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Abstract

In the context of capture-recapture studies, Chao (1987) derived an inequality among capture frequency

counts to obtain a lower bound for the size of a population based on individuals’ capture/non-capture

records for multiple capture occasions. The inequality has been applied to obtain a non-parametric

lower bound of species richness of an assemblage based on species incidence (detection/non-detection)

data in multiple sampling units. The inequality implies that the number of undetected species can be

inferred from the species incidence frequency counts of the uniques (species detected in only one

sampling unit) and duplicates (species detected in exactly two sampling units). In their pioneering pa-

per, Colwell and Coddington (1994) gave the name “Chao2” to the estimator for the resulting species

richness. (The “Chao1” estimator refers to a similar type of estimator based on species abundance

data). Since then, the Chao2 estimator has been applied to many research fields and led to fruitful

generalizations. Here, we first review Chao’s inequality under various models and discuss some re-

lated statistical inference questions: (1) Under what conditions is the Chao2 estimator an unbiased

point estimator? (2) How many additional sampling units are needed to detect any arbitrary proportion

(including 100%) of the Chao2 estimate of asymptotic species richness? (3) Can other incidence fre-

quency counts be used to obtain similar lower bounds? We then show how the Chao2 estimator can be

also used to guide a non-asymptotic analysis in which species richness estimators can be compared

for equally-large or equally-complete samples via sample-size-based and coverage-based rarefaction

and extrapolation. We also review the generalization of Chao’s inequality to estimate species richness

under other sampling-without-replacement schemes (e.g. a set of quadrats, each surveyed only once),

to obtain a lower bound of undetected species shared between two or multiple assemblages, and to

allow inferences about undetected phylogenetic richness (the total length of undetected branches of a

phylogenetic tree connecting all species), with associated rarefaction and extrapolation. A small empir-

ical dataset for Australian birds is used for illustration, using online software SpadeR, iNEXT, and PhD.
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1. Introduction

Thirty years ago, Chao (1987) developed an inequality among capture frequency counts

to obtain a lower bound of population size based on individuals’ capture/non-capture

records in multiple-stage, closed capture-recapture studies. An earlier version of Chao’s

inequality and the corresponding lower bound (Chao, 1984) estimated the number of

classes under a classic occupancy problem. Those inequalities and lower bounds were

derived for their pure mathematical interest, as the models are simple and elegant, and

also for their statistical interest, because these inequalities can be used to make infer-

ence about the richness of the undetected portion of a biological assemblage based on

incomplete data.

In the first decade after their publication, these Chao-type lower bounds were rarely

applied in other disciplines. In 1994, Colwell and Coddington published a seminal paper

on estimating terrestrial biodiversity through extrapolation. They applied both of Chao’s

formulas (1984, 1987) to estimate species richness, because there is a simple analogy

between the incidence data in species richness estimation for a multiple-species assem-

blage and the capture-recapture data in population size estimation for a single species.

Chao (1984) had suggested that her occupancy-based estimator might be applied to es-

timating species richness, and offered examples of its application to capture-recapture

data, the focus of Chao (1987). Colwell and Coddington distinguished two types of data:

individual-based abundance data (counts of the number of individuals of each species

within a single sampling unit) and multiple sampling-unit-based incidence data (counts

of occurrences of each species among sampling units). They gave the name “Chao1”

to the estimator of species richness specifically for abundance data, based on the Chao

(1984) formula, and the name “Chao2” for incidence data based on the Chao (1987) for-

mula. Colwell also featured these two estimators along with others in the widely used

software EstimateS (Colwell, 2013; Colwell and Elsensohn, 2014). Since then, both the

Chao1 and Chao2 estimators have been increasingly applied to many research fields, not

only in ecology and conservation biology, but also in other disciplines; see Chazdon et

al. (1998), Magurran (2004), Chao (2005), Gotelli and Colwell (2011), Magurran and

McGill (2011), Gotelli and Chao (2013) and Chao and Chiu (2016) for various applica-

tions. Chao’s inequalities also led to numerous generalizations under different models

or frameworks; some closely related generalizations were accomplished by Mao (2006,

2008), Mao and Lindsay (2007), Rivest and Baillargeon (2007), Pan, Chao and Foiss-

ner (2009), Böhning and van der Heijden (2009), Lanumteangm and Böhning (2011),

Böhning et al. (2013), Mao et al. (2013), Chiu et al. (2014), and Puig and Kokonendji

(2017). In addition to EstimateS, these two estimators have now been included in other

software and several R packages in CRAN (e.g. packages Species, Specpool, entropart,

fossil, SpadeR, iNEXT, among others).

During the past 30 years, Chao and her students and collaborators have developed a

number of population size and species richness estimators based on several other statis-

tical models, including Chao and Lee’s (1992) abundance- or incidence-based coverage
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estimators (ACE and ICE, two names bestowed by Chazdon et al., 1998), martingale

estimators, estimating-function estimators, maximum quasi-likelihood estimators, and

Horvitz-Thompson-type estimators; see Chao (2001) and Chao and Chiu (2016) for a

review. These developments are more complicated and mathematically sophisticated

than the estimators derived from Chao’s inequalities. Surprisingly, it turns out that the

earliest and simplest estimators are the most useful ones for biological applications.

In this paper, we mainly focus on Chao’s (1987) inequality and its subsequent devel-

opments for multiple incidence data. For both practical and biological reasons, record-

ing species detection/non-detection in multiple sampling units is often preferable to enu-

merating individuals in a single sampling unit (abundance data). For microbes, clonal

plants, and sessile invertebrates, individuals are difficult or impossible to define. For

mobile organisms, replicated incidence data are less likely to double-count individuals.

For social animals, counting the individuals in a flock, herd, or school may be difficult

or impractical. Also, replicated incidence data support statistical approaches to rich-

ness estimation that are just as powerful as corresponding abundance-based approaches

(Chao et al., 2014b). Moreover, a further advantage is that replicated incidence records

account for spatial (or temporal) heterogeneity in the data (Colwell et al., 2004, 2012).

In Sections 2.1 and 2.2, we first review the general model formulation for incidence

data and the Chao (1987) inequality. Three related statistical inference problems are

discussed:

1. In Section 2.3, we ask under what conditions the Chao2 estimator is an unbiased

point estimator. Chao et al. (2017) recently provided an intuitive answer to this

question for abundance data, from a Good-Turing perspective. Here we use a

generalization of the Good-Turing frequency formula to answer the same question

for incidence data.

2. In Section 2.4, we ask how many additional sampling units are needed to detect

any arbitrary proportion (including 100%) of the Chao2 estimate. The Chao2

species richness estimator does not indicate how much sampling effort (additional

sampling units) would be necessary to answer the question. Here we review the

solution proposed by Chao et al. (2009).

3. In Section 2.5, we review approaches that use other incidence frequency counts

to obtain similar-type lower bounds. In Chao’s (1987) formula, the estimator for

the number of undetected species is based only on the frequency counts of the

uniques (species detected in only one sampling unit) and duplicates (species de-

tected in exactly two sampling units). Lanumteangm and Böhning (2011), Chiu

et al. (2014), Puig and Kokonendji (2017) made advances by extending Chao’s

inequality to use higher-order incidence frequency counts. Here we mainly review

Puig and Kokonendji’s (2017) extension, which leads to a series of lower bounds

for species richness. Their framework was based mainly on abundance data, but it

can be readily applied to multiple incidence data.
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In Section 3, we show that, no matter whether the Chao2 formula is unbiased or bi-

ased low, it can always be used to guide a non-asymptotic analysis in which a species

richness estimator can be compared for equally-large samples (based on a common

number of sampling units) or equally-complete samples (based on a common value

of sample completeness, as measured by coverage; see later text). Sample-size-based

and coverage-based rarefaction and extrapolation provide a unified sampling approach

to fairly comparing species richness across assemblages.

In the subsequent three sections we review three generalizations of Chao’s inequal-

ity to estimate species richness under other sampling schemes (Section 4), to estimate

shared species richness between two or multiple assemblages (Section 5), and also to

make inferences about phylogenetic diversity, which incorporates species evolutionary

history (Section 6). The next three paragraphs introduce these generalizations.

Chao’s original inequality was developed under the assumption that sampling units

are assessed with replacement. When sampling is done without replacement, e.g. qua-

drats or time periods are not repeatedly selected/surveyed, or mobile species are col-

lected by lethal sampling methods, suitable modification is needed. In Section 4, we

review the modifications developed by Chao and Lin (2012).

Compared with estimating species richness in a single assemblage, the estimation of

shared species richness, taking undetected species into account, has received relatively

little attention; see Chao and Chiu (2012) for a review. For two assemblages, shared

species richness plays an important role in assessing assemblage overlap and forms a

basis for constructing various types of beta diversity and (dis)similarity measures, such

as the classic Sørensen and Jaccard indices (Colwell and Coddington, 1994; Magurran,

2004; Chao et al., 2005, 2006; Jost, Chao and Chazdon, 2011; Gotelli and Chao, 2013).

In Section 5, we review the work by Pan et al. (2009), who extended Chao’s inequality

to the case of multiple assemblages to obtain a lower bound of undetected species shared

between two or multiple assemblages.

A rapidly growing literature discusses phylogenetic diversity, which incorporates

evolutionary histories among species into diversity analysis (see Faith, 1992; Warwick

and Clarke, 1995; Crozier, 1997; Webb and Nonoghue, 2005; Petchey and Gaston, 2002;

Cadotte et al., 2009; Cavender-Bares, Ackerly and Kozak, 2012). The most widely used

phylogenetic metric is Faith’s (1992) PD (phylogenetic diversity), which is defined as

the sum of the branch lengths of a phylogenetic tree connecting all species in the target

assemblage. As shown by Chao et al. (2010, 2015), PD can be regarded as a measure of

phylogenetic richness, i.e. a phylogenetic generalization of species richness. Through-

out this paper, PD refers to Faith’s (1992) PD. When some species are present, but

undetected by a sample, the lineages/branches associated with these undetected species

are also missing from the phylogenetic tree spanned by the observed species. The unde-

tected PD in an incomplete sample was not discussed until recent years (Cardoso et al.,

2014; Chao et al., 2015). In Section 6, we review the phylogenetic version of Chao’s in-
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equality, developed recently by Chao et al. (2015), and the associated phylogenetic ver-

sion of the rarefaction/extrapolation approach.

In Section 7, a small empirical dataset for Australian birds is used for illustration

using online software, including Chao’s SpadeR, iNEXT, and PhD. Section 8 provides

discussion and conclusions. The diversity measures discussed in this review (species

richness, shared species richness, and PD) do not take species abundances into account.

We briefly discuss the extension of these measures to incorporate species abundances,

and refer readers to relevant papers. Major notation used in each section is shown in

Table 1.

2. Species richness estimation

2.1. A general framework: Sampling-unit-based incidence data and model

As indicated in the Introduction, Chao’s (1987) original inequality was formulated based

on a capture-recapture model to estimate the size of a population, but here we consider a

framework based on species incidence (detection/non-detection) data to estimate species

richness. These two statistical inference problems are equivalent. Assume that there are

S species indexed 1,2, . . . ,S in the focal assemblage, where S is the estimating target in

species richness estimation. Here we mainly consider the model developed by Colwell

et al. (2012) for multiple incidence data. Assume that there are T sampling units, and

that they are indexed 1,2, . . . ,T . The sampling unit is usually a trap, net, quadrat, plot, or

timed survey, and it is these sampling units, not the individual organisms, that are sam-

pled randomly and independently. The observed data consist of species detection/non-

detection in each sampling unit. In a typical spatial study, these sampling units are

deployed randomly in space within the area encompassing the assemblage. However, in

a temporal study of diversity, the T sampling units would be deployed in one place at

different independent points in time (such as an annual breeding bird census at a single

site).

For any sampling unit, the model assumes that the ith species has its own unique

incidence or detection probability πi that is constant among all randomly selected sam-

pling units. The incidence probability πi is the probability that species i is detected in a

sampling unit. Here
∑S

i=1πi will generally not be equal to unity.

The incidence records consist of a species-by-sampling-unit incidence matrix {Wi j;

i = 1,2, . . . ,S, j = 1,2, . . . ,T} with S rows and T columns; here Wi j = 1 if species i is

detected in sampling unit j, and Wi j = 0 otherwise. Let Yi be the number of sampling

units in which species i is detected, Yi =
∑T

j=1Wi j; here Yi is referred to as the sample

species incidence frequency. Species present in the assemblage but not detected in any

sampling unit yield Y = 0. See Section 6.1 for a hypothetical example and Appendices

A and B for real data. Details about these data are provided in subsequent sections.
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Table 1: Major notation used in each section.

Common notation and/or one-assemblage species richness estimation (Section 2)

S Number of species in an assemblage.

πi Detection or incidence probability of species i, i = 1,2, . . . , S in a sampling unit.

T Number of sampling units taken from an assemblage.

U Total number of incidences in T sampling units.

φr Mean detection probability of species that appeared in r sampling units, r = 0,1, . . . ,T .

Wi j Species detection/non-detection: Wi j = 1 if species i is detected in sampling unit j, and Wi j = 0

otherwise, i = 1,2, . . . ,S, j = 1,2, . . . ,T .

Sobs Number of observed species in T sampling units.

Yi Species incidence frequency (number of sampling units in which species i is detected).

Qk Number of species detected in exactly k sampling units in the data, k = 0,1, . . . ,T .

ˆ “Hat” above a parameter: an estimator of the parameter, e.g. Ŝ, π̂i and φ̂r denote, respectively,

estimators of S, πi and φr.

Rarefaction and extrapolation of one-assemblage species richness (Section 3)

C(T) Coverage for a reference sample of size T .

C(t) Coverage in a hypothetical rarefied sample of t sampling units if t < T .

C(T + t∗) Coverage in a hypothetical augmented sample of T + t∗ sampling units.

S(t) Expected number of species in a hypothetical rarefied sample of t sampling units if t < T .

S(T + t∗) Expected number of species in a hypothetical augmented sample of T + t∗ sampling units.

One-assemblage species richness under sampling without replacement (Section 4)

T ∗ Total number of sampling units in the entire assemblage (e.g. total number of disjoint, equal-

area quadrats in a region).

Ui Number of sampling units (or quadrats) that species i can be detected.

q Known sampling fraction, q = T/T ∗.

Two-assemblage shared species richness estimation (Section 5)

S12 Number of shared species between Assemblages I and II.

πi1, πi2 Detection or incidence probability of species i, i = 1,2, . . . ,S, in any sampling unit taken, re-

spectively, from Assemblages I and II.

T1, T2 Number of sampling units in Samples I and II taken, respectively, from Assemblages I and II.

Yi1, Yi2 Species incidence frequency (i.e. number of sampling units in which species i is detected),

respectively, in Samples I and II.

Qrv Number of shared species that are detected in r sampling units in Sample I and v sampling units

in Sample II, r, v = 0,1,2, . . . .

Qr+ Number of shared species that are detected in r sampling units in Sample I and that are detected

in at least one sampling unit in Sample II, r = 0,1,2, . . . , T1.

Q+v Number of shared species that are detected in v sampling units in Sample II and that are detected

in at least one sampling unit in Sample I, v = 0,1,2, . . . , T2.

Q++ Total number of observed species shared between Samples I and II.
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Table 1 (cont.): Major notation used in each section.

One-assemblage phylogenetic diversity (PD) Estimation (Section 6)

B Number of branches/nodes in the phylogenetic tree spanned by all species of an assemblage.

Li Length of the ith branch/node.

PD Sum of branch lengths in a phylogenetic tree.

λi Detection or incidence probability of branch/node i, i.e. the probability of detecting at least one

species descended from branch/node i in a sampling unit.

W ∗
i j Node detection/non-detection: W ∗

i j = 1 if at least one species descended from branch i is de-

tected in jth sampling unit, and W ∗
i j = 0 otherwise, i = 1,2, . . . , B, j = 1,2, . . . ,T .

PDobs PD in the observed tree.

Y ∗
i branch/node incidence frequency for branch/node i, i = 1,2, . . . ,B.

Rk Sum of branch lengths for the branches with node incidence frequency = k, k = 0,1, . . . , T .

Q∗
1, Q∗

2 Number of nodes/branches with incidence frequency = 1 and = 2, respectively, in the observed

tree.

Rarefaction and extrapolation of one-assemblage PD (Section 6 and Table 2)

PD(t) Expected PD in a hypothetical rarefied sample of t sampling units if t < T .

PD(T + t∗)Expected PD in a hypothetical augmented sample of T + t∗ sampling units.

Following Colwell et al. (2012), we assume, given the set of detection probabilities

(π1, π2, . . . ,πS), that each element Wi j in the incidence matrix is a Bernoulli random

variable with probability πi. The probability distribution for the incidence matrix can be

expressed as

P(Wi j = wi j; i = 1,2, . . . ,S, j = 1,2, . . . ,T ) =
T

∏
j=1

S

∏
i=1

π
wi j

i (1−πi)
1−wi j

=
S

∏
i=1

πyi
i (1−πi)

T−yi . (1a)

The marginal distribution for the incidence-based frequency Yi for the i-th species fol-

lows a binomial distribution characterized by T and the detection probability πi:

P(Yi = yi) =

(
T

yi

)
πyi

i (1−πi)
T−yi , i = 1,2, . . . ,S. (1b)

Denote the incidence frequency counts by (Q1, Q2, . . . ,QT ), where Qk is the number

of species detected in exactly k sampling units in the data, k = 0,1, . . . ,T . Here, Q1

represents the number of “unique” species (those that are detected in only one sampling

unit), and Q2 represents the number of “duplicate” species (those that are detected in

exactly two sampling units). The unobservable zero frequency count Q0 denotes the

number of species among the S species present in the assemblage that are not detected

in any of the T sampling units. Then the number of observed species in the sample is

Sobs =
∑

i>0 Qi and Sobs +Q0 = S.
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2.2. Chao’s inequality

Treating the incidence probabilities (π1, π2, . . . ,πS) as fixed, unknown parameters, we

first present Chao’s (1987) inequality under the model (1a) or (1b). Note the following

expected value for the incidence frequency count Qk:

E(Qk) = E

[
S∑

i=1

I(Yi = k)

]
=

S∑

i=1

(
T

k

)
πk

i (1−πi)
T−k, k = 0,1,2, . . . ,T, (1c)

where I(A) is the indicator function, i.e. I(A) = 1 if the event A occurs, and is 0 other-

wise. In particular, the expected number of undetected species, uniques and duplicates

are respectively:

E(Q0) =
S∑

i=1

(1−πi)
T ,

E(Q1) =
S∑

i=1

Tπi(1−πi)
T−1,

E(Q2) =
S∑

i=1

(
T

2

)
π2

i (1−πi)
T−2.

Chao (1987) proposed a lower bound of E(Q0) based on the following Cauchy-Schwarz

inequality:

[
S∑

i=1

(1−πi)
T

] [
S∑

i=1

π2
i (1−πi)

T−2

]
≥

[
S∑

i=1

πi(1−πi)
T−1

]2

, (2a)

equivalently,

E(Q0) ×
E(Q2)(

T

2

) ≥

(
E(Q1)

T

)2

.

Thus, a theoretical lower bound for E(Q0) is derived as

E(Q0)≥
(T −1)

T

[E(Q1)]
2

2E(Q2)
,

implying a theoretical lower bound for species richness:

S = E(Sobs)+E(Q0)≥ E(Sobs)+
(T −1)

T

[E(Q1)]
2

2E(Q2)
.
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Replacing the expected values in the above with the observed data, we then obtain an

estimated lower bound of species richness, with a slight modification when Q2 = 0

(Colwell and Coddington, 1994, gave the name Chao2 to this estimator):

ŜChao2 =





Sobs +
(T −1)

T

Q2
1

2Q2

, if Q2 > 0,

Sobs +
(T −1)

T

Q1(Q1 −1)

2
, if Q2 = 0.

(2b)

The estimated number of undetected species is based exclusively on the information

on the least frequent species (the number of uniques and duplicates). This is based on

a basic concept that the frequent/abundant species (those that occur in many sampling

units) carry negligible information about the undetected species; only rare/infrequent

species carry such information.

When does the Chao2 formula provide a nearly unbiased estimator? The Cauchy-

Schwarz inequality in Eq. (2a) becomes an equality if and only if the species detection

probabilities are homogeneous, that is, π1 = π2 = · · · = πS. Homogeneity of detection

probabilities would be a very restrictive condition, one that is almost never satisfied

in most practical applications, such as species abundance or incidence distributions in

nature. However, as we will show in Section 2.3, this condition can be considerably re-

laxed from a different derivation/perspective. Note that in Chao’s inequality (2a), only

three expected frequency counts are involved: E(Q0), E(Q1) and E(Q2). The frequent

species (species with relatively large detection probabilities) would tend to occur in

many sampling units and thus generally do not contribute to any of these three terms.

On the other hand, only rare/infrequent species (species with relatively low detection

probabilities) would either be undetected or detected in only one or two sampling units

and thus are those species that contribute to the three terms. Therefore, a relaxed condi-

tion for an unbiased Chao2 estimator is that very rare/infrequent species have approx-

imately the same detection probabilities, and frequent species are allowed to be highly

heterogeneous without affecting the estimates. A more rigorous justification is given in

Section 2.3.

Applying a standard asymptotic approach (Chao, 1987), the following estimated

variance estimators can be obtained if Q1, Q2 > 0:

v̂ar(ŜChao2) = Q2

[
1

4

(
T −1

T

)2(
Q1

Q2

)4

+

(
T −1

T

)2(
Q1

Q2

)3

+
1

2

(
T −1

T

)(
Q1

Q2

)2
]
,

(3a)

If Q1 > 0, Q2 = 0, the variance becomes

v̂ar(ŜChao2) =
1

4

(
T −1

T

)2

Q1(2Q1 −1)2 +
1

2

(
T −1

T

)
Q1(Q1 −1)−

1

4

(
T −1

T

)2
Q4

1

ŜChao2

.

(3b)
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In the special case that Q1 = 0, we have ŜChao2 = Sobs, implying that sampling is

complete and there are no undetected species in the data; an approximate variance of

Sobs can be obtained using an analytic method (Colwell, 2013) or a bootstrap method

(see Section 3.3). When Q1 > 0 so that ŜChao2 > Sobs, the distribution of ŜChao2 −Sobs is

generally skewed to the right. Using a log-transformation by treating log(ŜChao2 −Sobs)

as an approximately normal random variable, we obtain a 95% confidence interval for

S: (Chao, 1987)

[Sobs +(ŜChao2 −Sobs)/R, Sobs +(ŜChao2 −Sobs)R], (3c)

where R = exp{1.96[log(1+ v̂ar(ŜChao2)/(ŜChao2 −Sobs)
2)]1/2}. In this case, the result-

ing lower confidence limit is always greater than or equal to the observed species rich-

ness, a sensible result.

The Chao2 estimator is also valid in a binomial-mixture model in which incidence

probabilities (π1, π2, . . . ,πS) are assumed to be a random sample from an unknown dis-

tribution with density h(π). Under this model, we have

E(Qk) = S

1∫

0

(
T

k

)
πk(1−π)T−k h(π)dπ, k = 0,1,2, . . .T. (4a)

The summation terms in the Cauchy-Schwarz inequality (2a) are replaced by integral

terms:




1∫

0

(1−π)T h(π)dπ






1∫

0

π2(1−π)T−2h(π)dπ


≥




1∫

0

π(1−π)T−1h(π)dπ




2

. (4b)

The above two formulas also lead to the same Chao2 formula given in Eq. (2b). In

the special case that h(π) is a beta distribution with parameters α and β, the resulting

expected incidence-frequency count {E(Qk), k = 0,1,2, . . . ,n} correspond to the prob-

abilities of a beta-binomial distribution. Under the two conditions (i) T is large and π

is small, such that Tπ tends to a positive constant, and (ii) β/T tends to a positive con-

stant c, Skellam (1948) proved that E(Qk) tends to (α+ k − 1)![(α− 1)!k!]−1[1/(1+
c)]k[c/(1+ c)]α, which is the probability of a negative binomial variable taking the

value k. This result theoretically justifies the inference that Chao’s inequality is also

valid for beta-binomial and negative binomial distributions. It is well known that beta-

binomial and negative binomial can be used to describe spatially clustered (if sampling

units are quadrats in an area) or temporally aggregated (if sampling units are differ-

ent times) pattern of species; see Hughes and Madden (1993) and Shiyomi, Takahashi

and Yoshimura (2000). Therefore, even though there is spatial/temporal heterogeneity

pattern for species incidences, the lower bound and the associated estimation are still

valid.
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2.3. When is the Chao2 estimator nearly unbiased?

Alan Turing and I. J. Good, in their famous cryptanalysis to crack German ciphers dur-

ing World War II, developed novel statistical methods to estimate the true frequencies

of rare code elements (including still-undetected code elements), based on the observed

frequencies in “samples” of intercepted Nazi code. After the War, Turing gave per-

mission to Good to publish their statistical work. An influential paper by Good (1953)

and one by Good and Toulmin (1956) presented Turing’s wartime statistical work on

the frequency formula and related topics; see Good (1983, 2000) for more details. The

frequency formula is now referred to as the Good-Turing frequency formula, which has

a wide range of applications in biological sciences, statistics, computer sciences, infor-

mation sciences, and linguistics, among others (McGrayne, 2011, p. 100).

In an ecological context, Turing’s statistical problem can be formulated as an esti-

mation of the true frequencies of rare species when a random sample of individuals is

drawn from an assemblage. In Turing’s case, there were almost infinitely many rare

species so that all samples have undetected species. The Good-Turing formula answers

the following question: given a species that appears r times (r = 0,1,2, . . . ) in a sample

of n individuals that fails to detect all species present, what is its true relative frequency

in the entire assemblage? Turing and Good focussed on the case of small r, i.e. rare

species. Turing gave a surprisingly simple and remarkably effective answer that is con-

trary to most people’s intuition; see Chao et al. (2017) for a review.

The Good-Turing original frequency formula was based on abundance data. We here

extend their formula to incidence data to answer the following question: Given species

incidence data of T sampling units, for those species that appeared in r (r = 0,1,2, . . . )

out of T sampling units, what is the mean detection probability of species that appeared

in r sampling units, φr? Such a mean detection probability can be mathematically ex-

pressed as

φr =
S∑

i=1

πi I(Yi = r)/Qr, r = 0,1,2, . . . (5a)

The numerator in Eq. (5a) represents the total incidence probabilities of those species

that appeared in r sampling units. Dividing the total by Qr, we obtain the mean detection

probability per species, among those that each appeared in r sampling units. Note that,

for the special case of r = 0, Eq. (5a) implies

φ0Q0 =
S∑

i=1

πi I(Yi = 0), (5b)

which is the total detection probabilities of the undetected species. If one additional

sampling unit can be added, then we can interpret it as the expected number of species

in the additional sampling unit that are undetected in the original sample.

Here we derive the corresponding Good-Turing incidence frequency formula for

multiple incidence data by treating (π1, π2, . . . ,πS) as fixed, unknown parameters, al-
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though a similar derivation is also valid for binomial-mixture models. Under the model

(Eq. 1b), in which the incidence frequencies Yi, i = 1,2, . . . ,S, follow a binomial distri-

bution characterized by T and detection probability πi, we can express the sum of the

odds of πi for those species that each appeared in r sampling units as follows:

E

[
S∑

i=1

πi

1−πi

I(Yi = r)

]
=

S∑

i=1

πi

1−πi

(
T

r

)
πr

i (1−πi)
T−r

=
S∑

i=1

(
T

r

)
πr+1

i (1−πi)
T−(r+1)

=

(
T

r

)

(
T

r+1

)
[

S∑

i=1

(
T

r+1

)
πr+1

i (1−πi)
T−(r+1)

]

=
(r+1)

(T − r)
E(Qr+1). (5c)

Assume that all species that appeared in r sampling units have approximately the same

incidence probabilities. Then we have the following approximation formula:

E

[
S∑

i=1

πi

1−πi

I(Yi = r)

]
≈ Qr

φr

1−φr

.

Thus, φr can be obtained by solving the equation: Qrφr/(1−φr)≈ (r+1)Qr+1/(T −r),

based on Eq. (5c). We then obtain the corresponding Good-Turing formula for incidence

data:

φ̂r =
(r+1)Qr+1

(T − r)Qr +(r+1)Qr+1

≈
(r+1)Qr+1

(T − r)Qr

. (5d)

The original Good-Turing frequency formula for abundance data has a similar form

as the above approximation, but with incidence frequency counts being replaced by

abundance frequency counts.

Good (1983, p. 28) provided an intuitive justification for the abundance-based Good-

Turing frequency formula. Here we follow Good’s approach to give a similar justifica-

tion for incidence data. Given an original sample, consisting of T sampling units, sup-

pose one additional sampling unit can be added. We ask how many species that had ap-

peared r times in the original sample would occur in the additional sampling unit. Based

on Eq. (5a), the answer is simply
∑S

i=1πiI(Yi = r) = φrQr, which can be estimated by

(r+1)Qr+1/(T − r) using the following simple reasoning. Notice that any species that

appeared r times in the original sample and also occurs in the additional sampling unit
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must occur in r+1 sampling units in the enlarged sample consisting of T+1 sampling

units. Then the total number of incidences of such species is (r + 1)Qr+1. Because

the order in which sampling units were taken is assumed to be irrelevant, the average

number of such species occurring in a single sampling unit is thus (r+1)Qr+1/(T +1),
which is approximately equal to (r+ 1)Qr+1/(T − r) if r is small. Dividing this ratio

by the number of such species, Qr, we obtain the incidence-data-based Good-Turing

frequency formula for φr as given in Eq. (5d).

For the special cases of r = 0 and r = 1, Eqs. (5b) and (5d) lead to

φ̂0Q0 =
Q1

T
, φ̂1 =

2Q2

(T −1)Q1

,

where φ̂0Q0 denotes the estimate of the product of φ0 and Q0. Intuitively, we expect

that the mean incidence probability of all undetected species should not be more than

that of all uniques in the sample, i.e. φ0 ≤ φ1, and this ordering is preserved by the

corresponding estimates. Then we obtain the Chao2 lower bound for the number of

undetected species by the following inequality:

Q̂0 =
φ̂0Q0

φ̂0

≥
φ̂0Q0

φ̂1

=
Q1
T

2Q2
(T−1)Q1

=
(T −1)

T

Q2
1

2Q2

. (5e)

Notice that, in the above derivation, if φ̂0 ≈ φ̂1, then the inequality sign in Eq. (5e)

becomes an equality sign. Therefore, from the Good-Turing perspective, the Chao2

lower bound is a nearly unbiased point estimator if all undetected and unique species in

samples have the same mean detection probabilities. Such a conclusion is valid if very

rare/infrequent species have approximately homogenous detection probabilities in any

sampling unit (because this implies φ̂0 ≈ φ̂1); in this case, frequent species could be

highly heterogeneous without affecting the estimator.

2.4. How many sampling units are needed to reach the Chao2 estimate?

As discussed earlier, the Chao2 formula (in Eq. 2b) implies that sampling is complete

when all species have been found in at least two sampling units, i.e. Q1 = 0; in such

a case, the estimated undetected species richness is 0 and the estimated species rich-

ness reduces simply to the observed number of species. This result also reveals that,

whenever at least one species is found in only one sample (Q1 > 0), sampling is not

complete and some species remain undetected. However, the Chao2 species richness

estimator does not indicate how much sampling effort (how many additional sampling

units) would be necessary to reach the Chao2 estimate (i.e. the first point at which there

are no longer any singletons).

For incidence data, “sample size” means the number of sampling units. Chao et

al. (2009) developed a non-parametric method for estimating the minimum sample size
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required to detect any arbitrary proportion (including 100%) of the estimated Chao2

species richness based on the Good-Turing formula discussed in Section 2.3. When

the target is the Chao2 estimate, Chao et al. (2009) approach is to predict the minimum

sample size t to achieve the following stopping rule: there are no uniques in the enlarged

sample of size T + t, or equivalently, the expected number of uniques in the enlarged

sample of size T + t is less than 0.5, because the theoretical expected value may not be

an integer.

Note that the number of uniques in the enlarged sample of size T + t includes two

groups of species: (1) any species observed in only one sampling unit in the original

sample (i.e. those species with Yi = 1) for which no additional incidences are detected

in the additional t samples with probability (1−πi)
t , and (2) any species not detected

in the original sample (i.e. those species with Yi = 0) for which detection in exactly one

sampling unit is observed in the additional t sampling units with probability tπi(1−
πi)

t−1. That is, the expected number of uniques in the enlarged T + t sampling units is:

∑S

i=1
(1−πi)

tI(Yi = 1)+
∑S

i=1
tπi(1−πi)

t−1I(Yi = 0).

As discussed in Section 2.3, we assume that all uniques in the original sample have

mean detection probability φ1, and all previously undetected species have mean detec-

tion probability φ0. Then the number of uniques in the enlarged T + t sampling units

will decline to < 0.5 when t satisfies

Q1(1−φ1)
t +Q0 tφ0(1−φ0)

t−1 < 0.5.

When we apply the Good-Turing incidence frequency formula to this equation, and

substitute φ1, φ0 and Q0 by φ̂1 = 2Q2/[2Q2 + (T − 1)Q1], φ̂0 = Q1/[Q1 + T Q̂0] and

Q̂0 = (1−1/T)Q2
1/(2Q2), then the required t must satisfy the following equation:

Q1

(
1+

t

T

)[
1−

2Q2

(T −1)Q1 +2Q2

]t

< 0.5.

The additional number of sampling units needed to reach the Chao2 estimate is approx-

imately equal to t = Tx∗, where x∗ is the solution of the following equation:

2Q1(1+ x) = exp

[
x

2Q2

(1−1/T)Q1 +2Q2/T

]
. (6a)

If g is the fraction of ŜChao2 that is desired (0 < g < 1), then the objective is to find

the number of additional mg sampling units such that the number of species reaches

the target value gŜChao2, i.e. the expected number of previously undetected species that

will be discovered in the additional mg sampling units is gŜChao2 − Sobs. This expected

number, given the observed data, is



Anne Chao and Robert K. Colwell 17

S∑

i=1

[1− (1−πi)
mg]I(Yi = 0)≈ Q0[1− (1−φ0)

mg ]. (6b)

Applying the Good-Turing incidence frequency formula and substituting φ0 and Q0,

we obtain that the required number of additional sampling units to reach a fraction g of

ŜChao2 (if gŜChao2 > Sobs) is the number mg such that Q̂0[1−(1− φ̂0)
mg] = gŜChao2−Sobs,

i.e.

mg ≈

log

[
1−

T

(T −1)

2Q2

Q2
1

(gŜChao2 −Sobs)

]

log

[
1−

2Q2

(T −1)Q1 +2Q2

] . (6c)

Chao et al. (2009) also provided an Excel spreadsheet for calculating necessary sampling

effort for either abundance data or replicated incidence data.

2.5. A class of lower bounds

In the Chao2 approach (Eq. 2b), the estimator for undetected species richness is only in

terms of the species incidence frequency counts of the uniques and duplicates in data.

Several authors extended this approach to higher-order incidence frequency counts.

Lanumteang and Böhning (2011) proposed using an additional incidence frequency

count, i.e. the number of species that are detected in exactly three sampling units. They

applied the above estimator to a variety of real data sets and concluded that the new

estimator is especially useful for large populations and heterogeneous detection proba-

bilities.

When the Chao2 estimator only provides a lower bound, its bias can be evaluated

and assessed by using the Good-Turing frequency formula. In this case, an improved

reduced-bias lower bound, which makes use of the additional information of Q3 and Q4,

was derived by Chiu et al. (2014). The corresponding lower bound of species richness

is referred to as iChao2 estimator (here the sub-indexi stands for “improved”):

ŜiChao2 = ŜChao2 +
(T −3)

4T

Q3

Q4

×max

(
Q1 −

(T −3)

2(T −1)

Q2Q3

Q4

, 0

)
. (6d)

They also provided an analytic variance estimator to construct the associated confidence

intervals.

Puig and Kokonendji (2017) extended Chao’s inequality to a broader class of distri-

butions that have log-convex probability generating functions. They obtained a series

of lower bounds for the undetected species richness. This class of distribution includes

compound Poisson distribution and Poisson-mixture distributions. Their framework is

mainly based on abundance data, but it can be readily applied to multiple incidence data,

as shown below.
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Following the proof of Puig and Kokonendji (2017), we assume that the incidence

probabilities (π1, π2, . . . ,πS) are a random sample from an unknown distribution with

density h(π), and we have E(Qk) given in Eq. (4a). Consider a probability density

function:

H(π) =
(1−π)T h(π)dπ∫ 1

0
(1−u)T h(u)du

, 0 < π < 1.

Puig and Kokonendji (2017) showed the following moment inequality for r, v= 0,1,2, . . .

1∫

0

(
π

1−π

)r+v

H(π)dπ≥

1∫

0

(
π

1−π

)r

H(π)dπ×

1∫

0

(
π

1−π

)v

H(π)dπ,

equivalently,




1∫

0

(1−π)T h(π)dπ






1∫

0

πr+v(1−π)T−(r+v)h(π)dπ




≥




1∫

0

πr(1−π)T−rh(π)dπ






1∫

0

πv(1−π)T−vh(π)dπ


 .

Then we have

E(Q0)≥

(
T

r+ v

)
E(Qr)×E(Qv)

(
T

r

)(
T

v

)
E(Qr+v)

, r, v = 0,1,2, . . . (6e)

A series of lower bounds of S can then be obtained if Qr+v > 0:

Sobs +

(
T

r+ v

)
Qr ×Qv

(
T

r

)(
T

v

)
Qr+v

, r, v = 1,2, . . .

In the special case of r = v = 1, the above lower bound reduces to the Chao2 estimator.

Puig and Kokonendji (2017) proved that, under a Poisson-mixture model, the greatest

lower bound attains at the special case r = v = 1. This also provides a justification for

the use of the Chao2 lower bound.
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3. Species richness estimation for standardized samples:

non-asymptotic analysis

Species richness estimation represents an “asymptotic” analysis; here “asymptotic”

means that, as sample size tends to infinity, sample completeness approaches unity.

When the Chao2 estimates are nearly unbiased under the conditions given in Section

2.3, they can be compared across multiple assemblages. However, when rare/infrequent

species are highly heterogeneous and sample size is not sufficiently large, the Chao2

formula can provide only a lower bound, which cannot be compared accurately across

assemblages, because the data provide insufficient information to accurately estimate

species richness due to high heterogeneity of infrequent species. No matter whether or

not Chao2 is unbiased, in any particular case, we can always use it to perform “non-

asymptotic” analysis, in which samples are standardized based on a common finite

sample size or on sample completeness via rarefaction and extrapolation. Again for

incidence data, sample size refers to the number of sampling units.

The objective of a non-asymptotic approach is to control the dependence of the em-

pirical species counts on sampling effort and sample completeness. The earliest devel-

opment of standardization of sample size for abundance data by rarefaction was pro-

posed by Sanders (1968), but see Chiarucci et al. (2008) for a historical review. Subse-

quent developments include studies by Hurlbert (1971), Simberloff (1972), Heck, van

Belle and Simberloff (1975) and Coleman et al. (1982); see Gotelli and Colwell (2001,

2011) for details. Ecologists typically use rarefaction to down-sample the larger sam-

ples until they are the same size as the smallest sample. Ecologists then compare rich-

ness of these equally-large samples, but this approach implies that some data in larger

samples are thrown away. To avoid discarding data, Colwell et al. (2012) proposed

using a unified sample-size-based rarefaction (interpolation) and extrapolation (predic-

tion) sampling curve for species richness, that can be rarefied to smaller sample sizes or

extrapolated to larger sample sizes.

Chao and Jost (2012) indicated that a sample of a given size may be sufficient to

fully characterize a low-diversity assemblage, but insufficient to characterize a rich-

assemblage. Thus, when the species counts of two equally-large samples are compared,

one might be comparing a nearly complete sample to a very incomplete one. In this case,

any difference in diversity between the sites will generally be underestimated. They pro-

posed rarefaction and extrapolation to a comparable degree of sample completeness (as

measured by sample coverage; see below) and developed a coverage-based rarefaction

and extrapolation methodology. The sample-size-based and coverage-based integration

of rarefaction and extrapolation of species richness represent a unified sampling frame-

work for quantifying and comparing species richness across multiple assemblages.

Here we review the sample-size-based and coverage-based rarefaction and extrapo-

lation of species richness; all formulas are tabulated in the first and the third columns of

Table 2.
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Table 2: The theoretical formulas and analytic estimators for rarefaction and extrapolation of species richness (left column), Faith’s PD (middle column), and

sample coverage (right column) based on incidence data, given a reference sample with observed species richness = Sobs, observed PD = PDobs, and estimated

coverage Ĉ(T ) for incidence data. Here the sample size means the number of sampling units. See Colwell et al. (2012) and Chao and Jost (2012) for derivation

details.

Species richness Faith’s PD Coverage

(a) Theoretical formula for any hypothetical sample size of t

S(t) =

S∑

i=1

[1− (1−πi)
t ] PD(t) =

B∑

i=1

Li[1− (1−λi)
t ] C(t) = 1−

S∑
i=1

πi (1−πi)
t

S∑
i=1

πi

(b) Rarefaction estimator for t < T

Ŝ(t) = Sobs −
∑

1≤ Yi ≤T−t

(
T −Yi

t

)

(
T

t

) P̂D(t) = PDobs −
∑

1≤ Yi ≤T−t

Li

(
T −Yi

t

)

(
T

t

) Ĉ(t) = 1−
∑

1≤ Yi ≤T−t

Yi

U

(
T −Yi

t

)

(
T −1

t

)

(c) Reference sample of size T

Ŝ(T ) = Sobs P̂D(T ) = PDobs Ĉ(T ) = 1−
Q1

U

[
(T −1)Q1

(T −1)Q1 +2Q2

]

(d) Extrapolation estimator for sample size T + t∗

Ŝ(T + t∗) = Sobs + Q̂0

[
1−

(
1−

Q1

T Q̂0 +Q1

)t∗
]

P̂D(T + t∗) = PDobs + R̂0

[
1−

(
1−

R1

T R̂0 +R1

)t∗
]

Ĉ(T + t∗) = 1−
Q1

U

[
(T −1)Q1

(T −1)Q1 +2Q2

]t∗+1

Notes: U =
∑

Yi>0 Yi =
∑T

j=1 jQ j denotes the total number of incidences in T sampling units; Q̂0 and R̂0 denote the estimated number of undetected species

richness in Eq. (2b) and undetected PD in Eq. (11c).
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3.1. Sample-size-based rarefaction and extrapolation

Following Colwell et al. (2012), we refer to the observed sample of T sampling units

as a reference sample. Let S(t) be the expected number of species in a hypothetical

sample of t sampling units, randomly selected from the sampling units that represent

the assemblage. If we knew the true species detection probabilities (π1, π2, . . . ,πS) of

the S species in each sampling unit, we could compute the following expected value:

S(t) = S−
S∑

i=1

(1−πi)
t , t = 1,2, . . . (7a)

The plot of S(t) with respect to the number of sampling units t is the sampling-unit-

based species accumulation curve. Note that the true species richness represents the

“asymptote” of the curve, i.e. S = S(∞). The rarefaction (interpolation) part estimates

the expected species richness for a smaller number of sampling units t < T . On the basis

of a reference sample of T sampling units, an unbiased estimator Ŝ(t) for S(t), t < T , is

Ŝ(t) = Sobs −
∑

1≤Yi≤ T−t

(
T −Yi

t

)/(
T

t

)
, t < T. (7b)

This analytic formula was first derived by Shinozaki (1963) and rediscovered multiple

times (Chiarucci et al., 2008).

The extrapolation is to estimate the expected number of species S(T + t∗) in a hypo-

thetical sample of T + t∗ sampling units (t∗ > 0) from the assemblage. Rewrite

S(T + t∗) =
S∑

i=1

[1− (1−πi)
T+t∗ ]

=
S∑

i=1

[1− (1−πi)
T ]+

S∑

i=1

[1− (1−πi)
t∗ ](1−πi)

T

= E (Sobs)+E

[
S∑

i=1

[1− (1−πi)
t∗ ]I(Yi = 0)

]
.

The first term in the above formula represents the observed species richness. For the

second term, we can apply the Good-Turing incidence frequency formula (Section 2.3)

by assuming that all previously undetected species have mean detection probability φ0.

Then for the second term, we have

S∑

i=1

[1− (1−πi)
t∗ ]I(Yi = 0)≈ Q0[1− (1−φ0)

t∗ ].
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Based on Eq. (5d), we have the extrapolated species richness for a sample of size T + t∗:

Ŝ(T + t∗) = Sobs + Q̂0

[
1−

(
1−

Q1

TQ̂0 +Q1

)t∗
]
, t∗ ≥ 0. (7c)

Colwell et al. (2012) linked rarefaction and extrapolation to form an integrated smooth

curve. The integrated sample-size-based sampling curve includes a rarefaction part

(which plots Ŝ(t) as a function of t < T ), and an extrapolation part (which plots Ŝ(T +t∗)
as a function of T +t∗), joining smoothly at the reference point (T , Sobs). The confidence

intervals based on the bootstrap method (Section 3.3) also join smoothly.

For a short-range prediction (e.g. t∗ is much less than T ), the extrapolation for-

mula is independent of the choice of Q̂0 as indicated by the approximation formula

Ŝ(T + t∗) ≈ Sobs +(Q1/T )t∗. This implies that the extrapolation formula in Eq. (7c) is

very robust and reliable even though the species richness estimator is subject to bias.

Previous experiences by Colwell et al. (2012) suggested that the prediction size can be

extrapolated at most to double the observed sample size.

3.2. Coverage-based rarefaction and extrapolation

Turing and Good developed the very important concept of “sample coverage” to charac-

terize the sample completeness of an observed set of individual-based abundance data.

Their concept was extended by Chao et al. (1992) to capture-recapture data. For mul-

tiple incidence data, the sample coverage of a reference sample of T sampling units is

defined as

C ≡C(T ) =

∑S
i=1πiI(Yi > 0)
∑S

i=1πi

= 1−

∑S
i=1πiI(Yi = 0)
∑S

i=1πi

,

which represents the fraction of the total incidence probabilities in the assemblage (in-

cluding undetected species) that is represented by species detected in the reference sam-

ple. Note that under the binomial model (Eq. 1b), an unbiased estimator for the de-

nominator in C(T ) is U/T , where U =
∑T

k=1 kQk =
∑S

i=1Yi denotes the total number of

incidences in the reference sample. For the numerator, we can apply the Good-Turing

incidence frequency formula (Section 2.3) by assuming that all uniques in the sample

have approximately the same detection probabilities, φ1. Then we can write

E

[∑S

i=1
πiI(Yi = 0)

]
=
∑S

i=1
πi(1−πi)

T

=
1

T
E

[∑S

i=1
(1−πi)I(Yi = 1)

]
≈

E(Q1)

T
(1−φ1).

Applying the Good-Turing formula φ̂1 = 2Q2/[2Q2 +(T −1)Q1] (Eq. 5d), we obtain a

very accurate estimator of the sample coverage for the reference sample size, if Q2 > 0:
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Ĉ(T ) = 1−
Q1

U

[
(T −1)Q1

(T −1)Q1 +2Q2

]
. (7d)

If Q2 = 0, a modified formula based on Chao et al. (2014b, Appendix G) is:

Ĉ(T) = 1−
Q1

U

[
(T −1)(Q1−1)

(T −1)(Q1−1)+2

]
. (7e)

In addition to the reference sample, we also need to consider the estimation of the

expected sample coverage, E[C(t)], for any hypothetical sample of t sampling units,

t = 1,2, . . . . This expected sample coverage is a function of t as given below:

E[C(t)] = 1−

∑S
i=1πi(1−πi)

t

∑S
i=1πi

, t ≥ 1. (7f)

For a rarefied sample (t < T ), an unbiased estimator exists for the denominator and

numerator in Eq. (7f), respectively, but their ratio Ĉ(t), given below, is only a nearly

unbiased estimator of E[C(t)]:

Ĉ(t) = 1−
∑

1≤Yi≤T−t

Yi

U

(
T −Yi

t

)

(
T −1

t

) , t < T.

An estimator for the expected coverage of an extrapolated sample with T + t∗ sampling

units if Q2 > 0 is

Ĉ(T + t∗) = 1−
Q1

U

[
(T −1)Q1

(T −1)Q1 +2Q2

]t∗+1

. (7g)

The above estimator is based on the following approximation formula:

E[C(T + t∗)] = 1−

∑S
i=1πi(1−πi)

T+t∗

∑S
i=1πi

≈ 1−
E[
∑S

i=1 (1−πi)
t∗+1I(Yi = 1)]

T
∑S

i=1πi

,

≈ 1−
[E(Q1)](1−φ1)

t∗+1

T
∑S

i=1πi

.

Replacing
∑S

i=1πi and φ1 with their respective estimators, U/T and φ̂1 = 2Q2/[2Q2 +
(T − 1)Q1], we obtain Eq. (7g). If Q2 = 0, a similar modification as in Eq. (7e) can

be applied. Note that when t∗ = 0, Eq. (7g) reduces to the sample coverage estimator

for the reference sample. The coverage-based sampling curve includes a rarefaction

part (which plots Ŝ(t) as a function of Ĉ(t)), and an extrapolation part (which plots

Ŝ(T + t∗) as a function of Ĉ(T + t∗)), joining smoothly at the reference sample point
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(Ĉ(T ), Sobs). The confidence intervals based on the bootstrap method (Section 3.3) also

join smoothly. To equalize coverage among multiple, independent reference samples,

their coverage-based curves can be extended to the coverage of the maximum size used

in the corresponding sample-size-based sampling curve.

The sample-size-based approach plots the estimated species richness as a function of

sample size, whereas the corresponding coverage-based approach plots the same rich-

ness estimate with respect to sample coverage. Therefore, the two types of sampling

curves can be bridged by a sample completeness curve, which shows how the sample

coverage estimate varies with sample size and also provides an estimate of the sample

size needed to achieve a fixed degree of completeness. The two types of sampling curves

along with the associated sample completeness curve are illustrated in Section 7 through

an example. There, we also illustrate the use of the online software iNEXT (iNterpola-

tion/EXTrapolation) to compute and plot the integrated sampling curves for incidence

data. These methods allow researchers to efficiently use all available data to make more

robust and more detailed inferences about species richness of the sampled assemblages,

and also to make objective comparisons of species richness across assemblages.

3.3. Bootstrap method to obtain variance estimator and

confidence intervals

The interpolated and extrapolated estimators are complicated functions of incidence

data. Thus, it is not possible to derive analytic variance estimators. A bootstrap pro-

cedure can be applied to approximate the variance of any estimator based on incidence

data. The estimated variance estimator can be subsequently used to construct a confi-

dence interval of the expected species richness. Here we use the rarefied estimator Ŝ(t)

given in Eq. (7b) as an example. Parallel steps can be formulated for any extrapolated

estimator, coverage estimators, and for Chao2-type estimators.

First, we construct the bootstrap assemblage, which aims to mimic the true entire as-

semblage. Given a reference sample of size T and species sample incidence frequencies

(Y1, Y2, . . . ,YS), let Q̂0 be the Chao2-type estimator of the number of undetected species.

Since the number of species in the bootstrap assemblage must be an integer, we define

Q̂∗
0 as the smallest integer that is greater than or equal to Q̂0. Thus, there are Sobs + Q̂∗

0

species in the bootstrap assemblage.

Next we determine the detection probabilities in any sampling unit for the species

in the bootstrap assemblage. Given that the ith species is detected in Yi > 0 sampling

units (there are Sobs of such species), the sample detection probability Yi/T of an ob-

served species (Yi > 0), on average, overestimates the true detection probability πi. This

overestimation is due to the following conditional expectation:

E

(
Yi

T

∣∣∣∣Yi > 0

)
=

πi

1− (1−πi)T
> πi.
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The above conditional expectation leads to

πi = E

(
Yi

T

∣∣∣∣Yi > 0

)
[1− (1−πi)

T ].

If we replace the expected value in the above equation by the observed data, then we

have the following approximation:

πi ≈
Yi

T
[1− (1−πi)

T ]. (7h)

For any given Yi > 1, one can numerically solve the above equation for πi; but for Yi = 1

(singletons, the most important count in our analysis), the only solution is πi = 0, which

is not reasonable. Therefore, Chao et al. (2014b, Appendix G) recommended the fol-

lowing analytic approach. Note that Eq. (7h) reveals that the approximate adjustment

factor for the sample detection probability Yi/T would be [1− (1−πi)
T ]. However, the

adjustment factor [1− (1−πi)
T ] cannot be estimated simply by substituting the sample

detection probability for πi, because the sample detection probability does not estimate

πi well for rare species. Chao et al. (2014b) suggested a more flexible adjustment factor,

[1− τ(1−Yi/T )T ]. Applying this factor, we obtain that the species incidence probabili-

ties for the Sobs observed species in the bootstrap assemblage can be estimated by

π̂i =
Yi

T

[
1− τ̂

(
1−

Yi

T

)T
]
, Yi > 0, (8a)

where τ̂ can be obtained from the sample coverage estimate:

Ĉ(T )×
U

T
=
∑

i

π̂i I(Yi > 0) =
∑

Yi>0

Yi

T

[
1− τ̂

(
1−

Yi

T

)T
]
,

Then we can solve for τ̂ :

τ̂ =

U

T
[1−Ĉ(T )]

∑
Yi≥1

Yi

T

(
1−

Yi

T

)T
=

[1−Ĉ(T)]

∑
Yi≥1

Yi

U

(
1−

Yi

T

)T
. (8b)

We assume that each of the remaining Q̂∗
0 species in the bootstrap assemblage (i.

e. those species that were not detected in any sampling unit but exist in the bootstrap

assemblage) has a common detection probability of (U/T)[1−Ĉ(T )]/Q̂∗
0. This assump-

tion may seem restrictive, but the effect on the resulting variance estimator is limited,

based on our extensive simulations.

After the bootstrap assemblage is determined, a random sample of T sampling units

is generated from the assemblage, and a bootstrap estimate Ŝ(t) is calculated for the
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generated sample. The procedure is repeated B times to obtain B bootstrap estimates

(B = 200 is suggested). The bootstrap variance estimator Ŝ(t) is the sample variance of

these B estimates. The resulting bootstrap s.e. of Ŝ(t) is then used to construct a 95%

confidence interval Ŝ(t)± 1.96 s.e. [Ŝ(t)] for the expected species richness in a sample

of size t. Similar procedures can be used to derive variance estimators for any other

estimator and its associated confidence intervals.

4. Species richness estimation under sampling without

replacement

Chao’s original inequality was developed under the binomial (Eq. 1b) model, which

assumes that sampling units are taken with replacement. When sampling is done with-

out replacement, e.g. quadrats or time periods that are not repeatedly selected/surveyed,

or mobile species are collected by lethal sampling methods, Chao’s inequality and the

Chao2 estimator require modification, unless the sampling fraction is small. For sim-

plicity, we assume quadrat sampling in the following derivation, but the term “quadrat,”

here, may refer to any sampling unit that is not sampled with replacement, such as a trap,

net, team, observer, occasion, transect line, or fixed period of time in other sampling

protocols. Suppose that the region under investigation consists of T ∗ disjoint, equal-

area quadrats, and a sample of T quadrats is randomly selected. Then each quadrat

is surveyed, and species detection/non-detection data are recorded for each of these T

quadrats.

The model assumes that species i can be detected in only Ui quadrats (Ui is un-

known). We restrict our analysis to the case Ui > 1. (For any species with Ui = 0, there

is no chance to detect this species in any sample, so it should be excluded from the es-

timating target.) In the other T ∗−Ui quadrats, species i is either absent or it is present

but cannot be detected. Because Ui may vary independently among species, our model

holds even if species are spatially aggregated, associated, or dissociated in the study

area.

Assume that detection/non-detection of all species for each of the T quadrats is

recorded to form a species-by-quadrat incidence matrix. Using the same notation as

in Section 2, we let Yi (sample incidence frequency) be the number of quadrats in

which the ith species is observed in the sample, i = 1,2, . . . ,S. Under sampling without

replacement, the sample frequencies (Y1, Y2, . . . ,YS) given Ui = ui, follow a product-

hypergeometric distribution:

P(Yi = yi, i = 1,2, . . . ,S) =
S

∏
i=1

{(
ui

yi

)(
T ∗−ui

T − yi

)/(
T ∗

T

)}
, 1 ≤ ui ≤ T ∗. (9a)

That is, (Y1,Y2, . . . ,YS) are independent but non-identically distributed random vari-

ables, each of which follows a hypergeometric distribution. If the sampling fraction
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is relatively small (i.e. T ∗ ≫ T ), then equation (9a) approaches the product binomial

distribution:

P(Yi = yi, i = 1,2, . . . ,S)→
S

∏
i=1

{(
T

yi

)( ui

T ∗

)yi
(

1−
ui

T ∗

)T−yi

}
.

This is a model for sampling with replacement with incidence probabilities πi = ui/T ∗.

The above approximation shows that, if there are many quadrats, and only a small num-

ber of the quadrats are sampled, then the inferences for the two types of sampling

schemes differ little. Based on the general model (9a), the marginal distribution for

each species’ frequency is a hypergeometric distribution. The expected value of the

frequency counts is

E(Qk) =
S∑

i=1

P(Yi = k) =
S∑

i=1

(
ui

k

)(
T ∗−ui

T − k

)

(
T ∗

T

) . (9b)

In particular, we have

E(Q0) =
S∑

i=1

(
T ∗−ui

T

)

(
T ∗

T

) ,

E(Q1) =
S∑

i=1

(
ui

1

)(
T ∗−ui

T −1

)

(
T ∗

T

) =
S∑

i=1

Tui

T ∗−ui −T +1

(
T ∗−ui

T

)

(
T ∗

T

)

E(Q2) =

S∑

i=1

(
ui

2

)(
T ∗−ui

T −2

)

(
T ∗

T

) =

S∑

i=1

T (T −1)ui(ui −1)

2(T ∗−ui −T +1)(T∗−ui −T +2)

(
T ∗−ui

T

)

(
T ∗

T

)

The Cauchy-Schwarz inequality leads to





S∑

i=1

(
T ∗−ui

T

)

(
T ∗

T

)









S∑

i=1

(
Tui

T ∗−ui −T +1

)2

(
T ∗−ui

T

)

(
T ∗

T

)





≥





S∑

i=1

Tui

T ∗−ui −T +1

(
T ∗−ui

T

)

(
T ∗

T

)





2

,

The right side in the above inequality is {E(Q1)}
2, and the first sum on the left side is

E(Q0). For the second sum, we rewrite
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(
Tui

T ∗−ui −T +1

)2

=
T

T −1

(
T (T −1)ui(ui−1)

(T ∗−ui −T +1)2

)
+

T 2ui

(T ∗−ui −T +1)2
.

Thus the second sum becomes





S∑

i=1

(
Tui

T ∗−ui −T +1

)2

(
T ∗−ui

T

)

(
T ∗

T

)





≈
2T

T −1
E(Q2)+

S∑

i=1

[
T

T ∗−ui −T +1

]
Tui

T ∗−ui −T +1

(
T ∗−ui

T

)

(
T ∗

T

) .

The contribution of species with large ui (frequent species) to any term involved in the

above Cauchy-Schwarz inequality is almost negligible. For infrequent species (with ui

much less than T ∗), we have

T

T ∗−ui −T +1
=

T/T ∗

(T ∗−ui −T +1)/T ∗
≈

T/T ∗

1− (T/T ∗)
=

q

1−q
,

where q = T/T ∗ denotes the sampling fraction. We then obtain the following approxi-

mate inequality

{E(Q0)}

(
T

T −1
2E(Q2)+

q

1−q
E(Q1)

)
≥ {E(Q1)}

2,

which is equivalent to

E(Q0)≥
{E(Q1)}

2

T
T−1

2E(Q2)+
q

1−q
E(Q1)

.

Replacing the expected value by the observed frequencies, we thus obtain the following

lower bound for the true species richness.

Ŝwor2 = Sobs +
Q2

1

2wQ2 + rQ1

, (9c)

where w = T/(T − 1) and r = q/(1− q), and the subscript “wor” refers to “without

replacement”. When the sample fraction q approaches zero, then r approaches zero, and

our lower bound approaches the Chao2 estimator. On the other hand, when q approaches

1, r = q/(1− q) approaches infinity and our lower bound reduces to the number of

observed species, which is the true parameter for complete sampling.
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An approximate variance formula for Ŝwor2 can be obtained by using an asymptotic

approach based on the hypergeometric distribution. The resulting variance estimator is:

v̂ar(Ŝwor2) = Q̂0 +
(2wQ2Q̂2

0 +Q2
1Q̂0)

2

Q5
1

+4w2Q2

(
Q̂0

Q1

)4

,

where Q̂0 = Ŝwor2 − Sobs denotes the estimator of the undetected species in the sample.

When Ŝwor2 is used as an estimator of species richness, a confidence interval of S can be

constructed by a log-transformation (Eq. 3c), so that the lower bound is always greater

than the number of observed species.

5. Shared species richness estimation

We now extend the one-assemblage model formulation and data framework to two as-

semblages (I and II), which can differ not only in their species richness, but also in

their species composition. Suppose that there are S species in the pooled assemblage.

Assume that T1 sampling units (Sample I) are randomly taken from Assemblage I,

and T2 sampling units (Sample II) are taken from Assemblage II. In each sampling

unit, only species detection/non-detection data are recorded. The two sets of proba-

bilities (π11, π21, . . . ,πS1) and (π12, π22, . . . ,πS2) in the incidence case represent species

detection probabilities in any sampling unit from Assemblages I and II, respectively,

πi1, πi2 ≥ 0, i = 1,2, . . . ,S. Let the true number of shared species between the two as-

semblages be S12. Without loss of generality, we assume that the first S12species in the

pooled assemblage are these shared species.

Let Yi1 and Yi2 denote the number of sampling units in which the ith species is de-

tected in Samples I and II, respectively. For any two non-negative integers r and v,

define

Qrv =
∑S12

i=1
I(Yi1 = r,Yi2 = v), r, v = 0,1,2, . . .

That is, Qrv denotes the number of shared species that are detected in r sampling units

in Sample I and v sampling units in Sample II. In particular, Q11 denotes the number of

shared species that are uniques in both samples, and Q00 denotes the number of shared

species that are present in both samples, but detected in neither. Also, let Qr+ denote

the number of shared species that are detected in r sampling units in Sample I and that

are detected in at least one sampling unit (using a “+” sign to replace the index v) in

Sample II, with a similar symmetric definition for Q+v. Thus, Q++ becomes the total

number of observed species shared between the two samples. Mathematically, we have

the following expressions:

Qr+ =
∑S12

i=1
I(Yi1 = r, Yi2 ≥ 1) =

∑
v>0

Qrv, r = 0,1,2, . . .
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Q+v =
∑S12

i=1
I(Yi1 ≥ 1, Yi2 = v) =

∑
r>0

Qrv, v = 0,1,2, . . .

Here, Q+0 denotes the number of shared species that are detected in Sample I but not

detected in Sample II, and a similar interpretation for Q0+.

Since S12 = Q+++Q+0 +Q0++Q00 but only Q++ is observable, our approach is to

find a lower bound for each of the expected values of the other three terms, i.e. E(Q+0),

E(Q0+) and E(Q00). Assuming the binomial models (Eq. 1b) for species incidence

frequencies for each of the two independent sets of frequencies, we have

E(Q00) =
∑S12

i=1
(1−πi1)

T1(1−πi2)
T2 ,

E(Q+0) =
∑S12

i=1
[1− (1−πi1)

T1 ](1−πi2)
T2 ,

E(Q0+) =
∑S12

i=1
(1−πi1)

T1 [1− (1−πi2)
T2].

We now derive a lower bound for each term as follows.

1. A lower bound for E(Q+0): Since

E(Q+1) =
∑S12

i=1
[1− (1−πi1)

T1 ] T2 πi2(1−πi2)
T2−1,

E(Q+2) =
∑S12

i=1
[1− (1−πi1)

T1 ] [T2(T2 −1)/2]π2
i2(1−πi2)

T2−2.

The following Cauchy-Schwarz inequality

[∑S12
i=1 [1− (1−πi1)

T1 ](1−πi2)
T2

] [∑S12
i=1 [1− (1−πi1)

T1 ] π2
i2(1−πi2)

T2−2
]

≥
[∑S12

i=1 [1− (1−πi1)
T1 ] πi2(1−πi2)

T2−1
]2

leads to a lower bound

E(Q+0)≥
(T2 −1)

T2

[E(Q+1)]
2

2E(Q+2)
. (10a)

2. Similarly, a lower bound for E(Q0+) is

E(Q0+)≥
(T1 −1)

T1

[E(Q1+)]
2

2E(Q2+)
. (10b)

3. A lower bound for E(Q00) is obtained by noting

E(Q11) =
∑S12

i=1
T1 πi1(1−πi1)

T1−1 T2 πi2(1−πi2)
T2−1,
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E(Q22) =
∑S12

i=1
[T1(T1 −1)/2]π2

i1(1−πi1)
T1−2[T2(T2 −1)/2]π2

i2(1−πi2)
T2−2.

Again, a similar Cauchy-Schwarz inequality

[∑S12
i=1 (1−πi1)

T1(1−πi2)
T2

] [∑S12
i=1π

2
i1(1−πi1)

T1−2π2
i2(1−πi2)

T2−2
]

≥
[∑S12

i=1πi1(1−πi1)
T1−1πi2(1−πi2)

T2−1
]2

gives

E(Q00)≥
(T1 −1)

T1

(T2 −1)

T2

[E(Q11)]
2

4E(Q22)
. (10c)

Combining the above three lower bounds and letting Ki = (Ti−1)/Ti, we thus have

a lower bound for the shared species richness:

Ŝ12 = Q+++K2

Q2
+1

2Q+2

+K1

Q2
1+

2Q2+
+K1K2

Q2
11

4Q22

. (10d)

The above estimator is referred to as the Chao2-shared estimator because it can

be regarded as an extension of the single-assemblage Chao2 estimator (Eq. 2b) to

the case of two assemblages. A bias-corrected estimator to avoid zero divisor is

S̃12 = Q+++K2

Q+1(Q+1 −1)

2(Q+2 +1)
+K1

Q1+(Q1+−1)

2(Q2++1)
+K1K2

Q11(Q11 −1)

4(Q22 +1)
. (10e)

Note that only observed, shared species are involved in the formulas (10a) to (10e),

thus observed non-shared species play no role in our estimation, although any

species observed in one Sample but not in the other could actually be a shared

species. Because the proposed estimator can be regarded as a function of the

statistics (Q++, Q11, Q22, Q1+, Q2+, Q+1, Q+2), we obtain a variance estimator by

using a standard asymptotic approach under a multinomial distribution. Then the

estimated variance can be used to construct a confidence interval for the true pa-

rameter using a log-transformation (Chao, 1987).

The above approach has an obvious extension to the case of more than two assem-

blages. For example, in the case of three assemblages, a “shared” species is defined as

that the species belongs to all three assemblages. Assume that there are S123 species

shared by all three assemblages (I, II and III), and a random sample of sampling units

is taken from each of the three assemblages. The three samples are called Samples I, II

and III with sizes T1, T2 and T3 respectively. Then

S123 = Q++++Q++0 +Q+0++Q0+++Q00++Q0+0 +Q+00 +Q000,
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where Q+++ denotes the observed shared species richness in the three samples, Q++0

denotes the number of shared species that are observed in Samples I, II but not observed

in Sample III, Q000 denotes the number of shared species that are not detected in any

of the three samples, and a similar interpretation for other terms in the above formula.

Parallel derivations (with self-explanatory notation) lead to a lower bound for S123 as fol-

lows:

Ŝ123 = Q++++K3

Q2
++1

2Q++2

+K2

Q2
+1+

2Q+2+
+K1

Q2
1++

2Q2++

+K1K2

Q2
11+

4Q22+
+K1K3

Q2
1+1

4Q2+2

+K2K3

Q2
+11

4Q+22

+K1K2K3

Q2
111

8Q222

.

We can formulate a bias-corrected version to avoid zero divisor in the same manner as

that given in Eq. (10e). An estimated variance can be obtained by an asymptotic method.

6. Phylogenetic richness estimation

6.1. Framework

In traditional measures of species diversity, all species (or taxa at some other rank) are

considered to be equally distinct from one another. However, in an evolutionary context,

species differences can be based directly on their evolutionary relationships, either in the

form of taxonomic classification or well-supported phylogenetic trees. Species that are

closely related are generally less distinct in important ecological characteristics than are

distantly-related species. A wide range of phylogenetic diversity metrics and related

(dis)similarity measures have been proposed in the literature. The most widely used

phylogenetic metric is Faith’s (1992) PD (phylogenetic diversity), which is defined as

the sum of the branch lengths of a phylogenetic tree connecting all species in the focal

assemblage.

Chao et al. (2010, 2015) proposed a class of abundance-sensitive phylogenetic mea-

sures and showed that Faith’s PD is a phylogenetic generalization of species richness.

In other words, Faith’s PD is a phylogenetic diversity of order zero in which species

abundances are not considered. From this perspective, Faith’s PD is a measure of

phylogenetic richness. Throughout this paper, PD refers to Faith’s (1992) PD. When

some species that are present in an assemblage are not detected in a sample, the lin-

eages/branches associated with these undetected species are also missing from the phy-

logenetic tree of the observed species. The undetected PD in an incomplete sample was

not discussed until recent years (Cardoso et al., 2014; Chao et al., 2015).

Model formulation and PD estimation based on abundance data were developed in

Chao et al. (2015). The corresponding framework for incidence data, introduced in

their Appendix S7 and presented here, is a generalization of the framework for species
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richness. As discussed in Section 2.1, suppose, in the focal assemblage, that there are S

species indexed by 1,2, . . . ,S, and T sampling units are surveyed from the assemblage.

In each sampling unit, we assume that only incidence (detection or non-detection) of

each species is recorded. For any sampling unit, assume that the ith species has its

own unique incidence (or detection) probability πi that is constant for any randomly

selected sampling unit. We also assume that a rooted ultrametric or non-ultrametric

phylogenetic tree of the S species (as tip nodes) can be constructed. Here we assume

that all phylogenetic measures are computed from a fixed, basal reference point in the

tree that is ancestral to all taxa considered in the study.

Assume that there are B branch segments in the corresponding tree, B ≥ S, descen-

dant to the given basal reference point. Let Li denote the length of the ith branch.

We expand the set of detection probabilities (π1, π2, . . . ,πS) of the S species (as tip

nodes) to a larger set of branch/node detection probabilities {λi, i = 1,2, . . . ,B} with

(π1, π2, . . . ,πS) as the first S elements. Here we define λi as the probability of detecting

at least one species descended from branch i in a sampling unit, i = 1,2, . . . ,B, and refer

to λi as the incidence (or detection) probability of branch/node i. The true PD for the

fixed reference point is expressed as PD =
∑B

i=1 Li.

The species-by-sampling-unit incidence matrix {Wi j; i = 1,2, . . . ,S, j = 1,2, . . . ,T}
and the species incidence frequencies Yi =

∑T
j=1Wi j are defined exactly the same as

those in Section 2.1. Here we expand the S×T incidence matrix {Wi j; i= 1,2, . . . ,S, j =
1,2, . . . ,T} to a larger B×T matrix {W ∗

i j , i = 1,2, . . . ,B, j = 1,2, . . . ,T} by specifying

that W ∗
i j = 1 if at least one species descended from branch i is detected in jth sampling

unit, and W ∗
i j = 0 otherwise. This specification also expands the set of the observed

species incidence frequencies {Y1, Y2, . . . ,YS} to a larger set {Y ∗
i , i = 1,2, . . . ,B}, which

consists of the row sums of the expanded incidence matrix [W ∗
i j]. We refer to Y ∗

i as the

sample branch/node incidence frequency for branch/node i, i = 1,2, . . . ,B. See Table 3

for a simple, hypothetical dataset for nine species in six sampling units, illustrating the

expansion of the matrix [Wi j] to [W ∗
i j].

Suppose that the incidence data for all the sampling units are independent. Then Y ∗
i ,

i = 1,2, . . . ,B, follows a binomial distribution:

P(Y ∗
i = yi) =

(
T

yi

)
λyi

i (1−λi)
T−yi , yi = 0,1,2, . . . ,T.

Define Rk as the sum of branch lengths for those branches with branch/node incidence

frequency k, i.e.

Rk =
∑B

i=1
Li I(Y ∗

i = k), k = 0,1, . . . ,T. (11a)

Thus, R0 represents the total length of branches that are not detected in the observed tree

(i.e. not detected by the tree spanned by the observed species in the reference sample),

and R1 denotes the total branch length of the uniques in the branch incidence frequency

set of the observed tree. A similar interpretation is valid for R2. Let PDobs denote the
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Table 3: Species detection/non-detection data for the hypothetical tree in Figure 1. Species 4, 7, 8, and 9

(grey shaded area) are not observed in the sample; Node 14 (grey shaded area) is not observed in the tree

spanned by the observed species.

Species/node/branch
Detection/non-detection in six sampling units

(1 means detection; blank means non-detection)

Species/node/branch

incidence frequency

1 2 3 4 5 6

1 1 1 1 1 1 1 Y1 =6

2 1 Y2 =1

3 1 Y3 =1

4 Y4 =0

5 1 1 Y5 =2

6 1 Y6 =1

7 Y7 =0

8 Y8 =0

9 Y9 =0

10 1 Y
∗

10 =1

11 1 1 1 1 1 1 Y
∗

11 =6

12 1 1 Y
∗

12 =2

13 1 Y
∗

13 =1

14 Y
∗

14 =0

15 1 Y
∗

15 =1

observed PD. Then we have PDobs =
∑

i>0 Ri and PD = PDobs +R0. See Figure 1 for a

hypothetical tree spanned by 9 species for an example.

6.2. Chao’s inequality for PD

The undetected PD in the reference sample is R0, which is unknown. However, {R1,

R2, . . .} can be computed from the reference sample and the tree spanned by the ob-

served species. Following the same approach that Chao et al. (2015) used for abundance

data, we have the expected value of Rk:

E(Rk) = E

[
B∑

i=1

LiI(Y
∗

i = k)

]
=

(
T

k

) B∑

i=1

Liλ
k
i (1−λi)

T−k, k = 0,1, . . . ,T. (11b)

In particular, we have

E(R0) =
B∑

i=1

Li(1−λi)
T ,

E(R1) = T

B∑

i=1

Liλi(1−λi)
T−1,
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(a) Tree spanned by all species (b) Tree spanned by observed species

Figure 1: (a) A hypothetical tree spanned by 9 species (tip nodes) indexed by 1, 2, . . . , 9 in an assemblage.

The ancestor of the entire assemblage is the “root” at the top, with time progressing towards the branch

tips at the bottom. Here the root of the entire assemblage is selected as the reference point for illustration.

Species detection/non-detection records in six sampling units are given in Table 3. A black dot means a node

with species incidence frequency > 0; a grey dot means a node with frequency = 0. (b) A sub-tree spanned

by the observed 5 species (1, 2, 3, 5 and 6). Species 4, 7, 8 and 9 are not detected in any of the six sampling

units, so only a portion of the tree (solid branches in the left panel) is observed as shown in Panel (b). Black

dots in Panel (b) are nodes in the observed tree; grey dots are not observed in the tree. The sample incidence

frequency vector in 6 sampling units for 9 species is (Y1, Y2, . . . , Y9) = (6, 1, 1, 0, 2, 1, 0, 0, 0); only non-zero

frequencies represent observed species. The branch set B in the assemblage includes 15 branches (indexed

from 1 to 15) with branch lengths (L1, L2, . . . ,L15) and the corresponding 15 nodes. The corresponding

node/branch incidence frequencies are (Y ∗
1 , Y ∗

2 , . . . ,Y
∗
9 , Y ∗

10, Y ∗
11, . . . ,Y

∗
15) = (6, 1, 1, 0, 2, 1, 0, 0, 0, 1, 6,

2, 1, 0, 1) with (Y1, Y2, . . . ,Y9) as the first 9 elements (see Table 3). The dotted branches in Panel (a) are

not detected in the sample, and the total length of the undetected branches is R0 = L4+L7 +L8+L9 +L14.

In Panel (b), the total length of those branches with Y ∗
i = 1 (there are four uniques in the node/branch

incidence frequency set of the observed tree) is R1 = L2 +L3 +L6 +L10 +L13 +L15 (as shown by green

lines in the observed tree in Panel (b)); the total length with Y ∗
i = 2 (only one duplicate in the node/branch

incidence frequency set of the observed tree) is R2 = L5 +L12 (as shown by red lines in the observed tree

in Panel (b)).

E(R2) =
T (T −1)

2

B∑

i=1

Liλ
2
i (1−λi)

T−2.

The Cauchy-Schwarz inequality

[
B∑

i=1

Li(1−λi)
T

][
B∑

i=1

Liλ
2
i (1−λi)

T−1

]
≥

[
B∑

i=1

Liλi(1−λi)
T−1

]2
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leads to the following inequality:

E(R0)≥
(T −1)

T

[E(R1)]
2

2E(R2)
.

Thus, a direct estimator of the undetected PD would be
(T−1)

T

R2
1

2R2
. However, when R2

is relatively small, including the case of R2 = 0, this estimator may yield an extremely

large value and thus exhibit a large variance. To cope with such cases, Chao et al. (2015)

and Hsieh and Chao (2017) proposed the following Chao2-PD estimator:

P̂DChao2 = PDobs + R̂0 =





PDobs +
(T −1)

T

R2
1

2R2

, if R2 >
R1Q∗

2

2Q∗
1

;

PDobs +
(T −1)

T

R1(Q
∗
1 −1)

2(Q∗
2 +1)

, if R2 ≤
R1Q∗

2

2Q∗
1

.

(11c)

where Q∗
1 and Q∗

2 denote, respectively, the number of nodes/branches with incidence

frequency = 1 and frequency = 2 in the observed tree; see Figure 1 for an example.

As with the Chao2 estimator, this lower bound is a nearly unbiased point estimator

if unique and undetected branches/nodes have approximately identical mean detection

probabilities. A sufficient condition is that rare/infrequent node/branch detection prob-

abilities are approximately homogeneous, while other nodes/branches can be highly

heterogeneous. When the detection probabilities for rare nodes/branches are heteroge-

neous and the sample is not sufficiently large, negative bias exists. The variance of the

Chao1-PD estimator can be obtained using Eqs. (3a) and (3b) with {Q1, Q2} being re-

placed by {R1, R2}. The construction of the confidence interval for Faith PD based on

the Chao1-PD estimator can be similarly obtained as that given in Eq. (3c).

Comparing the derivations for the above phylogenetic version of Chao’s inequality

with those in Section 2.3 for species richness, we see that all estimation steps are paral-

lel and the analogy between the two estimation frameworks is transparent. The analogy

was first proposed by Faith (1992). From Faith’s perspective, each unit-length branch is

regarded as a “feature” in phylogenetic diversity (like a “species” in species diversity).

Chao et al. (2014a) subsequently referred to each unit-length branch segment as a phy-

logenetic entity. All entities are phylogenetically equally distinct, just as all species are

assumed taxonomically equally distinct in computing simple species richness. Instead

of species, for PD we are measuring the total number of phylogenetic entities, or equiv-

alently, the total branch length (because each entity has length of unity). Based on this

perspective, for incidence data the measures of branch lengths {Rk, k = 0,1, . . . ,} used

to estimate PD play the same role as the frequency counts {Qk, k = 0,1, . . .} in estimat-

ing species richness. This analogy to counting up species means that most ecological

indices defined at the species level can be converted to PD equivalents (by counting

phylogenetic entities rather than species).



Anne Chao and Robert K. Colwell 37

6.3. Rarefaction/extrapolation guided by the Chao2-PD estimator

Because of the analogy between counting up species richness and counting up branch

lengths, all the species richness estimation tools for standardized samples in Section

3 can be directly extended to their phylogenetic equivalents, and similar sample-size-

based and coverage-based rarefaction and extrapolation sampling curves can be con-

structed. Table 2 gives all the corresponding formulas; thus we omit all details except

for the following two notes.

The theoretical formula for PD(t), the expected PD when a set of t sampling units is

taken from the assemblage, is a generalization of Eq. (7a):

PD(t) =
B∑

i=1

Li[1− (1−λi)
t ], t = 1,2, . . .

The plot of PD(t) as a function of t is a non-decreasing function and is referred to as

the sampling-unit-based PD accumulation curve. As sample size t tends to infinity,

PD(t) approaches the true PD. Thus the true PD represents the “asymptote” of the PD

accumulation curve, i.e. the true PD = PD(∞). When there are no internal nodes, and

all S lineages are equally distinct with branch lengths of unity (i.e. branch lengths are

normalized to unity), the sampling-unit-based PD accumulation curve reduces to the

species accumulation curve.

The bootstrap method to assess the variance and confidence interval associated with

the PD estimator for rarefied and extrapolated samples is similar to that in Section 3.3,

except that a “bootstrap tree” should be constructed in the resampling procedure. Recall

that, in the bootstrap assemblage discussed in Section 3.3 for species richness, there

are Sobs + Q̂∗
0 species, where Q̂∗

0 is the smallest integer that is greater than or equal to

the estimated undetected species richness Q̂0 based on the Chao2 estimator in Eq. (2b).

The PD bootstrap tree includes two portions: the known tree spanned by the observed

species, and the undetected tree spanned by the remaining Q̂∗
0 species in the bootstrap

assemblage. The latter portion of tree is estimated by assuming that the undetected

species in the bootstrap tree all diverged directly from the root of the observed tree with

a constant branch length ˆ̄L(0), where ˆ̄L(0) = R̂0/Q̂∗
0, and R̂0 is the estimated undetected

PD based on Eq. (11c). This augmented portion of tree may seem to be restrictive, but

the effect on the resulting variance is limited; see Chao et al. (2015) for details.

7. Example

7.1. Data description (Figure 2, Appendices A and B)

A small empirical data set for birds observed in November 2012 in Australian Barring-

ton Tops National Park is used for illustration. The original data were described in Chao

et al. (2015). At each data sampling point, the abundance of each bird species observed
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Figure 2: The phylogenetic tree of 41 bird species and the sample species incidence frequencies for two

sites (the North Site with 12 point-counts and the South Site with 17 point-counts) in Australian Barrington

Tops National Park (Chao et al., 2015). The phylogenetic tree is a Maximum Clade Credibility tree from the

Bayesian analysis of Jetz et al. (2012). Branch lengths are scaled to millions of years since divergence. The

phylogenetic tree for the species observed in the North Site includes black branches and green branches.

The phylogenetic tree for the species observed in the South Site includes black branches and red branches.

(Black branches are shared by both sites; red and green branches are non-shared.) A zero-frequency in a

site means that the species was not observed in that site. The age of the root (i.e. tree depth) is 82.9 millions

of years.

over a 30-minute period in a 50 m radius was recorded – called a point-count in or-

nithology. We treat each point-count as a sampling unit. There were 12 point counts

conducted along the Barrington Tops Forest Road in the northern part of the national

park. The corresponding records, shown in Appendix A, form the reference sample

for the North Site. There were 17 point counts conducted along the Gloucester Tops
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Road in the southern part of the Barrington Tops National Park; the raw detection/non-

detection records (ignoring abundances) for the 17 point counts are listed in Appendix

B. Those records form the reference sample for the South Site. Vegetation at both sites

ranged from wet eucalypt forest to rainforest, with an average canopy cover of 80% for

the North Site and 60% for the South Site. The sampling points comprising the North

Site had an average elevation of 1078 m, while those of the South Site had an aver-

age elevation of 928 m. A total of 41 species were observed, for both sites combined,

and all species incidence frequencies are shown in Figure 2 and in the last column of

Appendices A and B. A phylogenetic tree of these species (Figure 2) was constructed

from a Maximum Clade Credibility tree of the Bayesian analysis of Jetz et al. (2012).

The age of the root for the phylogenetic tree spanned by the observed species is 82.9

million years (Myr). Chao et al. (2015) analyzed these data based on species abundance

data. Here we focus on species incidence frequency data which can account for spatial

heterogeneity in the data, whereas abundance-based approach often cannot.

7.2. Species richness and shared species richness estimation (Table 4)

In the North Site (T = 12 sampling units), the reference sample includes 102 inci-

dences (U = 102) representing 27 observed species; in the South Site (T = 17 sam-

pling units), the reference sample includes 148 incidences (U = 148) representing 38

observed species. The species incidence frequency counts (Q1 to QT ) for the two sites

are summarized in Table 4. Based on Eq. (7d), the estimated sample coverage values

for the North Site and the South Site are nearly identical at a level of 92% (specifically,

91.8% for the North Site and 92.5% for the South Site) in spite of the difference in the

number of sampling units. Thus, the raw data imply that the South Site is more diverse

than the North site for a standardized fraction of approximately 92% of the individuals

in each assemblage.

In each site, some species were each observed in only one point-count. The existence

of such “uniques” signifies that some species were undetected in each site. In the North

Site, 9 species were observed in only one point-count (Q1 = 9) and 4 species were ob-

served in two point-counts (Q2 = 4). These 13 rare species contain most of the available

information about the number of undetected species. The Chao2 formula in Eq. (2b)

implies a species richness estimate for the North Site of 36.3, with a 95% confidence

interval of (29.1, 68.8). In the South Site, 12 species were observed in only one point

(Q1 = 12), and 8 species were observed in two points (Q2 = 8). The Chao2 formula in

Eq. (2b) yields a species richness estimate of 46.5 for the South Site, with a 95% confi-

dence interval of (40.3, 69.8). Richness estimates based on the improved iChao2 estima-

tor (38.6 for North and 48.2 for South), derived by Chiu et al. (2014) in Eq. (6d), differ

little from the corresponding Chao2 estimates, so our interpretation is mainly based on

the Chao2 estimates. All estimates were computed from the SpadeR Online (Species-

richness Prediction And Diversity Estimation Online) software, which is available from

Anne Chao’s website at http://chao.stat.nthu.edu.tw/wordpress/software_download/.
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Table 4: A summary of raw data and species richness estimation for bird species in two sites (the South

Site and the North Site in Australian Barrington Tops National Park); see Chao et al. (2015).

(a) Species incidence frequency counts in the North Site (Sobs = 27, T = 12, total number of incidences

U = 102, sample coverage estimate = 91.8%); Qi: the number of species detected in exactly i sampling

units (point counts).

i 1 2 3 5 6 7 9 10 11 12

Qi 9 4 3 5 1 2 1 1 0 1

(b) Species incidence frequency counts in the South Site (Sobs = 38, T = 17, total number of incidences

U = 148, sample coverage estimate = 92.5%).

i 1 2 3 4 5 6 7 8 9 11 17

Qi 12 8 3 3 2 2 3 1 1 2 1

(c) Undetected species richness and Chao2 point and interval estimates for each site; see Eq. (2b)

Site T Q1 Q2
Observed

richness

Undetected

richness

Chao2

richness

s.e. of

Chao2

95% conf.

interval

North 12 9 4 27 9.28 36.28 8.31 (29.06, 68.77)

South 17 12 8 38 8.47 46.47 6.43 (40.25, 69.78)

(d) Undetected shared species richness between the two sites and the corresponding Chao2-shared point

and interval estimates for shared species richness; see Eq. (10e)

Observed shared

richness
Q+1 Q+2 Q1+ Q2+ Q11 Q22

24 6 1 6 4 4 0

Q̂+0 Q̂0+ Q̂00

Undetected

shared

richness

Chao2-

shared

richness

s.e. of

Chao2-shared

95% conf.

interval

2.75 7.06 2.59 12.39 36.39 11.42 (26.67,81.64)

The above results reveal that a relatively high fraction of the species present in each

site remain undetected. As discussed in Section 2.3, if we can assume for each site

that all undetected and unique species have approximately the same probability to be

detected in each point-count, then these asymptotic estimates represent nearly unbiased

estimates and can be compared between the two sites. In this case, the data are not
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sufficient to detect statistically significant differences in richness between the two sites,

as reflected by the overlapping confidence intervals associated with the two Chao2 es-

timates (Table 4). However, the data do support inference of a significance difference

in species richness if only a fraction of the assemblages are compared, as shown by the

disjoint confidence intervals in the coverage-based rarefaction and extrapolation in the

next sub-section.

Table 4 also shows overlap information and shared species richness estimation be-

tween the two sites. Out of the 24 observed shared species, 4 were uniques in both sites

(Q11 = 4), 12 shared species were uniques in one site or the other (Q+1 = 6, Q1+ = 6),

one shared species was a duplicate in the South Site (Q+2 = 1), and 4 shared species

were duplicates in the North Site (Q2+ = 4). The existence of such rare shared species

signifies that there were undetected shared species. Based on the Chao2-shared formula

(Eq. 10e), the minimum number of undetected shared species is estimated to be 12.4,

and the minimum shared species richness is estimated to be 36.4, with a 95% confidence

interval of (26.7, 81.6); see Table 4 for details. Our approach reveals the extent of under-

estimation and provides helpful information for understanding community/assemblage

overlap.

7.3. Rarefaction and extrapolation of species richness

(Figures 3, 4 and 5)

We use the data from these two sites to illustrate the construction of two types of rar-

efaction and extrapolation curves of species richness (sample-size-based and coverage-

based), and the sample completeness curve; all formulas are given in Table 2. The

constructed sampling curves are then used to compare species richness between the two

sites. These sampling curves can be obtained using the online software iNEXT (iN-

terpolation and EXTrapolation, available from the website address is given in Section

7.2). iNEXT online returns the three sampling curves as shown in Figures 3, 4 and 5,

along with some related statistics (omitted here). The omitted output includes basic data

information and species richness estimates for some rarefied and extrapolated samples.

The sample-size-based sampling curve (Figure 3) includes a rarefaction part (which

plots Ŝ(t) as a function of t < T ), and an extrapolation part (which plots Ŝ(T + t∗) as a

function of T + t∗), joining smoothly at the reference point (T , Sobs). The confidence

intervals based on the bootstrap method also join smoothly. With this type of sampling

curve, we can compare species richness for two equally-large samples along with 95%

confidence intervals. For each site, the extrapolation is extended to 34 sampling units,

double that of the reference sample size of the South Site. Extrapolation beyond the dou-

bled reference sample size could theoretically be computed and used for ranking species

richness, but the estimates may be subject to some prediction biases and should be used

with caution in estimating species richness ratios or other measures. Figure 3 reveals that

the curve for the South Site lies above that of the North Site. However, the confidence

intervals of the two sites overlap, implying that comparing two equally-large samples
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Figure 3: Sample-size-based rarefaction (solid lines) and extrapolation (dashed lines) sampling curves

with 95% confidence intervals (shaded areas, based on a bootstrap method with 200 replications) compar-

ing species richness for Australian bird data in two sites (the South Site and the North Site in Barrington

Tops National Park); see Chao et al. (2015). Observed (reference) samples are denoted by the solid dots.

The extrapolation extends up to a maximum sample size of 34; here the sample size means the number of

sampling units. The numbers in parentheses are the number of sampling units and the observed species

richness for each reference sample. The estimated asymptote for each curve is shown next to the arrow at

the right-hand end of each curve.

Figure 4: Plot of sample coverage for rarefied samples (solid line) and extrapolated samples (dashed line)

as a function of sample size for Australian bird data in two sites (the South Site and the North Site in

Barrington Tops National Park); see Chao et al. (2015). Observed (reference) samples are denoted by

solid dots. The 95% confidence intervals (shaded areas) are obtained by a bootstrap method based on 200

replications. Each of the two curves was extrapolated up to the base sample size of 34. The numbers in

parentheses are the number of sampling units and the estimated sample coverage for each reference sample.
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Figure 5: Coverage-based rarefaction (solid lines) and extrapolation (dashed lines) sampling curves with

95% confidence intervals (shaded areas, based on a bootstrap method with 200 replications) for comparing

species richness for Australian bird data in two sites (the South Site and the North Site in Barrington Tops

National Park); see Chao et al. (2015). Observed (reference) samples are denoted by solid dots. The

extrapolation extends up to the coverage value of the corresponding maximum number of sampling units of

34 in Figure 4 (98.5% in the North Site and 98.1% in the South Site). The numbers in parentheses are the

estimated coverage and the observed species richness for each reference sample. The estimated asymptote

for each curve is shown next to the arrow at the right-hand end of each curve.

is inconclusive regarding the test of significant difference in species richness between

the two sites. Generally, for any fixed sample size (or completeness) in the comparison

range, if the 95% confidence intervals do not overlap, then significant differences at a

level of 5% among the expected diversities (whether interpolated or extrapolated) are

guaranteed. However, overlapping intervals do not guarantee non-significance (Colwell

et al., 2012).

The sample completeness curve (Figure 4) shows how the sample coverage varies

with the number of sampling units, along with 95% confidence intervals for each of the

two sites, up to the sample size of 34. This curve includes a rarefaction part (which

plots Ĉ(t) as a function of t < T ), and an extrapolation part (which plots Ĉ(T + t∗) as

a function of T + t∗), joining smoothly at the reference point (T ,Ĉ(T )). For any fixed

number of sampling units, the curve of the North Site lies consistently above that of

the South Site, but there is little difference between the two curves when the number of

units exceeds 10. For the North Site, when the number of units is extended from 12 to

34, the sample coverage is extended from 91.8% to 98.5% (a number provided by the

unreported iNEXT output). For the South Site, when the sample size is extended from

17 to 34 the coverage is extended from 92.5% to 98.1% (as shown in the unreported

iNEXT output). The sample completeness curve provides a bridge between sample-

size-based and coverage-based sampling curves.

The coverage-based sampling curve (Figure 5) includes a rarefaction part (which

plots Ŝ(t) as a function of Ĉ(t) for t < T ), and an extrapolation part (which plots
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Ŝ(T + t∗) as a function of Ĉ(T + t∗)), joining smoothly at the reference sample point

(Ĉ(T ), Sobs). In this type of sampling curve, we compare species richness for two

equally-complete samples along with 95% confidence intervals. The extrapolation is

extended to 98.5% for the North Site and to 98.1% for the South Site, as explained

in the preceding paragraph. One advantage of using coverage-based curves is that the

South Site has significantly greater species richness than the North Site, as evidenced by

the non-overlapping confidence intervals for any fixed coverage up to about 93% in Fig-

ure 5. This implies that, if we compare species richness for sample coverage up to 93%,

the data do provide sufficient information to conclude that the South Site is significantly

richer in species. Unlike the sample-sized-based standardization, in which sample size

is determined by investigators, the coverage-based standardization compares equal pop-

ulation fractions of each assemblage. The population fraction is an assemblage-level

characteristic that can be reliably estimated from data.

As demonstrated in the above-described example, the two R packages (SpadeR

and iNEXT) supply useful information for both asymptotic and non-asymptotic anal-

yses. These methods efficiently use all available data to make robust and meaning-

ful comparisons of species richness between assemblages for a wide range of sample

sizes/completeness.

7.4. Faith’s PD estimation (Table 5)

Without loss of generality, we select the time depth at 82.9 Myr (the age of the root of the

phylogenetic tree connecting the observed 41 species) as our temporal perspective for

our phylogenetic diversity estimation in this sub-section and for rarefaction/extrapolation

in the next sub-section. Although the root of the observed species varies with sampling

data, we can easily transform all our estimates to those for a new reference point that is

ancestral to all species; see Chao et al. (2015) for transformations.

In the North Site (27 species in 12 sampling units), the observed PD (PDobs) is

1222.10 Myr. The total branch lengths for uniques in the sample branch/node incidence

frequencies is calculated as R1 = 376.5 Myr, and for duplicates is R2 = 153.5 Myr.

These two statistics and the two counts (Q∗
1 = 9, Q∗

2 = 6) in the observed tree produce

(by Eq. 11c) an estimate of the undetected PD as R̂0 = 423.3 Myr, leading to a Chao2-

PD estimate of the true PD of P̂DChao2 = PDobs+ R̂0 = 1645.4, with an estimated s.e. of

465.81 and 95% confidence interval of (1296.0, 3647.9), based on a bootstrap method

using 200 replications and a log-transformation.

In the South Site (38 species in 17 sampling units), the observed PD (PDobs) is

1416.0 Myr. The corresponding statistics are R1 = 376.8 Myr, R2 = 229.5 Myr, Q∗
1 = 13

and Q∗
2 = 10. These yield an estimate of the undetected PD as R̂0 = 291.2 Myr, leading

to a Chao2-PD estimate of the true PD of P̂DChao2 = PDobs + R̂0 = 1707.2, with an es-

timated s.e. of 206.45 and 95% confidence interval of (1499.4, 2433.1). Thus, signifi-
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Table 5: A summary of phylogenetic data and PD estimation based on the incidence frequency counts data

(in Table 4) and the phylogenetic tree (in Figure 2) for bird species in two sites (the South Site and the North

Site in Australian Barrington Tops National Park); see Chao et al. (2015). All calculations are based on

a reference time point of 82.9 Myr, the age of the root of the phylogenetic tree connecting the observed 41

species.

Site Q∗
1 Q∗

2 R1 R2
Observed

PD

Undetected

PD

Chao2-

PD

s.e. of

Chao2-PD

95% conf.

interval

North 9 6 376.5 153.5 1222.1 423.3 1645.4 465.81 (1296.0, 3647.9)

South 13 10 376.8 229.5 1416.0 291.2 1707.2 206.45 (1499.4, 2433.1)

cant difference in PD between the two sites cannot be guaranteed due to the overlapping

confidence intervals.

7.5. Rarefaction and extrapolation of PD (Figures 6 and 7)

The two types of rarefaction and extrapolation curves, along with the sample complete-

ness curves, can be obtained using the online software PhD (Phylogenetic Diversity),

available from the website given in Section 7.2. The sample-size-based and coverage-

based sampling curves are shown respectively in Figures 6 and 7. These two curves

are plotted in the same manner as those for species richness in Section 7.3; the only

difference lies in that species richness estimates were replaced by PD estimates (all PD

Figure 6: Comparison of sample-size-based rarefaction (solid lines) and extrapolation (dotted curves) of

Faith’s PD, up to 34 sampling units for Australian bird data in two sites (the South Site and the North

Site in Barrington Tops National Park); see Chao et al. (2015). The fixed time depth is 82.9 Myr (the

age of the root of the observed tree.) Observed (reference) samples are denoted by solid dots. The 95%

confidence intervals (shaded areas) are obtained by a bootstrap method based on 200 replications. The

numbers in parentheses are the number of sampling units and the observed PD for each reference sample.

The estimated asymptote of PD (Eq. 11c) for each curve is shown after an arrow sign.
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Figure 7: (a) Comparison of the coverage-based rarefaction (solid lines) and extrapolation (dotted curves)

of Faith’s PD, up to the coverage 98.5% for the North Site and 98.1% for the South Site for Australian bird

data in Barrington Tops National Park (Chao et al., 2015). The fixed time depth is 82.9 Myr (the age of the

root of the observed tree.) Observed (reference) samples are denoted by solid dots. The 95% confidence

intervals (shaded areas) are obtained by a bootstrap method based on 200 replications. The numbers

in parentheses are the estimated sample coverage and the observed PD for each reference sample. The

estimated asymptote of PD (Eq. 11c) for each curve is shown after an arrow sign.

formulas for rarefied and extrapolated samples are provided in the second column of

Table 2). The sample completeness curve is identical to that in Figure 4.

We first compare the integrated sample-size-based rarefaction and extrapolation curves

for PD along with 95% confidence intervals (based on a bootstrap method of 200 repli-

cations) up to 34 sampling units. The estimated PD and confidence intervals then can

be compared across sites for any sample size less than the size of 34. Across this range

of sample size, Figure 6 reveals that the South Site has higher PD estimate than that of

the North Site, but the two confidence intervals overlap and thus data do not provide

evidence to support significant difference.

In Figure 7, we compare the corresponding coverage-based rarefaction and extrap-

olation curves for PD with 95% confidence intervals up to the coverage of 98.5% (for

the North Site) and 98.1% (for the South Site). Although the estimated PD for the

South Site still consistently lies above that for the North Site for any standardized sam-

ple coverage, the two confidence intervals overlap and thus significant difference cannot

be concluded. Chao et al. (2015) analyzed the same data set but based on species

abundance data. Although the two types of data yield generally consistent patterns for

rarefaction and extrapolation curves, they found that species abundance data show that

the PD in the South Site is significantly higher than that in the North-site for any stan-

dardized sample coverage less than 90%; see Chao et al. (2015) for analyses based on

abundance data.
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8. Conclusion and discussion

We have reviewed Chao’s (1987) inequality and the associated Chao2 estimator (Eq. 2b)

of species richness for multiple incidence data. Using an incidence-data-based gener-

alization of the Good-Turing frequency formula, we have demonstrated that the Chao2

estimator is an unbiased point estimator as long as very rare/infrequent species (specif-

ically, undetected species and unique species in the data) have approximately the same

detection probabilities in any sampling unit; the other species (those detected in two or

more sampling units) can be highly heterogeneous without affecting the estimator. On

the other hand, if very rare/infrequent species are heterogeneous and the sample size is

not sufficiently large, then the data do not contain sufficient information to accurately

estimate species richness, and the Chao2 formula provides a universal nonparametric

lower bound. We have also reviewed the work of Chao et al. (2009) on a related sam-

pling issue, i.e. how many additional sampling units are needed to detect any arbitrary

proportion (including 100%) of the Chao2 estimate. Higher-order incidence frequency

counts can be also used to construct a series of Chao2-type lower bounds, as derived by

Chiu et al. (2014) in Eq. (6d), and by Puig and Kokonendji (2017) in Eq. (6e).

We have also reviewed subsequent developments, including species richness estima-

tors under sampling without replacement, specifically the Chao2-type species richness

estimator under sampling without replacement is shown in Eq. (9c). When there are

multiple assemblages, the Chao2-shared estimator (Eq. 10d) can be used to infer shared

species richness. We also described the Chao2-PD estimator (Eq. 11c), which estimates

the true PD for the phylogenetic tree spanned by all species in the focal assemblage.

Similarly, for phylogenetic diversity, the Chao2-PD estimator is nearly unbiased if the

detection probabilities of rare/infrequent nodes/branches are approximately homoge-

neous, even if other nodes/branches are heterogeneously detectable. These estimates

can be computed from online software SpadeR, iNEXT, and PhD. We have illustrated

the use of the software for a real data set in Section 7.

When rare/infrequent species or nodes are highly heterogeneous in their detection

probabilities, such as in microbial assemblages or DNA sequencing data, all estimators

derived in this paper underestimate the true diversities and can be regarded only as

lower bounds. In such cases, a non-asymptotic approach via sample-size-based and

coverage-based rarefaction and extrapolation on the basis of standardized sample size

or sample completeness (as measured by sample coverage) is recommended. This non-

asymptotic approach facilitates fair comparison of diversities (Sections 3 and Section

6.3) for equally-large or equally-complete samples across multiple assemblages. See

the example data analysis for rarefaction/extrapolation curves (Figures 3–5 for species

richness, and Figures 6 and 7 for PD).

None of the diversity measures discussed in this paper (species richness, shared

species richness, and Faith’s PD) considers species abundances. Hill (1973) integrated

species richness and species relative abundances into a class of diversity measures later

called Hill numbers, which include species richness for the diversity order zero. Hill
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numbers (or the effective number of species) have been increasingly used to quantify

the species/taxonomic diversity of assemblages because they represent an intuitive and

statistically rigorous alternative to other diversity indices. Hill numbers are parame-

terized by a diversity order q, which determines the measures’ sensitivity to species

relative abundances. Hill numbers include the three most widely used species diver-

sity measures as special cases: species richness (q = 0), Shannon diversity (q = 1), and

Simpson diversity (q = 2). Like species richness, a Hill number of any order q is depen-

dent on sample size and sample completeness, and thus standardization is needed. The

sample-size-based and coverage-based integration of rarefaction (interpolation) and ex-

trapolation (prediction) of Hill numbers represent a unified standardization method for

quantifying and comparing species diversity across multiple assemblages; see Chao et

al. (2014b) for rarefaction and extrapolation methods based on Hill numbers.

Chao et al. (2010) extended Hill numbers to a class of phylogenetic diversity mea-

sures. This class of phylogenetic measures can be regarded as a generalization of Faith’s

PD to incorporate species abundances, because it includes Faith’s PD as the diversity

of order zero (q = 0). The corresponding sample-size-based and coverage-based inte-

gration of rarefaction and extrapolation of this class of phylogenetic diversity measures

was recently developed by Hsieh and Chao (2017). In addition to abundances and evo-

lutionary history, species are often described by a set of traits that affect organismal

and/or ecosystem functioning. Functional diversity quantifies the diversity of species’

traits among coexisting species in an assemblage and is regarded as key to understanding

ecosystem processes and their response to environmental stress or disturbance (Tilman

et al., 1997; Cadotte et al., 2009). The extension of rarefaction and extrapolation to

functional diversity is still under development.
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Appendix A: Species detection/non-detection records in 12 point-counts for the North Site at Barrington

Tops National Park, Australia (Chao et al., 2015).

Species name Detection/non-detection record

in 12 sampling units (point-counts)

Incidence

frequency

Acanthiza lineata 0 0 0 0 0 0 0 0 0 0 0 0 0

Acanthiza nana 0 0 0 0 0 0 0 0 0 0 0 0 0

Acanthiza pusilla 1 1 1 1 1 1 1 1 1 1 1 1 12

Acanthorhynchus tenuirostris 0 0 0 0 0 0 0 0 0 0 0 0 0

Alisterus scapularis 0 0 1 0 0 0 0 0 1 0 0 0 2

Cacatua galerita 0 0 0 0 0 0 1 0 0 0 0 0 1

Cacomantis flabelliformis 0 1 0 0 1 0 1 1 1 0 0 0 5

Calyptorhynchus funereus 0 0 0 0 0 0 0 0 0 1 0 0 1

Colluricincla harmonica 1 1 0 0 0 0 0 0 0 0 0 0 2

Cormobates leucophaea 1 1 1 1 1 1 1 1 0 1 0 0 9

Corvus coronoides 0 0 0 0 0 0 0 1 0 0 0 0 1

Dacelo novaeguineae 0 0 0 0 0 0 0 0 0 0 1 0 1

Eopsaltria australis 1 0 0 1 0 1 1 0 1 0 0 0 5

Gerygone mouki 1 1 1 1 0 1 0 0 0 0 0 0 5

Leucosarcia melanoleuca 0 1 0 0 0 0 0 0 0 0 0 0 1

Lichenostomus chrysops 0 0 0 0 0 0 0 0 0 0 0 0 0

Malurus cyaneus 0 0 0 0 0 0 0 0 0 0 0 0 0

Malurus lamberti 0 0 0 0 0 0 0 0 0 0 0 0 0

Manorina melanophrys 0 0 0 0 0 0 0 0 0 0 0 0 0

Meliphaga lewinii 1 1 1 1 1 1 0 0 0 0 0 0 6

Menura novaehollandiae 1 1 1 0 0 0 0 0 1 0 0 1 5

Monarcha melanopsis 0 0 0 0 1 0 0 0 0 0 0 0 1

Neochmia temporalis 0 0 0 0 0 0 0 0 0 0 0 0 0

Oriolus sagittatus 0 0 1 0 0 0 0 0 0 0 0 0 1

Pachycephala olivacea 0 0 0 0 0 0 0 0 0 0 0 0 0

Pachycephala pectoralis 1 1 1 1 0 1 0 0 0 0 1 1 7

Pachycephala rufiventris 0 0 0 0 0 0 0 0 0 0 0 0 0

Pardalotus punctatus 1 0 1 1 1 0 1 1 0 0 1 0 7

Petroica rosea 0 0 0 0 0 0 0 0 0 0 1 0 1

Phylidonyris niger 0 0 0 0 0 0 0 0 0 0 0 0 0

Platycercus elegans 0 0 1 0 0 0 0 0 0 0 0 0 1

Psophodes olivaceus 0 0 1 1 0 0 0 1 0 0 0 0 3

Ptilonorhynchus violaceus 0 0 0 0 1 0 0 0 0 0 0 1 2

Ptiloris paradiseus 0 0 0 0 0 0 0 0 0 0 0 0 0

Rhipidura albicollis 1 1 0 1 0 1 1 1 1 1 1 1 10

Rhipidura rufifrons 0 0 1 0 1 0 0 0 0 1 0 0 3

Sericornis citreogularis 0 0 0 0 0 0 0 0 0 0 0 0 0

Sericornis frontalis 1 0 0 1 0 0 0 0 0 0 0 0 2

Strepera graculina 0 0 1 0 0 0 0 0 0 1 0 1 3

Zoothera lunulata 0 0 0 0 0 0 0 0 0 0 0 0 0

Zosterops lateralis 1 1 0 0 1 1 1 0 0 0 0 0 5
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Appendix B: Species detection/non-detection records in 17 point-counts for the South Site at Barrington

Tops National Park, Australia (Chao et al., 2015).

Species name Detection/non-detection record

in 17 sampling units (point-counts)

Incidence

frequency

Acanthiza lineata 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Acanthiza nana 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 5

Acanthiza pusilla 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 9

Acanthorhynchus tenuirostris 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 2

Alisterus scapularis 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Cacatua galerita 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

Cacomantis flabelliformis 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 4

Calyptorhynchus funereus 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Colluricincla harmonica 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 4

Cormobates leucophaea 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17

Corvus coronoides 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dacelo novaeguineae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Eopsaltria australis 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 3

Gerygone mouki 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 7

Leucosarcia melanoleuca 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Lichenostomus chrysops 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Malurus cyaneus 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2

Malurus lamberti 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 2

Manorina melanophrys 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Meliphaga lewinii 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 11

Menura novaehollandiae 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 4

Monarcha melanopsis 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 5

Neochmia temporalis 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 2

Oriolus sagittatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pachycephala olivacea 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 2

Pachycephala pectoralis 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 7

Pachycephala rufiventris 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Pardalotus punctatus 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 1 8

Petroica rosea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Phylidonyris niger 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

Platycercus elegans 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2

Psophodes olivaceus 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 6

Ptilonorhynchus violaceus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

Ptiloris paradiseus 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 2

Rhipidura albicollis 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 11

Rhipidura rufifrons 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 7

Sericornis citreogularis 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

Sericornis frontalis 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 3

Strepera graculina 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3

Zoothera lunulata 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

Zosterops lateralis 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 6
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Lanumteang, K. and Böhning, D. (2011). An extension of Chao’s estimator of population size based on the

first three capture frequency counts. Computational Statistics & Data Analysis, 7, 2302–2311.

Magurran, A.E. (2004). Measuring Biological Diversity. Blackwell Publishing, Oxford.

Magurran, A.E. and McGill, B.J. (eds) (2011). Biological Diversity: Frontiers in Measurement and Assess-

ment. Oxford University Press, Oxford.

Mao, C.X. (2006). Inference on the number of species through geometric lower bounds. Journal of Ameri-

can Statistical Association, 101, 1663–1670.

Mao, C.X. (2008). Lower bounds to the population size when capture probabilities vary over individuals.

Australian and New Zealand Journal of Statistics, 50, 125–134.

Mao, C.X. and Lindsay, B.G. (2007). Estimating the number of classes. Annals of Statistics, 35, 917–930.

Mao, C.X., Yang, N. and Zhang, J. (2013). On population size estimators in the Poisson mixture model.

Biometrics, 69, 758–765.

McGrayne, S.B. (2011). The theory that would not die: how Bayes’ rule cracked the enigma code, hunted

down Russian submarines, and emerged triumphant from two centuries of controversy. Yale Univer-

sity Press, New Haven, Connecticut.

Pan, H.Y., Chao, A. and Foissner, W. (2009). A non-parametric lower bound for the number of species

shared by multiple communities. Journal of Agricultural, Biological and Environmental Statistics,

14, 452–468.

Petchey, O.L. and Gaston, K.J. (2002). Functional diversity (FD), species richness and community compo-

sition. Ecology Letters, 5,402–411.

Puig, P. and Kokonendji, C. (2017). Nonparametric estimation of the number of zeros in truncated count

distributions. To appear in the Scandinavian Journal of Statistics.

Rivest, L.P. and Baillargeon, S. (2007). Applications and extensions of Chao’s moment estimator for the

size of a closed population. Biometrics, 63, 999–1006.

Sanders, H.L. (1968). Marine benthic diversity: a comparative study. American Naturalist, 102, 243–282.

Shinozaki, K. (1963). Notes on the species-area curve, 10th Annual Meeting of the Ecological Society of

Japan (Abstract), p. 5.

Shiyomi, M., Takahashi, S. and Yoshimura, J. (2000). A measure for spatial heterogeneity of a grassland

vegetation based on the beta-binomial distribution. Journal of Vegetation Science, 11, 627–632.

Simberloff, D. (1972). Properties of the rarefaction diversity measurement. American Naturalist, 106,

414–418.

Skellam, J.G. (1948). A probability distribution derived from the binomial distribution by regarding the

probability of success as variable between the sets of trials. Journal of the Royal Statistical Society

B, 10, 257–261.



54 Thirty years of progeny from Chao’s inequality: Estimating and comparing richness...

Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M. and Siemann, E. (1997). The influence of functional

diversity and composition on ecosystem processes. Science, 277, 1300–1302.

Warwick, R.M. and Clarke, K.R. (1995). New ‘biodiversity’ measures reveal a decrease in taxonomic

distinctness with increasing stress. Marine Ecology Progress Series, 129, 301–305.

Webb, C.O. and Donoghue, M.J. (2005). Phylomatic: tree assembly for applied phylogenetics. Molecular

Ecology Notes, 5, 181–183.


