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equivalent before treatment. However, with a small sample, which is a practical reality in many disciplines, randomized
groups are often too dissimilar to be useful. We propose an approach based on discrete linear optimization to create groups
whose discrepancy in their means and variances is several orders of magnitude smaller than with randomization. We
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than those created by randomization and that this allows for more powerful statistical inference.
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1. Introduction

Experimentation on groups of subjects, similar in all ways

but for the application of an experimental treatment, is a

cornerstone of modern scientific inquiry. In any controlled

experiment, the quality, interpretability, and validity of the

measurements and inferences drawn depends on the degree

to which the groups are similar at the outset.

For close to a century, randomization of subjects into

different groups has been relied on to generate statisti-

cally equivalent groups. Where group size is large relative

to variability, randomization robustly generates groups that

are well matched with respect to any statistic. However,

when group sizes are small, the expected discrepancy in any

covariate under randomization can be surprisingly large,

hindering inference. This problem is further aggravated as

the number of groups one needs to populate increases.

This is the situation faced in numerous disciplines in

which the rarity or expense of subjects makes assem-

bly of large groups impractical. For example, in the field

of oncology research, experimental chemotherapy agents

are typically tested first in mouse models of cancer, in

which tumor-bearing mice are segregated into groups and

dosed with experimental compounds. Because these mouse

models are laborious and expensive, group size is kept

small (typically 8–10), while the number of groups is rela-

tively large, to accommodate comparison of multiple com-

pounds and doses with standard-of-care compounds and

untreated control groups. In this case, it is clear that ini-
tial tumor weight is highly correlated with post-treatment
tumor weight, in which we measure the effect of treatment.
A typical experiment might consist of 40–60 mice segre-
gated into four to six groups of ten, though experiments
using fewer mice per group and many more groups are per-
formed as well. Given that the implanted tumors grow quite
heterogeneously, a coefficient of variation of 50% or more
in pre-treatment tumor size is not unusual.
In such circumstances, common in nearly all research

using animal models of disease as well as many other
endeavors, simple randomization fails to reliably generate
statistically equivalent groups, and therefore fails to gen-
erate reliable inference. It is clearly more desirable that
experiments be conducted with groups that are similar, par-
ticularly in mean and variance of relevant baseline covari-
ates. Here we treat the composition of small statistically
equivalent groups as a mathematical optimization problem
in which the goal is to minimize the maximum difference
in both mean and variance between any two groups. We
report one treatment of this problem as well as a study
of the size of the discrepancy when group enrollment is
optimized compared to other common designs including
complete randomization.
Block and orthogonal designs (see Fisher 1935) have

been a common way to reduce variability when baseline
covariates are categorical, but do not apply to mixed (dis-
crete and continuous) covariates, which is the main focus
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of our work. For such cases, apart from randomization, two

prominent methods are pairwise matching for controlled

trials (see Rosenbaum and Rubin 1985, Greevy et al. 2004)

and re-randomization as proposed in Morgan and Rubin

2012.1 The finite selection model (FSM) proposed by Mor-

ris (1979) can also be used for this purpose. In comparisons

explored in §4, we find that the balance produced by our

proposed optimization-based approach greatly improves on

both randomization and these methods.

Pairwise matching is most common in observational

studies, where assignment to treatment cannot be controlled

(see Rubin 1979 and Rosenbaum and Rubin 1983 for a

thorough discussion of the application of pairwise match-

ing and other methods to observational studies). A large

impediment to existing practices is that they are based on

subject pairs. When sample sizes are small and random

there will hardly be any well-matched pairs. Such matching

does little to eliminate bias in the statistics that measure the

overall average effect size. Instead we consider matching

the experimental groups to minimize the en-masse discrep-

ancies in means and variances among groups as formulated

in (1).

When discrepancy is minimized, statistics such as the

mean difference in subject responses are far more precise,

and concentrated tightly around their nominal value, while

still being unbiased estimates. Indeed, under optimization,

these statistics will no longer follow their usual distribu-

tions, which are wider, and traditional tests that rely on

knowledge of this distribution, like the Student T test, no

longer apply. Beyond estimation, we propose a hypothesis

test based on the bootstrap to draw inferences on the dif-

ferences between treatments. Experimental evidence shows

that these inferences are much more powerful than is usu-

ally possible.

In this paper, we provide theoretical and computational

evidence that groups created by optimization have expo-

nentially lower discrepancy in pre-treatment covariates than

those created by randomization or by existing matching

methods.

2. Limitations of Randomization

Three factors can impair successful matching of the inde-

pendent variable means of groups assembled using ran-

domization. These are: (a) the group size, (b) the variance

of the data, and (c) the number of groups being popu-

lated. The specific influence of these three factors is shown

graphically in Figure 1. The plot shows the average max-

imal pairwise discrepancy in means between groups under

the conditions indicated for the normal distribution. Aver-

age discrepancy is proportional to standard deviation and

is therefore reported in units of standard deviations.

It can be seen from the plot that discrepancy increases

with the number of groups involved and decreases with

increasing group size. When all three factors come into

play, i.e., small group size, high standard deviation, and

Figure 1. Average maximal pairwise discrepancy in

means among randomly assigned groups of

normal variates.
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Notes. The vertical axis is in units of standard deviation. The band denotes
the average over- and under-shoot: Ɛ6X � X ¾ ƐX7 and Ɛ6X � X ¶ ƐX7,
where X is maximal pairwise discrepancy.

numerous groups, the degree of discrepancy can be sub-

stantial. For example, a researcher using randomization to

create four groups of ten mice each will be left with an

average discrepancy of 0.66 standard deviations between

some two of the groups. Because statistical significance is

often declared at a mean difference of 1.96 standard devi-

ations (p ¶ 0005), this introduces enough noise to conceal

an effect in comparisons between the mismatched groups

or to severely skew the apparent magnitude and statisti-

cal significance of a larger effect. Examination of Figure 1

makes it clear that when multiple groups are involved, even

apparently large group size can still result in a substantial

discrepancy in means between some groups. Doubling the

group sizes to twenty each still leaves the researcher with

a discrepancy of 0.47 standard deviations.

One solution to this problem is to simply increase group

size until discrepancies decrease to acceptable levels. How-

ever, the size of the groups needed to do so can be surpris-

ingly large. To reduce the expected discrepancy to below

0.1 standard deviations would require more than 400 sub-

jects per group in the above experiment. For 0.01 standard

deviations, more than 40,000 subjects per group would be

necessary. With diminishing returns in the reduction of dis-

crepancy with additional subjects, larger increases in the

number of subjects enrolled are needed to conduct experi-

ments studying subtler effects.

When considering the effects of this on post-treatment

measurements such as mean differences or T statistic,

clearly a more precise measurement could be made when

groups are well matched at the onset. As we discuss below,

well matched groups yield a measurement much closer to

the nominal (average or mode) measurement of pure ran-

domization. Indeed, that this distribution of measurements

is different (i.e., tighter) means that a naïve application

of the Student T test would result in an underestimate of

confidence and power, but that the distribution is tighter

should allow for much more powerful inference.
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3. Optimization Approach

Our proposal is to assign subjects so as to minimize the
discrepancies in centered first and second moments, where
this assignment is gleaned via integer optimization. After
assignment, we randomize which group is given which
treatment. This ensures unbiased estimation as discussed
in §5.

Given pre-treatment values of subjects wi, i = 11 0 0 0 1
n=mk, we are interested in creating m groups each con-
taining k subjects in such a way that the discrepancy in
means and � times the discrepancy in second moments is
minimized between any two groups. We first preprocess the
full sample by normalizing it so that it has zero sample
mean and unit sample variance. We set

w′
i = 4wi − �̂5/�̂1

where �̂= 1

n

n
∑

i=1

wi and �̂2 = 1

n

n
∑

i=1

4wi − �̂520

After construction of k groups, we randomize which treat-
ment is given to which group. Algorithmically, we number
the treatments and the groups in any way, shuffle the num-
bers 11 0 0 0 1m and treat the group in position j with treat-
ment number j . This does not affect the objective value.

The parameter � controls the trade-off between the dis-
crepancy of first moments and second moments and is
chosen by the researcher. We introduce the decision vari-
able xip = 0 or 1 to denote the assignment of subject i to
group p. Using continuous auxilliary variable d and letting

�p4x5=
1

k

n
∑

i=1

w′
ixip and �2

p4x5=
1

k

n
∑

i=1

4w′
i5

2xip1

we formulate the problem as follows:

Zopt
m 4�5=min

x
max
p 6=q

4��p4x5−�q4x5�+���2
p4x5−�2

q 4x5�5

=min
x1d

d (1)

s0t0 ∀p<q=110001m2

d¾�p4x5−�q4x5+��2
p4x5−��2

q 4x5

d¾�p4x5−�q4x5+��2
q 4x5−��2

p4x5

d¾�q4x5−�p4x5+��2
p4x5−��2

q 4x5

d¾�q4x5−�p4x5+��2
q 4x5−��2

p4x51

xip∈801191
n
∑

i=1

xip=k ∀p=110001m1

m
∑

p=1

xip=1 ∀ i=110001n1

xip=0 ∀ i<p0

As formulated, problem (1) is a mixed integer linear opti-
mization problem with m41+ 2n−m5/2 binary variables

Figure 2. The progress of solving an instance of prob-

lem (1) with n= 40, m= 4.
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and 1 continuous variable. The last constraint reduces the

redundancy in the branch-and-bound tree due to permuta-

tion symmetry. Further symmetry reduction is possible by

methods described in Kaibel et al. (2011). Symmetry is

reintroduced by randomizing which group receives which

treatment.

We implement this optimization model in Gurobi v5.6.

For values n = 40 and m = 4 problem (1) can be solved

to full optimality in under twenty seconds on a personal

computer with 8 processor cores. Gurobi also has built-

in symmetry detection to avoid redundant computations in

the branch-and-bound tree. We plot the progress of the

branch-and-bound procedure for one example in Figure 2.

For larger instances, Gurobi generally finds a near optimal

solution with objective value within a few minutes. Find-

ing the optimum can take longer, and proving its optimality

even longer.

The formulation of optimization problem (1) extends to

multiple covariates. Suppose we are interested in matching

the first and second moments in a vector of r covariates

where wis denotes the sth covariate of subject i. Again, we
normalize the sample to have zero sample mean and iden-

tity sample covariance by setting w′
i = â4wi − �̂5, where â

is the matrix square root of the (pseudo-)inverse of the sam-

ple covariance è̂ = ∑n
i=14wi − �̂54wi − �̂5T /n. Given the

trade-off parameter �, we rewrite the optimization problem

for this case using m41+ 2n−m5/2 binary variables and

1+m4m− 15r4r + 35/4 continuous variables as follows:

min d

s0t0 x ∈ 80119n×m1 xip = 0 ∀ i < p1 d¾ 01

n
∑

i=1

xip = k ∀p= 11 0 0 0 1m1

m
∑

p=1

xip = 1 ∀ i= 11 0 0 0 1 n1

xip = 0 ∀ i < p1
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M ∈�
m4m−15/2×r 1 V ∈�

m4m−15/2×r4r+15/21

∀p= 11 0 0 0 1m1 q = p+ 11 0 0 0 1m2

d¾

r
∑

s=1

Mpqs +�
r
∑

s=1

Vpqss + 2�
r
∑

s=1

r
∑

s′=s+1

Vpqss′ 1

∀ s = 11 0 0 0 1 r2

Mpqs ¾
1

k

n
∑

i=1

w′
is4xip − xiq51

Mpqs ¾
1

k

n
∑

i=1

w′
is4xiq − xip51

∀ s = 11 0 0 0 1 r1 s′ = s1 0 0 0 1 r2

Vpqss′ ¾
1

k

n
∑

i=1

w′
isw

′
is′4xip − xiq51

Vpqss′ ¾
1

k

n
∑

i=1

w′
isw

′
is′4xiq − xip50

The potential extension to even higher moments is straight-

forward. More generally, such optimization procedures,

along with complete randomization and pairwise matching,

can all be interpreted under the unifying lens of minimizing

worst-case variance; see Kallus (2014).

4. Optimization vs. Randomization in
Reducing Discrepancies

Using the above optimization model implemented in

Gurobi v5.6, we conducted a series of simulations compar-

ing the results of group assembly using randomization and

optimization. Our key finding is that optimization is starkly

superior to randomization in matching group means under

all circumstances tested.

Figure 4. The range of achievable discrepancies under optimization and under randomization.
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Notes. The upper halves of the plots correspond to randomization and the lower ones to optimization. Red denotes discrepancy in mean and blue variance.
The bands depict average under- and over-shoot. Notice the log scales and the break in the vertical axis.

Figure 3. Discrepancy in means among optimally as-

signed groups of normal variates with �= 0.
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Notes. The colors are as in Figure 1. Note the vertical log scale compared
to the absolute scale of Figure 1.

Figure 3 provides the analogue of Figure 1 for opti-

mization and Figure 4 compares side-by-side the mismatch

achieved in the first two moments by optimization and ran-

domization. In particular we show for various numbers of

groups and group sizes that the achievable range of fea-

sible matchings as � varies. For all values of �, the pre-

treatment discrepancy is significantly reduced compared to

that seen under randomization, essentially eliminating pop-

ulation variance as a significant source of noise for all but

the most extreme circumstances. Noting that discrepancy in

either moment is minuscule under optimization using any

of the values of � shown, we arbitrarily choose � = 005
for all further numerical examples unless otherwise noted.

To revisit the example used to illustrate the limitations of

randomization, the researcher assembling four groups of

10 mice each under optimization with �= 005 would end
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up with 000005 standard deviations of discrepancy in first

moment (or a twentieth of that for � = 0, not shown in

figure), compared with 0066 standard deviations under ran-

domization.

There is some theoretical backing to the experimental

evidence that optimization eliminates all discrepancies to

such an extreme degree. When �= 0 and m= 2 the prob-

lem, scaled by 1/n, reduces to the well studied balanced

number partitioning problem (see Karmarkar and Karp

1982). Let Zrand
2 denote the discrepancy in means under

randomization. When pre-treatment covariates are random

with variance �2, we have by Jensen’s inequality that

Ɛ6Zrand
2 7¶

√

Ɛ64Zrand
2 527=

√

2

k
�

and if they are normally distributed then

E6Zrand
2 7= 2√

�k
�0

In comparison, an analysis of balanced number partitioning

with random weights (see Karmarkar et al. 1986) yields

that there is a C > 0 such that

median4Z
opt
2 4055¶

C

22k
0

Heuristic arguments from spin-glass theory (see Mertens

2001) provide the prediction

E6Z
opt
2 4057= 2��

2k
1

which agrees with our experimental results for large k.

Comparing the asymptotic orders of Zrand
2 and Z

opt
2 405, we

see an exponential reduction in discrepancies by optimiza-

tion versus randomization.

Matching done on a subject-pairwise basis such as

caliper matching as done in propensity score matching (see

Rubin 1979) does not close this gap either even when the

sample-based optimal caliper width is chosen. For simplic-

ity, consider uniformly-distributed pre-treatment covariates

so that any subsequent difference of two nearest neighbors

are on average 4n+ 15−1. If assignment within each pair is

randomized independently, a simple calculation then shows

that the average discrepancy is of order k−3/2, whereas if

assignment is alternating among the sorted covariates, then

the average discrepancy is of order k−1. The case is worse

for normally distributed covariates as reported below.

Following the average predictions for the normal distri-

bution, if we want to limit discrepancy to some fraction of

the standard deviation, �� , we see a dramatic difference in

the necessary number of subjects per group, k:

kOpt =
⌈

log2
2�

�

⌉

1 kRand =
⌈

4

��2

⌉

0

Table 1. The number of subjects per group needed to

guarantee an expected discrepancy no more

than �� for m= 2 and �= 0.

� kOpt kRand kPair kRR

0.1 3 128 9 4
0.01 5 121833 65 83
0.001 7 112731240 514 81130
0.0001 8 12713231955 41354 8201143

In Table 1 we report specific values of kOpt and kRand,
as well as kPW corresponding to optimal pairwise match-
ing and kRR corresponding to the Mahalanobis-distance re-
randomization method of Morgan and Rubin (2012) with
a fixed acceptance probability of 5%.2. This is a clear
example of the power of optimization for experiments hin-
dered by small samples. While pairwise matching and re-
randomization improve on randomization, they are signifi-
cantly outperformed by optimization especially when small
discrepancy is desired.
A concern may be that by optimizing only the first

two moments, and not others, those higher moments may
become mismatched. We find, however, that this is not the
case even when compared to all the other methods con-
sidered above. In Table 2 we tabulate the mismatch in the
first five moments and in the generalized moment of log
for the various methods when assigning 2k subjects with
baseline covariates drawn from a standard normal popula-
tion. In Table 3 we tabulate the mistmatch of multivariate
moments for the various methods when assigning 2k sub-
jects with multivariate baseline covariates drawn from a
three-dimensional standard normal population. For pairwise
matching we use the Mahalanobis pairwise distance, for
re-randomization we use an acceptance probability of 5%,
for FSM we use the method implied by Equation (2.11) of
Morris (1979) with ci = 1, T = I , and for our method we
use �= 005. Note that optimal assignment yields superior
balance in the moments considered and that all methods
result in similar balance for those moments not directly
considered in the optimization problem.

5. Optimization, Randomization, and Bias

Randomization has traditionally been used to address two
kinds of bias in experimental design. The first is investi-
gator bias, or the possibility that an investigator may sub-
consciously or consciously construct experimental groups
in a manner that biases toward achieving a particular result.
As a fixed, mechanical process, optimization guards against
this possibility at least as well as randomization. Indeed it
does better because any manual manipulation of the opti-
mized results would make the result less well matched than
the reproducible optimum, which is verifiable, whereas no
one grouping can ever be verified as the true result of pure
randomization.
The second kind of bias is the incidental disproportionate

assignment of variables, measured or hidden, that directly
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Table 2. The discrepancy in various moments under different assignment mechanisms.

Moment

k Method 1 2 3 4 5 log

5 Opt 000513 00286 1043 2067 9075 0.498
Rand 00510 00689 1079 3081 1003 0.544
Pair 00184 00498 1027 3029 8093 0.345

Re-rand 00047 00711 1009 3088 8047 0.572
FSM 00508 00553 1076 3033 1002 0.440

10 Opt 0000174 000145 00906 1047 6087 0.338
Rand 00352 00504 1030 2088 7079 0.399
Pair 000839 00259 00759 2009 6006 0.176

Re-rand 000298 00497 00764 2093 6020 0.389
FSM 00374 00334 1033 2026 7090 0.264

20 Opt 1.23e−6 2.34e−6 00600 1004 5023 0.221
Rand 00258 00345 00947 2013 6013 0.276
Pair 000379 00140 00445 1040 4024 0.286

Re-rand 000207 00356 00565 2016 4099 0.284
FSM 00249 00190 00896 1050 5089 0.146

Note. Column i corresponds to the average mismatch in the ith moments between the two groups and the last column
corresponds to the mismatch in the generalized moments in log �w�.

affects the treatment. Randomization, given large enough

samples, will tend to equalize the apportionment of any one

factor. However, just as with the measured covariates wi,

randomization cannot be counted on to eliminate discrep-

ancies in hidden factors when samples are relatively small.

Optimization considers the measured covariates wi when

allocating a subject to a particular group. For all factors that

are independent with this variable, the allocation remains

just as random. Variables that are correlated with the mea-

sured covariates in ways such as joint normality will be just

as well balanced as the measured covariates and variables

with a higher order dependence, such as having a polyno-

mial conditional expectation in w, would be as balanced as

seen in Tables 2 and 3.

Table 3. The discrepancy in various multivariate moments under different assignment mechanisms.

Moment

k Method w1 w2
1 w1w2 w3

1 w2
1w2 w1w2w3

10 Opt 000701 00145 00183 0093 00508 00337
Rand 00360 00492 00344 1029 0058 00333
Pair 00179 00383 00271 00964 00478 00299

Re-rand 00141 00493 00357 00883 00484 0034
FSM 00368 00606 00503 1030 00574 00340

15 Opt 000230 000450 00117 00718 00411 00292
Rand 00292 00400 00286 1005 00489 00289
Pair 00125 00290 00201 00748 0038 00247

Re-rand 00113 00409 00289 00714 00414 00293
FSM 00289 00597 00491 1005 00488 00281

25 Opt 0000302 0000497 000780 00547 00315 00227
Rand 00226 00325 00222 00842 00384 00227
Pair 000849 00196 00143 00547 00276 00172

Re-rand 000863 00326 00230 00566 00314 00220
FSM 00219 00592 00494 00823 00388 00224

Note. Column w1w2, for example, corresponds to the average mismatch in the moments of w1w2 between the two groups, which
by symmetry is the same as that of w1w3 or w2w3 on average.

In general, the observed difference in treatment effects

after optimizing the assignment as described here will

always be an unbiased estimator of the true population

average difference, as in a randomized experiment. This is

a consequence of randomizing the identity of treatments

(while optimizing the partition of subjects) so that the

assignment of a single subject is marginally independent of

its potential responses to different treatments.3 Unbiased-

ness in estimation means that, were the experiment to be

repeated many times and the results recorded, the aver-

age result would coincide with the true value. In particular,

there is no omitted variable bias. That is, neglecting to take

into consideration a relevant covariate does not introduce

bias in estimation.
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6. Optimization vs. Randomization in
Making a Conclusion

As we have shown in the previous sections, optimization

eliminates nearly all noise due to pre-treatment covariates.

One would then expect that it can also offer superior pre-

cision in estimating the differences between treatments and

superior power in making statistical inferences on these

differences.

In randomized trials, randomization tests (see Eddington

and Onghena 2007) can be used to draw inferences based

directly on the randomness of assignment without normal-

ity assumptions, which often fail for small samples. How-

ever, for optimization the assignment is not random enough

and this test is not applicable. For the purpose of testing

differences of treatments in an optimized trial, we propose

the following test based on the bootstrap (see Efron and

Tibshirani 1993).

Comparing two treatments, we would like to test the null

hypothesis that every subject i = 11 0 0 0 1 n would have had

the same response to treatment whether either of the two

treatments were assigned (this is known as the sharp null

hypothesis; see Rubin 1980). Let vi denote the response

measured for subject i after it was administered the treat-

ment to which it was assigned. Given subjects with covari-

ates w11 0 0 0 1wn, the test we propose is as follows:

1. Find an optimal assignment of these to two groups (per-

muting randomly):

8i11 0 0 0 1 in/29 and 8in/2+11 0 0 0 1 in90

2. Administer treatments and measure responses vi, which

are henceforth fixed.

3. Compute

�= 1

k
4vi1 + · · ·+ vin/25−

1

k
4vin/2+1

+ · · ·+ vin50

4. For b= 11 0 0 0 1B:

(a) Draw a random sample with replacement

wb111 0 0 0 1wb1n from w11 0 0 0 1wn.

(b) Find an optimal assignment of these to two groups

(permuting randomly):

8ib111 0 0 0 1 ib1n/29 and 8ib1n/2+11 0 0 0 1 ib1n90

(c) Compute

�b =
1

k
4vib11+ · · ·+ vib11n/25−

1

k
4vib1n/2+1

+ · · ·+ vib1n50

5. Compute the p-value

p= 1

1+B

(

1+
B
∑

b=1

	6��b�¾ ���7
)

0

Then, to test our null hypothesis at a significance of �, we
only reject it if p¶ �. The quantity � above constitutes our

estimate of the difference between the two treatments.

To examine the effect of optimization on making a con-

clusion about the treatments, we again consider the exam-

ple of a murine tumor study. We consider two groups, each

of k mice, with tumor weights initially normally distributed

with mean 200 mg and standard deviation 300 mg (trun-

cated to be nonnegative). Two treatments are considered:

a placebo and a proposed treatment. Their effect on the

tumor, allowed to grow for a period of a day, is of interest

to the study.

The effects of treatment and placebo are unknown and

are to be inferred from the experiment. We consider a hid-

den reality where the growth of the tumors is dictated by

the Gomp-ex model of tumor growth (see Wheldon 1988).

That is, growth is governed by the differential equation:

dw

dt
=w4t5

(

a+max801 b log4wc/w4t559
)

1

where a and b are rate parameters and wc is the criti-

cal weight that marks the change between exponential and

logistic growth. We arbitrarily choose a = 141/day5, b =
541/day5, wc = 400 mg, and t = 1 day. We pretend that

tumors under either treatment grow according to this equa-

tion, but subtract �0 from the final weights for the proposed

treatment. We consider �0 being 0 mg (no effect), 50 mg

(small effect), and 250 mg (large effect).

For various values of k and for several draws of ini-

tial weights, we consider assignments produced by ran-

domization, our optimization approach (�= 005), pairwise
matching, and re-randomization. We consider both the post-

treatment estimate of the effect and the inference drawn on

it at a significance of � = 0005, using our bootstrap test

for our method and the standard randomization test for the

others.4. In Figure 5 we plot the resulting estimates for

k= 20 and in Figure 6 we plot the rates at which the null

hypothesis is rejected. When there is no effect, this rate

should be no more than the significance �= 0005.5 When

there is an effect, we would want the rate to be as close

to 1 as possible. In a sense, the complement of this rate

is the fraction of experiments squandered in pursuit of an

effective drug. The cost-saving benefits of optimization in

this case are clear.

The exact improvements in precision and power depend

on the nature of treatment effect. However, comparisons to

existing methods are possible. Morgan and Rubin (2012)

study reduction in variance due to re-randomization only

under the additive treatment model, a very restrictive

assumption. In this setting, when setting � = 0, the same

analysis as provided in their Theorem 3.2 provides that

the reduction in variance provided by en-masse optimiza-

tion is exponentially better because the reduction in mean

mismatch is exponentially better. Nonetheless, treatment

effects usually do depend, albeit perhaps to a lesser extent,

on higher orders of the covariates and on their interactions.
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Figure 5. The distribution of estimates of effect size under optimization (red) and randomization (blue) for k= 20 and

effect sizes 0 mg, 50 mg, and 250 mg (dashed lines).

–200   200   400  0

Note. The overlap of estimates under randomization of the nonzero effects and of the zero effect elucidate the low statistical power of randomization in
detecting the nonzero effects.

Figure 6. The probability of rejecting the null hypothesis of no effect for various effect sizes.

�   �    �   



    

In Tables 2 and 3 we saw that optimization balances higher

and interaction moments no worse than other methods (bet-

ter for second moments).

7. Practical Significance

Here we present evidence that optimization produces

groups that are far more similar in mean and variance

than those created by randomization, especially in situa-

tions in which group size is small, data variability is large,

and numerous groups are needed for a single experiment.

For each additional subject per group, optimization roughly

halves the discrepancy in the covariate, whereas both ran-

domization and subject-pair matchings offer quickly dimin-

ishing reductions. Making groups similar before treatment

allows for statistical power beyond what can normally be

hoped for with small samples.

We propose that optimization protects against experi-

mental biases at least as well as randomization and that the

advantage of optimized groups over randomized groups is

substantial. We believe that optimization of experimental

group composition, implementable on commonplace soft-

ware such as Microsoft Excel and on commercial math-

ematical optimization software, is a practical and desir-

able alternative to randomization; it can improve experi-

mental power in numerous fields, such as cancer research,

neurobiology, immunology, investment analysis, market

research, behavioral research, proof-of-concept clinical

trials, and others.
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Endnotes

1. The work of Morgan and Rubin (2012) can be seen as formal-

izing and reinterpreting the common informal practice of cherry-

picking from several randomizations as a principled heuristic

method for matching.

2. Simulation is used to glean kopt for these values of �, for which

the asymptotic predictions yield overestimates. Simulation also

shows that for FSM, kFSM ≈ kRand.

3. The correctness of modeling using potential outcomes is con-

tingent on the stable unit treatment value assumption. See Rubin

(1986).

4. For non-completely-randomized designs, the randomization

test draws random re-assignments according to the method used

at the onset. See Eddington and Onghena (2007, Chapter 10).

5. The fact that for our bootstrap test this rate is below 0005 may

be an indication that the test is conservative, i.e., more significant

than designed. Nonetheless, despite such conservatism, the test is

still more powerful than the other tests.
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