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elementary nature, but since it does not contribute to a probabilistic
understanding we defer it to the end of the chapter.

Theorem 3. Let & be persistent and not periodic and denote by yu the
mean of the recurrence times T,, thatis,

(3.6) #= Dif =F)

(possibly 4 = 0). Then

(3.7) Un —> wo

as n—> © (u,—> 0 if the mean recurrence timeis infinite).

Therestriction to non-periodic & is easily removed. In fact, when &
has period 4 the series >f,s” contains only powers of s*. Let us call
a powerseries honestif this is not the case for any integer 2 > 1. Theorem
3 may then berestated to the effect, that if F is an honest probability
generatingfunction and U is defined by (3.2), then u,— 1/F’(1). Now if
& has period 4 then F(s1/+) is an honest probability generating function,
and hence the coefficients of U(s'/*) converge to 4/F’(1). We have thus

Theorem 4. Jf & is persistent and has period A then

(3.8) Un, — Alu

while u, = 0 for every k not divisible by 2.

4, EXAMPLES

(a) Successes in Bernoulli trials. For a trite example let & stand for

“success” in a sequence of Bernoulli trials. Then u, =p for n> 1,
whence

1 — 4s andtherefore F(s) = Bs(4.1) Us) = -— Tas  

by virtue of (3.2). In this special case theorem 2 merely confirms the

obvious fact that thewaiting times between consecutive successes have a

geometric distribution with expectation 1/p.
(b) Returns to equilibrium [example (1.a)]. At the kth trial the accumu-

lated numbersof headsand tails can be equal only if k = 2n is even, and
in this case the probability of an equalization equals

n n
(4.2) lan = (7") pra" = (—,*)4p
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From the binomial expansionII, (8.7) it follows therefore that

(4.3) U(s) =1

V1 = 4pqs?
and hence from (3.2)

(4.4) F(s) = 1 — V1 — 4pqs°.

A second application of the binomial expansion leads to an explicit
expression for f,,. (Explicit expressions for us, and fz, when p = 4 were
derived by combinatorial methods in III,2-3; the generating functions U

and F were found by other methods in XI,3. It will be noticed that only
the present method requires no/artifice.)

For s = 1 the square root in (4.4) equals |p — gj and so

(4.5) f=l—Ip-4dl.

Thus returns to equilibrium represent a recurrent event with period 2

which is transient when p # q, andpersistent in the symmetric case p = 4.
The probability of at least r returns to equilibrium equals /”.
When p = g =} the waiting time for the first return to equilibrium

is a proper random variable, but F’(1) = 00 and so the mean recurrence

time mw is infinite. (This follows also from theorem 4 and the fact that
u, — 0.) The fact that the mean recurrence timeis infinite implies that the

chance fluctuations in an individual prolonged coin-tossing game are far
removed from the familiar pattern governed by the normaldistribution.

The rather paradoxical true nature of these fluctuations was discussed in
chapter III.

(c) Return to equilibrium through negative values. In example (1.5) the

return to equilibrium was subject to the restriction that no preceding

partial sum S; waspositive. The distribution of the recurrence times for
this recurrent event is defined by

(4.6) Fan = P{S,, = 0, S, < 0, ry Son-1 < 0}

and, of course, f;,_, = 0. It does not seem possible to find these proba-
bilities by a direct argument, but they follow easily from the preceding ex-
ample. Indeed, a sample sequence (X,,..., X2,) satisfying the condition
in (4.6) contains n plus ones and n minus ones, and hence it has the same
probability as (—X,,..., —X,,). Now afirstreturn to equilibrium occurs

either through positive or through negative values, and we conclude that

these two contingencies have the same probability. Thus ff, = tfon
where {f,} is the distribution for the returns to equilibrium found in the

- preceding example. The generating function for our recurrence timesis
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therefore given by

 

(4.7) F-(s) = 4 — W1 — 4pqs°,

and hence

_ 2 1— _ 2(4.8) U-(s) = _icvi Spas
1+ J1 — 4pqs? 2pqs

The event & is transient, the probability that it ever occurs being
4+—i3|p—q|..z—2I1P —4|

(d) Ladder variables. Thefirst positive partial sum can occurat the kth

trial only if kK = 2n +1 is odd. For the corresponding probabilities we
write

(4.9) Ponti = P{S, < 0, weg Son = 0, Sent = 1}.

Thus {¢,} is the distribution of the recurrent event of example (1.d). Now

the condition in (4.9) requires that X,,,,; = +1, and that the recurrent

event of the preceding example occurs at the 2nth trial. It follows that
Pont = P* Uap. With obvious notations therefore

— J1 —Apgs?4pqs”

2qs

This is the generating function for thefirst-passage times found in XI,(3.6).
An explicit expression for ¢,,;, follows from (4.10) using the binomial
expansion II,(8.7). This expression for ¢),,; agrees with that found by

combinatorial methods in theorem 2 ofIII,7.

(e) Geiger counters. Inexample (1.g) the counter remainsfree if no

registration takes place at epoch 1. Otherwise it becomes locked andis
freed again at epoch r+ if no particle arrives at that epoch; the
counter is freed at epoch 2r +1 if a particle appears at epoch r + 1,

but none at epoch 2r +1, and so on. Thegenerating function of the
recurrence timesis therefore given by

(4.10) O(s) = psU(s) =

qs

1 — ps’
 (4.11) qs + qps’™* + gp’s*) +--+ =

(See also problems 7-9.)
(f) The simplest queuingproblem [example (1.h)]. Here the server remains

free if no customerarrives at epoch 1. If a customerarrives there follows
a so-called “busy period” which terminates at the epoch when the counter
first becomes free. The generating function p(s) for the busy period was

derived in example XII,(5.c) using the methods of branching processes.
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It follows that in the present case the generating function of the recurrence
times is given by gs + psp(s), in agreement with XII,(5.7).

(g) Ties in multiple coin games. We conclude with a simple example
showing the possibility of certain conclusions without explicit knowledge
of the generating functions. Let r>2 be an arbitrary integer and
consider a sequence of simultaneous independent tosses of r coins. Let
& stand for the recurrent event that a// r coins are in the samephase (that
is, the accumulated numbers of heads are the samefor all r coins). The
probability that this occurs at the nth trial is

iy wel(le (Je + (1)
On the right we recognize the terms of the binomial distribution with
= 4, and from the normal approximation to the latter we conclude

easily that for each fixed r as n— ©

br ,
(4.13) tt, ~ (=) y etritin

ITH

(the summation extending overall integers j between —4n and 4n).
But by the very definition of the integral

+ 00 _—

(4.14) 2/2 etrtin [ ote" de = Jn
nj —o

and hence we conclude that

3(r—1)

(4.15) ly, ~ =-(=) |
, Jr\7n

This implies that }'u, diverges when r < 3, but converges when r > 4.
It follows that & is persistent when r <3 but transient if r > 4. Since

u,0 the mean recurrence time is infinite when r < 3. (Compare
problems 2 and3.) >

5. DELAYED RECURRENT EVENTS.

A GENERAL LIMIT THEOREM

We shall now introduce a slight extension of the notion of recurrent

events which is so obvious that it could pass without special mention,

except that it is convenient to have a term for it and to have the basic

equations on record.
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Perhaps the best informal description of delayed recurrent eventsis
to say that they refer to trials where we have “missed the beginning and
start in the middle.” The waiting time up to the first occurrence of §
has a distribution {b,} different from the distribution {Sn} of the
recurrence times between the following occurrences of & The theory
applies without change except that thetrials following each occurrence
of & are exact replicas of a fixed sample space whichis notidentical with
the original one.
The situation being so simple, we shall forego formalities and agree

to speak of a delayed recurrent & when the definition of recurrent events
applies only if the trials leading up to the first occurrence of & are disre-
garded,it is understood that the waiting time up to the first appearance of
& is a random variable independent of the following recurrence times,
althoughits distribution {b,} may be differentfrom the commondistribution
{f,,} of the recurrence times.

Wedenote by v, the probability of the occurrence of & at the nth trial.
To derive an expression for v, we argue as follows. Suppose that &
occurs at trial number k <n. Relative to the subsequent trials &
becomesan ordinary recurrent event and so the (conditional) probability
of a renewed occurrence at the nth trial equals u,_,. Now if & occurs at
the nth trial this is either its first occurrence, or else the first occurrence
took place at the kth trial for some k <n. Summingoverall possibilities
we get

(3.1) Un = by + Dy_aty + Dy_gllg H+ + + Dyas + dou.

Weare thus in possession of an explicit expression for v,. [For an alter-
native proof see example (10.a).] The relations (5.1) may be rewritten in
the compact form of a convolution equation:

(5.2) {On} = {b,} * {un}.

This implies that the corresponding generating functions satisfy the
identity

B(s)
(5.3) V(s) = B(s)U(s) = Fs) .

Example. (a) In the Bernoulli trials considered in examples (4.a)-(4.d)

the event S, = 1 is a delayed recurrent event. The waiting time forits
first occurrence has the generating function ® of (4.10); the recurrence
times between successive occurrences of {S, = 1} have the generating

function F of the returns to equilibrium [see (4.4)]. Thus in the present

case V = O/(1—F). >
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It is easy to show that the asymptotic behavior of the probabilities v,,

is essentially the same as that of u,. To avoid trivialities we assume that
& is not periodic.® We knowfrom section 3 thatinthis case u, approaches
a finite limit, and that } u, < oo if, and only if, & is transient.

Theorem 1. Jf u,—o@ then

(5.4) v, > bw where b= > b, = B(1).

If > u, =u < © then

(5.5) > v, = bu.

In particular, v,— uwif & is persistent.

Proof. Let r, = by41 + Oye +°°*. Since u, <1 itis obvious from

(5.1) that for n >k

(5.6) Bon +t + One S Un S Oly Ht A Oyty_g Hye

Choose k so large that r,<«. For n sufficiently large the leftmost
memberin (5.6) is then greater than bw — 2«, whereas the rightmost
member is less than bw + 2. Thus (5.4) is true. The assertion (5.5)

follows either by summing(5.1) over n, or else from (5.3) on letting s = 1.
>

Weturn to a general limit theorem of wide applicability. Suppose that

there are denumerably many possible states E), £,,... for a certain
system, and that the transitions from one state to another depend on a
chance mechanism of some sort. For example, in the simple queuing
process (1.h) we say that the system is in state E, if there are k customers
in the queue, including the customer being served. A problem involving

seventeen servers may require eighteen numbersto specify the state of the
system, but all imaginable states can still be ordered in a sequence
E,, E,,.... We need not consider how this is best done, because the

following theorem does not lead to practical methods for evaluating

probabilities. It is a pure existence theorem showingthat a steady state
exists under most circumstances encountered in practice. This is of

conceptual interest, but also of practical value because, as a rule, mathe-

matical analysis of a steady state is much simpler than the study of the

time-dependent process.
‘I We suppose that for n = 1,2,... andeveryn-tuple (r,,...,7,) there

exists a well-defined probability that the states of the system at epochs

5 Periodic recurrent events are covered by theorem 10.2. For a different proof of

theorem 1 see example (10.a).
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0,1,...,2—1 are represented by (£,,; Lay E,.). Weshall not intro-

duce any particular assumptions concerning the mutual dependence of

these events or the probabilities for the transitions from one state to
another. For simplicity we consider only the probabilities p‘” that at
epoch n_ the system is in state E,. (It will be obvious how the theorem

generalizes to pairs, triples, etc.) The crucial assumption is that there

exists some recurrent event & connected with our process. For example,

in the queuing process (1.h) the state E, represents such a recurrent event.
In this case, if & were transient there would exist a positive probability
that the queue does not terminate. This would imply that soonerorlater
we would encounter an unending queue, that is, a queue of indefinitely

increasing size. This is a limit theorem of some sort showing that such
servers are impossible in practice. This example should explaintherole of

the condition that & be persistent. (The non-periodicity is introduced
only to avoid trivialities).

Theorem 2. Assume that there exists a non-periodic persistent(possibly
delayed) recurrent event & associated with our process. Then as n— oo

(5.7) ps” > p”

where

(5.8) > p” = 1

if the mean recurrence time y is finite, and p) = 0 otherwise.

Proof. Every time when & occurs the process starts from scratch.
There exists therefore a well-defined conditional probability g‘that if
& occurs at some epoch, the state E, occurs n time units later and before
the next occurrence of & (here n=0,1,...). For delayed recurrent

events we require also the probability y‘") that E, occurs at epoch n
before the first occurrence of & (Clearly y' = gif & is not delayed.)

Let us now classify the ways in which E, can occur at epoch n accord-

ing to the last occurrence of & before epoch n. First, it is possible that
& did not yet occur. The probability for this is y‘"). Or else there exists
a k <n such that & occurred at epoch k but not between k and n.
The probability for this is v,g‘’,. Summing over all mutually exclusive
cases wefind

(5.9) Pe =P + By + Bead, to + 80m
(Here we adhere to the notations of theorem 1. For delayed events

vy = 0; for non-delayed events v, =u, and y‘7) = g‘?).)
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The relation (5.9) is analogousto (5.1) except for the appearance ofthe

term yonthe right. This quantity is obviously smaller than the proba-
bility that & did not occur before epoch n, and 6& being persistentit
follows that y’")>+0 as n-—> co. For the remaining terms we can apply

theorem 1 with the notational change that u, is replaced by v, and b,

by g‘”. Since & is persistent v, — uw! andit follows that

(5.10) pywrygn

This proves the existence of the limits (5.7). To prove that they add to
unity note that at any epoch the system is in some state and hence

eo

(5.11) Dd Bn = Sn
r=0

is the probability that a recurrence time is >n, thatis,

En =f, + frst + “°

Thus

(5.12) Sp? =15¢,=1
‘ r=0 LE n=0

by XI, (1.8). >
[The limit theorem in example (10.5) may be treated as a special case

of the present theorem.]

6. THE NUMBER OF OCCURRENCES OF é

Up to now we havestudied a recurrent event & in terms of the waiting
times between its successive occurrences. Often it is preferable to consider
the number n oftrials as given and to take the number N,, ofoccurrences

of & in the first n trials as basic variable. We shall now investigate the
asymptotic behaviorofthe distribution of N, for large n. For simplicity

we assume that & is not delayed. °
As in (2.8) let T‘” stand for the numberoftrials up to and including

the rth occurrence of & The probability distributions of T” and N,

are related by the obvious identity

(6.1) PIN, > r} = P{T” <n}.

Webegin with the simple case where & is persistent andthe distribution

{f,} of its recurrence times has finite mean yw and variance o?. Since

T’ is the sum of r independentvariables, the central limit theorem of
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X,1 asserts that for each fixed x as r> ©

(6.2) p>Te “| > N(x)alr
where (x) is the normal distribution function. Now let n— co and

r— co in such a waythat

6.3 AOE og:
6.3) o,/r

then (6.1) and (6.2) together lead to

 

(6.4) | P{N,, > r} > Nz).

To write this relation in a more familiar form we introduce the reduced

variable

(6.5) N*, =(uN, — ne .
on

The inequality N, > is identical with

(6.6) Nip eat[ie —2|tH.
o,/r n n.

Ondividing (6.3) by r it is seen that n/r — u, and hence the right side in
(6.6) tends to —z. Since M(—zx) = 1 — Nix) it follows that

(6.7) P{N* > —x} > R(x) or P{N* < —z} +1 — Ra),

and we have proved the

Theorem. Normal approximation. If the recurrent event & is persistent
andits recurrence times havefinite mean ye and variance o*, then both the
number Tof trials up to the rth occurrence of & and the number N,,

of occurrences of & in the first n trials are asymptotically normally

distributed as indicated in (6.2) and (6.7).

Note that in (6.7) we have the central limit theorem applied to a
sequence of dependent variables N,. Its usefulness will be illustrated in

the next section by an application to the theory of runs.

The relations (6.7) make it plausible that

(6.8) E(N,) ~n/u, “Var (N,) ~ no®/u!

where the sign ~ indicates that the ratio of the two sides tends to unity.
To prove (6.8) we note that N, is the sum of n (dependent) variables Y,
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such that Y, equals one or zero according as & does or does not occur
at the Ath trial. Thus E(Y,) = u, and

(6.9) K(N,,) = uy + Up + °° + Uy.

Since u,—> “— this implies the first relation in (6.8). The second follows by
a similar argument (see problem 20).

Unfortunately surprisingly many recurrence times occurring in various
stochastic processes and in applications have infinite expectations. In such
cases the normal approximationis replaced by more generallimit theorems
of an entirely different character,® and the chance fluctuations exhibit
unexpected features. For example, one expects intuitively that E(N,,)
should increase linearly with n “because on the average & must occur
twice as often in twice as manytrials.’ Yet this is not so. An infinite mean
recurrence time implies that u, —0, and then E(N,)/n — 0 by virtue of

(6.9). This meansthat in the long run the occurrences of 6 becomerarer

and rarer, and this is possible only if some recurrence times are fantasti-

cally large. Two examples may show how pronounced this phenomenon
is apt to be.

Examples. (a) When & stands for a return to equilibrium in a coin-

tossing game [example (4.5) with p = 3] we have u,, ~ 1/Vxn, and (6.9)

approximates an integral for (7x)-?; this implies E(N2,,) ~ 2,/njm.
Thus the average recurrence time up to epoch is likely to increase as

V/n. The curious consequencesof this were discussed at length in chapterIII.

(b) Returning to example (4.g) consider repeated tosses of r = 3 dice
and let & stand for the event that all three coins are in the same phase.

2
We saw that & is a persistent recurrent event, and that u, ~V-an’

“7M
Thus K(N,,) increases roughlyas log n and so the average of the recurrence
times up to epoch n islikely to be of the fantastic magnitude n/logn. »

*7, APPLICATION TO THE THEORY OF
SUCCESS RUNS

In the sequel r will denote a fixed positive integer and & will stand
for the occurrence of a success run oflength r in a sequence of Bernoulli
trials. It is important that the length of a run be defined as stated in

* Sections 7 and 8 treat a special topic and may be omitted.
6 W. Feller, Fluctuation theory ofrecurrent events, Trans. Amer. Math. Soc., vol. 67

(1949), pp. 98-119.
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example (1.e), for otherwise runs are not recurrent events, and the calcu-

lations become more involved. As in (2.1) and (2.2), u, is the probability
of & at the nth trial, and f,, is the probability that thefirst run oflength r

occurs at the nth trial.
The probability that the r trials number n,n — 1,n —2,...,.2-—r+1

result in success is obviously p’. In this case 6 occurs at one amongthese

r trials; the probability that & occurs at the trial number n —k
(kK =0,1,...,7—1) and the following & trials result in & successes
equals u,_,p*. Since these r possibilities are mutually exclusive, we get

the recurrence relation’

(7.1) Un + Upap +o? + Uppp”> =p"

valid for n>r. Clearly

(7.2) Uy = Ug = +++ [= U, = O, Uy = 1.

On multiplying (7.1) by s” and summing over n =r, r+l1, r+2,...,

we get on theleft side

(7.3) {U(s) — 1}+ps+p?s?+ +++ ptist)

and ontheright side p’(s"+s7+!4- ---). The two series are geometric, and

we find that

(7.4) (u(s) — 1):LEes
1 — ps 1—s

or

(7.5) U(s) =+
 (1—s\(1—p's’) |

From (3.2), we get now the generatingfunction of the recurrence times:

(76) F(s) = PSU =P) = Ps a,
1—s+qp'’s** 1—qsi+pst+-:-: +p" ’s’~)

The fact that F(1) = 1 shows that in a prolonged sequence oftrials
the number of runs of any length is certain to increase over all bounds.
The mean recurrence time j could be obtained directly from (7.1) since
we know that u, —- u~1. Since we requirealso the variance,it is preferable

7 The classical approach consists in deriving a recurrence relation for f,. This

methodis more complicated and does not apply to,say, runs ofeither kind or patterns

like SSFFSS, to which our method applies without change [cf. example (8.c)].
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to calculate the derivatives of F(s). This is best done by implicit differ-
entiation after clearing (7.6) of the denominator. Aneasy calculation then
showsthat the mean and variance of the recurrence times of runs of length
r are

1—p’ 1 2r+1(7.7) w= p 2 Y

 

respectively. By the theorem of the last section for large n the number
N, of runs of length r produced in n trials is approximately normally

TABLE 2

MEAN RECURRENCE TIMES FOR SUCCESS RUNS IF TRIALS

ARE PERFORMED AT THE RATE OF ONE PER SECOND

 

 

Length of Run p = 0.6 p = 9.5 (Coins) Pp =% (Dice)

r= 5 30.7 seconds 1 minute 2.6 hours

10 6.9 minutes 34.1 minutes 28.0 months

15 1.5 hours 18.2 hours 18,098 years
20 19 hours 24.3 days 140.7 million years

 

distributed, that is, for fixed « < 6 the probability that

(7.8) Ran| <N, <2 + Ar[2
ps ps ps ps

tends to M(B) — Ma). This fact was first proved by von Mises, by rather
lengthy calculations. Table 2 gives a few typical means of recurrence
times.
The method of partial fractions of XI, 4, permits us to derive excellent

approximations. The second representation in (7.6) shows clearly that
the denominator has a unique positive root s =x. For every real or

complex number s with |s| <2 we have

(7.9) Igs(1 +pst+ eee +p"1s7-)| < gx(1 +-px+ ace +p"12"-1) = |

where the equality sign is possible only if all terms on the left have the
same argument, that is, if s =. Hence x is smaller in absolute value
than any other root of the denominator in (7.6). We can, therefore, apply
formulas (4.5) and (4.9) of chapter XI with s, = 2, letting U(s)=

= p’s(1—ps) and V(s) = 1 — s + gp’s"*?. Wefind, using that V(x) = 0,

_ (@=d=pe)1
(7.10) Fin (r+1—rx)q gt .
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The probability of no run in nv trials is q, =fpii t fare thos t°°°
and summing the geometricseries in (7.10) we get

(7.11) q,~—ae
(r-1—ra)q xt?

Wehave thus found that the probability of no success run of length r

in n trials satisfies (7.11). Table 3 shows that the right side gives sur-
prisingly good approximations even for very small n, and the approxi-
mation improvesrapidly with n. This illustrates the power of the method

of generating function andpartial fractions.

TABLE 3

PROBABILITY OF HAVING No Success RUN OF LENGTH

r =2 IN n TRIALS WITH p = $
 

 

n Gn Exact From (7.11) Error

2 0.75 0.76631 0.0163

3. 0.625 0.61996 0.0080

4 0.500 0.50156 0.0016

5 0.40625 0.40577 0.0005

Numerical Calculations. For the benefit of the practical-minded reader we use this

occasion to showthat the numerical calculations involvedin partial fraction expansions

are often less formidable than they appearat first sight, and that excellent estimates of

the error can be obtained.

The asymptotic expansion (7.11) raises two questions: First, the contributionof

the r — 1 neglected roots must be estimated, and second, the dominant root x must

be evaluated.

The first representation in (7.6) shows that all roots of the denominator of F(s)
satisfy the equation

(7.12) s=1 + p's,

but (7.12) has the additional extraneous root s = pl. For positive s the graph of
f(s) =1 + qp’s’** is convex; it intersects the bisector y= s at x and p™’ and in

the interval between x and p~) the graph lies below the bisector. Furthermore,

fp) = (r+1)q. If this quantity exceeds unity, the graph of f(s) crosses the bisector
at s =p from below, and hence p-! > x. To fix ideas we shall assume that

(7.13) (r+1)q > 1;

in this case  < p“!, and f(s)<s for <5 < p71. It follows that for all complex

numbers s such that x < |s| < p-! we have | /(s)| < f(|s|) < |s| so that no root s,
can lie in the annulus 2 < |s| < p-!. Since 2 was chosen as the root smallest in
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absolute value, this implies that

(7.14) [sz] > pu? when Ss, ¥% &.

By differentiation of (7.12) it is now seen that all roots are simple.

The contribution of each root to qg, is of the same form as the contribution (7.11)
of the dominant root x, and therefore the r — 1 terms neglected in (7.11) are of the

form

Psxr—- 1 1
wl A, = ——————_ ' —..(7-15) TsO FD geet

Werequire an upper boundfor the first fraction on the right. For that purposenote that

for fixed s > p> (r+ Ir?

| pse® —1 < pst
7.16 . :

(7.16) lrse® —(r +1) rs trtl’
 

in fact, the quantity on the left obviously assumes its maximum and minimum for
6=0 and @=~7, anda direct substitution shows that 0 corresponds to a minimum,

a to a maximum. In view of (7.13) and (7.14) we have then

2p"*t 2p"*?

717 A, .
( ) | I< Gi py Sd tp

 

Weconclude that in (7.11) the error committed by neglecting the r — 1 roots different

from «x is less in absolute value than

2(r — l)p
1 —_———...

(7-18) rq+ p)

The root 2 is easily calculated from (7.12) by successive approximations putting
% = 1 and z,,, =f(a,). The sequence will converge monotonically to z, and each
term provides a lower bound for x, whereas any value s such that s > f(s) provides
an upper bound. It is easily seen that

(7.19) a2=1+9p'+(r+1@gpy?+---.

*8. MORE GENERAL PATTERNS

Our methodis applicable to more general problems which have been

considered as considerably more difficult than simple runs.

Examples. (a) Runs of either kind. Let & stand for “either a success
run oflength r or afailure run of length p’’ [see example (1.f)]. We are

dealing with two recurrentevents 6, and &, where &, standsfor “‘success
run of length r” and &, for “failure run of length p” and & means
“either 6 or &. To &, there corresponds the generating function (7.5)

which will now be denoted by U,(s). Thecorresponding generating function

* This section treats a special topic and may be omitted.
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U,(s) for & is obtained from (7.5) by interchanging p and q andre-
placing r by p. The probability u, that § occurs at the nth trial is the
sum of the corresponding probabilities for 6, and &, except that uy = 1.
It follows that

(8.1) U(s) = U,(s) + Us) — 1.

The generating function F(s) of the recurrence times of § is again
F(s) = 1 — U-\s) or

(8.2) F(s) = (1—ps)p’s"(1—q?s?) + (1—qs)q’s?(1— p's’)
1l—s +. qp’s™*} + pq?s?t! _ p'gestt?

The mean recurrence time follows by differentiation

qp" + pq’ — pq?

As p-> ©, this expression tends to the mean recurrence time of success
runs as given in (7.7).

(5) In VIII,1, we calculated the probability x that a success run of
length r occurs before a failure run of length p. Define two recurrent
events 6 and &asinexample (a). Let x, = probability that 8, occurs
for the first time at the mth trial and no &, precedes it; f, = probability
that & occurs for the first time at the nth trial (with no condition on &,).
Define y, and g, as x, and f,, respectively, but with 6 and &,
interchanged.
The generating function for f, is given in (7.6), and G(s) is obtained

by interchanging p and q and replacing r by p. For x, and y, we
have the obviousrecurrencerelations

(8.4) / Ln =fn — (Wifratyefno2t “se +Ynafi)

Yn, = En — (218nrt%2Ln-2+ oe. +2,_121).

They are of the convolution type, and for the corresponding generating
functions we have, therefore,

(8.5) X(s) = F(s) — Y(s)F(s)

Y(s) = G(s) — X(s)G(s).

From these two linear equations we get

(8.6) X(s) =— _ Gs){l —F(s)}
1 — F(s)G(s) ’ M9) = FOG) |
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Expressions for x, and y, can again be obtained by the method of

partial fractions. For s=1 we get X(1) => 2, = 2, the probability
of &, occurring before &. Both numerator and denominator vanish,

and X(1) is obtained from L’Hospital’s rule differentiating numerator

and denominator: X(1) = G’(1)/{F’(1) + G/(1)}. Using the values

F'(1) = (1—p’)/qp’ and G'‘(1) = (1—q?)/pq? from (7.7), we find X(1)
as given in VIII,(1.3).

(c) Consider the recurrent event defined by the pattern SSFFSS.
Repeating the argument of section 7, we easily find that

(8.7) Pe? =U, + Pp*q?Un—4 + p?q?un_s.

Since we know that u,—1 we get for the mean recurrence time
B=ptq*+p?+p. For p=gq=%4 we find ~=70, whereas

the mean recurrence time for a success run of length 6 is 126. This shows
that, contrary to expectation, there is an essential difference in coin tossing
between head runs and other patterns of the same length. >

9. LACK OF MEMORY OF GEOMETRIC
WAITING TIMES

The geometric distribution for waiting times has an interesting and
important property not shared by any other distribution. Consider a
sequence of Bernoulli trials and let T be the numberoftrials up to and
including the first success. Then P{T > k} = q*. Suppose we knowthat
no success has occurred during the first m trials; the waiting time T
from this mth failure to the first success has exactly the samedistribution

{g*} and is independent of the numberof preceding failures. In other
words, the probability that the waiting time will be prolonged by k always
equals the initial probability of the total length exceeding k. If thelife
span of an atom ora piece of equipmenthas a geometric distribution, then
no aging takes place; as long asit lives, the atom has the same probability

of decaying at the next trial. Radioactive atomsactually have this property
(except that in the case of a continuous time the exponential distribution
plays the role of the geometric distribution). Conversely,if it is known that

a phenomenonis characterized by a complete lack of memory oraging,
then the probability distribution of the duration must be geometric or
exponential. Typical is a well-known type of telephone conversation often
cited as the model of incoherence and depending entirely on momentary
impulses; a possible termination is an instantaneous chance effect with-
out relation to the past chatter. By contrast, the knowledge that no
streetcar has passed forfive minutes increases our expectation that it will
come soon. In cointossing, the probability that the cumulative numbers of
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heads andtails will equalize at the secondtrial is $. However, given that
they did not, the probability that they equalize after two additionaltrials
is only 4. These are examples for aftereffect.

For a rigorous formulation of the assertion, suppose that a waiting
time T assumesthe values 0, 1, 2,... with probabilities po, pi, Ps... ..

Let the distribution of T have the following property: The conditional
probability that the waiting time terminates at the kth trial, assuming that
it has not terminated before, equals po (the probability at the first trial).
We claim that p, = (1—po)*po, so that T has a geometric distribution.

For a proof we introduce again the “tails”

Ve = Puri + Pere + Pers + °° * = P{T > k}.

Our hypothesis is T >k —1, and its probability is 9,1. The con-
ditional probability of T = k is therefore p,/q,_1, and the assumptionis
that for all k > 1

(9.1) Pk — p,.
Qx-1

Now Px = 9x-1 — 9x, and hence (9.1) reduces to

(9.2) te ~1_p,
Wn-1

Since gy = pPi-+ po +°** = 1 — po, it follows that g, = (1—po)**}, and
hence py = 9-1 — J, = (1 — po)*po, as asserted. >

In the theory of stochastic processes the described lack of memory
is connected with the Markovian property; we shall returnto it in XV,13.

10. RENEWAL THEORY

The convolution equations which served as a basis for the theory of
recurrent events are of much wider applicability than appears in the
foregoing sections. We shall therefore restate their analytic content in
somewhatgreater generality and describe the typical probabilistic renewal
argument as well as applications to the study of populations of various
sorts.
Westart from two arbitrary sequences? fi,fz,... and bo, b,,... of

real numbers. A new sequence vo, v,,... may then be defined by the

® We put fo = 0. It is clear from (10.1) that the case 0 < fj < 1 involves only the
change of notations, replacing f, by f, | (1 — fo) and b, by &:| (1 — fo).
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convolution equations

(10.1) Un = On +fn +feUn-z to +Sfpvo-

These define recursively vo, ¥;, v2,... andsothe v, are uniquely defined
under any circumstances. Weshall, however, consider only sequences
satisfying the conditions®

(10.2) f,20, f= dhIr< %; 6,20, b= Xb, < 0.
n=1 n=0

In this case the v, are non-negative and the corresponding generating
functions mustsatisfy the identity

(10.3) V(s) = 2.
-1 — F(s)

The generating functions F and B converge at least for 0< s <1, and
so (10.3) defines a powerseries converging as long as F(s) < 1. Relations
(10.1) and (10.3) are fully equivalent. In section 3 we considered the

special case B(s)= 1 (with v, =u, for all n). Section 5 covered the

general situation undertherestriction f <1. In view of applications to
population theory we shall now permit that f> 1; fortunately this case
is easily reduced to the standard case f= 1.

Weshall say that the sequence {f,,} hasperiod A> 1 if f, =0 except
when n = kA isa multiple of 4, and A is the greatest integer with this
property. This amounts to saying that F(s) = F,(s*) is a powerseries in

s+, but not in s’* for any r> 1. We put again

(10.4) w= df, < 0

and adhere to the convention that u~is to be interpreted as O if uw = ©.

Theorem 1. (Renewal theorem.) Suppose (10.2) and that {f,} is not

periodic. .
(i) If f<1 then v,—0 and

X b
(10.5) Den = 1-f

(i) f f=1
(10.6) Un —> bur.

® The positivity off, is essential, but the convergenceof the twoseries is imposed only
for convenience. No general conclusion can be drawn if b = «© and f = 0, The

assertion (10.7) remains true when f= oo except that in this case F’(&) is not neces-
sarily finite, and (10.7) is meaningless if b = 00 and F’(£) = 0.
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(iti) Iff > 1 there exists a uniquepositive root ofthe equation F(é) = 1,
and

_ ©
eF(E)

Obviously & <1 and hencethe derivative F’(é) is finite; (10.7) shows
that the sequence {v,} behaves ultimately like a geometric sequence with
ratio41> 1.

(10.7) Eny

Proof. The assertions(i) and (ii) were proved in section 5. To prove
(iil) it suffices to apply the result (ii) to the sequences {f,¢"}, {b,é"}, and
{v,§"} with generating functions given by F(és), B(&s), and V(és),
respectively. >

We have excluded periodic sequences {/,} because they are of secondary interest.
Actually they present nothing new. Indeed, if {5,} and {fn} have the same period 4
then both B(s) and F(s) are powerseries in s+, and hence the sameis true of V(s).
Theorem 1 then applies to the sequences {Saat {5,4}, and {v,,} with generating
functions F(s’/4), B(s'/4), and V(s/4). When F(1) =1 it follows that v,, > bA/u.
Now the most general power series B can be written as a linear combination

(10.8) B(s) = Bos) + sBy(s) +--+ + s4-1By_.(s)

of A power series B; each of which involves only powers of s+. Introducingthis into
(10.3) and applying the result just stated shows the validity of

Theorem 2. Let (10.2) hold and suppose that {f,} has period 14> 1.

(i) If f <1 then (10.5) holds.

(ii) If f= 1 then for 7 =0,1,...,4—1 as n>

(10.9) Ungy; > AB()/u.

(iii) If f>1 then for 7 =0,1,...,A—1l asn>o

(10.10) Eua> AB(EI(EH).

In a great variety of stochastic processes it is possible to adapt the
argument used for recurrent events to show that certain probabilities
satisfy an equation of the convolution type like (10.1). Many important
limit theorems appear in this way as simple corollaries of theorem 1.
This approach has now generally supplanted clumsier older methods and
has become knownas renewal argument. Its full power appears only when
used for processes with a continuous time parameter, but the first two
examples mayserve as anillustration. For further examples see problems
8-9. An application of theorem 1 to a non-probabilistic limit theorem is
contained in example (c). The last two examples are devoted to practical
applications.
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Examples. (a) Delayed recurrent events. We give a new derivation of

the result in section 5 for a delayed recurrent event & with the distribution
{f;} for the recurrence times, and the distribution {b;} for the first

occurrence of & Let v, stand for the probability that & occurs at the
nth trial. We show that (10.1) holds. There are two ways in which &
can occurat the mth trial. The occurrence maybethefirst, and the proba-
bility for this is b,. Otherwise there wasa last occurrence of & before the

nth trial, and so there exists a number 1 <j <n suchthat & did occur

at thejth trial and the next time at the nth trial. The probability forthis is
v;fn—; The cases are mutually exclusive, and so

(10.11) Un = bn + Ofna + Vefn2a too + Onafi,

which is the same as (10.1). The generating function is therefore given
by (10.3) in agreement with the result in section 5. (Thoughtheresults
agree even formally, the argumentsare different: in section 5 the enumer-
ation proceeded according to the first appearance of & whereas the
present argument uses the last appearance. Both procedures are used in
other circumstances and sometimes lead to formally different equations.)

(b) Hittingprobabilities. Consider a sequenceoftrials with a proper (not
delayed) persistent recurrent event 6 Let » > 0 beaninteger. Suppose
that we start to observe the process only after the »th trial and that
weare interested in the waiting time for the next occurrence of 6 More
formally, for r = 1, 2,... denote by w,(r) the probability that the first

occurrence of & after the vth trial takes place at the (v+r)th trial. Thus
wr) =f, and w(0)=0. [The wr) are called hitting probabilities
because of their meaning in random walks. In other contexts it is more

natural to speak of the distribution of the residual waiting time com-
mencing at the th trial. Cf. example XV,(2.k).]

To determine these probabilities we use the standard renewal argument
as follows. It is possible that & occurs for the very first time at the
(v+r)th trial. The probability for this is f,,,. Otherwise there exists an

integer kK < v such that & occurredfor thefirst time at the kth trial. The
continuation of the process after the kth trial is a probabilistic replica of
the whole process, except that the original »th trial now becomes the
(v—k)th trial. The probability of our event is therefore f,w,_,(r), and

hence for each r > 0

(10.12) wir) = fore +fairer)

This equationis of the standard type (10.1) with b, = f,,,.. We are not
interested in the generating function but wish to describe the asymptotic

behavior of the hitting probabilities for very large ». This is achieved by
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theorem |. Put

(10.13) Pr = frst + frre + --

and recall from XI,(1.8) that the mean recurrence timesatisfies

(10.14) b=pt pte
If & is not periodic we conclude from theorem 1 that as » —> oo

P| 7 if w<o
(10.15) w,(r) >

0 if w=.

This result is of great interest. In the case of a finite mean recurrence
time it implies that {p,/u} is a probability distribution, and hence

we have a limit theorem of a standard type. If, however, u = oo the
probability tends to | that the waiting time will exceed any given integer r.

In other words, our waiting times behave much worse than the recurrence
times themselves. This unexpected phenomenon hassignificant conse-
quencesdiscussed in detail in volume 2. (See also problem 10.)

(c) Repeated averaging. The following problem is of an analytic
character and was treated in various contexts by much more intricate
methods. Suppose that ff +-::'+/f,=1 with f; >0. Given any r
numbers v,,...,v, wedefine fiv, + °°: + fv, as their weighted average.
We now define an infinite sequence 1, v2,... starting with the given
r-tuple and defining v, as the weighted average of the preceding r terms.

In other words, for n > r wedefine

(10.16) Un =fiWnrts > +far

Since the sequence /;, f2,... terminates with the rth term these equations
are of the form (10.1). We now define the 8, so that (10.1) will be true

for all n. This means that we put b) = vp = 0 and

(10.17) b, = Vy — fil_-1 _ere — fe-1¥1 k < r,

(For k >r, by definition 5, = 0.) Without any calculations it follows
from theorem | that with this repeated averaging the v, tend to a finite
limit. To calculate the limit we have to evaluate b= 6,+-°-+46,.
With the notation (10.13) for the remainders of >f, it is obvious from

(10.17) and (10.6) that

V{Pr1 + oe + U,Po
10.18 Ux .

( fitAt-- +r,
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For example, if r = 3 and one takes arithmetic means, then A=h=

=f; = 34 and

(10.19) Vy —> §(V1+2094 303).

The ease with which we derived this result should not obscure the fact
that the problem is difficult when taken out of the present context. (For
an alternative treatment see problem 15 of XV,14.)

TABLE 1

ILLUSTRATING THE DEVELOPMENT OF THE AGE DISTRIBUTION

IN A POPULATION DESCRIBED IN EXAMPLE (10.d)
 

 

n: 0 1 2 3 4 5 6 7 co

k=0 500 397 411.4 412 423.8 414.3 417.0 416.0 416.7
1 320 400 317.6 329.1 329.6 339.0 331.5 333.6 333.3
2 74 148 185 146.9 152.2 152.4 156.8 153.3 154.2
3 100 40 80 100 719.4 82.3 82.4 84.8 83.3
4 6 15 6 12 15 ° 11.9 12.3 12.4 12.5
 

The columns give the age distribution of a population of N= 1000 elements at epochs
n=0,1,...,7 together with the limiting distribution. The assumed mortalities are-1°

frp=0.20;  fo=043;  fg=0.17; fy=O017; fe = 0.03,

so that no piece effectively attains age 5.

(d) Self-renewing aggregates. We return to the example of section 2
where a piece of equipment installed at epoch n has a lifetime with
probability distribution {f,}. Whenit expires it is immediately replaced
by a new piece of the same character, and so the successive replacements
constitute a persistent recurrent event in a sequence of dependenttrials
(whose outcomes decide whether or not a replacementtakes place).

Suppose now that the piece of equipmentinstalled at epoch 0 has an
age k rather than being new. This affects only the first waiting time, and
so & becomesa delayed recurrent event. To obtain the distribution {b,}
ofthe first waiting time note that 5, is the (conditional) expectation that

a piece will expire at age n + k given thatit has attained age k. Thusfor

k>1

(10.20) Dn = Sstle where ry = fesit fore t°*°

In practice oneis not interested in a single piece of equipment but in a
whole population (say the street lamps in a town). Suppose then that the

initial population (at epoch 0) consists of N pieces, among which B, have

10 The roots of the equation 1 — F(s)=0 are 1, —$, —5, and +27. The mean
recurrence time is 2.40.
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age k (where > 8, = N). Each piece originates a line of descendants
which may require a replacement at epoch n. The expected number v,,
of all replacements at epoch n obviously satisfies the basic equations
(10.1) with

(10.21) bn = > Bifnselte-

Wehavehere the first example where v, is an expectation rather than
a probability; we know only that v, < N.

Aneasy calculation shows that b = > b, = N, and so theorem | shows
that v,— N/u provided that the replacements are not periodic. This
result implies the existence of a stable limitfor the age distribution. In fact,
for a piece to be of age k at epoch n it is necessary and sufficient that it

wasinstalled at epoch n — k and that it survived age k. The expected
numberof such pieces is therefore v,_,r, and tends to Nr,/m as n— oo.
In other words, as time goes on the fraction of the population of age k
tends to r,/u. Thus the limiting age distribution is independent of the initial
age distribution and depends only on the mortalities f,. A similar result
holds under much wider conditions. For a numerical illustration see

table 1. It reveals the noteworthy fact that the approach to the limit is not
monotone. (See also problems 16-18.)

(e) Human populations. For an example where f= > f, > 1 we use
the simplest model of a humanpopulation. It is analogous to the model
in the preceding example except that the population size is now variable
and female births take over the role of replacements. The novel feature
is that a mother may have any number of daughters, and hence herline
may becomeextinct, but it may also increase in numbers. We now define
J, the probability, at birth, that a mother will (survive and) at age n give
birth to a female child. (The dependence on the numberandthe ages of
previouschildren is neglected.) Then f= >f,, is the expected numberof

daughters and so ina healthy populationf > 1. Theorem | then promises
a population size that increases roughly at the constant rate &, and the
age distribution of the population tends to a limit as described in the
preceding example. The model is admittedly crude but presents never-
theless some practical interest. The curious dependence of the limiting

behavior & wascertainly not predictable without a proper mathematical
analysis. >

*11. PROOF OF THE BASIC LIMIT THEOREM

In section 3 we omitted the proof of theorem 3 which we nowrestate as
follows: Let fi, f2,... be a sequence of numbers f,, >0 such that

* This section is not used in the sequel.
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dfn = 1 and 1 is the greatest common divisor of those n for which
tn > 9. Let uy =1 and

(11.1) Un = fitn-1 + foUn_2 + “Te + firtlos , n = I.

Then

(11.2) U,—> where w= > nf,
n=1

(u! being interpreted asO when = ©).

In order not to interrupt the argument we preface the proof by two
well-known lemmasthat are widely used outside probability.

Let A betheset of all integers n for which f, > 0, and denote by
At theset of all positive linear combinations

(11.3) Pity ++ + p,G,

of numbers a,...,a, in A (the p, are positive integers).

Lemma 1. There exists an integer N such that A+ contains all
integers n> N.

Proof. Asis known from Euclid,the fact that 1 is the greatest common
divisor of the numbers in A meansthat it is possible to choose integers
a,,...,a, in A and (not necessarily positive) integers c; such that

(11.4) Ca, + °° +c¢a,= 1.

Put s=a,+-:°:+a,. Every integer n admits of a unique representa-
tion n = xs + y where x and y are integers and 0<y<-s. Then

(11.5) n =>(e+ey)a,
k=1

andall the coefficients will be positive as soon as x exceeds y times the
largest among the numbers|c,|. >

Lemma 2. (Selection principle.) Suppose that for every integer v > 0
we are given a sequence of numbers zi”), z{”,... such that 0< 2) <1.
Then there exists a sequence v™, v),...—» co such thatas » runs through

it, 2”) tends to a limit for every fixed k.

Proof!! Choose an increasing sequence »{?, 79)... such that as
y runs through it z{”) converges toa limit z,. Out of this sequence choose

11 The proofis based on the so-called diagonal method due to G. Cantor (1845-1918).

It has become a standard tool but was shockingly new in Cantor’s time.
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a subsequence v\”, y,... such that as » runs through it 2?) > z,.
Continuingin this way we get for each n a sequence of integers »/”) — oo
such that as » runs through it 2)» z,, and each »{) is an element of

the preceding sequence {y'"D}, Finally, put v =o, Let r>n.

Except for the first n terms every element v‘") appears in the sequence

yim), yi). .., and hence z’)»z, as vy runs through the sequence
yd, 2), >

Lemma3. Let {w,} (7 =0, +1, +2,...) be adoubly infinite sequence

ofnumbers such that 0 < w, <1 and

(11.6) w,= > fiWn—x
k=1

for each n. If wy =1 then w, =1 forall n.

Proof. Since

k=1 k=1

the condition wy = 1 requires that the two series agree termwise, and so
for each k either f, =0 or else w_,=1. This means that w_,=1
for every integer a of A. But then the argument used for n = 0 applies
also with n = —a, and weconcludethat w_,_, = 1 wheneverthe integers
a and 6 arein A. Proceeding by induction we conclude that w_,, = 1
for every integer in At, and hence w_,,=1 forevery m > N. But this
implies that for n = —N theright side in (11.6) equals 1 andso w_y = 1.

Letting n = —N + 1 wefindinlike manner w_y,,; = 1, and proceeding
in this way wefind by induction that w, = 1 forall x. >

Proof of the theorem. Let

(11.8) = lim sup u,.
noo

It is obvious from (11.1) that 0 < 7 <1, and there exists a sequence
ry,/2,... tending to intunity such that as »—» co

(11.9) u,,—> 1.

For each positive integer v wedefine a doubly infinite sequence {u>)} by

Unin for n>-Yr,
(11.10) we

0 for n<-—nr,.

Forsimplicity of expression lemma 2 was formulated for simple sequences,

but it obviously applies to double sequences also. Accordingly, it is
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> ‘

possible to choose an increasing sequenceof integers 1, ,,... such that
when » runs through it u‘” tends to a limit w, for each n. From the
construction 0<w,<7 and w)=~7. Furthermore, for each v and

n > —v» the definition (11.1) reads

(11.11) Un) => flrs
k=1

and in the limit we find the relation (11.6). By lemma 3 therefore w, = 7
for all n.

Weare now readyfor the final argument. As before we put

(11.12) Px = fos thers toe:

so that r,>=1 and > p, = [see XI, (1.8)]. Summing the defining
relations (11.1) over n =1,2,...,.N and collecting terms we get the

identity

(11.13) Poly + Ply + *'* + pylo = 1.

Weusethis relation successively for N = 1, ¥,.... As N runs through

this sequence uy_,—> w_, = 7 foreach k. If > p, = oo it follows that
n =0 andso u,—0 asasserted. When uw = > p, < 0 it follows that
yn = yw, and it remains to show that this implies uy—y7 for any
approach N-—> oo. By the definition of the upper limit we have uy_;, <
<1 + € foreach fixed k and WN sufficiently large. Furthermore u, <1 —
for all n. Suppose then that N approachesinfinity in such a mannerthat
Uy —> M. From (11.13) it is clear that ultimately

(11.14) Poo + (pit “7 + p,)(4+¢) + (Prtit Pret .* ‘) > I,

and hence

(11.15) Pol%o—) + H(Q+¢) > I.

But wy = 1 and  < 7 by the definition of 7. Since (11.15) is true for

arbitrary « >0 it follows that 7)=%7 and so uy—wyp! for any

approach N— oo. >

12. PROBLEMS FOR SOLUTION

1. Suppose that F(s) is a polynomial. Prove for this case all theorems of
section 3, using the partial fraction method of XI, 4.

2. Let r coins be tossed repeatedly and let & be the recurrent event that for
each of the r coins the accumulated numberof heads andtails are equal. Is
& persistent or transient? For the smallest r for which & is transient, estimate

the probability that & ever occurs.
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3. In a sequence of independent throws of a perfect die let & stand for the
event that the accumulated numbersof ones, twos, ..., sixes are equal. Show
that & is a transient (periodic) recurrent event and estimate the probability f
that & will ever occur.

4. In a sequenceof Bernoulli trials let & occur when the accumulated number
of successes equals 4 times the accumulated numberoffailures; here 4 is a
positive integer. [See example (1.c).] Show that & is persistentif, and onlyif,
plq = 4, that is, p = 4/(A+1). Hint: Use the normal approximation.

5. In a sequence of Bernoulli trials we say that & occurs when the accumulated
numberof successes is twice the accumulated numberoffailures and the ratio
has never exceeded 2. Show that & is transient and periodic. The generating
function is determined by the cubic equation F(s) = gs(U(s)ps)*. (Hint: U(s)ps
is the generating function for the waiting time for the number of successes to
exceed twice the numberoffailures.)

6. Letthe X; be independentintegral-valued random variables with a common
distribution. Assume that these variables assume both positive and negative
values. Prove that the event defined by S, =0,S,; <0,...,S,.1 <0 is
recurrent and transient.

7. Geiger counters. [See examples (1.2) and (4.e).] Denote by N, and Z,,
respectively, the number of occurrences of 6 and the numberofregistrations
up to and including epoch zn. Discuss the relationship between these variables
and find asymptotic expressions for E(Z,) and Var(Z,,).

8. In Geiger counters of type II every arriving particle (whether registered or
not) locks the counter for exactly r time units (that is, at the r — 1 trials

following the arrival). The duration of the locked time following a registration
is therefore a random variable. Find its generating function G. If & is again
the recurrent event that the counter is free, express the generating function F

of the recurrence times in terms of G. Finally, find the mean recurrence time.

9. A more general type of Geiger counters. As in problem 8 we assumethat
every arriving particle completely obliterates the effect of the preceding ones, but

_ we assumenowthatthe time for whicha particle locks the counter is a random
variable with a given generating function B(s). [In the preceding problem
B(s) = s’.] Do problem 8 under these more general conditions.

10. For a delayed recurrent event & the probabilities v, are constant only
when the generating function of the first occurrence of & is given by B(s) =
= [1 —F(s)]/u(l—s), that is, when by, =fniy +fni2 +°°*- Discuss the
relation with the limit theorem forhitting probabilities in example (10.4).

11. Find an approximation to the probability that in 10,000 tossings of a
coin the numberof head runsoflength 3 will lie between 700 and 730.

12. In a sequence of tossings of a coin let & stand for the pattern HTH.

Let r, be the probability that & does not occurin v trials. Find the generating
function and use the partial fraction method to obtain an asymptotic expansion.

13. In example (8.a) the expected duration of the game is

~MyMy|(Hy +2);

where 4, and j, are the meanrecurrencetimesfor success runs of length r and

failure runs of length p, respectively.
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14. The possible outcomesof each trial are A, B, and C; the corresponding
probabilities are «, B,y (« +8 +y=1). Find the generating function of
the probability that in 7 trials there is no run of length r: (a) of A’s, (b) of
A’s or B’s, (c) of any kind.

15. Continuation. Find the probability that the first A-run of length r
precedes the first B-run of length p and terminates at the nth trial. (Hint: The
generating function is of the form X(s) in (8.6) except that p is replaced by « in
the expression for F, and by f in S.)

16. Self-renewing aggregates. In example (10.d) find the limiting age dis-
tribution assuming thatthelifetime distribution is geometric: fy, = g*lp.

17. Continuation. The initial age distribution {8} is called stationary if it
perpetuatesitself for all times. Show (without computation) that this is the case
only when f, = r;/u.

18. Continuation. Denote by w,(m) the expected number of elements at
epoch n that are of age k. Find the determining equations and verify from
them that the population size remains constant. Furthermore, show that the
expected number w,(7) satisfies

Wn) = Wo(n—-Dfilro + win—-Dfir, +- °°

19. Let & be a persistent dperiodic recurrent event. Assume that the re-
currence timehasfinite mean y» and variance o%. Put g, = naa +frseg to
and fp = Qnii + 4ny2 +°**- Show that the generating functions Q(s) and
R(s) converge for s = 1. Prove that

 

x 1), _ ®®)(12.1) Ug + S( “8 706)
n=

and hence that

< 1 o— m+ py?. + u, — -) = ————_.(12.2) Uo >( ;) ae

20. Let & bea persistent recurrent event and N, the numberof occurrences
of & in trials. Prove that

r—~1

(12.3) E(N2) = uy t+ +p $2 Yuut+ +up_;)
j=1

and hence that E(N?) is the coefficient of s* in

F*(s) + F(s)

(1 —s){i —F(s)}?

(Note that this may be reformulated more elegantly using bivariate generating
functions.)

21. Let 9xn = P{N; =n}. Show that q;,, is the coefficient of s* in

(12.4)

(12.5) F's) UFO} .
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Deduce that E(N,) and E(N?) are the coefficients of s” in

F(s)(12.6) (1-1

-FO}

and (12.4), respectively.

22. Using the notations of problem 19, show that

F(s) ___! + 1 R(s)

(i—s{1 —F(s)} 1-—s wi-s?  w{l-F(}°

Hence, using the last problem, conclude that

(12.7)  

, 2 — 12
(12.8) EN, = 24 7b4#7 4 c,

lt 2

with «, — 0.

23. Continuation. Using a similar argument, show that

ro 2e+u—
(12.9) E(N)) = — + 7B r+ a,,

where «,/r 0. Hence

o2

- (12.10) Var (N,) ~ 75"

(Hint: Decompose the difference of (12.4) and (12.7) into three fractions with
denominators containing the factor (1 — s)*, k = 1, 2, 3.)

24. In a sequence of Bernoulli trials let g,,, be the probability that exactly
n success runs of length r occur in k trials. Using problem 21, show that the
generating function Q,(r) = > 9,2" is the coefficient of s* in

1 — p's"
1—s+ gp'sttt — a1 —ps)p"s"x .

Show, furthermore, that the root of the denominator which is smallest in

absolute value is s; » 1 + qgp"(1—2).

25. Continuation. The Poisson distribution of long runs.’* If the number
k of trials and the length r of runs both tend to egso that kgp” — 4,
then the probability of having exactly n runs of length r tends to e~44"/n!.

Hint: Using the preceding problem, show that the generating function is
asymptotically {1 + qp"(1—zx)}-* ~ e474), Use the continuity theorem of
XI, 6

12 The theorem was proved by von Mises, but the present method is considerably
simpler.

 



CHAPTER XIV

Random Walk and Ruin Problems

1. GENERAL ORIENTATION

The first part of this chapter is devoted to Bernoulli trials, and once
more the picturesque language of betting and random walksis used to
simplify and enliven the formulations.

Consider the familiar gambler who winsorloses a dollar with proba-
bilities p and g, respectively. Let his initial capital be z and let him
play against an adversary with initial capital a — z, so that the combined
capital is a. The game continues until the gambler’s capital either is
reduced to zero or has increased to a, that is, until one of the two players
isruined. Weare interested in the probability of the gambler’s ruin and the
probability distribution of the duration of the game. Thisis the classical
ruin problem.

Physical applications and analogies suggest the moreflexible interpre-
tation in termsof the notion of a variable point or “‘particle’’ on the x-axis.
This particle starts from theinitial position z, and moves at regular time

intervals a unit step in thepositive or negative direction, depending on
whether the correspondingtrial resulted in successor failure. The position
of the particle after n steps represents the gambler’s capital at the con-
clusion of the nth trial. The trials terminate when the particle for thefirst

time reaches either 0 or a, and we describe this by saying that the
particle performs a random walk with absorbing barriers at 0 and a. This
random walkis restricted to the possible positions 1, 2,...,a@— 1; in

the absence of absorbing barriers the random walkis called unrestricted.
Physicists use the random-walk model as a crude approximation to one-
dimensional diffusion or Brownian motion, where a physical particle is
exposed to a great number of molecular collisions which impart to it a
random motion. The case p > q correspondsto a drift to the right when
shocks from the left are more probable; when p =q = 3, the random

walk is called symmetric.

342
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In the limiting case a—> oo we get a random walk on a semi-infinite
line: A particle starting at 2 >0 performs a random walk up to the
moment whenit for thefirst time reaches the origin. In this formulation
we recognizethe first-passage time problem; it was solved by elementary
methods in chapterIII (at least for the symmetric case) and by the use of
generating functions in XI,3. We shall encounter formulas previously

obtained, but the present derivation is self-contained.
In this chapter we shall use the method of difference equations which

serves as an introduction to the differential equations of diffusion theory.
This analogy leads in a natural way to various modifications and generali-
zations of the classical ruin problem, a typical and instructive example
being the replacing of absorbing barriers by reflecting and elastic barriers.

To describe a reflecting barrier, consider a random walkin finite inter-
val as defined before except that wheneverthe particle is at point 1 it has
probability p of moving to position 2 and probability qg to stay at 1. In
gambling terminology this corresponds to a convention that whenever the
gamblerloses his last dollar it is generously replaced by his adversary so
that the game can continue. The physicist imagines a wall placed at the
point 3 of the z-axis with the property that a particle moving from 1
toward 0 is reflected at the wall and returns to 1 instead of reaching 0.
Both the absorbing andthereflecting barriers are special cases of the so-
called elastic barrier. We define an elastic barrier at the origin by the rule

- that from position 1 the particle moves with probability p to position 2;

with probability dq it stays at1; and with probability (1—0)q it moves to0
and is absorbed (i.e., the process terminates). For 06 =0 we have the
classical ruin problem or absorbingbarriers, for 6 = 1 reflecting barriers.
As o runs from 0 to | we have a family of intermediate cases. The greater
6 is, the more likely is the process to continue, and with two reflecting
barriers the process can never terminate.

Sections 2 and 3 are devoted to an elementary discussion ofthe classical
ruin problem andits implications. The next three sections are more
technical (and may be omitted); in4and 5 wederive the relevant generating

functions and from them explicit expressions for the distribution of the
duration of the game, etc. Section 6 contains an outline of the passage to
the limit to the diffusion equation (the formal solutionsof the latter being

the limiting distributions for the random walk).
In section 7 the discussion again turns elementary and is devoted to

random walks in two or more dimensions where new phenomena are

encountered. Section 8 treats a generalization of an entirely different type,

namely a random walk in one dimension wherethe particle is no longer

restricted to move in unit steps but is permitted to change its position in

jumps which are arbitrary multiples of unity. Such generalized random
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walks have attracted widespreadinterest in connection with Wald’s theory
of sequential sampling.
The problem section contains essential complements to the text and

outlines of alternative approaches. It is hoped that a comparison of the
methods used will prove highly instructive.

In conclusion it must be emphasized that each random walk represents
a special Markovchain, and so the present chapter serves partly as an
introduction to the next where several random-walk problems(e.g., elastic
barriers) will be reformulated.

2. THE CLASSICAL RUIN PROBLEM

Weshall consider the problem stated at the opening of the present
chapter. Let g, be the probability of the gambler’s ultimate? ruin and

pz the probability of his winning. In random-walk terminology q, and
Pz are the probabilities that a particle starting at z will be absorbed at 0
and a, respectively. We shall show that p, +4, = 1, so that we need
not consider the possibility of an unending game.

After the first trialthe gambler’s fortune is either 2 — 1 or z+ 1, and

therefore we must have

(2.1) Gz = PQar1 + 942-1

provided 1<2<a—1. For z=1 thefirst trial may lead to ruin, and
(2.1) is to be replaced by 9g, = pgg +q. Similarly, for z =a—1 the

first trial may result in victory, and therefore 9,1 = 4q,-». To unify our
equations we define

(2.2) go = 1, Ga = 9.

With this convention the probability g, of ruin satisfies (2.1) for z=

=1,2,...,a—l.

Systems of the form (2.1) are known as difference equations, and (2.2)
represents the boundary conditions on q,. We shall derive an explicit
expression for g, by the methodofparticular solutions, which will also be
used in more general cases.

Suppose first that pq. It is easily verified that the difference

1 Strictly speaking, the probability of ruin is defined in a sample space ofinfinitely
prolonged games, but we can work with the sample space of x trials. The probability
of ruin in less than n trials increases with n and has therefore a limit. Wecall this

limit “the probability of ruin.” All probabilities in this chapter may be interpreted in

this way without reference to infinite spaces (cf. VIII,1).
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equations (2.1) admit of the two particular solutions g, = 1 and g, =

= (q/p)*. It follows that for arbitrary constants A and B the sequence

(2.3) q.=A+ (2)

represents a formal solution of (2.1). The boundary conditions (2.2) will
holdif, and only if, A and B satisfy the two linear equations A + B= 1

and A + B(q/p)* = 0. Thus

(q/p)* — (q/p)’
2.4 ee

C4) lp1
is a formal solutionofthe difference equation (2.1), satisfying the boundary
conditions (2.2). In order to prove that (2.4) is the required probability

of ruin it remains to show that the solution is unique, that is, that all

solutions of (2.1) are of the form (2.3). Now,given an arbitrary solution

of (2.1), the two constants A and B can be chosenso that (2.3) will agree

with it for z = 0 and z = 1. From these two values all other values can
be found by substituting in (2.1) successively z = 1, 2,3,.... Therefore
two solutions which agree for z = 0 and z = 1 are identical, and hence

every solution is of the form (2.3).
Our argumentbreaks down if p = g = 3, for then (2.4) is meaningless

because in this case the two formal particular solutions g,=1 and
g, = (q/p)* are identical. However, when p = g = § we have a formal
solution in g, =z, and therefore g, = A + Bz is a solution of (2.1)

depending on two constants. In orderto satisfy the boundary conditions

(2.2) we must put 4 = 1 and A+ Ba=0. Hence

(2.5) q,=1—*.
a

(The same numerical value can be obtained formally from (2.4) by finding

the limit as p > 4, using L’Hospital’s rule.)
We havethus proved that the required probability of the gambler’s ruin

is given by (2.4) if p #q, and by (2.5) if p=q =. The probability

pz, of the gambler’s winning the game equals the probability of his
adversary’s ruin andis therefore obtained from our formulas on replacing

Pp, g, and z by q, p, and a—z, respectively. It is readily seen that

P: + 9, = 1, as stated previously.

Wecan reformulate ourresult as follows: Let a gambler with an initial

capital z play againstaninfinitely rich adversary who is always willing to

play, although the gambler has the privilege ofstopping at his pleasure. The

gambler adopts the strategy ofplaying until he either loses his capital or
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increases it to a (with anet gain a —z). Then q, is the probability ofhis
losing and 1 — q, the probability ofhis winning.

Under this system the gambler’s ultimate gain or loss is a random
variable G which assumes the values a — z and —z with probabilities
1 —q, and q,, respectively. The expected gain is

(2.6) E(G) = a(1—g,) — z.

Clearly E(G) =0 if, and only if, p=gq. This means that, with the
system described, a “fair” game remainsfair, and no “‘unfair”’ game can be
changed into a ‘‘fair’’ one.

From (2.5) we see that in the case p =q a player withinitial capital
z = 999 has a probability 0.999 to win a dollar before losing his capital.
With g = 0.6, p=0.4 the game is unfavorable indeed, butstill the
probability (2.4) of winning a dollar before losing the capital is about3.
In general, a gambler with relatively large initial capital z has a reason-
able chance to win a small amount a — z before being ruined.?

[For a surprising consequence of our result see problem 4.]
Let us now investigate the effect of changing stakes. Changing the unit

from a dollar to a half-dollar is equivalent to doubling the initial capitals.

The corresponding probability of ruin q¥ is obtained from (2.4) on
replacing z by 2z and a by 2a:

(2.7) gt =

U
P

=aly” (aly+(aly

(a/py"— 4 (qipy +4
For q > p thelastfraction is greater than unity and g* > q,. Werestate
this conclusion as follows: if the stakes are doubled while the initial
capitals remain unchanged, the probability of ruin decreases for the player

whose probability of success is p <4 andincreasesfor the adversary (for
whom the game is advantageous).* Suppose, for example, that Peter owns
90 dollars and Paul 10, and lét p = 0.45, the game being unfavorable to
Peter. If at each trial the stake is one dollar, table 1 shows the probability

2 A certain man used to visit Monte Carlo year after year and was always successful
in recovering the cost ofhis vacations. Hefirmly believed in a magic power overchance.
Actually his experience is not surprising. Assuming that he started with ten times the
ultimate gain, the chances of success in any year are nearly 0.9. The probability of an
unbroken sequence of ten successes is about (1 — fy) » e-! = 0.37. Thus continued
success is by no means improbable. Moreover, onefailure would, of course, be blamed
on an oversight or momentary indisposition.7” .

3 A detailed analysis of other possible strategies will be found in the (not elementary)
book by L. E. Dubbins and L. J. Savage, How to gamble ifyou must (which has a more

informative subtitle: Inequalities for stochastic processes), New York (McGraw-Hill),

1965.
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of Peter’s ruin to be 0.866, approximately. If the same gameis played for
a stake of 10 dollars, the probability of Peter’s ruin dropsto less than one

fourth, namely about 0.210. Thus the effect of increasing stakes is more

pronounced than might be expected. In general, if k dollars are staked
at each trial, we find the probability of ruin from (2.4), replacing z by
z/k and a by a/k; the probability of ruin decreases as k increases.,In a

game with constant stakes the unfavored gambler minimizes the probability
of ruin by selecting the stake as large as consistent with his goal of gaining
an amountfixed in advance. The empirical validity of this conclusion has

TABLE 1]

ILLUSTRATING THE CLASSICAL RUIN PROBLEM
 

 

 

Probability of Expected

Pp q Zz a Ruin Success Gain Duration

0.5 0.5 9 10 0.1 0.9 0 9
0.5 0.5 90 100 0.1 0.9 — 0 900
0.5 0.5 900 1,000 0.1 0.9 0 90,000
0.5 0.5 950 1,000 0.05 0.95 0 47,500
0.5 0.5 8,000 10,000 0.2 0.8 0 16,000,000

0.45 0.55 9 10 0.210 0.790 —1.1 11
0.45 0.55 90 100 0.866 0.134 —76.6 765.6
0.45 0.55 99 100 0.182 0.818 —17.2 171.8
0.4 0.6 90 100 0.983 0.017 — 88.3 441.3
0.4 0.6 99 100 0.333 0.667 —32.3 161.7
 

Theinitial capital is z. The game terminates with ruin (loss z) or capital a (gain a — z),
 

been challenged, usually by people who contended that every “‘unfair’’ bet
is unreasonable. If this were to be taken seriously, it would mean the end

of all insurancebusiness, for the careful driver who insures against
liability obviously plays a game that is technically “‘unfair.”’ Actually,
there exists no theorem in probability to discourage such a driver from
taking insurance.
The limiting case a = oo corresponds to a game against an infinitely

rich adversary. Letting a—> oo in (2.4) and (2.5) we get

1 if p<q

(qip)? if p>.

Weinterpret g, as the probability ofultimate ruin ofa gamblerwith initial
capital z playing against an infinitely rich adversary. In random walk

(2.8) qe

‘It is easily seen that the g, represent a solution of the difference equations (2.1)

satisfying the (now unique) boundary condition q) = 1. When p> the solution
is not unique. Actually our result is contained in XI,(3.9) and will be derived inde-

pendently (in a strengthened form) in section 4.
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terminology g, is the probability that a particle starting at z >0 will
ever reach the origin. It is more natural to rephrasethis result as follows:
In a random walk starting at the origin the probability of ever reaching the

position 2 >0 equals 1 if p >q and equals (p/q)* when p <q.

3. EXPECTED DURATION OF THE GAME

The probability distribution of the duration of the gamewill be deduced
in the following sections. However,its expected value can be derived by a

much simpler method whichis of such wide applicability that it will now
be explained at the cost of a slight duplication.

Wearestill concerned with the classical ruin problem formulated at the
beginning of this chapter. We shall assume as knownthe fact that the
duration of the gamehasa finite expectation D,. A rigorous proofwill be
given in the next section.

If the first trial results in success the game continues as if the initial
position had been z+ 1. The conditional expectation of the duration
assuming success at thefirst trial is therefore D,,, + 1. This argument
shows that the expected duration D, satisfies the difference equation

(3.1) D, = pdDpza t+ qd. + 1, 0<z<a

with the boundary conditions

(3.2) D=90, D,=0.

The appearance of the term 1 makes the difference equation (3.1)

non-homogeneous. If p #g, then D, =2/(q—p) is a formal solution
of (3.1). The difference A, of any two solutions of (3.1) satisfies the
homogeneous equations A, = pA,,, + qA,_,, and we knowalready that

all solutions of this equation are of the form A + B(qg/p)*. It follows that
when p ¥ all solutions of (3.1) are of the form

 (3.3) a| +B(4).
q—p Pp

The boundary conditions (3.2) require that

A+B=0, A+ BGlp)* = —a[(q—p).

Solving for A and 8B, wefind

z a .1—(q/p)*. D, = -
G4) q—p qa—p 1—(q4|p)*
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Again the method breaks down if q =p =}. In this case we replace
z/(q—p) by —z*, which is now solution of (3.1). It follows that when
P=q =+% all solutions of (3.1) are of the form D, = —z2? + A + Bz.
The required solution D, satisfying the boundary conditions (3.2) is

(3.5) D, = ea—z).

The expected duration of the gamein the classical ruin problem is given
by (3.4) or (3.5), according as p Aq or p=q =.

It should be noted that this duration is considerably longer than we

would naively expect. If two players with 500 dollars each toss a coin
until one is ruined, the average duration of the gameis 250,000trials. If a

gambler has only one dollar and his adversary 1000, the average duration
is 1000 trials. Further examples are found in table 1.
As indicated at the end of the preceding section, we may pass to the

limit a—» co and consider a game against an infinitely rich adversary.
When p >q the game may go on forever, and in this case it makes no

sense to talk about its expected duration. When p <q weget for the
expected duration z(g—p)~', but when p = the expected duration is
infinite. (The same result was established in XI,3 and will be proved

independently in the next section.)

*4. GENERATING FUNCTIONS FOR THE DURATION OF
THE GAME AND FOR THE FIRST-PASSAGE TIMES

Weshall use the method of generating functions to study the duration
of the gamein the classical ruin problem, that is, the restricted random

walk with absorbing barriers at 0 and a. The initial position is z (with
0<z<a). Let u,,, denote the probability that the process ends with
the nth step at the barrier 0 (gambler’s ruin at the wth trial). After thefirst
step the position is z+1 or z—1, and we conclude that for

l1<z<a-—1 andn>l

(4.1) Uz n+l = Puzsriin + quz-1,n:

This is a difference equation analogous to (2.1), but depending on the
two variables z and x. In analogy with the procedure of section 2 we
wish to define boundary values up, Ua,n» and wu,» so that (4.1) becomes

valid also for z= 1, z=a—1, and n=0. Forthis purpose we put

(4.2) Uy.n = Ua.n = 9 when n> 1

* This section together with the related section 5 may be omitted atfirst reading.
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and

(4.3) Uo = 1, uz,9 =9 when O0<z2<a.

Then (4.1) holds for all z with O<z<a andall n>0.
Wenowintroduce the generating functions

(4.4) Us) = S UznS”

Multiplying (4.1) by s”*? and adding for n = 0,1,2,..., we find

(4.5) UAs) = psU,41(s) + 9sU,_1(5), 0<z<a;

the boundary conditions (4.2) and (4.3) lead to

(4.6) U,(s) = 1, Us) = 0.

The system (4.5) represents difference equations analogousto (2.1), and

the boundary conditions (4.6) correspond to (2.2). The novelty lies in the
circumstance that the coefficients and the unknown U,(s) now depend
on the variable s, but as faras the difference equation is concerned, s
is merely an arbitrary constant. We can again apply the method of
section 2 provided we succeed in finding two particular solutions of (4.5).

It is natural to inquire whether there exist two solutions U,(s) of the form

Us) = A*(s). Substituting this expression into (4.5), we find that A(s)
must satisfy the quadratic equation

(4.7) A(s) = psi%(s) + 95,
which has the two roots

_— : 2 _ _ 2(48) As) = L+vin4pas! 4(gy 1—4pas'
2ps 2ps

(we take 0 < 5s <1 and the positive square root).

Weare now in possession of two particular solutions of (4.5) and con-
clude as in section 2 that every solution is of the form

(4.9) Us) = A(s)Ay(s) + B(s)Ax(s)

with A(s) and B(s) arbitrary. To satisfy the boundary conditions (4.6),

we must have A(s) + B(s) = 1 and A(s)At(s) + B(s)Aa(s) = 0, whence

_ Ai(s)Aa(s) — Ar(s)A2(s)

ea) V9 =O) — BO
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= Ving the obviousrelation 4,(s)A,(s) = q/p, this simplifies to
ee,

&yd) v9) =(2)Sie Pp) AX(s) —AXs)
This is the required generating function of the probability of ruin (absorp-
tion at 0) at the nth trial. The same method showsthat the generating
function for the probabilities of absorption at a is given by

 

(4.12) i(s) — 25)
Ax(s) — Ax(s)

The generating function for the duration ofthe gameis, of course, the sum
of the generating functions (4.11) and (4.12).

Infinite Intervals and First Passages

The preceding considerations apply equally to random walks on the

interval (0, 00) with an absorbing barrier at 0. A particle starting from
the position z > 0 is eventually absorbed at the origin or else the random
walk continues forever. Absorption correspondsto the ruin of a gambler
with initial capital z playing against an infinitely rich adversary. The

generating function U,(s) of the probabilities u,,, that absorption takes
place exactly at the nth trial satisfies again the difference equations (4.5)
andis therefore of the form (4.9), but this solution is unboundedatinfinity
unless A(s) = 0. The other boundary condition is now U,(s) = 1, and

hence B(s) = 1 or

(4.13) U(s) = AX(s).

[The same result can be obtained by letting a— oo in (4.11), and
remembering that A,(s)A,(s) = q/p.]

It follows from (4.13) for s = 1 that an ultimate absorption is certain

if p <q, and has probability (q/p)* otherwise. The same conclusion was
reached in section 2.

Our absorption at the origin admits of an important alternative inter-
pretation as a first passage in an unrestricted random walk. Indeed, on
moving the origin to the position z it is seen that in a random walk onthe
entire line and starting from the origin u,,, is the probability that thefirst
visit to the point —z <0 takes place at the nth trial. That the corre-
sponding generating function (4.13) is the zth power of A, reflects the
obviousfact that the waiting time for the first passage through —z is the
sum of z independent waiting times between the successivefirst passages
through —1, —2,..., —z.

An explicit formula for u,,, in the special case p = 3 was derived by
elementary methods in III,(7.5). Considering that (m+<2)/2 steps must
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lead to the left, and (m—z)/2 to the right, one concludes easily that in

general the same formula holds except that the individual paths have now
probability p'-?)/?qg("*#)/2 rather than 2~". Thus

z@ n
4.14 U,n = (n—2)/2q (meta) /2

0) : aso)? 4
where the binomial coefficient is to be interpreted as zero if n and z are

not of the same parity. (Concerning the derivation of this formula from
the generating function see the end of XI,3. An alternative explicit formula

of an entirely different appearance is contained in problem 13.)

*5, EXPLICIT EXPRESSIONS

The generating function U, of (4.11) depends formally on a square root
but is actually a rational function. In fact, an application of the binomial
theorem reduces the denominator to the form

(5.1) 48(s) — A%(s) = s~*/1—4pqs* P,(s)

where P, is an even polynomial of degree a — 1 when is odd, and of
degree a — 2 when a iseven. The numeratoris of the same form except
that a is replaced by a—z. Thus JU, is the ratio of two polynomials
whose degrees differ at most by 1. Consequently it is possible to derive an
explicit expression for the ruin probabilities u,,, by the method of partial
fractions described in XI,4. The result is interesting because of its
connection with diffusion theory, and the derivation as such provides an
excellent illustration for the techniques involved in the practical use of
partial fractions.

Thecalculations simplify greatly by the use of an auxiliary variable ¢

defined by

1

| 2/pq:s-

(To 0<s.<1 there correspond complex values of ¢, but this has no
effect on the formal calculations.) From (4.8)

 (5.2) cos ¢ =

(5.3) 4,(s) = Va/p [cos $ + isin ¢] = Vq/p e*
while 4,(s) equals the right side with i replaced by —i. Accordingly

(5.4) Us) = (Jap)SBE
sin ad
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The roots 51, 59,... of the denominator are simple and hence there

exists a partial fraction expansion of the form

(5.5) (Jaip) SPPpsppe,
sin ad Ss, — 5S Sq-1 — §

In principle we should consider only the roots s, which are not roots of
the numeratoralso, but if s, is such a root then U,(s) is continuous at

s=s, andhence p, = 0. Such canceling roots therefore do not contribute
to the right side and henceit is not necessary to treat them separately.
The roots 5,,...,5,., correspond obviously to ¢, = 7»/a with

y=1,...,a—1, andso

1
(5.6) Ss =7..

2V pq cos v/a

This expression makes no sense when » = a/2 and a is even, but then

g, is a root of the numeratoralso and this root should be discarded. The

corresponding term in the final result vanishes, as is proper.
To calculate p, we multiply both sides in (5.5) by s,—s and let

s—>s,. Remembering that sina¢d, = 0 and cos a¢, = 1 we get

 

p, = (Vq/p)sin 2¢, «lim
s—>s, SIN ag

 

The last limit is determined by L’Hospital’s rule using implicit differ-
entiation in (5.2). The resultis

py =a: 2pq (/q/p) sin z¢,- sin ¢, - s?.

From the expansion of the right side in (5.5) into geometric series we
get for n> 1

a—l — —. za-—1

tem = > psy"= a2pq (Va/p) > sy"*!- sin d, * sinzd,
v=] y=

and hencefinally
a—1 Vi. TV. Tey

(5.7) Ug = AAW!MPG(M22 cos”? ~ sin — sin —.
v=1 a a a

This, then, is an explicit formula for the probability ofruin at the nthtrial.
It goes back to Lagrange and has been derived by classical authors in
various ways,” but it continues to be rediscovered in the modernliterature.

ae

’ For an elementary derivation based on trigonometric interpolation see R. E. Ellis,

Cambridge Math.J., vol. 4 (1844), or his Collected works, Cambridge and London 1863.
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It is interesting that the method of images (or of repeated reflections) leads
to another explicit expression for u,,, in terms of binomial coefficients
(problem 21). An alternative method for deriving (5.7) is described in
XVI,3.

Passing to the limit as a— co weget the probability that in a game
against an infinitely rich adversary a player with initial capital z will be
ruined at the nth trial. (See problem 13.)

A glance at the sum in (5.7) shows that the terms corresponding to the
summation indices »v = k and v = a — k areof the same absolute value;

they are of the same sign when n and z are of the same parity and cancel
otherwise. Accordingly u,, = 0 when n —z is odd whilejoreven n— 2
and n> 1

~ _ TV TV. T2YV(5.8) Uzn =a 1gntip(n 2)/2g(nt2)/2 Y cos”!— sin — sin

vale a a a

the summation extending over the positive integers < a/2. This form is
more natural than (5.7) because nowthe coefficients cos v/a form a
decreasing sequence andso for large n it is essentially only thefirst term
that counts.

*6. CONNECTION WITH DIFFUSION PROCESSES

This section is devoted to an informal discussion of random walks in
which the length 0 of the individual steps is small but the steps are spaced
so close in time that the resultant change appears practically as a con-

tinuous motion. A passage to the limit leads to the Wiener process
(Brownian motion) andotherdiffusion processes. The intimate connection
between such processes and random walks greatly contributes to the
understanding of both.* The problem may be formulated in mathematical

as well as in physical terms.
It is best to begin with an unrestricted random walk starting at the origin.

Thenthstep takes the particle to the position S,, where S, = X, + +++ +X,
is the sum of » independent random variables each assuming the values
+1 and —1 with probabilities p and g, respectively. Thus

(6.1) E(S,) =(p—gyn, Var (S,) = 4pqn.
Figure 4 of III,6 presents the first 10,000 steps of such a random walk with
P=4 =}; to fit the graph to a printed page it was necessary to choose

® This approach was also fruitful historically. It was fully exploited (though in a

heuristic manner) by L. Bachelier, whose workhas inspired A. Kolmogorov to develop

the formal foundations of Markov processes. See, in particular, L. Bachelier, Calcul

des probabilités, Paris (Gauthier-Villars), 1912.
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appropriate scales for the two axes. Let us now go a step further and
contemplate a motion picture of the random walk. Supposethatit is to

take 1000 seconds (between 16 and 17 minutes). To present one million

steps it is necessary that the random walk proceedsat the rate of one step
per millisecond, andthis fixes the time scale. What units are we to choose

to be reasonably sure that the record will fit a screen of a given height?

For this question we use a fixed unit of measurement, say inches orfeet,

both for the screen and the length of the individual steps. We are then no
longer concerned with the variables S,, but with dS,, where 0d stands

for the length of the individual steps. Now

(6.2) E(6S,,) = (p—q)On, Var (6S,,) = 4pq 6°n,

andit is clear from the central limit theorem that the contemplatedfilm is
possible only if for » = 1,000,000 both quantities in (6.2) are smaller than

the width of the screen. But if p 4 gq and 6n is comparableto the width
of the screen, 6%n will be indistinguishable from 0 and the film will show
linear motion without visible chance fluctuations. The character of the
random walk can be discerned only when 6’n is of a moderate positive
magnitude, and this is possible only when p —q is of a magnitude
comparable to 0.

If the question were purely mathematical we should conclude that the
desired graphical presentation is impossible unless p = qg, but the situ-

_ ation is entirely different when viewed from a physical point of view. In
Brownian motion wesee particles suspendedin a liquid moving in random
fashion, and the question arises naturally whether the motion can be
interpreted as the result of a tremendous numberofcollisions with smaller
particles in the liquid. It is, of course, an over-simplification to assume
that the collisions are spaced uniformly in time and that each collision
causes a displacementprecisely equal to +6. Anyhow,fora first orienta-
tion we treat the impacts as governed by Bernoulli trials and ask whether

the observed motion ofthe particles is compatible with this picture. From
actual observations wefind the average displacement c and the variance
D for a unit time interval. Denote by r the (unknown) number of
collisions per time unit. Then we must have, approximately,

(6.3) (p—q) or =c, 4pq 6*r = D

In a simulated experiment no chance fluctuations would be observable

unless the two conditions (6.3) are satisfied with D > 0. An experiment

with p =0.6 and dér = 1 is imaginable, butin it the variance would be

so small that the motion would appear deterministic: A clump of particles

initially close together would remain togetheras if it were a rigid body.
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Essentially the same consideration applies to many other phenomena
in physics, economics, learning theory, evolution theory, etc., when slow
fluctuations of the state of a system are interpreted as the result of a huge
number of successive small changes due to random impacts. The simple
random-walk model does not appearrealistic in any particular case, but
fortunately the situation is similar to that in the central limit theorem.
Undersurprisingly mild conditions the nature of the individual changesis
not important, because the observable effect depends only on their
expectation and variance. In such circumstancesit is natural to take the
simple random-walk model as universal prototype.

To summarize, as a preparation for a more profound study of various
stochastic processes it is natural to consider random walks in which the
length 0 of the individual steps is small, the number r ofsteps per time
unit is large, and p — q is small, the balance being such that (6.3) holds
(where c and D> are given constants). The words large and small
are vague and must remain flexible for practical applications.’
The analytical formulation of the problem is as follows. To every

choice of 6, r, and p there corresponds a random walk. We ask what
happens in the limit when 6-0, r—> 0, and p-—>%4 in such a manner

that

(6.4) (p—g)or—>c,  4pqd’r > D.

Two procedures are available. Whenever we are in possession of an
explicit expression for relevant probabilities we can pass to the limit
directly. We shall illustrate this method because it sheds new light on the
normal approximation and the limit theoremsderived in chapter III. This
method is of limited scope, however, because it does not lend itself to

generalizations. More fruitful is the start from the difference equations
governing the random walks and the derivation of the limiting differential
equations. It turns out that these differential equations govern well

defined stochastic processes depending on a continuous time parameter.
The sameis true of various obvious generalizations of these differential

equations, and so the second methodleads to the important general class

of diffusion processes.

7 The number of molecular shockspertime unit is beyond imagination. At the other

extreme, in evolution theory one considers small changes from one generation to the

next, and the time separating two generations is not small by everyday standards. The

number of generations considered is not fantastic either, but may go into many
thousands. The point is that the process proceeds on a scale where the changes appear
in practice continuousand diffusion model with continuoustimeis preferable to the —

random-walk model.

 



XIV.6] CONNECTION WITH DIFFUSION PROCESSES 357

Todescribe the direct methodin the simplest case we continue to denote
by {S,} the standard random walk with unit steps and put

(6.5) Uyn = PIS, =k}.

In our accelerated random walk the nth step takes place at epoch n/r,
and the position is S,d = kd. Weare interested in the probability of

finding the particle at a given epoch ¢ in the neighborhoodofa given point
x, and so we must investigate the asymptotic behavior of v,., when

k—» oo and n-—» oo in such a manner that n/r—>+r and ki zx. The
event {S,, = k} requires that n and k be of the same parity and takes
place when exactly (n+k)/2 among the first » steps lead to the right.

From the de Moivre-Laplace approximation we conclude therefore that
in our passage to the limit

 

(6.6) en1 thtnter—notenv) — tient(8a)
J2mnpq J27npq

26
 en(a—ct)?/(2Dt)

~ V27Dt

where the sign ~ indicates that the ratio of the two sides tends to unity.
Now v,,, is the probability of finding S,d between kd and (k+2)6,
and since this interval has length 26 we can say that the ratio v,,,,/(20)

measures locally the probability per unit length, that is the probability
density. The last relation in (6.6) implies that the ratio v,,,/(20) tends

to.

 (6.7) v(t, a) = Re erHee,
J27Dt

It follows that sums of the probabilities v,, can be approximated by
integrals over v(t, x), and our result may berestated to the effect that with

our passage to the limit

(6.8) P{a < 8,6 < Bp} >

 

 

 

[ete dx.

J2nDt a

The integral on the right can be expressed in terms of the normal distri-
bution function 9 and (6.8) is in fact only a notational variant of the
de Moivre-Laplace limit theorem for the binomial distribution.

The approach based on the appropriate difference equations is more

interesting. Considering the position of the particle at the mth and the

(n+1)st trial it is obvious that the probabilities v,,, satisfy the difference

equations

(6.9) Ventd = PUp-1yn + Wesrn
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On multiplying by 26 it follows from our preceding result that the limit
v(t, x) should be an approximate solution of the difference equation

(6.10) o(t+r-4, x) = po(t, x—0) + qv(t, +0).

Since v has continuous derivatives we can expand the terms according
to Taylor’s theorem. Using the first-order approximation onthe left and
second-order approximation ontheright weget (after canceling the leading
terms)

Ov(t, x)(6.11)
2

= (q—p)or 24 oor u(t, x) ..

Ox Ox?

In our passage to the limit the omitted terms tend to zero and (6.11)
becomesin the limit

Ov(t, ) _ _o v(t, x) 1 1 port: x)

ot Ox 2 Ox?

This is a special diffusion equation also known as the Fokker-Planck

equation for diffusion. Our calculations were purely formal and heuristic,
but it will not come as a surprise that the function v of (6.7) indeed
satisfies the differential equation (6.12). Furthermore, it can be shownthat

(6.7) represents the only solution of the diffusion equation having the
obvious properties required by the probabilistic interpretation.
The diffusion equation (6.12) can be generalized by permitting the

coefficients c and D to depend on x and ¢. Furthermore,it possesses
obvious analogues in higher dimensions, and all these generalizations can
be derived directly from general probabilistic postulates. This topic will

be taken up in chapter X of volume 2; here we mustbesatisfied by these
brief and heuristic indications of the connections between random walks
and general diffusion theory.

As a second example we take the ruin probabilities u,,, discussed in
the preceding two sections. The underlying difference equations (4.1)
differ from (6.9) in that the coefficients p and g are interchanged.® The
formal calculations indicated in (6.11) now lead to a diffusion equation

obtained from (6.12) on replacing —c by c. Ourlimiting procedure
leads from the probabilities u,,, toafunction u(t, &) which satisfies this
modified diffusion equation and which has probabilistic significance

(6.12)

§ The reason is that in u,,, the variable z stands for the initial position whereas the

, probability v,,, refers to the position at the running time. In the terminology to be

introduced in volume 2, probabilities depending onthe initial position satisfy backward
(retrospective) equations, the others forward (or Fokker-Planck) equations. In physics
the latter are sometimes called continuity equations. The samesituation will be en-

countered in chapter XVII.

 



XIV.7] RANDOM WALKS IN THE PLANE AND SPACE 359

similar to u,,: In a diffusion process starting at the point & >0 the
probability that the particle reaches the origin before reaching the point

a > € and that this event occursin the time interval t, < t < f, is given

by the integral of u(t, €) over this interval.

The formal calculations are as follows. For u,, we have the explicit
expression (5.8). Since z and n must be of the sameparity, u,,, corre-

spondsto the interval between n/r and (n+2)/r, and we haveto calculate
the limit of the ratio u, ,r/2 when r—> oo and 6-0 inaccordance with
(6.4). The length a of the interval and the initial position z must be
adjusted so as to obtain the limits « and & Thus z~ é/d and aw a/é.
It is now easyto find the limits for the individual factors in (5.8).

From (6.4) we get 2p ~ 1 + cd/D, and

2qg~™1 — cd/D;

from the secondrelation in (6.4) we see that 62x > D. Therefore

(4pq)*"(q/p)#? ~ (1 —c?8*/D2—2¢6/D)#/?
(6.13) 467 4/D . o-cs/D

Similarly for fixed »

n 2 292 tr

(6.14) (cos =) ~ ( —= ~obDia”

x

mw e

 

io

Finally sin vzd/a ~ vmd/a. Substitution into (5.8) leads formally to

(6.15) u(t, E) = Dar2eBett28e1DF yeBvtDil”sin mee
v=1 ax

(Since the series converges uniformly it is not difficult to justify the formal
calculations.) In physical diffusion theory (6.15) is known as Fiirth’s

formulaforfirst passages. (For the limiting case « = 00 see problem 14.

For an alternative form of (6.15) see problem 22.]

*7. RANDOM WALKS IN THE PLANE

AND SPACE

In a two-dimensional random walk theparticle moves in unit steps in
one of the four directions parallel to the x- and y-axes. For a particle
starting at the origin the possible positions are all points of the plane with
integral-valued coordinates. Each position has four neighbors. Similarly,
in three dimensions each position has six neighbors. The random walkis

defined by specifying the corresponding four or six probabilities. For

* This section treats a special topic and may be omitted atfirst reading.
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simplicity we shall consider only the symmetric case whereall directions
have the same probability. The complexity of problems is considerably

greater than in one dimension, for now the domainsto whichthe particle
is restricted may have arbitrary shapes and complicated boundaries take
the place of the single-point barriers in the one-dimensionalcase.

Webegin with an interesting theorem due to Polya.®

Theorem. Jn the symmetric random walks in one and two dimensions
there is probability one that the particle will sooner or later (and therefore
infinitely often) return to its initial position. In three dimensions, however,

this probability is <1. (It is about 0.35. The expected numberof returns
is then 0.65 > k(0.35)* = 0.35/0.65 ~:0.53.)

Before proving the theorem let us give two alternative formulations,
both due to Polya. First, it is almost obvious that the theorem implies
that in one and two dimensions there is probability | that the particle will
pass infinitely often through every possible point; in three dimensionsthis
is not true, however. Thus the statement “‘all roads lead to Rome”is,

in a way, justified in two dimensions.

Alternatively, consider two particles performing independent symmetric
random walks, the steps occurring simultaneously. Will they ever meet?

To simplify language let us define the distance of two possible positions
as the smallest number of steps leading from one position to the other.
(This distance equals the sum of absolute differences of the coordinates.)
If the two particles move one step each, their mutual distance either

remains the same or changesby two units, and so their distance either is
even at all times or else is always odd. In the second case the twoparticles
can never occupy the sameposition. In thefirst caseit is readily seen that
the probability of their meeting at the nth step equals the probability that

the first particle reaches in 2n steps the initial position of the second
particle. Hence our theorem states that in two, but not in three, dimensions

the two particles are sure infinitely often to occupy the same position. If
the initial distance of the two particles is odd, a similar argument showsthat

they will infinitely often occupy neighboring positions. If this is called
meeting, then our theorem asserts that in one and two dimensions the two
particles are certain to meetinfinitely often, but in three dimensions thereis

a positive probability that they never meet.

® G. Polya, Uber eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt

im Strassennetz, Mathematische Annalen, vol. 84 (1921), pp. 149-160. The numerical

value 0.35 was calculated by W. H. McCrea and F. J. W. Whipple, Random paths in two
and three dimensions, Proceedings of the Royal Society of Edinburgh, vol. 60 (1940),

pp. 281-298.
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Proof. For one dimension the theorem has been proved in example
XIIL,(4.5) by the method of recurrent events. The proof for two and three

dimensions proceeds along the samelines. Let u, be the probability that
the nthtrial takes the particle to the initial position. According to theorem
2 of XIJII,3, we have to prove that in the case of two dimensions > u,
diverges, whereas in the case of three dimensions > u, = 0.53. In two

dimensionsa return to the initial position is possible only if the numbers
of steps in the positive x- and y-directions equal those in the negative x-
and y-directions, respectively. Hence u, = 0 if 1 is odd and [using the

multinomial distribution VI,(9.2)]

(71) tay = =D TGbiel! ~a)Sle)
2 2

By II, (12.11) the right side equals am( ") . Stirling’s formula now
n

shows that u., is of the order of magnitude 1/n, sothat > wu, diverges
as asserted.

In three dimensions wefind similarly

!
(7.2) Usy = 672” > (2n) t

Slilk! k!(n—j—k)! (n—j—b!
 

the summation extending overall j,k with j +k <n. Itis easily verified
that

1 /2n 1 n! 2
73 i, =— ——
(7-3) 2m s(n) 2 G:7GcoH

Within the braces we have the termsofa trinomial distrubution, and we
know that they add to unity. Hence the sum of the squares is smaller
than the maximum term within braces, and thelatter is attained when both

j and & are about n/3. Stirling’s formula shows that this maximum is
of the order of magnitude n7!, and therefore u., is of the magnitude

1I7 so that > uen converges as asserted. >

Weconclude this section with another problem which generalizes the
concept of absorbing barriers. Consider the case of two dimensions where
instead of the interval 0 < x < a we have a plane domain D, thatis, a

collection of points with integral-valued coordinates. Each point has four
neighbors, but for some points of D one or more of the neighborslie
outside D. Such points form the boundary of D, and all other points
are called interior points. In the one-dimensional case the two barriers
form the boundary, and our problem consisted in finding the probability
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that, starting from z, the particle will reach the boundary point 0 before
reaching a. By analogy, we nowaskfor the probability that the particle
will reach a certain section of the boundary before reaching any boundary
point that is not in this section. This means that we divide all boundary
points into two sets B’ and 8B". If (x,y) is an interior point, we seek
the probability u(x, y) that, starting from (x,y), the particle will reach

a point of B’ before reaching a point of B”. In particular, if B’ consists
of a single point, then u(x, y) is the probability that the particle will,
sooneror later, be absorbed at the particular point.

Let (x, y) be an interior point. Thefirst step takes the particle from
(x, y) to one of the four neighbors (w+1, y), (x, y4#1), andif all four of

them are interior points, we have obviously

(7.4) u(x, y) = g[uz+l, y) + u@—l,y) + u(x, y+1) + uz, y—1)).

This is a partial difference equation which takes the place of (2.1) (with

P=97=}). If (#+1,y) is a boundary point, then its contribution

u(x+1,y) must be replaced by 1 or 0, according to whether (x+1, y)

belongs to B’ or B". Hence (7.4) will be valid for all interior points if
we agree thatfor a boundarypoint (£,) in B' weput u(é,n) = 1 whereas
u(é,n) =0 if (&,) is in B". This convention takes the place of the
boundary conditions (2.2).

In (7.4) we have a system oflinear equations for the unknowns u(x, y);
to each interior point there correspond one unknown and one equation.

The system is non-homogeneous, since in it there appears at least one
boundary point (¢, 7) of B’ and it gives rise to a contribution } on the

right side. If the domain D is finite, there are as many equations as

unknowns, andit is well known that the system has a uniquesolutionif,

and only if, the corresponding homogeneous system (with u(é, 7) = 0
for all boundary points) has no non-vanishing solution. Now u(x, y) is
the mean of the four neighboring values u(z+l,y), u(z,y+1) and

cannot exceed all four. In other words, in the interior u(z, y) has neither
a maximum nor a minimum in thestrict sense, and the greatest and the
smallest value occur at boundary points. Hence, if all boundary values
vanish, so does u(x, y) at all interior points, which proves the existence

and uniqueness of the solution of (7.4). Since the boundary values are 0

and 1, all values u(x, y) lie between 0 and1, as is required for probabilities.
These statements are true also for the case of infinite domains, as can be

seen from a general theorem on infinite Markov chains.'°

10 Explicit solutions are knownin only a few cases and are always very complicated.
Solutions for the case of rectangular domains,infinite strips, etc., will be found in the

paper by McCrea and Whipple cited in the preceding footnote.
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*8. THE GENERALIZED ONE-DIMENSIONAL

RANDOM WALK (SEQUENTIAL SAMPLING)

We nowreturn to one dimension but abandontherestriction that the

particle moves in unit steps. Instead, at each step the particle shall have
probability p, to move from any point x to x +k, where the integer k

maybezero, positive, or negative. We shallinvestigate the following ruin

problem: The particle starts from a position z such that 0<z< a; we

seek the probability u, that the particle will arrive at some position <0
before reaching any position >a. In other words, the position of the

particle following the nth trial is the point z + X, + X,+°+:+X, of

the x-axis, where the {X,} are mutually independent random variables

with the commondistribution {p,}; the process stops when for thefirst

time either X, +-:--X, < —z or X, +°°:'X, >a -z.

This problem has attracted widespread interest in connection with
sequential sampling. There the X, represent certain characteristics of
samples or observations. Measurements are taken until a sum X, +
+:::+ X, falls outside two preassigned limits (our —z and a — 2).

In the first case the procedure leads to what is technically known as
rejection, in the second case to acceptance."

Example. (a) Asanillustration, take Bartky’s double-sampling inspec-

tion scheme. Totest a consignmentof items, samples of size N are taken
and subjected to complete inspection. It is assumed that the samples are

stochastically independent and that the numberof defectives in each has

the same binomial distribution. Allowance is made for one defective item
per sample, and so we let X,, + 1 equal the numberof defectives in the

kth sample. Then for k >0

_{N kt1,N-k-1
Px (i)? q

and p= q*, p,=0 for x < —1. The proceduralruleis as follows:
A preliminary sample is drawn and,if it contains no defective, the whole

consignment is accepted; if the number of defectives exceeds a, the

wholelot is rejected. In either of these cases the process stops. If, how-

ever, the number z of defectives lies in the range 1 < z < a, the sampling

* This section is not used later on.
11 The general theory of sequential statistical procedures was developed by Abraham

Wald during the Second World Warin connection with important practical problems.
Modern treatments can be found in many textbooks on mathematical statistics.
Bartky’s scheme described in the example dates from 1943 and seems to have been the

very first sequential sampling procedure proposedin theliterature.
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continues in the described way as long as the sum is contained between 1

and a. Soonerorlater it will become either 0, in which case the consign-
ment is accepted, or >a, in which case the consignmentis rejected. p>

Without loss of generality we shall suppose that steps are possible in
both the positive and negative directions. Otherwise we would haveeither

u,=0 or u,=1 forall z. The probability of ruin at the first step is
obviously

(8.1) r, = p_z + p_z-1 + P_z-2 + “ee

(a quantity which may be zero). The random walk continues only if the
particle moved to a position x with 0 <2x<a; the probability of a
jump from z to =z is p,_,, and the probability of subsequent ruin is then
u,. Therefore

a-1

(8.2) U,= > UsPo-2 + Me
a=1

Once more we have here a — 1 linear equations for a — 1 unknowns
u,. The system is non-homogeneous,since at least for z = 1 the proba-
bility r, is different from zero (because steps in the negative direction are

possible). To show that the linear system (8.2) possesses a unique solution

we must show that the associated homogeneous system

(8.3) U, = 2 UzPrz

has no solution except zero. To reduce the numberof subscripts appearing
in the proof we assume that p_; # 0 (but the argument applies equally
to other positive terms with negative index). Suppose, then, that wu,
satisfies (8.3) and denote by M the maximum of the values u,. Let
u, = M. Since the coefficients p,_, in (8.3) add to <1 this equationis

possible for z =r only if those u, that actually appear on the right side

(with positive coefficients) equal M andif their coefficients add to unity.

Hence u,_, = M and, arguing in the same way, wu,» =u,3 =''' =
= u, = M. However, for z = 1 the coefficients p,_, in (8.3) add to less

than unity, so that M mustbe zero.
It follows that (8.2) has a unique solution, and thus our problem is

determined. Again we simplify the writing by introducing the boundary

conditions
u, = 1 if «<9

(8.4)
uz = 0 if x>a.
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Then (8.2) can be written in the form

(8.5) Uz, = D> UzPx-2s

the summation now extending over all x [for x > a we have no contribu-

tion owing to the second condition (8.4); the contributions for x <0
add to r, owing to thefirst condition].

Forlarge a it isCumbersometo solve a — ] linear equationsdirectly,
and it is preferable to use the method ofparticular solutions analogous to
the procedure of section 2. It works whenever the probability distribution
{p,} has relatively few positive terms. Suppose that only the p, with
—v <k < pw are different from zero, so that the largest possible jumpsin
the positive and negative directions are w and y», respectively. The
characteristic equation

(8.6) Ypo =1

is equivalent to an algebraic equation of degree » + mw. If o is a root of
(8.6), then u, = o* is a formalsolution of (8.5) for all z, but this solution
doesnotsatisfy the boundary conditions (8.4). If (8.6) has w + » distinct
roots 01, 02,..., then the linear combination

(8.7) u, = > A,0%,

is again a formal solution of (8.5) for all z, and we must adjust the con-

stants A, to satisfy the boundary conditions. Now for 0 < z<a only
values x with —y+1<%2<a+y—1 appear in (8.5). It suffices

therefore to satisfy the boundary conditions (8.4) for = 0, —1, —2,

-, —vy+1, and x=a,a+1,...,a+u—1, so that we have

“+ ¥ conditions in all. If o, is a double root of (8.6), we lose one con-

stant, butin this caseit is easily seen that u, = zo% is another formalsolu-
tion. In every case the u + » boundary conditions determine the uw + ¥
arbitrary constants.

Example. (5) Suppose that each individual step takes the particle to

one of the four nearest positions, and we let p_» = p_y = pi = Po =}.
The characteristic equation (8.6) is o-? + 0! +6+4 06% =4. To solve

it we put ft=o+ 071: with this substitution our equation becomes
t? + t = 6, which has the roots ¢ = 2, —3. Solving t= o+ 07! for o

wefind the four roots

34/5 ,
—————_ = 6

_-3-V5_ 04

2 .°
4— 3°(8.8) o,=o,=1, of = 5
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Since o, is a double root, the general solution of (8.5) in our caseis

(8.9) u, = Ay + Anz + Ajo3 + A,o3.

The boundary conditions uy = u_y=1 and u,=u,,, =0lead to four
linear equationsfor the coefficients A, and to the final solution

2 (2e—a\(og—o4) — alos’*—04"*)
a af(a+2)(og—0%) — alot?—ot*)}
 (8.10) u,=1- >

Numerical Approximations. Usually it is cumbersome to find all the roots, but

rather satisfactory approximations can be obtained in a surprisingly simple way.

Considerfirst the case where the probability distribution {p,} has mean zero. Then
the characteristic equation (8.6) has a double root at o = 1, and A + Bz isa formal

solution of (8.5). Of course, the two constants A and B do notsuffice to satisfy the

f+ boundary conditions (8.4). However, if we determine A and B so that
A + Bz vanishes for z=a+m-—1 and equals 1 for z=0, then A+ Bx>1

for x<0O and A+ 8Bxr>0 for a<x<a+wyu so that A+ Bz satisfies the

boundary conditions (8.4) with the equality sign replaced by >. Hence the difference
A + Bz —u, 1s a formal solution of (8.5) with non-negative boundary values, and

therefore A + Bz —u,> 0. In like manner we can get a lower bound for u, by

determining A and B so that A + Bz vanishes for z =a and equals 1 for z=

= —vy+1. Hence

a—z atu—z-—1
———— < 4, < ————__..

(8.11) atyvy—17 ~~ a+t+y-1

This estimate is excellent when a is large as compared to w+». [Of course,

u, % (1—2/a) is a better approximation but does not give precise bounds.]
Next, consider the general case where the meanofthe distribution {p,} is not zero.

The characteristic equation (8.6) has then a simple root at o = 1. Theleft side of(8.6)
approaches © as o-+0 and as o>. Forpositive o the curve y = Lp,o* is

continuous and convex, and since it intersects the line y= 1 at o =1, there exists

exactly one more intersection. Therefore, the characteristic equation (8.6) has exactly
two positive roots, 1 and o,. As before, we see that A -+ Bo{ isa formal solution of

(8.5), and we can apply our previous argumentto this solution instead of A + Bz. We

find in this case
+yu-1 zof — of oT — oO;

(8.12) gat <4u.< ote~T°

and have the

Theorem. The solution of our ruin problem satisfies the inequalities (8.11) if {px} has

zero mean, and (8.12) otherwise. Here ©, is the unique positive root different from | of

(8.6), and 4 and —v are defined, respectively, as the largest and smallest subscript for

which p, # 9. .
Let m = Xkp, be the expected gain in a single trial (or expected length ofa single

step). It is easily seen from (8.6) that o, > 1 or o, <1 according to whether m < 0

or m> 0. Letting a— ©, we conclude from our theorem that in a game against an

infinitely rich adversary the probability of an ultimate ruin is one if and only if m < 0.
The duration ofgame can be discussed by similar methods(cf. problem 9).
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9. PROBLEMS FOR SOLUTION

Note: Problems 1-4 refer only to section 2 and require no calculations.

1. In a random walkstarting at the origin find the probability that the point
a > 0 will be reached before the point —b < 0.

2. Prove that with the notations of section 2:
(a) In a random walkstarting at the origin the probability to reach the point

a > 0 before returning to the origin equals p(1 —q,).
(6) In a random walkstarting at a > 0 the probability to reach the origin

before returning to the starting point equals gqq_1.

3. If g 2p, conclude from the preceding problem: In a random walk
starting at the origin the numberof visits to the point a > 0 that take place

. before the first return to the origin has a geometric distribution with ratio
1 —qqg-1- (Why is the condition q > p necessary ?)

4. Using the preceding two problems prove the theorem’: The number of
visits to the point a > 0 that take place prior to the first return to the origin
has expectation (p/q)* when p <q and 1 when p =q.

5. Consider the ruin problem of sections 2 and 3 for the case of a modified
random walk in which the particle moves a unit step to the right or left, or stays
at its present position with probabilities «, 8, y, respectively (« + 6 + y =1).

(In gambling terminology, the bet mayresult in tie.)

6. Consider the ruin problem ofsections 2 and 3 for the case wherethe origin
is an elastic barrier (as defined in section 1). The difference equations for the
probability of ruin (absorption at the origin) and for the expected duration
are the same, but with new boundary conditions.

7. A particle moves at each step fwo units to the right or one unitto theleft,
with corresponding probabilities p and q(p +q = 1). If the starting position

‘is z > 0, find the probability g, that the particle will ever reach the origin.
(This is a ruin problem against an infinitely rich adversary.)

Hint: The analogue to (2.1) leads to a cubic equation with the particular
solution g, = 1 and two particular solutions of the form 4*, where 4 satisfies a
quadratic equation.

8. Continuation. Show that q, equals the probability that in a sequence of
Bernoulli trials the accumulated number offailures will ever exceed twice the

accumulated numberof successes.

[When p = this probability equals (V5 —1)/2.]

2 The truly amazing implications of this result appear best in the language offair
games. A perfect coin is tossed until the first equalization of the accumulated numbers
of heads and tails. The gambler receives one penny for every time that the accumulated
number of heads exceeds the accumulated numberoftails by m. The “‘fair entrance

fee” equals | independently of m.
Fora different (elementary) proof see problems 1-2 of XII,10 in volume 2.

8 This problem was formulated by D. J. Newman. That its solution is a simple
corollary to the preceding problem (in the second edition) was observed by W. A.

O’N. Waugh. The reader may try the same approachfor the more general problem when

the factor 2 is replaced by some otherrational. A solution along different lines was

devised by J. S. Frame. See Solution to problem 4864, Amer. Math. Monthly, vol. 67

(1960), pp. 700-702.
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9. In the generalized random-walk problem of section 8 put [in analogy with
(8.1)] p, = Paz + Pasi-z + Para-z +°°*, and let d,, be the probability
that the gamelasts for exactly n steps. Show that for n > 1

a1

dznit = > de,nPx—z
z=1

with d,, =r, + p,. Hence prove that the generating function d,(c) = Xd,,0”
is the solution of the system of linear equations

a-l

o1d,(o) _ > d,(0)pxx =r, + pz.
x=1

By differentiation it follows that the expected duration e, is the solution of

a-1

ez — > euPx—z =1.
xz=1

10. In the random walk with absorbing barriers at the points 0 and a and
with initial position z, let w,,,(x) be the probability that the nth step takes
the particle to the position x. Find the difference equations and boundary
conditions which determine w, ,(~).

11. Continuation. Modify the boundary conditions for the case of two
reflecting barriers (i.e., elastic barriers with 6 = 1).

12. A symmetric random walk (p =q) has possible positions 1,2,...,
a —1. There is an absorbing barrier at the origin and a reflecting barrier at
the other end. Find the generating function for the waiting time for absorption.

13. An alternative form for the first-passage probabilities. In the explicit
formula (5.7) for the ruin probabilities let a + «©. Show thatthe result is

1
Uzn = Wpir—A)/2glntay/“| cos"! nx - sin wx - sin mxz- dz.

0

Consequently, this formula must be equivalent to (4.14). Verify this by showing
that the appropriate difference equations and boundary conditionsaresatisfied.

14. Continuation: First passages in diffusion. Show that the passage to the
limit described in section 6 leads from the last formula to the expression

————. 9(z+et)?(2D)
V2nDt?

for the probability density for the waiting time for absorptionat the origin in a
diffusion starting at the point z > 0. When p =q this result is equivalent to
the limit theorem 3 ofIII,7.

Note: In the following problems vz, is the probability (6.1) that in an un-
restricted random walk starting at the origin the nth step takes the particle to the
position x. The reflection principle of WX, 1 leads to an alternative treatment.
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15. Method of images.4 Let p =g =3%. Ina random walk in (0, ©) with
an absorbing barrier at the origin andinitial position at z > 0, let u,,(z) be
the probability that the nth step takes the particle to the position «> 0. Show
that uzn(©) =Vz_2.n — Ver2.n- [Hint: Show that a difference equation corre-
sponding to (4.1) and the appropriate boundary conditionsare satisfied.]

16. Continuation, If the origin is a reflecting barrier, then

Uzn(X) = Vyzn + Vetz—1,n°

17. Continuation. If the random walkis restricted to (0, a) and both barriers
are absorbing, then

(9.1) Uzn(X) = 2 {Up_2-2ka,n _ Ver2—2ka,n}s

the summation extending over all k, positive or negative (only finitely many
terms are different from zero). If both barriers are reflecting, equation (9.1)
holds with minus replaced by plus and x +2 replaced by x +z — 1.

18. Distribution of maxima. In a symmetric unrestricted random walk
starting at the origin let M,, be the maximum abscissa of the particle in n steps.
Using problem 15, show that

(9.2) P{M, = z\ = vzn + Varin:

19. Let Vi(s) = > v,,,5” (cf. the note preceding problem 15). Prove that
VAs) = Vo(s)Az*(s) when x <0 and V,,(s) = V,(s)Ay"(s) when x > 0, where
4,(s) and 4,(s) are defined in (4.8). Moreover, Vo(s) = (1 —4pqs?)-2.

Note: These relations follow directly from the fact that 4,(s) and 4,(s) are
generating functions offirst-passage times as explained at the conclusion of
section 4.

20. In a random walk in (0, ©) with an absorbing barrier at the origin and
initial position at z, let u,,,(~) be the probability that the nth step takes the
particle to the position 2, andlet

9.3) U.(5;2) = > uy g(@)s".
n=0

Using problem 19, show that U,(s; x) = V,_,(s) — A3(s)V,(s). Conclude

(9.4) Uz,n(X) = Vyzn — (q/p)? *Uptzne

Compare with the result of problem 15 and derive (9.4) from the latter by
combinatorial methods.

4 Problems 15-17 are examples of the method of images. The term vz_z,, Corre-

spondsto a particle in an unrestricted random walk, and v,.2,, to an “image point.”
In (9.1) we find image points starting from various positions, obtained by repeated

reflections at both boundaries. In problems 20-21 we get the general result for the
unsymmetric random walk using generating functions. In the theory of differential
equations the method of images is always ascribed to Lord Kelvin. In the probabilistic

literature the equivalent reflection principle is usually attributed to D. André. See

footnote 5 of III,1.
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21. Alternative formula for the probability of ruin (5.7). Expanding (4.11)
into a geometric series, prove that

x \ka oO ka-z ,
_ P P

Hz an = > (! Wz.9ke,n ~ > ~ Woka—z,n
k=0 R=1\9

where w,,, denotes the first-passage probability of (4.14).

22. If the passage to the limit of section 6 is applied to the expression for
uz,» given in the preceding problem, show that the probability density of
the absorption time equals’®

1 x
——_ 9— (et+28) ¢/(2D) > (E + 2kaje(st2kx)*/(2D8)
V2n7DP k=— 0
 

| (Hint: Apply the normal approximation to the binomial distribution.)

23. Renewal method for the ruin problem}® In the random walk with two
absorbing barriers let u,, and uz, be, respectively, the probabilities of
absorption at the left and the right barriers. By a proper interpretation prove
the truth of the following two equations:

V_As) = U,(s)Vi(s) = UX(s)V_,(s),

VAs) = UAs)V(s) + UF(s)Vi(s).

Derive (4.11) by solving this system for U,(s).

24. Let u,,(x) be the probability that the particle, starting from z, will at
the nth step be at x without having previously touched the absorbing barriers.
Using the notations of problem 23, show that for the corresponding generating
function U(s;x) = Su,,(x)s” we have

UAs; x) = V,_2(S) _ U,(s) V,AS) _ UF(s)V, _ a(S).

(No calculations are required.)

25. Continuation. The generating function U,(s; x) of the preceding problem
can be obtained by putting U,(s;x) = V,_(s) — AA3(s) — BAX(s) and
determining the constants so that the boundary conditions U,(s;z) =0 for
z =0 and z =a aresatisfied. With reflecting barriers the boundary conditions
are U,(s; x) = U,(s;~) and U,(s; x) = U,_,(s; 2).

26. Prove the formula
T

Urn = Qaytanpinenrgonave | cos” t- cos tx: dt

—T

by showing that the appropriate difference equation is satisfied. Conclude that

V,(s) = (20) (<)" i"OS
g _,1—2Vpq:s-cost

45 The agreement of the new formula with the limiting form (6.15) is a well-known

fact of the theory of theta functions. See XIX,(5.8) of volume 2.

16 Problems 23~25 contain a new and independent derivation of the main results

concerning random walks in one dimension.
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27. In a three-dimensional symmetric random walk the particle has prob-
ability one to pass infinitely often through anyparticular line x =m, y =n.
(Hint: Cf. problem 5.)

28. In a two-dimensional symmetric random walk starting at the origin
the probability that the nth step takes the particle to (%, y) is

(27)~*?2-" { (cos a + cos B)"- cos xa - cos yf: dx dp.
—T —T

Verify this formula and find the analogue for three dimensions. (Hint: Check
that the expressionsatisfies the proper difference equation.)

29. In a two-dimensional symmetric random walk let D? =xz* + y? be

the square of the distance of the particle from the origin at time n. Prove
E(D?) =n. [Hint: Calculate E(D*_, —D?).]

30. In a symmetric random walk in d dimensionsthe particle has probability
1 to return infinitely often to a position already previously occupied. Hint:
At each step the probability of moving to a new position is at most (2d —1)/(2d).

31. Show that the method described in section 8 worksalso for the generating
function U,(s) of the waiting time for ruin.

 



CHAPTER XV

Markov Chains

‘1. DEFINITION

Up to now wehave been concerned mostly with independenttrials which
can be described as follows. A set of possible outcomes EF), Ey,...,

(finite or infinite in number) is given, and with each there is associated a

probability p,; the probabilities of sample sequences are defined by the
multiplicative property P{(Z;,, £;,.--, 45} =Pi,Pi,°°° Ps, In the
theory of Markov chains we consider the simplest generalization which

consists in permitting the outcomeofanytrial to depend on the outcome
of the directly preceding trial (and only on it). The outcome £, is no

longer associated with a fixed probability p,, but to every pair (£;, £,)
there correspondsa conditionalprobability p,;,; giventhat E; has occurred
at sometrial, the probability of £, at the nexttrial is p,,. In addition to
the p;, we must be given the probability a, of the outcome £, at the

initial trial. For p,;, to have the meaning attributed to them, the prob-
abilities of sample sequences corresponding to two, three, or four trials
must be defined by

P{(E;, E,)} = Pins P((E;, Ex, E,)} = QPiPyps

P((E£;, Ey; E,. E,)} = OsPjxPerPrs»

and generally

(1.1) P(E; Ej,. +++ > Es,)} = GiPigi:Pigiy °° Pin-xin1Pin-rin°

Here the initial trial is numbered zero, so that trial number one is the
second trial. (This convention is convenient and has been introduced

tacitly in the preceding chapter.)
Several processes treated in the preceding chapters are Markov chains,

but in special cases it is often preferable to use different notations and
modes of description. The principal results of the present chapter concern

the existence of certain limits and equilibrium distributions; they are, of

course, independent of notations and apply to all Markov chains.

372
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Examples. (a) Random walks. A random walk on the line is a Markov

chain, but it is natural to order the possible positions in a doubly infinite

sequence ..., —2, —1, 0, 1, 0;.... With this order transitions are

possibly only between neighboring positions, that is, p;, = 0 unless
k =j +1. With our present notations we would be compelled to order
the integers in a simple sequence, say 0, 1, —1, 2, —2,... and this would

lead to clumsy formulasfor the probabilities p,,. The same remark applies

to random walks in higher dimensions: Foractual calculationsit is pref-
erable to specify the points by their coordinates, but the symbolism of the

present chapter can be used for theoretical purposes.
(b) Branching processes. Instead of saying that the mth trial results in

E,, we said in XII,3 that the mth generation is of size k. Otherwise, we
were concerned with a standard Markov chain whosetransition prob-
ability py, is the coefficient of a s* in the jth power p%(s) of the given

generating function.
(c) Urn models. It is obvious that several urn models of V.2 represent

Markov chains. Conversely, every Markov chain is equivalent to an urn
model as follows. Each occurring subscript is represented by an urn, and

each urn contains balls marked £), E,,.... The composition of the urns
remainsfixed, but varies from urn to urn; in the/th urn the probability to
draw a ball marked £, is p,,. At the initial, or zero-th, trial an urn is
chosen in accordance with the probability distribution {a,;}. From that
urn a ball is drawn at random,andifit ismarked £;, the next drawingis
made from thejth urn, etc. Obviously with this procedure the probability
of a sequence (£;,..., £;,) is given by (1.1). We see that the notion of a

Markovchainis not more general than urn models, but the new symbolism

will prove more practical and moreintuitive. >

If a, is the probability of E, at the initial (or zero-th) trial, we must

have a, >0 and > a,= 1. Moreover, whenever £; occurs it must be
followed by some E,, and it is therefore necessary that for all j and k

(1.2) Pat Pet Ps too = 1, Pix = 9.

Wenow showthat for any numbers a, and pj, satisfying these conditions,
the assignment(1.1) is a permissible definition of probabilities in the sample
space corresponding to » + 1 trials. The numbersdefined in (1.1) being

non-negative, we need only prove that they add to unity. Fix first jo, /,,
.5Jn-1 and add the numbers (1.1) for all possible j,. Using (1.2) with

j =jn-1» We see immediately that the sum equals 4;pj5.° °° Pi,_sin_y"

Thus the sum over all numbers (1.1) does not depend on n, and since

> 4;, = 1, the sum equals unity for all 7.
The definition (1.1) depends. formally on the numberof trials, but our

argument proves the mutual consistency of the definitions (1.1) for all 7.
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For example, to obtain the probability of the event “‘the first twotrials
result in (E;, E,),” we have to fix 7, =j andj, = k, and add the prob-
abilities (1.1) for all possible j,, /3,...,j,. We have just shown that the
sum is a,p,, and is thus independent of n. This meansthatit is usually
not necessary explicitly to refer to the numberoftrials; the event (£;,,,
...,£;) has the same probability in all sample spaces of more than r
trials. In connection with independenttrials it has been pointed outre-

peatedly that. from a mathematical pointofview,it is most satisfactory to
introduce only the unique sample space of unending sequencesoftrials

and to consider the result of finitely many trials as the beginning of an
infinite sequence. This statement holdstrue also for Markov chains. Un-
fortunately, sample spacesofinfinitely manytrials lead beyond the theory
of discrete probabilities to which weare restricted in the present volume.
To summarize, our starting point is the following

Definition. A sequence of trials with possible outcomes E,, E,,... is

called a Markovchain’ if the probabilities of sample sequences are defined
by (1.1) in terms of a probability distribution {a,} for E, at the initial
(or zero-th) trial and fixed conditional probabilities py, of E, given that
E; has occurred at the preceding trial.

A slightly modified terminclogy is better adapted for applications of
Markov chains. The possible outcomes £; are usually referred to as
possible states of the system; instead of saying that the nthtrial results in
E,, one says that the nth step leads to E,, or that E, is entered at the
nth step. Finally, py, is called the probability of a transition from E, to
E,. As usual we imaginethetrials performed at a uniform rate so that the
number of the step serves as time parameter.

Thetransition probabilities p,, will be arranged in a matrix oftransition

probabilities
Pu Pie Ps

Pa Pee Pes

(1.3) P=| Psi Pse Pas

1 This is not the standard terminology. Weare here considering only a special class
of Markovchains, and,strictly speaking, here and in the following sections the term
Markovchain should always be qualified by adding the clause “with stationary transition
probabilities.’ Actually, the general type of Markovchainis rarely studied. It will be
defined in section 13, where the Markovproperty will be discussed in relation to general
stochastic processes. There the reader will also find examples of dependenttrials that

do not form Markovchains.
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wherethe first subscript stands for row, the second for column. Clearly
P is a square matrix with non-negative elements and unit row sums. Such
a matrix (finite or infinite) is called a stochastic matrix. Any stochastic
matrix can serve as a matrix of transition probabilities; together with our
initial distribution {a,} it completely defines a Markov chain with states
Ey, Eg, ..

In somespecial cases it is convenient to numberthe states starting with
QO rather than with 1. A zero row and zero columnare then to be added
to P.

Historical Note. Various problemstreatedin theclassical literature by urn models
now appear as special Markovchains,butthe original methods were entirely different.
Furthermore, many urn models are of a different character because they involve
aftereffects, and this essential difference was not properly understood. In fact, the
confusion persisted long after Markov’s pioneer work. A. A. Markov (1856-1922)
laid the foundations of the theory of finite Markov chains, but concrete applications
remained confined largely to card-shuffling and linguistic problems. The theoretical
treatment was usually by algebraic methods related to those described in the next
chapter. This approachis outlined in M. Fréchet’s monograph.?
The theory of chains with infinitely many states was introduced by A. Kolmogorov.

The new approach in the first edition of this book made the theory accessible to a
wider public and drew attention to the variety of possible applications. Since then
Markovchains have becomea standard topic in probability and a familiar tool in

“manyapplications. For morerecent theoretical developments see the notes to sections
11 and 12.

2. ILLUSTRATIVE EXAMPLES

(For applications to the classical problem of card-shuffling see section
10.)

(a) Whenthere are only two possible states E, and E, the matrix of

transition probabilities is necessarily of the form

pa['7? P |
a l1—«

Such a chain could be realized by the following conceptual experiment. A
particle moves along the x-axis in such a way that its absolute speed re-
mains constant but the direction of the motion can be reversed. The
system is said to be in state E, if the particle moves in the positive direc-
tion, and in state EF, if the motionis to the left. Then p is the probability

2 Recherches théoriques modernes sur le calcul des probabilités, vol. 2 (Théorie des

événements en chaine dansle cas d’un nombrefini d’états possibles), Paris, 1938.

8 Anfangsgriinde der Theorie der Markoffschen Ketten mit unendlich vielen méglichen
Zustinden, Matematiteskii Sbornik, N.S., vol. 1 (1936), pp. 607-610. This paper

contains no proofs. A complete exposition was given only in Russian, in Bulletin de
l'Université d’Etat 4 Moscou, Sect. A., vol. 1 (1937), pp. 1-15.
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of a reversal when the particle moves to the right, and « the probability
of a reversal when it movesto the left. [For a complete analysis of this
chain see example XVI,(2.a).]

(6) Random walk with absorbing barriers. Let the possible states be
Ey, £,...,£, and consider the matrix of transition probabilities

r1 000 ::- 00 07

g Op 0 -+ 0 0 0

0g 0p: 0 0 0

P= . .

000 0 :': ¢ O p

000 0+: 00 1,  
From each of the “interior” states E,,...,£,1 transitions are possible

to the right and the left neighbors (with p;..,=p and p;,1 = 4).
However, no transition is possible from either E, or E, to any other

state; the system may move from onestate to another, but once Ey, or
E, is reached, the system stays there fixed forever. Clearly this Markov
chain differs only terminologically from the model of a random walk with
absorbing barriers at 0 and p discussed in the last chapter. There the
random walk started from fixed point z of the interval. In Markov chain
terminology this amounts to choosing the initial distribution so that
a,=1 (and hence a, =0 for x #z). To a randomly chosen initial

state there correspondstheinitial distribution a, = 1/(p+1).
(c) Reflecting barriers. An interesting variant of the preceding example

is represented by the chain with possible states F,,...,£, and transition

probabilities

g p00: 00 07

g 0p 0: 00 0

0g 0 p::: 00 0
Palo cc tot

000 0 -:+ g 0 p

(0 00 0°: Og p_  
This chain may be interpreted in gambling language by considering two
players playing for unit stakes with the agreement that every time a player
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loses his last dollar his adversay returns it so that the game can continue

forever. We suppose that the players own between them p + 1 dollars
and say that the system is in state &, if the two capitals are k and
p—k +1, respectively. The transition probabilities are then given by

our matrix P. In the terminology introduced in XIV,1 our chain represents
a random walkwith reflecting barriers at the points }and p + 4. Random
walks with elastic barriers can be treated in the same way. A complete

analysis of the reflecting barrier chain will be found in XVI,3. [See also
example (7.c).]

(d) Cyclical random walks. Again let the possible states be £,, E,,

...,£, but order them cyclically so that E, has the neighbors £,,
and £,. If, as before, the system always passeseither to the right or to the
left neighbor, the rows of the matrix P are as in example (db), except that

the first row is (0, p,0,0,...,0,¢) and the last (p, 0,0, 0,..., 0,4, 0).

More generally, we may permit transitions between any twostates.
Let qo, 915--+54p-1 be, respectively, the probability of staying fixed or
moving 1,2,...,— 1 units to the right (where & units to the right is
the same as p — k unitsto the left). Then P is the cyclical matrix

fo 91 2 *** Wp-2 Yo-1

GY-1 Jo G1 °° * p38 Yo-2

P=) %o-2 Yo-1 Yo °"* Yp4 Yp-3

M1 G2 9s *"* Wpr Jo

For an analysis of this chain see example XVI,(2.d).
(e) The Ehrenfest model of diffusion. Once more we consider a chain

with the p+ 1 states £), £,,...,£, and transitions possible only to
the right and totheleft neighbor; this time we put p;j,; = 1 —/j/pand

P11 = jlp, so that

ro ol 0 0 -. 0 07

eo 0 lp 0 0 0

0 2p 0 1 —2p7 0 0
P=

0 0 0 0 0 p

0 0 0 0 1 0]  
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This chain has two interesting physical interpretations. For a discussion
of various recurrence problemsin statistical mechanics, P. and T. Ehren-
fest* described a conceptual urn experiment where p molecules are dis-
tributed in two containers A and B. At each trial a molecule is chosen at
random and movedfromits container to the other. Thestate of the system
is determined by the numberof molecules in A. Suppose that at a certain
moment there are exactly A molecules in the container A. At the next
trial the system passes into £,_, or £,,, according to whether a molecule

in A or B is chosen; the corresponding probabilities are k/p and
(p—k)/p, and therefore our chain describes Ehrenfest’s experiment.

However, our chain canalso beinterpreted as diffusion with a centralforce,
that is, a random walk in which the probability of a step to the right varies
with the position. From x = the particle is more likely to move to the
right or to the left according as j < p/2 or j > p/2; this meansthat the

particle has a tendency to move toward x = p/2, which correspondsto an
attractive elastic force increasing in direct proportion to the distance.
[The Ehrenfest model has been described in example V(2.c); see also
example (7.d) and problem 12.]

(f) The Bernoulli-Laplace model of diffusion.» A model similar to the
Ehrenfest model was proposed by D. Bernoulli as a probabilistic analogue
for the flow of two incompressible liquids between two containers. This

time we have a total of 2p particles among which p are black and p
white. Since these particles are supposed to represent incompressible

liquids the densities must not change, and so the number p ofparticles in

each urn remains constant. Wesay that the system is in state EF, (k = 0,
‘l,..., p) if the first urn contains k white particles. (This implies that it

contains p— k black particles while the second urn contains p — k
white and k black particles). At each trial one particle is chosen from each

urn, and these two particles are interchanged. The transition probabilities

are then given by
*\2 *\2 . :

(2.1) P3,j-1 = (2); Pj,541 (—), Pi5 = 2 Kea)
P p P

4P. and T. Ehrenfest, Uber zwei bekannte Einwdnde gegen das Boltzmannsche

H-Theorem, Physikalische Zeitschrift, vol. 8 (1907), pp. 311-314. Ming Chen Wang
and G. E. Uhlenbeck, On the theory of the Brownian motion II, Reviews of Modern
Physics, vol. 17 (1945), pp. 323-342. For a more complete discussion see M. Kac,
Random walk and the theory ofBrownian motion, Amer. Math. Monthly, vol. 54 (1947),

pp- 369-391. These authors do not mention Markovchains, but Kac uses methods

closely related to those described in the next chapter. See also B. Friedman, A simple
urn model, Communications on Pure and Applied Mathematics, vol. 2 (1949), pp. 59-70.

° In the form of an urn model this problem wastreated by Daniel Bernoulli in 1769,
criticized by Malfatti in 1782, and analyzed by Laplace in 1812. See I. Todhunter,

A history of the mathematical theory ofprobability, Cambridge, 1865.
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and p;, = 0 whenever|j — k| > 1 (here 7 = 0,..., p). [For the steady
state distribution see example (7.e); for a generalization of the modelsee
problem 10.]

(g) Random placements of balls. Consider a sequence of indepéndent
trials each consisting in placing a ball at random in one of p givencells
(or urns). We say that the system is in state E, if exactly k cells are
occupied. This determines a Markov chain with states E,,..., E, and

transition probabilities such that

p—J

p
(2.2) P55 = , P5541 F

o
D

I
M
.

and, of course, p,,—=0 for all other combinations of j and k. If
initially all cells are empty, the distribution {a,} is determined by a) = 1

and a,=0 for k>0. [This chainis further analyzed in example
XVI,(2.e). Random placements of balls were treated from different points
of view in II,5 and IV,2.] .

(h) An example from cell genetics.6 A Markov chain with states E,,

..., Ey and transition probabilities

ey mePEIN
occursin a biological problem which may be described roughly asfollows.
Each cell of a certain organism contains N particles, some of which are

of type A, the others of type B.-Thecell is said to be in state E, ifit
contains exactly j particles of type A. Daughtercells are formed bycell
division, but prior to the division each particle replicates itself; the

daughtercell inherits N particles chosen at random from the 2) particles
of type A and 2N — 2j particles of type B presentin the parentalcell.
The probability that a daughter cell is in state EF, is then given by the

hypergeometric distribution (2.3).
It will be shown in example (8.5)that after sufficiently many generations

the entire population will be (and remain) in one of the pure states Ey or

Ey; the probabilities of these two contingencies are 1 — j/N and j/N,
respectively, where £, stands for the initial state.

SI. V. Schensted, Model of subnuclear segregation in the macronucleus of ciliates,

The Amer. Naturalist, vol. 92 (1958), pp. 161-170. This author uses essentially the

methodsof chapter XVI, but does not mention Markov chains. Our formulation of the

problem is mathematically equivalent, but oversimplified biologically.
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(i) Examplesfrom population genetics.’ Consider the successive genera-
tions of a population (such as the plants in a corn field) which is kept

constant in size by the selection of N individuals in each generation. A
particular gene assuming the forms A and a has 2N representatives;

if in the mth generation A occurs j times, then a occurs 2N — j times.
In this case we say that the population is in state E,; (0<j <2N).
Assuming random mating, the composition of the following generation
is determined by 2N Bernoulli trials in which the A-gene has probability
j/2N. We have therefore a Markov chain with

aN j k j 2N—k

ee re=(e) ix) (an)
In the states E, and Lo, all genes are of the same type, and no exit from
these states is possible. (They are called homozygous.) It will be shown in
example (8.5) that ultimately the population will be fixed at one of the
homozygous states E, or Egy. If the population starts from the initial.
state E; the corresponding probabilities are 1 — j/(2N) and j/(2N).

This model can be modified so as to take into account possible muta-
tions and selective advantages of the genes. |

(j) A breeding problem. In the so-called brother-sister mating two indi-
viduals are mated, and amongtheir direct descendants two individuals of
opposite sex are selected at random. These are again mated, and the
process continues indefinitely. With three genotypes AA, Aa, aa for
each parent, we have to distinguish six combinations of parents which we
label as follows: £, = AA xX AA, E,= AA X Aa, Es; = Aa X Aa,

E, = Aa x aa, E; = aa X aa, E,= AA X aa. Using the rules of V,5

it is easily seen that the matrix of transition probabilities is in this case

 

1 0 0 0 0 07

tb F 0 0 0
&hoP tt a
00 t $ 4 0
00 0 0 1 0

|o0 0 1 0 0 O| 
* This problem was discussed by different methods by R. A. Fisher and S. Wright.

The formulation in terms of Markovchains is due to G. Malécot, Sur un probléme de
probabilités en chaine que pose la génétique, Comptes rendus de l’Académie des Sciences,

vol. 219 (1944), pp. 379-381. ‘
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[The discussion is continued in problem 4; a complete treatmentis given
in example XVI,(4.5).]

(k) Recurrent events and residual waiting times. Thechain with states Eo,
£,,... and transition probabilities

PA he fs fa ot)
100 0

0 1 0 0

P='0 010

000 1

  
will be used repeatedly for purposesofillustration; the probabilities f,
are arbitrary except that they must add to unity. To visualize the process
suppose that it starts from the initial state Ey. If the first step leads to
E;,_,; the system is bound to pass successively through £;,2, Ey_3,.--;
and at the kth step the system returns to E,, whence the processstarts
from scratch. The successive returns to E, thus represent a persistent
recurrentevent & with the distribution {f,} for the recurrence times. The
state of the system at any time is determined by the waiting time to the
next passage through £,. In-most concrete realizations of recurrent events

the waiting time for the next occurrence depends on future developments

and our Markovchainis then without operational meaning. But the chain
is meaningful whenitis possible to imagine that simultaneously with each
occurrence of & there occurs a random experiment whose outcome
decides on the length of the next waiting time. Such situations occur in
practice althoughthey are the exception rather than the rule. For example,
in the theory of self-renewing aggregates [example XIII,(10.d)] it is some-
times assumed that the lifetime of a newly installed piece of equipment

depends onthe choice of this piece but is completely determined once the
choice is made. Again, in the theory of queues at servers or telephone
trunk lines the successive departures of customers usually correspond to

recurrent events. Suppose now that there are many types of customers
but that each type requires service of a known duration. The waiting time
between two successive departures is then uniquely determined from the
moment when the corresponding customer joins the waiting line. [See
example (7.2).]
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(2) Another chain connected with recurrent events. Consider again a

chain with possible states Ey, £,,... and transition probabilities
—

"APO 0 0

G2 0 pre 0 0

p=|% 0 O ps 0

qa 9 0 0 p

z . 

—

 
where p, +4, = 1. For a picturesque description we may interpret the

state E, as representing the “age” of the system. When the system reaches
age k the aging process continues with probability p,,,, but with prob-
ability ¢,,, it rejuvenates and starts afresh with age zero. The successive
passages through the state E£, again represent a recurrent event and the
probability that a recurrence time equals k is given by the product
PiP2"** Pr+Gz- It is possible to choose the p, in such a wayasto obtain
a prescribed distribution {f,} for the recurrence times; it suffices to put
9, =fi, then g. = f2/p,, and so on. Generally

1-f,---::'-f,2.5 | eobehhe
G9) Pe fp—fag
In this way an arbitrary recurrent event 6 with recurrence time distribu-

tion {f,} corresponds to a Markov chain with matrix P determined by
(2.5). At the mth trial the system is in state £, if, and only if, the trial

number n — k was the last at which 6 occurred (here k = 0,1,...).

This state is frequently called “‘the spent waiting time.” [The discussion
is continued in examples(5.5), (7. f), and (8.e).]

(m) Success runs. As a special case of the preceding example consider a
sequence of Bernoulli trials andlet us agree that at the nth trial the system
is in the state £, if the last failure occurred at the trial number n — k.
Here k = 0,1,... and the zéroth trial counts as failure. In other words,

the index k equals the length of the uninterrupted block of successes

ending at the nth trial. The transition probabilities are those of the pre-
ceding example with p, = p and g, =q forall k.

3. HIGHER TRANSITION PROBABILITIES

Weshall denote by p\”) the probability of a transition from E; to Ex
in exactly n steps. \n other words, p‘”is the conditional probability of

entering £;, at the nth step giventheinitial state £,; this is the sum of the
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probabilities of all possible paths E,E;,°'' E;,FE, of length nv starting
at E; and ending at E,. In particular‘ow ="Pin and

(3.1) | Pst = & PivPre

By induction weget the general recursion formula

(3.2) Pi) = x PivPye3

a further induction on m leads to the basic identity

(3.3) Pin” = >ye

(which is a special case of the Chapman-Kolmogorovidentity). It reflects
the simple fact that the first m steps lead from E, to some intermediate
state £,, and that the probability of a subsequent passage from E, to
E, does not depend on the manner in which E, was reached.®

In the same way as the p,, form the matrix P, we arrange the p\") in
a matrix to be denoted by P”. Then (3.2) states that to obtain the element
Py’ of P”* we have to multiply the elements of the jth row of P by
the corresponding elements of the kth column of P” and addall products.
This operation is called row-into-column multiplication of the matrices P
and P” and is expressed symbolically by the equation P"+! = Pp”,
This suggests calling P” the nth power of P; equation(3.3) expresses the
familiar law P™+" = P™p”.

In order to have (3.3) true for all n > 0 we define p'?) by pi = 1
and p??) =0 for 7 #k asis natural.

Examples. (a) Independenttrials. Explicit expressions for the higher-
ordertransition probabilities are usually hard to come by, but fortunately
they are only of minorinterest. As an important,if trivial, exception we
note the special case of independenttrials. This case arises whenall rows
of P are identical with a given probability distribution, and it is clear
without calculations that this implies P” = P for all n.

(5) Success runs. In example (2.m) it is easy to see [either from the
recursion formula (3.2) or directly from the definition of the process] that

qp* for k=0,1,...,n—1

Pe = PY for k=n
0 otherwise.

* The latter property is characteristic of Markov processes to be defined in section 13.
It has been assumedfor a long time that (3.3) could be used for a definition of Markov

chains but, surprisingly, this is not so [see example (13.f)].

 



384 MARKOV CHAINS [XV.4

In this case it is clear that ‘P” converges to a matrix such thatall elements
in the column number k equal gqp*. >

Absolute Probabilities

Let again a; stand for the probability of the state E, at theinitial (or
zeroth) trial. The (unconditional) probability of entering E, at the nth
step is then

(3.4) ay” = apy
3

Usually we let the process start from a fixed state E,, that is, we put
a, = 1. In this case aj” = p\™.

Wefeel intuitively that the influence oftheinitial state should gradually
wear off so that for large n the distribution (3.4) should be nearly inde-
pendentof the initial distribution {a,}. This is the case if (as in the last

example) p{") converges to a limit independent of j, thatis, if P” con-
verges to a matrix with identical rows. Weshall see that this is usually so,
but once more weshall have to take into account the annoying exception
caused by periodicities.

4. CLOSURES AND CLOSED SETS

Weshall say that £, can be reached from E, if there exists some
n> 0_ such that p\?) > 0 (i.e., if there is a positive probability of reaching
E,, from E; including the case £, = £;). For example, in an unrestricted
random walk each state can be reached from every other state, but from

an absorbing barrier no other state can be reached.

Definition. A set C ofstates is closedifno state outside C canbe reached
from any state E,in C. For an arbitrary set C ofstates the smallest closed

set containing C is called the closure of C.

A single state E, forming a closed set will be called absorbing.
A Markovchainis irreducible ifthere exists no closed set other than the set

of all states.

Clearly C is closedif, and only if, py, = 0 whenever:j isin C and‘k

outside C, for in this case we see from (3.2) that p”) = 0 for every n.

We havethus the obvious

Theorem. Jfin the matrices P” allrows and all columns corresponding to
states outside the closed set C are deleted, there remain stochastic matrices

for which the fundamental relations (3.2) and (3.3) again hold. -

This means that we have a Markov chain defined on C, and this sub-

chain can be studied independently of all other states.
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The state E;, is absorbing if, and only if, py, = 1; in this case the matrix
of the last theorem reduces to a single element. In general it is clear that
the totality of all states £, that can be reached from a given state E,
formsa closed set. (Since the closure of E; cannot be smaller it coincides
with this set.) An irreducible chain contains no proper closed subsets,
and so we havethe simple but useful

Criterion. A chain is irreducible if, and only if, every state can be
reachedfrom every otherstate.

Examples. (qa) In orderto find all closed sets it suffices to know which

Pix Vanish and whichare positive. Accordingly, we use a * to denote
positive elements and consider a typical matrix, say

00+ 0000 #1

O + + 0+ 000%

000000040

} *0000000 0

P=|0000+0000

0O+0000000

O *« 0 0 0 *« * 0 0

00+*000000

0 00* 0000 «,  
We numberthestates from 1 to 9. In the fifth row a * appears only at
the fifth place, and therefore p;; = 1: the state E; is absorbing. The
third and the eighth row contain only one positive element each, anditis
clear that E,; and £, forma closed set. From £, passages are possible
into £, and £,, and from there only to £,, £4, Ey. Accordingly the

three states £,, E,, E, form anotherclosedset.

From £, direct transitions are possible to itselfand to £3, E;, and Eg.

The pair (E3, Es) forms a closed set while E; is asorbing; accordingly,

the closure of E, consists of the set E,, £3, E;, Es. The closures of the

remaining states E, and £, are easily seen to consist of all ninestates.
The appearance of our matrix and the determination of the closed sets

can be simplified by renumberingthe states in the order

E;E3EgE,EyEgEEsk.

The closed sets then contain only adjacent states and a glance at the

new matrix reveals the grouping ofthestates.
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(5) In the matrix of example (2.7) the states E, and E; are absorbing
and there exist no otherclosedsets.

(c) In the genetics example(2./) the states E) and E,yare absorbing.
When 0 <j < 2N the closure of E; containsall states. In example (2./)
the states Ey and £,, are absorbing. >

Consider a chain with states E,,...,£, such that Fj,..., E,. form
a closed set (r <p). The r by r submatrix of P appearing in the left
upper corner is then stochastic, and we can exhibit P in the form of a
partitioned matrix

(4.1) P= if |

The matrix in the upper right corner has r rows and p — r columns and
only zero entries. Similarly, U stands for a matrix with p — r rows and
r columns while V is a square matrix. Weshall use the symbolic par-
titioning (4.1) also when the closed set C and its complement C’ contain
infinitely many states; the partitioning indicates merely the grouping of
the states and the fact that py, = 0 whenever E; isin C and £, inthe
compiement C’. From the recursion formula (3.2) it is obvious that the
higher-order transition probabilities admit of a similar partitioning:

| n_|[Q” O(4.2) pr = EB >|

Weare not at presentinterested in the form of the elements of the matrix
U,, appearing in the left lower corner. The point of interest is that (4.2)

reveals three obvious, but important, facts. First, PS = 0 whenever

E;éC but E,¢C’. Second, the appearance of the power Q” indicates
that when both £; and £;, arein C the transition probabilities p‘”) are

obtained from the recursion formula (3.2) with the summation restricted

to the states of the closed set C. Finally, the appearance of V” indicates
that the last statement remains true when C is replaced by its complement
C’. As a consequenceit will be possible to simplify the further study of
Markovchains by considering separately the states of the closed set C
and those of the complement C’.
Note that we have not assumed to be irreducible. If C decomposes

into several closed subsets then Q admits of further partitioning. There
exist chains with infinitely many closed subsets.

Example. (d) As was mentioned before, a random walk in the plane

represents a special Markov chain even though an orderingofthe states in

a simple sequence would be inconvenientfor practical purposes. Suppose
now that we modify the random walk by the rule that on reaching the
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z-axis the particle continues a random walk along this axis without ever
leaving it. The points of the z-axis then form an infinite closed set. On

the other hand, if we stipulate that on reaching the x-axis the particle

remains forever fixed at the hitting point, then every point of the x-axis
becomesan absorbingstate. >

5. CLASSIFICATION OF STATES

_ Ina process starting from theinitial state E; the successive returns to
E; constitute a recurrent event, while the successive passages through any
other state constitute a delayed recurrent event (as defined in XIII,5). The

theory of Markovchainstherefore boils down to a simultaneous study of

many recurrent events. The general theory of recurrent events is applicable

without modifications, but to avoid excessive references to chapter XIII
we Shall now restate the basic definitions. The present chapter thus be-
comesessentially self-contained and independent of chapter XIII except
that the difficult proof of (5.8) will not be repeated in full.

The states of a Markov chain will be classified independently from two

viewpoints. The classification into persistent and transient states is
fundamental, whereastheclassification into periodic and aperiodic states
concerns a technical detail. It represents a nuisance in that it requires
constant references to trivialities; the beginner should concentrate his
attention on chains without periodic states. All definitions in this section
involve only the matrix of transition probabilities and are independent of
the initial distribution {a,}.

Definition 1. The state E, hasperiod t>1 if p\”) =0 unless n= vt
is a multiple of t, and t is the largest integer with this property. The

state E, is aperiodic ifno such t > 1 exists.®

To deal with a periodic E; it suffices to consider the chain at thetrials
number ¢, 2t, 3t,.... In this way we obtain a new Markovchain with

transition probabilities p{, and in this new chain £; is aperiodic. In
this way results concerning aperiodic states can be transferred to periodic
states. The details will be discussed in section 9 and (excepting the follow-
ing example) we shall now concentrate our attention on aperiodic chains.

Example. (a) In an unrestricted random walkall states have period 2.

In the random walk with absorbing barriers at 0 and p [example (2.5)]

the interior states have period 2, but the absorbing states Ey and E£, are,
of course, aperiodic. If at least one of the barriers is made reflecting

[example (2.c)], all states become aperiodic. >

® A state E; to which no return is possible (for which pj’ = 0 for all n > 0)
will be considered aperiodic.
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Notation. Throughout this chapter f') standsfor the probability thatin
a process startingfrom E, thefirst entry to E, occurs at the nth step. We
put f{ =0 and

(5.1) fin => FP
n=1

(5.2) Be; = > nf3.
n=1

Obviously fj, is the probability that, starting from £;, the system will
ever pass through £,. Thus fj, <1. When f;,=1 the {f™} isa
proper probability distribution and weshall refer to it as the first-passage
distributionfor E,,. In particular, {f{”} represents the distributionofthe
recurrence times for E;. The definition (5.2) is meaningful only when
Ji; = 1, that is, when a return to £; is certain. In this case u; < oo is
the mean recurrence time for E;.

Noactualcalculation of the probabilities f” is required for our present
purposes, but for conceptual clarity we indicate how the f{”) can be
determined (by the standard renewal argument). If the first passage
through £, occurs at the »th trial (1 < »<n— 1) the (conditional)
probability of £, at the mth trial equals pit”. Remembering the con-
vention that p{®) = 1 we concludethat

n

(5.3) Pig =D SiePee
v=1

Letting successively n= 1,2,... we get recursively f{2, f(?),.
Conversely, if the f% are knownfor the pair j,k then (5.3) determines
all the transition probabilities p{”.
The first question concerning any state E,; is whether a returnto itis

certain. If it is certain, the question arises whether the mean recurrence
time wy; is finite or infinite. The following definition agrees with the
terminology of chapter XIII.

Definition 2. The state E,; is persistent if f,, = 1 and transient if
fii, <i.j)

A persistent state E; is called null state if its mean recurrence time

Hj = ©.

This definition applies also to periodic states. It classifies all persistent

states into null states and non-null states. The latter are of specialinterest,

and since we usually focus our attention on aperiodic statesit is convenient

,
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to use the term ergodic for aperiodic, persistent non-null states.!° This
leads us to

Definition 3. An aperiodic persistent state E,; with wu; < co is called
ergodic.

The next theorem expresses the conditions for the different types in

terms of the transition probabilities p‘”). It is of great importance even
though the criterion contained in it is usually too difficult to be useful.
Better criteria will be found in sections 7 and 8, but unfortunately there
exists no simple universalcriterion.

Theorem. (i) E; is transientif, and onlyif,

(5.4) Sp”) < oo.

In this case "

(5.5) SPhy<
for all i. -

(ii) E; is a (persistent) null state if, and only if,

(5.6) >Ps = 00, but pi)0

as n—-> 0. In this case

(5.7) Py; —> 0

for all i.
(iii) An aperiodic (persistent) state E,; is ergodic if, and only if, uw; << ©.

In this case as n — ©

(5.8) Di? >fisbs

Corollary. If E; is aperiodic, p‘? tends either to 0 or to the limit given
by (5.8).

10 Unfortunately this terminology is not generally accepted. In Kolmogorov’s
terminology transient states are called “wnessential,” but this chapter was meant to

show that the theoretical and practical interest often centers on transient states.

(Modern potential theory supports this view.) Ergodic states are sometimes called
“positive,” and sometimes the term “ergodic” is used in the sense of our persistent.

(In the first edition of this book persistent E; were regretably called recurrent.)
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Proof. The assertion (5.4) is contained in theorem 2 of XIII,3. The
assertion (5.5) is an immediate consequenceofthis and (5.3), but it is also
contained in theorem | of XIII,5.

For an aperiodic persistent state FE; theorem 3 of XIII, 3 asserts that
pi; — m;*, wherethe rightside is to be interpreted as zero if uw, = ©.
Theassertions(5.7) and (5.8) follow again immediately from this and (5.3),
or else from theorem 1 of XIII,5.

Let E, be persistent and uw; = 0. By theorem 4 of XIII,3 in this case
pi—> 0, and this again implies (5.7). >

Examples. (5) Consider the state Eg of the chain of example (2./).

The peculiar nature of the matrix of transition probabilities shows that a
first return at the nth trial can occur only through the sequence

Ey > Ey > Ey > +++ EL. > E,

and so for n> 1

(5.9) 00 = PrP2*** Pn—1In

and fi) = q,. In the special case that the p, are defined by (2.5) this
reduces to f\”) = f,. Thus £, is transient if >f, < 1. Fora persistent
E, the mean recurrence time f@) of Eo coincides with the expectation of

the distribution {f,}. Finally, if Ey has period ¢ then f, =O except

when 7 isa multiple of ¢. In short, as could be expected, E) is under
any circumstances of the same type as the recurrent event & associated

with our Markov chain.

(c) In example (4.a) no return to £, is possible once the system leaves

this state, and so £, is transient. A slight refinement of this argument

shows that E, and £, are transient. From theorem 6.4it followseasily
that all other states are ergodic. <

6. IRREDUCIBLE CHAINS. DECOMPOSITIONS

For brevity we say that two states are of the same type if they agree in
all characteristics defined in the preceding section. In other words, two
states of the same type have the same period or they are both aperiodic;
both are transient or else both are persistent; in the latter case either both
mean recurrence timesare infinite, or else both arefinite.
The usefulness of our classification depends largely on the fact that for

all practical purposesit is always possible to restrict the attention to states
of one particular type. The next theorem showsthatthisis strictly true for

irreducible chains.
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Theorem 1. All states of an irreducible chain are of the same type

Proof. Let £; and £, be two arbitrary states of an irreducible chain.

Tn view of the criterion of section 4 every state can be reached from every

other state, and so there exist integers r and s such that p*) =a >0
and pis) = 6 > 0. Obviously

(6.1) Bis> DiePexPad = Pax
Here j, k, r, and s arefixed while n is arbitrary. Fora transient E; the
left side is the term of a convergent series, and therefore the sameis true
of pty). Furthermore, if p‘?) 0 then also pi”) -»0. The samestate-
ments remain true when the roles of j and k are interchanged, and so
either both £, and E£, are transient, or neither is; if one is a nullstate,

so is the other.

Finally, suppose that £,; has period t. For n =O theright side in
(6.1) is positive, and hence r + s isa multiple of ¢. But then the left side

vanishes unless n is a multiple of t, and so £, has a period whichis a
multiple of ¢. Interchanging the roles of j and k wesee that these
“states have the sameperiod. >

The importance of theorem 1 becomes apparent in conjunction with

Theorem 2. For a persistent E; there exists a unique irreducible closed

set C containing E; and such that for every pair E,, E, of states in C

(6.2) Su = 1 and f,, = 1.

In other words: Starting from an arbitrary state E; in C the system is
certain to pass through every other state of C; by the definition of closure
no exit from C is possible.

Proof. Let £;, bea state that can be reached from £;. It is then

obviously possible to reach £, without previously returning to E£,;, and
we denote the probability of this event by «. Once £, is reached, the
probability of never returning to £; is 1—/,,. The probability that,
starting from £,, the system never returns to £; is therefore at least
a(1 — f,;). But for a persistent E, the probability of no return is zero,
and so f,; = 1 for every £, that can be reached from E;.
Denote by C the aggregate ofall states that can be reached from £;.

If £; and £, arein C we saw that E, can be reached from £,, and

hence also £; can be reached from £,. Thus every state in C can be
reached from every other statein C, andso is irreducible by the criter-
ion of section 4. It follows thatall states in C are persistent, and so every

E, can be assigned the role of £; in the first part of the argument. This

means that f,; = 1 forall £, in C, and so (6.2)is true. >
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The preceding theorem implies that the closure of a persistent state is
irreducible. This is not necessarily true of transient states.

Example. Suppose that p,;,=0 whenever k <j, but p;,;,,> 0.
Transitions take place only to higher states, and so noreturn to anystate
is possible. Every £, is transient, and the closure of E; consists of the
states E;, Fj.1, E;,2,.-.., but contains the closed subset obtained by
deleting £;. It follows that there exist no irreducible sets. >

The last theorem implies in particular that no transient state can ever
be reached from a persistent state. If the chain contains both types of
states, this means that the matrix P can be partitioned symbolically in
the form (4.1) where the matrix @ correspondsto the persistent states.

Needless to say, Q may be further decomposable. But every persistent
state belongs to a unique irreducible subset, and no transition between

these subsets is possible. We recapitulate this in

Theorem 3. The states of a Markov chain can be divided, in a unique
manner, into non-overlapping sets T, C,, C,,... such that

(i) T consists of all transientstates.

(ii) If E; isin C, then fy, = 1 forall E, in C, while fy, = 0 for all

E,, outside C,.

This implies that C, is irreducible and contains only persistent states of
the same type. The example above showsthatall states can be transient,
while example (4.d) proves the possibility of infinitely many C,.

Wederive the following theorem as a simple corollary to theorem 2,

but it can be proved in other simple ways (see problems 18-20).

Theorem 4. Ina finite chain there exist no null states, andit is impossible

that all states are transient. °

Proof. The rows of the matrix P” add to unity, and as they contain
a fixed number of elements it is impossible that p‘%) +0 forall pairs
j,k. Thus notall states are transient. But a persistent state belongs to an
irreducible set C. All states of C are of the same type. The fact that

C contains a persistent state and at least one non-null state therefore
implies that it contains no null state. >

7. INVARIANT DISTRIBUTIONS

Since every persistent state belongs to an irreducible set whose asymp-
totic behavior can be studied independently of the remaining states, we

shall now concentrate on irreducible chains. All states of such a chain are
of the same type and we begin with the simplest case, namely chains with
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finite mean recurrence times mw;. To avoid trivialities we postpone the
discussion of periodic chains to section 9. In other words, we consider
now chains whose states are ergodic (that is, they are aperiodic and
persistent with finite mean recurrence times. See definition 5.3).

Theorem. Jn anirreducible chain with only ergodic elements the limits

(n)
ik

(7.1) u, = lim Pp

now

exist and are independent of the initial state j. Furthermore u, > 0,

(7.2) Yu, = 1

and

(7.3) us =D UsPiy

Conversely, suppose that the chain is irreducible and aperiodic, and that
there exist numbers u, > 0 satisfying (7.2)-(7.3). Then all states are

ergodic, the u, are given by (7.1), and

(7.4) Uy, = 1/ty,

where [4 is the mean recurrence time of E,,.

Proof. (i) Suppose the chain irreducible and ergodic, and define u, by

(7.4). Theorem 6.2 guarantees that f,;, = 1 for every pair of states, and

so the assertion (7.1) reduces to (5.8). Now

(7.5) Dig’? = > Pi}Pie:
J

As n-> 00 the left side approaches u,, while the general term of the sum
on the right tends to u,p;,. Taking only finitely many terms weinfer that

(7.6) Uy, > Dd UsPir
3

For fixed i and n theleft sides in (7.5) add to unity, and hence

(7.7) s= Yu, <1.

Summing over k in (7.6) we get the relation s > s in which the inequality

sign is impossible. We conclude thatin (7.6) the equality sign holdsforall

k, and so thefirst part of the theorem is true.

11 If we conceive of {u;} as a row vector, (7.3) can be written in the matrix form

u= uP.
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(ii) Assume u, > 0 and (7.2)-(7.3). By induction

(7.8) u, = > UP,

forevery n > 1. Since the chain is assumedirreducible all states are of the
same type. If they were transient or null states, the right side in (7.8)
would tend to 0 as n-» ©, and this cannot be true for all k because the
u, add to unity. Periodic chains being excluded, this means that the states

are ergodic and so the first part of the theorem applies. Thus, letting
n—> o,

(7.9) U, = > Up,-

Accordingly, the probability distribution {u,} is proportional to the
probability distribution {u,"}, and so u, = mw,as asserted. >

To appreciate the meaning of the theorem consider the development of
the process from aninitial distribution {a;}. The probability of the state

E,, at the nth step is given by

(7.10) an” = > ap
j

[see (3.4)]. In view of (7.1) therefore as n — oo

(7.11) ay” —> u,.

In other words, whatever the initial distribution, the probability of £,

tends to u,. On the other hand, when {u,} is the initial distribution (that

is, when a, = u,), then (7.3) implies a@ = u,, and by induction al”) = u,
for all n. Thusan initial distributionsatisfying (7.3) perpetuatesitself for
all times. For this reasonit is called invariant.

Definition. A’probability distribution {u,} satisfying (7.3) is called

invariant or stationary (for the given Markov chain).

The main part of the preceding theorem may now bereformulated as

follows.

An irreducible aperiodic chain possesses an invariant probability distribu-
tion {u,} if, and only if, it is ergodic. In this case u, > 0 for all k, and

the absolute probabilities a\” tend to u, irrespective of the initial distribu-

tion.

The physicalsignificance of stationarity becomes apparentif we imagine
a large number of processes going on simultaneously. To be specific,

consider N particles performing independently the same type of random
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walk. At the nth step the expected numberofparticles in state E, equals
Na,” which tends to Nu,. After a sufficiently long time the distribution

will be approximately invariant, and the physicist would say that he ob-
serves the particles in equilibrium. Thedistribution {u,} is therefore also
called equilibrium distribution. Unfortunately this term distracts attention
from the important circumstance that it refers to a so-called macroscopic
equilibrium,thatis, an equilibrium maintained by a large numberoftransi-

tions in opposite directions. The individual particle exhibits no tendency
to equilibrium, and our limit theorem has no implications for the individ-

ual process. Typical in this respect is the symmetric random walk dis-
cussed in chapter III. If a large numberofparticles perform independently
such random walksstarting at the origin, then at any time roughly half of
them will be to the right, the other half to theleft of the origin. But this
does not mean that the majority of the particles spends half their time on
the positive side. On the contrary, the arc sine laws show that the majority
of the particles spend a disproportionately large part of their time on the

sameside of the origin, and in this sense the majority is not representative
of the ensemble. This example is radical in that it involves infinite mean
recurrence times. With ergodic chains the chancefluctuations are milder,

but for practical purposes they will exhibit the same character whenever
the recurrence times have very large (or infinite) variances. Many
protracted discussions and erroneous conclusions could be avoided by a
proper understanding of the statistical nature of the “tendency toward

equilibrium.”

In the preceding theorem we assumedthechain irreducibleand aperiodic,
and it is pertinent to ask to what extent these assumptions areessential.
A perusal of the proof will show that we have really proved more than is
stated in the theorem. In particular we have, in passing, obtained the
following criterion applicable to arbitrary chains (including periodic and

reducible chains).

Criterion. Ifa chain possesses an invariant probability distribution {u,},
then u,=O0 for each E, that is either transient or a persistent null state.

In other words, u, > 0 implies that E, is persistent and has finite

mean recurrence time, but £, may beperiodic.

Proof. We saw that the stationarity of {u,} implies (7.8). If E, is

either transient or a null state, then p{?)->0 for all j, and so u,=0
as asserted. >

Asfor periodic chains, we anticipate the result proved in section 9 that

a unique invariant probability distribution {u,} existsfor every irreducible

chain whose states have finite mean recurrence times. Periodic chains were
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excluded from the theorems only because the simplelimit relations (7.1)
and (7.11) take on

a

less attractive form which detracts from the essential
point without really affectingit.

Examples. (a) Chains with several irreducible components may admit
of several stationary solutions. A trite, but typical, exampleis presented by
the random walk with two absorbing states E, and E, [example (2.5)].
Every probability distribution of the form (a, 0,0,...,0,1 — a), attri-
buting positive weights only to Ey and E,, is stationary.

(b) Given a matrix oftransition probabilities p,, it is not always easy
to decide whetheran invariant distribution {u,} exists. A notable excep-
tion occurs when

(7.12) Pix = 9 for |k —j| > 1,

that is, when all non-zero elements of the matrix are on the main diagonal
or on a line directly adjacentto it. With the states numberedstarting with
O the defining relations (7.3) take on the form

Uy = Polo + Prolr
(7.13)

Uy = Poy + Pry + Poe,

and so on. To avoid trivialities we assume that p,; ;,, > 0 and p,,, >0
for all j, but nothing is assumed about the diagonal elements p,;. The
equations (7.13) can be solved successively for uw, u,,.... Remembering
that the row sumsof the matrix P add to unity weget

(7.14) w= Po Uos Uy = PoiPi2 Uos uy = PorPi2P23 Uos

Pio PioP21 PioP21P32

and so on. Theresulting(finite or infinite) sequence wu, w4,... represents
the unique solution of (7.13). To makeit a probability distribution the
norming factor uy must be chosen so that } uw, = 1. Such a choiceis
possible if, and only if,

(7.15) > PorPizPeg"**

Prouk

© oo
PyoP21P32° °° Prjx—1

This, then, is the necessary and sufficient condition for the existence of an
invariant probability distribution; if it exists, it is necessarily unique.

[If (7.15) is false, (7.12) is a so-called invariant measure. See section 11.]
In example (8.d) we shall derive a similar criterion to test whether the

States are persistent. The following three examples illustrate the applic-
ability of our criterion.
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(c) Reflecting barriers. The example (2.c) (with p < 0) represents the
special case of the preceding example with p,;,, = p forall j <p and
Pys-1 = @ for all 7 > 1. When the numberofstates is finite there exists
an invariant distribution with u, proportional to (p/q)*. With infinitely
many states the convergence of (7.15) requires that p <q, and inthis
case u, = (1 — p/q)(p/q)*. From the general theory of random walksit is
clear that the states are transient when p > gq, andpersistent null states
when p= gq. This will follow also from the criterion in example (8.4).

(d) The Ehrenfest model of diffusion. For the matrix of example (2.e)
the solution (7.14) reduces to

(7.16) u, = (7) k=0,...,p.

The binomial coefficients are the terms in the binomial expansion for
(1+1)’, and to obtain a probability distribution we must therefore put
Uy = 2~?. The chain has period 2, the states have finite mean recurrence
times, and the binomial distribution with P = 34 is invariant.

This result can be interpreted as follows: Whatever the initial number
of molecules in the first container, after a long time the probability of
finding k moleculesin it is nearly the same as if the a molecules had been
distributed at random, each molecule having probability } to be in the
first container. This is a typical example of how ourresult gains physical
significance.

For large a the normal approximation to the binomial distribution
shows that, once the limiting distribution is approximately established,
we are practically certain to find about one-half the molecules in each con-

tainer. To the physicist a = 108 is a small number, indeed. But even
with a= 10® molecules the probability of finding more than 505,000
molecules in one container (density fluctuation of about 1 per cent) is
of the order of magnitude 10-3. With a = 108 a density fluctuation of
one in a thousand has the same negligible probability. It is true that the
system will occasionally pass into very improbable states, but their recur-
rence times are fantastically large as compared to the recurrence times of
states near the equilibrium. Physical irreversibility manifests itself in the
fact that, whenever the system is in a state far removed from equilibrium,

it is much more likely to move toward equilibrium than in the opposite
direction.

(e) The Bernoulli-Laplace model of diffusion. For the matrix with

elements (2.1) we get from (7.14)

2

(7.17) tt, = (7) os k=0,...,p.
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The binomial coefficients add to ("? [see IT,(12.11)], and hence

os = GE
represents an invariant distribution. It is a hypergeometric distribution
(see II,6). This meansthat in the state of equilibrium the distribution of

colors in each container is the same as if the p particles in it had been
chosen at random from a collection of p black and p white particles.

(f) In example (2./) the defining relations for an invariant probability
distribution are

(7.19a) Uy = PyUy—1 k =1,2,.

(7.195) Ug = GyUq + Golly + Yale + °

From (7.19a) we get

(7.20) Uy = Py" * Pros

and it is now easily seen that the first k terms on the right in (7.19) add
to uy — u,. Thus (7.195) is automatically satisfied whenever u,—>0, and
an invariant probability distribution exists if, and only if,

(7.21) > PiP2*** Py < ©.
k

[See also examples (8.e) and (11.c).]

(g) Recurrent events. In example (2.k) the conditions for an invariant

probability distribution reduce to

(7.22) Uy = Unsy + Sosito k=0,1,....

Adding over k = 0,1,... we get

(7.23) Un = Uo, where r, =fnirtSfae too’

Now ro +7,°+: =u is the expectation of the distributions. An invariant

probability distribution is given by u, =1,|u if f < 0c; no such prob-

ability distribution exists when uu = oo.
It will be recalled that our Markov chain is connected with a recurrent

event & with recurrence time distribution {f,}. In the special case

P, = ",/T,-1 the chain of the preceding example is connected with the same
recurrent event 6 andin this case (7.20) and (7.23) are equivalent. Hence

the invariant distributions are the same. \n the language of queuing theory
one should say that the spent waiting time and the residual waiting time tend

to the same distribution, namely {r,/u}.
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Wederived thebasic limit theorems for Markov chains from the theory
of recurrent events. We nowsee that, conversely, recurrent events could

be treated as special Markov chains. [See also example (11.d).]

(h) Doubly stochastic matrices. A stochastic matrix P is called doubly

stochastic if not only the row sums but also the column sumsare unity.
If such a chain contains only a finite number, a, of states then u, = a7}

represents an invariant distribution. This means that in macroscopic

equilibrium all states are equally probable. >

8. TRANSIENT STATES

Wesawin section 6 that the persistent states of any Markov chain may
be divided into non-overlapping closed irreducible sets C,, Cy,.... In

general there exists also a non-empty class T of transient states. When
the system starts from a transient state two contingencies arise: Either

the systemultimately passes into one of the closed sets C, and stays there
forever, or else the system remainsforeverin the transient set 7. Our main
problem consists in determining the corresponding probabilities. Its
solution will supply a criterion for deciding whethera state is persistent or
transient.

Examples. (a) Martingales. A chain is called a martingale if for every
j the expectation of the probability distribution {p,,} equals j, thatis, if

(8.1) > Pick =).

Consider a finite chain with states E,,...,£,. Letting 7 =O and

j =a in (8.1) we see that Poo = Pag = 1, andso E, and E, are absorb-

ing. To avoid trivialities we assume that the chain contains no further

closed sets. It follows that the interior states £,,..., E,_, are transient,

and so the process will ultimately terminate either at E, or at E,. From
(8.1) we infer by induction thatfor all n

(8.2) Yd perk = i.
k=0

But p”)->0 for every transient £,, and so (8.2) implies that for all

i>od

(8.3) pi— ila.

In other words, if the process starts with E, the probabilities of ultimate

absorption at Ey and E, are 1 —iJ/a and ila, respectively.
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(b) Special cases. The chains of the examples from genetics (2.h) and

(2.i) are of the form discussed in the preceding example with a = N and
a = 2N,respectively. Given the initial state E;, the probability ofulti-
mate fixation at E, is therefore 1 — i/a.

(c) Consider a chain with states Ey, £,,... such that Ey is absorbing

while from other states £, transitions are possible to the right neighbor
Ej,, and to £,, but to no other state. For 7 > 1 we put

3

(8.4) Pio = €3 Prin =1l—-«

where ¢; > 0. With the initial state E; the probability of no absorption

at E, in n trials equals

(8.5) (1—e,)(1—€543) °° 1&49-4).

This product decreases with increasing n and henceit approachesa limit

.A,. We infer that the probability of ultimate absorption equals 1 — 4;

while with probability 4, the system remains forever at transientstates.

In order that A; > 0 it is necessary and sufficient that >} &, < ©. >

The study of the transient states depends on the submatrix of P ob-

tained by deleting all rows and columnscorresponding to persistent states

and retaining only the elements p;, for which both EF; and £, are

transient. The row sumsofthis submatrix are no longer unity, and itis

convenient to introduce the

Definition. A square matrix Q with elements q,, is substochastic if

dix > 9 and all row sums are <1.

In the sense of this definition every stochastic matrix is substochastic

and, conversely, every substochastic matrix can be enlarged to.a stochastic

matrix by adding an absorbing state Ey. (In other words, we add a top

row 1,0,0,... and acolumn whose elements are the defects of the rows

of Q.) Itis therefore obvious that what wassaid about stochastic matrices

applies without essential change also to substochastic matrices. In par-

ticular, the recursion relation (3.2) defines the nth power Q” as the

matrix with elements

(8.6) ge) = > anqv.

Denote by o{”) the sum of the elements in the ith row of Q”. Then

for n> 1

(8.7) oft) _— > qa”,
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and this relation remainsvalid also for n = 0 provided we put o/) = |
for all ». The fact that Q is substochastic means that of) < o, and
from (8.7) we see now by induction that of"*!) < o!™. For fixed i
therefore the sequence {o!”)} decreases monotonically to a limit o, > 0,
and clearly

(8.8) a= > FVivFy-

The whole theory of the transient states depends on the solutions of this
system of equations. In somecases there exists no non-zero solution (that
is, we have o; = 0 for all i). In others, there may exist infinitely many
linearly independent solutions, that is, different sequences of numbers
satisfying

(8.9) ©, = > ivy.

Ourfirst problem is to characterize the particular solution {o,}. We are

interested only in solutions {x,;} such that 0< 2, <1 for all i. This
can be rewritten in the form 0 < 2; < o!; comparing (8.9) with (8.7)

we see inductively that x, < o!” forall n, and so

(8.10) 0<2;<1 implies x,;< 6; < 1.

The solution {o,} will be called maximal, but it must be borne in mind

that in many cases o, = 0 for all i. We summarize this result in the
following

Lemma. Fora substochastic matrix OQ the linear system (8.9) possesses

a maximal solution {o,;} with the property (8.10). These o; represent

the limits of the row sums of Q”.

We now identify Q with the submatrix of P obtained by retaining
only the elements p,;, for which E, and £, are transient. The linear

system (8.9) may then be written in the form

(8.11) x, = > DyXy; E,€ T,
T

the summation extending only over those » for which EF, belongs to the
class T of transient states. With this identification o{”) is the probability
that, with the initial state E,, no transition to a persistent state occurs

during the first n trials. Hence the limit o, equals the probability that

no such transition ever occurs. We have thus

Theorem 1. The probabilities x; that, starting from E, that the system

stays forever among the transient states are given by the maximal solution

of (8.11).
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The same argumentleads to the

Criterion. In an irreducible'® Markov chain with states E,, E,,...
the state E, is persistent if, and only if, the linear system

(8.12) i >Pv, i>
y=l

cdmits of no solution with O< 2,< 1 except x,;=0 for all i.

Proof. We identify the matrix Q of the lemma with the submatrix of
P obtained by deleting the row and column corresponding to Ey. The
argument used for theorem | showsthat o, is the probability that (with
E, as initial state) the system remains forever amongthe states E,, F2,....

But if E, is persistent the probability f,, of reaching Ey equals 1, and

hence o, = O forall i. >

Examples. (d) As in example (7.5) we consider a chain with states

Eo, £y,... such that

(8.13) Pix = 9 when [kK —j| > 1.

To avoid trivialities we assumethat p; ;,; # 0 and p;,, #0. The chain
is irreducible because every state can be reached from every otherstate.
Thusall states are of the same type, andit suffices to test the character of
Ey. The equations (8.12) reduce to the recursive system

Ly = PyX + Pr2Xe
(8.14)

D3,5-1(%j;— 25-1) = Py,541(%41—-%); j22.

Thus

(8.15) L;,— jy, = PaiP32" * Pj,j-1 (,— at»).

Pe3P34 °° * P5541

Since Pip > 0 we have x, — 2, > 0, and so a bounded non-negative

solution {z,} exists if, and only if,

Poi" ** Pj,j-1

Peg" * * P5541
(8.16) < ©.

The chain is persistent if, and only if, the series diverges. In the special

case of random walks we have p; ;4, =p and p;,;. = q forall j > 1,

and wesee again thatthestates are persistent if, and only if, p < q.

12 Trreducibility is assumed only to avoid notational complications, It represents no

restriction because it suffices to consider the closure of Ey, Incidentally, the criterion

applies also to periodic chains.
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(This chain may be interpreted as a random walk on the line with

probabilities varying from place to place.)

(e) For the matrix of example (2./) the equations (8.12) reduce to

(8.17) U5 = Pj41%j41

and a bounded positive solution exists if, and only if, the infinite product
Pip2'** converges. If the chain is associated with a recurrent event 6,
the p, are given by (2.5) and the product converges if, and only if,
>f; < «©. Thus(as could be anticipated) the chain and 6 are either both

transient, or both persistent. >

To answerthe last question proposed at the beginning of this section,

denote again by T theclass of transient states and let C be any closed
set of persistent states. (It is not required that C be irreducible.) Denote
by y; the probability of ultimate absorption in C, given theinitial state
E,. We propose to show that the y, satisfy the system of inhomogeneous
equations

(8.18) yy, = > Piv¥y + > Piys E, € T,
T Cc

the summations extending over those » for which E,¢T and E,EC,

respectively. The system (8.18) may admit of several independent solu-
tions, but the following proof will show that among them there exists a
minimal solution defined in the obvious manner by analogy with (8.10).

Theorem 2. Zhe probabilities y; of ultimate absorption in the closed

persistent set C are given by the minimal non-negative solution of (8.18).

Proof. Denote by y‘” the probability that an absorption in C takes
place at or before the nth step. Then for n > 1 clearly

(8.19) yr) = > py” + > Piv
T C

and this is true also for n = 0 provided we put y{°) = 0 forall ». For
fixed i the sequence {y‘”)} is non-decreasing, but it remains bounded by
1. The limits obviously satisfy (8.18). Conversely, if {y;} is any non-

negative solution of (8.18) we have y; > y‘!) because the second sum in

(8.18) equals y". By induction y, > y\”for all n, and sothe limits of

y‘™ represent a minimal solution. >

Foran illustration see example (c).
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*9, PERIODIC CHAINS

Periodic chains present no difficulties and no unexpected new features.
They were excluded in the formulation of the main theorem in section 7
only because they are of secondary interest and their description requires
disproportionately many words. Thediscussionofthis section is given for
the sake of completeness rather than forits intrinsic interest. The results
of this section will not be used in the sequel.
The simplest example of a chain with period 3 is a chain with three states

in which only the transitions FE,» E,> £,;— E, are possible. Then

0 1 0 0 0 1 1 0 0

P={]0 0 If, P?= {1 0 Of, P?>=10 1 0

1 0 0 0 1 0 00 1

. Weshall now showthat this example is in manyrespectstypical.
Consider an irreducible chain with finitely or infinitely many states

E,, E,,.... By theorem 6.1 all states have the same period t (we assume

t > 1). Since in anirreducible chain every state can be reached from every
other state there exist for every state E, two integers a and 6b such that
PS?) >0 and p®@>0. But plat?) > pin’) and so a+b must be
divisible by the period ¢. Keeping 5 fixed we concludethat each integer
a for which pj{f) > 0 is of the form « + »t where o is fixed integer
with O<a< vz. The integer « is characteristic of the state E, and so
all states can be divided into ¢ mutually exclusive classes Gy,..., G4
such that

(9.1) if E,E€G, then py =0 unless n=« + vt.

Weimagine the classes Go,..., G,_, ordered cyclically so that G,_, is
the left neighbor of Gp.

It is now obvious that one-step transitions are possible only to a state

in the neighboring class to the right, and hence a path of ¢ steps leads
always to a state of the same class. This implies that in the Markov chain

with transition matrix P’ each class G, forms a closed set.!3 This

13 When t = 3 there are three classes and with the symbolic partitioning introduced
in section 4 the matrix P takes on the form

0 A O

0 0 B ‘

c 0 0

where A represents the matrix of transition probabilities from Gy to G,, and so on.
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set is irreducible because in the original chain every state can be reached
from any other state and within the same class the required number of
steps is necessarily divisible by t. We have thus proved the

Theorem. Jn an irreducible chain with period t the states can be divided
into t mutually exclusive classes Go,... , Gy_, such that (9.1) holds and a

one-step transition alwaysleads to a state in the right neighboring class (in
particular, from G,, to Go). In the chain with matrix P* each class G,

corresponds to an irreducible closed set.

Using this theorem it is now easy to describe the asymptotic behavior of
the transition probabilities p\"). We know that p{) 0 if £, is either
transient or a persistent null state, and also that all states are of the same

type (section 6). We need therefore consider only the case where each

state E, has finite mean recurrence time ,. Relative to the chain with
matrix P‘' the state E; has the mean recurrence time u,/t, and relative

to this chain each class G, is ergodic. Thus, if E; belongs to G,

(9.2) lim pin _ tly, if E, € G,

noo 0 otherwise

and the weights t/~, define a probability distribution on the states of the
class G, (see the theorem ofsection 7). Since there are ¢ such classes
the numbers u, = 1/u, define a probability distribution on the integers as

was the case for aperiodic chains. We show that this distribution is in-

variant. For this purpose we need relations corresponding to (9.2) when

the exponentis not divisible by the period ¢.

Westart from the fundamentalrelation

(9.3) Dy= > Pann

The factor p‘) vanishes except when E£, isin G,,,. (When «+B >t
read Gyss, for G,,,.) In this case p'%') vanishes unless E, is in

G43, and hence for fixed 6 and E; in G,

n tly if E,€ Garp
(9.4) lim p@it A) =

n> 0 otherwise.

We nowrewrite (9.3) in the form

(9.5) Pig? = > PePw

Consideran arbitrary state E, and let G, be the class to whichit belongs.

Then p,,=0 unless E,€G,_, and so bothsides in (9.5) vanish unless
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E;,€G,_;. In this case pt?) — tu, whence

(9.6) Uy= > UPyx:

Since E, is an arbitrary state we have proved that the probability
distribution {u,} is invariant.

10. APPLICATION TO CARD SHUFFLING

A deck of N cards numbered 1, 2,..., N can be arrangedin MN! dif-

ferent orders, and each represents a possible state of the system. Every

particular shuffling operation effects a transition from the existing state
into some other state. For example, “cutting” will change the order
(1,2,...,N) into one of the N cyclically equivalent orders (r,r+1,
...,N,1,2,...,7— 1). The same operation applied to the inverse order

(N,N —1,...,1) will produce (V—r+1,N—r,...,1,N,N—1,

..,N—r-+ 2). In other words, we conceive of each particular shuffling
operation as a transformation E,;— E,. If exactly the same operation is
repeated, the system will pass (starting from the given state E;) through
a well-defined succession of states, and after a finite numberof steps the
original order will be re-established. From then on the samesuccession of
states will recur periodically. For most operationsthe period will be rather
small, and in no case can all states be reached by this procedure.44 For
example, a perfect “lacing”? would change a deck of 2m cards from
(1,...,2m) into (l,m+1,2,m+2,...,m,2m). With six cards four

applications of this operation will re-establish the original order. With
ten cards the initial order will reappear after six operations, so that
repeated perfect lacing of a deck of ten cards can produce only six out of
the 10! = 3,628,800 possible orders.

In practice the player may wish to vary the operation, and at anyrate,
accidental variations will be introduced by chance. Weshall assumethat

we can accountfor the player’s habits and the influence of chance varia-

tions by assuming that every particular operation has a certain probability
(possibly zero). We need assume nothing about the numerical values of
these probabilities but shall suppose that the player operates without
regard to the past and doesnot know the orderof the cards.© This implies
that the successive operations correspond to independenttrials with fixed
probabilities; for the actual deck of cards we then have a Markovchain.

14In the language of group theorv this amounts to saying that the permutation
group is not cyclic and can therefore not be generated by a single operation.

15 This assumption correspondsto the usual situation at bridge. It is easy to devise
more complicated shuffling techniques in which the operations depend on previous
operations and the final outcome is not a Markovchain [cf. example (13.e)].
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We now showthat the matrix P of transition probabilities is doubly

stochastic [example (7.h)]. In fact, if an operation changes a state (order

of cards) E; to £,, then there exists another state E, which it will change

into E;. This meansthat the elements of thejth column of P areidentical
with the elements of the jth row, except that they appear in a different
order. All column sumsare therefore unity.

It follows that no state can be transient. If the chain is irreducible and
aperiodic, then in the limit all states become equally probable. In other
words, any kind of shuffling will do, provided only that it produces an
irreducible and aperiodic chain. It is safe to assume that this is usually the
case. Suppose, however, that the deck contains an even numberof cards
and the procedure consists in dividing them equally into two parts and

shuffling them separately by any method. Ifthe two parts are put together
in their original order, then the Markovchain is reducible (since not every
state can be reached from everyotherstate). If the order of the two partsis
inverted, the chain will have period 2. Thus both contingencies can arise
in theory, but hardly in practice, since chance precludes perfect regularity.

It is seen that continued shuffling may reasonably be expected to produce
perfect “‘randomness”’ and to eliminate all traces of the original order.

* It should be noted, however, that the number of operations required for
this purpose is extremely large.1®

*11. INVARIANT MEASURES. RATIO LIMIT

THEOREMS

In this section we consideran irreducible chain with persistent null states.
Our main objective is to derive analoguesto the results obtained in section
7 for chains whosestates have finite mean recurrence times. An outstand-
ing property of such chainsis the existence of an invariant (or stationary)

probability distribution defined by

(11.1) Uy, = > UyPyy

We knowthat no such invariant probability distribution exists when the
mean recurrence times are infinite, but we shall show that the linear

* The next two sections treat topics playing an important role in contemporary
research, but the results will not be used in this book.

16 For an analysis of unbelievably poor results of shuffling in records of extrasensory
perception experiments, see W. Feller, Statistical aspects of ESP, Journal of Para-
psychology, vol. 4 (1940), pp. 271-298. In their amazing A review of Dr. Feller’s

critique, ibid., pp. 299-319, J. A. Greenwood and C.E.Stuart try to show that these

results are due to chance. Both their arithmetic and their experiments have a distinct

" tinge of the supernatural.
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system (11.1) still admits of a positive solution {w,} such that > u, = 00.

Such {u,} is called an invariant (or stationary) measure. If the chain is

irreducible and persistent, the invariant measure is unique up to an
arbitrary norming constant.

Examples. (a) Suppose that the matrix P of transition probabilities

is doubly stochastic, that is, the column sumsas well as the row sums are

unity. Then (11.1) holds with «, = 1 forall k. This fact is expressed by
saying that the uniform measureis invariant.

(6) Random walks. An interesting special case is provided by the un-

restricted random walk on the line. We numberthestates in their natural
order from —oo to oo. This precludes exhibiting the transition prob-
abilities in the standard form of a matrix, but the necessary changes of
notation are obvious. Ifthe transitions to the right and left neighbors have
probabilities p and gq, respectively, the system (11.1) takes on the form

Uy == PUyy + Uysr, —-o<k< ow.

The states are persistent only if p= gq = 4, and in this case u, = |
represents the only positive solution. This solution remains valid if
Pp #4, except thatit is no longer unique; a second non-negative solution

is represented by u, = (p/q)*. This example proves that an invariant
measure may exist also for transient chains, but it need not be unique.
Weshall return to this interesting point in the next section.
The invariant {u;} measure can be interpretedintuitively if one considers

simultaneously infinitely many processes subject to the same matrix P
of transition probabilities. For each 7 define a random variable N, with
a Poisson distribution with mean u,, and consider N, independent pro-
cesses Starting from £;. We dothis simultaneously forall states, assuming
that all these processes are mutually independent. It is not difficult to show

that at any given time with probability one only finitely many processes
will be found in any given state £,. The numberof processes found at the
nth step in state £, is therefore a random variable X‘”) andthe invariance
of {u,} implies that E{X‘”} = u, forall n. (Cf. problem 29.)

(c) In example (7.f) we found that an invariant probability distribution

exists only if the series (7.21) converges. In case of divergence (7.20) still

represents an invariant measure provided only that «,—»0, which is the
same as P,P2°**P,— 0. No invariant measure exists when the product

Pi’**P, Temains bounded away from 0, for example, when p, = 1 —

— (k+1)-% In this case the chain is transient.

(d) In example (7.g) the relations (7.23) define an invariant measure

even when mu = oo. >
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In ergodic chains the probabilities p‘?) tend to the term u, of the
invariant probability distribution. For persistent null chains we shall
prove a weaker version of this result, namely that as N—» oo forall

E, and E,

Uu,
z

~ (n)n
> Pai

n=0
—_> —-,

N
(n) u;

> Pp;
n=0

The sums ontheleft represent the expected numbers of passages, in the
first N trials, through £; and £;. Roughly speaking (11.2) states that

these expectations are asymptotically independent of the initial states
E,, and £,, and stand in the same proportion as the corresponding terms
of the invariant measures. Thusthe salient facts are the sameasin the case
of ergodic chains, although the situation is more complicated. On the

other hand, periodic chains now require no special consideration. [In
fact (11.2) covers a// persistent chains. For an ergodic chain the numerator
on the left is ~Nu;.]

Relations of the form (11.2) are called ratio limit theorems. Weshall
derive (11.2) from a stronger result which was until recently considered a

more complicated refinement. Our proofs will be based on considering
only paths avoiding a particular state £,. Following Chung wecall the
forbidden state E, taboo, and the transition probabilities to it are taboo
probabilities.

 (11.2)

Definition. Let E, be an arbitrary, but fixed, state. For E, 4 E, and

n> we define ,p\®) as the probability that, starting from E,, the state
E,, is entered at the nth step without a previous passage through E,.

Here £, is allowed to coincide with E,. We extend this definition to

E, = E, and n = in the natural way by

(11.3) pi =0 n>1

and

1 if E,;=E,
(11.4) pi) = 7

0 otherwise.

In analytical terms we have for n > 0 and £, # E,

(11.5) Die? = > DyPye
v

In fact, for » = 0 the sum ontheright reduces to a single term, namely
Pix When n> the term corresponding to v = r vanishes by virtue of

(11.3), and so (11.5) is equivalent to the original definition.
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Introducing £, as taboo state amounts to considering the original

Markovprocessonly until £, is entered for thefirst time. In an irreduc-
ible persistent chain the state £, is entered with probability one from any
initial state E;. It follows that in the chain with taboo E, the successive
passages throughtheinitial state £; forma transient recurrent event; and

the passages through any other state E, ~# E, form a delayed transient
recurrent event. Thus for £, # E,

(n)
rPik = rTj~ <<

0
(11.6)

1
M
s
8

by the basic theorem 2 of XIII,3. For £, = E, the summands with

n>1 vanish and the sum reduces to 1 or 0 according as j=r or
J Ar.

Weare now in a position to prove the existence of an invariant measure,
that is, of numbers u, satisfying (11.1). This will not be used in the proof
of theorem 2.

Theorem 1. Jf the chain is irreducible andpersistent, the numbers

(11.7) Uy = Trt

represent an invariant measure; furthermore u, > 0 forall k and u, = 1.

Conversely, if u,>9 for all k and (11.1) holds, then there exists a

constant A such that uy, = A> ,71,-

Here £, is arbitrary, but the asserted uniqueness implies that the

sequences {u,} obtained by varying r differ only by proportionality
factors. Note that the theorem andits proof cover also chains with finite
mean recurrence times.

Proof. If k #r we use (11.5) with j=r. Summing over n = 0,

1,... we get
rd

(11.8) rl = > rTpyPyke
v

and so the numbers (11.7) satisfy the defining equations (11.1) at least
when k #r. For j= k =r itis clear that

(11.9) Ss pp, =fie
v

equals the probability that (in the original chain) thefirst return to £,

occurs at the (n+1)st step. Since the chain is irreducible and persistent

these probabilities add to unity. Summing (11.9) over n =0,1,... we
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get therefore

(11.10) >Py = 1.
v

But by definition ,7,,= 1, and so (11.8) is true also for k = r. Accord-

ingly (11.7) represents an invariant measure.
Next consider an arbitrary non-negative invariant measure {u,}. It is

clear from the definition (11.1) that if u, = 0 for some k, then u, = 0
for all » such that p,, > 0. By induction it follows that u, =0 for

every » such that £, can be reached from E,. As the chainis irreducible
this implies that u, = 0 for all ». Thus an invariant measureisstrictly

positive (or identically zero).
For the converse part of the theorem we may therefore assumethat the

given invariant measure is normed by the condition u,= 1 for some

prescribed r. Then

(11.11) Un = Per + > UsPix-
j#r

Suppose k ~r. Weexpress the u, inside the sum by meansof the defin-
ing relation (11.1) and separate again the term involving u, in the double
sum. Theresult is

(11.12) Up = Pre ++ Pao + du° Pye

v#r

Proceeding in like manner we get for every n

(11.13) Ug = Pye + pe Hee +p 4 Duy: pe.
vtr

Letting n> oo weseethat u, > ,7,,. It follows that {u, — ,7,,} defines

an invariant measure vanishing for the particular value k =r. But such
a measure vanishesidentically, and so (11.7) is true. >

It will be seen presently that the following theorem represents a sharpen-

ing of the ratio limit theorem.

Theorem 2. Jn an irreducible persistent chain

(11.14) 0< Spi? —Se? < Tx
n=0

and

1 v (n) (mi(11.15) — >Pi LS ps
ji n=0 TTq7 53 -N=0

for all N.
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Proof of (11.14). Consider the first entry to E,; it is clear that for

atk

(11.16) Pur =SeePie”

[This is the same as (5.3).] Summing over 1 weget

(11.17) Se? <>pin-SSse = Sot?

which proves thefirst inequality in (11.14).
Next we note that, starting from &,, areturnto £, may occur without

intermediate passage through £,, or else, a first entry to £, occurs at

the vth step with 1 <<» <n. This meansthat

(11.18) Pat) = Pie + 2SiePat

Summation over n leads to the second inequality in (11.14).

Proof of (11.15). On account of the obvious symmetry in 7 and 7 it

suffices to prove the second inequality. We start from the identity

(11.19) pi== jp+ =Pip: aps

which expresses the fact that a returnfrom E£; to E, occurs either without

intermediate passage through £,, or else the /ast entry to E; occurs at
the (n—¥»)th step and the next » stepslead from £; to £; without further

return to E;. Summing over n weget

>By < gma tot S pin)
n=O

(11.20)

< 7G4 + sudPo

by virtue of (11.14). To put this inequality into the symmetric form of

(11.15) it suffices to note that

(11.21) yy, = Et
W455.

In fact, by analogy with (11.16) we have

(11.22) iT53 = afi TH
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where ,f;, is the probability of reaching FE; from £; without a previous
return to £;. The alternative to this event is that a return to E, occurs
before an entry to £;, and hence

(11.23) fe=l—fyp=.
i753

(The last equation is the basic identity for the transient recurrent event
which consists ina returnto £; without an intermediate passage through

E,.) Substituting from (11.23) into (11.22) we get the assertion (11.21),

and this accomplishes the proof. >

The relation (11.21) leads to theinteresting

Corollary 1. Jf {u,} is an invariant measure, then

(11.24) joie at

Proof. The invariant measure is determined up to a multiplicative
constant, andso therightside in (11.24) is uniquely determined. We may
therefore suppose that {u,} is the invariant measure defined by (11.7)
when the taboo state £, is identified with £, But then u,;=1 and
7;; = Uu;, and so (11.21) reduces to (11.24). >
3

Corollary 2. (Ratio limit theorem.) In anirreduciblepersistent chain the

ratio limit theorem (11.2) holds.

Proof. Thesums of theorem 2 tend to co as N-—>oo. Theratio of the

two sumsin (11.14) therefore tends to unity, and so it suffices to prove
(11.2) for the special choice « =i and f = j. But with this choice (11.2)

is an immediate consequence of(11.15) and (11.24). >

The existence of an invariant measure for persistent chains was first proved by
C. Derman (1954). The existence of a limit in (11.2) was demonstrated by A. Doblin

(1938). Taboo probabilities as a powerful tool in the theory of Markov chains were

introduced by Chung (1953). Further details are given in the first part of his basic
iV

treatise.’ The boundedness of the partial sums } (pi;’ — pj;’) was proved by S.
0

Orey, who considered also the problem of convergence."*

17 Markov chains with stationary transition probabilities, Berlin (Springer), 1960. A

revised edition covering boundary theory is in preparation. (Our notations are not

identical with his.)

18 Sumsarising in the theory ofMarkov chains, Proc. Amer. Math. Soc., vol. 12 (1961),

pp. 847-856.
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*12, REVERSED CHAINS. BOUNDARIES

Whenstudying the developmentof a system weare usually interested in
the probabilities of possible future events, but occasionally it is necessary

to study the past. In the special case of a Markov chain we mayask for
the (conditional) probability that at some timein the past the system was
in state £; given that the presentstate is E,.

Consider first a chain with a strictly positive invariant probability
distribution {u,}; that is, we assume that u%>0O and >} u, = 1 where

(12.1) Up = > UyDPyy-

[Recall from the theorem in section 7 that the invariant probability
distribution of an irreducible chain is automatically strictly positive.]

If the process starts from {u,} as initial distribution, the probability of
finding the system at any time in state E; equals u,;. Given this event,

the conditional probability that n time units earlier the system was in
state E; equals

(n)
(n) U Pj:(12.2) qi) =

For n= 1 we get’

U5P 3;

u-
z

(12.3) V3 =

In view of (12.1) it is clear that the g,;; are the elements of a stochastic
matrix Q. Furthermore, the probabilities q{”) are simply the elements of
the nth power Q” (in other words, the q‘”) can be calculated from the
g,;; in the same manneras the p‘”) are calculated from the p,;). It is now
apparentthat rhe study ofthepast development ofour Markov chain reduces

to the study of a Markovchain with transition probabilities q,;. The abso-
lute probabilities of the new chain coincide, of course, with the invariant

probability distribution {u,}. The probabilities g,; are called inverse

probabilities (relative to the original chain) and the procedureleading from
one chain to the otheris called reversal of the time. In the special case
where q;; = p;; one says that the chain is reversible; the probability

relations for such a chain are symmetric in time.
We knowthat an irreducible chain possesses an invariant probability

distribution only if the states have finite mean recurrence times. If the
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states are persistent null states there exists an invariant measure whichis
unique except for an arbitrary multiplicative constant. For a transient
chain all contingencies are possible: some chains have no invariant meas-
ure, others infinitely many. [Examples (11.5) and (1l.c).] Under these

circumstances it is remarkable that the transformation (12.3) defines a
stochastic matrix Q whenever {u,} is a strictly positive invariant measure.

The powers of Q are given by (12.2). In this sense every strictly positive
invariant measure defines a reversed Markov chain. Unfortunately the
new transition probabilities g,; cannot be interpreted directly as condi-
tional probabilities in the old process.1®
A glance at (12.3) shows that {u,} is an invariant measurealso for the

reversed chain. Furthermoreit is clear from (12.2) that either both series
>” and > p'”) converge or both diverge. It follows that the states
n n

ofthe two chains are ofthe same type: if one chain is transient, or persistent,
so is the other.

Examples. (a) The invariant probability distribution corresponding to
the Ehrenfest model [example (2.e)] was found in (7.16). A simple calcula-
tion showsthat the Ehrenfest model is reversible in the sense that 9;; = P,;.

(b) In example (11.5) we found the invariant measures corresponding

to a random walk on theline in which the transitions to the right andleft
neighbor have probabilities p and gq, respectively. If we choose u, = 1
for k = 0,41, +2,..., we get q,;; = p,; and we are led to a new ran-
dom walk in which the roles of p and q are interchanged. On the other
hand, the invariant measure with u, = (p/q)* yields a reversed random
walk identical with the original one.

(c) In examples (2.k) and (2./) we introduced two Markovchainsrelated

to a recurrent event 6 For persistent & with finite mean recurrence
time « we saw in example (7.g) that the two chainshave the sameinvariant
probability distribution defined by (7.23). When mu = © theserelations

define an invariant measure commonto the two chains [see examples(11.c)

and (11.d)]. A simple calculation now shows that the two chains are

obtainedfrom each other by reversing the time. Thisis not surprising seeing
that the chain of (2.k) concerns the waiting time to the next occurrence of

& while (2./) refers to the time elapsed from the last occurrence. >

Consider now anarbitrary irreducible transient chain with an invariant
measure {uu}. The equations (12.1) defining an invariant measure may
admit of other solutions, and the question of uniquenessis closely related

1° For an operationalinterpretation of the q;; it is necessary to consider infinitely

many simultaneous processes, as indicated in example (11.5).
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with the question of uniquenessof the adjoint system oflinear equations,”

(12.4) f= > Pibvs

which played an importantrole in section 8. This system admits of the

trivial solution §, = c¢ forall i. Any non-negative solution is automati-
cally strictly positive. (Indeed, €,=0 would imply &,=0 for all »
such that p;, > 0. This in turn would imply €, = 0 whenever p‘?) > 0,

and generally £, = 0 for every state E, that can be reached from £;.
Thus €, =0 for all » because the chain is irreducible.) If {&,} is a
non-constant solution then a glance at (12.3) showsthat

(12.5) v, = u,£;

defines an invariant measure for the reverse matrix Q. Conversely, if
{v,;} stands for such a measure then (12.5) defines a positive solution of
(12.4). In other words, the positive solutions of (12.4) stand in one-to-one

correspondence with the invariant measures of the reversed chain™* with
matrix Q.

In the modern theory of Markov chains and potentials the positive
solutions {&;} and {u,} are used to define boundaries. It is beyond the

scope of this book to describe howthis is done, but the following examples
may give some idea of what is meant by an exit boundary.

Examples. (a) Consider a random walk on the infinite line such that

from the position 7 # 0 the particle moves with probability p a unit step
awayfrom theorigin, and with probability g a unit step towardtheorigin.
From the origin the particle moves with equal probabilities to +1 or —1.
We assume p > q.

0 If € stands for the column vector with components &, the system (12.4) reduces
to the matrix equation € = P&. The system (12.1) corresponds to u = uP where u is

a row vector.

*1 For an irreducible persistent chain the invariant measure is unique up to a multi-

plicative constant. Since the chains with matrices P and Q are of the same type we

have proved the

Theorem. For an irreducible persistent chain the only non-negative solution of (12.4)

is given by &; = const.

This can be proved also by repeating almost verbatim the last part of the proof of

theorem 11.1. Indeed, by induction wefind that for arbitrary i, r, and n

Efte AK+ Dp’.

Fora persistent chain the expression within brackets tends to 1 while the series tends to
0. Hence &; = &, as asserted.
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In the Markovchain the states are numbered from —©o to oo, and the

equations (12.4) take on the form

Gs = per +964 i> 0,

(12.6) fo = 351 + 31

E, = 98s41 + Sin i< 0.
Put

(12.7) 7, =1- 3(4) for i>0, 1= (2), for i<0.
2\p 2\p

It is easily seen that §; = 7, and &;=1— 7, defines two” non-trivial
solutions of the system (12.6). It follows that our chain is transient, and

so the position ofthe particle necessarily tends either to +00 orto —oo.
This conclusion can be reacheddirectly from the theory ofrandom walks.

In fact, we know from XIV,2 that whenthe particle starts from a position

i > 0 the probability of ever reaching the origin equals (q/p)'. For reasons
of symmetry a particle starting from the origin has equal probabilities to
drift toward +00 or —oo, and so the probability of an ultimate drift to
—oo equals 3(qg/p)’. We conclude that , is the probability that, starting
from an arbitrary position i, the particle ultimately drifts to +00. The
drift to —oo has probability 1 — 7,. In the modern theory the situation
would be described by introducing the “‘exit boundary points” + 0o and
— 00,

(b) The preceding example is somewhat misleading by its simplicity,
and it may therefore be useful to have an example of a boundary consisting
of infinitely many points. For this purpose we consider a random walk in
the x,y-plane as follows. The x-coordinate performs an ordinary random

walk in which the steps +1 and —1 have probabilities p and q <p.

The y-coordinate remains fixed except when the x-coordinate is zero, in

which case the y-coordinate decreases by 1. More explicitly, when 7 4 0
only the transitions (j,k) >(j+ 1,k) and (j—1,k) are possible, and
they have probabilities p and g <p, respectively. From (0,4) the
particle moves with probability p to (1,k—1) and with probability q

to (—1,k—l).
From the theory of random walks we knowthat the x-coordinate is

bound to tend to +00, and that (with probability one) it will pass only

finitely often through 0. It follows that (excepting an event of zero prob-
ability) the y-coordinate will change only finitely often. This means that

22 The most general solution is given by &; = 4+ Bn; where A and B are

arbitrary constants. Indeed, these constants can be chosen so as to yield prescribed
values for £, and &_,, andit is obvious from (12.6) that the values for &, and &_,

uniquely determineall §;.
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after finitely many changesof the y-coordinatethe particle will remain on
a line y=r. In this sense there are infinitely many “escape routes to
infinity,” and for each initial position (j,k) we may calculate® the prob-
ability {} that the particle ultimately settles on the line y =r. It is
easily seen that for fixed r the probabilities &") represent a solution of
the system corresponding to (12.4), and that the most generalsolutionis a
linear combination of these particular solutions. Furthermore, the par-
ticular solution &{"} is characterized by theintuitively obvious “boundary
condition” that &}->0 as j-+ co except when k =r, in which case
gy") — |, , >

These examplesare typical in the following sense. Given an irreducible
transient Markovchainit is always possible to define a “boundary”’ such
that with probability one the state of the system tends to somepointofthe
boundary. Given set I’ on the boundary we can askfor the probability
n, that, starting from theinitial state E,, the system converges to a point
of I. Werefer to {,;} as the absorption probabilitiesfor TY. It turns out
that such absorption probabilities are always solutions of the linear
system (12.4) and, conversely, that all boundedsolutions of(12.4) are linear
combinations of absorption probabilities. Furthermore, the absorption
probabilities {7,;} for I are given by the unique solution of (12.4) which
assumes the boundary values 1 on I" and the boundary values 0 on the
complement of I’ on the boundary. We may now form a newstochastic
matrix P with elements

(12.8) Bie = Pa
2:

This is the conditional probability of a transition from E; to FE, given
that the state ultimately tends to a point of I. The Markov process with
matrix P maybe described as obtained from theoriginal process by con-
ditioning on the hypothesis of an ultimate absorption in IT. Since the

*3 An explicit expression for £{", can be obtained from the results in XIV,2 con-
cerning one-dimensional random walks. From aninitial position i <0 the proba-

bility that the origin will be touched exactly p > 0 times equals (29)?-(p—q); when

i> this probability equals (g/p)*(2q)?-(p—q). The probability that the origin is

never touched equals 0 for i <0 and 1 — (g/p)' for i> 0. It follows easily that for

i<0

ne = (2g)k*-(p—q) k>r
while for i> 0

Ei = (qlp)'(2q**-“(p—9) k>r

cue = 1 — Glpy

and, of course, £\*} = 0 when k <r.
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future development can never be knownin advance such a conditioning
appears atfirst sight meaningless. It is nevertheless a powerful analytic
tool and has even an operational meaning for processes that have been
going on for a very long time.

A boundarycan be defined also for the matrix Q obtained by reversal

of the time. In general therefore there are two distinct boundaries cor-
responding to a given chain. Theyarecalled exit and entrance boundaries,
respectively. Roughly speaking, the former refers to the remote future,
the latter to the remote past.

Time-reversed Markov chains were first considered by A. Kolmogorov.** The role
of the solutions of (12.4) was stressed in the earlier editions of this book. Exit and

entrance boundaries were introduced by W.Feller. His construction is satisfactory
whenthere are only finitely many boundarypoints, but in generalit is simpler to adapt
the construction introduced by R. S. Martin in the theory of harmonic functions. This
was pointed out by J. L. Doob.** Therelativization (12.8) was introduced by Feller ;?*

an analogous transformation in the theory of classical harmonic functions was defined
at the same time by M.Brelot.?’

13. THE GENERAL MARKOV PROCESS

In applications it is usually convenient to describe Markov chains in
terms of random variables. This can be done by the simple device of
replacing in the preceding sections the symbol £, by the integer k. The
state of the system at time n then is a random variable X‘), which
assumes the value k with probability a{”; the joint distribution of
X™ and X!"+) is given by P{X'™ = 7, XD) = k} = al”p,,, and the
joint distribution of (X,..., X'”)) is given by (1.1). It is also possible,
and sometimes preferable, to assign to E, a numerical value e, different
from k. With this notation a Markov chain becomesa special stochastic

process,”$ or in other words, a sequence of (dependent) random variables*®

4 Zur Theorie der Markoffschen Ketten, Mathematische Annalen, vol. 112(1935),

pp. 155-160.

5 Boundaries induced by positive matrices, Trans. Amer. Math. Soc., vol. 83(1956),

pp. 19-54.

°6 Discrete potential theory and boundaries, J. Math. Mechanics, vol. 8(1959),

pp. 433-458.

27 Le probléme de Dirichlet. Axiomatique etfrontiére de Martin, J. Math. Pures Appl.,

vol. 35(1956), pp. 297-335.

*8 The terms “stochastic process’? and ‘‘random process” are synonyms and cover
practically all the theory of probability from coin tossing to harmonic analysis. In

practice, the term “‘stochastic process” is used mostly when a time parameter is

introduced.

29 This formulation refers to an infinite product space, but in reality we are con-

cerned only with joint distributions of finite collections of the variables.
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(X, X™,...). The superscript n plays the role of time. In chapter

XVII we shall get a glimpse of more general stochastic processes in which

the time parameter is permitted to vary continuously. The term “Markov
process” is applied to a very large and importantclass of stochastic pro-

cesses (with both discrete and continuous time parameters). Even in the
discrete case there exist more general Markov processes than the simple
chains we havestudied so far. It will, therefore, be useful to give a defini-
tion of the Markov property, to point out the special condition charac-
terizing our Markov chains, and, finally, to give a few examples of
non-Markovian processes.

Conceptually, a Markov process is the probabilistic analogue of the
processes ofclassical mechanics, where thefuture developmentis completely
determined by the present state and is independent of the way in which the
present state has developed. These processes differ essentially from pro-
cesses with aftereffect (or hereditary processes), such as occur in the theory

of plasticity, where the whole past history of the system influences its
future. In stochastic processes the future is not uniquely determined,
but we haveat least probability relations enabling us to makepredictions.
For the Markov chains studied in this chapterit is clear that probability
relations relating to the future depend onthe presentstate, but not on the
manner in which the present state has emerged from the past. In other
words, if two independent systems subject to the same transition prob-
abilities happen to be in the samestate, then all probabilities relating to
their future developmentsare identical. This is a rather vague description
which is formalized in the following

Definition. A sequence of discrete-valued random variables is a Markov

process if, corresponding to every finite collection of integers ny < ny <
<+:+ <n, < 21,thejoint distribution of (X'™, X™),..., X(™), X() is

defined in such a way thatthe conditionalprobability ofthe relation X‘ = x
on the hypothesis X'™) = x,,..., X') = x, is identical with the condi-
tional probability of X'") = x on the single hypothesis X'‘") = x,. Here
%,...,%,, are arbitrary numbers for which the hypothesis has a positive
probability.

Reduced to simpler terms, this definition states that, given the present
state z,, no additional data concerningstates of the system in the past can

alter the (conditional) probability of the state x at a future time.
The Markovchainsstudied so far in this chapter are obviously Markov

processes, but they have the additional property that their transition
probabilities py, = P{X(™) = k|X(™ =j} are independent of m. The
moregeneral transition probabilities

(13.1) pir-™ = PIX™ =k | x'™) = 7} (m <n)
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then depend only on the difference » — m. Suchtransition probabilities
are called stationary (or time-homogeneous). For a generalintegral-valued
Markov chain the right side in (13.1) depends on m and n. Weshall
denote it by p,,(m, n) so that p,,(n,n + 1) define the one-step transition
probabilities. Instead of (1.1) we get now for the probability of the path
(jo. jis + +++Jn) the expression

(13.2) aPigs(0, 1)p;.5,(1, 2) “* *Pin_yi,(2— 1, n).

The proper generalization of (3.3) is obviously the identity

(13.3) Piln, n) = Ypi(m, r)pyr, 2)

whichis valid for all r with m<r<n. This identity follows directly
from the definition of a Markov process and also from (13.2); it is called
the Chapman-Kolmogorov equation. [Transition probabilities p;,(m, n)

are defined also for non-Markovian discrete processes, but for them the
factor p,,(r,”) in (13.3) must be replaced by an expression depending not

only on » and k, butalso on j]
The Markovchains studied in this chapter represent the general time-

homogeneous discrete Markov process. Weshall not dwell on the time-

inhomogeneousMarkovprocess. The following examples may be helpful
for an understanding of the Markov property andwill illustrate situations
when the Chapman-Kolmogorov equation (13.3) does not hold.

Examples of Non-Markovian Processes

(a) The Polya urn scheme {example V,(2.c)]. Let X‘’ equal 1 or 0

according to whether the nth drawing results in a black or red ball. The
sequence {X‘")} is not a Markovprocess. For example,

P{X® = 1|X@ = 1} = (b+0)/(b+rto),
but

P(X) = 1] X@ = 1, XM = 1} = (642c)/(b+r4+2c).

(Cf. problems V, 19-20.) On the other hand, if Y‘” is the number of

black balls in the urn atime n, then {Y¥‘")} is an ordinary Markov chain
with constant transition probabilities.

(b) Higher sums. Let Yo, Yi,... be mutually independent random
variables, and put S, = Y) +---+ Y,. The difference S, —S,, (with

m <n) depends only on Y,,,,,..-.,Y,, and it is therefore easily seen

that the sequence {S,} is a Markov process. Now let us go onestep

 



422 MARKOV CHAINS [XV.13

further and define a new sequence of random variables U,, by

U,=So +S, 4+°°°+S8, = Y, + 2Y,1, + 3Y,_, °°: + (41) Y,.

The sequence {U,} forms a stochastic process whose probability relations
can, in principle, be expressed in terms of the distributions of the Y,..

The {U,} process is in general not of the Markovtype, since there is no
reason why, for example, P{U, = 0 | U,_1 = a} should be the sameas

P{U, = 0/U,_, = 4, U,_, = b}; the knowledge of U,_, and U,_,
permits better predictions than the sole knowledge of U,_.

In the case of a continuoustime parameter the preceding summationsare
replaced by integrations. In diffusion theory the Y, play the role of
accelerations; the S,, are then velocities, and the U,, positions. If only
positions can be measured, we are compelled to study a non-Markovian
process, even thoughitis indirectly defined in terms of a Markovprocess.

(c) Moving averages. Again let {Y,} be a sequence of mutually inde-

pendent random variables. Moving averages of order r are defined by
X™ = (¥,+Y,i4+°°°+Y¥,4,1)/r. It is easily seen that the X‘are

not a Markov process. Processes of this type are common in many
applications (cf. problem 25).

(d) A traffic problem. For an empirical example of a non-Markovian
process R. Furth®® made extensive observations on the numberofpedes-
trians on a certain segment of a street. An idealized mathematical model
of this process can be obtained in the following way. For simplicity we
assume that all pedestrians have the same speed v and consider only
pedestrians moving in one direction. Wepartition the x-axis into segments
I,, Iz,... ofa fixed length d and observe the configuration of pedestrians
regularly at moments d/v time units apart. Define the random variable
Y,, as the numberof pedestriansinitially in Z,. At the nth observation

these same pedestrians will be found in J,_,, whereas the interval /, will

contain Y,,, pedestrians. The total number of pedestrians within the

interval 0 < x < Nd is therefore given by X™ =Y,.,+-°:-+ Yuin,
and so our process is essentially a moving average process. The simplest

model for the random variables Y,, is represented by Bernoulli trials. In
the limit as d—»0 they lead to a continuous model, in which a Poisson

distribution takes over the role of the binomial distribution.
(e) Superposition of Markov processes (composite shuffling). There exist

manytechnical devices (such as groupsofselectors in telephone exchanges,
counters, filters) whose action can be described as a superposition of two
Markovprocesses with an output which is non-Markovian. A fair idea

80 R, Firth, Schwankungserscheinungen in der Physik, Sammlung Vieweg, Braun-

schweig, 1920, pp. 17ff. The original observations appeared in Physikalische Zeitschrift,

vols, 19 (1918) and 20 (1919).
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of such mechanisms may be obtained from the study of the following
methodof card shuffling.

In addition to the target deck of N cards we have an equivalent auxiliary
deck, and the usual shuffling techniqueis applied to this auxiliary deck. If
its cards appear in the order (aj, a:,...,a@y), we permute the cards of
the target deck so that thefirst, second, ..., Nth cards are transferred to

the places number aj, ad),...,a@,. Thus the shuffling of the auxiliary deck
indirectly determines the successive orderings of the target deck. Thelatter
form a stochastic process which is not of the Markov type. To provethis, it
suffices to show that the knowledge of two successive orderings of the
target deck conveys in general more clues to the future than the sole

knowledge of the last ordering. We show this in a simple special case.
Let N = 4, and supposethat the auxiliary deck is initially in the order

(2431). Suppose, furthermore, that the shuffling operation always consists
of a true “cutting,” that is, the ordering (a,, a2, a3, a4) is changed into one

of the three orderings (a,, a3, dg, 41), (G3, G4, @1, 42), (Gy, 41, 42, 43); We

attribute to each of these three possibilities probability 4. With these con-
ventions the auxiliary deck will at any time be in one ofthe four orderings
(2431), (4312), (3124), (1243). On the other hand, a little experimentation
will show that the target deck will gradually pass through all 24 possible
orderings and that each of them will appear in combination with each of
the four possible orderings of the auxiliary deck. This means that the

ordering (1234) of the target deck will recur infinitely often, and it will
always be succeeded by one of the four orderings (4132), (3421), (2314),

(1243). Now the auxiliary deck can never remain in the same ordering,
and hence the target deck cannot twice in succession undergo the same
permutation. Hence,if at trials number n — 1 and n the orderings are
(1234) and (1243), respectively, then at the next trial the state (1234)is

impossible. Thus two consecutive observations convey more information

than does one single observation.

(f) A non-Markovian process satisfying the Chapman-Kolmogorov equation. The
identity (3.3) was derived from the assumption that a transition from Ey, to E, does
not depend on the manner in which the state £, was reached. Originally it seemed
therefore intuitively clear that no non-Markovian process shouldsatisfy this identity;
this conjecture seemed supported by the fact that the n-step transition probabilities of
such a process mustsatisfy a host of curious identities. It turned out nevertheless that
exceptions exist (at least in theory). In fact, in [X,1 we encounteredaninfinite sequence
of pairwise independent identically distributed random variables assuming the values
1, 2, and 3 each with probability 3. We have thus a process with possible states 1, 2, 3

and such that p;, = 3 for allcombinations of j and k. The indentity (3.3) is therefore

trivially satisfied with p‘;) = %. The process is nonetheless non-Markovian. To see

this supposethatthefirst step takes the system to thestate 2. A transition to 3 at the next

step is then possible if, and only if, the initial state was1. Thusthe transitions following

the first step depend not only on thepresent state but also on theinitial state. (For
various modifications see the note and footnote 3 in IX,1.)
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14. PROBLEMS FOR SOLUTION

1. In a sequence of Bernoulli trials we say that at time n the state E, is
observedif the trials number n — 1 and 7 resultedin SS. Similarly E,, E3, Ey
stand for SF, FS, FF. Find the matrix P andall its powers. Generalize the
scheme.

2. Classify the states for the four chains whose matrices P have the rows
given below. Find in each case P? and the asymptotic behavior of p‘%).
(a) (0, 3, 3), G, 9, 2), (3, 2, 0);
(6) (©, 0, 0, 1), (0, 0, 0, D (3, 4, 0, 0), (0, 0, 1, 0);
) G, 0, 4, 0, 0), G44, 0, 0), G, 0’ 2, 0, 0), (0, 0, 0, 329 2), (0, 0, 0

(d) (0, 2» 2, 0, 0, 0), (0, 0, 0, 339 3» 3), (0, 0, 0, 3, 3, 3), dl, 0, 0, 0, 0, 0),

(1, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0).

3. We consider throwsof a true die and agreeto say that at epoch the system
is instate E; if 7 is the highest number appearingin the first n throws. Find
the matrix P” and verify that (3.3) holds.

4. In example (2.j) find the (absorption) probabilities x, and y, that,
starting from E,, the system will endin E, or E;, respectively (k = 2, 3,4, 6).
(Do this problem from the basic definitions without referring to section 8.)

5. Treat example I, (5.6) as a Markov chain. Calculate the probability of
winning for each player.

6. Let E, be absorbing (that is, put poo = 1). For j >0 let p,;; =p and
Pij+r =where p+q=1. Find the probabilityf{%) that absorption at
E, takes place exactly at the nth step. Find also the expectation of this dis-
tribution.

7. The first row of the matrix P is given by v9, %,.... For j > 0 we have
(as in the preceding problem) p;; = p and p;;, =g. Find the distribution of
the recurrence time for Ep.

8. For j =0,1,... let ps542 =; and pj = 1 —v,;. Discuss the character
of the states.

9. Two reflecting barriers. A chain with states 1,2,..., p has a matrix
whosefirst and last rows are (q,p,0,...,0) and (0,...,0,9,p). In all other
TOWS Pxxia = P>Px,r1 = 49- Find thestationary distribution. Can the chain be
periodic?

10. Generalize the Bernoulli-Laplace model of diffusion {example (2.f)] by
assuming that there are b > p black particles and w =2p — 6 white ones.
The numberofparticles in each container remains = p.

11. A chain with states Ey, E,,... has transition probabilities

~

a
Pik =e (/) ea (k—)!

where the terms in the sum should be replaced by zero if » > k. Show that

—A /a (Afqy*

kl -

 

Phe e
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Note: This chain occursin statistical mechanics*! and can beinterpreted as
follows. The state of the system is defined by the number of particles in a
certain region of space. During each timeinterval of unit length each particle
has probability ¢g to leave the volume, and the particles are stochastically
independent. Moreover, new particles may enter the volume, and the prob-
ability of r entrants is given by the Poisson expression e~74"/r!. The stationary
distribution is then a Poisson distribution with parameter 4/q.

12. Ehrenfest model. In example (2.e) let there initially be j molecules in
the first container, and let X) = 2k — a if at the nth step the system is in state
k (sothat X™) is the difference of the numberofmoleculesin the two containers).
Let e, = E(X™). Provethat e,,, = (a—2)e,/a, whence e, = (1 —2/a)"(2j—a).
(Note that e, ~0 as n> -.)

13. Treat the counter problem, example XIII, (1.¢), as a Markov chain.

14. Plane random walk with reflecting barriers. Consider a symmetric random
walk in a bounded region of the plane. The boundary is reflecting in the sense
that, whenever in a unrestricted random walk the particle would leave the
region,it is forced to return to the last position. Show that, if every point of
the region can be reached from every other point, there exists a stationary
distribution and that uw, =1/a, where a is the number of positions in the
region. (If the region is unbounded the states are persistent null states and
u, = 1 represents an invariant measure.)

15. Repeated averaging. Let {2, 2, ...} be a bounded sequence of numbers
and P the matrix of an ergodic chain. Prove that }p\})a; —~ Xu,x;. Show

3

that the repeated averaging procedure of example XIII, (10.c) is a special case.

16. In the theory of waiting lines we ecounter the chain matrix

Po Pi P2 P3

Po Pi P2 Ps

O Po Pi Pe
0 0 py pi

where {p,} is a probability distribution. Using generating functions, discuss
the character of the states. Find the generating function of the stationary
distribution, if any.

17. Waiting time to absorption. For transient E, let Y; be the time when
the system for the first time passes into a persistent state. Assuming that the
probability of staying forever in transient states is zero, prove that d; = E(Y;)
is uniquely determined as the solution of the system of linear equations

ad; = > Pivty +1,
T

the summation extending over all » such that £, is transient. However, d,

need notbefinite.

31S. Chandrasekhar, Stochasticproblemsinphysics andastronomy, Reviews of Modern

Physics, vol. 15 (1943), pp. 1-89, in particular p. 45.
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18. If the number of states is a < and if E, can be reached from E,,
then it can be reached in a — | steps orless (i ¥ k).

19. Let the chain contain a states and let E; be persistent. There exists
a number g <1 such that for n >a the probability of the recurrence time of
E; exceeding n is smaller than q”. (Hint: Use problem 18.)

20. Ina finite chain £; is transient if and onlyif there exists an E, such that
E, can be reached from £; but not £; from £,. (Forinfinite chains this is
false, as shown by random walks.)

21. An irreducible chain for which one diagonal element p,,; is positive
cannot be periodic.

22. A finite irreducible chain is non-periodic if and only if there exists an 7
such that pS") > 0 forall j and k.

23. In a chain with a states let (%,...,2,) bea solution of the system of
linear equations x; = Xp,,z,. Prove: (a) If x; <1 forall j then the states
for which x, = 1 form a closed set. (6) If E, and £, belong to the same
irreducible set then x; = 2,. (c) In finite irreducible chain the solution {z;}

reduces to a constant. Hint: Consider the restriction of the equations to a
closed set.

24. Continuation. If (2,....,%,) iS a (complex valued) solution of 2; =

=s>pty with |s| =1 but s #1, then there exists an integer ¢ > 1 such
that s’ = 1. If the chain is irreducible, then the smallest integer of this kindis
the period of the chain.

Hint: Withoutloss of generality assume x, = 1 > |x,|. Consider successively
the states reached in 1, 2,... steps.

25. Moving averages. Let {Y,} be a sequence of mutually independent
random variables, each assuming the values +1 with probability $. Put
x = (Y,+Y,,,)/2. Find the transition probabilities

Pax, n) = P{x™) =k | x'm) = j},

where m <n and j,k = —1,0,1. Conclude that {xir} is not a Markov
process and that (13.3) does not hold.

- 26. In a sequence of Bernoulli trials say that the state E, is observed at
time vn if the trials number n —1 and a resulted in success; otherwise the
system is in E,. Find the n-step transition probabilities and discuss the non-
Markovian character.
Note: This process is obtained from the chain of problem 1 by lumping

together three states. Such a grouping can be applied to any Markovchain and
destroys the Markovian character. Processes of this type were studied by
Harris.”

27. Mixing of Markov chains. Given two Markov chains with the same
number of states, and matrices P, and P,. A new process is defined by an
initial distribution and n-step transition probabilities 4P,”" + 4P,". Discuss
the non-Markovian character and the relation to the urn models of V,2.

32 T, E. Harris, On chains of infinite order, Pacific Journal of Mathematics, vol. 5
(1955), Supplement 1, pp. 707-724.
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28. Let N be a Poisson variable with expectation 4. Consider N_ inde-
pendent Markov processes starting at E, and having the same matrix P.
Denote by Z{”) the number among them after n steps are foundin state E,.
Show that Z{”) has a Poisson distribution with expectation 4 - p§?).

Hint: Use the result of example XII,(1.5).

29. Using the preceding problem show that the variable X{") of example
(11.5) has a Poisson distribution with expectation Supe = Uy.

j

 



CHAPTER XVI*#*

Algebraic Treatment

of Finite Markov Chains

In this chapter we consider a Markovchain with finitely manystates
£,,...,£, and a given matrix of transition probabilities p,,. Our main
aim is to derive explicit formulas for the n-step transition probabilities
py’. We shall not require the results of the preceding chapter, except the
general concepts and notationsofsection 3.
Weshall makeuse of the methodofgenerating functions and shall obtain
the desired results from the partial fraction expansions of XI,4. Ourresults
can also be obtained directly from the theory of canonical decompositions
of matrices (which in turn can be derived from ourresults). Moreover,
forfinite chains the ergodic properties proved in chapter XV follow from
the results of the present chapter. However, for simplicity, we shall
slightly restrict the generality and disregard exceptional cases which com-
plicate the general theory and hardly occurin practical examples.
The general method is outlined in section 1 and illustrated in sections

2 and 3. In section 4 special attention is paid to transient states and
absorption probabilities. In section 5 the theory is applied to finding the
variances of the recurrence times of the states E,.

1. GENERAL THEORY

For fixed 7 and k weintroduce the generating function!

(1.1) Px(s) = > piy’s”.
n=0

* This chapter treats a special topic and may be omitted.
1 Recall that pjp’ equals 0 or 1 according as j # k or j =k. (The p'®) are known

as Kronecker symbols.)

428
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Multiplying by sp;; and adding over j = 1,..., p we get

p

(1.2) S> PisPnfs) = Pi(s) — Pip:
j=1

This meansthat for fixed k and s the quantities z; = P;,(s) satisfy a

system of a linear equations of the form

p

(1.3) 2, — SD Dist; = D,.
j=l

The solutions z; of (1.3) are obviously rational functions of s with a
common denominator D(s), the determinant of the system. To conform

with the standard notations of linear algebra we put s =f-1. Then
t?D(t~) isa polynomial of degree p (called the characteristic polynomial

of the matrix P of transition probabilities p,,). Its roots 4,..., t, are

called the characteristic roots (or eigenvalues) of the matrix P.
We now introduce the simplifying assumptions that the characteristic

roots t,,...,t, are simple (distinct) and? 40. Thisis a slight restriction

of generality, but the theory will cover most cases of practical interest.
Asalready stated, for fixed k the p quantities P,,(s) are rational

functions of s with the common denominator D(s). The roots of D(s)

are given by the reciprocals of the non-vanishing characteristic roots ¢,.
It follows therefore from the results of XI,4 that there exist constants

b) such that®

ye
— st, 1—st,
 (1.4) P,(s) =

Expanding the fractions into geometric series we get the equivalent
relations

(1.5) Pig = byett ++ + bit,
valid for all integers n > 0. We proceed to show that the coefficients
b‘) are uniquely determined as solutions of certain systems of linear

equations. The quantity p{?*!) can be obtained from (1.5) by changing n
into n+ 1, but also by multiplying (1.5) by p;, and summing over

® The condition t, #0 will be discarded presently. A chain with multiple roots is

treated numerically in example (4.8).

3 In theory we should omit those roots ¢, that cancel against a root of the numerator.
For such roots we put 5‘ = 0 andso (1.4) and (1.5) remain valid under any circum-

stances.
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j =1,...,p. Equating the two expressionswe get an identity of the form

(1.6) Citi +: +C,5 =0

valid for all n. This is manifestly impossible unless all coefficients vanish,
and we conclude that

p

(1.7) > Pisbie = Wie
j=

for all combinations i, k, and v. On multiplying (1.5) by p,, and sum-
ming over k weget in like manner

p

(1.8) » OyPur = bY).
k=1

Consider the p by p matrix b™ withelements 5‘). Therelations‘ (1.7)
assert that its Ath column represents a solution of the p linear equations

p

(1.9) > Pist; — tz, = 0
j=1

with ¢ = ¢,; similarly (1.8) states that thejth row satisfies

p

(1.10) > YxPur — tY, = 0
k=1

with t= 1¢,. The system (1.10) is obtained from (1.9) by interchanging
rows and columns, and so the determinants are the same. The determinant

of (1.9) vanishes only if ¢ coincides with one of the distinct characteristic
values t,,...,¢,. In other words, the two systems(1.9) and (1.10) admit

of a non-trivial solution if, and only if, t= +t, for some ». We denote
a pair of corresponding solutions by (x;”,..., x”) and (y{”,..., y™).

They are determined up to multiplicative constants, and so

(1.11) bo) = MgMy,

where c‘”) is a constant (independent of j and k). To find this unknown
constant we note that (1.9) implies by induction that

p

(1.12) > pra; = tx;
j=l

for all n. We use this relation for ¢ =¢,, where / is an arbitrary integer
between 1 and p. When p‘?) is expressed in accordance with (1.5) we

4The two systems (1.7) and (1.8) may be written in the compact matrix form
Pb™ = rb and P= 4b,
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find
p

(1.13) tra, — tt(1)992) SyDa free trclPe(e) Xya .

k=1 k=1

This represents an identity of the form (1.6) which can hold onlyifall

coefficients vanish. Equating the coefficients of tf on both sides we get
finally®

(1.14) cSahah(a) __

This relation determines the coefficient b{}) in (1.11). It is true that the
x‘4) and y) are determined only up to a multiplicative constant, but
replacing x{?) by Axand yby Bychanges c™into c')/AB,
and the coefficient 5‘) remains unchanged.
We summarize this result as follows. The two systems of linear equa-

tions (1.9) and (1.10) admit of non-trivial solutions only for at most p

distinct values of ¢ (the same for both systems). We supposethat there
are exactly p such values ¢,,...,¢,, all different from 0. To each t,

choose a non-zero solution (x),..., 2) of(1.9) and a non-zero solution
(y,... Ye of (1.10). With cgiven by (1.14) we have then for

n=0, 1,

(1.15) Dye=Seay(Ayn

We have thus found an explicit expression for all the transition prob-

abilities.®
The assumption that the characteristic roots are distinct is satisfied in

most practical cases, except for decomposable chains, and these require
only minor changes in the setup (see section 4). Not infrequently, how-
ever, 0 is amongthe characteristic roots. In this case we put ¢t, = 0. The

novel feature derives from the fact that the determinant D(s) of the system

(1.3) now has only the p — 1 roots ty!,...,¢52,, and so the generating
function P,,(s) is the ratio of two polynomials of degree p — 1. The

8 The vanishing of the other coefficients implies that S yPata\”) = (0 whenever
AY. k=1

® The final formula (1.15) becomes more elegant in matrix form. Let X‘?) be the
column vector (or p by 1 matrix) with elements x‘), and Y‘?? the row vector (or 1 by
p matrix) with elements y‘??, Then (1.15) takes on the form

p
Ps > CA”Yr

and c) is defined by the scalar equation c‘”)yy — 1,
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partial fraction’ expansions require that the degree of the numerator be
smaller than the degree of the denominator, and to achieve this we must
first subtract an appropriate constant from P;,(s). In this way we obtain
for P,,(s) a partial fraction expansion differing from (1.4) in that thelast

term is replaced by a constant. A glance at (1.15) showsthatthis affects
the right side only when n = 0. In other words, the explicit representation
(1.15) of p? remains validfor n > 1 even if t, = 0 (provided the roots
t),...,¢,-4 are distinct and different from zero).

Theleft side in (1.15) can remain boundedfor all n only if |z,| < 1

for all A. For t= 1 the equations (1.9) have the solution x; = 1 and
so one characteristic root equals 1. Withoutloss of generality we may put
t; = 1. Ifthe chain is aperiodic we have |t,| < 1 forall other roots and
one sees from (1.15) that as n— oo

(1.16) p>cy|

In other words, the invariant probability distribution is characterized as a
Solution of (1.10) with t= 1.

2. EXAMPLES

(a) Considerfirst a chain with only two states. The matrix of transition
probabilities assumes the simple form .

p= (0 42.)a I1—a

where 0< p<1 and 0< «<1. The calculationsare trivial since they
involve only systems of two equations. The characteristic roots are t, = 1
and t, =(1—a—p). The explicit representation (1.15) for p{) may be
exhibited in matrix form

pra (* rye? 7)

a-+p\«n p a+ p —“% oa

(where factors commontoall four elements have been taken out as factors
to the matrices). This formula is valid for n > 0.

(b) Let

000 1

000 1
(2.1) P= +40 0

0010
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[this is the matrix of problem (2.b) in XV,14]. The system (1.9) reduces to

(2.2) Uy = 1%, Ly = [hp, 3(t, +22) = tas, Ly = 1X4.

To ¢=0 there correspondsthe solution (1, —1, 0,0), but we saw that

the characteristic root 0 is not required for the explicit representation of
PS? for n> 1. The standard procedure of eliminating variables shows
that the other characteristic roots satisfy the cubic equation ¢*? = 1. If

we put for abbreviation

(2.3) 6 = e§* = cos aa + isin $7

(where i? = —1) the three characteristic roots are t; = 1, t, = 0, and

tz = 6 (which is the same as tz = 0-1). We have now to solve the

systems (1.9) and (1.10) with these values for ¢. Since a multiplicative
constant remains arbitrary we may put x” = y!” = 1. The solutions
then coincide, respectively, with the first columns andfirst rows of the

three matrices in the final explicit representation

(2.4)
1122 1 1 20 267 1 1 26 20

praift 1 2 2] ot 1 26 26°] | oejt 1 26% 26),
6}1 1 2 2} 6/6? o 2 26) 6/6 6 2 26
112 2 6 6 26% 2 e 6 20 2

Since we have discarded the characteristic root t= 0 this formula is

valid only for n > 1.
It is obvious from (2.4) that the chain has period 3. To see the asymp-

totic behavior of P” we note that 1 + 6 + 62? =0. Usingthisit is easily

verified that when n — oo through numbersof the form n = 3k the rows

of P" tend to (4,4,0,0). For n=3k+1 and n=3k+2 the

corresponding limits are (0,0,0,1) and (0,0, 1,0). It follows that the

invariant probability distribution is given by (%, 64; 3)-

(c) Let p +q =1, and

(2.5) P=

o
n

©

o
n

o
f

o
t

O
N

0

P

0

q

This chain represents a special case of the next example but is treated

separately because of its simplicity. It is easily seen that the system (1.9)

reduces to two linear equations for the two unknowns 2, + %3 and

 



434 ALGEBRAIC TREATMENT OF FINITE MARKOV CHAINS [XVI.2

%_ + x,, and hence that the four characteristic roots are given by

(2.6) 4=1, t%=-1, t=iq@-p), t= —i(q—p).
The correspondingsolutionsare (1, 1, 1, 1), (—1,1, —1, 1), (—i, —1, 4,1),

and (7, —1, —i, 1). [It will be noted that they are of the form (6, 6?, 6%, 64)

where @ is a fourth root of unity.] The system (1.10) differs from (1.9)
only in that the roles of p and q are interchanged, and weget therefore
without further calculations

(2.7) PP = HL + @—pyre"yl + (—7},
(d) In the general cyclical random walk of example XV,(2.d) thefirst

row of the matrix P is given by g,...,9,-; and the other rows are
obtained by cyclical permutations. In the special case p = 4 it was shown
in the preceding example that x{”) and y{”) are expressible as powers of
the fourth roots of unity. It is therefore natural to try a similar procedure
in terms of the pth root of unity, namely

(2.8) 6 = erp,
All pth roots of unity are given by 1, 0, 67,...,0°. For r=1,...,

we put
p-1

(2.9) t= >10"

It is easily verified that for ¢ = ¢, the systems (1.9) and (1.10) have the

solutions

(2.10) a) = 67, yi) = o-

and for the corresponding coefficients c‘) we havein all cases c'") = 1/p.

Thusfinally’
p-1 ;

(2.11) Pig =p > OM?
. r=l1

7 For n =0 theright side in (2.11) is defined only when no ¢, vanishes. Actually

we have provedthe validity of (2.11) for » > 1 assumingthat the roots f, are distinct,

and this is not necessarily true in the present situation. For example, if g, = p™' for
all k then fp = 1, but h = = th= 0. Even in this extreme case (2.11) remains

valid since the right side yields for all j, k, and n> 1. Fortunately it is not difficult

to verify (2.11) directly by induction on zn, In particular, when nm = 1 the factor of q,
in (2.9) reduces to

Sore),

r=0

This sum is zero except when j —k.+v=0 or p, in which case each term equals

one. Hence pj.(1) reduces to ge» if k >j and to gp..-; if k <j, andthis is the

given matrix (Di).
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(e) The occupancy problem. Example XV,(2.g) showsthat the classical

occupancy problem can be treated by the method of Markov chains.
The system is in state j if there are j occupied and p —/j emptycells.
If this is the initial situation and n additional balls are placed at random,
then p%) is the probability that there will be k occupied and p—k
empty cells (so that p\") = 0 if k <j). For j = 0 this probability follows
from II, (11.7). We now derive a formula for p‘"), thus generalizing the
result of chapter IT.

Since p,; =j/p and p;,,, = (p—/)/p the system (1.9) reduces to

(2.12) (pt—f)x; = (p—/)t541-
For ¢ = thisimplies x, = 1 forall 7. When ¢ #1 it is necessary that
x, = 0, and hence there exists some index r such that z,,,=0 but
x, #0; from (2.12) it follows then that p tf =r. The characteristic roots

are therefore given by

(2.13) t, =r/p, r=1,...,p.

The corresponding solutions of (2.12) are given by

cs “(NG
so that x‘) =0 when j>r. For t= 4¢, the system (1.10) reduces to

(2.15) (r—jy= (p—jt+ Dyes
and hasthe solution

(2.16) yi= (*"\-
j—r

where, of course, y/? =0 if j<r. Since xj =0 for j>r and

yi") = 0 for j <r we get

cl) = gly) — (*)
r

and hence

ein =SY(PC)(PL)
Onexpressing the binomialcoefficients in termsof factorials, this formula

simplifies to
_j k-j

(2.18) ip = (0 )>>(He1—y(),
p—k p y

with p) =0 if k <j. >

[For a numericalillustration see example (4.).]
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3. RANDOM WALK WITH REFLECTING BARRIERS

The application of Markovchains will nowbeillustrated by a complete
discussion of a random walk with states 1,2,..., p and tworeflecting
barriers. The matrix P is displayed in example XV, (2.c). For 2<k<
<p—I1 wehave p,34: =p and p,1. = 4; the first and the last rows
are defined by (q, p,0,...,0) (0,..., 0,4, p).
For convenience of comparisons with the developments in chapter XIV

we nowdiscard the variable t = s~! and write the characteristic roots in
the form s~! (rather than ¢,); it will be convenient to number them from
0 to p—1. In terms of the variable s the linear system (1.9) becomes

Ly = $(qx,+px2)

(3.1) w= 5(q%;_1+p%541) (j=2, 3,...,p—1)

x, = S(q%,_+p%,).

This system admits the solution x; = 1 corresponding to the root s = 1.
To find all other solutions we apply the method of particular solutions
(which we have used for similar equations in XIV, 4). The middle equation
in (3.1) is satisfied by x, = 4? provided that 4 is a root of the quadratic
equation 4 = qs + A*ps. The tworoots of this equation are

_ 2 _ _ 2
(3.2) 1,(s) = v1—4pqs" , Ags) = V1—4pqs? ,

2ps 2ps

and the most general solution of the middle equation in (3.1) is therefore

(3.3) x; = A(s)Ay(s) + B(s)AX(s),

where A(s) and B(s) are arbitrary. Thefirst and the last equation in (3.1)
will be satisfied by (3.3) if, and only if, x)= 2, and Ly = Xy,1. This
requires that A(s) and B(s) satisfy the conditions

A(s){1—A,(3)} + B(s){1—A,(s)} = 0
A(S)A8(s){1—Ay(s)} + B(s)48(s){1—Ao(s)} = 0.

Conversely, if these two equations hold for some value of s, then (3.3)
represents a solution of the linear system (3.1) and this solution is identi-
cally zero only when A,(s) = A,(s). Our problem is therefore to find the

(3.4)

* Part of what follows is a repetition of the theory of chapter XIV. Our quadratic
equation occurs there as (4.7); the quantities A,(s) and A.(s) of the text were given
in (4.8), and the general solution (3.3) appears in chapter XIV as (4.9). The two
methodsare related, but in many cases the computational details will differ radically.:
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values of s for which

(3.5) AL(s) = A&(s) but A,(s) & A,(s).

Since A,(s)A,(s) = q/p the first relation implies that 1,(s)VplaPq must be a

(2p)th root of unity, that is, we must have

(3.6) A(s) = Vq/p e7"””

where r is an integer such that 0 <r < 2p. From the definition (3.2)

it follows easily that (3.6) holds only when s = 5s, where

(3.7) s,’ = 2V pq: cos mr/p

The value s =, violates the second condition in (3.5); furthermore

S, = Sop,, and so p distinct characteristic values are given by (3.7) with
r=0,1,...,p—1.

Solving (3.4) with s = 5s, and substituting into (3.3) we get

4/2 ; (54+1)/2 .

(3.8) i") = (2) sin2 (?) sin IY
P p p p

for r=1,...,p—1 whereas for r=0

The adjoint system (1.10) reduces to

Y1 = Sq(YitYe)s

(3.10) Yn = SPY, t+Wier)» (k=2,..., p—I)

Y, = SPYp1+Yp)-

The middle equation is the same as (3.1) with p and q interchanged, and
its general solution is therefore obtained from (3.3) by interchanging p
and g. Thefirst and the last equations can be satisfied if s = s,, anda

simple calculation shows that for r= 1,2,...,p—1 the solution of

(3.10)is
e/2 (k—-1)/2 —

(3.11) yi = (?) apie (?) sin ZED
q p \q p

For sy) =1 we get similarly

(3.12) y,= (p/q)".
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It remainsto find the coefficients c'") defined by

(3.13) ch)>ayhr)

When r = 0 the kth term of the sum equals (p/q)* and so

q, (plq) — 1
Pp (pilav —1

except when p = q, in which case cy = 1/p. When r > 1 anelementary,
if tedious, calculation® leads to

(3.14) CO =

-1

(3.15) cf) = Pl1—2/p4 cos =) .
p p

Accordingly, the general representation (1.15) for the higher transition
probabilities leads to the final result?°

r)ay(r) a n
3.16 (nm) we? 4 2P ey[2vpq cos wr/p]

mn Pe (pig — 1 ) nD1 — 2Vpq cos ar/p

with xi”) and yj’) defined by (3.8) and (3.11). When p=gq thefirst
term on theright is to be interpreted as 1/p.

4. TRANSIENT STATES; ABSORPTION
PROBABILITIES

The theorem of section 1 was derived under the assumption that the
roots 1, f,,... are distinct. The presence of multiple roots does not
require essential modifications, but we shall discuss only a particular

* The calculations simplify considerably in complex notation using the fact that
sin v = [e*?—e-??]/(27). The sum in (3.13) reduces to a linear combination (with

complex coefficients) of sums of the form

p—l1
Ss e2izim/p

j=0

where m=O or m= +1. In thefirst case the sum equals p, in the second 0, and
(3.15) followstrivially.

*° For analogous formulas in the case of onereflecting and one absorbing barrier see
M. Kac, Random walk and the theory of Brownian motion, Amer. Math. Monthly,
vol. 54 (1947), pp. 369-391. The definition of the reflecting barrier is there modified

so that the particle may reach 0; whenever this occurs, the next step takes it to 1.
The explicit formulas are then more complicated. Kac’s paper contains also formulas
for p%) in the Ehrenfest model [example XV,(2.e)].
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case of special importance. The root ¢, = 1 is multiple whenever the
chain contains two or more closed subchains, andthis is a frequent situa-
tion in problems connected with absorption probabilities. It is easy to
adapt the method ofsection 1 to this case. For concisenessandclarity,
weshall explain the procedure by means of examples which will reveal the
main features of the general case.

Examples. (a) Consider the matrix of transition probabilities

J420000

2240000

002200
(4.1) P= |

0024400

+ 0 ¢ 047 2
1 1a 1211 i142

L6 6 6 6 6 6_   
It is clear that £, and E£, form a closed set (that is, no transition is
possible to any of the remaining four states; compare XV, 4). Similarly
E; and £, form anotherclosed set. Finally, E; and £, are transient

states. After finitely many steps the system passes into one of the two
closed sets and remainsthere.
The matrix P has the form of a partitioned matrix

A 0 0

(4.2) P=|0 B 0

U VT

where each letter stands for a 2 by 2 matrix and each zero for a matrix
with four zeros. For example, A has the rows (4, 3) and (%, 3); this is

the matrix of transition probabilities corresponding to the chain formed
by the two states E, and E£,. This matrix can be studied by itself, and

the powers A” can be obtained from example (2.a) with p= « = 3.

Whenthe powers P?, P?,... are calculated, it will be found that the first

two rowsare in no way affected by the remaining four rows. More pre-

cisely, P” has the form

A" 0 0

(4.3) P7=10 B" 0

U, V,
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where A”, B”, T” are the nth powers of A, B, and T, respectively, and
can be calculated’* by the methodofsection 1 [cf. example (2.a) whereall
calculations are performed]. Instead ofsix equations with six unknowns
we are confronted only with systems of two equations with two unknowns
each.

It should be noted that the matrices U, and V,, in (4.3) are not powers
of U and V and cannot be obtained in the same simple way as A”,
B”, and 7”. However, in the calculation of P?, P?,... the third and
fourth columnsneveraffect the remaining four columns. In other words,
ifin P” the rows and columnscorresponding to E, and E, are deleted,
we get the matrix
44 A” QO

o4 Cr. |

which is the nth power of the corresponding submatrix in P, thatis, of

4.5 as43 (ae

C
r
i
t
B
m

C
a
f

C
a
o

C
O

w
e

c
e
o

a
B
e
©

e
+

A
e

C
O
©

O
i

Therefore matrix (4.4) can be calculated by the methodofsection 1, which
in the present case simplifies considerably. The matrix V, can be ob-
tained in a similar way.

Usually the explicit forms of U,, and V,, are of interest only inasmuch
as they are connected with absorption probabilities. If the system starts
from, say, £;, what is the probability 4 that it will eventually pass into
the closed set formed by E, and E, (and notinto the other closed set)?
Whatis the probability 4, that this will occur exactly at the nth step?
Clearly pi) + p{%) is the probability that the considered event occurs at
the nth step or before, thatis,

Ds’ + Ps) = Ay + dg to + Ay,
Letting n — oo, we get A. A preferable way to calculate 1, is as follows.

The (n—1)st step must take the system to a state other than E£, and &£,,
that is, to either E; or £, (since from £3 or £, no transition to £,

and £, is possible). The nth step then takes the system to E, or £,.

Jn T the rows do not add to unity so that T is not a stochastic matrix. The
matrix is substochastic in the sense of the definition in XV, 8. The method ofsection 1

applies without change, except that ¢ = 1 is no longer a root (so that 7" — 0).
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Hence

(
A, = Pss_”(sitPse) + Poe“(Der t+Pe2) == dpe» + Apts»,

It will be noted that 4, is completely determined by the elements of
T”~1, and this matrix is easily calculated. In the present case

(n) ( — _Ps) = PSs) = AGEs)" and hence 2, = za(s8)"
(5) Brother-sister mating. We conclude by a numerical treatmentof the

chain of example XV,(2.j). The main point of the following discussionis

to show that the canonical representation

6

(4.6) po = S ilgly)
T=]

remains valid even though t =1 is a double root of the characteristic
equation.
The system (1.9) of linear “aration takes on the form

ret + 3%, + te + gu, + hr + 3%, = [2s

$03 + 3%, + 3%; = (ty, Uy = Ls, Ly = Ie,

and these equations exhibit the form of the given matrix. From thefirst
and fifth equations it is clear that x,=2,=0 unless t=1. For
t ~ 1, therefore, the equations reduceeffectively to four equationsfor four
unknownsand the standard elimination of variables leads to a fourth-
degree equation for ¢ as a condition for the compatibility of the four
equations. Since there are six characteristic roots in all it follows that
t = 1 isa double root. It is notdifficult to verify that the six characteristic
roots are!”

(4.8) == 1, = 2» = ds [5 = 4+ 1/5, l= 2 — WS.

The corresponding solutions (x!"),..., 2‘) of (4.7) can be chosen as

follows:

(4. 9) di, 2?49 3, 3,0’ 3), (0, 249 3, z 1, 9 (0, 1, 0, —l, 0, 0)

(0,1, -1, 1,0, —4), (0,1, nahh 1,0, 6—2V5),
(0,1, -1-V5, 1,0, 6+2V5).

12 The root t; = 4 can be found by inspection since it corresponds to the simple
solution 2, = —%=1 and 2,=2;=2;=2,=0. The cubic equation for the

other roots is of a simple character.
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The next problem is to find the correspondingsolutions (y'”, ... , y‘7’)
of the system obtained from (4.7) by interchanging rows and columns. For
r > 3 this solution is determined up to a multiplicative constant, but cor-
responding to the double root t; =f, = 1 we have to choose among
infinitely many solutions of the form (a, 0,0, 0, 5,0). The appropriate
choice becomes obvious from the form of the desired representation (4.6).
Indeed,a glanceat (4.9) showsthat x{") = 0 except for r = 1, and hence
(4.6) yields pit? = c™yforall k and n. But £, is an absorbingstate
andit is obvious that p{?) = 0 for all k #1. It follows that for r= 1
we must choose a solution of the form (a, 0, 0,0, 0,0), and for the same
reason a solution corresponding to r= is (0,0,0,0, 5,0). The solu-
tions corresponding to the remaining characteristic values are easily found.
(Those chosen in our calculations are exhibited by the second rowsof the
matrices below.) The norming constants c‘) are then determined by
(1.14), and in this way weget all the qualities entering the representation
formula (4.6).

In the display of the final result the matrices corresponding to r = 1
and r=2 have been combined into one. Furthermore, the elements

czy") corresponding to r = 5 and r = are ofthe form a + bV5.
For typographical convenience and clarity it was necessary to regroup

their contributions in the form a[t?-+2?]-and bV5[t?—r7.

 

 

10000 0 0 0 0 0 0 9g
2000: 0 -!1 2 0-2 1 +0

praj$ 99 0 4 Ol, 2 0 0 0 0 0 90
#000230 4 1-2 0 2-1 90

00001 0 0 0 0 0 0 90
4+ 000 40 0 0 0 0 0 90

0 0 oO 0 oOo 0 0 0 0 0 0 0
-1 4 —4 4 -1 -2 —9 6 4 6 —-9 2

4"| 1 -4 4 —4 1 2) ma e}—-1l 4 16 4 -11 —2
+ 39) -1 4 —4 4 -1 -2 40 —9 6 4 6 —-9 2

0 0 0 0 oO 0 0 0 0 0 0 0
4-16 16 -16 4 8 —14 16 —16 16 —14 12

Oe) 0 0 0 0

—4 2 4 2-4 0

m—t |S 4 ct) 4 —5 2].

+a V5)/_4 2 4 2-4 0
On) 0 0 0 0

—-6 0 16 0-6 —4

It is easily verified that this formulais valid for n = 0. On the other hand,
from the structure of the right side in (4.6) it is clear that if (4.6) holds for
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some n thenit is valid also for n + 1. In this way the validity of (4.6)
can be established without recourse to the general theory ofsection 1.

5. APPLICATION TO RECURRENCE TIMES

In problem 19 of XIJI,12 it is shown how the mean yw and the variance
o” of the recurrence time of a recurrent event & can be calculated in terms
of the probabilities u, that 6 occurs at the nth trial. If & is not periodic,
then

~ 2 2

(5.1) un>t and (« — ‘) =2THTH
u rio

provided that o® is finite.
If we identify & with a persistent state FE;, then u, =p!" (and

Uy = 1). Ina finite Markovchain all recurrence times have ‘finite variance

(cf. problem 19 of XV, 14), so that (5.1) applies. Suppose that £; is not
periodic and that formula (1.5) applies. Then ¢; = 1 and {|t,) <1 for
r=2,3,..., so that p\”) > p= u;1. To the term u, — uw! of

(5.1) there corresponds

n 1 . Tigh

(5.2) Ps? 7-7 = > pytt.
Mj re

This formula is valid for n > 1; summing the geometric series with ratio

t,, we find

in 1 g. pit(5.3) &(oi? — 2) =SP
n=1 bj r—2 1 — t,

Introducing this into (5.1), we find that if E, is a non-periodic persistent
state, then its mean recurrencetimeis given by u; = 1/p%, andthe variance

of its recurrence timeis

(r)y

(5.4) of =p, — p+ yey PatePate-
rp=2 1 _

provided, of course, that formula (1.3) is applicable and ¢;=1. The
case of periodic states and the occurrence of double roots require only

obvious modifications.

 



 

CHAPTER XVII

The Simplest Time-Dependent

Stochastic Processes’

1. GENERAL ORIENTATION. MARKOV
PROCESSES

The Markov chains of the preceding chapters may be described very
roughly as stochastic processes in which the future development depends
only on the present state, but not on the past history of the process or the
manner in which the present state was reached. These processes involve
only countably many states E£;, £,,... and depend on a discrete time

parameter, that is, changes occur only at fixed epochs? t= 0,1,.... In
the present chapter we shall consider phenomenasuch as telephonecalls,
radioactive disintegrations, and chromosome breakages, where changes

may occur at any time. Mathematically speaking, we shall be concerned

with stochastic processes involving only countably many states but
depending on a continuoustime parameter. A complete description of such
processes is not possible within the framework of discrete probabilities
and, in fact, we are not in a position to delineate formally the class of

Markovprocesses in which weare interested. Indeed, to describe the past
history of the process we must specify the epochs at which changes have
occurred, and this involves probabilities in a continuum. Saying that the

future development is independent of the past history has an obviousin-
tuitive meaning (at least by analogy with discrete Markov chains), but a
formal definition involves conditional probabilities which are beyond the
scope of this book. However, many problems connected with such

1 This chapter is almost independent of chapters X-XVI. For the use of the term
stochastic process see footnote 28 in XV,13.

2 As in the preceding chapters, when dealing with stochastic processes we use the

term epoch to denote points on the time axis. In formal discussions the word time will

refer to durations.

444
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processes can betreated separately by quite elementary methods provided
it is taken for granted that the processes actually exist. We shall now pro-
ceed in this manner. .
To the transition probability p'%of discrete Markov chains there

corresponds nowthetransition probability P,,(¢), namely the conditional
probability of the state E, at epoch ¢t+s given that at epoch s < t+s
the system was in state E;. As the notation indicates, it is supposed that
this probability depends only on the duration ¢ of the time interval, but
not on its position on the time axis. Such transition probabilities are
called stationary or time-homogeneous. (However, inhomogeneous
processeswill be treated in section 9.) The analogueto thebasic relations
XV,(3.3) is the Chapman-Kolmogorovidentity

(1.1) . P(t+h) = > P(7)Px2),

which is based on the following reasoning. Suppose that at epoch 0 the

system is in state E;. Thejth term on theright then represents the prob-
ability of the compoundevent offinding the system at epoch 7 in state
E,, and at the later epoch ++¢ in state E,. Buta transition from E,; at
epoch 0 to E, at epoch r++ necessarily occurs through someinter-
mediary state E; at epoch 7 and summing over all possible E; we
see that (1.1) must hold for arbitrary (fixed) 7 >0 and t>0.

In this chapter we shall study solutions of the basic identity (1.1). It will

be shown that simple postulates adapted to concrete situations lead to
systems of differential equations for the P,,(t), and interesting results can

be obtained from these differential equations even without solving them.
These results are meaningful because oursolutions are actually the transi-
tion probabilities of a Markov process which is uniquely determined by
them andtheinitial state at epoch 0. This intuitively obvious fact? will
be taken for granted without proof.

Forfixed j and ¢ the transition probabilities P,,(t) define an ordinary
discrete probability distribution. It depends on the continuous parameter
t, but we have encountered manyfamilies of distributions involving con-
tinuous parameters. Technically the considerations of the following
sections remain within the framework of discrete probabilities, but this
artificial limitation is too rigid for many purposes. The Poisson distribu-
tion {e-*(At)"/n!} mayillustrate this point. Its zero term e~7! may be

* It is noteworthy, however, that there may exist (rather pathological) non-Markovian

processes with the sametransition probabilities. This point was discussed at length in
XI, 2.a, in connection with processes with independent increments (which are a special

class of Markov processes). See also the discussion in section 9, in particular footnote
18.
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interpreted as probability that no telephonecall arrives within a timeinter-
val offixed length ¢. But then e~** is also the probability that the waiting
time for the first call exceeds ¢, and so we are indirectly concerned with a
continuous probability distribution on the time axis. Weshall return to
this point in section 6.

2. THE POISSON PROCESS

The basic Poisson process may be viewed from various angles, and here
we shall consider it as the prototype for the processes of this chapter.

The following derivation of the Poisson distribution lendsitself best for
our generalizations, but it is by no meansthe best in other contexts. It
should be compared with the elementary derivation in VI, 6 andthetreat-
ment of the Poisson process in XII, (2.2) as the simplest process with
independent increments.

For an empirical background take random eventssuchas disintegrations
of particles, incoming telephonecalls, and chromosome breakages under

harmful irradiation. All occurrences are assumed to be of the same kind,

and we are concerned with the total number Z(t) of occurrences in an
arbitrary time interval of length t. Each occurrence is represented by a
point on the time axis, and hence weare really concerned with certain
random placements of points on a line. The underlying physical assump-
tion is that the forces and influences governing the process remain constant

so that the probability of any particular eventis the sameforall timeinter-
vals of duration t, and is independent of the past development of the
process. In mathematical terms this means that the process is a time-
homogeneous Markov process in the sense described in the preceding
section. As stated before, we do not aim at a full theory of such processes,
but shall be content with deriving the basic probabilities

(2.1) P,(t) = P{Z(t) = nh.

These can be derived rigorously from simple postulates without appeal to

deeper theories.
To introduce notations appropriate for the other processes in this

chapter we choose an origin of time measurement and say that at epoch
t >0 the system is in state E, if exactly n jumps occurred between 0
and ¢t. Then P,(t) equals the probability of the state E,, at epoch ¢,
but P,(t) may be described also as the transition probability from an
arbitrary state E; at an arbitrary epoch s to the state E,,,, at epoch

s +t. We now translate our informal description of the process into
properties of the probabilities P,,(¢).

Let us partition a time interval of unit length into N subintervals of
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length h = N-. Theprobability of a jump within any one amongthese
subintervals equals 1 — P)(h), and so the expected numberofsubintervals

containing a jump equals A“[1—P,)(A)]. One feels intuitively that as

h -> 0 this numberwill converge to the expected number of jumps within
any time interval of unit length, and it is therefore natural to assume*
that there exists a number A > 0 such that

(2.2) A“[1—P,(h)] > A.
The physical picture of the process requires also that a jump alwaysleads
from a state E; to the neighboring state £,,,, and this implies that the
expected numberof subintervals (of length 4) containing more than one

jump should tend to 0. Accordingly, we shall assume that as h->-0

(2.3) h[] —Po(h) —P,(A)] — 0.

For the final formulation of the postulates we write (2.2) in the form

Py(h) = 1—Ah+o(h) where (as usual) o(f) denotes a quantity of smaller
order of magnitude than h. (Moreprecisely, o(f) stands for a quantity
such that A~to(h)->0 as h->0.) With this notation (2.3) is equivalent

to P,(h) = Ah + o(h). We now formulate the

Postulates for the Poisson process. The process starts at epoch 0 from
the state Ey. (i) Direct transitions from a state E; are possible only to
Ej11. (ii) Whatever the state E; at epoch t, the probability of a jump

within an ensuing short time interval between t and t+h equals dh + oh),

while the probability of more than onejump is o(h).

As explained in the preceding section, these conditions are weaker than

ourstarting notion thatthe past history of the process in no wayinfluences
the future development. On the other hand, our postulates are of a purely
analytic character, and they suffice to show that we must have

(2.4) P,() = 40" e7,
n}

To prove this assumefirst n > 1 and consider the event that at epoch
t+h the system is in state £,. The probability of this event equals
P,(t+h), and the event can occurin three mutually exclusive ways. First,
atepoch ¢ the system may bein state E, and no jump occurs between ¢

and t+h. The probability of this contingencyis

P,(t)Po(h) = P,(t)[1—Ah] + o(h).

4 The assumption (2.2) is introduced primarily because of its easy generalization to
other processes. In the present case it would be more natural to observe that Pp(t)

must satisfy the functional equation Po(t-+r) = Po(t)Po(r), which implies (2.2),

(See section 6.)
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The second possibility is that at epoch ¢ the system is in state E,_, and
exactly one jump occurs between t and t+h. The probability for this is
P,-1(t)* Ah + o(h). Any other state at epoch t requires more than one

jump between ¢ and t+h, and the probability of such an event is o(/).
Accordingly we must have

(2.5) P,(t+h) = P,()U—Ah) + P,-s(t)Ah + o(h)

and this relation may be rewritten in the form

P(t+h) _ P(t) _—

h

As h-»>0, the last term tends to zero; hence the limit® of the left side

exists and

o(h)
(2.6) —AP,(t) + AP,1(t) + 7.

(2.7) P(t) = —AP,{t) + AP,s(t) (n > 1).

For n = thesecond andthird contingencies mentioned above do not

arise, and therefore (2.7) is to be replaced by

(2.8) P(t +h) = Pot) —Ah) + off),

which leads to

(2.9) Pit) = —AP,(t).

From this and P,(0)=1 we get P,(t)= e+. Substituting this

P,(t) into (2.7) with n = 1, we get an ordinary differential equation for

P,(t). Since P,(0) = 0, we find easily that P,(t) = Ate-*', in agreement

with (2.4). Proceeding in the same way, wefind successively all terms of

(2.4).

3. THE PURE BIRTH PROCESS

The simplest generalization of the Poisson process is obtained by per-

mitting the probabilities ofjumps to depend onthe actualstate of the sys-

tem. This leads us to the following

Postulates. (i) Direct transitions from a state E; are possible only to

E;,1. (ii) If at epoch t the system is in state E,, the probability of ajump

5 Since werestricted h to positive values, P,(t) in (2.7) should be interpreted as a

right-hand derivative. It is really an ordinary two-sided derivative. In fact, the term

o(h) in (2.5) does not depend on ¢ and therefore remains unchanged when tf is

replaced by t — h. Thus (2.5) implies continuity, and (2.6) implies differentiability in

the ordinary sense. This remark applies throughout the chapter and will not be

repeated.
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within an ensuing short time interval between t and t+h equals i,h + o(h),

while the probability of more than one jump within this interval is o(h).

Thesalient feature of this assumptionis that the time which the system

spends in any particular state plays no role; there are sudden changes of
state but no aging as long as the system remains within single state.

Again let P,(t) be the probability that at epoch ¢ the system is in state

E,. The functions P,(t) satisfy a system of differential equations which
canbe derived by the argument of the preceding section, with the only

change that (2.5) is replaced by

(3.1) P,(t+h) = P,Od —A,h) + P,a(t)a,_ah + o(h).

In this way weget the basic system of differential equations

P(t) = —A,P,(t) + 4paPra) (n > 1),(3.2)
Pot) = —AgP((t).

In the Poisson process it was natural to assume that the system starts
from the initial state E, at epoch 0. We may now assume moregenerally

that the system starts from an arbitrary initial state £;. This implies that®

(3.3) PO) = 1, P,(0) = 0 for n#Fi.

These initial conditions uniquely determine the solution {P,(t)} of

(3.2). [In particular, P(t) = P(t) =--- = P;_,(t) = 0.] Explicit for-
mulas for P,(t) have been derived independently by many authors but are
of no interest to us. It is easily verified that for arbitrarily prescribed 4,

the system {P,(t)} has all required properties, except that under certain

conditions > P,(t) < 1. This phenomenonwill be discussed in section 4.

Examples. (a) Radioactive transmutations. A radioactive atom, say

uranium, may by emission ofparticles or y-rays change to an atom of a
different kind. Each kind represents a possible state of the system, and as
the process continues, we get a succession oftransitions Ey > £, > E, >

—>:++:—>E,,. According to accepted physical theories, the probability
of a transition E,,—> E,,, remains unchanged as long as the atom is in

state E,, and this hypothesis is expressed by our starting supposition.
Thedifferential equations (3.2) therefore describe the process (a fact well
knownto physicists). If E,, is the terminal state from which no further

6 It will be noticed that P,(t) is the same as the transition probability P;,(t) of

section 1,
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transitions are possible, then 4,, = 0 and thecsysem (3.2) terminates with
n=m., [For1» >m weget automatically Prt) = 0.]

(b) The Yule process. Consider a population of members which can

(by splitting or otherwise) give birth to new members but cannot die.
Assumethat during any shorttimeinterval of length h each memberhas
probability Ah + o(f) to create a new one; the constant 4 determines
the rate of increase of the population. If there is no interaction among the

members and at epoch ¢ the population size is n, then the probability
that an increase takes place at some time between t and t+h equals
nah + o(h). The probability P,(¢) that the population numbersexactly

n elements therefore satisfies (3.2) with A, = nA, thatis,

(3.4) Pi(t) = —ndP,(t) + (2—1)AP,_1(d) (n > 1).

Pit) = 0.

Denotethe initial population size by i. Theinitial conditions (3.3) apply
andit is easily verified that for n >i >0

(3.5) P(t) = ("~ ‘Jeete4)?
n—l

and, of course, P,(t)=0 for n<i and all t. Using the notation

VI,(8.1) for the negative binomial distribution we may rewrite (3.5) as
P(t) = f(n — i; i, e~**). It follows [cf. example IX,(3.c)] that the popula-
tion size at epoch f¢ is the sum of 7 independent random variables each
having the distribution obtained from (3.5) on replacing i by 1. These
i variables represent the progenies of the i original members of our

population.
This type of process wasfirst studied by Yule’ in connection with the

mathematical theory of evolution. The population consists of the species
within a genus, and the creation of a new element is due to mutations.

7G. Udny Yule, A mathematical theory of evolution, based on the conclusions of
Dr. J. C. Willis, F.R.S., Philosophical Transactions of the Royal Society, London,

Series B, vol. 213 (1924), pp. 21-87. Yule does not introducethe differential equations

(3.4) but derives P,(t) by a limiting process similar to the one used in VI,5, for the

Poisson process. Much more general, and moreflexible, models of the same type were

devised and applied to epidemics and population growth in an unpretentious and highly
interesting paper by Lieutenant Colonel A. G. M’Kendrick, Applications ofmathematics

to medical problems, Proceedings Edinburgh Mathematical Society, vol. 44 (1925),

pp. 1-34. It is unfortunate that this remarkable paper passed practically unnoticed. In
particular, it was unknownto the present author when he introduced various stochastic
models for population growth in Die Grundlagen der Volterraschen Theorie des Kampfes

ums Dasein in wahrscheinlichkeitstheoretischer Behandlung, Acta Biotheoretica, vol. 5

(1939), pp. 11-40.
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The assumption that each species has the same probability of throwing out
-. - & new species neglects the difference in species sizes. Since we have also

sepected the possibility that a species may die out, (3.5) can be expected
£0 give only a crude approximation.

Furry® used the same modelto describe a process connected with cosmic
rays, but again the approximation is rather crude. The differential equa-

tions (3.4) apply strictly to a population of particles which can split into
exact replicas of themselves, provided, of course, that there is no inter-

action amongparticles. >

*4. DIVERGENT BIRTH PROCESSES

The solution {P,(/)} of the infinite system of differential equations
(3.2) subject to initial conditions (3.3) can be calculated inductively, starting

from Pt)=e%*'. The distribution {P,(t)} is therefore uniquely

determined. From the familiar formulas for solving linear differential
equations it follows also that P,(t) > 0. The only question left open is
whether {P,(t)} is a proper probability distribution, that is, whether or

not

(4.1) > P,(t) = 1

for all ¢. We shall see that this is not always so: With rapidly increasing

coefficients 4, it may happen that

(4.2) > P(t) < 1.

“we

Whenthis possibility was discovered it appeared disturbing, but it finds a
ready explanation. Theleft side in (4.2) may be interpreted as the prob-
ability that during a time interval of duration ¢ only a finite number of
jumps takes place. Accordingly, the difference between the two sides in
(4.2) accounts for the possibility of infinitely many jumps, or a sort of
explosion. For a better understanding of this phenomenonlet us compare
our probabilistic model of growth with the familiar deterministic approach.
The quantity 4, in (3.2) could becalled the average rate of growth of a

population of size ». For example, in the special case (3.4) we have
A, = nd, so that the average rate of growth is proportional to the actual
population size. If growth is not subject to chance fluctuations and has a
tate of increase proportional to the instantaneous population size -(t),

* This section treats a special topic and may be omitted.

® On fluctuation phenomena in the passage of high-energy electrons through lead,

Physical Reviews, vol. 52 (1937), p. 569.
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the latter varies in accordance with the deterministic differential equation

(4.3) dt) _ 4x1),
dt

It implies that

(4.4) a(t) = ie”,

where i = x(0) is the initial population size. It is readily seen that the
expectation )nP,(t) of the distribution (3.5) coincides with x(z), and

thus x(t) describes not only a deterministic growth process, but also the

expected population size in example (3.5).
Let us now consider a deterministic growth process where the rate of

growth increases faster than the population size. To a rate of growth
proportional to x%(t) there correspondsthe differential equation

dzx(t) 24.5 _—__/f = Ax t(4.5) Tt (t)

whosesolution is

i

1 — Ait

Note that x(t) increases beyond all bounds as t-> 1/Ai. In other words,

the assumption that the rate of growth increases as the square of the

population size implies an infinite growth within finite time interval.

Similarly, if in (3.4) the 2, increase too fast, there is a finite probability

that infinitely many changestakeplace in a finite time interval. A precise

answer about the conditions when such a divergent growth occursis given

by the

(4.6) x(t) = 

Theorem. Jn order that > P,(t) = 1 forall tit is necessary andsufficient

that the series > Az) diverges.®

Proof. Put

(4.7) S(t) = Pot) +++ + P(t).

Because of the obvious monotonicity the limit

(4.8) wd) = him —-S,@)]

exists. Summing the differential equations (3.2) over n= 0,...,k we

get

(4.9) Sd) = —A,P,{t).

* It is not difficult to see that the inequality > P,(t) <1 holds either for all ¢ > 0,

or else for no ¢ > 0. See problem 22.
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In view ofthe initial conditions (3.3) this implies for k >i

t

(4.10) 1 — S,(t) = isl P(t) dr.
0

Because of (4.8) the left side lies between u and 1, and hence
t

(4.11) Ful) < I PAs) ds < ay.
0

Summingfor k =i,...,n we get for n>i

t

(4.12) wOP~y+-++ +a) < [so ds fatter +A.
0

When > 4;? < oo the rightmost member remains bounded as n— 0,
and henceit is impossible that the integrand tends to | for all t. Con-
versely, if } A>! = co weconcludefrom thefirst inequality that u(t) = 0
for all ¢, and in view of (4.8) this implies that S,,(t) > 1, as asserted. >

The criterion becomes plausible when interpreted probabilistically. The system
spends sometimeat the initial state E,, moves from there to Ej, stays for a while
there, moves on to £,, etc. The probability P,(¢) that the sojourn time in E, exceeds
t is obtained from (3.2) as P,(t) = e—40', This sojourn time, Ty, is a random variable,
but its range is the positive ¢-axis and therefore formally out of bounds for this book.
However, the step from a geometric distribution to an exponential beingtrivial, we may
with impunity trespass a trifle. An approximation to Ty, by a discrete random variable
with a geometric distribution showsthatit is natural to define the expected sojourn time
at Ey by

ow

(4.13) E(T,) = [ te-*ot Aydt = Ag.
0

At the epoch when the system enters E,, the state E; takes over the role of the initial

state and the same conclusion applies to the sojourn time T, at E;: The expected
sojourn time at E; is E(T,;) =4;'. It follows that A>’ + Ay’ +---+A7? is the
expected duration of the timeit takes the system to pass through E), F,,...,£,, and
we can restate the criterion of section 4 as follows:

In order that > P,(t)=1 forall t it is necessary and sufficient that

(4.14) > E(T,) = dS Apt = 0;

that is, the total expected duration of the time spent at Ey, E,, E,... must beinfinite.

Of course, L(t) = 1 — > P,({t) is the probability that the system has gone throughall

states before epoch tf.
With this interpretation the possibility of the inequality (4.2) becomes understandable.

If the expected sojourn time at E; is 2-’, the probability that the system has passed
through all states within time 1 + 2-1 + 2-2 +---=2 must be positive. Similarly,

a particle moving along the x-axis at an exponentially increasing velocity traverses the
entire axis in a finite time.

[Weshall return to divergent birth process in example (9.8).]
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5. THE BIRTH-AND-DEATH PROCESS

The pure birth process of section 3 provides a satisfactory description
of radioactive transmutations, but it cannot serve as a realistic model for

changes in the size of populations whose memberscan die (or drop out).
This suggests generalizing the model by permitting transitions from the
state E,, not only to the next higher state £,,, but also to the next lower
state E,,. (More general processes will be defined in section 9.) Accord-

ingly we start from the following

Postulates. The system changes only through transitions from states to
their nearest neighbors (from E, to E,,, or E,, if n> 1, butfrom E,

to E, only). Ifat epoch t the system is in state E,, the probability that

between t and t+h thetransition E,,—> E,,, occurs equals i,h + o(h),
and the probability of E,— En. (if n> 1) equals u,h + o(h). The
probability that during (t,t++h) more than one change occurs is o(h).

It is easy to adapt the methodofsection 2 to derive differential equations
for the probabilities P,(¢) of finding the system in state E,. To calculate

P,(t+A), note that the state E,, at epoch t+h is possible only under one

of the following conditions: (1) At epoch ¢ the system is in E, and
between ¢ and ¢+hA no change occurs; (2) at epoch ¢ the system is in
E,-1 and a transition to E, occurs; (3) at epoch ¢ the system is in
E,,,, anda transition to E, occurs; (4) between t and t+A/ there occur

two or moretransitions. By assumption, the probability of the last event

is o(h). The first three contingencies are mutually exclusive and their
probabilities add. Therefore

(5.1) P,(t+h) = P,(t){1—A,h—pw,h} +

+ A,AP,a(t) + MaithPrirs(t) + o(h).

Transposing the term P,(t) and dividing the equation by / weget on the
left the difference ratio of P,(t), and in the limit as h > 0

(5.2) P(t) = —(A,+n)P(t) + An—1P»-1(t) + MnsaPrii(t).

This equation holds for n > 1. For n= in the same way

(5.3) Po(t) = —ApPo(t) + uiPi(2).
If the initial state is E;, the initial conditions are

(5.4) PO) = 1, P,(0) =0 for nFi.

The birth-and-death processis thus seen to depend on theinfinite system
of differential equations (5.2)-(5.3) together with the initial condition (5.4).

The question of existence and of uniqueness of solutionsis in this case by
no meanstrivial. In a pure birth process the system (3.2) of differential
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equations wasalso infinite, but it had the form of recurrencerelations;
P(t) was determined bythe first equation and P,(t) could be calculated
from P,_,(t). The new system (5.2) is not of this form, and all P,(t)

must be found simultaneously. We shall here (and elsewhere in this
chapter) state properties of the solutions without proof.?°

For arbitrarily prescribed coefficients 41, >0, U, >0 there always
exists a positive solution {P,(t)} of(5.2)-(5.4) such that > P,(t) <1. Ifthe
coefficients are bounded (or increase sufficiently slowly), this solution is

unique and satisfies the regularity condition > P,(t) = 1. However,it is
possible to choosethe coefficients in such a way that > P(t) < 1 and that

there exist infinitely many solutions. In the latter case we encounter a
phenomenon analogousto that studied in the preceding section for the
pure birth process. This situation is of considerable theoretical interest,
but the reader may safely assumethatin all cases of practical significance
the conditions of uniqueness are satisfied; in this case automatically
> P(t) = 1 (see section 9).
When A, = 0 thetransition E) > E, is impossible. In the terminology

of Markov chains £, is an absorbing state from which noexit is possible;

once the system is in Ey it stays there. From (5.3) it follows that in this
case P(t) > 0, so that P,(t) increases monotonically. The limit P(00)

is the probability of ultimate absorption.
It can be shown(either from the explicit form of the solutions or from

the general ergodic theorems for Markov processes) that under anycir-

cumstance the limits

(5.5) lim P,(t) = p,
to

exist and are independent of the initial conditions (5.4); they satisfy the
system of linear equations obtained from (5.2)-(5.3) on replacing the

derivatives on the left by zero.
The relations (5.5) resemble the limit theorems derived in XV,7 for

ordinary Markov chains, and the resemblance is more than formal.
Intuitively (5.5) becomes almost obvious by a comparison of our process

10 The simplest existence proof and uniqueness criterion are obtained by special-
ization from the general theory developed by the author(see section 9). Solutions of the
birth-and-death process such that > P,(t) <1 have recently attracted wide attention.

Forexplicit treatments see W. Lederman and G. E. Reuter, Spectral theory for the

differential equations of simple birth and death processes. Philosophical Transactions of
the Royal Society, London, Series A, vol. 246 (1954), pp. 387-391; S. Karlin and

J. L. McGregor, The differential equations of birth-and-death processes and the Stieltjes

moment problem, Trans. Amer. Math. Soc., vol. 85 (1957), pp. 489-546, and The
classification of birth and death processes, ibid. vol. 86 (1957), pp. 366-400. See also

W.Feller, The birth and death processesas diffusion processes, Journal de Mathématiques

Pures at Appliquées, vol. 38 (1959), pp. 301-345.

 



456 THE SIMPLEST TIME-DEPENDENT STOCHASTIC PROCESSES [XVII.5

with a simple Markov chain with transition probabilities

An [bn
’ a

An + bn An + Mn

In this chain the only direct transitions are E,,— F,,, and E, — £,_1,

and they have the same conditional probabilities as in our process; the

difference between the chain and our process lies in the fact that, with

the latter, changes can occur at arbitrary times, so that the number of

transitions during a time interval of length ¢ is a random variable.

However, for large t this number is certain to be large, and henceit is

plausible that for t-» co the probabilities P,(t) behave as the cor-

responding probabilities of the simple chain.

If the simple chain with transition probabilities (5.6) is transient we

have p, = 0 forall n; if the chain is ergodic the p, define a stationary

probability distribution. In this case (5.5) is usually interpreted as a

“tendency toward the steady state condition” andthis suggestive namehas

caused much confusion. It must be understood that, except when £) is

an absorbing state, the chance fluctuations continue forever unabated

and (5.5) shows only that in the long run theinfluence oftheinitial condi-

tion disappears. The remarks made in XV, 7 concerning thestatistical

equilibria apply here without change.

The principalfield of applications of the birth-and-death processis to

problems of waiting times, trunking, etc.; see sections 6 and7.

(5.6) Pnyn4+1 =

Examples. (a) Linear growth. Suppose that a population consists of

elements which can split or die. During any short timeinterval of length

h the probability for any living element to split into two is Ah + o(h),

whereas the corresponding probability of dying is wh + o(f). Here A

and yw are two constants characteristic of the population. If there is no

interaction among the elements, we are led to a birth and death process

with A, = nd, uw, = nu. The basic differential equations take on the form

P(t) = UP,(t),

P1(t) = — (At+u)nP,(t) + An—D)Pra) + wat)Pri.

Explicit solutions can be found" (cf. problems 11-14), but we shall not

(5.7)

11 A systematic way consists in deriving a partial differential equation for the

generating function > P,(t)s". A more general process where the coefficients 4 and

# in (5.7) are permitted to depend on time is discussed in detail in David G. Kendall,

The generalized “birth and death” process, Ann.Math.Statist., vol. 19 (1948), pp. 1-15.

See also the same author’s Stochastic processes and population growth, Journal of the

RoyalStatistical Society, B, vol. 11 (1949), pp. 230-265 where the theory is generalized

to take accountofthe age distribution in biological populations.

 



XVII.5] THE BIRTH-AND-DEATH PROCESS 457

discuss this aspect. Thelimits (5.5) exist and satisfy (5.7) with P/(t) = 0.
From thefirst equation we find p, = 0, and wesee by induction from the
second equation that p, = 0 forall n> 1. If pp = 1, we maysay that
the probability of ultimate extinction is 1. If Po <1, the relations
Pi = P2*** =9 imply that with probability 1 —p, the population
increases over all bounds; ultimately the population musteitherdie out or
increase indefinitely. To find the probability py of extinction we compare
the process to the related Markov chain. In our case the transition prob-
abilities (5.6) are independent of n, and we have therefore an ordinary
random walk in which the steps to the right and left have probabilities
p =Af(A+yu) and q = u/(A+y), respectively. The state E, is absorbing,
We knowfrom the classical ruin problem (see XIV, 2) that the probability
of extinction is 1 if p< q and (g/p)' if g < p and istheinitial state.
We conclude that in our process the probability py = lim P,(t) of ultimate
extinction is 1 if A< pw, and (uA) if A> pw. (Thisis easily verified
from the explicit solution; see problems 11-14.)
As in many similar cases, the explicit solution of (5.7) is rather com-

plicated, and it is desirable to calculate the mean and the variance of the

distribution {P,(t)} directly from the differential equations. We have for

the mean

(5.8) M(t) = SP,(0).

Weshall omit a formal proof that M(t) is finite and that the following
formal operations are justified (again both points follow readily from
the solution given in problem 12). Multiplying the second equation in
(5.7) by n and adding over n= 1,2,..., we find that the terms con-

taining n? cancel, and we get

(5.9) M(t)=AD—DP,AW — wd (nt DPra) =
= (Ap)M0).

This is a differential equation for M(t). Theinitial populationsize is i,
and hence M(0) = i. Therefore

(5.10) M(t) = ie#,

Wesee that the mean tends to 0 or infinity, according as A< mw or
A>. The variance of {P,(t)} can be calculated in a similar way(cf.
problem 14).

(5) Waiting lines for a single channel. In the simplest case of constant
coefficients 4, =A, u, = mw the birth-and-death process reduces to a
special case of the waiting line example (7.5) when a = 1.
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6. EXPONENTIAL HOLDING TIMES

Theprincipal field of applications of the pure birth-and-death processis
connected with trunking in telephone engineering and various types of

waiting lines for telephones, counters, or machines. This type of problem
can be treated with various degrees of mathematical sophistication. The
methodof the birth-and-death process offers the easiest approach, but this
model is based on a mathematical simplification known as the assumption
of exponential holding times. We begin with a discussion of this basic
assumption.

For concreteness of language let us consider a telephone conversation,
andlet us assumethatits length is necessarily anintegral numberof seconds.
Wetreat the length of the conversation as a random variable X and
assumeits probability distribution p,, = P{X = n} known. Thetelephone

line then represents a physical system with two possible states, ‘“busy”’
(E,) and “free” (£,). When theline is busy, the probability of a change in
state during the next second depends on how long the conversation has
been going on. In other words, the past has an influence on the future, and
our process is therefore not a Markov process (see XV,13). This circum-
stance is the source of difficulties, but fortunately there exists a simple
exceptional case discussed at length in XIII,9.

Imagine that the decision whether or not the conversation is to be con-
tinued is made each second at random by meansof a skew coin. In other
words, a sequence of Bernoulli trials with probability p of success is
performedat a rate of one per second and continued until the first success.

The conversation ends whenthis first success occurs. In this case the total
length of the conversation, the “holding time,” has the geometric distribu-

tion p, = gq”1p. Wheneverthe line is busy, the probability that it will

remain busy for more than one second is gq, and the probability of the
transition E,)—> E, at the next step is p. These probabilities are now
independent of how longthe line was busy.

When it is undesirable to use a discrete time parameter it becomes
necessary to work with continuous random variables. The role of the geo-
metric distribution for waiting times is then taken over by the exponential

distribution. It is the only distribution having a Markovian character,

that is, endowed with complete lack of memory. In other words, the prob-

ability that a conversation which goes on at epoch x continues beyond

a + h is independentofthe past duration ofthe conversationif, and only

if, the probability that the conversation lasts for longer than ¢ time units

is given by an exponential e~*‘. We have encountered this “exponential

holding time distribution” as the zero term in the Poisson distribution

(2.4), that is, as the waiting time up to the occurrenceofthe first change.
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The method of the birth-and-death process is applicable only if the
transition probabilities in question do not depend on the past; for trunking
and waiting line problems this means that all holding times must be
exponential. From a practical point of view this assumption mayatfirst
sight appear rather artificial, but experience shows that it reasonably
describes actual phenomena. In particular, many measurements have

shownthat telephone conversations within a city!? follow the exponential
law to a surprising degree of accuracy. The samesituation prevails for
other holding times (e.g., the duration of machine repairs).

It remains to characterize the so-called incomingtraffic (arriving calls,

machine breakdowns,etc.). We shall assumethat during any timeinterval

of length h the probability of an incoming call is Ah plus negligible
terms, and that the probability of more than onecallis in the limit neglig-
ible. Accordingto the results of section 2, this means that the numberof
incomingcalls has a Poisson distribution with mean At. We shall describe
this situation by saying that the incomingtraffic is of the Poisson type with
intensity A.

It is easy to verify the described property of exponential holding times. Denote by
u(t) the probability that a conversationlasts for at least ¢ time units. The probability
u(t+s) that a conversation starting at 0 lasts beyond ¢ + s equals the probability that
it lasts longer than ¢ units multiplied by the conditional probability that a conversation
lasts additional s units, given that its length exceeds +. If the past duration has no
influence, the last conditional probability must equal u(s); that is, we must have

(6.1) u(t+s) = u(t) u(s).

To prove the asserted characterization of exponential holding times it would suffice to
show that monotone solutions of this functional equation are necessarily of the form

e~4t_ Weprove a slightly stronger result whichis ofinterest in itself.1

Theorem. Let u be a solutionof(6.1) definedfor t > 0 and bounded in some interval.
Theneither u(t)=0 forall t, or else u(t) = e—** for some constant A.

Proof. Clearly

(6.2) u(a) = u*(4a).

Suppose first that u(a@) = 0 for some value a. From (6.2) we conclude by induction

that u(2-"a) = 0 forall integers n, and from (6.1) it is clear that u(s) = 0 implies

12 Rates for long distance conversations usually increase after three minutes and

the holding times are therefore frequently close to three minutes. Under such circum-

stances the exponential distribution does not apply.
136.1) is only a logarithmic variant of the famous Hamel equation f(t + s) =

=f(t) + f(s). We provethatits solutions are either of the form at or else unbounded
in every interval. (It is known that no such solutionis a Baire function, that is, no such

solution can be obtained by series expansionsor otherlimiting processes starting from

continuous functions.)
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u(t)=0 for all ¢>s. Thus u(a)=0 implies that « vanishes identically. Since

(6.2) obviously excludes negative values of u it remains only to considerstrictly
positive solutions of (6.1).

Put e~4 = u(1) and v(t) = e**u(t). Then

(6.3) v(t+s) = v(t)v(s) and v1) = 1,

Wehaveto prove that this implies v(t) = 1 for all ¢. Obviously for arbitrary positive
integers m and n

(6.4) (2) = o(;) = Wort =1

 

n

and hence v(s) = 1 for all rational s. Furthermore, if v(a) = c then v(ma) = c* for
any positive or negative integer 7. It follows that if « assumes some value c # 1
then it assumesalso arbitrarily large values. But using (6.1) with ¢ + s = 7 it is seen
that v(r—s) = v(r) for all rational s. Accordingly, if a value A is assumed at some
point 7, the samevalue is assumed in every interval, however small. The boundedness
of u in any given interval therefore precludes the possibility of any values # 1. >

7. WAITING LINE AND SERVICING
PROBLEMS

(a) The simplest trunkingproblem.“* Supposethatinfinitely many trunks
or channels are available, and that the probability of a conversation
ending between ¢ and f+h is wh + o(h) (exponential holding time).
The incomingcalls constitute a traffic of the Poisson type with parameter
A. The system is in state E,, if n lines are busy.

It is, of course, assumed that the durations of the conversations are

mutually independent. If x lines are busy, the probability that one of them
will be freed within time / is then nuh + o(h). The probability that within

this time two or more conversations terminate is obviously of the order of
magnitude A? and therefore negligible. The probability of a new call
arriving is Ah + o(h). The probability of a combination ofseveral calls,

or of a call arriving and a conversating ending, is again o(h). Thus, in the

“4 C, Palm, Intensitédtsschwankungen im Fernsprechverkehr, Ericsson Technics
(Stockholm), no. 44 (1943), pp. 1-189, in particular p. 57. Waiting line and trunking
problems for telephone exchanges were studied long before the theory of stochastic
processes was available and had a stimulating influence on the development of the
theory. In particular, Palm’s impressive work over many years has proved useful. The
earliest worker in the field was A. K. Erlang (1878-1929). See E. Brockmeyer,

H. L. Halstrém, and Arne Jensen, Thelife and works of A. K. Erlang, Transactions of

the Danish Academy Technical Sciences, No. 2, Copenhagen, 1948. Independently

valuable pioneer work has been done by T. C. Fry whose book, Probability andits

engineering uses, New York (Van Nostrand), 1928, did much for the development of

engineering applications of probability.
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notation of section 5

(7.1) An = A, bby = Nb.

The basic differential equations (5.2)-(5.3) take the form

Pot) = —AP((t) + uP,(t)

Prt) = —A+ny)P(t) + APra) + 2+DePri

where n> 1. Explicit solutions can be obtained by deriving a partial
differential equation for the generating function (cf. problem 15). We shall

only determine the quantities p, = lim P,(t) of (5.5). They satisfy the
equations

(7.2)

APo = UP

(A+np)p,, = WPns + (n+1)Upnss-

Wefind by induction that p, = p)(A/u)"/n!, and hence

(7.3)

ain Ale)”
(7.4) Pr =e” a

Thus, the limiting distribution is a Poisson distribution with parameter

Alu. It is independentof the initial state.

It is easy to find the mean M(t) = > nP,(t). Multiplying the nth equation of (7.2)
by n and adding, we get, taking into account that the P,(t) add to unity,

(7.5) M(t)= A — uM(t).

Whentheinitial state is E;, then M(0) =i, and

A
(7.6) M(t) = — (1—e7#*) + ie#!.

be

The reader mayverify that in the special case i = 0 the P,(t) are given exactly by the
Poisson distribution with mean M(t).

(6) Waiting lines for afinite number of channels.” We now modify the
last example to obtain a morerealistic model. The assumptionsare the
same, except that the number a of trunklines or channels is finite. If all a
channels are busy, each newcalljoins a waiting line and waits until a channel
is freed. This means thatall trunklines have a common waitingline.
The word “trunk” may be replaced by counter at a postoffice and

“conversation” by service. We are actually treating the general waiting

18 A, Kolmogoroff, Sur le probléme d’attente, Recueil Mathématique [Sbornik],

vol. 38 (1931), pp. 101-106. Forrelated processes see problems 6-8 and 20.
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line problem for the case where a personhasto waitonlyif all a channels
are busy.

Wesaythatthe system is in state E,, ifthere are exactly n persons either
being served or in the waiting line. Such line exists only when n > a,
and then there are n — a personsinit.

Aslongasat least one channelis free, the situation is the sameas in the
preceding example. However, if the system is in a state E, with n > a,
only a conversations are going on, and hence uw, = au, for n > a. The
basic system of differential equationsis therefore given by (7.2) forn < a,

but for n >a by

(7.7) PQ) = —A+au)PAO) + APraQ) + auPsilt).

In the special case of a single channel (a = 1) these equations reduce
to those of a birth-and-death process with coefficients independent of n.

The limits p, = lim p,(¢) satisfy (7.3) for n < a, and

(7.8) A+aM)Pn = APna + WPns
for n> a. By recursion wefind that

A n

(79) Pa = po, n<a
A n

(7.10) p, =15, n>a.
ala

The series > (p,/po) converges only if

(7.11) Alu <a.

Hencea limiting distribution {p,} cannot exist when A > au. In this case

Pn = 0 for all n, which means that gradually the waiting line grows over
all bounds. On the other hand, if (7.11) holds, then we can determine py

so that ¥ p, = 1. From the explicit expressions for P,(f) it can be shown

that the p, thus obtained really represent the limiting distribution of the
P,(t). Table 1 gives a numerical illustration for a = 3, A/u = 2.

(c) Servicing of machines.1* For orientation we begin with the simplest

case and generalize it in the next example. The problem is as follows.
Weconsider automatic machines which normally require no human care

except that they may break down andcall for service. The time required

16 Examples (c) and (d), including the numerical illustrations, are taken from an

article by C. Palm, The distribution of repairmen in servicing automatic machines (in
Swedish), Industritidningen Norden, vol. 75 (1947), pp. 75-80, 90-94, 119-123. Palm
gives tables and graphs for the most economical numberofrepairmen.
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for servicing the machine is again taken as a random variable with an
exponential distribution. In other words, the machineis characterized by
two constants 4 and yu with the following properties. If at époch ¢ the
machine is in working state, the probability that it will call for service
before epoch t+h equals 4h plus terms which are negligible in the limit
h-»0. Conversely, when the machineis being serviced, the probability
that the servicing time terminates before t-+-h and the machinereverts to
the working state equals wh + o(h). For an efficient machine 2 should
be relatively small and yw relatively large. The ratio A/u is called the
servicing factor.
We suppose that m machines with the same parameters 4 and jw and

working independently are serviced by a single repairman. A machine which

TABLE 1

LIMITING PROBABILITIES IN THE CASE OF a = 3

CHANNELS AND A/u = 2
 

n 0 1 2 3 4 5 6 7
Lines busy 0 1 2 3 3 3 3 3
People waiting 0 0 0 0 1 2 3 4

Pn O.1111 0.2222 0.2222 0.1481 0.09888 0.0658 0.0439 0.0293
 

breaks down is serviced immediately unless the repairman is servicing
another machine, in which case a waiting line is formed. Wesay that the
system is in state E,, if n machines are not working. For 1 <n < m this
means that one machineis being serviced and n — | are in the waiting
line; in the state E, all machines work and the repairmanisidle.
A transition E,,—> E,,, is caused by a breakdown of one amongthe

m —n working machines, whereasa transition E, — E,_, occursif the
machine being serviced reverts to the working state. Hence we have a
birth-and-death process with coefficients

(7.12) Ay =(m—n)A, My = 90, fy = he =Hy=

For 1<n<m-—| thebasic differential equations (5.2) become

(7.13) Pi) = —{((m—n)A+p}P,(0) + (mn+DAP,a(t) + MPsalt),

while for the limiting states n = 0 and n=m

Pi(t) = —mAPSt) + uP\(d,
P.,(t) = —UP,,(f) + 2Py__1(0).

(7.13a)
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Thisis finite system ofdifferential equations and can besolved by standard
methods. The limits p, = lim P,(t) are determined by

mApy = EPr;

(7.14) {(m—n)A + /3Pn = (m—n-+1)Ap,_1 + HPn4ip

LPm = Pmt: |

TABLE 2

ERLANG’S LOSS FORMULA

PROBABILITIES Pp, FOR THE CASE A/u = 0.1,

m=6
 

Machinesin

 

n Waiting Line Pn

0 0 0.4845
1 0 0.2907
2 1 0.1454
3 2 0.0582
4 3 0.0175
5 4 0.0035
6 5 0.0003
 

From these equations we get the recursion formula

(7.15) (m—n)Apa = UPner
Substituting successively n=m—I1,m—2,...,1,0, we find

1/4.

The remaining unknown constant p,, can be obtained from the condition

that the p,; add to unity. The result is known as Erlang’s loss formula:

(7.16) Pm = f + + (3)+ Le +a(NV

Typical numerical values are exhibited in table 2.

The probability py) may be interpreted as the probability of the repair-
man’s being idle (in the example of table 2 he should beidle abouthalf the
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time). The expected number of machines in the waiting line is

(117) w=S(k—Dp =Skim — =p)
This quantity can be calculated by adding the relations (7.15) for n =
=0,1,...,m. Using the fact that the p, add to unity, we get

mA — lw — AL —py) = UI —po)
or

(7.18) w =m — —— (1—p).

In the example of table 2 we have w = 6- (0.0549). Thus 0.0549 is the

average contribution of a machine to the waitingline.
(d) Continuation: several repairmen. We shall not change the basic

assumptions of the preceding problem, except that the m machines are
now Serviced by r repairmen (r<m). Thus for <r the state E,,

means that r —n repairmen are idle, m machines are being serviced,

and no machineis in the waiting line for repairs. For n >r thestate
E,, signifies that r machines are being serviced and n — r machines are
in the waiting line. We can use the setup of the preceding example except

that (7.12) is obviously to be replaced by

Ay = ma, Mo = 0,

(7.19) A, =(m—n)A, My = (d<n<n,

An =(m—n)A, by = TH (r<n<m).

Weshall not write down the basic system of differential equations but only
the equationsfor the limiting probabilities p,. For l<n<r

(7.204) {(m—n)A + nylp, = (m—n+dpa + Ot)uPnes
while for r<n<m

(7.205) {(m—n)A + ru}p, = (m—nt+l)Apaa + Pn

For n=0 obviously mdp, = mup,. This relation determines the ratio

Pilpo, and from (7.20a) we see by induction that forn<r

(7.21) (n+1)upnas = (m—n)Ap,3

finally, for n >r we get from (7.20)

(7.22) 1UPny = (m—n)dp,.
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These equations permit calculating successively the ratios p,/po. Finally,
Po follows from the condition >p, = 1. The valuesin table 3 are obtained
in this way.

A comparison of tables 2 and 3 reveals surprising facts. They refer to
the same machines (A/u = 0.1), but in the second case we have m = 20
machines and r = 3 repairmen. The number of machines per repairman

TABLE 3

PROBABILITIES Py, FOR THE CASE A/u = 0.1, m = 20, r =3
 

 

Machines Machines Repairmen
n Serviced Waiting Idle Pn

0 0 0 3 0.13625
1 1 0 2 0.27250

2 2 0 1 0.25888
3 3 0 0 0.15533
4 3 1 0 0.08802
5 3 2 0 0.04694
6 3 3 0 0.02347
7 3 4 0 0.01095
8 3 3 0 0.00475
9 3 6 0 0.00190
10 3 7 0 0.00070
11 3 8 0 0.00023
12 3 9 0 0.00007
 

has increased from 6 to 6%, and yet the machines are serviced more

efficiently. Let us define a coefficient of lossfor machines by

average number of machines in waiting line
(7.23)  

w

m number of machines

and a coefficient of lossfor repairmen by

 

mber of repairmen idle(7.24) p average nu p

r number of repairmen

For practical purposes we may identify the probabilities P,(¢) with their

limits p,. In table 3 we have then w = py + 2p, + 3pg + °° > + 17P20

and p = 3p) + 2p; + pe. Table 4 proves conclusively that for our par-

ticular machines (with A/y = 0.1) three repairmen per twenty machines are

much more economical than one repairman per six machines.
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(e) A power-supply problem.” Oneelectric circuit supplies a welders
who use the current only intermittently. If at epoch t a welder uses
current, the probability that he ceases using before epoch t+A is wh +
+ o(h); if at epoch t he requires nocurrent, the probability that hecalls
for current before t+h is Ah + o(h). The welders work independently
of each other.

Wesay that the system is in state E, if n welders are using current.
Thus we haveonly finitely many states Ey,..., Ea

TABLE 4

COMPARISON OF EFFICIENCIES OF Two SysTEMS DISCUSSED

IN EXAMPLES (c) AND (d)

 

 

(c) (d)

Number of machines 6 20
Numberof repairmen 1 3
Machines per repairman 6 63
Coefficient of loss for repairmen 0.4845 0.4042
Coefficient of loss for machines 0.0549 0.01694

 

If the system is in state E,, then a —n welders are not using current
and the probability for a new call for current within a time interval of
duration h is (a—n)Ah + o(h); on the other hand, the probability that

one of the n welders ceases using current is nuh + o(h). Hence we havea
birth-and-death process with

(7.25) A, = (a—n)A, by = Nw, O0<n<a.

The basic differential equations become

P(t) = —aAP(t) + uP,(t),

P(t) = —{nut(a—n)ajP,(t) + (nt DuPria(t) +

+ (a—n+I)AP,_.(2),

P(t) = —auP,(t) + AP,_1(t).

(7.26)

7 This example was suggested by the problem treated (inadequately) by H. A. Adler
and K. W. Miller, A new approach to probability problems in electrical engineering,
Transactions of the American Institute of Electrical Engineers, vol. 65 (1946), pp.

630-632.
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(Here 1 << n<a-— 1.) Itis easily verified that the limiting probabilities

are given by the binomialdistribution

en eSIEE
a result which could have been anticipated on intuitive grounds. (Explicit
representations for the P,(t) are given in problem 17.)

8. THE BACKWARD (RETROSPECTIVE)
EQUATIONS

In the preceding sections we were studying the probabilities P,(t)
of finding the system at epoch ¢ in state E,. This notation is convenient
but misleading, inasmuch as it omits mentioning the initial state E, of
the system at time zero. For the further developmentof the theory it is
preferable to revert to the notationsof section | and to the use oftransition
probabilities. Accordingly we denote by P;,(t) the (conditional) prob-
ability of the state E, at epoch ¢ +s given that at epoch s the system

was in state E;. Wecontinue to denote by P,(t) the (absolute) probability

of £, at epoch ¢t. When theinitial state E, is given, the absolute prob-
ability P,(t) coincides with P;,(t), but when the initial state is chosen

in accordance with a probability distribution {a;} we have

(8.1) P,(0) = Sa,Pin(0)
For the special processes considered so far we have shown that for

fixed i the transition probabilities P,,(t) satisfy the basic differential
equations (3.2) and (5.2). The subscript i appears only in the initial con-

ditions, namely

5 P.(0 1 for n=i

(8) of) 0 otherwise.

As a preparation for the theory of more general processes we now pro-
ceed to show that the sametransition probabilities satisfy also a second

system of differential equations. To fix ideas, let us start with the pure
birth process of section 3. The differential equations (3.2) were derived by
prolonging the time interval (0,¢) to (0,f+h) and considering the
possible changes during the short time (f,f+h). We could as well have
prolonged the interval (0, f) in the direction of the past and considered
the changes during (—/, 0). In this way we get a new system ofdifferen-
tial equations in which n (instead of i) remains fixed. Indeed,a transition

from EF; at epoch —A to £, at epoch ¢ can occur in three mutually
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exclusive ways: (1) No jump occurs between —h and 0, and the system
passes from the state E; at epoch 0 to E,. (2) Exactly one jump occurs
between —h and 0, and the system passes from the state E,,, at
epoch 0 to E, at epoch ¢; (3) more than one jump occurs between
—h and 0. The probability of the first contingency is 1 — A,h + o(h),
that of the second 4,4 + o(h), while the third contingency has probability
o(A). As in sections 2 and 3 we concludethat

(8.3) Pith) = P(t)—Ajh) + Pirn(DAh + ofA).

Hence for i > 0 the new basic system now takes the form

(8.4) Pi,(t) = —APin(t) + APigra(-
These equations are called the backward equations, and, for distinction,

equations(3.2) are called theforward equations. Theinitial conditions are
(8.2). [Intuitively one should expectthat

(8.5) PjA)=0 if n<i,

but pathological exceptions exist; see example (9.b).]

In the case of the birth-and-death process the basic forward equations
(for fixed i) are represented by (5.2)-(5.3). The argumentthat lead to

(8.4) now leads to the corresponding backward equations

(8.6) Pit) = —(A;+4)Pi,n() + APisin) + MPi_1,n{t).

It should be clear that the forward and backward equations are not

independent of each other; the solution of the backward equations with
the initial conditions (8.2) automatically satisfies the forward equations,
except in the rare situations where the solution is not unique.

Example. The Poisson process. In section 2 we have interpreted the
Poisson expression (2.4) as the probability that exactly n calls arrive dur-

ing any timeinterval of length ¢. Let us say that at epoch ¢ the system is
in state E, if exactly n calls arrive within the time interval from 0 to ¢.
A transition from E; at t, to EF, at tg means that n — calls arrived

between ¢, and f,. This is possible only if n > i, and hence we havefor

the transition probabilities of the Poisson process

P,,(t) = eoGO" if n> i,
(8.7) (n—i)!

P,,(t) = 0 if n<i.
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They satisfy the forward equations

(8.8) P;,(t) = —AP;,(t) + AP,n-1(t)

as well as the backward equations

(8.9) Pin(t) = —AP,,(t) + APi13,n(0): >

9. GENERAL PROCESSES

So far the theory has been restricted to processes in which direct transi-
tions from a state E,, are possible only to the neighboring states E,,,
and E,_,. Moreover, the processes have been time-homogeneous, that
is to say, the transition probabilities P,,(t) have.been the sameforall

time intervals of length t. We now consider more general processes in
which both assumptions are dropped.

As in the theory of ordinary Markov chains, we shall permit direct
transitions from any state E, to any state E,. The transition probabilities

are permitted to vary in time. This necessitates specifying the two end-
points of any timeinterval instead of specifyingjust its length. Accordingly,
we shall write P,,(7, ¢) for the conditionalprobability offinding the system
at epoch t instate E,, given that at a previous epoch 7 the state was E,.

The symbol P,,(7, t) is meaningless unless 7 < ¢. If the process is homo-
geneous in time, then P;,,(7,¢) depends only on the difference ¢ — 7,

and we can write P,,(t) instead of P,,(7, 7-+1) (which is then independent

of 7).

We saw in section | that the transition. probabilities of time-homo-

geneous Markov processessatisfy the Chapman-Kolmogorov equation

(9.1a) PiA(S+4) = > P,,(s)Pyp(t):

The analogous identity for non-homogeneousprocesses reads

(9.1b) P,,A(t, t) = > P,,(7, s)P,,(s, £)

and is valid for 7 << s < t. This relation expresses the fact that a transi-
tion from the state FE; at epoch 7 to E, at epoch ¢ occurs via some

state FE, at the intermediate epoch s, and for Markov processes the
probability P,,(s,t) of the transition from E, to E, is independent of

the previous state E,;. The transition probabilities of Markov processes

with countably many states are therefore solutions of the Chapman-
Kolmogorovidentity (9.15) satisfying the side conditions

(9.2) P,(7,0>0, > Pas, t) =1.
k

 



XVII.9] GENERAL PROCESSES 471

Weshall take it for granted without proof that, conversely, such solution
represents the transition probabilities of a Markov process.1® It follows
that a basic problem ofthe theory of Markov processesconsists in finding
all solutions of the Chapman-Kolmogorovidentity satisfying the side
conditions (9.2).

The main purposeof the present section is to show that the postulates of
the birth-and-death processes admit of a natural generalization permitting
arbitrary direct transitions E,—> £,. From these postulates we shall
derive two systems of ordinary differential equations, to be called forward
and backward equations, respectively. Under ordinary circumstances
each of the two systems uniquely determines the transition probabilities.
The forward equations are probabilistically more natural but, curiously
enough, their derivation requires stronger and less intuitive assumptions.

In the time-homogeneous birth-and-death process of section 5 the
starting postulates referred to the behavior of the transition probabilities
P,,(h) for small h; in essence it was required that the derivatives P,,
exist at the origin. For inhomogeneousprocesses weshall impose the same
condition on P,,(t, t+) considered as functions of x. The derivatives
will have an analogous probabilistic interpretation, but they will be
functions of ¢.

Assumption 1. To every state E, there corresponds a continuous
function c,(t) > 0 such that ash—>0

1 — P,,(t, t +h) =(9.3) , c,(t).

Assumption 2. To every pair of states E;, E, with j #k there corre-
spond transition probabilities py,(t) (depending on time) such that as
h—0

(9.4) PED.copal GR,

** The notion of a Markovprocess requires that, given the state E, at epoch s, the

developmentofthe process prior to epoch s has no influence on the future development.
As was pointed out in section 1, the Chapman-Kolomogorov identity expresses this
requirement only partially because it involves only one epoch + <5 and one epoch
t > s. The long-outstanding problem whether there exist non-Markovian processes
whosetransition probabilities satisfy (9.1) has now been solved in the affirmative; the
simplest known such process is time-homogeneous and involves only three states E,

[See W. Feller, Ann. Math.Statist., vol. 30 (1959), pp. 1252-1253.] Such processes are

rather pathological, however, and their existence does not contradict the assertion that
every solution of the Chapman-Kolomogorov equation satisfying (9.2) corresponds

(in a unique manner) to a Markovprocess.
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The pj(t) are continuous in t, andfor everyfixed t,j

(9.5) . > Pa(t) = 1, P(t) = 0.
k

The probabilistic interpretation of (9.3) is obvious; if at epoch ¢ the
system is in state E,, the probability that between ¢ and t-+h a change
occurs is c,(t)h + o(h). The coefficient p(t) can be interpreted as the
conditional probability that, if/a change from E; occurs between ¢ and
t-+h, this change takes the system from E; to E,. In the birth-and-death
process c,(t)=A, + u,,

 
 

A; .
9.6 _.(f)= e ; . A(t) = ;( ) Pi,3+1(2) A, + I; P3,; i(2) 1; + LL,

and p,,(t) = 0 for all other combinations of j and k. For every fixed tf
the p,,(t) can be interpreted as transition probabilities of a Markov chain.
The two assumptionssuffice to derive a system of backward equations

for the P,,(7,¢), but for the forward equations we require in addition

Assumption 3. Forfixed k the passage to the limit in (9.4) is uniform
with respect to j.

The necessity of this assumption is of considerable theoretical interest
and will be discussed presently.

Weproceedto derive differential equations for the P,,(7, t) as functions

of t and k (forward equations). From (9.1) we have

(9.7) Pit, th) = > Pir, NPalt t+).

Expressing the term P,,(t,t-++h) on the right in accordance with (9.3),

we get

Pit, t-+h) — Plt, D)
h =—

= —¢,(1)Py(7, 2) +h> Pilz, )Py{t, t+h) + °°:
j#k

(9.8) 

where the neglected terms tend to 0 with h, and the sum extendsoverall
j except j =k. We now apply (9.4) to the terms of the sum. Since (by
assumption 3) the passageto the limit is uniform in j, the right side has a
limit. Hence also the left side has a limit, which meansthat P,,(7, t) has
a partial derivative with respect to ¢, and

(9.9) meu) = —¢,(1)Py(7, 2) + > Pilz, cA)pald).
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This is the basic system offorward differential equations. Here i and + are
fixed so that we have (despite the formal appearanceofa partial derivative)

a system of ordinary differential equations!® for the functions P,,(7, ft).
The parameters i and 7 appearonly in theinitial condition

1 for =i]
(9.10) P(t, T) =

0 otherwise.

We nowturn to the backward equations. In them k and ¢ are kept

constant so that the transition probabilities P,,(7,¢) are considered as
functionsof the initial data E, and 7. In the formulation ofourstarting
assumptions theinitial variable was kept fixed, but for the derivation of the
backward equationsit is preferable to formulate the same conditions with
reference to a time interval from t—h to t. Jn other words, it is more

natural to start from the following alternative form for the conditions
(9.3) and (9.4):

1 — P,,,(t—h, t)
(9.3a) h Cyt)

Px(t—h, t)(9.4a) ; —> ¢,(t)DiC) (j # k).

It is not difficult to prove the equivalence of the two sets of conditions (or
to express them in a unified form), but we shall be content to start from

the alternative form. The remarkable feature of the following derivation
is that no analogue to assumption 3 is necessary.
By the Chapman-Kolmogorovidentity (9.15)

(9.11) Pi,(7—h, ) = > P,,(7—h, 7)Py,(7, 6),

and using (9.3a) with n = i, we get

Pi(7—h, t) — Plt, 0)

h
 (9.12)

= —c(7)P,(7, 0 + A'SP(7—h, T)Py(7, t) t-°°.
vst

19 The standard form would be

at) = —¢(t)a{t) + > u(t )ej(t)pnt).
j
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Here h'P,,(7—h, 7) — c,(7)p;,(7) and the passage to the limit in the sum
to the right in (9.12) is always uniform. Jn fact, if N > i we have

(9.13) O<h?* D Pi(r—h,7)Py(7,0 <b Y P(r—h,7) =
v=V41

v=.V4+1

Vv NV

=1lt —SPen, 0| ~ edn 1-3 patr))
v9 v=0

In view of condition (9.5) the right side can be madearbitrarily small by
choosing N sufficiently large. It follows that a termwise passage to the
limit in (9.12) is permitted and we obtain

(9.14) OP(7,a t)
T

= (7)P(7, t) — c{7) > Pi(7)P7, t).

These are the basic backward differential equations. Here k and t
appear as fixed parameters and so (9.14) represents a system of ordinary
differential equations. The parameters k and ¢ appearonly in theinitial
conditions

1 for i=k
(9.15) Pi{t, 0 =

0 otherwise.

Example. (a) Generalized Poisson process. Consider the case whereall

c(t) equal the same constant, c(t)= 4, and the p;, are independentof t.
In this case the p,, are the transition probabilities of an ordinary Markov
chain and(as in chapter XV) we denote its higher transition probabilities
by Pip.

From c,(t) = 4, it follows that the probability of a transition occurring
betwen ¢ and ¢ + A is independentof the state of the system and equals
Ah + o(h). This implies that the numberof transitions between 7 and f

has a Poisson distribution with parameter A(t—7). Given that exactly n

transitions occurred, the (conditional) probability of a passage from j

to k is p\. Hence

(9.16) P,(r, t)=3— pi

(where, as usual, p}) = 1 and py) =0 for 7 #k). It is easily verified
that (9.16) is in fact a solution of the two systems (9.9) and (9.14) of

differential equations satisfying the boundary conditions.
In particular,if

(9.17) Per=9O for k<j,  Pr=fei for k>j

(9.16) reduces to the compound Poisson distribution of XII,2. >
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Our two systems of differential equations were first derived by A.
Kolmogorov in an important paper developing the foundations of the
theory of Markov processes. Assuming that the sequence of coefficients
c,(f) remains bounded for each ¢ it was then shown by W.Feller that

there exists a unique solution {P,,(7, t)} common to both systems, and
that this solution satisfies the Chapman-Kolmogorov identity (9.15) as
well as the side conditions (9.2). Furthermore,in this case neither system
of differential equations possesses any other solutions, and hence the two
systems are essentially equivalent. However, concrete problems soon lead
to equations with unbounded sequences {c,} and, as shownin section 4,
in such cases we sometimes encounter unexpected solutions for which

(9.18) > Pilz, 0) <1
k

holds with the strict inequality. It has been shown” [without anyrestric-
tions on the coefficients c,(t)] that there always exists a minimal solution

{P,,(7, t)} satisfying both systems of differential equations as well as the

Chapman-Kolmogorovidentity (9.15) and (9.18). This solution is called
minimal because

(9.19) P,,(7, t) > P,A7, t)

whenevertheleft sides satisfy either the backward or the forward differen-
tial equations (together with thetrite initial conditions (9.10)]._ When the

minimal solutionsatisfies (9.18) with the equality sign forall t, this implies
that neither the backward nor the forward equations can have any prob-
abilistically meaningful solutions besides P,,(7, t). In other words, when
the minimal solution is not defective, the process is uniquely determined
by either system of equations. As stated before, this is so when the co-

efficients c,(t) remain boundedfor each fixed t¢.

Thesituationis entirely different when the minimalsolutionis defective,
that is, when in (9.18) the inequality sign holds for some (and henceforall)

t. In this case there exist infinitely many honest transition probabilities

20 A. Kolmogoroff,Uber die analytischen Methoden inder Wahrscheinlichkeitsrechnung,

Mathematische Annalen, vol. 104 (1931), pp. 415-458.

21.W. Feller, On the integro-differential equations of purely discontinuous Markoff
processes, Trans. Amer. Math. Soc., vol. 48 (1940), pp. 488-515. This paper treats

more general state spaces, but countable state spaces are mentioned as special case of
greatest interest. This was overlooked by subsequent authors who gave more com-

plicated and less complete derivations. The minimal solutionin the time-homogeneous

case is derived in XIV, 7 of volume 2 by the use of Laplace transforms. For a more

complete treatment see W. Feller, On boundaries and lateral conditions for the Kolmo-

gorovudifferential equations, Ann, Math., vol. 65 (1957), pp. 527-570.
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satisfying the backward equations and the Chapman-Kolmogorovidentity,
and hence there exist infinitely many Markovian processes satisfying the
basic assumptions | and 2 underlying the backward equations. Some of
these maysatisfy also the forward equations,but in other cases the solution
of the forward equationsis unique.”

Example. (b) Birth processes. The differential equations (3.2) for the
time-homogeneousbirth process were of the form

(9.20) xo(t) = —Apx,(t), y(t) = —Ayay(t) + Ay_1%_1(2).

These are the forward equations. Since they form a recursive system the

solution is uniquely determined byits initial values for t= 0. For the
transition probabilities we get therefore successively P(t) = 0 forall
k <i,

(9.21) PA) = et, Prin) ==(e7*#+1tgif)

and finally for k > i co
t

(9.22) P,(t) = An-1 e+P,_4(t—s) ds.

. 0

To see that these transition probabilities satisfy the Chapman-Kolmo-
gorovidentity (9.1a) it suffices to notice that for fixed i and s both sides

of the identity represent solutions of the differential equations (9.20)
assuming the sameinitial values.

The backward equations were derived in (8.4) and are of the form ©

(9.23) yt) = —Aykt) + Avina(D.

Wehaveto show that this equation is satisfied by P,,(t) when k is kept
fixed. This is trivially true when k < i becausein this case all three terms
in (9.23) vanish. Using (9.21) it is seen that the assertion is true also when

k —i=0 and k —i=1. We can now proceed by induction using the

fact that for kK >i+ 1

t

(9.24) Pit) = Aya e"8 . ie-1(t— 8) ds.
0

22 It will be recalled that only assumptions 1 and 2 are probabilistically meaningful
whereas assumption 3 is of a purely analytic character and was introduced only for
convenience. It is unnatural in the sense that not even all solutions of the forward
equations satisfy the imposed uniformity condition. Thus the backward equations
express probabilistically meaningful conditions and lead to interesting processes, but
the same cannotbesaid of the forward equations. This explains why the whole theory
of Markov processes must be based on the backward equations (or abstractly, on
semi-groups of transformations of functions rather than probability measures).
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Assume that the P;,(t) satisfy (9.23) if k-—i<n. For k=i+1l+n
we can then express the integrand in (9.24) using the right side in (9.23)
with the result that (9.23) holds also for kK —i=n+ 1.

Wehavethus proved that a system of transition probabilities P(t) is
uniquely determined by the forward equations, and that these probabilities

satisfy the backward equations as well as the Chapman-Kolmogorov
identity.
The backward equations (9.23) may have other solutions. The asserted

minimality property (9.19) of our transition probabilities may be restated
as follows. For arbitrary non-negative solutions of (9.23)

(9.25) if y{0) = P,,(0) then y(t) > Py(t)

for all t > 0. Here k is arbitrary, but fixed. This assertionis trivial for

k <i sincein this case the right sides vanish. Given y,,, the solution y;

of (9.23) can be represented explicitly by an integral analogousto (9.22),

and the truth of (9.25) now follows recursively for i= k,k —1,....

Suppose now that > 471 < oo. It was shownin section thatin this case
the quantities

(9.26) Lit) = 1 — 2Pld)
k=0

do not vanish identically. Clearly L(t) may be interpreted as the prob-
ability that, starting from £;, “infinity” is reached before epoch f¢. Itis
also obvious that the L; are solutions of the differential equations (9.23)
with the initial values L,(0) = 0. Consider then arbitrary non-negative

functions A, and define

(9.27) Pult) = Palt) +|Lt—s)Au6s) a
It is easily verified that for fixed k the P,(t) satisfy the backward

differential equations and P,(0) = P,(0). The question arises whether
the A,(t) can be defined in such a way that the P,,(f) becometransition

probabilities satisfying the Chapman-Kolmogorov equation. The answer
is in the affirmative. We refrain from proving this assertion but shall give

a probabilistic interpretation.
The P,,(t) define the so-called absorbing boundary process: When the

system reachesinfinity, theprocess terminates. Doob® wasthefirst to study
a return process in which, on reaching infinity, the system instantaneously
returns to Ey) (or someotherprescribed state) and the processstarts from
scratch. In such a process the system may pass from £, to £; either in

3 J, L. Doob, Markoff chains—denumerable case, Trans. Amer. Math. Soc., vol. 58

(1945), pp. 455-473.
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five steps or in infinitely many, having completed oneorseveral complete
runs from £) to “infinity.” The transition probabilities of this process
are of the form (9.27). They satisfy the backward equations (8.4) or (9.23)
but not the forward equations (9.24) or (8.5). >

This explains why in the derivation of the forward equations we were
forced to introduce the strange-looking assumption 3 which was un-
necessary for the backward equations: The probabilistically andintuitively
simple assumptions 1-2 are compatible with return processes, for which the
forward equations (9.24) do not hold. In other words, if we start from
the assumptions 1-2 then Kolmogorov’s backward equationsare satisfied,
but to the forward equations another term must be added.?4
The pure birth process is admittedly too trite to be really interesting,

but the conditions as described are typical for the most generalcase of the
Kolmogorov equations. Twoessentially new phenomenaoccur, however.
First, the birth process involves only one escape route out to “infinity”
or, in abstract terminology, a single boundary point. By contrast, the gen-
eral process may involve boundaries of a complicated topologicalstructure.
Second, in the birth process the motion is directed toward the boundary
because only transitions E£,,—> E,,, are possible. Processes of a different
type can be constructed; for example, the direction may be reversed to
obtain a process in which only transitions E,,,—> E,, are possible. Such

a process can originate at the boundary instead of ending there. In the
birth-and-death process, transitions are possible in both directions just
as in one-dimensional diffusion. It turns out that in this case there exist
processes analogousto the elastic and reflecting barrier processes of diffu-
sion theory, but their description would lead beyondthe scope ofthis book.

10. PROBLEMS FOR SOLUTION

1. In the pure birth process defined by (3.2) let 4, > 0 forall n. Prove that
for every fixed n >1 the function P,(t) first increases, then decreases to 0.

If t, is the place of the maximum, then 4, <t, <ts <.... Hint: Use in-
duction; differentiate (3.2).

2. Continuation. If ¥ 4,1 = © show that t, > 0. Hint: If t, > 7, then
for fixed ¢ > 7 the sequence 4,P,(t) increases. Use (4.10).

3. The Yule process. Derive the mean and the variance of the distribution
defined by (3.4). [Use only the differential equations, not the explicit form
(3.5).]

4. Pure death process. Find the differential equations of a process of the
Yule type with transitions only from £, to £,_,. Find the distribution P,(t),
its mean, and its variance, assumingthattheinitial state is E,.

24 For further details see XIV,8 of volume 2.
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5. Parking lots. In a parking lot with N spaces the incomingtraffic is of
the Poisson type with intensity 4, but only as long as empty spacesare available.
The occupancy times have an exponential distribution (just as the holding times
in section 7). Find the appropriate differential equations for the probabilities
P,(t) of finding exactly spaces occupied.

6. Various queue disciplines. We consider the waiting line at a single channel
subject to the rules given in example (7.b). This time we consider the process
entirely from the point of view of Mr. Smith whosecall arrives at epoch 0. His
waiting time depends on the queuediscipline, namely the order in which waiting
calls are cleared. The following disciplines are of greatest interest:

(a) Last come last served, that is, calls are cleared in the orderofarrival.

(b) Random order, that is, the members of the waiting line have equal prob-
abilities to be served next.

(c) Last come first served, that is, calls are cleared in the inverse order of
arrival.”° .

It is convenient to numberthe states starting with —1. During Mr. Smith’s
actual servicetime the system is said to be in state Eo, and at the expiration of
this servicetime it passes into E_, whereit stays forever. For n > 1 the system
is in state E, if Mr. Smith’s callis still in the waiting line together with n— 1
othercalls that will, or may, be served before Mr. Smith. (Thecall being served
is not included in the waiting line.) Denote by P,(t) the probability of E,
at epoch ¢. Prove that

P!4(t) = uPy(t)
in all three cases. Furthermore

(a) Underlast come last served discipline

Pi(t) = —uP,(t) + uPrt), n>0.

(b) under random order discipline when n > 2

“(ta eTPt) = —A+MPAt) + = +

Py(t) = —(At+y)P,(t) + $uP2(t)

Pi(t)= —uPil(t) + wP,(t) + duP,(t) + 4uPa(t) + °° °.

Prt) + APral’),

(c) Underlast comefirst served discipline for n > 2

Pit) = —CAt+u)Pr(t) + ePnsi(t) + APra(t)

Py(t) = —(At+u)Py(t) + uP2(t)

Pit) = —uPo(t) + uP,(t).

(See also problem 20.)

5 This discipline is meaningful in information-processing machines when the latest
information (or observation) carries greatest weight. The treatment was suggested by

E. Vaulot, Delais d’attente des appels téléphoniques dans l’ordre inverse de leur arrivée,

Comptes Rendues, Académie des Sciences, Paris, vol. 238 (1954), pp. 1188-1189.
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7. Continuation. Suppose that the queue discipline is last come last served
(case a) and that P,(0) = 1. Show that

(ut)r*P,{t) = ———~— e#*x(t) (r—w!° > 0O<k <r.

8. Continuation. Generalize problem 6 to the case of a channels.

9. The Polya process.*® This is a non-stationary pure birth process with A,
depending on time:

(10.1) 2(t) =i ea
1+at’
 

Show that the solution with initial condition P,(0) = 1 is

P,(t) = (1 4ar)-ve
(10.2)

(1 +a)(1 +2a)--- {14+(n—1)a}
P,(t) = nl (1 +atyVe, 

Show from the differential equations that the mean and variance are ¢ and
t(1+at), respectively.

10. Continuation. The Polya process can be obtained by a passage to the
limit from the Polya urn scheme, example V, (2.c). If the state of the system

is defined as the number of red balls drawn, then the transition probability
E;, > Ex,, at the (x + 1)st drawing is

r+ke ptk

Pkn 7h ane Ltn

~

 (10.3)

~

where p =r/(r+5), y = c/(r +6).
. As in the passage from Bernoulli trials to the Poisson distribution, let drawings
be made at the rate of one in /A time units and let h ~0, n — © so that
np >t, ny >at. Show that in the limit (10.3) leads to (10.1). Show also
that the Polya distribution V, (2.3) passes into (10.2).

11. Linear growth. If in the process defined by (5.7) 4 = uw, and P,(0) = 1,
then

Mt (aty"
(10.4) Pit) ~4 at’ P,(t) ~+a °

The probability of ultimate extinction is 1.

12. Continuation, Assuming a trial solution to (5.7) of the form P,(¢) =
= A(t)B(t), prove that the solution with P,(0) = 1 is

(10.5) P(t) ="B(t), P(t) = {1 -AB(N}{1 —BAB}

6 QO. Lundberg, On random processes and their applications to sickness and accident

Statistics, Uppsala, 1940..
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with
1 — el4A-Hwt

13. Continuation. The generating function P(s,t) = >Plt)s” satisfies the
partial differential equation

oP aP
10.7 — = —(A4 1 As?

( ) ar {u (Atu)s As?} as”

14. Continuation. Let M,(t) = >r?P,(t) and M(t) = >nP,(t) (as in section
5). Show that

(10.8) M,(t) = 24—n)M,(t) + A+H)M(0).

Deduce that when 4 > uw the variance of {P,(t)} is given by

(10.9) e(A—wtt] —elH#(A +u)/(A—y).

15. For the process (7.2) the generating function P(s, t) = )P,(t)s” satisfies
the partial differential equation

a a
(10.10) oP =(l1 -3| —AP+u 2 .

ot os

Its solution is

P(s, tj) = eAs)(1—e“#)fy —(1-seHORE,

For i=0 this is a Poisson distribution with parameter (1 —e™#*)/u. As
t— 0, the distribution {P,(t)} tends to a Poisson distribution with parameter —
Alu.

16. For the process defined by (7.26) the generating function for the steady

state P(s) = > Pras” satisfies the partial differential equation

0
(10.11) (u +As) ~ = a/P,

with the solution P = {(u+As)/(A+p)}%

17. For the differential equations (7.26) assumea trial solution of the form

P,(t) = (*)a — Ayn,
n

Prove that this is a solution if, and onlyif,

AA= 1 —e~(AtHwtTea! )

18. In the “simplest trunking problem,” example (7.a), let Q,(t) be the

probability that starting from £, the system will reach Ey before epoch ¢.
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Prove the validity of the differential equations

Q(t) = —AtnuQnlt) + AQnyalt) + nHQnalt), (m > 2)

Oy(t) = —A+u)Q(t) + 4Q,(t) + w

with the initial conditions Q,(0) = 0.

19. Continuation. Consider the same problem for a process defined by an
arbitrary system of forward equations. Showthat the Q,(t) satisfy the corre-
sponding backward equations(forfixed k) with Po,(t) replaced by 1.

20. Show thatthe differential equations of problem 6 are essentially the same
as the forward equations for the transition probabilities. Derive the corre-
sponding backward equations.

21. Assumethat the solution ofat least one of the two systems of (forward and
backward) equationsis unique. Prove that the transition probabilities satisfying
this system satisfy the Chapman-Kolmogorov equation (1.1).

Hint: Show that both sides satisfy the same system of differential equations
with the sameinitial conditions.

22. Let P(t) satisfy the Chapman-Komogorov equation (1.1). Supposing
that P,,(t) > 0 andthat St) = > Plt) < 1, prove that either St) =1 for
all ¢ or S,(t) <1 forall ¢ ke

23. Ergodic properties. Consider a stationary process with finitely many
states; that is, suppose that the system of differential equations (9.9) is finite
and that the coefficients c; and p;, are constants. Prove that the solutions
are linear combinations of exponential terms e*-7) where the real part of 4
is negative unless 4 = 0. Conclude that the asymptotic behavior of the trans-
ition probabilities is the same as in the case offinite Markov chains except that
the periodic case is impossible.

(10.12)

 



 

Answers to Problems

. CHAPTER I
1. (a) 3; (6) 3; © X&.
2. The events S,, S:, S; US, and SS, contain, respectively, 12, 12, 18,

and 6 points.

4. The space contains the two points HH and TT with probability 4; the
two points HTT and THH with probability 4; and generally two points with
probability 2-" when n> 2. These probabilities add to 1, so that there is no
necessity to consider the possibility of an unending sequence of tosses. The
required probabilities are +3 and 3, respectively.

9. P{AB} =% P{4U B} = 23, P{4Bh =1h.

12. x = 0 in the events (a), (6), and (g).
x =

1

in the events (e) and (f).
x = 2 in the event (d).
x =4 in the event(c).

15. (a) A; (6) AB; (c) BU(AC).

16. Correct are (c), (a), (), (f), (2), (@), (K), (D. The statement(a) is meaning-
less unless C < B. It is in general false even in this case, but is correct in the
special case C ¢ B, AC =0. Thestatement (d) is correct if C > AB. The
statement (g) should read (4 UB) —A =A’B. Finally (k) is the correct
version of()).

17. (a) ABYC’; (6) ABC’; (c) ABC; (I) AUBUC;
(ec) ABUACUBC; (f) ABC UABC UABC;
(g) ABC’ U AB‘C U A’BC = (AB U AC U BC) — ABC;
(h) A’B’C’; (i) (ABCY.

18.4 UBUC=A U(B-AB) U {C—-C(AUB)} = A U BA’ UCA’B’.

CHAPTER I

1. (a) 26%; (6) 26? + 26% = 18,252: (c) 26? + 26% + 264. Ina city with
20,000 inhabitants either some people have the sameset of initials or at least

1748 people have morethanthreeinitials.

2. 2(2°-1) = 2046.

n _ an+l) | 1. 1
3. (7)+n = 9 . 4. (a) =; ©) aap’

 

483
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5.94=@%. qn = @" + 12" -4
6. (a) py = 0.01, py = 0.27, pg = 0.72.

(6) py = 9.001, p. = 0.063, ps = 0.432, py = 0.504.

7. p, = (10),10-". For nples Ps = 9.72, Pig = 0.00036288. Stirling’s
formula gives Pio = 9.0003598 .

8. (a) Gio); ©) Go)*s Go k; (a) 2G)" — Go)"; @ AB and A VB.

n 12 1
9, nln”, 10. 9 =——_.

2 8 55

11. The probability of exactly r trials is (n—1),_,/(), =n

12. (a) [1-3-5---Qn—1)}7 = 2%n!/Qn)!;

2n
(b) ni {i -3---Qn—-Dy? = 2/( ).

n

13. On the assumption of randomness the probability that all of twelve
tickets come either on Tuesdays or Thursdays is ()! = 0.0000003 .... There

7
are only 6 = 21 pairs of days, so that the probability remains extremely

small even for any two days. Hence it is reasonable to assume that the police
have a system.

114. Assuming randomness, the probability of the event is ($)!% = %
Nosafe conclusion is possible.

15. (90)19/(100);9 = 0.330476...
16. 25! (5!)-85-25 = 0.00209 .

appr.

n
n

2(n—2),n—r—1)! 2m—r—1)

17. n! ~ n(n—1)

18. (2) ste; (6) 38a.
19. The probabilities are 1 — (§)* = 0.517747... and — (23)4 =

= 0.491404.

20. (a) (n—N),/(),,. (6) A —-N/jn)’. For r = N =3 the probabilities are
(a) 0.911812...; (6) 0.912673.... For r= N =10 they are (a) 0.330476;

(b) 0.348678 . .

21. (a) (1-N/n)™. ©) @n-/l@Myy.
22. (1—2/n)?"*; for the median 27+! = 0.7n, approximately.

23. On the assumption of randomness, the probabilities that three or four
breakages are caused (a) by onegirl, (6) by the youngestgirl are, respectively,
$2 ~~ 0.2 and 3s ~ 0.05.

 

24. (a) 12!/12!2 = 0.000054. (b) (‘ee—2)12-8 = 0,00137....

25 30! (1? 12-%9 ~ 0.00035° 2666 6 mN . *
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n 2n n—1 2n00 ()=/(2):(sas)
© (3) (2-4) **/(2}2) \2r—4 2r

»OCS)r—l r—l

28. p = (7)Gy) ay

V

2/(Nz).
N 2N

(Mis-Mlisdlis) (se29. p = kK} \13—k}\13/\13) — \k/\13—-k

(*s) (‘3) (‘s) (*s)

13/7 \13/ \13 13

30. Cf. problem 29. The probability is

()( 39 yr ,") (":mie) (*3)

m]\13—m n 13 —n 13/7 \13

» (IAI/G)k}\26—-—k 26

()( 39 yy)(7*) (eS”) (" +a ”)

32, +2 13-—a b 2)5 c 13—c

13/7 \13/ \13

33. (a) 24p(65, 4, 3,1); (6) 47(4, 4,4, 1); (©) 12p64,4,3,2).

("") (‘,) (*.) (‘")

34, +2 (3) d

13

hand contains a cards of somesuit, 5 of another,etc.)

35. po(r) = (52 —r)4/(52)4; Pilr) = 4r(S2 —r)3/(52)a;

Pol) = 6r(r —1)(S2 —r)o/(S2)4;
Palr) = 4r(r —1)(r —2)(52 —r)(S2)43 par) = ral(52)a-

36. The probabilities that the waiting times for the first,..., fourth ace
exceed r are

 

. (Cf. problem 33 for the probability that the

wir) = por); welr) = por) + pil);

wa(r) = polr) + pilr) + pal);

w,(r) = 1 — p,(r).
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Next f(r) = w(r—1) — wr). The medians are 9, 20, 33, 44.

(EMILE) ess
0 (()(Sq/Com ose
r,;+n—1\ (rotn—-1 r, +5

39. ( , )( . . 40. ( , Jeet.
ry lo 5

 

 

!

a1, atretrs! 49 (49),/(52),.
ry! 1g! re!

43. P{(7)} = 10-107? = 0.000 001.
10! 7! |

P{(6, 1)} — sri Tre 1° ’ = 0.000 063.

10! !

10! 7! _

10! 7! _
P{(4, 3)} = BIiiL . 314! ° 10 7 = 0.000 315.

10! 7! _

10! 7! _

10! 7! _

10! 7! _
P{(3, 2, 2)} = aTstort 107 = 0.007 560.

- 10!-- 10-7 = 0.105 840
PYG, 2,1, D} OL QHata! 1pat293! — 0.105 840.

10! Tot ol
PGLLL DY = sari Tranirinst = 0.105 840.

_10!i, 1077 =0.052 920PX2, 2,2, D} ~ Offi! 1!2!2!2! oT
10! 7! |

10" n - 10-7 = 0.317 520
P{@, 1,1,1,1, D} ~ AlSti! fafa! irit2! oO "

10! _
P{(1, 1, 1,1, 1, 1,1)} =——-7!- 10 = 0.060 480.

3! 7!
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44. Letting S,D,T,Q stand for simple, double, triple, and quadruple,
respectively, we have

P{22S} = ae 365-22 = 0.524 30.

P{20S + 1D} =aoaa 365-22 = 0.35208.

P{18S + 2D} = on wah 365-2 = 0,096 95.

P{16S + 3D} = oemi365-22 = 0,014 29.

P{19S + 17} = aea365-22 = 0.006 80.

P(I7S +1D + 1T} = aaa365-2 = 0,003 36.

P{14S + 4D} = ak qo- 365-22 = 0.001 24.

P{15S +2D +17} = alea365-22 = 0.000 66.

P(I8S +10} = aoe ao 365-22 = 0.000 09.
52

45. Let g = ( 5 = 2,598,960. The probabilities are:

 (a) 4/9; (6) 13-12-4-¢1 =qies; (0) 13-12-4-6-9¢71 = aks;

(d) 9-4°- gq? = sigesv;
  

5°

(e) 13- (°ae gt = x88:

 
13 12

(f) (5) -11 °6°6-4:°g = 228.. (zg) (' -6-48-gt _ 1760

CHAPTER IV

1. 99/323. 2.0.21... 3.1/4. 4. 7/28.
5. 1/81 and 31/6°.

6. If A; is the event that (k,k) does not appear, then from 1(.5)

moY=)=)YC)wohh
(Be se9(S)n(2) (Se
13

Sz = 40 ( 3 p- Numerically, Pio} =0.09658; Py; = 0.0341; Prs; = 0.0001,

approximately.
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N N kV

Bae30 (7) (1-1).
_ N _1\k N (n—k),

9. u, =26 1)* (;) @,”

results agree.

10. The general term is 4j;,,@,, °° * @yyy, Where (k,, ka, ..., ky) is a per-
mutation of (1,2,...,.N). Fora diagonal element ky =».

_— Sey [” (ns — ks),
12. u, 2, 1) (") to,

14. Note that, by definition, u, = 0 for r <n and u, =n! 5"/(ns)».

 See II, (12.18) for a proof that the two

n n—1)\ (ns—ks)
15. u, — uy, = (-1)3 ot
rt 2 ) (i) (ns —1),_1

 

k n

“(7CRMC) CF
17. ux (2) s. = (7) (=).

Pio) = 0.264, Pry = 0.588, Pry = 0.146, Pr3y = 0.002, approximately.

18. U 52 5 4\ /52—2k

ee Nas} OF Nad Naa 26)"
Pro) = 0.780217, Pty =.0.204606, Pro = 0.014845,

Pts} = 0.000330, Pt4y = 0.000002, approximately.

n—1 —] r—1

Thelimit equals ‘¥ (—1)' (" ( K+ ) .
k=0

N-—m

19. m! Niu, = > (-D)(N-—m—-A)IKI.
k=0

20. Cf. the following formula with r = 2,

21. ((N)iz =

N N
= ( >) PUN-2)! — (3) r(rN3)! + —+ ++ (-DPNN-=N)!,

"|(" nm n—m\ (n—m+r—1—k
24. Pim) = ———— —1)* .

rm} rar) mL") ( r
r

25. Use II, (12.16) and (12.4).
26. Put Uy = 4, U-::U Ay and note that Uy,, = Uy UAyy, and

UnAyir = (AjAyy U0 7* YU AyAnyy).
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CHAPTER V

(S)s _ 1 10 - 5°
1. 1 (3 2° 2p =1— aya = 0.61...

35 39
3. (a) 3 3) 7 0.182.... The probability of exactly one ace is

4 * 89) 0.411 b) 1 182D 13} —O4IL.... (6)

1

— 0.182 — 0.411 = 0.407, approximately.

("" ("3

4.(a)2H0 21. gy 2A) 13
26\ 50” 26\ 50°

13 (‘;)

6. 228; 242; 25720 PF 10.1 — He.45>| c
o
l

Pp 3. n n\—12. 3$5 (20427.

14. (d) Put a, = 2%, — 3, by = Yn —4, Cy = % — 2. Then

lan] + lbp] + len] = 2{lans1l + |Onia| + ICn4al}-

Hence |a,| + |b,| + |c,| increases geometrically.

16. Use 1 —2 <e* for 0 <x <1 or Taylor’s series for log (1 —2); cf.
II, (12.26).

b+e
18. ——__——__.
8 b+etr

19. Suppose the assertion to be true for the nth drawing regardless of 4, r,
and c. Considering the two possibilities at the first drawing we find then that
the probability of black at the (n +1)st trial equals

b _ bt+e 1 ro b _ 2b

b+rb+r+e b64+rb4+rt+e b+r°
 

20. The preceding problem states that the assertion is true for m =1 and
all n. For induction, consider the two possibilities at the first trial.

23. Use II, (12.9).

24. The binomial coefficient on the right is the limit of the first factor in the

numerator in (8.2). Note that

(~*") _ (~") (1 +p)",
n Ng

26. 2v = 2p(1 — p) < % in consequenceof(5.2).
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28. (a) u®; (6) 2 + uw + 07/4; (©) uw? + (25uv +90? +vw +2uw)/16.

33. Pu = Paz = 2Pa =P» Pre = Pss = 2Pes = Pig = Ps = 9, Poo = 2.

CHAPTER VI
1. ;3;. 2. The probability is 0.02804.... 3. (9.9)7 <O0.1, #> 22.

Lo: 48 52
4.g°<% and (1—4p)? <3 with p= 9 Bl Hence x > 263

and « > 66, respectively.

5. 1 — (0.8)° — 2(0.8)® = 0.6242.

6. {1 —(0.8)'° —2(0.8)*}/{1 —(0.8)/9} = 0.6993 ....

7 26) (26 2 0.003954 d 13) 1 = 0.00952.. = 0. ..+, an
2 11 13 2 238

8. (") {6-6 — 2+ 12>}.

9. True values: 0.6651... , 0.40187... , and 0.2009. ..,; Poisson approxi-
mations: 1 — e~! = 0.6321 ..., 0.3679..., and 0.1839 ....

10. e-? } 2k! =0.143.... 1. eS 1/k! = 0.080...
4 3

12, e~#/19 < 0.05 or x > 300.
13. e! = 0.3679..., 1—2:°e¢1 =0.264....

14. e°7 < 0.01, x> 5. 15. 1/p = 649,740.

16. 1 — p” where p = p(0;4) +-°+ + p(k; A).

18. g° for k =0; pq for k =1,2,3; and pq — pq’ for k = 4.

2 2n

19. > (7) 27 = ( joe ey 1/V an for large n.
n=\k n

+b-1 _
20. ‘ > (°*y ' p'g**1. This can be written in the alternative form

k=a

p?>(Cr+h —‘a where the Ath term equals the probability that the ath

success occurs directly after k <b — 1 failures.

nia = (NIT) pan

22. (a) e = Soa,27) = 2-2N2y(Ne1i ‘); (b) Use Il, (12.6).
r=1

23. k; wy NPis Ki wy APi2 whence nee kykolky.
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HC)CBee
1 Ng Mr

where s; = ny tes + 17,;.

25. p = prq2lPrga + Po)”
31. By the Taylor expansion for the logarithm

b(0; n, p) =q" =(1—Aln)” < e~* = p(O; A).

The terms of each distribution add to unity, and therefore it is impossible that
all terms of one distribution should be greater than the corresponding terms
of the other.

32. There are only finitely many terms of the Poisson distribution which
are greater than «, and the remaining ones dominate the corresponding terms
of the binomial distribution.

CHAPTER VII

1. Proceed as in section 1. 2. Use(1.7). 3. %(— 33) =0.143....

4, 0.99. 5. 511. 6. 66,400.

7. Most certainly. The inequalities of chapter VI suffice to show that an
- excess of more than eight deviations is exceedingly improbable.

8. (2an){ppl —py —P2)}4.

CHAPTER VIII

1. B = 21.

2. 2 = pu +qu +rw, where u,v, w are solutions of

1 — pet 1 — ge

= a—1 _—— = —_—u p*1 + (qvtrw) i-p” v (pu+rw) ig

w= pu+quv +rw =.

1 — p=

— 7e—1l ——_13. u = p* + (qutrw) ip?

1 — B-1 1—r-

v= (putrw)=, w = (put+qv) i -

4. Note that P{A,} < (2p)”, but

P{4,} > 1 — (1—p)P?"?2" > 1 — ef-2n)"2n,

wo. 1 .
If p = 3, the last quantity is ~s ; if p >4, then P{A,} does not even tend

to zero.

CHAPTER IX

1. The possible combinations are (0, 0), (0, 1), (0, 2), C1, 0), , 1), (2, 0),

(2, 1), (3,0). Their probabilities are 0.047539, 0.108883, 0.017850, 0.156364,

0.214197, 0.321295, 0.026775, 0.107098.
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2. (a) The joint distribution takes on the form of a 6-by-6 matrix. The
main diagonal contains the elements g, 29g,...,6g where = 3%. On one
side of the qnain diagonal all elements are9, on the other g. (6) E(X) =
Var (X) = 38, E(Y) = 483, Var (Y) = 3333, Cov (X, Y) = 48.

3. In the joint distribution of X, Y the rows are 327! times(1, 0, 0, 0, 0, 0),
(0, 5, 4, 3, 2, 1,) (0, 0, 6, 6, 3, 0), (0, 0, 0, 1, 0, 0);
of X, Z: (1, 0, 0, 0, 0, 0), (0, 5, 6, 1, 0, 0), (0, 0, 4, 6, 1, 0), (0, 0, 0, 3, 2, 0),
(0, 0, 0, 0, 2, 0), (0, 0, 0, 0, 0, 1);
Y, Z: (1, 0, 0, 0), (0, 5, 6, 1), (0, 4, 7, 0), (0, 3, 2, 0), (0, 2, 0, 0), (0, 1, 0, 0).
Distribution of X + Y: (1, 0, 5, 4, 9, 8, 5) all divided by 32, and the values of
X + Y ranging from 0 to 6;
of XY: (1, 5, 4, 3, 8, 1, 6, 0, 3, 1) all divided by 32, the values ranging from 0
to 9.

E(X) = § E(Y) = §E(Z) = $4, Var (X) = §, Var(¥) =%, Var (Z) = $92.
4. (a) pi +9); (6) 1 +944); © 1/0 +49).
8. The distribution of V,, is given by (3.5), th? of U,, follows by symmetry.

9. (a2) P{X <r,Y>s} =N%“r—-s+1)” forr>s;

PIX =r, Y =s} =N-%{(r—s+1)" — 20r—5)” + (r—s —1)"},

if r>s, and =N” if r=s.

rn? — (y—1)"-*
(6) « = "(pay if j<randk <r.

rn—2 . . .

® =GIy if j<r and k=r, or j=r and k <r.

x=0 if j>rork>r.

3 nN?

(<) © ~ (n4+)2(n +2) °

10. Probability for n double throws 2pq(p?+q*)""!. Expectation 1/(2pq).

n
12. P{N =n, K =k} = (;

P(N =n} = (1—gp')"@p’
—k-1 ;P{K = 6) = Gap’ (“Ca =P'9*

13. E _K _ > kpunl@ + 1) ereia —
N+] k,n ” n=1

_4 _GPT 4,
1—qgp’ (9p7

Pp”*qq')* - gp’ fork <n.

 

‘yn-1 —; i)( + qq)

q 1-—

E(K) =*%; E(N) = ; Cov (K, N) = +.
? 9P gp

p(K, N) = Vq‘/(1—9p’) -
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14. (a) py = p'g + q*p; E(K) = pq + 9p;

Var (X) = pq? + gp? —

(b) Ik = p*gk) + g*p; P{X =m, Y= n} = pmtlgn + gmtign with m,

n>1; EY) =2; o? =2(pq'+qp1-1).

17. (7) soes365-

18. (a) 365{1 —364” - 365-" —n364"! - 365-™}; (6) n > 28.

19. (a) w =n, o =(n—-1)n; (6) w =(n41)/2, 0? = (nr? -1)/12.

20. E(X) = mp,; Var (X) = mp,(1—p,); Cov (X, Y) = —npypp.

21. —n/36. This is a special case of problem 20.

r N 1. N(N-r+k—-1)25. E(Y,) = ————_; J=y(Y,) 2.| Var (Y,) 2 CHEAT?

“~ =0. 26. (a) 1 —q*; (6) E(X) = N{1—-qg¥ +k}; (0)

27. X(1—p,;)". Put X; =1 or O according as the jth class is notoris pre-
sented.

 

 

ri(ro +1) nti — Dire +)28. E(X) = 2% . =

D1

Nes
8. E(X) rth,’ Var (X) (ry +r—-I(1 +12)?

nb __ nbr{b+r-+nc}30. ES.) = 77> 3 Var (Sy) = @+n(b+r+o) ”

mB) Stale
“Bmalt«(Gomerq

k-1
To derive the last formula from the first, put f(g) =r>a )ero

Using II, (12.4), we find that f’(qg) = rq’(1—q)"". The assertion now follows
by repeated integrations by part.

CHAPTER XI

1. sP(s) and P(s?).

2. (a) (1—s)*P(s);_ (6) (1—s)*sP(s); (©) {L -sP@}V/—5);
(d) post + {(1-s7P(}/A—-s); (&) HPVs) + P(-V5)}.-

3. U(s) = pqs?/(1 —ps)(1 —gs). Expectation = 1/pg, Var = (1 —3pq)/p*q°.

6. The generating function satisfies the quadratic equation A(s) = A*(s) + s.
—_—_ 2n —2

Hence A(s) = 4 — 1/1 —4s and a, = = —_ i) .
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10. (a) ®(s)F*(s) |p — q|

(6) PS)+F(s) +++ - + FS)|p — ql.
11. (a) (g/p)"®?"(s).

(5) (gipy’B°"(s) U(s).
12. Using the generating function for the geometric distribution of X, we

have without computation

(N-1\(N-2\. /N=-r41
Ps) = 8 (7 =)(7=s) (w= c=)

13. P,(s){N — (r—1)s} = P,_,(s)\(N—r—L)s.

 

Ss ; 2s .. rs

N —(N-1)s N — (N—2)s N-(N-r)s~
 14. P,(s) =

15. S, is the sum of r independent variables with a common geometric
distribution. Hence

+k—-1
P,(s) = (; i) Prk =9" k . 

16. (a) PR =r} =SPLS,_, = OPK, >» — 2=
k=0

vol r+k *) (’ry)
tI pk vk — pV¥yr—l

= Po =P4 :
24 P ( k vy—1

ER) =1+2,  var(R) =~2.
P P

2 (N+v—2
(0) (Pip2)™ > ( »— Jagan

yv=1 1

17. Note that

Ptsterre tsP™@tats tees t+ stl + st + 524 $ +++ 4 soe),

n (k—-1 .
21. u, =q" +> ( ) Pans with u=1, w= 9, u= 9G, Us=

k=3 2

=p? + q’. Using the fact that this recurrence relation is of the convolution
type,

us) -—— + @* Hs)
oF 7 —qs  (1-—qs)* "

22. Un = PWny + Gn—1» Un = PUn-1 + Wri. Wn = PUn_y + WWn-1: Hence
U(s) —1 =psW(s) + qsU(s);  V(s) = psU(s) +qs-V(s); Ws) = psV(s)+
+ qsW(s).

CHAPTER XIII

1. It suffices to show that for all roots s #1 of F(s) =1 we have |s| > 1,
and that |s| = 1 is possible only in the periodic case. .
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2n r ——
2. Usn = h 2-2") ~ 1/V(an). Hence & is persistent only for r = 2.

For r =3 the tangent rule for numerical integration gives

5 Ugn FY I d 3 2 we—= z= act = _~ -.

n=1 ” Wa 4 Wa 7 *< 2

3. Ugn ~V6/(2nn)?. Thus uv —1 6 | x-$ dx. Hence u x 1.047
and f= 0.045. (27)? Jy

(“ + 1)n
p*"q". The ratio of two successive terms is <1

 

4, Uapiyn =

except when p = A/(A + 1). (Theassertion is also a consequence of the law of
large numbers.)

6. From >f; + P{X; > 0} < 1 conclude that f <1 unless P{X, > 0} = 0.
In this case all X; < 0 and & occursat thefirst trial or never.

7. Zy, = smallest integer >(n — N,)/r. Furthermore E(Z,) ~ np/(q + pr),
Var (Zn) ~ npg(q + pr).

8. Gs) =fT,(= 9s¢'ss+ pgs’ F(s) = qs + psG(s), w=q.

(1 — qs)BGs)Ja ees
9. Gs) 1 —s + psB(qs)’

11, N* ~ (N, — 714.3)/22.75; NB) — N(—2) w 3.
12. ry = ny — tng + 4Ym_g with rp =7y =r, = 1;

R(s) = (8 +2s")(8 —8s +25? —53)-!; rn ~™ 1.444248(1.139680)-"1.

14. If a, is the probability that an 4-run of length r occurs at the nthtrial,
then A(s) is given by (7.5) with p replaced by « and g by 1 —«. Let B(s)
and C(s) be the corresponding functions for B- and C-runs. The required

generating functions are [(1 — s)U(s)]"', where in case (a) U(s) = A(s); in
(b) U(s) = A(s) + B(s) — 1; in (c) U(s) = A(s) + B(s) + Cs) — 2.

15. Use a straightforward combination of the method in example (8.5) and

problem 14.

16. Expected number for age k equals Npq’*.
18. w,(n) = v,_yr, when n >k and w,(n) = By_nfelreen When n <k.

19. Note that 1 — F(s) =(1—s)Q(s) and »—Q(s) = (1—s)R(s), whence

Q(1) = », 2R(1) = o? — w + w?, The powerseries for Q-'(s) = > Un —U4n_)s”
converges for s = 1.

and F(s) as in problem 8.

CHAPTER XIV

qipr -1 bb,
. apy if P ¥ q, and a+b if P=¥4.

3. When g <p, the numberofvisits is a defective variable.

4. The expected numberofvisits equals p(1 — 91)/9qa-1 = (p/q)’:

5. The probability of ruin is still given by (2.4) with p =«(l—y)", 7 =
= B(1—y)"+. The expected duration of the game is D,(1—y)~? with D, given
by (3.4) or(3.5).
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6. The boundary conditions (2.2) are replaced by gy — 6q, = 1 — 6, qq = 0.
To (2.4) there correspondsthe solution

9. = {qip)* — ip)*}—9)

= (gip)*Ul —6) + 6g/p — 1°

The boundary conditions (3.2) become Dy = 6D,, D, = 0.

7. To (2.1) there corresponds 9, = Pqzi2 + 99q,-1, and g, = 4? isa particular
solution if 4 = p42 +q, that is, if 4=1 or 4® +4 =qp. The prob-
ability of ruin is

 

1 if g>2p

—f ft g_ 1 ,
w-|fa+4 ; if q < 2p.

10. We,n41(@) = PWoyr,n(®) + qWz_1,n(@) with the boundary conditions (1)

Wo.n(Z) = Wan(@) = 0; (2) wo) = 0 for z # a and w,(@) = 1.

11. Replace (1) by Wo,nl) = Wy, (2) and Wan() = Wa-1,n(%).

12. Boundary condition: uy, = Ua—1,n- Generating function:

 

Jz(syAg-¥(s) + A5(s)Ag-Hs) _ Ag-=-Hs) + 29-4)

Ag-X(s) + g-¥(s) Us) +o)

18. P{M,, < zh = > (Yz_2,n ~ Vatz.n)
a=1

P{M,, = 2} = P{M, <2 + 1} — P{M, < 2}.

19. The first passage through x must have occurred at k <n, and the
particle returned from « in the following n — k steps.

31. Therelation (8.2) is replaced by

a—l1

UAs) =5 > US)pe_2 + Srz-
a=1

Thecharacteristic equation is s >pyo* = 1.

CHAPTER XV

1. P hasrows(p, g, 0, 0), (0, 0, p, 9), (p, 9, 9, 0), and (0, 0, p,q). For n > 1

the rows are (p?, Pg, Pq, 7°).

2. (a) The chain is irreducible and ergodic; ps) +4for all j,k. (Note

that P is doubly stochastic.)
(6) The chain has period 3, with Go containing E, and E,; the state E,

forms G;, and E, forms Gz. We have 4, = uy = 3, uy =u = 1.

(c) The states E, and E; formaclosed set S,, and E£,, E; another closed

set Sj, whereas E, is transient. The matrices corresponding to the closed

sets are 2-by-2 matrices with elements 3. Hence pz) >4 if E, and E;, belong

to the same S,; p') +0; finally pit) >} if k =1,3, and pf +0 if
k =2,4,5.

 



ANSWERS TO PROBLEMS 497

(d) The chain has period 3. Putting a = (0, 0, 0, 4, 4,4), & = (1,0, 0, 0, 0, 0),

c = (0, 4, 4, 0, 0, 0), we find that the rows of pe = P>'=--- area, b, b,c, c, c,
those of P= pe =... are b, c, c, a, a, a, those of p=Pi=.--- are
c, a, a, b, b, b.

p\”? = (//6)", pp = (k/6)" — (k-1)/6)” if k >/j, and pn == if

k <i

4. x, = (3, 4, 44), Yn = (44 %, 4).

6. For n>j

n—-l | ; _

1 = ( pg = ( J ) (—p)’q’.
j-1 n—j

Generating function (qgs)’(1 — ps)~’. Expectation j//q.

—2
for -"Sa(; _ i)eng forn > 1.

8. The even-numbered states form an irreducible closed set. The probability
of a return to E, at or before the nth step equals

1 — v9 + v9(1 —vg) + vqvQ(1 —vy) +++ + U9¥2 > + * Ven—o(1 —Y2n) =

= 1 — vgbg0y*-* Ven

Thus the even states are persistent if, and only if, the last product tends to 0.
The probability that starting from £5,+1 the system remains forever among the
odd (transient) states equals v2,41Vsri3 °°

9. u, = [1 —p/q\piq)“0 —(pigy?lr.

10. Possible states Ey,...,£,. For j > 0

Pijr =e —wtfe*, Piss = Ce —fw —fe™,

Pix =i —f)e? + (ep —fMe —w +/)e*

(NG -a)/(7)
g p 0 0

00 1 0 0

13. pajo OO bo oe
000 0 0 1

g p 9 0 0 0

14. Note that the matrix is doubly stochastic; use example (7.A).

15. Put Pexiy =1 for k =1,...,N—1, and pyy = pr.

16. Lu;pj, = uy, then U(s) = uo(1 — s)P(s){P(s)—s}"1.. For ergodicity it is
necessary and sufficient that » =P(1) <1. By L’Hospital’s rule U(1)
= uo(1 — “) whence uy = (1 — #7}.
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25. If N>m — 2, the variables X(™ and X‘”) are independent, and hence
the three rows of the matrix p ‘”-”) are identical with the distribution of X™,
namely (4, 4, 4). For » =m +1 the three rows are (4, 4, 0), G, 4, b,
(0, 4, 4).

CHAPTER XVII

3. E(X) = ie+#; Var (X) = ie4#(e+# -1).

4, P= —AnP, + An4+1)Pay.

P,(t) = (‘Jee (n <i).
n

E(X) = ie~**; Var (X) = ie~4#(1 —e—44),

5, Pi(t) = —A+np)Pp(t) + APria@) +t+)ePay@) for n < N—1 and
P(t) = —NuPy(t) + APy_i(t).

19. The standard method of solving linear differential equations leads to a
system of linear equations.
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Absolute probabilities 116; — in Markov
chains 384.

Absorbing barrier in random walks 342,

368, 369, 376; — in higher dimensions

361.

Absorbing boundaries 477,

Absorbing states (in Markov chains) 384.

Absorption probabilities: in birth and

death processes 455, 457; in diffusion
358, 367; in Markov chains 399ff.,

418, 424, 425, 438ff.; in random walk

342ff., 362, 367. [cf. Duration of

games; Extinction; First passages;

Ruin problem.]

Acceptancecf. Inspection sampling.

Accidents: as Bernoulli trials with vari-

able probabilities 282; bomb hits 160;

distribution of damages 288; occu-
pancy model 10; Poisson distribution

158, 292; urn models 119, 121.

ADLER, H. A. and K. W. MILLER 467.

Aftereffect: lack of — 329, 458; urn

models 119, 122. [cf. Markovproperty.]

Age distribution in renewal theory 335,

340; (example involving ages of a

couple 13, 17.)

Aggregates, self-renewing 311, 334, 340.

Alleles 133.

Alphabets 129.

ANDERSEN cf. SPARRE ANDERSEN, E.

ANDRE, D. 72, 369.

Animalpopulations: recaptures 45; trap-
ping 170, 239, 288, 301.

Aperiodic cf. Periodic.

Arc sine distributions 79.

Arc sine law for: first visits 93; last

visits 79; maxima 93; sojourn times

.. 82. (Counterpart 94.)
Arrangements cf. Ballot problem, Occu--

pancy.

Average of distribution = Expectation.

Averages, moving 422, 426.

Averaging , repeated 333, 425.

b(k; n, p) 148.
BACHELIER, L. 354.

Backward equations 358, 468, 474, 482.

Bacteria counts 163.

BAILEY, N. T. J. 45.

Ballot problem 69, 73.

Balls in cells cf. Occupancy problems.

Banach’s match box problem 166, 170,

238.

Barriers, classification of 343, 376.

BARTKy, W.363.

Barton, D. E. and C. L. MALLows69.

Bates, G. E. and J. NEYMAN 285.

Bayes’ rule 124.
BERNOULLI, D. 251, 378.

BERNOULLI, J. 146, 251.

Bernoulli trials: definition 146; infinite

sequences of — 196ff.; interpretation

in number theory 209; recurrent events
connected with — 313ff., 339. [cf. Arc

sine law; Betting; First passage times;

Random walk; Returns to origin;

Success runs etc.]

Bernoulli trials, multiple 168, 171, 238.

Bernoulli trials with variable-probabilities

218, 230, 282. .

Bernoulli-Laplace model of diffusion 378,

397; generalized — 424.

BERNSTEIN, S. 126.

BERTRAND,J. 69.

Beta function 173.

Betting: 256, 344ff., 367 — in games with

infinite expectation 246, 251ff., 322;

— on runs 196, 210, 327; — systems

198, 346; three players taking turns 18,

24, 118, 141, 424. [cf. Fair games;

Ruin problem.)

Bias in dice 149.
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Billiards 284.

Binomial coefficients 34, SOff.; identities

for — 63ff., 96, 97, 120.

Binomialdistribution 147ff.; central term

150, 180, 184; — combined with

Poisson 171, 287, 301; — as condi-

tional distr. in Poisson process 237;
convolution of— 173, 268; expectation

223 (absolute — 241); generating

function 268; integrals for — 118, 368,

370; — aslimit in Ehrenfest model 397,

for hypergeometric distr. 59, 172;
normal approximation to — 179ff.; —

in occupancy problems 35, 109;
Poisson approximation to — 153ff.,
171-172, 190 (numerical examples 109,

154); tail estimates 151-152, 173,

193ff.; variance 228, 230.

Binomial distribution, the negative cf.

Negative binomial.

Binomialformula 51.

Birth-and-death process 354ff.; backward

equations for — 469; inhomogeneous
— 472; — in servicing problems 460,
A478ff.

Birth process 448ff., 478ff.; backward

equations for — 468; divergent —

451ff., 476; general 476.

Birthdays: duplications 33, 105 (table

487); expected numbers 224; as

occupancy problem 10, 47, 102;
Poisson distribution for — 106, 155;

(combinatorial problems involving —
56, 58, 60, 169, 239).

Bivariate: generating functions 279, 340;
— negative binomial 285; — Poisson

172, 279. [cf. Multinomial distribu-

tion.]

BLACKWELL, D., P. DEwEL, and D.

FREEDMAN78.

Blood: counts 163; — tests 239.

Boltzmann-Maxwellstatistics: 5,21, 39ff.,

59: as limit for Fermi-Diracstatistics

58. [cf. Occupancy problems.]

Bomb hits (on London) 160.

Bonferroni’s inequalities 110, 142.

Books produced at random 202.

Boole’s inequality 23.
BoreL, E. 204, 210.

Borel-Cantelli lemmas 200ff.

INDEX

Bose-Einstein statistics 5, 20, 40, 61, 113;

negative binomial limit 62.
BoTTEMA, O. and S. C. VAN VEEN 284.

Boundaries for Markov processes 414ff.,

477.

Branching processes 293ff., 373; — with

two types 301.
Breakageofdishes 56.
Breeding 144, 380, 424, 441.

BRELOT, M.419.

Bridge: ace distribution 11, 57; definition

8; waiting times 57; (problems and
examples 27, 35, 37, 47, 56, 100, 112,

140, 169.) [cf. Matching of cards;
Poker; Shuffling.]

BROCKMEYER, E., H. L. HALSTROM, and

A. JENSEN 460.

Brother-sister mating 143, 380, 441.

Brownian motion cf. Diffusion.

Busy hour 293.

Busy period in queuing 299, 300, 315.

CANTELLI, F. P. 204.

lemmas 200.)

Cantor, G. 18, 336.

Car accidents 158, 292.

CARDANO,G. 158.

Cards cf. Bridge; Matching of ‘cards;
Poker; Shuffling.

Cartesian product 129,

Cascade process cf. Branching process.

CATCHESIDE, D. J. 55, 287; —, D. E.

Lea, and J. M. Tuopay 112, 161.

Causes, probability of 124.

Cellgenetics, a problem in 379, 400.

Centenarians 156.

Centralforce, diffusion under — 378.

Central limit theorem 244, 254, 261;

applications to combinatorial analysis
256, to random walks 357, to recurrent

events 320. [cf. DeMoivre-Laplace

limit theorem; Normal approximation.]

Chain letters 56.

Chain reaction cf. Branching process.

Chains, length of random — 240.
CHANDRASEKHAR,S. 425.
Changes of sign in random walks 84ff.,

97.

Changing stakes 346.
Channels cf. Servers; Trunking problems.

(Borel-Cantelli
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CHAPMAN,D. G.45.

Chapman-Kolmogorov __equation: for

Markov chains 383, 421; for non-

Markovian processes 423; for sto-
chastic processes 445, 470ff., 482.

Characteristic equation 365.

Characteristic roots = eigenvalues 429.

CHEBYSHEV, P. L. 233; — inequality 233,

242.
Chess 111.

Chromosomes 133; breaks and

_

inter-

changes of — 55, 112; Poisson

distribution for — 161, 171, 287.

CHUNG, K. L. 82, 242, 312, 409, 413.

CLARKE, R. D. 160.

Classification multiple 27.

Closed sets in Markov chains 384ff.

CocHRAN, W. G.43.

Coin tossing: as random walk 71, 343;

— experiments 21, 82, 86; simulation

of — 238; ties in multiple — 316, 338.

(cf. Arc sine laws; Bernoulli trials;

Changes of sign; First passage times;
Leads; Random walk; Returns to

origin; Success runs, etc.]

Coincidences = matches 100, 107; mul-

tiple — 112.

Collector’s problem 11, 61, 111; waiting

times 48, 225, 239, 284.

Colorblindness: as sex-linked character

139; Poisson distribution for 169.

Combinatorialproduct 129.

Combinatorial runs cf. Runs, combina-

torial,

Competition problem 188.
Complementary event 15.
Composite Markovprocess (shuffling) 422.
Composition cf. Convolution.

CompoundPoisson distribution 288ff., 474.

Conditional: distribution 217ff., 237;

expectation 223; probability 114ff.
(cf. Transition probabilities.)

Confidence level 189.

Connection to a wrong number161.

Contagion 43, 120, 480; spurious — 121.

Continuity equation 358.
Continuity theorem 280.
Convolutions 266ff. (special cases 173).
Coordinates and coordinate spaces 130.

Cornellprofessor 55.
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Correlation coefficient 236,

Cosmic rays 11, 289, 451.
Counters cf. Geiger counter; Queuing;

Trunking problems.

Couponcollecting cf. Collector's problem.
Covariance 229ff., 236.

Cox, D. R. 226.

CRAMER,H. 160.

Crossing of the axis (in random walks)
84ff., 96.

Cumulative distribution function 179,
Cycles (in permutations) 257, 270.

Cyclical random walk 377, 434.

Cylindrical sets 130.

DAHLBERG, G. 140.

Damage cf. Accidents; Irradiation.

Darwin,C. 70.

Death process 478.

Decimals, distribution of: of e and x 32,

61; law of the iterated logarithm 208.
[cf. Random digits.)

Decomposition of Markov chains 390.

Defective items: Poisson distribution for

— 155; (elementary problems55, 141).

[cf. Inspection sampling.]

Defective random variables 273, 309.

Delayed recurrent events 316ff.; — in
renewal theory 332, 334.

DeEmotIvrE, A. 179, 264, 285.

DeMoivre-Laplace limit theorem 182ff.;

application to diffusion 357. [cf. Cen-
tral limit theorem; Normal approxima-

tion.]

Density fluctuations 425. [cf. Bernoulli-

Laplace model; Ehrenfest model.)

Density function 179.
Dependent cf. Independent.

Derivatives partial, numberof 39.

DERMAN,C. 413. .

Determinants (number of terms con-

taining diagonal elements) 111.
DEwEL, P.78.

Diagonal method 336.

Dice: ace runs 210, 324; — as occupancy

problem 11; equalization of ones,

twos, ...339; de Méré’s paradox 56;

Newton-Pepys problem 55; Weldon’s
data 148.

Difference equations 344ff.; method of
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images 369; method of particular
solutions 344, 350, 365; passage to
limit 354ff., 370; several dimensions

362 (— in occupancy problems 59,
284; — for Polya distribution 142,

480). [cf. Renewaltheory.]
Difference of events 16.

Diffusion 354ff., 370; — with central

force 378. [cf. Bernoulli-Laplace model;

Ehrenfest model.}

Dirac-Fermi statistics 5, 41; — for mis-

prints 42, 57.

Discrete sample space 17ff.

Dishes, test involving breakage of 56.
Dispersion = variance 228.

Distinguishable cf. Indistinguishable.
Distribution: conditional 217ff.,

joint 213; marginal 215.

Distribution function 179, 213; empirical
— 71.

DOoBLIN, W. 413.

Doms,C. 301.

Dominant gene 133.

Domino 54.

Doos, J. L. 199, 419, 477.

DOorFEMAN,R. 239.

Doubly stochastic matrices 399.

Drift 342; — to boundary 417.
Duality 91.
Dussins, L. E. and L. J. SAVAGE 346.

Duration ofgames: in the classical ruin
problem 348ff.; in sequential sampling
368. [cf. Absorption probabilities; Ex-

tinction; First passage times; Waiting

times.]

237;

& for recurrent events 303, 308.

e, distribution of decimals 32, 61.

Ecology 289.
Efficiency, tests of 70, 148, 149.

EGGENBERGER,F. 119.

EuREnNrFEST, P. and T. 121.

Ehrenfest model: 121, 377; density 425;

reversibility 415; steady state 397.

Eigenvalue = characteristic value 429,

Ejinstein-Bose statistics 5, 20, 40, 61, 113;

negative binomial limit 62.
EISENHART, C. and F. S. Swep 42.

Elastic barrier 343, 368, 377.

Elastic force, diffusion under — 378.

INDEX

Elevator problem 11, 32, 58 (complete
table 486).

Evuis, R. E. 354.

Empiricaldistribution 71.

Entrance boundary 419.
Epoch 73, 300, 306, 444.

Equalization cf. Changes of sign; Returns

to origin.

Equidistribution theorems 94, 97. [ef.

Steady state.)
Equilibrium, macroscopic 395ff., 456.

Equilibrium, return to cf. Returns to

origin.

Erpés, P. 82, 211, 312.

Ergodic properties: in Markov chains
393ff., 443; — in stochastic processes
455, 482.

Ergodic states 389:
ERLANG, A. K. 460; —’s loss formula

464.

Error function 179,

ESP 55, 407.

Essential states 389,

Estimation: from recaptures and trapping
45, 170; from samples 189, 226, 238.

(cf. Tests.]

Estimator, unbiased 242,

Events: 8, 13ff.; compatible — 98;

independent — 125ff.; — in product
spaces 128ff.; simultaneousrealization
of — 16, 99, 106, 109.

Evolution process (Yule) 450. [cf. Genes.]

Exit boundary 416.
Expectation 220ff.; conditional — 223;

— from generating functions 265;

infinité — 265; — of normal distribu-

tion 179; — of products 227; — of

reciprocals 238, 242; — of sums 222.

Experiments: compound and repeated —
131; conceptual 9ff.

Exponential distribution 446; character-

ization by a functional equ. 459.
Exponential holding times 458ff.

Exponential sojourn times 453.
Extinction: in birth and death processes

457; in branching processes 295ff.
(in bivariate branching processes 302);

of family names 294; of genes 136, 295,
400. [cf. Absorption probabilities.]

Extra Sensory Perception 55, 407.
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Factorials 29; gamma function 66;

Stirling’s formula 52, 66.

Fair games 248ff., 346; — with infinite
expectation 252; unfavorable — 249,
262.

Faltung = convolution.

Families: dishwashing 56; sex distribu-
tion in — 117, 118, 126, 141, 288.

Family names, survival of 294.

Family relations 144.

Family size, geometric distribution for
141, 294, 295.

“‘Favorable’”’ cases 23, 26.

Fercuson, T. S. 237.

Fermi-Dirac statistics 5, 40; — for mis-

prints 42, 58.

FINUCAN, H. M.28, 239.

Fire cf. Accidents.

Firing at targets 10, 169.
First passage times in Bernoulli trials and
random walks 88, 271, 274, 343ff.

(Explicit formulas 89, 274, 275, 351,

353, 368; limit theorems 90, 360.)

[cf. Duration of games; Returns to

origin; Waiting times.]

First passage times: in diffusion 359, 368,

370; in Markov chains 388; in sto-

chastic processes 481. [cf. Absorption
probabilities.]

Fish catches 45.

FisHER, R. A., 6, 46, 149, 380.

Fission 294.

Flags, display of 28, 36.
Flaws in material 159, 170.

Flying bomb hits 160.

Fokker-Planck equation 358.

Forward equations 358, 469, 473, 482.

FRAME, J. S. 367.

FrécuHet, M. 98, 111, 375.

‘FREEDMAN,D.78.

Frequency function 179.
FRIEDMAN, B. (urn model) 119,

378.

Fry, T. C. 460.

Furry, W. H.451.

Fortu, R. 422; —’s formula 359.

121,

G.-M. Counters cf. Geiger counters.

GALTON,F. 70, 256, 294; —’s rank order

test 69, 94.
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Gambling systems 198ff., 345. [cf. Betting.]

Gammafunction 66.
Gauss (= normal) distribution 179.
Geiger counters 11, 59; — type I 306, 315;

general types 339; — as Markovchain
425.

GEIRINGER, H.6.
Generalized Poisson process 474,

Generating functions 264; bivariate —

279; moment — 285, 301.
Genes 132ff.; evolution of frequencies

135ff., 380, 400; inheritance 256;
mutations 295; Yule process 450.

Genetics 132ff.; branching process 295;
Markov chains in — 379, 380, 400;

Yule process 450.
Geometric distribution 216; characteriza-

tion 237, 328; convolutions, 269;
exponential limit 458; generating func-
tion 268; — as limit for Bose-Einstein

statistics 61; —- as negative binomial
166, 224.

GNEDENKO,B. V. 71.

Gonéarov, V. 258.

Goop,I. J. 298, 300.

GREENWOOD, J. A. and E. E. Stuart 56,

407.
GREENWOOD, R.E.61.

GROLL, P. A. and M. SoBeL 239,

Grouping of states 426.

Grouping, tests of 42.

Guessing 107.

GuMBEL, E. J. 156.

HatstroM,H.L. 460.

Hamel equation 459.

Harpy, G. H. and J. E. Litrtewoop

209.

Hardy’s law 135;

pairs 144.
Harris, T. E. 297, 426.

HausporrF, F. 204, 209.

Heatflow cf. Diffusion; Ehrenfest model.
Heterozygotes 133.

Higher sums 421.

Hitting probabilities 332, 339,

Honaes, J. L. 69.

HOoeEFEDING, W. 231.

Holding times 458ff.; — as branching

process 286.

nonapplicability to
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Homogeneity, test for — 43.

Homozygotes 133.

Hybrids 133.

Hypergeometric distribution 43ff. (mo-

ments 232); approximation: by bi-

nomial and by Poisson 59, 172, by
normal distr. 194; multiple — 47; —
as limit in Bernoulli-Laplace model
397.

Hypothesis: for conditional probability
115; statistical — cf. Estimation;

Tests.

Images, method of 72, 369.

Implication 16.

Improper (= defective) random variable

273, 309.

Independence, stochastic 125ff.; — pair-

wise but not mutual 127, 143.

Independent experiments 131.

Independent increments 292.

Independent random variables 217, 241;

pairwise but not mutually — 220.
Independenttrials 128ff.

Indistinguishable elements in problems of

occupancy and arrangements 38ff., 58;
(elementary examples 11, 20, 36.)

Infinite moments, 246, 265; limit theorems

involving — 90, 252, 262, 313, 322.

Infinitely divisible distributions 289; fac-

torization 291.

Inheritance 256. [cf. Genetics.]

Initials 54.

Insect litters and survivors 171, 288.

Inspection sampling 44, 169, 238; sequen-

tial — 363, 368.

Intersection of events 16.

Invariant distributions and measures (in

Markovchains) 392ff., 407ff. (periodic

chains 406). [cf. Stationary distribu-
tions.]

Inverse probabilities (in Markov chains)

414.

Inversions (in combinations) 256.

Irradiation, harmful 10, 55, 112; Poisson

‘distribution 161, 287.

Irreducible chains 384, 390ff.

Ising’s model 43.

Iterated logarithm, law of the 186, 204ff.;

stronger form 211. (Number theoreti-

cal interpretation 208.)

INDEX

Kac, M. 55, 82, 121, 378, 438.
KARLIN, S. and J. L. MCGreEGor 455.
Kelvin’s method of images 72, 369.
KENDALL, D. G. 288, 295, 456.
KENDALL, M.G. and B. SmitH 154.
Key problems 48, 55, 141, 239.
KHINTCHINE, A. 195, 205, 209, 244.
Kotmocorov, A. 6, 208, 312, 354, 375,

389, 419, 461; —’s criterion 259
(converse 263); —’s differential equa-
tions 475; —’s inequality 234.  [cf.
Chapman-Kolmogorov equation.]

Kolmogorov-Smirnov type tests 70.

Koopman,B. O, 4.

Kronecker symbols 428.

Ladder variables 305, 315.

LAGRANGE,J. L. 285, 353.
LAPLACE,P. S. 100, 179, 264. —’s law of

succession 124. [cf. Bernoulli-Laplace
model; DeMoivre-Laplace limit theo-
rem.]

Large numbers, strong law of 258, 262;
for Bernoulli trials 203.

Large numbers, weak law of 243ff., 254;

for Bernoulli trials 152, 195, 261; for

dependent variables 261; generalized
form (with infinite expectations) 246,

252; for permutations 256.
Largest observation, estimation from 226,

238.

Last visits (arc sine law) 79.

Leads, distribution of 78ff., 94; experi-

mental illustration 86ff.; (Galton’s

rank order test 69.)

LEDERMANN, W. and G. E. REUTER
455.

Lefthanders 169.

Lévy, PAUL 82, 290.

Li, C. C. and L. Sacks 144.

Lightning, damagefrom 289, 292.

LINDEBERG, J. W. 244, 254, 261.

Linear growth process 456, 480.

LITTLEwoop,J. E. 209.

LJAPUNOV, A. 244, 261.

Logarithm, expansionfor 51.
Logarithmic distribution 291.

Long chain molecules 11, 240.

Long leads in random walks 78ff.
Loss, coefficient of 466.

Loss formula, Erlang’s 464.
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LotKa, A. J. 141, 294,

Lunch counter example 42.

LUNDBERG, O. 480.

McCrea, W. H. and F. J. W. Wuipece
360, 362.

McGrecor, J. and S. KARLIN 455.
M’KENDRICK, A. G. 450.

Machine servicing 462ff.
supply.)

Macroscopic equilibrium 395ff., 456. [cf.
Steady state.]

MALECOT, G. 380.

MaLtows, C. L. and D. E. Barton, 69.
Marse, K. 147.

MARGENAU, H. and G. M. Murpny 41.
Marginaldistribution 215,

Markov,A. 244, 375.

Markov chains 372ff.; — of infinite order
426; mixing of 426; superposition of
422.

Markov process 419ff.; — with continu-

ous time 444ff., 470ff. (Markov
property 329.)

Martin, R. S. (boundary) 419.

Martingales 399.

Match box problem 166, 170, 238.

Matches = coincidences 100, 107.

Matching ofcards 107ff., 231; multiple —
112.

Mating (assortative and random) 134;

brother-sister mating 143, 380, 441.

Maxima in random walks: position 91ff.,

96 (arc sine laws 93); distribution 369.

Maximal solution (in Markov chains)

401.

Maximum likelihood 46.

MAXWELL, C. 72.

Maxwell statistics.]

Mean cf. Expectation.
Median 49, 220.

Memory in waiting times 328, 458.

MENDEL, G. 132.

de Méré’s paradox 56.

MILLER, K. W. and H. A. ADLER 467.

Minimalsolution: for Kolmogorovdiffer-

ential equations 475; in Markov chains

403.

Mises, R. VON: relating to foundations
6, 147, 199, 204; relating to occupancy

problems 32, 105, 106, 341.

[cf. Power

[cf. Boltzmann-
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Misprints 11; estimation 170; Fermi-
Dirac distribution for — 42 58.
Poisson distribution 156, 169.

Mixtures: of distributions 301 ; of Markov
chains 426; of populations 117, 121.

Mona,E. C. 155, 191.

Momentgenerating function 285, 301.
Moments 227; infinite — 246, 265.

MOontTnmorT, P. R. 100.

Moop, A. M. 194.

Morse code 54.

Moran,P. A. P. 170.

Moving averages 422, 426.

Multinomial coefficients 37.
Multinomial distribution 167, 215, 239;

generating function 279; maximal term
171, 194; randomized 216, 301.

Multiple Bernoulli trials 168, 171, 238.

Multiple classification 27.
Multiple coin games 316, 338.

Multiple Poisson distribution 172.

Multiplets 27.

Murpny, G. M. and MARGENAU, H.41.

Mutations 295.

n and N 174.

(n), 29.

Negation 15.

Negative binomial distribution 164ff., 238;

bivariate — 285; — in birth and death

processes 450; expectation 224; gen-
erating function, 268; infinite divisi-

bility 289; — as limit of Bose-Einstein
statistics 61, and of Polya distr. 143;
Poisson limit of — 166, 281.

NELSson,E. 96.

NEwMan, D. J. 210, 367.

Newton,I. 55; —’s binomialformula 51.

NEYMAN,J. 163, 285.

Non-Markovian processes 293, 421, 426;

— satisfying Chapman-Kolmogorov
equation 423, 471.

Normal approximation for: binomial

distribution 76, 179ff. (large deviations
192, 195); changes of sign 86; com-

binatorial runs 194; first passages 90;

hypergeometric distribution 194; per-
mutations 256; Poisson distribution

190, 194, 245: recurrent events 321;

returns to origin 90; success runs 324.
[cf. Central limit theorem.]
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Normaldensity and distribution 174; tail

estimates 179, 193.

Normalized random variables 229.

Nuclear chain reaction 294,

Null state 388.

Numbertheoretical interpretations 208.

Occupancy numbers 38.

Occupancy problems 38ff., 58ff., 101ff.,

241; empirical interpretations 9; mullti-

ply occupied cells 112; negative

binomial limit 61; Poisson limit 59,

105; treatment by Markov chains 379,

435, and by randomization 301;

waiting times 47, 225; (elementary

problems 27, 32, 35, 55, 141, 237.)

[cf. Boltzmann-Maxwellstatistics; Bose-

Einstein statistics; Collector’sproblems.]

Optionalstopping 186, 241.

Orderings 29, 36. [cf. Ballot problem;

Runs, combinatorial.}

Ore, O. 56.

Orey, S. 413.

pk; A) 157.
Pairs 26.

PALM, C. 460, 462.

PANnse, V. G. and P. V. SUKHATME 150.

Parapsychology 56, 407. (Guessing 107.)
Parking: lots 55, 479; tickets 55.

Partial derivatives 39.

Partial fraction expansions 275ff., 285,

explicit calculations for reflecting bar-
rier 436ff., — for finite Markov chains

428ff.; for ruin problem 349ff., and for
success runs 322ff.; numerical calcula-

tions 278, 325, 334.
“Particle” in random walks 73, 342.

Particular solutions, method of 344, 347,

365.
Partitioning: of stochastic matrices 386;

of polygons 283.
Partitions, combinatorial 34ff.

PAscAL, B. 56; —’s distribution 166.

PaTuriA, R. K. 32.

Paths in random walks 68.

PEARSON, K. 173, 256.

Pedestrians: as non-Markovian process
422; — crossing the street 170.

Pepys, S. 55.

INDEX

Periodic Markovchains(states) 387, 404ff.
Periodic recurrent events 310.

Permutations 29, 406; — represented by

independenttrials 132, 256ff.

Persistent recurrent event 310;
theorem 335.

Persistent state 388.

Petersburg paradox 251.

Petriplate 163.

Phase space 13.

Photographic emulsions 11, 59.

a, distribution of decimals 31, 61.

Poisson, S. D. 153.

Poisson approximation or limit for:

Bernoulli trials with variable proba-
bilities 282; binomial distr. 153ff, 172,

190; density fluctuations 425; hyper-
geometric distr. 172; matching 108;
negative binomial 172, 281; normal

distr. 190, 245; occupancy problems
105, 153; stochastic processes 461, 462,

480, 481; long success runs 341.

Poisson distribution (the ordinary) 156ff.;

convolutions 173, 266; empirical ob-

servations 159ff.; generating function
268; integral representation 173; mo-

ments 224, 228; normal approximation

190, 194, 245.

Poisson distributions: bivariate 172, 279;

compound 288ff., 474; generalized 474;
multiple 172; spatial 159. (— com-

bined with binomial distr. 171, 287,

301.)

Poissonprocess 292, 446ff.; backward and

forward equs. 469-470, generalized —

474.

Poisson traffic 459.

Poisson trials (= Bernoulli trials with
variable probabilities) 218, 230, 282.

Poker: definition 8; tabulation 487.
(Elementary problems35, 58, 112, 169).

POLLARD, H. 312.

Polygons, partitions of 283.

Pozya, G. 225, 283, 360; —’s distribution

142, 143, 166, 172; — process 480; —

urn model120, 142, 240, 262, 480 (— as

non-Markovian process 421).
Polymers 11, 240.

Population 34ff.; — in renewal theory

334-335, 340; stratified — 117.

limit
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Population growth 334-335, 450, 456.
(cf. Branching processes.]

Positive state 389.

Power supply problems 149, 467,
Product measure 131.

Product spaces 128ff.

Progeny (in branching processes) 298ff.
Prospective equations cf. Forward equa-

tions,

Quality control 42. [cf. Inspection samp-
ling.]

Queue discipline 479.
Queuing and queues 306, 315, 460ff., 479;

as branching process 295, 299-301;
general limit theorem 320; (a Markov

chain in queuing theory 425.)

Radiation cf. Cosmic rays; Irradiation.

Radioactive disintegrations 157, 159, 328;

differential equations for — 449,
Rarr, M.S. 240.

Raisins, distribution of 156, 169.

Random chains 240.

Random choice 30.

Random digits (= random sampling num-

bers) 10, 31; normal approximation
189; Poisson approximation 155;

references to — 21, 61. (Elementary

problems 55, 169.)

Random mating 134.
Random placement of balls into cells cf.

Occupancy problems.
Random sampling cf. Sampling.
Random sums 286ff.

Random variables 212ff.; defective — 273,

309; integral valued — 264ff. nor-

malized — 229. [cf. Independent —.]

Random walks 67ff., 342ff.; cyclical 377,

434; dual — 91; generalized — 363ff.,

368; invariant measure 408; Markov

chain treatment 373, 376-377, 425,

436ff.; renewal method 370; reversi-

bility 415; — with variable probabilities

402. [cf. Absorbing barrier; Arc sine

law; Changes of sign; Diffusion;

Duration ofgames; Firstpassage times;

Leads; Maxima; Reflecting barrier;

Returns to origin; Ruin problem.]

Randomization method: in occupancy
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problems 301; in sampling 216. [cf.
Random sums.)

Randomnessin sequences 204; tests for —
42, 61. {cf. Tests.]

Range 213.

Rank order test 69, 94.

Ratio limit theorem 407, 413.

Realization of events, simultaneous 16, 99,

106, 109, 142.

Recapture in trapping experiments 45,
Recessive genes 133; sex-linked — 139,

Recurrence times 388; — in Markov

chains 388. [cf. Renewal theorem.]
Recurrent events 310ff.; delayed — 316ff.;

Markovchain treatment of— 381-382,
398, 403; number of occurrences of a

— 320ff.; reversibility 415. [cf. Re-

newal theorem.}

Reduced number of successes 186.

Reflecting barriers 343, 367ff.; invariant

distribution 397, 424; Markov chain

for 376, 436ff.; two dimensions 425.

Reflection principle 72, 369. (Repeated
reflections 96, 369ff.)

Rencontre (= matches) 100, 107.

Renewal of aggregates and populations
311, 334-335, 340, 381.

Renewal argument 331.

Renewal method for random walks 370.

Renewal theorem 329; estimates to 340

(for Markovchains 443.)

Repairs of machines 462ff.

Repeated averaging 333, 425.

Replacement cf. Renewal; Sampling.
Residual waiting time 332, 381.

Retrospective equations cf. Backward

equations.

Return process 477.

Returnsto origin: first return 76-78, 273,

313; — in higher dimensions 360;
nth return 90, 274; — through negative

values 314, 339; number of 96; visits

prior to first — 376. [cf. Changes of

sign; First passage times.]
Reuter, G. E. and W. LEDERMANN 455.

Reversed Markov chains 414ff.

RIorDAN, J. 73, 299, 306.

Rossins, H. E. 53.

Romia,H. C. 148.

Ruin problem 342ff.; — in generalized
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random walk 363ff.; renewal method
370; — with ties permitted 367.

Rumors 56.

Runs, combinatorial42, 62; moments 240;

normal approximation 194. [cf. Success

runs.)

RUTHERFORD, E. 170;

CHADWICK-ELLIs 160.

RUTHERFORD-

SACKS, L. and C. C. Li 144.

Safety campaign 121.
Sample point 9.

Sample space 4, 9, 13ff.; discrete 17ff. —

for repeated trials and experiments
128ff.; — in terms of random variables

217.

Sampling 28ff., 59, 132, 232; randomized

— 216; required sample size 189, 245;

sequential — 344, 363; stratified —
240; waiting times 224, 239. (Elemen-

tary problems10, 12, 56, 117, 194.) [cf.

Collector’s problem; Inspection sam-

pling

SAVAGE, L. J. 4, 346.

SCHELL, E. D. 55.

SCHENSTED, I. V. 379.

SCHROEDINGER, E. 294.

Schwarz’ inequality 242.

Seeds: Poisson distribution 159; survival

295.

Segregation, subnuclear 379.

Selection (genetic) 139, 143, 295.

Selection principle 336.
Self-renewing aggregates 311, 334, 340.

Senator problem 35, 44.

Sequential sampling 344, 363.

Sequentialtests 171.

Sera, testing of 150.
Servers cf. Queuing; Trunking Problems.

Service times 457ff.; — as branching

process 288.
Servicing factor 463.

Servicing problems 460, 479. [cf. Power

supply.)

Seven-way lamps 27.

Sex distribution within families 11, 117,

118, 126, 169, 288.

Sex-linked characters 136.

SHEWHART, W. A. 42.

Shoe problems 57, 111.

INDEX

Shuffling 406; composite — 422.
Simulation of a perfect coin 238.

Small numbers, law of 159.

SMIRNOV, N. 70, 71.

SMITH, B. and M. G. KENDALL, 154.

SOBEL, M. and P. A. GROLL, 239.

Sojourn times 82, 453.

SPARRE-ANDERSEN,E.82.

Spent waiting time 382.

Spores 226, 379.

Spurious contagion 121,

Stable distribution of order one half90.

Stakes (effect of changing —) 346.
Standard deviation 228.

Stars (Poisson distribution) 159, 170.

States in a Markov chain 374, 446;

absorbing 384; classification 387.
Stationary distributions: of age 335, 340;

of genotypes 135. [cf. Invariant dis-
tributions and measures; Steady state.]

Stationary transitionprobabilities 420, 445.

Steady state cf. Equilibrium, macroscopic;
Invariant distributions and measures;

Stationary distributions.

STEINHAUS, H. 166.

Sterilization laws 140.

STIRLING, J. 52; —’s formula 52, 66, 180.

Stochastic independence cf. Independence.
Stochastic matrix 375; doubly — 399;

substochastic matrix 400.

Stochastic process (term) 419, 444ff.;

general limit theorem 318; — with

independent increments 292. [cf. Mar-
kov process.)

STONEHAM,R. G. 32.

Strategies in games 198, 346.

Stratification, urn models for 121.

Stratifiedpopulations 117.
Stratified sampling 240.

Street crossing 170.

Struggle for existence 450.

Stuart, E. E. and J. A. GREENWOOD,56,

407.

Substochastic matrix 400.

Successes 146; reduced number of— 186.

Success runs: -—- aS recurrent events 305,

322ff., 339; Markov chain for — 383;

Poisson distribution for long — 341; —

of several kinds 326, 339; r successes

before s failures 197, 210.
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Succession, Laplace’s law of 124.
SUKHATME, P. V. and V. G. PANsE 150.
Sums of a random number of variables

286ff.

Superposition of Markov Processes 422.
Survival cf. Extinction.

SWED,F. S. and C. EIsENHART 42,
Systems ofgambling 198, 346.

Table tennis 167.

Taboo states 409,

Takacs, L. 69,

Target shooting 10, 169.

Telephone: holding times 458; traffic
161, 282, 293; trunking 191, 460, 481.
[cf. Busy period; Queuing.)

Tests, statistical: — of effectiveness 70,
149-150; Galton’s rank order — 69,
94; Kolmogorov-Smirnovtests 70; —
of homogeneity 43, 70; — of random-

ness 42, 61; sequential — 171. (Special
— of: blood 239; clumsiness 56; dice

148; guessing abilities 107; random-
ness of parking tickets 55; sera and
vaccines 150.) [cf. Estimation.]

Theta functions 370.

THORNDIKE, F. 161.

Ties: in billiards 284; in games with

several coins or dice 316, 338.  [ef.

Returns to origin.]

Time-homogeneous cf. Stationary.

TODHUNTER,I. 378.

Traffic ofPoisson type 459.
Traffic problems 170, 422.
Phone.]

[cf. Tele-

. Transient recurrent event 310.

Transient state, 388-390, 399ff., 438.

Transitionprobabilities: in Markov chains

375, 420, (higher — 382); in processes

445, 470ff.

Trapping, animal 170, 239, 288, 301.

Trials (independent and repeated) 128ff.;
random variable representation 217ff.

Trinomial cf. Multinomial.,

Truncation method 247,

Trunking problems 191, 460, 481.
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Turns: in billiards 284;: three players
taking — 18, 24, 118, 141

UHLENBECK, G. E. and M. C. WANG 378.
Unbiased estimator 242.

Unessential states 389.
Unfavorable “fair” games 249, 262.
Uniform distribution 237, 285.

Uniform measure 408.

Union ofevents 16; probability of— 101.
Urn models 188ff.; — and Markovchains

373. [cf. Bernoulli-Laplace; Ehrenfest;
Friedman; Laplace; Polya.]

Vaccines, testing of 150.

Variance 227ff.; — calculated from ©

generating functions 266; — of normal

distribution 179.

VAULOT, E. 479.

Volterra’s theory of struggle for existence

450.

Waiting lines cf. Queuing.

Waiting times: memoryless — 328, 458;

residual — 332, 381; spent — 382.

(— in combinatorial problems 47; for
recurrent events 309, 317.) [cf. Dura-

tion ofgames; First passage times.]

WaLp, A. 171, 248, 344, 363; — and

J. WOLFowITz 43, 194.

Watson, G.S. 239.

Wauau,W. A. O’N.367.

Welders problems 149, 467.

Weldon’s dice data 148-149.

WuiPPLe, F. J. W. and W. H. MCCREA
360, 362.

WHITWORTH, W.A. 26, 69.

Wiener process 354.

WISNIEWSKI, T. K. M. 238.

Wo.rFowlt1Z, J. and A. WaLp 43, 194.

Words 129.

WRIGHT,S. 380.

Wrong number, connections to 161.

X-rays cf. Irradiation.

Yue, G. U. (process) 450, 478.


