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SUMMARY 

A point estimator and its associated confidence interval for the size of a closed population are 
proposed under models that incorporate heterogeneity of capture probability. Real data sets provided 
in Edwards and Eberhardt (1967, Journal of Wildlife Management 31, 87-96) and Carothers (1973, 
Journal of Animal Ecology 42, 125-146) are used to illustrate this method and to compare it with 
other estimates. The performance of the proposed procedure is also investigated by means of Monte 
Carlo experiments. The method is especially useful when most of the captured individuals are caught 
once or twice in the sample, for which case the jackknife estimator usually does not work well. 
Numerical results also show that the proposed confidence interval performs satisfactorily in main- 
taining the nominal levels. 

1. Introduction 

The capture-recapture method has been widely used by field biologists and ecologists to 
investigate the dynamics of biological populations. For a closed population, the classical 

problem for capture-recapture experiments is the estimation of the population size. The 
reader is referred to Cormack (1968, 1979), Otis et al. (1978), Pollock (1981), and Seber 
(1982, 1986) for a general comprehensive review on this topic. 

Most of the previous works are based on the assumption that all the individuals of the 

population have the same capture probabilities. However, as indicated in the ecological 
literature (e.g., Young, Neess, and Emlen, 1952; Tanaka, 1956; Crowcroft and Jeffers, 

1961; Tanton, 1965; Eberhardt, 1969; Carothers, 1973; Wilbur and Landwehr, 1974), 

individual heterogeneity of capture probability may arise in many ways in biological 
populations. Eberhardt (1969, p. 28) pointed out that various sets of data showed the equal- 
probability-of-capture assumption is often not valid. Carothers (1973, p. 146) found that it 
was impossible to achieve equal catchability even with randomized capture locations on 
each sampling occasion. He further concluded that equal catchability is an unattainable 
ideal in natural populations. Many previous studies (e.g., Edwards and Eberhardt, 1967; 
Carothers, 1973; Otis et al., 1978; Burnham and Overton, 1979) have confirmed that the 

usual “Schnabel”-type estimators (Schnabel, 1938; Schumacher and Eschmeyer, 1943) 
based on the equal-catchability assumption are negatively biased by heterogeneity of capture 
probabilities. | | 

Some estimators without the equal-catchability restriction have been proposed by Eber- 
hardt, Peterle, and Schofield (1963), Tanaka (1967), Eberhardt (1969), and Marten (1970). 

Tanaka and Marten used regression-type estimators by assuming a certain form of unequal 
capture probabilities, while Eberhardt et al. fitted the capture frequency counts as a 
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geometric series. These two types of estimation procedures along with the usual Schnabel- 
type estimators were applied by Carothers (1973) to some real data sets where the true 

population size is known. (We will also discuss these data sets in Section 3.) He reported 

that these two types of estimators failed to reduce significantly the magnitude of the bias 
of the usual Schnabel-type estimators. Pollock (in a 1974 Ph.D. thesis at Cornell University, 
and 1976, 1981) pioneered the work by considering models where heterogeneity of capture 
probability is allowed. Burnham and Overton (1978, 1979) rigorously introduced a heter- 
ogeneity model by assuming that individual capture probability is a random variable from 
an arbitrary distribution. They also derived the jackknife estimator, which has been 
extensively investigated in Otis et al. (1978) and White et al. (Los Alamos National 
Laboratory Report LA-8787-NERP, 1982) using many real and simulated data sets. They 
found that the jackknife estimator is the most robust one among others considered therein. 
Pollock and Otto (1983) presented a range of new estimators for the heterogeneity model 
and the heterogeneity and trap-response model. Based on numerical comparisons, they 
support the use of the jackknife estimator for the heterogeneity model. The jackknife 
estimator generally produces adequate estimates if many individuals are caught a relatively 
large number of times (Otis et al., 1978, p. 35). 

On the other hand, the jackknife estimator usually underestimates the population size if 
many individuals have very small capture probabilities so that they are caught only once 
or twice in the multiple-recapture experiments. [This is clearly seen from Table 1a of 
Pollock and Otto (1983) for the cases that the number of trapping days is less than 15.] 
The last concern is precisely what motivated the present study. In Section 2, we will propose 

an estimator and its associated confidence interval for the population size under the 
heterogeneity model. This estimator will be shown to be useful when many captured 
individuals are caught only a few times in the sample. Some real data sets are used to 
compare the present estimator with other previous results in Section 3. In the same section, 

results from a limited Monte Carlo simulation further show the performance of the proposed 

method. 

2. Model and Estimator 

We first describe the heterogeneity model developed in Burnham and Overton (1978, 
1979). Assume the population is closed with size N and there are ¢ trapping occasions. Let 
the individuals be indexed by 1, ..., N and p;; be the capture probability of the ith 

individual on the jth trapping occasion, i= 1,..., Nandj=1,..., ¢. We further assume 

Di = piforj=1,...,t, and p,,..., py are a random sample from a probability distribution 
F. The data consist of an N X ¢ matrix X = (X;,), where 

Xj; = I[{the ith individual is caught in jth trapping occasion] 

and J[A] is the usual indicator function—that is, /[A] = 1 if event A occurs, 0 otherwise. 
We assume X;;,,i= 1,..., Nandj=1,..., ¢, are mutually independent. Let 

N t . 

S= »> I X, ij > | 

i=] j=! 

denote the number of distinct individuals caught in the experiment, and 

fe= D1 
i=] 

t 

x, = k=0,1,...,4, 
=| 

J 

be the number of individuals captured exactly k times in the ¢ samples. It is clear that only 
S' rows in the data matrix are observed and fo represents the number of unobserved
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individuals, with N = S + fo. It follows from Burnham and Overton (1978) that 

(fi,...,/:) are sufficient statistics under this model and the joint, unconditional distribution 
function of (/, fi, ..., 4) is a multinomial, that is, 

| N f f 
PUbstin = (6X 4) I [0(F)]", (1) 

where 

6(F) = f (‘) pi — p)*" dF(p). 

Using the generalized jackknife technique, Burnham and Overton (1978) derived the 
kth-order jackknife estimator, Ny,, which is a linear function of /;: 

t 

Ny = > Arf. 
i=l 

For coefficients a,, the reader is referred to Burnham and Overton (1978, 1979) for details. 

They also provided a testing procedure to select an appropriate k. Usually k is chosen to 
be less than 5. 

Under the same model, we now proceed to obtain an alternative estimator of NV. From 

(1), we have | 
l 

t\ , _; 
eu = Nn | (1) n'a - py dF(p), 1=0,1,..., 4. (2) 

If ¢ is large and p is small, it follows that 

l 

E(fi) = N J [(tp)'e~”/i!] dF(p), i=0,1,..., 4. (3) 

Note here that for any p = p* for some p* such that the Poisson approximation is not good, 
(3) is still valid as long as f }* dF(p) is small. 

Consider the following cumulative distribution function in (0, ¢]: 

G(u) = J xe* ar(®) / J xe~* dF (2), (4) 

Then from (3) and (4), 

E(fo) = N [ e~? dF(p) 
° (5) 

~ [EA] J u! dGw) 
The kth moment py, of G is given by 

w= { u* dG(u) 

= { (tx)*t!e™ dF(x) / | (tx)e™™ dF (x) (6) 
0 0 

= (k + 1)! E(fi+1)/E(/). 

Replacing E(/;) by /; in the above expression, we obtain the following moment estimator
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of ux if fi ¥ 0: | 

mi = (k + 1)! fess/f- 7 —— (7) 

Using Jensen’s inequality, we have from (5) and (6) that 

E(fo) = E(f)/m = [EGADI?/[2E(A)]. 
Therefore, a lower bound WN of the population size is readily obtained as 

N= S + fi/(2f). (8) 
When the first two moment estimates m, and mz are legitimate moments of distributions 

in [0, ]—namely, m, and mp satisfy t? > tm, > m2 > mij—we are mainly interested in 
finding an estimator G of G such that G(x) has m, mz as its first two moments. Our 
approach is similar to that taken by Harris (1959), who dealt with other statistical problems. 
Let C(m;, mz) denote the class of cumulative distribution functions in [0, ¢] with ™, m2 
as the first two moments. Harris (1959) proved that 

min fu ac) = | u dH (u), 
GE 

where 

0, | u< (tm, — m)/(t — m) 
H(u) = \ — my ((t — my +m — miy', (tm — m)(t -— m) <u<t. 

d, {su 

Hence, we obtain a lower bound Nin of NV: 

Nein = S+ | yu! dH(u) 
(9) 

| = S+ f(t -— my +m — miy'[t- my (tm — m2) + (m2 — mi)t7'). 

A simple approximation formula of (9) (courtesy of Professor Richard Cormack) is 

“ R | l—m/t | 
Nau = Mi, = 5+ LE] | 10 PT 96 LL — mim) (10) 

This provides a “correction factor” for N and it is clear that N, = N under the moment 
restrictions. Also, notice that when the magnitude of m, and my are relatively small 
compared to that of ¢, the value of Nmin is very close to N. Both N and JN, are applied to 
the real data sets in the next section. We found that in practice there will often be little 

difference in the two estimates if N, exists. Hence, we will concentrate mainly on the 
performance of the estimator N in the simulation comparisons. N is actually a lower bound 
of N subject to the moment constraints. However, its performance as an estimator of N is 

encouraging and competitive with other estimators, as will be seen in the next section. 

A similar technique has been applied by the author (Chao, 1984) to estimate the number 

of species under a quite different model. The model considered there does not allow the 
author to derive an analytic variance estimator. So the percentile method based on the 
bootstrap method (Efron, 1979, 1981, 1982) was employed in that work to construct 

confidence intervals. However, under the heterogeneity model, we are able to provide the 
following variance estimator by a standard asymptotic approach: 

6? = vares(N) = fil.25(4/f)* + (A/Ay + SCA/f)’I- 

(An approximate variance formula for N; can be analogously obtained.) Assuming the
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normality of NV, we have a classical approximate 95% confidence interval: 

[N — 1.96¢, N + 1.966]. (11) 

Burnham (personal communication) suggested using a log-transformation to get an 
improved confidence interval. That is, we treat log(N — S) as an approximately normal 
random variable, which gives a 95% interval as 

[S+(N— SVC, S+(N— S)C], | (12) 
where 

C = exp{1.96[log(1 + o2/(N — S))]!4}. 

Both intervals will be applied to the data sets and simulation study discussed in the next 

section. 
It should be emphasized that the proposed procedure relies on the condition that ¢ is 

“large” and the p; are “small.” It is generally recommended, from some simulation results, 
that the number of samples be at least 5. When most p; are relatively small, all individuals 
are likely to be captured only a few times in the capture-recapture sampling. Thus, the 
information should be mainly concentrated on the lower-order frequency counts, which 
are exactly those needed to construct moment estimators. If (/3, f4, .. .) carry nonnegligible 
information, our estimator can be regarded only as a lower bound of the population size. 

3. Examples 

3.1 Cottontail Data 

Edwards and Eberhardt (1967) conducted a live-trapping study on a confined population 
of known size. In their study, 135 wild cottontail rabbits were penned in a 4-acre rabbit- 
proof enclosure. Live trapping was conducted for 18 consecutive nights. Recorded capture 
frequencies (/; to /7) were 

B, 16, 8 6 0, 2% 1 

Edwards and Eberhardt reported that the usual Schnabel-type estimates were considerably 
less than the true parameter 135 (e.g., the Schnabel estimate is 96; the Schumacher and 

Eschmeyer estimate is 97). The corresponding confidence intervals were thus not satisfac- 
tory either. They suggested modelling the capture frequency data by a geometric series and 
obtained estimates 136 and 164 by two different estimation procedures. Burnham and 
Overton (1978, 1979) suggested using the third-order jackknife estimate, 159, with a 95% 
confidence interval (116, 202). They further recommended an improved, interpolated 
estimate of 142 and the interval (112, 172). The proposed estimator in this work gives N= 

134 and formula (11) yields an approximate confidence interval (87, 181). The log- 
transformation leads to the interval (103, 202). Although for this example the transformed 
interval seems less satisfactory than the classical one, in most of the other cases discussed 
later, it has better performance in coverage probability. Since m, and my for this data are 
legitimate moments, we consequently obtain the estimate N, = 136, with a 95% confidence 
interval (87, 185), which agree well with the results of N. 

3.2 Taxicab Data 

Carothers (1973) provided a very valuable data set by conducting a capture—recapture 
experiment on the taxicab population of Edinburgh, Scotland. As with the cottontail data, 

this study has the advantage of known population size (420), yet the population is an actual
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Table 1 
Comparison of estimates for Carothers (1973) data, true value N = 420, t = 5 

Sampling Data Jackknife method Proposed method 

scheme subset Ah hth fy fa Estimate Interval N WN, Interval (11) Interval (12) 

A a 65 12 0 0 192 (155, 299) 253 * (119, 387) (162, 444) 

b 73 8 0 0 217 (176, 258) 414 * (135,693) (230, 825) 
Cc 75 70 0 223 (182, 264) 484 * (133,835) (256, 1007) 

d 109 24 3 0 325 (274, 376) 384 * (244, 523) (279, 566) 

e 112 28 2 0 332 (281, 383) 366 * (245, 487) (274, 523) 

f 117 24 4 0 350 (297, 403) 430 436 (273,588) (311, 635) 

g 135 42 9 1 407 (350, 464) 404 405 (302,506) (323, 533) 

B a 78 50 0 233 (190, 276) 691 * (92,1291) (323, 1626) 

b 67 90 0 199 (160, 238) 325 * (121,530) (190, 624) 

Cc 71 #71 ~°0 213 (172, 254) 439 457 (122,756) (234, 914) 

d 112 22 0 2 333 (282, 384) 421 * (258,584) (299, 635) 

e 106 28 3 0 315 (266, 364) 338 =* (228, 448) (254, 481) 

f 102 26 3 0 303 (250, 356) 331 * (218, 444) (246, 479) 

g 116 48 6 2 346 (307, 385) 312 * (244,381) (259, 399) 

* The first two moments are not legitimate. 

one as opposed to simulated data. The reader may refer to Carothers (1973) for details of 
the population and of different methods of sampling. Applying various capture-recapture 
models, Carothers obtained several estimates under both equal- and unequal-catchability 

assumptions. As expected, the majority of the estimates based on equal catchability were 
much below the known population size. Also, no method based on unequal catchability 
was found to lead to a noticeable decrease in the bias. A portion of the collected data is 
tabulated in Table 1, where the sampling schemes and data subsets are the ones Carothers 

identifies in his paper. These data sets are typical in that most captured individuals were 

caught only a few times. The resulting noninterpolated jackknife, the present estimate N, 
N, (if it exists), and the associated confidence intervals based on WN are given in the same 
table for comparison. For these data subsets, our estimator is generally preferable to the 

jackknife or other estimators considered in Carothers (1973), because it is on average closer 
to the true parameter of 420. The use of a log-transformation in all cases shifts the original 
interval rightward and results in some increases in interval length, which usually leads to 
improvements in coverage probabilities, as will be seen in the simulation study. In general, 
our confidence intervals are much wider than the jackknife intervals (since the standard 
errors are always larger), but more of the intervals include the true value. Out of the 14 
cases, there are only three data subsets (f and g for sampling scheme A and subset c for 
sampling scheme B) for which the first two moments satisfy the restrictions for calculating 
M. The resulting estimates of N, are generally close to those of N. 

3.3. Simulation Study 

As indicated in Otis et al. (1978), a common difficulty for various estimators of population 
size is the poor confidence interval coverage. To understand whether the proposed confi- 
dence intervals have the same difficulty, we carried out a limited simulation study. Several 
populations representing varying degrees of heterogeneity were considered in this work; 
they are described in Table 2. We specifically chose populations with small average capture 
probability being .05 or .1. For each given population we produced 100 simulation runs 
with t = 5, 7, and 10. Then for each generated data set, the point estimate, its standard 

error, and the corresponding confidence interval were computed for (noninterpolated) 

jackknife and the proposed WN in (8). In the calculation of the jackknife estimates, we follow 
the testing procedure in Burnham and Overton (1978, 1979) to select an appropriate order
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Table 2 
Description of populations used in simulation 

789 

Population N D,i=1,...,N E(p) 

1 400 Dp; = .02,i=1,..., 200; p; = .08, i= 201,..., 400 05 

2 400 Di = .02,i=1,..., 100; p; = .04, i= 101, ..., 300; 05 
pi = .1, i= 301,..., 400 

3 400 Dp, = .02,i=1,..., 100; p, = .03, i= 101, ..., 200; 05 
D; = .07, i= 201,..., 300; p; = .08, i = 301, ... , 400 

4 400 p= .0l,i=1,..., 80; p; = .03,i=81,..., 160; 05 
pi = .05, i= 161, ..., 240; p; = .07, i= 241,..., 320; 
p; = .09, i = 321,..., 400 

5 200 p; ~ Uniform(0, .1) 05 

6 200 Di ~ .2 X Beta(1, 3) 05 

7 200 p; ~ Uniform(0, .2) wl 

8 200 Di ~ .2 X Beta(2, 2) 1 

of the jackknife estimator up to the fifth order. Finally, these 100 estimates and standard 
errors were averaged and the coverage probabilities were estimated. 

The simulation results are given in Table 3. Generally, there is a tendency for the standard 
error of the jackknife estimator to increase as ¢ increases, while the standard error of the 

| Table 3_ | 
Simulation results for populations of Table 2 (100 trials) 

Jackknife method — Proposed method 

Cover- Cover- | 
Popu- | Esti- age Esti- _ age Coverage 
lation N t mate s.e. (%) mate se.  (%) (%, transf.) 

1 400 5 229 21.5 0 405 ‘131.8 88 95 
7 310 30.4 17 357 79.8 84 91 

10 340 46.4 70 355 56.7 79 88 

2 400 5 228 = 21.5 0 410 139.6 87 94 
7 315 31.0 25 367 82.1 83 91 

10 342 44,7 66 349 54.3 71 81 

3 400 5 228 21.9 0 438 148.7 90 95 
7 328 31.2 39 399 93.2 87 92 

10 368 44.0 82 362 56.1 79 88 

4 400 5 229 21.5 0 398 127.3 91 96 
7 318 30.9 29 371 82.6 92 92 

10 347 44.0 71 345 52.8 72 83 

5 200 5 112 15.1 0 212 115.0 95 99 
- 7 162 22.9 64 188 71.2 93 97 

10 189 25.2 73 176 49.9 88 99 

6 200 5 95 13.8 0 193 115.6 75 86 
7 133 19.0 12 158 55.0 63 79 

10 152 22.3 50 152 37.1 57 74 

7 200 5 168 18.4 57 184 42.1 77 89 
7 173 25.0 75 176 26.7 71 78 

10 189 19.7 87 173 19.2 48 73 

8 200 5 179 19.0 77 210 851.5 91 95 
7 184 27.4 89 192 32.3 90 95 

10 208 21.3 86 190 22.2 83 89 
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proposed estimator decreases with ¢. The empirical coverage probabilities of the interval 
(12) using a log-transformation are always closer to the anticipated level .95 than the 
classical interval (11). Hence, it is recommended for practical use. For t = 5 and 7, the 
jackknife estimator has considerably smaller standard errors, but the estimates in several 
cases are severely negatively biased. Also, the coverage probabilities are much lower than 
the nominal level, especially when the average capture probability is .05. The proposed 
method produces reasonable estimates with higher coverage probabilities, although the 
precision is quite low. As ¢ is increased to 10, there is substantial improvement in the 

jackknife results, which usually perform better than the proposed estimates. Actually, when 

t becomes large, some individuals would be captured increasingly more times; hence, more 

information is spread out to the other capture frequencies, i.e., (/3, 4, ...). AS expected, 
our estimates appear to have some negative bias. We finally remark that if the average 
capture probability 1s relatively large [for example, capture probability is a random variable 
from uniform (0, 1) or beta (2, 2) etc.], the present method will fail to work. Research on 
extensions Is ongoing. 
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RESUME 

Un estimateur ponctuel, et son intervalle de confiance associé, de la taille d’une population fermée 
sont proposés sous differents modéles tenant compte de l’hétérogéneité des probabilités de capture. 
Des jeux de données réelles provenant de Edwards et Eberhardt (1967, Journal of Wildlife Manage- 
ment 31, 87-96) et de Carothers (1973, Journal of Animal Ecology, 42, 125-146) sont utilisés pour 
illustrer cette méthode et pour la comparer a d’autres. On examine aussi les performances de la 
procédure proposée par la méthode de Monte-Carlo. Cette méthode est particulierement utile quand 
la majorite des individus capturés le sont une ou deux fois, situation telle que l’estimateur jackknife 
ne marche généralement pas bien. Des résultats numériques montrent que l’intervalle de confiance 
proposé donne satisfaction en respectant les niveaux annoncés. 
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