
CHAPTER 4

Estimating species richness

Nicholas J. Gotelli and Robert K. Colwell

4.1 Introduction

Measuring species richness is an essential objec-

tive for many community ecologists and conserva-

tion biologists. The number of species in a local

assemblage is an intuitive and natural index of

community structure, and patterns of species rich-

ness have been measured at both small (e.g. Blake

& Loiselle 2000) and large (e.g. Rahbek & Graves

2001) spatial scales. Many classic models in commu-

nity ecology, such as the MacArthur–Wilson equi-

librium model (MacArthur & Wilson 1967) and

the intermediate disturbance hypothesis (Connell

1978), as well as more recent models of neutral

theory (Hubbell 2001), metacommunity structure

(Holyoak et al. 2005), and biogeography (Gotelli

et al. 2009) generate quantitative predictions of the

number of coexisting species. To make progress in

modelling species richness, these predictions need

to be compared with empirical data. In applied

ecology and conservation biology, the number of

species that remain in a community represents the

ultimate ‘scorecard’ in the fight to preserve and

restore perturbed communities (e.g. Brook et al.

2003).

Yet, in spite of our familiarity with species rich-

ness, it is a surprisingly difficult variable to mea-

sure. Almost without exception, species richness

can be neither accurately measured nor directly

estimated by observation because the observed

number of species is a downward-biased estimator

for the complete (total) species richness of a local

assemblage. Hundreds of papers describe statistical

methods for correcting this bias in the estimation

of species richness (see also Chapter 3), and spe-

cial protocols and methods have been developed

for estimating species richness for particular taxa

(e.g. Agosti et al. 2000). Nevertheless, many recent

studies continue to ignore some of the fundamental

sampling and measurement problems that can com-

promise the accurate estimation of species richness

(Gotelli & Colwell 2001).

In this chapter we review the basic statisti-

cal issues involved with species richness estima-

tion. Although a complete review of the subject is

beyond the scope of this chapter, we highlight sam-

pling models for species richness that account for

undersampling bias by adjusting or controlling for

differences in the number of individuals and the

number of samples collected (rarefaction) as well as

models that use abundance or incidence distribu-

tions to estimate the number of undetected species

(estimators of asymptotic richness).

4.2 State of the field

4.2.1 Sampling models for biodiversity data

Although the methods of estimating species rich-

ness that we discuss can be applied to assemblages

of organisms that have been identified by genotype

(e.g. Hughes et al. 2000), to species, or to some

higher taxonomic rank, such as genus or family (e.g.

Bush & Bambach 2004), we will write ‘species’ to

keep it simple. Because we are discussing estima-

tion of species richness, we assume that one or more

samples have been taken, by collection or observa-

tion, from one or more assemblages for some speci-

fied group or groups of organisms. We distinguish

two kinds of data used in richness studies: (1) inci-

dence data, in which each species detected in a sam-

ple from an assemblage is simply noted as being

present, and (2) abundance data, in which the abun-

dance of each species is tallied within each sample.

Of course, abundance data can always be converted

to incidence data, but not the reverse.
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Box 4.1 Observed and estimated richness

Sobs is the total number of species observed in a sample, or
in a set of samples.
Sest is the estimated number of species in the

assemblage represented by the sample, or by the set of
samples, where est is replaced by the name of an estimator.

Abundance data. Let fk be the number of species each
represented by exactly k individuals in a single sample.
Thus, f0 is the number of undetected species (species
present in the assemblage but not included in the sample),
f1 is the number of singleton species, f2 is the number of
doubleton species, etc. The total number of individuals in

the sample is n =
Sobs
∑

k=1

fk.

Replicated incidence data. Let qk be the number of
species present in exactly k samples in a set of replicate
incidence samples. Thus, q0 is the number of undetected
species (species present in the assemblage but not included
in the set of samples), q1 is the number of unique species,
q2is the number of duplicate species, etc. The total number

of samples is m =
Sobs
∑

k=1

qk.

Chao 1 (for abundance data)

SChao1 = Sobs +
f 2
1

2 f2
is the classic form, but is not defined

when f2 = 0 (no doubletons).
SChao1 = Sobs +

f1( f1−1)

2( f2+1)
is a bias-corrected form, always

obtainable.

var(SChao1) = f2
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for

f1 > 0 and f2 > 0 (see Colwell 2009, Appendix B of
EstimateS User’s Guide for other cases and for asymmetrical
confidence interval computation).

Chao 2 (for replicated incidence data)

SChao2 = Sobs +
q2

1

2q2
is the classic form, but is not defined

when q2 = 0 (no duplicates).
SChao2 = Sobs +

(

m−1

m

)

q1 (q1−1)

2(q2+1)
is a bias-corrected form,

always obtainable.

var(SChao2) = q2
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for

q1 > 0 and q2 > 0 (see Colwell 2009, Appendix B of
EstimateS User’s Guide for other cases and for asymmetrical
confidence interval computation).

ACE (for abundance data)

Srare =
10
∑

k=1

fk is the number of rare species in a sample (each

with 10 or fewer individuals).

Sabund =
Sobs
∑

k=11

fk is the number of abundant species in a

sample (each with more than 10 individuals).

nrare =
10
∑

k=1

k fk is the total number of individuals in the

rare species.
The sample coverage estimate is CAC E = 1 −

f1
nr ar e

, the

proportion of all individuals in rare species that are not
singletons. Then the ACE estimator of species richness is
SACE = Sabund + Sr ar e

C AC E
+

f1
C AC E

„
2
ACE, where „

2
ACE is the

coefficient of variation,

„
2
ACE = max

⎡

⎢

⎢

⎢

⎣

Srare

CACE

10
∑

k=1

k(k − 1)fk

(nrare) (nrare − 1)
− 1, 0

⎤

⎥

⎥

⎥

⎦

The formula for ACE is undefined when all rare species
are singletons (f1 = nrare, yielding CACE = 0). In this case,
compute the bias-corrected form of Chao1 instead.

ICE (for incidence data)

Sinfr =
10
∑

k=1

qk is the number of infrequent species in a

sample (each found in 10 or fewer samples).

Sfreq =
Sobs
∑

k=11

qk is the number of frequent species in a

sample (each found in more than 10 samples).

ninfr =
10
∑

k=1

kqk is the total number of incidences in the

infrequent species.
The sample coverage estimate is CICE = 1 −

q1

ni nf r
, the

proportion of all incidences of infrequent species that are
not uniques. Then the ICE estimator of species richness is

CICE = Sfreq +
Si nf r

C ICE
+

q1

C ICE
„

2
ICE, where „

2
ICE is the coefficient

of variation,

„
2
ICE = max
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The formula for ICE is undefined when all infrequent
species are uniques (q1 = ninfr, yielding CICE = 0). In this
case, compute the bias-corrected form of Chao2
instead.

Jackknife estimators (for abundance data)

The first-order jackknife richness estimator is

Sjackknife1 = Sobs + f1

The second-order jackknife richness estimator is

Sjackknife2 = Sobs + 2f1 − f2

Jackknife estimators (for incidence data)

The first-order jackknife richness estimator is

Sjackknife1 = Sobs + q1

(

m − 1

m

)

The second-order jackknife richness estimator is

Sjackknife2 = Sobs +

[

q1 (2m − 3)

m
−

q2 (m − 2)
2

m (m − 1)

]

By their nature, sampling data document only

the verified presence of species in samples. The

absence of a particular species in a sample may

represent either a true absence (the species is not

present in the assemblage) or a false absence (the

species is present, but was not detected in the

sample; see Chapter 3). Although the term ‘pres-

ence/absence data’ is often used as a synonym for

incidence data, the importance of distinguishing

true absences from false ones (not only for rich-

ness estimation, but in modelling contexts, e.g. Elith

et al. 2006) leads us to emphasize that incidence

data are actually ‘presence data’. Richness esti-

mation methods for abundance data assume that

organisms can be sampled and identified as dis-

tinct individuals. For clonal and colonial organisms,

such as many species of grasses and corals, indi-

viduals cannot always be separated or counted, but

methods designed for incidence data can nonethe-

less be used if species presence is recorded within

standardized quadrats or samples (e.g. Butler &

Chazdon 1998).

Snacking from a jar of mixed jellybeans provides

a good analogy for biodiversity sampling (Longino

et al. 2002). Each jellybean represents a single indi-

vidual, and the different colours represent the dif-

ferent species in the jellybean ‘assemblage’—in a

typical sample, some colours are common, but most

are rare. Collecting a sample of biodiversity data

is equivalent to taking a small handful of jelly-

beans from the jar and examining them one by

one. From this incomplete sample, we try to make

inferences about the number of colours (species) in

the entire jar. This process of statistical inference

depends critically on the biological assumption that

the community is ‘closed,’ with an unchanging total

number of species and a steady species abundance

distribution. Jellybeans may be added or removed

from the jar, but the proportional representation of

colours is assumed to remain the same. In an open

metacommunity, in which the assemblage changes

size and composition through time, it may not be

possible to draw valid inferences about community

structure from a snapshot sample at one point in

time (Magurran 2007). Few, if any, real communities

are completely ‘closed’, but many are sufficiently

circumscribed that that richness estimators may be

used, but with caution and caveats.

For all of the methods and metrics (Box 4.1) that

we discuss in this chapter, we make the closely

related statistical assumption that sampling is with

replacement. In terms of collecting inventory data

from nature, this assumption means either that indi-

viduals are recorded, but not removed, from the

assemblage (e.g. censusing trees in a plot) or, if

they are removed, the proportions remaining are

unchanged by the sampling.

This framework of sampling, counting, and iden-

tifying individuals applies not only to richness esti-

mation, but also to many other questions in the

study of biodiversity, including the characterization

of the species abundance distribution (see Chap-

ter 9) and partitioning diversity into α and β com-

ponents (see Chapters 6 and 7).
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Figure 4.1 Species accumulation and rarefaction curves. The

jagged line is the species accumulation curve for one of many

possible orderings of 121 soil seedbank samples, yielding a total

of 952 individual tree seedlings, from an intensive census of a plot

of Costa Rican rainforest (Butler & Chazdon 1998). The cumulative

number of tree species (y-axis) is plotted as a function of the

cumulative number of samples (upper x -axis), pooled in random

order. The smooth, solid line is the sample-based rarefaction curve

for the same data set, showing the mean number of species for all

possible combinations of 1, 2, . . . , m∗
, . . . , 121 actual

samples from the dataset—this curve plots the statistical

expectation of the (sample-based) species accumulation curve.

The dashed line is the individual-based rarefaction curve for the

same data set—the expected number of species for

(m∗) (952/121) individuals, randomly chosen from all 952

individuals (lower x -axis). The black dot indicates the total

richness for all samples (or all individuals) pooled. The

sample-based rarefaction curve lies below the individual-based

rarefaction curve because of spatial aggregation within species.

This is a very typical pattern for empirical comparisons of

sample-based and individual-based rarefaction curves.

4.2.2 The species accumulation curve

Consider a graph in which the x-axis is the num-

ber of individuals sampled and the y-axis is the

cumulative number of species recorded (Fig. 4.1,

lower x-axis). Imagine taking one jellybean at a time

from the jar, at random. As more individuals (jelly-

beans) are sampled, the total number of species

(colours) recorded in the sample increases, and a

species accumulation curve is generated. Of course,

the first individual drawn will represent exactly one

species new to the sample, so all species accumu-

lation curves based on individual organisms origi-

nate at the point [1,1]. The next individual drawn

will represent either the same species or a species

new to the sample. The probability of drawing a

new species will depend both on the complete num-

ber of species in the assemblage and their relative

abundances. The more species in the assemblage

and the more even the species abundance distribu-

tion (see Chapter 9), the more rapidly this curve will

rise. In contrast, if the species abundance distribu-

tion is highly uneven (a few common species and

many rare ones, for example), the curve will rise

more slowly, even at the outset, because most of the

individuals sampled will represent more common

species that have already been added to the sample,

rather than rarer ones that have yet to be detected.

Regardless of the species abundance distribu-

tion, this curve increases monotonically, with a

decelerating slope. For a given sample, different

stochastic realizations of the order in which the

individuals in the sample are added to the graph

will produce species accumulation curves that dif-

fer slightly from one another. The smoothed aver-

age of these individual curves represents the sta-

tistical expectation of the species accumulation

curve for that particular sample, and the variabil-

ity among the different orderings is reflected in

the variance in the number of species recorded for

any given number of individuals. However, this

variance is specific, or conditional, on the particu-

lar sample that we have drawn because it is based

only on re-orderings of that single sample. Suppose,

instead, we plot the smoothed average of several

species accumulation curves, each based on a dif-

ferent handful of jellybeans from the same jar, each

handful having the same number of beans. Varia-

tion among these smoothed curves from the several

independent, random samples represents another

source of variation in richness, for a given number

of individuals. The variance among these curves is

called an unconditional variance because it estimates

the true variance in richness of the assemblage. The

unconditional variance in richness is necessarily
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larger than the variance conditional on any single

sample.

4.2.3 Climbing the species accumulation
curve

In theory, finding out how many species character-

ize an assemblage means sampling more and more

individuals until no new species are found and the

species accumulation curve reaches an asymptote.

In practice, this approach is routinely impossible for

two reasons. First, the number of individuals that

must be sampled to reach an asymptote can often be

prohibitively large (Chao et al. 2009). The problem

is most severe in the tropics, where species diversity

is high and most species are rare. For example, after

nearly 30 consecutive years of sampling, an ongo-

ing inventory of a tropical rainforest ant assemblage

at La Selva, Costa Rica, has still not reached an

asymptote in species richness. Each year, one or two

new species are added to the local list. In some cases

these species are already known from collections at

other localities, but in other cases they are new to

science (Longino et al. 2002). In other words, bio-

diversity samples, even very extensive ones, often

fall short of revealing the complete species richness

for an assemblage, representing some unspecified

milestone along a slowly rising species accumula-

tion curve with an unknown destination.

A second reason that the species accumula-

tion curve cannot be used to directly determine

species richness is that, in field sampling, ecolo-

gists almost never collect random individuals in

sequence. Instead, individual plants or mobile ani-

mals are often recorded from transects or points

counts, or individual organisms are collected in pit-

fall and bait traps, sweep samples, nets, plankton

tows, water, soil, and leaf litter samples, and other

taxon-specific sampling units that capture multi-

ple individuals (Southwood & Henderson 2000).

Although these samples can, under appropriate

circumstances, be treated as independent of one

another, the individuals accumulated within a sin-

gle sample do not represent independent observa-

tions. Although individuals contain the biodiver-

sity ‘information’ (species identity), it is the sam-

ples that represent the statistically independent

replicates for analysis. When spatial and temporal

autocorrelation is taken into account, the samples

themselves may be only partially independent.

Nevertheless, the inevitable non-independence of

individuals within samples can be overcome by

plotting a second kind of species accumulation

curve, called a sample-based species accumulation

curve, in which the x-axis is the number of samples

and the y-axis is the accumulated number of species

(Fig. 4.1, upper x-axis). Because only the identity

but not the number of individuals of each species

represented within a sample is needed to construct

a sample-based species accumulation curve, these

curves plot incidence data. This approach is there-

fore also suitable for clonal and colonial species that

cannot be counted as discrete individuals.

4.2.4 Species richness versus species density

The observed number of species recorded in a sam-

ple (or a set of samples) is very sensitive to the

number of individuals or samples observed or col-

lected, which in turn is influenced by the effec-

tive area that is sampled and, in replicated designs,

by the spatial arrangement of the replicates. Thus,

many measures reported as ‘species richness’ are

effectively measures of species density: the number

of species collected in a particular total area. For

quadrat samples or other methods that sample a

fixed area, species density is expressed in units of

species per specified area. Even for traps that col-

lect individuals at a single point (such as a pitfall

trap), there is probably an effective sampling area

that is encompassed by data collection at a single

point.

Whenever sampling is involved, species density

is a slippery concept that is often misused and

misunderstood. The problem arises from the non-

linearity of the species accumulation curve. Con-

sider the species accumulation curve for rainforest

seedlings (Butler & Chazdon 1998) in Fig. 4.2, which

plots the species of seedlings grown from dormant

seed in 121 soil samples, each covering a soil surface

area of 17.35 cm2 and a depth of 10 cm. The x-axis

plots the cumulative surface area of soil sampled.

The slopes of lines A, B, and C represent species

density: number of species observed (y), divided by

area-sampled (x). You can see that species density
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Figure 4.2 Species richness and species density are not the same

thing. The solid line is the sample-based rarefaction curve for the

same data set as in Fig 4.1, showing the expected species richness of

rainforest tree seedlings for 1, 2, . . . , m∗
, . . . , 121 soil samples,

each covering a soil surface area of 17.35 cm2 and a depth of

10 cm. Species richness (y-axis) is plotted as a function of the total

soil surface area sampled (x-axis). Because species density is the ratio

of richness (y-coordinate) to area (x-coordinate) for any point in the

graph, the slopes of lines A, B, and C quantify species density for

500, 1000, and 2000 cm2, respectively. Clearly, species density

estimates depend on the particular amount of area sampled. All of

the species density slopes over-estimate species number when

extrapolated to larger areas, and species density estimates based on

differing areas are not comparable.

depends critically not just on area, but on the spe-

cific amount of area sampled. For this reason, it

never works to ‘standardize’ the species richness

of samples from two or more assemblages by sim-

ply dividing observed richness by area sampled (or

by any other measure of effort, including number

of individuals or number of samples). Estimating

species density by calculating the ratio of species

richness to area sampled will always grossly over-

estimate species density when this index is extrap-

olated to larger areas, and the size of that bias will

depend on the area sampled.

Sometimes, however, ecologists or conservation

biologists are interested in species density, for some

particular amount of area, in its own right. For

example, if only one of two areas, equal in size and

cost per hectare, can be purchased to establish a

reserve, species density at the scale of the reserve is

clearly a variable of interest. Because species density

is so sensitive to area (and, ultimately, to the num-

ber of individuals observed or collected), it is useful

to decompose it into the product of two quanti-

ties: species richness (number of species represented

by some particular number, N, of individuals) and

total individual density (number of individuals N,

disregarding species, in some particular amount of

area A):
(

species

area A

)

=

(

species

N individuals

)

×

(

N individuals

area A

)

(James & Wamer 1982). This decomposition demon-

strates that the number of species per sampling unit

reflects both the underlying species richness and

the total number of individuals sampled. If two

samples differ in species density, is it because of

differences in underlying species richness, differ-

ences in abundance, or some combination of both?

In other words, how do we meaningfully com-

pare the species richness of collections that prob-

ably differ in both the number of individuals and

the number of samples collected? Until recently,

many ecologists have not recognized this prob-

lem. The distinction between species density and

species richness has not always been appreciated,

and many papers have compared species density

using standard parametric statistics, but without

accounting for differences in abundance or sam-

pling effort.

One statistical solution is to treat abundance,

number of samples, or sample area as a covariate

that can be entered into a multiple regression analy-

sis or an analysis of covariance. If the original data

(counts and identities of individuals) are not avail-

able, this may be the best that we can do. For exam-

ple, Dunn et al. (2009) assembled a global database

of ant species richness from a number of published

studies. To control for sampling effects, they used

the area, number of samples, and total number of

individuals from each sample location as statisti-

cal covariates in regression analyses. However, they
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did not make the mistake of trying to ‘standard-

ize’ the richness of different samples by dividing

the species counts by the area, the number of indi-

viduals sampled, or any other measure of effort.

As we have repeatedly emphasized, this rescaling

produces serious distortions: extrapolations from

small sample ratios of species density inevitably

lead to gross over-estimates of the number of

species expected in larger sample areas (Fig. 4.2 and

Figure 4–6 in Gotelli & Colwell 2001).

4.2.5 Individual-based rarefaction

The species accumulation curve itself suggests an

intuitive way to compare the richness of two sam-

ples (for the same kind of organism) that differ in

the number of individuals collected. Suppose one

of the two samples has N individuals and S species,

and the other has n individuals and s species. The

samples differ in the number of individuals present

(N > n) and will usually differ in the number of

species present (typically S > s). In the procedure

called rarefaction, we randomly draw n∗ individuals,

subsampling without replacement from the larger

of the two original samples, where n∗ = n, the size

of the smaller original sample. (This re-sampling,

without replacement, of individuals from within

the sample does not violate the assumption that the

process of taking the sample itself did not change

the relative abundance of species). Computing the

mean number of species, s̄∗, among repeated sub-

samples of n∗ individuals estimates E(s∗|n∗), the

expected number of species in a random subsam-

ple of n∗ individuals from the larger original sam-

ple (Fig. 4.1, lower x-axis). The variance of (s∗),

among random re-orderings of individuals, can also

be estimated this way along with a parametric 95%

confidence interval, or the confidence interval can

be estimated from the bootstrapped values (Manly

1991).

A simple test can now be conducted to ask

whether s, the observed species richness of the com-

plete smaller sample, falls within the 95% confi-

dence interval of s∗, the expected species richness

based on random subsamples of size n from the

larger sample (Simberloff 1978). If the observed

value falls within the confidence interval, then the

hypothesis that the richness of the smaller sample,

based on all n individuals, does not differ from the

richness of a subsample of size n∗ from the larger

sample cannot be rejected at P ≤ 0.05. If this null

hypothesis is not rejected, and the original, unrar-

efied samples differed in species density, then this

difference in species density must be driven by

differing numbers of individuals between the two

samples. Alternatively, if s is not contained within

the confidence interval of s∗, the two samples differ

in species richness in ways that cannot be accounted

for entirely by differences in abundance and/or

sampling effort (at P ≤ 0.05).

Rarefaction can be used not only to calculate a

point estimate of s∗, but also to construct an entire

rarefaction curve in which the number of individuals

randomly subsampled ranges from 1 to N. Rarefac-

tion can be thought of as a method of interpolating

E(s∗|n∗) the expected number of species, given n∗

individuals (1 ≤ n∗ ≤ N), between the point [1, 1]

and the point [S, N] (Colwell et al. 2004). With pro-

gressively smaller subsamples from N – 1 to 1, the

resulting individual-based rarefaction curve, in a sense,

is the reverse of the corresponding species accumu-

lation curve, which progressively builds larger and

larger samples.

Because this individual-based rarefaction curve

is conditional on one particular sample, the vari-

ance in s∗, among random re-orderings of indi-

viduals, is 0 at both extremes of the curve: with

the minimum of only one individual there will

always be only one species represented, and with

the maximum of N individuals, there will always be

exactly S species represented. Hurlbert (1971) and

Heck et al. (1975) give analytical solutions for the

expectation and the conditional variance of s∗, which

are derived from the hypergeometric distribution.

In contrast, treating the sample (one handful of

jellybeans) as representative of a larger assemblage

(the jar of jellybeans) requires an estimate of the

unconditional variance (the variance in s∗|n∗ among

replicate handfuls of jellybeans from the same jar).

The unconditional variance in richness, S, for the

full sample of N individuals, must be greater than

zero to account for the heterogeneity that would

be expected with additional random samples of

the same size taken from the entire assemblage.

Although Smith & Grassle (1977) derived an esti-

mator for the unconditional variance of E(s∗|n∗),
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it is computationally complex and has been little

used. R.K. Colwell and C.X. Mao (in preparation)

have recently derived an unconditional variance

estimator for individual-based rarefaction that is

analogous to the unconditional variance estimator

for sample-based rarefaction described in Colwell

et al. (2004), and discussed below.

Regardless of how the variance is estimated, the

statistical significance of the difference in rarefied

species richness between two samples will depend,

in part, on n, the number of individuals being com-

pared. This sample-size dependence arises because

all rarefaction curves based on individuals con-

verge at the point [1,1]. Therefore, no matter how

different two assemblages are, rarefaction curves

based on samples of individuals drawn at ran-

dom will not appear to differ statistically if n is

too small. In some cases, rarefaction curves may

cross at higher values of n, making the results of

statistical tests even more dependent on n (e.g.

Raup 1975).

To compare multiple samples, each can be rar-

efied down to a common abundance, which will

typically be the total abundance for the smallest of

the samples. At that point, the set of s∗ values, one

for each sample, can be used as a response variable

in any kind of statistical analysis, such as ANOVA

or regression. This method assumes that the rarefac-

tion curves do not cross (which may be assessed

visually), so that their rank order remains the same

regardless of the abundance level used. Alterna-

tively, multiple samples from the same assemblage

can be used in a sample-based rarefaction, which we

describe below.

Rarefaction has a long history in ecology and evo-

lution (Sanders 1968; Hurlbert 1971; Raup 1975; Tip-

per 1979; Järvinen 1982; Chiarucci et al. 2008).The

method was proposed in the 1960s and 1970s to

compare species number when samples differed

in abundance (Tipper 1979), but the same statisti-

cal problem had been solved many decades ear-

lier by biogeographers who wanted to estimate

species/genus ratios and other taxonomic diversity

indices (Järvinen 1982).

Brewer & Williamson (1994) and Colwell & Cod-

dington (1994) pointed out that a very close approx-

imation for the rarefaction curve is the Coleman

‘passive sampling’ curve,

E (s∗) =
S

∑

i=1

[

1 − (1 − n∗/N)ni
]

, (4.1)

in which i indexes species from 1 to S, and ni is the

abundance of species i in the full sample. As a null

model for the species–area relationship (see Chap-

ter 20), the Coleman curve assumes that islands of

different area randomly intercept individuals and

accumulate different numbers of species (Coleman

et al. 1982). The individual-based rarefaction curve

is very closely analogous to the Coleman curve

(and, although mathematically distinct, differs only

slightly from it) because relative island area is a

proxy for the proportion n∗/N of individuals sub-

sampled from the pooled distribution of all individ-

uals in the original sample (Gotelli 2008).

4.2.6 Sample-based rarefaction

Individual-based rarefaction computes the

expected number of species, s∗, in a subsample

of n∗ individuals drawn at random from a single

representative sample from an assemblage. In

contrast, sample-based rarefaction computes the

expected number of species s∗ when m∗ samples

(1 ≤ m∗ ≤ M) are drawn at random (without

replacement) from a set of samples that are,

collectively, representative of an assemblage

(Fig. 4.1, upper x-axis) (Gotelli & Colwell 2001;

Colwell et al. 2004). (This re-sampling, without

replacement, of samples from within the sample

set does not violate the assumption that the process

of taking the sample itself did not change the

relative abundance of species.) The fundamental

difference is that sample-based rarefaction, by

design, preserves the spatial structure of the

data, which may reflect processes such as spatial

aggregation or segregation (see Chapter 12)

both within and between species. In contrast,

individual-based rarefaction does not preserve the

spatial structure of the data and assumes complete

random mixing among individuals of all species.

Thus, for sample-based rarefaction, E (s∗|m∗) is the

expected number of species for m∗ pooled samples

that express the same patterns of aggregation,

association, or segregation as the observed set of

samples. For this reason, sample-based rarefaction

is a more realistic treatment of the independent
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sampling units used in most biodiversity studies.

Because sample-based rarefaction requires only

incidence data, it can also be used for clonal

organisms or for species in which individuals

in a sample cannot be easily distinguished or

counted.

Operationally, sample-based rarefaction can be

carried out by repeatedly selecting and pooling

m∗ samples at random from the set of samples,

and computing the mean and conditional (on the

particular set of samples) variance and 95% confi-

dence interval for s∗. On the other hand, E (s∗|m∗)

is more easily and accurately computed from com-

binatorial equations based on the distribution of

counts, the number of species found in exactly 1,

2, . . . , m∗ samples in the set (Ugland et al. 2003;

Colwell et al. 2004; see Chiarucci et al. 2008 for

a history of this approach). Colwell et al. 2004

also introduced a sample-based version of the

Coleman rarefaction model, the results of which

closely approximate the true sample-based rarefac-

tion curve.

Ugland et al. (2003) provide an expression for

the conditional variance in richness estimates from

sample-based rarefaction. Colwell et al. (2004)

derived an unconditional variance estimator for

sample-based rarefaction that treats the observed

set of samples, in turn, as a sample from some

larger assemblage, so that the variance in S for

all M samples, pooled (the full set of samples),

takes some non-zero value. This unconditional vari-

ance (and its associated confidence interval (CI))

accounts for the variability expected among repli-

cate sets of samples. Based on unconditional vari-

ances for two sample-based rarefaction curves, rich-

ness can be compared for any common number of

samples (or individuals, as explained below). Using

eigenvalue decomposition, Mao & Li (2009) devel-

oped a computationally complex method for com-

paring two sample-based rarefaction curves in their

entirety. A much simpler, but approximate, method

is to assess, for a desired value of m∗, whether or

not the two (appropriately computed) confidence

intervals overlap. If the two CIs (calculated from the

unconditional variance) are approximately equal,

for a type I error rate of P < 0.05, the appropriate

CI is about 84% (Payton et al. 2003; the z value

for 84% CI is 0.994 standard deviations). Basing the

test on the overlap of traditional 95% CIs is overly

conservative: richness values that would differ sig-

nificantly with the 84% interval would often be

declared statistically indistinguishable because the

95% intervals for the same pair of samples would

overlap (Payton et al. 2003).

An important pitfall to avoid in using sample-

based rarefaction to compare richness between

sample sets is that the method does not directly con-

trol for differences in overall abundance between

sets of samples. Suppose two sets of samples are

recorded from the same assemblage, but they dif-

fer in mean number of individuals per sample

(systematically or by chance). When plotted as a

function of number of samples (on the x-axis) the

sample-based rarefaction curve for the sample set

with a higher mean abundance per sample will lie

above the curve for the sample set with lower mean

abundance because more individuals reveal more

species. The solution suggested by Gotelli & Col-

well (2001) is to first calculate sample-based rarefac-

tion curves and their variances (or CIs) for each set

of samples in the analysis. Next, the curves are re-

plotted against an x-axis of individual abundance,

rather than number of samples. This re-plotting

effectively shifts the points of each individual-based

rarefaction curve to the left or the right, depending

on the average number of individuals that were

collected in each sample. Ellison et al. (2007) used

this method to compare the efficacy of ant sam-

pling methods that differed greatly in the average

number of individuals per sample (e.g. 2 ants per

pitfall trap, versus > 89 ants per plot for standard-

ized hand sampling). Note that if sample-based rar-

efaction is based on species occurrences rather than

abundances, then the rescaled x-axis is the number

of species occurrences, not the number of individu-

als.

4.2.7 Assumptions of rarefaction

To use rarefaction to compare species richness of

two (or more) samples or assemblages rigorously,

the following assumptions should be met:

1. Sufficient sampling. As with any other statis-

tical procedure, the power to detect a dif-

ference, if there is one, depends on having
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large enough individuals or samples, especially

since rarefactions curves necessarily converge

towards the origin. Although it is difficult to give

specific recommendations, our experience has

been that rarefaction curves should be based on

at least 20 individuals (individual-based rarefac-

tion) or 20 samples (sample-based rarefaction),

and preferably many more.

2. Comparable sampling methods. Because all sam-

pling methods have inherent and usually

unknown sampling biases that favour detection

of some species but not others (see Chapter 3),

rarefaction cannot be used to compare data from

two different assemblages that were collected

with two different methods (e.g. bait samples vs

pitfall traps, mist-netting vs point-sampling for

birds). However, rarefaction can be used mean-

ingfully to compare the efficacy of different sam-

pling methods that are used in the same area

(Longino et al. 2002; Ellison et al. 2007). Also,

data from different sampling methods may be

pooled in order to maximize the kinds of species

that may be sampled with different sampling

methods (e.g. ants in Colwell et al. (2008)). How-

ever, identical sampling and pooling procedures

must to be employed to compare two composite

collections.

3. Taxonomic similarity. The assemblages repre-

sented by the two samples should be taxonom-

ically ‘similar’. In other words, if two samples

that differ in abundance but have rarefaction

curves with identical shapes do not share any

taxa, we would not want to conclude that the

smaller collection is a random subsample of the

larger (Tipper 1979). Rarefaction seems most use-

ful when the species composition of the smaller

sample appears to be a nested or partially nested

subset of the larger collection. Much more pow-

erful methods are now available to test directly

for differences in species composition (Chao

et al. 2005).

4. Closed communities of discrete individuals. The

assemblages being sampled should be well cir-

cumscribed, with consistent membership. Dis-

crete individuals in a single sample must

be countable (individual-based rarefaction) or

species presence in multiple samples must be

detectable (sample-based rarefaction).

5. Random placement. Individual-based rarefaction

assumes that the spatial distribution of individ-

uals sampled is random. If individuals within

species are spatially aggregated, individual-

based rarefaction will over-estimate species rich-

ness because it assumes that the rare and com-

mon species are perfectly intermixed. Some

authors have modified the basic rarefaction

equations to include explicit terms for spatial

clumping (Kobayashi & Kimura 1994). However,

this approach is rarely successful because the

model parameters (such as the constants in the

negative binomial distribution) cannot be eas-

ily and independently estimated for all of the

species in the sample. One way to deal with

aggregation is to increase the distance or timing

between randomly sampled individuals so that

patterns of spatial or temporal aggregation are

not so prominent. An even better approach is to

use sample-based rarefaction, again employing

sampling areas that are large enough to over-

come small-scale aggregation.

6. Independent, random sampling. Individuals or

samples should be collected randomly and

independently. Both the individual-based and

sample-based methods described in this chap-

ter assume that sampling, from nature, does not

affect the relative abundance of species (statis-

tically, sampling with replacement). However,

if the sample is relatively small compared to

the size of the underlying assemblage (which is

often the case), the results should be similar for

samples collected with or without replacement.

More work is needed to derive estimators that

can be used for sampling without replacement,

which will be important for cases in which the

sample represents a large fraction of the total

assemblage. Unfortunately, as we have noted

earlier, biodiversity data rarely consist of col-

lections of individuals that were sampled ran-

domly. Instead, the data often consist of a series

of random and approximately independent sam-

ples that contain multiple individuals.

4.2.8 Estimating asymptotic species richness

Consider the species richness of a single biodiver-

sity sample (or the pooled richness of a set of sam-
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ples) as the starting point in a graph of richness

versus abundance or sample number (the dot at the

right-hand end of the curves in Fig. 4.1). Rarefac-

tion amounts to interpolating ‘backward’ from the

endpoint of a species accumulation curve, yielding

estimates of species richness expected for smaller

numbers of individuals or samples. In contrast,

using this starting point to estimate the complete

richness of the assemblage, including species that

were not detected by the sample, can be visualized

as extrapolating ‘forward’ along a hypothetical pro-

jection the accumulation curve (Colwell et al. 2004,

their Figure 4). Two objectives of extrapolation can

be distinguished: (1) estimating the richness of a

larger sample and (2) estimating the complete rich-

ness of the assemblage, visualized as the asymptote

of the accumulation curve. Once this asymptote is

reached, the species accumulation curve is flat and

additional sampling will not yield any additional

species.

Why should the species accumulation curve have

an asymptote? On large geographical scales, it does

not: larger areas accumulate species at a constant

or even an increasing rate because expanded sam-

pling incorporates diverse habitat types that sup-

port distinctive species assemblages (see Chap-

ter 20). As a consequence, the species accumulation

curve continues to increase, and will not reach a

final asymptote until it approaches the total area

of the biosphere. The subject of species turnover is

covered by Jost et al. and Magurran (Chapters 6

and 7) and species–area relationships are the subject of

Chapter 20. In this chapter, we focus on the estima-

tion of species richness at smaller spatial scales—

scales at which an asymptote is a reasonable sup-

position and sampling issues are substantially more

important than spatial turnover on habitat mosaics

or gradients (Cam et al. 2002). In statistical terms,

we assume that samples were drawn independently

and at random from the local assemblage, so that

the ordering of the samples in time or space is not

important. In fact, unimportance of sample order is

diagnostic of the kinds of sample sets appropriately

used by ecologists to assess local species richness

(Colwell et al. 2004).

The most direct approach to estimating the

species richness asymptote is to fit an asymp-

totic mathematical function (such as the Michaelis–

Menten function; Keating & Quinn (1998)) to a

rarefaction or species accumulation curve. This

approach dates back at least to Holdridge et al.

(1971), who fitted a negative binomial function to

smoothed species accumulation curves to compare

the richness of Costa Rica trees at different local-

ities. Many other asymptotic functions have since

been explored (reviewed by Colwell & Coddington

(1994), Flather (1996), Chao (2005), and Rosenzweig

et al. (2003)). Unfortunately, this strictly phenom-

enological method, despite the advantage that it

makes no assumptions about sampling schemes or

species abundance distributions, does not seem to

work well in practice. Two or more functions may

fit a dataset equally well, but yield drastically dif-

ferent estimates of asymptotic richness (Soberón &

Llorente 1993; Chao 2005), and variance estimates

for the asymptote are necessarily large. Residual

analysis often reveals that the popular functions

do not correctly fit the shape of empirical species

accumulation curves (O’Hara 2005), and this curve-

fitting method consistently performs worse than

other approaches (Walther & Moore 2005; Walther

& Morand 2008). For these reasons, we do not rec-

ommend fitting asymptotic mathematical functions

as a means of estimating complete species richness

of local assemblages.

Mixture models, in which species abundance

or occurrence distributions are modelled as a

weighted mixture of statistical distributions, offer

a completely different, non-parametric approach to

extrapolating an empirical rarefaction curve to a

larger sample sizes (or a larger set of samples)

(reviewed by Mao et al. (2005), Mao & Colwell

(2005), and Chao (2005)). Colwell et al. (2004), for

example, modelled the sample-based rarefaction

curve as a binomial mixture model. However, these

models are effective only for a doubling or tripling

of the observed sample size. Beyond this point, the

variance of the richness estimate increases rapidly.

Unless the initial sample size is very large, pro-

jecting the curve to an asymptotic value usually

requires much more than a doubling or tripling of

the initial sample size (Chao et al. 2009), so this

method is not always feasible, especially for hyper-

diverse taxa (Mao & Colwell 2005).

Another classical approach to estimating asymp-

totic richness is to fit a species abundance
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Figure 4.3 Estimation of asymptotic species richness by fitting a

log-normal distribution to a species abundance distribution. The graph

shows the number of species of ants in each of seven

logarithmically-scaled abundance categories (a total of 435 species

collected) in a long-term rainforest inventory in Costa Rica (Longino

et al. 2002). The number of undetected species (21 additional species) is

estimated by the area marked with horizontal hatching, yielding a

predicted complete richness of 456 species.

distribution (see Chapter 9), based on a single sam-

ple, to a truncated parametric distribution, then

estimate the ‘missing’ portion of the distribution,

which corresponds to the undetected species in

an assemblage. Fisher et al. (1943) pioneered this

approach by fitting a geometric series to a large

sample of moths captured at light traps. Relative

incidence distributions from replicated sets of sam-

ples can be treated in the same way (Longino et al.

2002). The most widely used species abundance

distribution for this approach is the log-normal

(Fig. 4.3) and its variants (from Preston (1948) to

Hubbell (2001)), but other distributions (geometric

series, negative binomial, γ, exponential, inverse

Guassian) have also been used. The challenges of

fitting the log-normal have been widely discussed

(e.g. Colwell & Coddington 1994; Chao 2004; Dor-

nelas et al. 2006; Connolly et al. 2009). One of

the limitations of this approach is shared with the

extrapolation of fitted parametric functions: two or

more species abundance distributions may fit the

data equally well, but predict quite different assem-

blage richness. In addition, the species abundance

distribution that fits best may be one that cannot

be used to estimate undetected species, such as the

widely used log-series distribution (Chao 2004).

The limitations of parametric methods inspired

the development of non-parametric richness esti-

mators, which require no assumptions about an

underlying species abundance distribution and do

not require the fitting of either a priori or ad hoc

models (Chao 2004). These estimators have experi-

enced a meteoric increase in usage in the past two

decades, as species richness has become a focus of

biodiversity surveys and conservation issues, and a

subject of basic research on the causes and conse-

quences of species richness in natural ecosystems.

In Box 4.1, we have listed six of the most widely

used and best-performing indices. All the estima-

tors in Box 4.1 depend on a fundamental principle

discovered during World War II by Alan Turing and

I.J. Good (as reported by Good (1953, 2000)), while

cracking the military codes of the German Wehrma-

cht Enigma coding machine: the abundances of the

very rarest species or their frequencies in a sample

or set of samples can be used to estimate the fre-

quencies of undetected species. All of the estima-

tors in Box 4.1 correct the observed richness Sobs by

adding a term based on the number of species rep-

resented in a single abundance sample by only one

individual (singletons), by two (doubletons), or by a

few individuals. For incidence data, the added term

is based on the frequencies of species represented in

only one (uniques) sample, in two (duplicates), or in

a few replicate incidence samples.

Fig. 4.4 shows how well one of these estima-

tors, Chao2, estimates the asymptotic richness of the

seedbank dataset of Figure 4.1, based on sets of m∗

samples chosen at random. The estimator stabilizes

after about 30 samples have been pooled. When all

121 samples have been pooled, the estimator sug-

gests that 1–2 additional species still remain unde-

tected.

Only four of the estimators in Box 4.1 (Chao1,

ACE, and the two individual-based jackknife esti-

mators) are appropriate for abundance data; the

rest require replicated incidence data. Most of the

incidence-based estimators were first developed, in
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Figure 4.4 Asymptotic species richness estimated by the Chao2

non-parametric richness estimator for the seedbank dataset of

Fig. 4.1. Plotted values for Chao2 are means of 100 randomizations

of sample order. The estimator stabilizes after only about 30 samples

have been pooled. When all 121 samples have been pooled (34

species detected), the estimator suggests that one or two additional

species still remain undetected.

biological applications, for capture–recapture meth-

ods of population size estimation. The number of

samples that include Species X in a set of bio-

diversity samples corresponds to the number of

recaptures of marked Individual X in a capture–

recapture study. In species richness estimation, the

full assemblage of species, including those species

not detected in the set of samples (but susceptible

to detection), corresponds, in population size esti-

mation, to the total population size, including those

individuals never captured (but susceptible to cap-

ture) (Boulinier et al. 1998; Chao 2001, 2004).

Behind the disarming simplicity of Chao1 and

Chao2 lies a rigorous body of statistical theory

demonstrating that both are robust estimators of

minimum richness (Shen et al. 2003). ACE and ICE

are based on estimating sample coverage—the pro-

portion of assemblage richness represented by the

species in a single abundance sample (ACE) or in a

set of replicated incidence samples (ICE). The esti-

mators are adjusted to the ‘spread’ of the empirical

species abundance (or incidence) distribution by a

coefficient of variation term (Chao 2004). The Chao1

and Chao2 estimators also provide a heuristic, intu-

itive ‘stopping rule’ for biodiversity sampling: no

additional species are expected to be found when all

species in the sample are represented by at least two

individuals (or samples). Extending this approach,

Chao et al. (2009) provide equations and simple

spreadsheet software for calculating how many

additional individuals would be needed to sample

100% (or any other percentage) of the asymptotic

species richness of a region based on the samples

already in hand. Pan et al. (2009) have recently

extended the Chao1 and Chao2 indices to provide

an estimate of the number of shared species in mul-

tiple assemblages.

The jackknife is a general statistical technique for

reducing the bias of an estimator by removing sub-

sets of the data and recalculating the estimator with

the reduced sample. In this application of the tech-

nique, the observed number of species is a biased

(under-) estimator of the complete assemblage rich-

ness (Burnham & Overton 1979; Heltshe & Forrester

1983; Chao 2004). For a set of m replicate incidence

samples, the kth order jackknife reduces the bias by

estimating richness from all sets of m–k samples.

The first-order jackknife (Jackknife1) thus depends

only on the uniques (species found in only one sam-

ple) because the richness estimate is changed only

when a sample that contains one of these species

is deleted from a subset of samples. Likewise, the

second-order jackknife (Jackknife2) depends only

on the uniques and the duplicates (species found

in exactly two samples). Similar expressions for

abundance-based jackknife estimators are based on

the number of singletons (species represented by

exactly one individual) and doubletons (species

represented by exactly two individuals; Burnham &

Overton (1979)). These estimators can be derived by
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letting the number of samples m tend to infinity in

the equations for the incidence-based estimators.

4.2.9 Comparing estimators of asymptotic
species richness

Given the diversity of asymptotic estimators that

have been proposed, which one(s) should ecologists

use with their data? The ideal estimator would be

unbiased (it neither over- or under-estimates asymp-

totic species richness), precise (replicates samples

from the same assemblage produce similar esti-

mates), and efficient (a relatively small number of

individuals or samples is needed). Although there

are many ways to estimate bias, precision, and

efficiency (Walther & Moore 2005), none of the

available estimators meet all these criteria for all

datasets. Most estimators are biased because they

chronically under-estimate true diversity (O’Hara

2005). The Chao1 estimator was formally derived

as a minimum asymptotic estimator (Chao 1984),

but all of the estimators should be treated as esti-

mating the lower bound on species richness. Esti-

mators of asymptotic species richness are often

imprecise because they typically have large vari-

ances and confidence intervals, especially for small

data sets. This imprecision is inevitable because, by

necessity, these estimators represent an extrapola-

tion beyond the limits of the data. In contrast, rar-

efaction estimators usually have smaller variances

because they are interpolated within the range of

the observed data. However, as noted earlier, the

unconditional variance of richness as estimated by

rarefaction is always larger than the variance that is

conditional on a single sample (or set of samples).

Finally, most estimators are not efficient and often

exhibit ‘sampling creep’: the estimated asymptote

itself increases with sample size, suggesting that the

sample size is not large enough for the estimate to

stabilize (e.g. Longino et al. (2002)).

Two strategies are possible to compare the per-

formance of different estimators. The first strategy

is to use data from a small area that has been

exhaustively sampled (or nearly so), and to define

that assemblage as the sampling universe. As in

rarefaction, a random subsample of these data can

then be used to calculate asymptotic estimators

and compare them to the known richness in the

plot (a method first suggested by Pielou (1975),

but popularized by Colwell & Coddington (1994)).

For example, Butler & Chazdon (1998) collected

seeds from 121 soils samples from a 1 ha plot, on

a 10 × 10 m grid in tropical rainforest in Costa

Rica, yielding 952 individual seedlings represent-

ing a total of 34 tree species (Figure 4.1). Col-

well & Coddington (1994) randomly rarefied these

data, by repeatedly pooling m∗ samples (1 ≤ m∗ ≤

M), and found that the Chao2 index (illustrated

in Fig. 4.4) and the second-order jackknife estima-

tors were least biased for small m∗, followed by

the first-order jackknife and the Michaelis–Menten

estimator. Walther & Morand (1998) used a similar

approach with nine parasite data sets and found

that Chao2 and the first-order jackknife performed

best. Walther & Moore (2005), using different quan-

titative measures of bias, precision, and accuracy,

compiled the results of 14 studies that compared

estimator performance, and concluded that, for

most data sets, non-parametric estimators (mostly

the Chao and jackknife estimators) performed bet-

ter than extrapolated asymptotic functions or other

parametric estimators.

In a second strategy for comparing diversity esti-

mators, the investigator specifies the true species

richness, the pattern of relative abundance, and

the spatial pattern of individuals in a computer-

simulated landscape. The program then randomly

samples individuals or plots, just as an ecologist

would do in a field survey. The estimators are then

calculated and compared on the basis of their abil-

ity to estimate the ‘true’ species richness of the

region. This kind of simulation can also be used

to explore the effects of spatial aggregation and

segregation, sampling efficiency, and the size and

placement of sampling plots. Brose et al. (2003) car-

ried out the most extensive analysis of this kind

to date. In their analyses, which estimator per-

formed best depended on the relative evenness

of the rank abundance distribution, the sampling

intensity, and the true species richness. As in the

empirical surveys (Walther & Moore 2005), non-

parametric estimators performed better in these

model assemblages than extrapolated asymptotic

curves (parametric estimators based on truncated

distributions were not considered). One encourag-

ing result was that environmental gradients and
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spatial autocorrelation (which characterize all bio-

diversity data at some spatial scales) did not have a

serious effect on the performance of the estimators.

These results are consistent with the findings of

Hortal et al. (2006), who aggregated empirical data

sets at different spatial grains and found that non-

parametric estimators were not greatly affected by

the spatial scale of the sampling.

O’Hara (2005) took a hybrid approach that used

both empirical data and simulated assemblages. He

first fit negative binomial and Poisson log-normal

distributions to two very extensive (but incomplete)

sets of survey data for moths. He used these fitted

models to generate sample data for comparing non-

parametric estimators, parametric estimators, and

extrapolated asymptotic curves. As in other studies,

true species richness was greater than predicted by

the estimators. In each comparison, only one of the

parametric estimators had a 95% confidence inter-

val that encompassed the true richness. The catch is

that this method worked well only when the ‘cor-

rect’ species abundance distribution was used. In

other words, the investigator would need to know

ahead of time that the negative binomial, Poisson

log-normal, or some other distribution was the cor-

rect one to use (which rather defeats the value of

using non-parametric estimators). Unfortunately, in

spite of decades of research on this topic, there is

still no agreement on a general underlying form of

the species abundance distribution, and there are

difficult issues in the fitting and estimation of these

distributions from species abundance data (see

Chapter 10). We hope that future work may lead to

better species richness estimators. At this time, the

non-parametric estimators still give the best perfor-

mance in empirical comparisons, and they are also

simple, intuitive, and relatively easy to use.

4.2.10 Software for estimating species
richness from sample data

Free software packages with tools for estimating

species richness from sample data include:

� EstimateS (Colwell 2009): http://purl.oclc.org/

estimates
� EcoSim (Gotelli & Entsminger 2009): http://

garyentsminger.com/ecosim/index.htm

� SPADE: http://chao.stat.nthu.edu.tw/software

CE.html
� VEGAN (for R): http://cc.oulu.fi/∼jarioksa/

softhelp/vegan.html.

4.3 Prospectus

Estimates of species richness require special sta-

tistical procedures to account for differences in

sampling effort and abundance. For comparing

species richness among different assemblages, we

recommend sample-based rarefaction using uncon-

ditional variances, with adjustments for the number

of individuals sampled. Rarefaction methods for

data that represent sampling from nature with-

out replacement are still needed, for small assem-

blages, as are additional estimators for the number

of shared species in multiple samples (A. Chao,

personal communication). For many datasets, all

existing methods for estimating undetected species

seem to substantially under-estimate the number

of species present, but the best methods nonethe-

less reduce the inherent undersampling bias in

observed species counts. Non-parametric estima-

tors (e.g. Chao1, Chao2) perform best in empirical

comparisons and benchmark surveys, and have a

more rigorous framework of sampling theory than

parametric estimators or curve extrapolations.

4.4 Key points

1. Biodiversity sampling is a labour-intensive activ-

ity, and sampling is often not sufficient to detect

all or even most of the species present in an

assemblage.

2. Species richness counts are highly sensitive to

the number of individuals sampled, and to

the number, size, and spatial arrangement of

samples.

3. Sensitivity to sampling effort cannot be

accounted for by scaling species richness as a

ratio of species counts to individuals, samples,

or any other measure of effort.

4. Sample-based and individual-based rarefaction

methods allow for the meaningful comparison of

diversity samples based on equivalent numbers

of individuals and samples.
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5. Non-parametric estimators of species richness,

which use information on the rare species in

an assemblage to adjust for the number species

present but not detected, are the most promising

avenue for estimating the minimum number of

species in the assemblage.
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