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SUMMARY

A point estimator and its associated confidence interval for the size of a closed population are
proposed under models that incorporate heterogeneity of capture probability. Real data sets provided
in Edwards and Eberhardt (1967, Journal of Wildlife Management 31, 87-96) and Carothers (1973,
Journal of Animal Ecology 42, 125-146) are used to illustrate this method and to compare it with
other estimates. The performance of the proposed procedure is also investigated by means of Monte
Carlo experiments. The method is especially useful when most of the captured individuals are caught
once or twice in the sample, for which case the jackknife estimator usually does not work well.
Numerical results also show that the proposed confidence interval performs satisfactorily in main-
taining the nominal levels.

1. Introduction

The capture-recapture method has been widely used by field biologists and ecologists to
investigate the dynamics of biological populations. For a closed population, the classical
problem for capture-recapture experiments is the estimation of the population size. The
reader is referred to Cormack (1968, 1979), Otis et al. (1978), Pollock (1981), and Seber
(1982, 1986) for a general comprehensive review on this topic.

Most of the previous works are based on the assumption that all the individuals of the
population have the same capture probabilities. However, as indicated in the ecological
literature (e.g., Young, Neess, and Emlen, 1952; Tanaka, 1956; Crowcroft and Jeffers,
1961; Tanton, 1965; Eberhardt, 1969; Carothers, 1973; Wilbur and Landwehr, 1974),
individual heterogeneity of capture probability may arise in many ways in biological
populations. Eberhardt (1969, p. 28) pointed out that various sets of data showed the equal-
probability-of-capture assumption is often not valid. Carothers (1973, p. 146) found that it
was impossible to achieve equal catchability even with randomized capture locations on
each sampling occasion. He further concluded that equal catchability is an unattainable
ideal in natural populations. Many previous studies (e.g., Edwards and Eberhardt, 1967,
Carothers, 1973; Otis et al., 1978; Burnham and Overton, 1979) have confirmed that the
usual “Schnabel”-type estimators (Schnabel, 1938; Schumacher and Eschmeyer, 1943)
based on the equal-catchability assumption are negatively biased by heterogeneity of capture
probabilities.

Some estimators without the equal-catchability restriction have been proposed by Eber-
hardt, Peterle, and Schofield (1963), Tanaka (1967), Eberhardt (1969), and Marten (1970).
Tanaka and Marten used regression-type estimators by assuming a certain form of unequal
capture probabilities, while Eberhardt et al. fitted the capture frequency counts as a
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geometric series. These two types of estimation procedures along with the usual Schnabel-
type estimators were applied by Carothers (1973) to some real data sets where the true
population size is known. (We will also discuss these data sets in Section 3.) He reported
that these two types of estimators failed to reduce significantly the magnitude of the bias
of the usual Schnabel-type estimators. Pollock (in a 1974 Ph.D. thesis at Cornell University,
and 1976, 1981) pioneered the work by considering models where heterogeneity of capture
probability is allowed. Burnham and Overton (1978, 1979) rigorously introduced a heter-
ogeneity model by assuming that individual capture probability is a random variable from
an arbitrary distribution. They also derived the jackknife estimator, which has been
extensively investigated in Otis et al. (1978) and White et al. (Los Alamos National
Laboratory Report LA-8787-NERP, 1982) using many real and simulated data sets. They
found that the jackknife estimator is the most robust one among others considered therein.
Pollock and Otto (1983) presented a range of new estimators for the heterogeneity model
and the heterogeneity and trap-response model. Based on numerical comparisons, they
support the use of the jackknife estimator for the heterogeneity model. The jackknife
estimator generally produces adequate estimates if many individuals are caught a relatively
large number of times (Otis et al., 1978, p. 35).

On the other hand, the jackknife estimator usually underestimates the population size if
many individuals have very small capture probabilities so that they are caught only once
or twice in the multiple-recapture experiments. [This is clearly seen from Table la of
Pollock and Otto (1983) for the cases that the number of trapping days is less than 15.]
The last concern is precisely what motivated the present study. In Section 2, we will propose
an estimator and its associated confidence interval for the population size under the
heterogeneity model. This estimator will be shown to be useful when many captured
individuals are caught only a few times in the sample. Some real data sets are used to
compare the present estimator with other previous results in Section 3. In the same section,
results from a limited Monte Carlo simulation further show the performance of the proposed
method.

2. Model and Estimator

We first describe the heterogeneity model developed in Burnham and Overton (1978,
1979). Assume the population is closed with size N and there are ¢ trapping occasions. Let
the individuals be indexed by 1, ..., N and p;; be the capture probability of the ith
individual on the jth trapping occasion, i=1,..., Nandj= 1, ..., t. We further assume
pij=piforj=1,...,t,and py, ..., pyare a random sample from a probability distribution
F. The data consist of an N X ¢ matrix X = (X;;), where

X;; = Ifthe ith individual is caught in jth trapping occasion]

and I[A] is the usual indicator function—that is, I[4] = 1 if event 4 occurs, 0 otherwise.
We assume X;;, i=1,..., Nandj= 1, ..., t, are mutually independent. Let

N t
S = E I[z Xij? l]
) =1

i=1

denote the number of distinct individuals caught in the experiment, and
N t
fi= 2 1[2 Xij=k:|, k=0,1,...,1
i=1 [ j=1

be the number of individuals captured exactly k times in the ¢ samples. It is clear that only
S rows in the data matrix are observed and f, represents the number of unobserved
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individuals, with N = § + f. It follows from Burnham and Overton (1978) that
(fi,- . ., f;) are sufficient statistics under this model and the joint, unconditional distribution
function of (fo, fi, ..., f;) is a multinomial, that is,

- N 7 N i
MAAWJ%Qﬁm»HWMa ()

i=0
where

1
0:(F) = J; @ p'(1 = p)~" dF(p).

Using the generalized jackknife technique, Burnham and Overton (1978) derived the
kth-order jackknife estimator, Ny, which is a linear function of f;:

t
Ny = _Z:l aif;.
For coefficients a;, the reader is referred to Burnham and Overton (1978, 1979) for details.
They also provided a testing procedure to select an appropriate k. Usually & is chosen to
be less than 5.

Under the same model, we now proceed to obtain an alternative estimator of N. From
(1), we have

1
t\ » .
If ¢ is large and p is small, it follows that
1
E(f) = NJ; [tp)'e /il dF(p), i=0,1,...,1 (3)
Note here that for any p = p* for some p* such that the Poisson approximation is not good,

(3) is still valid as long as [}« dF(p) is small.
Consider the following cumulative distribution function in [0, ¢]:

G(u) = J; xe™ dF (f) / J; xe™ dF (%C) 4)

Then from (3) and (4),

1
B0~ N [ e drio) o

~ [E(f)] J; u™' dG(u).

The kth moment u, of G is given by

t
i = J; u* dG(u)

= f (tx)**e™ dF(x) / f (tx)e™ dF(x) (6)
0 0
= (k + D! E(fer)/E(f).

Replacing E(f) by f; in the above expression, we obtain the following moment estimator
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of Mk if ﬁ # 0:
me = (k + 1! firi/fi. (7)

Using Jensen’s inequality, we have from (5) and (6) that

E(fo) = E(f)/m = [EUDIY/2E(A)].

Therefore, a lower bound N of the population size is readily obtained as

N =S+ f3/2fh). 8)

When the first two moment estimates m1, and m; are legitimate moments of distributions
in [0, f]—namely, m, and m, satisfy 12 > tmy > mp > m3—we are mainly interested in
finding an estimator G of G such that G(x) has m,, m, as its first two moments. Our
approach is similar to that taken by Harris (1959), who dealt with other statistical problems.
Let C(m;, m;) denote the class of cumulative distribution functions in [0, ¢] with m,, m;
as the first two moments. Harris (1959) proved that

gleigfu_l a'G(u)=fu‘l dH(u),

where
0, u < (tm — my)/(t — my)
H(u) = ] (= m)t — m) +m—mil™", (tm —m)/t—m)<su<t
1, t<su

Hence, we obtain a lower bound N, of N:

Nmin =S5+ f u! dH(u)

)
= S+ Al — m) + my — mi]7'[(¢ = m)(tmy — mo)™" + (m2 — miy~').
A simple approximation formula of (9) (courtesy of Professor Richard Cormack) is
A 2 1 - ml/t :l
Nain ® Ny = S + = | ——— 10
Y [1 TS (10)

This provides a “correction factor” for N and it is clear that N, = N under the moment
restrictions. Also, notice that when the magnitude of m, and m; are relatively small
compared to that of #, the value of Ny, is very close to N. Both N and N, are applied to
the real data sets in the next section. We found that in practice there will often be little
difference in the two estimates if N, exists. Hence, we will concentrate mainly on the
performance of the estimator /V in the simulation comparisons. N is actually a lower bound
of N subject to the moment constraints. However, its performance as an estimator of N is
encouraging and competitive with other estimators, as will be seen in the next section.

A similar technique has been applied by the author (Chao, 1984) to estimate the number
of species under a quite different model. The model considered there does not allow the
author to derive an analytic variance estimator. So the percentile method based on the
bootstrap method (Efron, 1979, 1981, 1982) was employed in that work to construct
confidence intervals. However, under the heterogeneity model, we are able to provide the
following variance estimator by a standard asymptotic approach:

62 = vare(N) = AL25(A/A) + (KLY + .S(f/fY].

(An approximate variance formula for N, can be analogously obtained.) Assuming the
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normality of N, we have a classical approximate 95% confidence interval:
[N - 1.965, N + 1.965]. (11)

Burnham (personal communication) suggested using a log-transformation to get an
improved confidence interval. That is, we treat log(N — S') as an approximately normal
random variable, which gives a 95% interval as

[S+ (N = S)/C, S+ N - S)), (12)
where
C = exp{1.96[log(1 + ¢%/(N — S)*)]'/3}.

Both intervals will be applied to the data sets and simulation study discussed in the next
section.

It should be emphasized that the proposed procedure relies on the condition that ¢ is
“large” and the p; are “small.” It is generally reccommended, from some simulation results,
that the number of samples be at least 5. When most p; are relatively small, all individuals
are likely to be captured only a few times in the capture-recapture sampling. Thus, the
information should be mainly concentrated on the lower-order frequency counts, which
are exactly those needed to construct moment estimators. If (f;, fa, . . .) carry nonnegligible
information, our estimator can be regarded only as a lower bound of the population size.

3. Examples

3.1 Cottontail Data

Edwards and Eberhardt (1967) conducted a live-trapping study on a confined population
of known size. In their study, 135 wild cottontail rabbits were penned in a 4-acre rabbit-
proof enclosure. Live trapping was conducted for 18 consecutive nights. Recorded capture
frequencies (f to f7) were

43, 16, 8, 6, 0, 2, 1.

Edwards and Eberhardt reported that the usual Schnabel-type estimates were considerably
less than the true parameter 135 (e.g., the Schnabel estimate is 96; the Schumacher and
Eschmeyer estimate is 97). The corresponding confidence intervals were thus not satisfac-
tory either. They suggested modelling the capture frequency data by a geometric series and
obtained estimates 136 and 164 by two different estimation procedures. Burnham and
Overton (1978, 1979) suggested using the third-order jackknife estimate, 159, with a 95%
confidence interval (116, 202). They further recommended an improved, intémola}ed
estimate of 142 and the interval (112, 172). The proposed estimator in this work gives N =
134 and formula (11) yields an approximate confidence interval (87, 181). The log-
transformation leads to the interval (103, 202). Although for this example the transformed
interval seems less satisfactory than the classical one, in most of the other cases discussed
later, it has better performance in coverage probability. Since 72, and m, for this data are
legitimate moments, we consequently obtain the estimate N, = 136, with a 95% confidence
interval (87, 185), which agree well with the results of N.

3.2 Taxicab Data

Carothers (1973) provided a very valuable data set by conducting a capture-recapture
experiment on the taxicab population of Edinburgh, Scotland. As with the cottontail data,
this study has the advantage of known population size (420), yet the population is an actual
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Table 1
Comparison of estimates for Carothers (1973) data, true value N = 420, =5

. Jackknife method Proposed method
Sampling Data

scheme  subset i f S S Estimate Interval N N, Interval (11) Interval (12)

A a 65 12 0 0 192 (155, 299) 253 *  (119,387) (162,444)
b 73 8 0 0 217 (176, 258) 414 *  (135,693) (230, 825)
c 75 700 223 (182, 264) 484 *  (133,835) (256, 1007)
d 109 24 3 0 325 (274, 376) 384 * (244,523) (279, 566)
e 112 28 2 0 332 (281, 383) 366 * (245,487) (274, 523)
f 117 24 4 0 350 (297, 403) 430 436 (273,588) (311, 635)
g 135 42 9 1 407 (350, 464) 404 405 (302, 506) (323, 533)

B a 78 500 233 (190, 276) 691 * (92, 1291) (323, 1626)
b 67 9 0 0 199 (160, 238) 325 *  (121,530) (190, 624)
c 1 710 213 (172, 254) 439 457 (122,756) (234,914)
d 112 22 0 2 333 (282, 384) 421 *  (258,584) (299, 635)
e 106 28 3 0 315 (266, 364) 338 * (228,448) (254, 481)
f 102 26 3 0 303 (250, 356) 331 *  (218,444) (246, 479)
g 116 48 6 2 346 (307, 385) 312 * (244, 381) (259, 399)

* The first two moments are not legitimate.

one as opposed to simulated data. The reader may refer to Carothers (1973) for details of
the population and of different methods of sampling. Applying various capture-recapture
models, Carothers obtained several estimates under both equal- and unequal-catchability
assumptions. As expected, the majority of the estimates based on equal catchability were
much below the known population size. Also, no method based on unequal catchability
was found to lead to a noticeable decrease in the bias. A portion of the collected data is
tabulated in Table 1, where the sampling schemes and data subsets are the ones Carothers
identifies in his paper. These data sets are typical in that most captured individuals were
caught only a few times. The resulting noninterpolated jackknife, the present estimate N,
N, (if it exists), and the associated confidence intervals based on N are given in the same
table for comparison. For these data subsets, our estimator is generally preferable to the
Jjackknife or other estimators considered in Carothers (1973), because it is on average closer
to the true parameter of 420. The use of a log-transformation in all cases shifts the original
interval rightward and results in some increases in interval length, which usually leads to
improvements in coverage probabilities, as will be seen in the simulation study. In general,
our confidence intervals are much wider than the jackknife intervals (since the standard
errors are always larger), but more of the intervals include the true value. Out of the 14
cases, there are only three data subsets (f and g for sampling scheme A and subset ¢ for
sampling scheme B) for which the first two moments satisfy the restrictions for calculating
Ni. The resulting estimates of N, are generally close to those of N.

3.3 Simulation Study

As indicated in Otis et al. (1978), a common difficulty for various estimators of population
size is the poor confidence interval coverage. To understand whether the proposed confi-
dence intervals have the same difficulty, we carried out a limited simulation study. Several
populations representing varying degrees of heterogeneity were considered in this work;
they are described in Table 2. We specifically chose populations with small average capture
probability being .05 or .1. For each given population we produced 100 simulation runs
with ¢ = 5, 7, and 10. Then for each generated data set, the point estimate, its standard
error, and the corresponding confidence interval were computed for (noninterpolated)
jackknife and the proposed N in (8). In the calculation of the jackknife estimates, we follow
the testing procedure in Burnham and Overton (1978, 1979) to select an appropriate order
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Table 2
Description of populations used in simulation
Population N p,i=1...,N E(p)
1 400 pi=.02,i=1,...,200; p;=.08,i=201,...,400 .05
2 400 pi=.02,i=1,...,100; p;=.04,i =101, ..., 300; .05
pi=.1,i=301,...,400
3 400 pi=.02i=1,...,100; p;=.03,i=101,..., 200; .05
pi=.07,i=201,...,300; p;=.08,i=301,...,400
4 400 pi=.0li=1,...,80;p,=.03,i=81,...,160; .05
pi=.05i=161,...,240;p;=.07,i=241,..., 320;
pi=.09,i=321,...,400
5 200 pi ~ Uniform(0, .1) .05
6 200 Dpi~ .2 X Beta(l, 3) .05
7 200 pi ~ Uniform(0, .2) 1
8 200 Dpi ~ .2 X Beta(2, 2) 1

of the jackknife estimator up to the fifth order. Finally, these 100 estimates and standard
errors were averaged and the coverage probabilities were estimated.

The simulation results are given in Table 3. Generally, there is a tendency for the standard
error of the jackknife estimator to increase as ¢ increases, while the standard error of the

Table 3
Simulation results for populations of Table 2 (100 trials)
Jackknife method Proposed method
Cover- Cover-
Popu- Esti- age Esti- age Coverage
lation N t mate  s.e. (%) mate  s.e. (%) (%, transf.)

1 400 5 229 21.5 0 405 '131.8 88 95
7 310 304 17 357  79.8 84 91

10 340 464 70 355  56.7 79 88

2 400 5 228 21.5 0 410 139.6 87 94
7 315 31.0 25 367 82.1 83 91

10 342 447 66 349 543 71 81

3 400 5 228 21.9 0 438 148.7 90 95
7 328 31.2 39 399  93.2 87 92

10 368 44.0 82 362  56.1 79 88

4 400 5 229 21.5 0 398 127.3 91 96
7 318 309 29 371 826 92 92

10 347 440 71 345  52.8 72 83

5 200 5 112 15.1 0 212 1150 95 99
7 162 229 64 188 71.2 93 97

10 189 25.2 73 176 499 88 99

6 200 5 95 13.8 0 193 115.6 75 86
7 133 19.0 12 158 550 63 79

10 152 223 50 152 37.1 57 74

7 200 5 168 184 57 184 42.1 77 89
7 173 250 75 176 26.7 71 78

10 189 19.7 87 173 19.2 48 73

8 200 5 179 19.0 77 210 515 91 95
7 184 274 89 192 323 90 95

10 208 21.3 86 190 222 83 89
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proposed estimator decreases with ¢. The empirical coverage probabilities of the interval
(12) using a log-transformation are always closer to the anticipated level .95 than the
classical interval (11). Hence, it is recommended for practical use. For ¢t = 5 and 7, the
jackknife estimator has considerably smaller standard errors, but the estimates in several
cases are severely negatively biased. Also, the coverage probabilities are much lower than
the nominal level, especially when the average capture probability is .05. The proposed
method produces reasonable estimates with higher coverage probabilities, although the
precision is quite low. As ¢ is increased to 10, there is substantial improvement in the
Jjackknife results, which usually perform better than the proposed estimates. Actually, when
t becomes large, some individuals would be captured increasingly more times; hence, more
information is spread out to the other capture frequencies, i.e., (f3, fi, ...). As expected,
our estimates appear to have some negative bias. We finally remark that if the average
capture probability is relatively large [for example, capture probability is a random variable
from uniform (0, 1) or beta (2, 2) etc.], the present method will fail to work. Research on
extensions is ongoing.
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RESUME

Un estimateur ponctuel, et son intervalle de confiance associé, de la taille d’une population fermée
sont proposés sous différents modéles tenant compte de ’hétérogénéité des probabilités de capture.
Des jeux de données réelles provenant de Edwards et Eberhardt (1967, Journal of Wildlife Manage-
ment 31, 87-96) et de Carothers (1973, Journal of Animal Ecology, 42, 125-146) sont utilisés pour
illustrer cette méthode et pour la comparer a d’autres. On examine aussi les performances de la
procédure proposée par la méthode de Monte-Carlo. Cette méthode est particuliérement utile quand
la majorité des individus capturés le sont une ou deux fois, situation telle que I’estimateur jackknife
ne marche généralement pas bien. Des résultats numériques montrent que l'intervalle de confiance
proposé donne satisfaction en respectant les niveaux annoncés.
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