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ABSTRACT

Conducting pairwise comparisons is a widely used approach
in curating human perceptual preference data. Typically
raters are instructed to make their choices according to a
specific set of rules that address certain dimensions of im-
age quality and aesthetics. The outcome of this process is
a dataset of sampled image pairs with their associated em-
pirical preference probabilities. Training a model on these
pairwise preferences is a common deep learning approach.
However, optimizing by gradient descent through mini-batch
learning means that the “global” ranking of the images is not
explicitly taken into account. In other words, each step of
the gradient descent relies only on a limited number of pair-
wise comparisons. In this work, we demonstrate that regu-
larizing the pairwise empirical probabilities with aggregated
rankwise probabilities leads to a more reliable training loss.
We show that training a deep image quality assessment model
with our rank-smoothed loss consistently improves the accu-
racy of predicting human preferences.

1. INTRODUCTION

Perceptual image quality assessment is an integral part of any
imaging application. Although modeling human perceptual
preferences is a challenging task, recent advances in deep
learning with convolutional neural networks (CNNs) has re-
sulted in accurate quality prediction methods. Typically, these
methods rely on human perceptual ratings as ground truth la-
bels, and train a CNN to predict the human perceptual prefer-
ences [1, 2]. Generically, these labels are obtained from sub-
jective studies, where human raters are asked to evaluate a
single image [3, 4] (a.k.a single stimulus), or perform a pair-
wise comparison [5, 6].

Mantiuk et al. [7] studied four common methods for subjec-
tive image quality assessment, and concluded that the forced-
choice pairwise comparison is the most accurate and efficient
method. This conclusion was drawn based on analysis of vari-
ance and statistical testing. In a forced-choice pairwise com-
parison study, human raters are asked to compare two images
based on a specific quality component (blur, noise, exposure,
compression artifacts, composition, etc.), or overall aesthetics
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Fig. 1: Proposed framework for learning from pairwise compar-
isons. The subjective study results in empirical preferences plocal

ij that
represent preference of image i over image j. We use rank aggrega-
tion method to approximate global probabilities pglobal

ij that take into
account the overall ranking of image i and image j. We propose to
train a CNN with a combo cross-entropy loss.

and beauty. On the downside, performing forced-choice pair-
wise comparisons requires a large number of trials. To be ex-
act, for N images, all possible pair combinations amounts to
N(N − 1)/2. In practice, when N is large, only a small frac-
tion of all possible pairs are rated. As shown by Silverstein
et al. [8], by sorting the data with a pilot method before per-
forming pairwise comparison study, fewer pairs are needed to
reliably rank the data. However, the main shortcoming of this
approach is that a pilot quality predictor is necessary to sort
the data prior to conducting the user study.

Ranking items after obtaining their pairwise comparisons
has been studied extensively [9–11]. In addition to finding
the ranking, obtaining a score (as intensity of the preference)
for each item can be useful in various applications. Huang et
al. [10] solve a convex minimization problem for their group
comparison results. More recently, Negahban et al. [11] pro-
pose an algorithm (called Rank Centrality) with a random
walk interpretation over the graph of items with edges be-
tween compared items. It turns out that the rank scores are
the stationary probability of this random walk.

Recent quality prediction approaches based on pairwise
comparisons use mini-batches of image pairs and gradually
learn the global scoring via gradient descent [12]. Yet, this
framework neglects the global ordering of the images during
training. In this paper we take advantage of both pairwise (lo-
cal) and rankwise (global) preferences to train a perceptual
quality assessment model. Our framework is shown in Fig. 1.
Our training data consists of pairwise comparisons of images.
We use the weight sharing technique to train a CNN [2, 13]
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with a novel combo loss, which we call rank-smoothed loss.
Our loss combines the local preferences as well as the global
ones obtained via Rank Centrality [11] in an elegant manner,
and leads to a more improved model than just using one of the
preferences. In the following, we first describe learning from
pairwise comparisons, and then explain our proposed method.

2. LEARNING FROM PAIRWISE COMPARISONS

Given N items, the pairwise comparions are generally col-
lected via human evaluators on a subset of all possible pairs of
items, denoted by P . For a pair (i, j) ∈ P , the pairwise com-
parison is repeated multiple times across different evaluators
and the aggregate information is given in the form (nij , nji)
where nij denotes the total number of times that item i is pre-
ferred over item j. This aggregate information is then used to
define

plocal
ij =

nij

nij + nji
, (1)

which corresponds to the maximum-likelihood estimate of the
Bernoulli random variable that picks item i over j. Note that
this probability is independent of all the remaining items k ∈
[N ], k �= i, j.

RankNet [14] is perhaps the most commonly used approach
for learning to rank from pairwise comparisons. The idea be-
hind RankNet is to train a network to extract a better repre-
sentation for the items that reflects the information provided
by the pairwise comparisons. More technically, let X ∈ R

d

denote the domain of the input items and let xi,xj ∈ X de-
note the input representation for the pair of items (i, j) ∈ P .
In RankNet, a network fΘ : X → R (parameterized by Θ) is
used to extract the scores si = fΘ(xi) and sj = fΘ(xj) for
items i and j, respectively. Next, the probability of preferring
i over j is defined as

qij :=
exp(si − sj)

1 + exp(si − sj)
=

exp(si)

exp(si) + exp(sj)
. (2)

Thus, si, sj ∈ R can be viewed as logits in a binary logis-
tic regression problem and si > sj indicates that item i is
preferred over item j more often, resulting in a higher qij
probability.

The predicted preference probability qij is then compared
to the empirical probability plocal

ij via the cross entropy loss,
C local

ij := −plocal
ij log(qij) − (1 − plocal

ij ) log(1 − qij) , and the
total loss of the training is defined as sum of the cross entropy
losses over the set of pairwise comparisons,

L(Θ| P) :=
∑

(i,j)∈P
C local

ij . (3)

Although RankNet [14] can be applied to complete or in-
complete comparisons (where plocal

ij is not available for every
i, j pair), its main drawback is that at each step of the gradi-
ent descent when minimizing L(Θ| P), only a mini-batch of

pairwise comparisons are taken into account. This may lead
to sub-optimal learning solutions, especially in the presence
of noise in the data-collection process. We show that regular-
izing (or smoothing) L(Θ| P) with an approximation of the
global ranking significantly improves this shortcoming. Next,
we discuss the Rank Centrality method for approximating the
global ranking.

2.1. Proposed method

In order to incorporate the global ordering information of the
items into the learning problem, we propose minimizing the
following objective function instead:

L(Θ| P) :=
∑

(i,j)∈P

(
αC local

ij + (1− α)Cglobal
ij

)
, (4)

where Cglobal
ij := −pglobal

ij log(qij) − (1 − pglobal
ij ) log(1 − qij)

is the cross entropy divergence between the global pairwise
comparison probability pglobal

ij (defined later) and qij . The pa-
rameter 0 ≤ α ≤ 1 controls the trade-off between the local
(empirical) loss and the global loss and the choice of α = 1
reduces to the empirical pairwise comparison loss (3). The
probability pglobal

ij should effectively reflect the pairwise pref-
erence of i over j while maintaining information about the
ordering of all the remaining items. Note that now the mini-
mizer of the loss (4) over the predicted preference probabili-
ties corresponds to

q�ij = αplocal
ij + (1− α) pglobal

ij , (i, j) ∈ P . (5)

In order to aggregate the information provided in the pairwise
comparisons between the pairs of items P into a single global
ordering among all items, we explore the idea of Rank Cen-
trality proposed in [11].

The Rank Centrality method is based on the Bradley-Terry-
Luce (BTL) model for comparative judgment in which a pos-
itive weight ωi > 0 is associated with each item i ∈ [N ]
such that ωi reflects the importance (or quality) of the item.
Let ω ∈ R

N
>0 denote the weight vector associated with all

the items. For a given pair of distinct items i, j ∈ [N ], the
expected probability of preferring i over j is defined as

pij :=
ωi

ωi + ωj
. (6)

Note that ωi > ωj indicates a higher probability of preference
of i over j. Thus, an ordering based on the actual ω values
reflects the optimal expected ranking among the items. As-
suming the the pairwise comparison are drawn according to
the BTL model, then plocal

ij becomes an unbiased estimator of
pij , i.e. pij = E[plocal

ij ] where the expectation is w.r.t. the set of
Bernoulli random variables corresponding to the outcomes of
the comparisons.

In order to estimate the weights ω (up to a constant scale),
the Rank Centrality algorithm utilizes the pairwise compari-
son information among the pairs of items in P to construct a
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Effect of nt on α Effect of nt on β Effect of r on α Effect of r on β

(a) (b) (c) (d)
Fig. 2: Experiments on the synthetic data: effect of varying number of trials nt on the optimum (a) α (fixed β = 1), and (b) β (fixed
α = 0.2), effect of varying the ratio of compared pairs r on the optimum (c) α (fixed β = 1), and (d) β (fixed a = 0.25). The minimum
value of each curve is marked with ×. The error bars are not shown to avoid clutter. Best viewed in color.

Markov chain transition matrix Π where

Πij =

{
1

dmax(i)
plocal
ij i �= j

1− 1
dmax(i)

∑
k: (i,k)∈P plocal

ik i = j
,

in which, dmax(i) denotes the maximum out-degree of node
i. It has been shown in [11] that the stationary distribution
of the chain Π, denoted by π ∈ R

n
>0, approximates the dis-

tribution induced by the normalized BTL weights ω, that is,
πi ≈ ωi∑

j ωj
. Thus, the ordering induced by the stationary

distribution π approximates the ordering induced by the un-
derlying weights ω. The results of [11] suggest that π can
be used as a proxy for the actual BTL weights ω. Thus, we
define

pglobal
ij :=

πi

πi + πj
, (7)

Similarly, assuming a BTL model over the items, it can be
shown that pglobal

ij is also an unbiased estimator of pij , i.e.
pij = E[pglobal

ij ], where the expectation is taken over the set
of pairwise comparisons P and the outcomes. As a result,
q�ij defined in (5) remains an unbiased estimator of the true
expected probabilities pij .

2.2. β-smoothing

In many applications such as word embedding, smoothing the
estimated probabilities of the items results in an improved
performance [15]. Inspired by these approaches, we replace
the global probabilities (7) with a β-smoothed version with
parameter β ≥ 0 as follows

pglobal
ij :=

πβ
i

πβ
i + πβ

j

. (8)

Note that β = 0 yields pglobal
ij = 1/2 which corresponds to a

uniform distribution (i.e. ω = 1/N 1) over the items. Addi-
tionally, β = 1 corresponds to an identity mapping and values
of β > 1 yield skewed distributions towards popular items.

3. EXPERIMENTAL RESULTS

In this section we explore the efficacy of the proposed rank-
smoothed approach on synthesized as well as real subjective
study data.

3.1. Synthetic Data

We investigate the effect of the parameters (α, β) on a syn-
thetic dataset in different scenarios. We consider pairwise
comparisons on a set of N = 500 items for which the BTL
weights are drawn from a power-law distribution P (ω) ∝ ωγ

where ωmin = 0.1 and γ = 2. In each experiment, we ran-
domly compare a certain ratio of the total pairs, denoted by r,
and compare each pair nt = nij + nji times according to the
BTL model (6). As the performance measure for the pair of
parameters (α, β), we report

error(α, β) =
∑

(i,j)∈P
pij log

pij
q�ij

− pij + q�ij ,

which corresponds to the generalized Kullback–Leibler diver-
gence between the true pairwise probabilities pij in (6) and
the predicted probabilities q�ij given in (5). We report the av-
erage result over 10 trials. Note that finding the optimal (α, β)
for a given problem should be considered as a joint optimiza-
tion. However, we consider a simple case where we fix one
parameter and optimize the other. That is, we optimize for α
for a fixed value of β and vice versa.

3.1.1. Effect of number of trials nt

For a fixed ratio of compared pairs r = 0.15, we in-
vestigate the effect of varying the total number of trials
per pair nt on the parameters (α, β). We consider nt ∈
{3, 5, 10, 20, 50, 100}. First, we fix β = 1 and calculate
error(α, β) for different values of α ∈ [0, 1]. The result is
shown in Fig. 2(a). As can be seen from the figure, the model
tends to favor larger values of α (i.e. the empirical proba-
bilities rather than the smoothed ones). This observation is
consistent with the fact that the variance of nt Bernoulli trials
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Fig. 3: Accuracy of predicting the majority votes for our subjec-
tive study against the parameter α in Eq. 4, and various smoothing
parameters β in Eq. 8. The accuracy values are averaged for 10
training realizations.

goes down as 1/nt. Thus, the empirical probabilities plocal
ij be-

come more accurate estimates of the actual probabilities pij .
Next, we fix α = 0.2 and vary the value of β in the range

[0.5, 1.2]. The results are shown in Fig. 2(b). Note that the
optimal value of β approaches 1 as the number of trials nt

increases. In other words, as the empirical probabilities plocal
ij

become better estimates of pij , the quality of pglobal
ij also im-

proves and thus, less smoothing is required.

3.1.2. Effect of ratio of compared pairs r

We also explore the effect of varying the ratio of com-
pared pairs r on the parameters (α, β). We consider r ∈
{0.15, 0.35, 0.55, 0.75, 0.95}. First, we fix β = 1 and vary
the value of α in the range [0, 1]. The results are shown in
Fig. 2(c). As can be seen from the figure, for larger values of
r, the stationary distribution π of the rank-centrality method
becomes a better approximate of the actual BTL weights, thus
smaller values of α are preferred.

Next, we fix α = 0.25 and vary β in the range [0.9, 1].
The results are shown in Fig. 2(d). Again, larger values of r
results in better estimates of the true probabilities pij . Thus,
less smoothing is required. Note that for the fix α = 0.25,
the minimum error value tends to increase with r. This is due
to the fact that the optimum pair (α, β) needs to be jointly
optimized for each r, rather than fixing α and optimizing β.

3.2. Subjective Study

Our dataset consists of a quarter million images donated from
Google Photos users. We obtained the necessary permission
to use the data in our experimentation, however, we are not
allowed to present the image pixels in this paper.

Our subjective study is focused on determining two main
qualities of images; sharpness and exposure. In our forced-
choice study, we asked raters to ignore image content, and
try to compare images based on blurriness and lighting con-
dition. Each image is randomly paired with 24 other images
from our dataset. This results in nearly 3 million unique ques-
tions. We collected a total of 17 million answers, where each

Fig. 4: Examples from LIVE dataset [4]. First score shows our
prediction, and score in parenthesis represents the mean raters score
from LIVE dataset. Note that higher score means better quality.

unique question is answered by at least 5 different human
raters. Agreement among raters is 51% for 5 to 0 votes, 26%
for 4 to 1 votes, and 23% for 3 to 2 votes.

As our CNN model, we use Inception-v2 [16], and replace
its last layer with a spatial pyramid pooling layer [17] and a
fully connected layer. We initialize the CNN weights from
NIMA model [2]. The weight and bias momentums are set
to 0.9, and the learning rate is set to 0.001. Also, after each
epoch of training with mini batch of size 128, an exponential
decay with decay factor 0.9 is applied to all learning rates.
The model is trained for 10 epochs.

We train the CNN by weight sharing with the proposed loss
in (4). Our model is trained on 95% of the curated dataset,
and tested on the remaining pairs. To quantify performance of
the model, accuracy of predicting the majority vote for each
test pair is measured in Fig. 3. As can be seen, the optimal
blending parameter α happens near 0.5. Note that α = 0
corresponds to relying on the global ranking, and it leads to
the lowest accuracy. An interesting observation is that even
a small α improves the performance. We also tried various
values for the smoothing parameter β as in Eq. (8). The best
result correspond to α = 0.5 and β = 0.95.

We present results from our model on the LIVE dataset [4]
in Fig. 4. Although our model is not trained on LIVE dataset,
we still obtain a linear correlation of 0.71 with LIVE human
ratings. It is worth mentioning that since our data was curated
to assess blur and exposure, as it can be seen in Fig. 4, our
model is appropriately sensitive to blur and exposure changes.

4. CONCLUSIONS

In this paper we presented a novel approach for learning from
pairwise comparisons obtained form subjective studies. Pro-
posed approach does not impose any extra computation at in-
ference, and only requires adjustments in the learning loss.
We showed that regularizing the empirical pairwise compar-
isons with global ranking results in more accurate quality as-
sessment models. Our approach was tested on generic syn-
thesized data, implying that it can be employed beyond the
scope of image quality assessment.

���


Authorized licensed use limited to: Auckland University of Technology. Downloaded on October 06,2020 at 10:57:00 UTC from IEEE Xplore.  Restrictions apply. 



5. REFERENCES

[1] Jongyoo Kim, Hui Zeng, Deepti Ghadiyaram, Sanghoon Lee,
Lei Zhang, and Alan C Bovik, “Deep convolutional neural
models for picture-quality prediction: Challenges and solu-
tions to data-driven image quality assessment,” IEEE Signal
Processing Magazine, vol. 34, no. 6, pp. 130–141, 2017.

[2] Hossein Talebi and Peyman Milanfar, “NIMA: Neural image
assessment,” IEEE Transactions on Image Processing, vol. 27,
no. 8, pp. 3998–4011, 2018.

[3] Naila Murray, Luca Marchesotti, and Florent Perronnin, “Ava:
A large-scale database for aesthetic visual analysis,” in 2012
IEEE Conference on Computer Vision and Pattern Recogni-
tion. IEEE, 2012, pp. 2408–2415.

[4] Deepti Ghadiyaram and Alan C Bovik, “Massive online
crowdsourced study of subjective and objective picture qual-
ity,” IEEE Transactions on Image Processing, vol. 25, no. 1,
pp. 372–387, 2015.

[5] Nikolay Ponomarenko, Vladimir Lukin, Alexander Zelen-
sky, Karen Egiazarian, Marco Carli, and Federica Battisti,
“TID2008-A database for evaluation of full-reference visual
quality assessment metrics,” Advances of Modern Radioelec-
tronics, vol. 10, no. 4, pp. 30–45, 2009.

[6] Nikolay Ponomarenko, Lina Jin, Oleg Ieremeiev, Vladimir
Lukin, Karen Egiazarian, Jaakko Astola, Benoit Vozel, Kacem
Chehdi, Marco Carli, Federica Battisti, et al., “Image database
TID2013: Peculiarities, results and perspectives,” Signal Pro-
cessing: Image Communication, vol. 30, pp. 57–77, 2015.

[7] Rafał K Mantiuk, Anna Tomaszewska, and Radosław Mantiuk,
“Comparison of four subjective methods for image quality as-
sessment,” in Computer graphics forum. Wiley Online Library,
2012, vol. 31, pp. 2478–2491.

[8] D Amnon Silverstein and Joyce E Farrell, “Efficient method
for paired comparison,” Journal of Electronic Imaging, vol.
10, no. 2, pp. 394–399, 2001.

[9] Otto Dykstra, “Rank analysis of incomplete block designs: A
method of paired comparisons employing unequal repetitions
on pairs,” Biometrics, vol. 16, no. 2, pp. 176–188, 1960.

[10] Tzu-Kuo Huang, Chih-Jen Lin, and Ruby C Weng, “Rank-
ing individuals by group comparisons,” Journal of Machine
Learning Research, vol. 9, no. Oct, pp. 2187–2216, 2008.

[11] Sahand Negahban, Sewoong Oh, and Devavrat Shah, “Iterative
ranking from pair-wise comparisons,” in Advances in neural
information processing systems, 2012, pp. 2474–2482.

[12] Kede Ma, Wentao Liu, Tongliang Liu, Zhou Wang, and
Dacheng Tao, “dipIQ: Blind image quality assessment by
learning-to-rank discriminable image pairs,” IEEE Transac-
tions on Image Processing, vol. 26, no. 8, pp. 3951–3964,
2017.

[13] Hossein Talebi and Peyman Milanfar, “Learned perceptual im-
age enhancement,” in 2018 IEEE International Conference on
Computational Photography (ICCP). IEEE, 2018, pp. 1–13.

[14] Christopher Burges, Tal Shaked, Erin Renshaw, Ari Lazier,
Matt Deeds, Nicole Hamilton, and Gregory N Hullender,
“Learning to rank using gradient descent,” in Proceedings

of the 22nd International Conference on Machine learning
(ICML-05), 2005, pp. 89–96.

[15] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean, “Distributed representations of words and
phrases and their compositionality,” in Advances in neural in-
formation processing systems, 2013, pp. 3111–3119.

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna, “Rethinking the innception ar-
chitecture for computer vision,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016,
pp. 2818–2826.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Spatial pyramid pooling in deep convolutional networks for
visual recognition,” IEEE transactions on pattern analysis and
machine intelligence, vol. 37, no. 9, pp. 1904–1916, 2015.

����

Authorized licensed use limited to: Auckland University of Technology. Downloaded on October 06,2020 at 10:57:00 UTC from IEEE Xplore.  Restrictions apply. 


