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THE POPULATION FREQUENCIES OF SPECIES AND THE
ESTIMATION OF POPULATION PARAMETERS

By 1. J. GOOD

A random sample is drawn from a population of animals of various species. (The theory may also be
applied to studies of literary vocabulary, for example.) If a particular species is represented r times
in the sample of size N, then r/N is not a good estimate of the population frequency, p, when r is small.
Methods are given for estimating p, assuming virtually nothing about the underlying population.
The estimates are expressed in terms of smoothed values of the numbers #n, (r=1, 2, 3, ...), where =,
is the number of distinct species that are each represented 7 times in the sample. (n, may be described
as ‘the frequency of the frequency r’.) Turing is acknowledged for the most interesting formula in this
part of the work. An estimate of the proportion of the population represented by the species occurring
in the sample is an immediate corollary. Estimates are made of measures of heterogeneity of the
population, including Yule’s ‘ characteristic’and Shannon’s ‘entropy’. Methods are then discussed that
do depend on assumptions about the underlying population. It is here that most work has been done
by other writers. It is pointed out that a hypothesis can give a good fit to the numbers n, but can give
quite the wrong value for Yule’s characteristic. An example of this is Fisher’s fit to some data of
Williams’s on Macrolepidoptera.

1. Introduction. We imagine a random sample to be drawn from an infinite population of
animals of various species. Let the sample size be N and let n, distinct species be each
represented exactly r times in the sample, so that

rn, = N. (1)

irgs

r

The sample tells us the values of n;, n,, ..., but not of n,. In fact it is not quite essential that
nq should be finite though we shall find it convenient to suppose that it is.

We shall suggest a method of estimating, among other things,

(i) the population frequency of each species;

(ii) the total population frequency of all species represented in the sample, or, as we may
say, ‘ the proportion of the population represented by (the species occurring in) the sample’;

(iii) various general population parameters measuring heterogeneity, including ‘entropy’.
By ‘general’ parameters we mean parameters defined without reference to any special form
of hypothesis. In §7 we shall consider the estimation of parameters for hypotheses of special
forms.

Our results are applicable, for example, to studies of literary vocabulary, of accident
proneness and of chess openings, but for definiteness we formulate the theory in terms of
species of animals.

The formula (2) was first suggested to me, together with an intuitive demonstration, by
Dr A. M. Turing several years ago. Hence a very large part of the credit for the present
paper should be given to him, and I am most grateful to him for allowing me to publish this
work.

Reasonably precise conditions under which our general results are applicable will be given
in §4, but we state at once that the larger is n, the more applicable the results. When =, is
large, n, will also be large, but we shall not for the most part attempt to estimate it. There
will be a fleeting reference to the estimation of n, at the end of §5 and a few more references
in §§7 and 8. (See, for example, equation (73).) For populations of known finite size, the

Biometrika 40 16



238 The population frequencies of species

problem has been considered by Goodman (1949). He proved that if the sample size is not
less than the maximum number of individuals in the population belonging to a single
species, then there is only one unbiased estimate of n, and he found it. He also pointed out
that the unbiased estimate is liable to be unreasonable and suggested some alternative
estimates that are always reasonable. There is practically no overlapping between the
present work and that of Goodman.

Jeffreys (1948, §3-23) has discussed what is superficially the same problem as (i) above,
under the heading ‘multiple sampling’. He refers to some earlier work of Johnson (1932).
The methods of Johnson and Jeffreys depend on assumptions that, as Jeffreys himself
points out, are not always acceptable. Moreover, their methods are not intended to be
applicable when =, is unknown. The matter is taken up again in §2.

Other work on the frequencies of species has been mainly concerned with the fitting of
particular distributions to the data, with or without a theoretical explanation of why these
distributions might be expected to be suitable. See, for example, Anscombe (1950), Chambers
& Yule (1942), Corbet, Fisher & Williams (1943), Greenwood & Yule (1920), Newbold (1927),
Preston (1948), Yule (1944) and Zipf (1932). The methods of the first six sections of the
present paper are largely independent of the distributions of population frequencies.

We shall be largely concerned with ¢,, the population frequency of an arbitrary species
that is represented r times in the sample. We shall use the notation &(g,) for the expected
value of ¢,, in a sense to be explained in §2. Our main result, expressed rather loosely, is
that the expected value of ¢, is 7*/N, where

re (r+ 1) ny . (2)

(The symbol ‘=’ is used throughout to mean ‘is approximately equal to’.) More precisely
the n,’s should first be smoothed before applying formula (2). Smoothing is briefly discussed
in §3 with examples in §8. If the smoothed values are denoted by =y, n,, ng, ..., then the
more accurate form of equation (2) is

ré (r 4 1) 0l (2)

The reader will find it instructive to consider the special case when %/ is of the Poisson
form se—2a"/r! Then r* reduces to a constant.
The formula (2) can be generalized to give higher moments of ¢,. In fact

(7‘ + m)(m) nr-l-'m

E(qr)= Fm

(r=1,2,3,..;m=012..), (3)

r

where #™ = ¢(t—1)... ((—m+ 1). We can also write (3) in the form

éa(?;") 2éa(%') éa(Qr+1) e éo(qr+m—1)° (4)

Moreover, the variance of g, is

A(r+1)(r+2)n,+2_ r+ln,.+1 2
Ve = % "% =,

=6(4,) [6(gr41) —€(2,)]- (8)

An immediate deduction from (2) is that the expected total chance of all species that are each
represented r times (r > 1) in the sample is approximately

(r+1)n, ,/N. (6)
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Hence also the expected total chance of all species that are represented r times or more in
the sample is approximately

NY(r+1)n g+ (r+2) 0 p+...}. (7)
In particular, the expected total chance of all species represented at all in the sample is
approximately N-Y(2n,+ 3ng+...) = 1—n,y/N. (8)

We may say that the proportion of the population represented by the sample is approxi-

mately 1 —mn,/N, and the chance that the next animal sampled will belong to a new species is
ymatel

approximately n,/N. 9)

(Thus (6) is true even if » = 0.)

The results (6), (7), (8) and (9) are improved in accuracy by writing the respective

formulae as
(r+1)ng,ym,

6/
n,N ’ ©
N_l{(r-’r 1)37/;+1""r+(7'+2)",%’-+2nr+1+ }, (7)

” Nrt1
N-1 2nym, 3n§n2+ } (8)

ny ng

My o
and neN' ®)

In most applications this last expression will be extremely close to n;/N, and this in its turn
will often be very close to n,/N. It follows that (8') and (9’) are practically the same as (8)
and (9). For the sake of mathematical consistency, the smoothing should be such that (8')
and (9') add up to 1.

An index of notations used in a fixed sense is given in §9.

I am grateful, and my readers will also be grateful, to Prof. M. G. Kendall for forcing me
to clarify some obscurities, especially in §§1 and 2.

2. Proofs. Let the number of species in the population be s, which we suppose is finite.
This is the same supposition as that n, is finite. Our results as far as §6 would be practically
unchanged if s were enumerably infinite, but the proofs are more rigorous when it is finite.
Let the population frequencies of the species be, in some order, p,, p,, ..., p;, where

pl+p2+"'+.p3=1, no+n1+--.=8.

Let H, or more explicitly H(p,,p,,..-,Ds), be the statistical hypothesis asserting that
Py, P ---» P, are the population frequencies. We shall discuss the expectation of «,, given H.
It may be objected that the expectation of n, is simply the observed number n,, whatever
the information, and this objection would be logically correct. Strictly we should introduce
extra notation, say v, y, for the random variable that is the frequency of the frequency r in
arandom sample of size N. Then we could introduce the notation &(v, y | H) for the expecta-
tion of v, y given H. (Logically this expectation would remain unaffected if particular
values of n),n,,n,, ... were given.) In order to avoid the extra notation v, y we shall
write &(n,) or &(n, | H) or &y(n, | H) instead of &(v, y | H). Confusion can be avoided by
reading &y(n, | H) as ‘the expectation of the frequency of the frequency r when H is given
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240 The population frequencies of species

and when the sample size is N’. Similarly, we write V(n,) = V(n, | H) = Vy(n, | H) for the
variance of v, y given H and &y(n2| H), etc., for (v, % | H).

We recall the theorem that an expectation of a sum is the sum of the expectations. It
follows that &y(n, | H) is the sum over all s species of the probabilities that each will occur

r times, given H. So
g Ex(n,| H) = E(n, | H) = E(n,)

= . (] — N—r
- 3 (7)mo-z (10
In particular En(ng| H) = i (L—p)V. (11)
p=1

If s were infinite this series would diverge. The Givergence would be appropriate since 7,
would also be infinite.

Now suppose that in a sample of size N a particular species occurs r times (r = 0,1,2, ...).
We shall consider the final (posterior) probability that this species is the uth one (of popula-
tion frequency p,). For the sake of rigour it is necessary to define more precisely how the
species is selected for consideration. We shall suppose that it is sampled ‘at random’, or
rather equiprobably, from the s species, and that then its number of occurrences in the
sample is counted. Thus the initial (prior) probability that the species is the xth one is 1/s.
If the species is the uth one then the likelihood that the observed number of occurrences

isris
N
(1) za-par=.

We write g, for the (unknown) population frequency of an arbitrary species thatis represented
r times in the sample. The final probability that the species is the uth one can be written as
P(q, = p,| H) provided that the p,’s are unequal. (If any of the p,’s are equal they can be
adjusted microscopically so as to be made unequal. These adjustments will have no practical
effect.) We may at once deduce the final probability that the species is the uth one by using
Bayes’s theorem in the form that the final probabilities are proportional to the initial ones
times the likelihoods. We find that

r(1— N—r
P(Qr=p;t|.H)=—s£,“(—ﬁ')'_—' (12)
Z Pul =P
i u=
It follows that for any positive integer m,
8
E P;+m (l _pp)N—r
E(gr| H) =*=, (13)

8

Z p’/‘t(l _p”)N—r
p=1

(r+m)™ Ey (M im | H)
(N +m)(m) gN(nr | H) ’

(14)

in view of (10) and of (10) with N replaced by N +m. Immediate consequences of (14) are

the basic result
_r+1 Enp(mey | H)

" N+1 &y(n|H) (r=0,1,2,...) (15)

&(q, | H)

Hy,2, N My 0N~ Frr
and V(g | H) =220l AnLN (16)
la’r,O,N
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!
where My N = % Eni(npyy | H) (17)
d !
= (NIT),EIW‘U — PV = g7 En(n, | H) £(t | H) (18)

by (10) and (14). It is clear from either form of (18) that the numbers 4, , (¢ = 0,1,2,...)
form a sequence of moment constants and therefore satisfy Liapounoff’s inequality. (See,
for example, Good (1950a), or Uspensky (1937).) This checks that the right side of (16) is
positive, as it should be being a variance. [It is obvious incidentally that (16) would be
true with 4, , y defined as &(¢! | H) times any expression independent of ¢.]

We can now approximate the formulae (14) and (15) by replacing &y_,,(%,., | H) by the
observed value, 7,,,,, in the sample of size N, or rather by the smoothed value n/,,,. If
m is very small compared with N, if n, and »,,,, are not too small and if the sequence
Ny, Mg, N, ... is smoothed in the neighbourhood of =, and n,,,,, then we may expect the
approximations to be good. We thus obtain all the approximate results of §1. Note that
when the approximation is made of replacing &y, (%, | H) by n,,, we naturally also
change the rotation &(¢™| H) to &(¢™). For the results become roughly independent of

- H unless the n,’s are too small to smooth. Observe that &(¢™ | H) does not depend on the
sample, unless H is itself determined by using the sample. On the other hand, &(¢™) does
depend on the sample. This may seem a little paradoxical and the following explanation
is perhaps worth giving. When we select a particular sequence of smoothed values
71, My, Mg, ... We are virtually accepting a particular hypothesis H, say H{N; ni,ny, ns, ...},
with curly brackets. (I do not think that this hypothesis is usually a simple statistical
hypothesis.) Then &(¢") can be regarded as a shorthand for &(¢™ | H{N; ny, n3, n3, ...}). (If
H{...} is not a simple statistical hypothesis this last expression could in theory be given
a definite value by assuming a definite distribution of probabilities of the simple statistical
hypotheses of which H is a disjunction.) When we regard the smoothing as reasonably
reliable we are virtually taking H{N ; ny, nj, ng, ...} for granted, as an approximation, so that
it can be omitted from the notation without serious risk of confusion. In order to remind
ourselves that there is a logical question that is obscured by the notation, we may describe
&(q™) as say a ‘credential expectation’.

If a specific H is accepted it is clearly not necessary to use the approximations since
equation (13) can then be used directly. Similarly, if H is assumed to be selected from
a superpopulation, with an assigned probability density, then again it is theoretically
possible to dispense with the approximations. In fact if the ‘point’ (p,, p,, ..., p,) is assumed
to be selected from the ‘simplex’ p, + p,+ ... + p, = 1, with probability density proportional
t0 (1P, ... ps)*1, where k is a constant, then it is possible to deduce Johnson’s estimate
¢, = (r+k)/(N +ks). Jeffreys’s estimate is the special case k£ = 1, when the probability
density is uniform. Jeffreys suggests conditions for the applicability of his estimate, but
these conditions are not valid for our problem in general. This is clear if only because we do
not assume s to be known.

Jeffreys assumes explicitly that all ordered partitions of N into s non-negative parts are
initially equally probable, while Johnson assumes that the probability that the next
individual sampled will be of a particular species depends only on N and on the number
of times that that species is already represented in the sample. Clearly both methods ignore
any information that can be obtained from the entire set of frequencies of all species.
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The ignored information is considerable when it is reasonable to smooth the frequencies
of the frequencies.

3. Smoothing. The purpose of smoothing the sequence n,, n,, 73, ... and replacing it by
a new sequence 7, 1y, Mg, ..., is to be able to make sensible use of the exact results (14) and
(15). Ignoring the discrepancy between &y and &y ..,,, the best value of n; would be &y(n, | H),
where H is true. One method of smoothing would be to assume that H = H(p,, p,, ..., Ps)
belongs to some particular set of possible H’s, to determine one of these, say H,, by maximum
likelihood and then to calculate n, as &y(n, |H,). This method is closely related to that of
Fisher in Corbet et al. (1943). Since one of our aims is to suggest methods which are virtually
distribution-free, it would be most satisfactory to carry out the above method using all
possible H’s as the set from which to determine H,. Unfortunately, this theoretically
satisfying method leads to a mathematical problem that I have not solved.

It is worth noticing that the sequence {€y(n, | H)}(r = 0,1,2,...) has some properties
invariant with respect to changes in H. Ideally the sequence {n,} should be forced to have
these invariant properties. In particular the sequence {s, , v} (t = 0,1,2,...), defined by
(17), is a sequence of moment constants. But if ¢ = o(,/N), then N~¥(r+t)! n.,,=p,, n, 80
that if ¢ = o(,/N) we can assume that the sequence r!n, is a sequence of moment constants
‘and satisfies Liapounoff’s inequalities. But this simply implies that 0*, 1*,2*, ..., ¢* forms
an increasing sequence (see equation (2’)), a result which is intuitively obvious even without
the restriction ¢ = o(,/N). (Indeed, the argument could be reversed in order to obtain a new
proof of Liapounoff’s inequality.) We also intuitively require that 0*,1*, 2*... should itself
be a ‘smooth’ sequence.

Since the sequence {4, , 5} (t = 0,1,2,...) is a sequence of moment constants of a prob-
ability distribution it follows from Hardy (1949, §11-8) that the sequence is ‘totally
increasing’, i.e. that all its finite differences are non-negative. This result is unfortunately
too weak to be useful for our purposes, but it may be possible to make use of some other
theorems concerning moment constants. This line of research will not be pursued in the
present paper.

A natural principle to adopt when smoothing is that

I (g —m)?

2 g T )"
X t=zl V(n, I H) (19)

should not be significant with » degrees of freedom. In §5 we shall obtain an approximate
formula for V(n,| H), applicable when 72 = o(N). The chi-squared test will therefore be
applicable when 72 = o(N). [See formulae (22), (25), (26) and, for particular H’s, (65), (85),
(86).]

Another similar principle can be understood by thinking of the histogram of n, as several
piles of pennies, », pennies in the rth pile. We may visualize the smoothing as the moving of
pennies from pile to pile, and we may reasonably insist that pennies moved to the rth pile
should not have been moved much further horizontally than a distance ,/r and almost never
further than 2,/r. For r = 0 we would not insist on this rule, i.e. we do not insist that

«© -]

Y n; = ¥ n,. The analogy with piles of pennies amounts to saying that a species that
r=1 r=1
‘should’ have occurred » times is unlikely to have occurred less than r —./r or more than
7+ 4/r times.




1. J. Goop 243

Let N’ = Zrn]. It seems unnecessary to insist on N’ = N, provided that X is replaced by
N’ in such formulae as & (q,) =r*/N. It will be convenient, however, in §6 to assume N’ = N.

For some applications very little smoothing will be required, while for others it may be
necessary to use quite elaborate methods. For example, we could

(i) Smooth the »,’s for the range of values of r that interests us, holding in mind the
above chi-squared test and the rule concerning /r. The smoothing techniques may include
the use of freehand curves. Rather than working directly with n, n,, ng, ... it may be found
more suitable to work with the cumulative sums n,,n, +ny, n; + 7y + 75, ... or with the
cumulative sums of the rn, or with the logarithms log n,, log n,, logng, .... There is much to
be said for working with the numbers \/n,, /7y, \/ns, .... For if we assume that V(n, | H) is
approximately equal to », (and in view of {26) and (27) of §3 this approximation is not on
the whole too bad), then it would follow that the standard deviation of \/n, is of the order
of } and therefore largely independent of ». Hence graphical and other smoothing methods
can be carried out without having constantly to hold in mind that | #, — n, | can reasonably
take much larger values when %, is large than when it is small. [The square-root transforma-
tion for a Poisson variable, x, was suggested by Bartlett (1936) in order to facilitate the
analysis of variance. He showed also that the transformation ,/(z + ) leads to an even more
constant variance. Anscombe (1948) proved that ./(z+ §) has the most nearly constant
variance of any variable of the form ,/(z +¢), namely, }, when the mean of x is large. He
attributes this result to A. H. L. Johnson.]

(ii) Calculate (r+1)n; ,/n;.

(iii) Smooth these values getting, say, r*.

(iv) Possibly use the values of r* to improve the smoothing of the »,’s. If this makes
a serious difference it will be necessary to check again that the chi-squared test and the /r
rule have not been violated.

(v) Light can be shed on the reliability of the estimates of the g,’s, etc., if the data are
smoothed two or three times, possibly by different people.

In short, the estimation of the ¢,’s should be done in such a way as to be consistent with
the axioms of probability and also with any intuitive judgements that the users of the
method are not prepared to abandon or to modify. (This recommendation applies to much
more general theoretical scientific work, though there are rare occasions when it may be
preferred to abandon the axioms of a science.)

An objection could be raised to the methods of smoothing suggested in the present
section. It could be argued that all smoothing methods indirectly assume something about
the distribution p,, and that one might just as well apply the method of Greenwood & Yule
(1920) and its modification by Corbet et al. (1943) of assuming a distribution of Pearson’s
Type III, Ap*e—#?, or of some other form. Our reply would be that smoothing can be done
by making only local assumptions, for example, that the square root of &(n,| H), as a
function of r, is approximately ‘parabolic’ for any nine consecutive values of r. Moreover,
it may often be more convenient to apply the general methods of the present section than
to attempt to find an adequate hypothesis, H.

4. Conditions for the applicability of the results of §§1 and 2. The condition for the applic-
ability of the results of §§1 and 2 is that the user of the methods should be satisfied with his
approximations to &y,,,(n,.,, | H) corresponding to the values of r and m used in the
application. This condition is clearly correct, since equation (14) is exact. In particular, if
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n, islargeenough the user would be quite happy to deduce (9) from (15) with» = 0. Similarly,
he will be satisfied with the estimates of say ¢,,¢, and ¢; provided he is satisfied with the
smoothed values (ny, ny, n3, ;) of ny, n,, ny and n,.

5. The variance of n,. For the application of the chi-squared test described in §3 we need
to know more about V(n,). We begin by obtaining an exact formula for V(n, | H) = Vy(n, | H)
and we then make approximations that justify the omission of the symbol H from the
notation. It is convenient to introduce the random variable z,, = x, that is defined as
Lif the ‘ uth species’ (of population frequency p,) occurs precisely r times in a sample of size

N (H being given), otherwise z, = 0. Clearly P (x, = 1| H) = (lf) 25(1—p,)N-". Now
Em| H) = &(Z,)?
Y2

= X &(x,m,)
" 5l
=Xé&@x,)+ X (x,z,)
» l2d
=& H ____1_\1____”*” r (1 yN-2r (20)
- (nrl )+7'!7‘! (N—27‘)‘ EV pﬂpv( _p/t_pv .

This is exact. We now make some approximatibns of the sort used in deriving the Poisson
distribution from the binomial. We get, assuming 72/N, rp, and rp, to be small,

N (Np,) e Veu
(V) zpa -T2 o o sy,
N! [
and mpppz(l —P,—p) T =a,a,.

Moreover, it is intuitively clear that terms for which p, or p, is far from 7/N can make no
serious contribution to the summation in (20). Hence, if 72 = o(N),

+»
E02| Hy=Em, | H)+ 'Y, a,a,
LY

=&(n, | H)+{€(n,| H)}*~ X af.
b
Therefore the variance of n, for samples of size N is

(Np )2r e—2Np/¢

Va(n, | H)=&y(n, | H)— —’JW— (21)
" .
= Einy | )= (V) st ). (22)

Formulae (21) and (22) are elegant but need further transformation, when H is unknown,
before they can be used for calculation. Notice first that there are n, species whose expected

population frequencies are ¢, (v = 0,1, 2,...). Hence we have forr = 0, 1,2, ...; 72 = o(N),
L) T o—Ngy,\ 2
V(n,| Hy=&(n,|H)— 3. n,,{(N q“)r,e -
u=0 :

*r ,—u*\2
u*re } (23)

= éa(nr I H) - ué()nu{ rl
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Similarly and rather more simply, when 72 = o(N),
éa(n,IH)erl' 3 n,u*re v, (24)
cu=0
Now for any positive z, 2"e=* <r"e™", 80
—~ —~ -7
&n,| H)S Vin,| H)S E(n,| H) (1 —"'ri‘) . (26)

Using Stirling’s formula for r— 1 we have

Em,| H)S V(n,| HS &(n, | H) (1 —7(217”) r=23,..), (26)
while Eny | H)SV(ny | H)SE(ny | H) (1—e) (27)

(see also formula (65) in §7). Now the most desirable value for n; would be &(n, | H) where
H is true, so if our smoothing of the »,’s is to be satisfactory for any particular values of

r small compared with \/N we may write
w¥r g—u*

np== 3 My
u=0

and these approximate equations may be used as a test of consistency for the values of
n, and u*. Indeed, it may be possible iteratively to solve equations (28) combined with
(2’) and thus very systematically to obtain estimates of n, and r* for values of r small
compared with 4/ N. This iterative process may possibly lead to estimates of ny and 0%, but
I have not yet tried out the process. For most applications the less systematic methods
previously described will probably prove to be adequate, and any smoothing obtained by
these methods can be partially tested by means of y? in the form (19), together with the
inequalities (26) and (27). (See also the remarks following equations (65) and (87).)

6. Estimation of some population parameters, including entropy. Let us consider the
population parameters

8
Cmyn = lez"(—logp,.)" (m,n=0,1,2,...), (29)
P

which can be regarded as measures of heterogeneity of the population. The sequence
Co,0 = 1, €10 = 8, Cg ¢, C3, ¢ --- may be called the ‘moment constants’ of the population, while
¢y, is called the ‘entropy’ in the modern theory of communication (see Shannon, 1948).
More generally, c, , is the moment about zero of the amount of information from each
selection of an animal (or word), where ‘amount of information’ is here used in the sense of
Good (19504, p. 75), i.e. as minus the logarithm of a probability. (The last sentence of p. 75
of this reference is incorrect, as Prof. M. S. Bartlett has pointed out.) We find it no more
difficult to give estimates of c,, ,, than of ¢, ,, at any rate whenn = 0 or 1.
It is an immediate consequence of (10) that an unbiased estimate of c,, , is
n 1
¢

mo = o 27" (30)

0y, 18 in effect used by Yule (1944) to measure the heterogeneity of samples of vocabulary,
and he calls 10,000¢, o(1—1/N) the ‘characteristic’ of the material. The sequence of all
sampling moments of ¢, , involves all the population parameters c,, ,. For example, as
pointed out by Simpson (1949), for large N,

n 4
V("z,o)*ﬁ (ca,o_cg,o)- (30A)
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Unbiased statistics are rather unfashionable nowadays, partly because they can take
impossible values. Forexample, ¢, ,could vanish, although it is easy to see thatc,, o> s~™~.
(Compare Good (19500, p. 103), where estimates of c,, o are implicit for general multinomial
distributions, no attempt being made to smooth the n,’s.) We shall find estimates of ¢, ; and
also estimates of ¢,, o that are at least sometimes better than é,, ,

We have

N(m)zﬂ & (n, | H), (31)

since this is in effect what is meant by saying that é,, ,is an unbiased estimate of ¢,, o. If the
statistician is satisfied with his smoothing, i.e. if he assumes that n;=&(n, | H), and if he has
forced N’ = N, then he can estimate c,, , as

L1 ,
0 = m S0, (32)

and he will be prepared to assume that this is a more efficient estimate than é,, ,. More
generally if the smoothing is satisfactory for r = 1,2, ...,¢ but not for all larger values of
r, then a good estimate of ¢, , will be &, ((t), where

. 1 -
cm,o(t) N(m){ z r(m)n + r—%+l r(m)nr} . (33)

We shall next consider estimates ¢,, ; of ¢,, ;. We shall begin by proving that (exactly)

1 1 R 1
r+2 T N—r

Cm,1 = N(,,.)Zf‘ éa IH){
d
- g losn, | B)=Slog(1-g) | H]]. (34
The differential coefficient in this expression is made meaningful by means of a suitable
definition of &(n, | H) for non-integral values of . This definition is obtained from equation
(10) by writing I'(N +1)/T'(r + 1) I'(V — r + 1) instead of (]:7) .

In order to prove (34) we shall need the following generalization of (13), valid for any
function f(.):

S| H)6110) | H) = () S0 -2 1 (o). (35)

We also require the following property of the gamma function. Ifis a non-negative integer, .

Te+1) gttty (36)

where y = 0-577215... is the Euler-Mascheroni constant. (See, for example, Jeffreys &
Jeffreys (1946, §15-04).) It follows from (10) and (36) that

1 1 1 P
N—r fad
&(n, | H) = ( Ep,, =D, (1‘+l+r+2+"'+N—r+10gl—pﬂ)

1 9




I. J. Goop 247
by (35). Therefore

1 1 d
S, | D)+ o+ 7)€t | )= By | H) Ellog (1=, | H]

n| ) 8(~loga, | ) = () S2 (120" (~logp),

by (35) again. Multiplying by »™/N®™ and summing with respect to r, we find that the
right-hand side of (34) equals

22( )p,t ™ (1= p, ) N-me-mpm( ~logp,) = 61
as asserted.

2
Cm,2 can be evaluated in a similar manner by first writing down (:ii_r) &(n, | H), but the

result is complicated and will be omitted.
As in the estimation of c,, ,, if the statistician is satisfied with his smoothing, then he can
write

1 1 1 4,
Cm,l N(’m)zr(m {r+l+m+.+N—_—r—%logn,-—é'[log(l—q,)|H];.

If N is large the approximation can be written

1 4 1 1 d ’ l_qr
cm,laﬁ"—‘)§ﬂm)nr{loglv— (1 +§+... +;—'y) -—%logn,—é’(log " |H) }

1-%

Now it is intuitivély clear that & (q, - W) which equals , must be 0(‘/ ) o(N), and

N
therefore
=~ rmp/{log N — (1 1 ! dl .
c”"l_N—("‘)Z,.: nelog N —|1+5+...+-—7 — 7, l08n;
a ,
= Cp,olog N — (m)zﬂ’"n,.(g, 7 logn,.), (37)
1 1
where g, = 1+§+...+;—y. (38)

In particular, the entropy c, ;=¢, ,, where
~ 1 4 d 4
ti1= logN—ﬁﬁr]rnr(g,+d—rlogn,). (39)

The differentiation can be performed graphically for all » or by numerical differentiation for
r=3,4,5,.... (For numerical differentiation see, for example, Jeffreys & Jeffreys (1946,

§9-07).) Another estimate of the entropy is ;;"\1, 1» Where
5., = log N —— 21 ) 40)
1,1 — og _ﬁgrnr r+d7’ g (

in which the ‘prime’ has been omitted from the first occurrence of », in (39). This estimate,
%1,1’ has leanings towards being an unbiased estimate of the entropy. It can hardly be as
good as (39) when the smoothing is reliable. Perhaps the best method of using the present
theory for estimating c,, , is to use the compromise &, ,(t) defined in the obvious way by
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analogy with (33). For large values of r, the factor g, + % log n; may be replaced by log r to

a good approximation. Terms of &, ,(¢) for which this approximation is made, i.e. terms of
the form rn, logr may be regarded as crude and unadjusted.

7. Special hypotheses, H. In this section we shall consider some special classes of hypo-
theses, H, which determine the distribution p,. So far we have taken this distribution as
discrete for the sake of logical simplicity. In the present section we shall find it convenient
to assume that there is a density function, f(p), where f(p) dp is the number ot species whose
population frequencies lie between p and p + dp. (The formulae may of course be generalized
to arbitrary distributions by using the Stieltjes integral.) Clearly

1
[ swap=s (41)

1
fo of(p)dp = 1. (42)

The expected value of p for an animal at random from the population is

1
&(p| H) = f PY()dp = oy (43)

The appropriate modifications of the previous formulae are obvious. For example, instead
of (10) and (20) we have

a1 1) = () [ wa-pr-rsmnan, (44)

&t H) = &y, | H)+ )

r) f 01 fol P (1-p—9™"f(p)f(g)dpdq
- ( v )f:p”(l —2p)N-* f(p)dp. (45)

r,r

Notice the elegant checks of (44) and (45) that &y(ny| H) = s, &(ny | H) = 1, Vy(n, | H) = 0,
Vi(n, | H) = 0. Formula (44) leads to the less precise but often more convenient formula

axiny | 1) = 5[ 1+0(5) | [, oMy essimap

1
2%f0 (pNYy e ?Nf(p)dp (%= o(N)), (46)

while a similar treatment of formula (45) leads back merely to formula (22).
We shall now list a number of different types of possible hypotheses and then discuss
them. The normalizing constants are all deduced from (42).

H, (Pearson’s Type I):

1) = ST -y @> —1,85 1), (47)

H, (Pearson’s Type III):

pe? .
f(p) = mp"e“’”’ (a>—=1,4>0). (48)
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H, (same as H, but with & = —1):

f(p) = pp~refr (£>0). (49)
Hy: f(p) = sAp exp(—fp—ep™) (£>0,6>0). (50)
—1¢—Fp
H; (truncated form of Hj): f(p) = {,Bp ; g :zz;, (51)
Hj (truncated form of another special case of H,):
—2 o—fp
r—— (p>p0), (52)

f(p) =1 E(poh)
0 (P <Po)s
where E(w) = —Ei(—w) = f ule*du. Ei(w)is known as the ‘exponential integral’ and

w

has been tabulated several times. (For a list of these tables see Fletcher, Miller & Rosenhead
(1946, §§13-2 and 13-21).)

We list also a few less completely formulated hypotheses, H,, Hy and Hy, for which the
pop-ulation is not explicitly specified, but only the values of &y(n, | H). Hence for these
hypotheses the parameters may depend on N.

H, (Zipf laws): Em, | H)ocr=* (r>1,§>0), (53)
where { is often taken as 2 by Zipf. (See also (94) below.)

H, (H, with a convergence factor):

Ax"
é”(n,|Hs)=7-§— (r=1,£{>0,0<x<1). (54)
H, (a modification of a special case of Hy):
Az”
éb(nr|Hs)=m (r=1). (55)

We now discuss the nine hypotheses.
(i) H; has the advantage that the exact formula (44) can be evaluated in elementary
terms. We can see from (41) and (43) that

2
s=9‘:—’f_-;——, (56)
&(p| Hy) = a+2  (x+2)(e+f+2)1 (57)

a+f+3 (a+1)(@a+B+3)s
In most applications we want f(p) to be small when p is not small and &(p | H) to be large
compared with 1/s. Hence if a hypothesis of the form H, is to be appropriate at all, we shall
usually want g to be large, by (47), and « to be close to — 1, by (57).
By (44) we see that
_ (c+B+2) (a+r)(B+N—r)!
éa"("'lH‘)“(l:’) @t DIl @+ f+ NI (58)
Hence, by (2'), if the smoothed values n; and »,,, were equal to their expectations, given
H,, we would have
(x+r+1)(N—-r)

TN (59)

(ii) H, can be regarded as a convenient approximation to H, if #>0. Strictly, the
hypothesis H, is impossible since it allows values of p greater than 1, but it gives all such

r¥ =
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values of p combined a very small probability provided that §islarge. H, was used by Green
wood & Yule (1920) and by Fisher (see Corbet ef al. 1943). We have

_ B _at+2 a+2l
STarr’ ¢(p| Hy) = g T a+ls (60)
so that « must be close to — 1. Hence, if 72 = o(N),
__Bla+r)! (N )' B\t
ébN(n'le)_(oc+l)!r! N+g) \N)] (61)

which is of the negative binomial form.

(iii) Of all hypotheses of the form H,, Fisher (Corbet et al. 1943) was mainly concerned
with Hj, the case « = —1. (See example (i) in §8 below.) Then

8§ = 0, ép(p | Ha) = }9’ (62)
N r
axtn, | Byt (75) =55 2 = o, (63)

say. For large samples, x (which, unlike 8, depends on ) is close to 1 and the factor 2" may

be regarded as a convergence factor which prevents ¥ &y(n, | H;) from becoming infinite.
f r=
The convergence factor also increases the likelihood of being able to find a satisfactory fit
to given frequencies, n,, merely because it involves a new parameter.
We see from (22) that

1 /2 N \r
Vi(n, | Hy)=Ey(n, | Hy) {1 —55;;—1( :) (N—+_.B) ; (64)
If pr = o(IV) it follows that

Vy(n, | Hy) 1 /2
Ayl ) ©

Thus in these circumstances Vy(n, | Hy) lies between the bounds given by (26) and (27), being
for each r about twice as close to the smaller bound than to the larger one. When applying
the chi-squared test, where x2 is defined by equation (19), we can hardly go far wrong by
assuming (65) to be applicable whatever the distribution determined by H may be. But, of
course, we may often be able to improve on (65) when H is specified in terms of the dis-
tribution of p. For convenience in applying (65) we give a short table of values of

k, = [1 —2—,1;—1 (2:)]—1 , (66) .

r k, r k, r k,

1 1-33 6 1-13 11 1-10
2 1-23 7 1-12 12 1-09
3 1-19 8 1-11 13 1-09
4 1-16 9 1-11 14 1-08
5 1-14 10 1-10 15 1-08

For larger values of 7, the approximation 1+ 1/{(2/(77))} is correct to two places of decimals.
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Suppose we are given a sample of size N and we wish to estimate § and x. The method
used by Fisher was to equate the observed values of £rn, = N and Zn, = § to their expected
values. (Note that S is the observed number of species and should not be confused with s.)
This led him to the equations

—plog,(1—-2) =8, N =pz/(1-=z), (67)

N x
87 —(T=a)log, 1=z o
which he solved by using a table of /(1 —z) in terms of log,, (N/S).

A theoretically more satisfactory method of estimating 8 and  would be by minimizing
x2, defined by (19), with » = co. This method leads to equations which would be most
laborious to solve by hand but which will be given here since large-scale computers now
exist. To prevent misunderstanding we mention at once that Fisher obtained a perfectly
good fit by the simpler method, in his example, i.e. example (i) of §8 below, though, as
pointed out in §8, H; must not be too literally regarded as true.

By (65) we may write

® " rn?
X2 = rglkr(ﬂT — 2n,+z))?) . (69)
The equations giving £ and z will then be
PEk,ar = Zrk,n2aT, (70)
B2k am = Zr?k.n, 2T, (71)

and these equations could be solved iteratively.
When £ and z are specified the cumulative sums of &y(n, | H;) can be found by making use
of the approximation . o 1
;TﬁE’(—rlogex)+§;(l+%logex~6;), (72)
which will be a very good approximation if the terms involving } log z andé; are negligible.

This approximation can be obtained by means of the Euler-Maclaurin summation formula.
(See, for example, Whittaker & Watson (1935, §7-21).)

(iv) Wehavejustseenthat whena = — lin H,weobtains = oo and of course &y(n, | H) = o0.
There are strong indications in examples (ii), (iii) and (iv) of §8 that we may wish to take
a < — 1, and then even worse divergencies occur. For example, if « = — 2 we would obtain,
from (61), the intolerable result

Ev(ny l H,)| & (n, I H,) = co.

In order to avoid these divergencies we could in theory use hypothesis H,, with a small value
of e. Unfortunately, this hypothesis seems to be analytically unwieldy; it is mentioned
partly for its interest as intermediate between Pearson’s Types III and V.

(v) Another method of avoiding divergencies is to use truncated distributions. These
truncated distributions are not theoretically pleasing but at least some of them can be
handled analytically. H; is a truncated form of H;. We may describe p, as the smallest
possible population frequency of any species. In most applications it would be difficult to
obtain a sample large enough to determine p, with any accuracy. In fact if the estimate of
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o were to be reliable the sample would need to be so large that n, would vanish for all small
values of 7. In the examples of §8, n, is always larger than any other value of n,, so these
samples would need to be increased greatly before one could expect even n, to vanish.

We obtain from (41) 8 = BE(p,p). (73)

w? w”

15t 3T (74)

Now Ew)=—y—logw+w—

an equation which is undoubtedly well known. It can be proved, for example, by using
Dirichlet’s formula for y. (See, for example, Whittaker & Watson (1935, § 12-3, example 2).)

In particular, if w is very small,
E(w) ~ = loge (‘}”?,U), (75)

where v' = e¥ = 1-781072. (76)

(Cf. Jahnke & Emde (1933, p. 79), where our vy’ is denoted by y.) Since p, is assumed to be
small, we have 8= —flog(pyy'f), Po=p~ter—o%. (77)

On applying equation (46) we see that

Enin, | Hy) =t v ﬂ)' (r>1,7% = o(I)), (78)

En(no | Hy)==PE[py(N + B)]= — Blog [Byy' (N + B)]. (79)
The check may be noticed that equations (77), (78) and (79) are consistent with

= éa(sl H;) = rgoéoN(nr ' H;).

Formula (77) is of some interest, but in most applications both p, and s will be largely
metaphysical, i.e. observable only within very wide proportional limits.

(vi) The difficulty of determining p, would not apply to the same extent if « = — 2, i.e. for
hypothesis H,. (This hypothesis is fairly appropriate for example (iv) of §8.) We have,
by (46),

Evlny | H)=AzB[py(f + W)= ~ dwlog 2oL Y, (80)
Eyin, | Hs)er—(r—"frl) (r>2,7% = o(N)), (81)

where x and A, unlike £ and p,, depend on N and are given by

N

~ %17 (82)

N+p - N+p
E(pB)  log(pey'B)’

If A and x can be estimated from a sample, then £ and p, can be determined by (82) and (83)
and s can then be determined from (41), which gives

8+ B = ePol|[py E(pyf)]==ePoh|[ — pylog, ( pyy'P)]. (84)

N
Bpo==exp [~— ———; . (83)

and A=
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In order to estimate A and z from a sample, one could minimize x2, more or less asdescribed
above for H,. For this purpose and for others it may be noted that, by (22),

atn, | Bgtn, | B)=1- 7= 2 (7) r>2) (85)
Vol | Bt | )= (86)
-‘—‘2;;, if z=1. v (87)

By comparing (85) with (65) we can get an idea of the smallness of the error arising when
calculating x2 if (65) is used for hypotheses other than Hj.

Another method of estimating A and , rather less efficient, but easier, is the one analogous
to that used by Fisher for H;, namely, we may assume that the expected values of N —n,
and of S —n, are equal to their observed values, i.e.

x"

S—n1=/\§} = Az+(1-x)log,(1—-2)] = A(1l—e"¥ —Ye¥), (88)
r=2r(r—1) )
oz
N-n,=2 ;——l=—/\xlogc(l—x)=)tY(l—e—Y)=/\xY, (89)
r=27"

(S—mny)[(N—ny) = Y1—(e¥ —1)7, (90)
where z = 1 —e~Y. We may solve (90) iteratively, for ¥,i.e. Y = lim Y, where ¥; = 0 and,
forn=1,2,3,..., S—n e k

-1 _ 1 Yp—_1)-1
Vi = ot =1 (91)

When A and z are specified, the cumulative sums of &y(n, | Hg) can be found by making
use of the approximation

ter

; mt(t:f l)«_-xE[— (r—1)log,x]— E(—rlog,x) +W:"r—T) (1 + %logex—%) R (92)

which will be a very good approximation if the terms involving } log x and 3—11. are negligible

(cf. equation (72)). If (1—=z)r is small while r is large, then we can prove the following
approximation:

r

t>r
@éiv(ntlﬂer—w{l (1—x)[l—y—loge(l—m—loger]}. (93)

If 1 -z is small but (1 —z)r is large, then

Ax”

T (93A)

t>r
% En(ny | Hy)=~
When in doubt about the accuracy of (93) and (93 A) it is best to use (92), the calculation of
which is, however, ill-conditioned, so that the error integrals may be needed to several
decimal places.
Biometrika 40 17
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(vii) We now come to the ‘less completely formulated’ hypotheses. H, is discussed by
Zipf, especially with { = 2 and also in the slightly modified form

&, | Hyoc(r2— 1)L (94)

(See Zipf (1949, pp. 546-7), where there are further references, including ones to J. B. Estoup,
M. Joos, G. Dewey and E. V. Condon.) Yule (1944, p. 55) refers to Zipf (1932) and objects
to Zipf’s word distributions on two grounds. First Yule asserts that the fits are un-
satisfactory, and secondly he points out that (in our notation)

N =&y(Em, |H) =0 if 1<{<2

Zr(r—1)n,

1
while ¢, =J0 p¥f(p)dp = E(p | Hy) = ﬁ(m H,) =00 if 2<{<3.

(viii) Yule’s second objection to H, can be overcome by introducing a ‘convergence
factor’, 2", giving Hy. If H, is any good at all for any particular application then x will be
fairly close to 1. It would be of interest to specify Hg in terms of a density function, f(p),
by solving the simultaneous integral equations

Aar ®
ng = ;lifo (Npy e f(p)dp (r=1,2,3,...). (95)

If { = 1, then Hg reduces of course to Hj.

(ix) H, is of interest mainly because it works so well in examples (ii) and (iii) of §8.
Besides its formal similarity to Hy with { = 2, H, also resembles Hj, in virtue of equation
(81). A disadvantage of not specifying f(p) is that Vy(n, | Hy) cannot be conveniently worked
out from (22), though it can always be estimated from (23) with considerably more work.
Moreover, a correct specification of f(p) is more fundamental than that of the expected
values of the n,’s and is more likely to lead to a better understanding of the structure of the
population.

In order to estimate A and x from a sample, we could use either of the two methods
discussed for H; and H;, except that in the method of minimizing y? it would perhaps be
best to guess a formula for Vy(n, | H,), after experimenting with formula (23). We shall not
discuss this method further in this section. The second method consists in determining A and
z from the equations

N = /\ré% =—g[x+loge(1—x)], (96)
o2
S=Az—r(ril)=5[x+(1_x)1oge(1—x)], (97)

S x+(1-2)log,(1—2x)
N~ —z-log(1-2) ° (98)

x can be determined either by tabulating the right-hand side of (98) or by writingz = 1 —e~¥
and determining Y from the equation

Y= (1—e 7)1 (14 8/N)L, (99)
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Y can be found iteratively by writing ¥ = lim Y,, where¥; = 1+ N/S,and,forn =1,2,3, ...,

Y4 =(1—e¥n)1—(1+8/N)L (100)
Then, by (96), we can find A from A= ;Z_Vx (101)

Having determined A and x we may wish to test how well H, agrees with the sample. For
this purpose we need to calculate cumulative sums of the expectations of the »,’s. This can
be done by means of the approximation

&2 B—rl 1y 11 T (1431 —l) (102)
?m— (—r ogex)—i [—(r+ )Ogex]""ém( tlog,x 37’

deducible from (92). If (1 —x)r is small while r is large, then we have the following

approximation:
t>r

zt] E(ny| Hy)=Ax ;—(1 —x)[1—y—log,(1 —x)—loger];, (103)

deducible from and of precisely the same form as (93). An idea of the closeness of this
approximation can be obtained from example (ii) below. If 1—2z is small but (1—x)r is

large, then t>r Ao

~ ) 103A
When in doubt about the accuracy of (103) and (103 A) it is best to use equation (102). (See
the remarks following equation (93 A).)

8. Examples. In each of the four examples given below we use at least two different
methods of smoothing the data. One of these methods is, in each example, the graphical
smoothing of \/n, for the smaller values of r and another method is the fitting of one or other
of the nine special hypotheses of §7. The discussion of these examples is by no means
intended to be complete.

Example (i). Captures of Macrolepidoptera in a light-trap at Rothamsted. (Summarized
from Williams’s data (Corbet et al. 1943).) N = 15,609, S = 240.

nlv
r n, ni¥ r n, nl¥ r n, s ‘ od)t
1 35 40 . 11 2 3-5 21-30 18 15-5
2 11 20-0 12 2 3-2 31-50 16 18-0
3 15 13-2 13 5 3-0 51-70 17 11-4
4 14 99 14 2 2-8 71-100 8 11-2
5 10 79 15 4 2-6 101-150 9 11-8
6 11 6-6 16 3 24 151-200 7 7-4
7 5 5-6 17 3 2:3 201-500 12 16-1
8 6 4-8 18 3 2:1 501-1000 6 4-6
9 4 4-3 19 3 2:0 1001- 0 1 0-9

10 4 39 20 4 1-9 2349 1 —

t In future tables this word ‘summed’ will be taken for granted and omitted.

We now present the results of the calculations, followed by comments. (The columns
headed ~!” in the table above are explained in these comments.)

17-2
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r n, n n’ n" n¥ r* rE* pEEE | pRREk
1 35 35 35 35 40 1-1 1-4 1-3 1

2 11 19-4 24-0 22-5 20-0 2-1 2-3 2-2 2

3 15 13-7 181 16-3 13-3 3-0 2-9 3-0 3

4 14 10-2 13-1 12-3 10-0 3-8 3-8 39 4

5 10 7-8 10-2 9-7 79 4-8 4-8 4-8 5

6 11 6-3 81 77 6-6 59 59 55 6

7 5 53 6-8 6-0 5-6 — — — —

The function n; was obtained by plotting /n, against r for 1 <r <20 and smoothing for
1<r< 7 by eye, holding in mind the method of least squares. (See note (i) of §3.) n, was
obtained in the same way, but an attempt was made to keep away from the graph of n;
(except atr = 1)in order to find out how different a smoothing was reasonable. Next n, was

r
obtained by smoothing the cumulative sums ¥ ¢n, Finally, n!" is the function obtained
t=1

by Fisher, i.e. using our hypothesis H, (equation (63)) with # = 40-2 and z = 0-9974. A more
complete tabulation of nl¥ is given in the first table. The ‘summed’ values of n!” were
calculated by means of equation (72). No statistical test is necessary to see that the fit of
7" is very good. The values of r* corresponding to the four smoothings of the data are
denoted by r*, r**, r*** and r**** respectively. (Logically this gives »* two different
meanings.) (r**** = 0-9974r, by (2’) and (63).) In accordance with §3 we could force the
r*’s, etc., to be smooth. This has not been tried here. What is clear is that if Hyisnot accepted
then most of the values of 7*, etc., are unreliable to within about 0-2 or 0-3. The approximate
values of y% given by (19) with » = 7 and assuming (65) are 10-9, 11-1, 9-4 and 11-7
respectively. The number of degrees of freedom is somewhere between 6 and 7. It seems
safe to take it as 5 for n;’, 6 for n; and n, and 7 for n!". None of the values of ¥2 is particularly
significant, though all are a bit large. The data can be blamed for the largeness of the values
of x2, since n, is obviously much smaller than it ought to be. Of the four smoothings Fisher’s
seems to be the most likely to give the best approximations to the ‘true expectations’.
There is hardly anything to choose on the evidence of the sample, but Fisher’s smoothing
has the advantage of being analytically simple.

The most definite result of interest in this example does not depend much on thesmoothing,
namely, that the proportion of the population not represented by the species in the sample
is about (35 + 5)/15,609. For the ‘ + 5’ see formula (65). Perhaps this standard error should
be increased slightly, say from 5 to 8, to allow for the preference given to n".

Formula (77), if it is applicable (i.e. if the truncated form, H;, of H, is assumed), may be
written —log,,p, = 1-18+0-011s, so that if s were say 1000, then the smallest population
frequency would be about 10-12. This is mentioned only for its theoretical interest: it is an
unjustifiable extrapolation to suppose that the distribution defined by H; would stand up
to sample sizes large enough to demonstrate clearly the values of s and p,. N would need to
be of the order of 10/p,. The proposition which is made probable by the actual sample is that
H, and Hy (with the assigned values of the parameters) would give good fits to the values of
n, on other independent samples of 16,000 or less, i.e. that H, and H, provide good methods
of smoothing the data. The cautious tone of this statement can be more fully justified by
the following considerations.
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If H; were reliable then it should be possible to use it to estimate the simpler measures of
heterogeneity, such as c, . Now we can see by (30) that ¢, , = 0-03935 and é; (=0-0035.
(For the calculations, the complete data given by Williams must be used.) Hence, by (30A),
it isreasonable to write ¢, , = 0-03935 + 0-0007. Let us then see what value for ¢, , is implied

by H;. We have
Sr(r=1)nl" = fE(r—1)a" = fx2/(1 —2)2 = 0-0243.

[As a check, f: P (p)dp =p c‘ope—/’iﬂ dp = ﬂJ‘:qe‘qdqaﬂ—l = 0-025.]
Do D

Clearly then Hy cannot be used to estimate ¢, ,. It would be true if misleading to say that
H; is decisively disproved by the data. Similar remarks would apply in the examples below.

Example (ii). Eldridge’s statistics for fully tnflected words in American newspaper English.
Eldridge’s statistics (1911) are summarized by Zipf (1949, pp. 64 and 25). We give a summary
of Zipf’ssummary in column (ii) below; more fully in the second table. N = 43,989, S =6,001.

In this example the values of n, for » < 10 are much larger than in example (i), so we have
far more confidence in the smoothing that is independent of particular hypotheses. We shall
present some of the numerical calculations in columns and then make comments on each
column. We may assert at once, however, by equations (7), (8) and (9), that the proportion
of the population represented by the sample is close to 1 —n,/N = 14/15. If a foreigner were
to learn all 6001 words which occurred in the sample he would afterwards meet a new word
at about 6-7 9, of words read. If he learnt only § —n, = 3025 words he would meet a new
word about 11-6 9, of the time. The corresponding results for word-roots rather than for
fully inflected words would be of more interest to a linguist.

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi)
r n, A, b, say —-A rb, rb, say by b2 n, r*
1 2976 54-5 54-5 21-8 54-5 54-5 54-5 2976 2961 0-73
2 1079 327 32:7 10-0 654 654 32-7 1079 1075 14
3 516 22.7 22-7 57 68-1 67-8 22-6 511 509 2:4
4 294 17-1 17-0 2:8 68-0 70-2 17-5 206 305 3-4
5 212 14-6 14-2 1-8 71-0 72-6 14-5 210 209 44
6 151 12-3 12-4 1-5 74-4 74-7 12-4 154 153 54
7 105 10-2 10-9 1-3 76-3 76-3 10-9 119 118 6-2
8 84 9-2 9-6 1-2 76-8 76-8 9-6 92 91 —
9 86 9-3 8-4 1-1 75-6 75-6 8-4 71 70 —_

10 45 6-7 7-3 — — — — — — —

(i) and (ii). We first consider the values of  only as far as r = 10. For larger values of
r the smoothing could be done by using k-point smoothing formulae with k=2 /r.

(iii) Each entry in this column has standard error of about 4, so one place of decimals is
appropriate.

(iv) This column was obtained by smoothing a graph of column (iii) by eye. Experiments
with the five-point smoothing formula did not give quite as convincing results. For the
five-point smoothing formula, see, for example, Whittaker & Robinson (1944, §146). For
the present application it would be /n; = \/n,—FAYn,) (r = 3,4,5,...).
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(v) This column of differences is given as a verification of the smoothness of column (iv).
In fact minor adjustments were made in column (iv) in order to improve the smoothness of
column (v).

(vi) The numbers b, of column (iv) are roughly proportional to »~!. This fact suggests that
rb, should be formed and smoothed again in order to improve the smoothing of 4/n, still
further. This process is of course distinct from assuming that rb; should be constant, where
the function 6] is a smoothing of the function b,.

(vii) and (viii) These columns have already been partly explained. The purpose of this
improvement in the smoothing is more for the sake of the ratios n,,,/n, than of the n;
themselves.

(ix) Where the smoothing of 4/n, had no noticeable effect we have taken b;2 = n,. It is
clearly typical that b;% = n,, since the eye-smoothing is unlikely to affect n, convincingly.
Therefore if the smoothing is tested by means of a chi-squared test it will be reasonable to
subtract about two degrees of freedom.

9 9
(x) We have scaled up column (ix) so as to force X rn; = Y rn,. We can then assume
r=1 r=1

9
N’ = N, convenient for applications of §6. Note that 3 k.(n;—n,)%/n] = 6-5, so that x2,
r=1

given by (19) and accepting (65) as a good enough approximation, is not significant on eight
degrees of freedom. Thus our smoothing is satisfactory, though there may be other satis-
factory smoothings.

(xi) r*is obtained from formula (2’). The larger is r the larger is the standard error of r*.
We may get some idea of the error by means of an alternative smoothing. The standard error
of 1* can be very roughly calculated by an ad hoc argument, inapplicable to say 5*. We may
reasonably say that the variance of 2ny/n; with respect to all eye-smoothings will be about
the same as that obtained by regarding n; and »; as independent random variables with
variances circumscribed by the inequalities (26) and (27), or nearly enough, defined by (65).
Now if w and z are independent random variables with expectations W and Z, we have
3(?) _ow_ Wi

2 'z 7

and hence, to a crude approximation,

w\ _V(w) K W2V(2)
V(Z) =z Tz
. V(wfz) V(w) K V(z)
l.e. W72 We + 72" (104)
V(1*)  V(2ng/ny) 1 1
It follows that 1% = @aln))? + Tyl (105)
so that V(1*) = 0-732x 0-0010 = 0-00052 and 1* = 0-73 + 0-023.

(xii) (see the second table). An analytic smoothing which is remarkably good for r < 15 is

o]
given byn, = §/(r2+r). Forlarger values of r there is a serious discrepancy, since 3, n, =374

r=16
Lo}

while ¥ n,=297. Itis clear without reference to the sample that n, cannot be satisfactory
r=16

for sufficiently large values of r, since Zrn, = co instead of being equal to N.
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(1) (i1) (x) (xii) (xiii) (xi) (xiv)
r n, n, ny n) r* ¥

1 2976 2961 3000 3008 0-73 0-67
2 1079 1075 1000 1002 1-4 1-5
3 516 509 500 500 24 24
4 294 305 300 301 34 3-3
5 212 209 200 201 4-4 4-3
6 151 153 143 144 54 52
7 105 118 107 108 6-2 6-2
8 84 91 83 84 — 7-2
9 86 70 67 67 — 8-2
10 45 — 55 55 — —
11-15 156 — 170 170 — —
16-20 76 — 89 89 — —
21-30 78 — 92 92 — —
31-40 34 — 47 47 — —
41-50 28 — 29 28 — —
51-60 10 — 19 19 — —
61— o0 71 — 98 90 — —
4290 1 — — —_ — —

(xiii) The fit can be improved by writing n, = Ax"/(r2+r) as in equation (55), i.e. using
hypothesis H,. We find by equations (100) and (101) that A = 6017-4 and 2 = 0-999667.
Column (xiii) can then be easily calculated directly for » < 10 and by use of (102) or (103)

for r > 10. ((103) gives the correct values for ng and njy, to the nearest integer and it gives

2 ny = 89-96, as compared with 89-90 when (102) is used.) Note that Z n, = 365, which
r=16

1mphes an improvement on n,; but is still significantly too large. A better fit could be obtained
by the method of minimum 2 or by using some simple convergence factor other than a7,
such as e=@%* with ¢ >0, 6> 0.

(xiv) 7** is defined as (r + 1) n,,,/n, and is equal to r(r +1)/(r +2). This column may be
compared with column (xi). The agreement looks fairly good. It is by no means clear which
of the two columns gives more reliable estimates of the ‘true’ values of 7* for » < 7. Column
(x) is a better fit to Eldridge’s data for » <9 (and could be extended to be a better fit for all r)
than is column (xiii) but is not as smooth. Columns (xii) and (xiii) would be preferable if
some theoretical explanation of the analytic forms could be provided. Such an explanation
might also show why the fit is not good for large 7, even with the convergence factor z. The
limitation on 7 in equation (46) may be relevant.

If H, is true, the population parameter c, o, given by (31) can be expressed in the form

A 2r—-1 A =

poos 1r+l 2 = - E —2+= loge 1- x):l (106)
o

Formula (106) would give ¢, = 0-00928, but this value is probably a bad over-estimate
1

since n,’ is too large for large r and the terms of lél(z) p R d for large » make most of the

contribution. Similarly, ¢, o, given by (30), depends malnly on the larger values of r repre-

sented in the sample, but Zipf’s summary of Eldridge’s data is not complete enough to

calculate &, ,. Similarly, assuming H,, the entropy, ¢, ;, could be estimated from equation
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(39), and this method could be expected to give close agreement with the correct value,
since ¢, , does not depend so very much on the more frequent species. But I have not
obtained a closed formula, resembling (106) for example, and the arithmetic required if no
closed formula is available would be heavy. The estimation of measures of heterogeneity will

be discussed again under example (iii).

Ezample (iii). Sample of nouns in Macaulay’s essay on Bacon. (Taken from Yule (1944)

Table 4-4, p. 63.) N = 8045, § = 2048.

r n, r n, r n, r n, r Ny
1 990 11 24 21 1 31 2 41 1
2 367 12 19 22 4 32 1 45 2
3 173 13 10 23 7 33 1 48 1
4 112 14 10 24 2 34 1 57 1
5 72 15 13 25 1 35 1 58 1
6 47 16 3 26 5 36 1 65 1
7 41 17 10 27 3 37 1 76 1
8 31 18 7 28 4 38 2 81 1
9 34 19 6 29 1 39 4 89 1
10 17 20 5 30 3 40 1 255 1

As in example (ii) we can state some conclusions at once, without doing the smoothing.
If our foreigner learns all 2048 nouns that occur in the sample his vocabulary will represent
all but (12-3 + 0-5) 9, of the population, assuming formulae (9) and (65) or (87). If he learns
only 1058 nouns his vocabulary will still represent all but (n, +2n,)/N = 19-3 %, of the
population.
We now present three different smoothings corresponding precisely to those of example (ii).

r n, ny ny n' r* ¥ TR %10810"; %,10810'”':” g-logsee
1 990 | 990 1024 1060 0-74 0-67 0-66 —0-50 —0-65 0-184
2 367 367 341 350 1-4 15 1-5 —0-30 —0-37 0-401
3 173 173 170 174 2-6 2.4 2:4 —-0-24 —0-26 0-545
4 112 112 102 103 34 33 33 —-0-17 —0-20 0-654
5 72 76 68 68 44 4-3 4-3 —-0-15 —0-16 0-741
6 47 56 49 48 53 52 51 —0-12 -0-14 0-813
7 41 42 3556 36 6-5 6-2 6-1 —-011 —-0-12 0-876
8 31 34 28-5 28 7-3 7-2 7-1 -0-10 -0-11 0-930
9 34 27 22-7 22 82 82 81 —0-09 —-0-10 0-978
10 17 22 18-4 i8 — 9-2 9-1 —0-08 —0-09 1-021
11 24 18-5 15-5 15 — 10-2 10-1 — —_— —
12 19 16-0 13-1 12 — 11-1 11-0 — — —
13 10 13-7 11-3 10 — 12-1 12-0 — — —
14 10 10-9 9-7 9 — 131 13-0 — — —
15 13 9-6 8:5 8 — 14-1 14-0 — _ —
16-20 31 32-5 30-5 27 — — — — — —
21-30 31 — 315 26 — — L — —_ — -
31-50 19 — 259 19 — — — —_ — -
51-100 6 — 19-9 11 — — — —_ — -
101-c0 1 20-3 36| — — — —_ — —
255 1 — — — —_ 254 252 —_ — —

\/n, was obtained by smoothing ,/n, graphically.
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n, = 8/(r2+r). It is curious that this should again give such a good fit for values of r that
are not too large (r < 30). The sample is of nouns only and, moreover, Yule took different
inflexions of the same word as the same.

n, = Ax’/(r2+r), where A = 2138:90, x = 0-991074, the values being obtained from (100)
and (101) as in example (ii).

15
The expressions ¥ (n,—n,)%/n;, etc., take the values 9-5, 21-2 and 27-3. The values of
r=1

x2 would be about 2 or 3 larger. (See (19), (26), (27), (65).) There is no question of accepting
n, for r > 50 but it is better than n,’ for r < 15. When r < 9 the values of 7* and r** (and there-
fore of r***) show good agreement except forr = 1and r = 7. If the analytic smoothings had
not been found, the value of 6* would have been smoothed off, with repercussions on the
function n;. The discrepancy in 1* must be attributed either to a fault in the value of
ny (and therefore in H,) or must be blamed on 7, (i.e. on sample variation). If I had not
noticed the analytic smoothings I would have asserted that 1* = 0-74 with a standard error
of something like 0-04. (See equation (105).)

We now consider two of the measures of heterogeneity in the population, namely, ¢, , and
¢1,;- By (30) we can see that ¢, o = 0-00272, agreeing with Yule (1944, p. 57). Also
83 9 = 0-00003957, so that by (30A) we may reasonably write ¢, o = 0-00272 + 0-00013.
Assuming H, to be valid for r < 30, we may also estimate c, o by €, , (30) as in equation (33).
We have, in a self-explanatory notation,

1 30 o 1 ©
2y,0(30| Hy) = N—m"\ §;ﬁ#+ z r‘z’n,}. (107)

Now, as in (72),

2r—1 231 2 232
— e — — hati .1 —_ .
321,“’”' 11—z x{E( 32log,z) + 4o (1 + tlog.» m)} 82:924.
. ©r—1 30 .1
But, as in (106), X —— " = 99-50L, 50 that 31 ——=.2" = 16:577. It follows from (107) that
1 1

€s,0(30 | Hy) = 0-00246. This is about two standard errors below its expected value, based on
the simple unbiased statistic &, ,. The discrepancy may again be attributed to the large
value of »y. If, instead of n,’, the smoothing =, is accepted for r< 30, we would get
&,,0(30) = 0-00267. (It was in order to obtain this comparison that we calculated &, (30 | H,)
rather than &, o(50 | H;). The fit of n, deteriorates at about r = 30.)

The last three columns of the table are related to the estimation of the entropy, c, ;. (See

equation (40) and the remarks following it.) dir log;yn, was obtained graphically for r = 1,
2 and 3 by numerical differentiation for r = 3,4,...,10. (The graphical and numerical
values agreed to two decimal places forr = 3.) The column %logm n,’ was of course calculated

1 1 .
as log,oz— (; +m) log,ge. The crude estimate of the ‘entropy to base 10’ or ‘entropy

. . . . 1
expressed in decimal digits’ is log,;q NV —NZm,logwr = 2-968 decimal digits. If »/ is
- .
accepted for r = 1,2, 3, ..., 10 we find that

~ l 10 7 d Vi hd .
8,,1(10) = log;g N — ¥ {'ern,. (g, logge+ o log;o n,;) + , zil rn,log, r} = 3-051 decimal digits.
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We shall next calculate &; (50 | H,), using another self-explanatory notation. Since, by
Jeffreys & Jeffreys (1946, §15-05),
1 1
g,~10g67'+2—r—1—2ﬁ— ceey

it can be seen that

" d m
&y, 1(50 | Hy)= logloN——{Z N, (g,.logme+d log;o 7y )

50
+ Z rn, logor +log ez Z rn) — 8lo glo eX Z‘, ny + Z rn,log, }
= 3-192 decimal digits,

as we may see by means of rather heavy calculations, using the last column of the table,
together with equations (72), (74) and (92). The crude estimate of ¢, ; is the smallest of the
three. This is not surprising, since the crude estimate is always too small in the special case
of sampling from a population of s species all of which are equally probable.

Example (iv). Chess openings in games published in the British Chess Magazine, 1951. For
the purposes of this example we arbitrarily regard the openings of two games as equivalent
only if the first six moves (three white and three black) are the same and in the same order
in both games. N = 385, § = 174. '

n, n, Ny v r**

1 126 126 126 126 0-39
2 22 22 24-6 24 1-0
3 5 7-6 8-1 8 2-0
4 4 4-8 4-0 4 3-0
5 3 3-2 2-4 24 4-0
6 4 2-6 1-6 1-6 50
7 0 2-2 1-1 1-14 6-0
8 3 —_ 0-85 0-86 7-0
9 1 — 0-66 0-67 8-0

10 1 — 0-52 0-53 9-0

11 0

13 1

14 1

16 1 3-97 4-80

23 1

36 1

0 —

A/n} was obtained by graphical smoothing of \/n,.

n, was obtained by assuming Hy (see equation (52)), i.e. n, = &y4(n, | H;), where the
parameters x and A were obtained from (91) and (89). These gave z = 0-99473, A = 49-635
and n, for r > 2 is then given by (81). Next p, was determined as 0-00011304 = 1/8846 by
using equation (80). Then (82) gave # = 2-040, so that, in accordance with (52) and (74),

{0 128p%¢~20400  (p > 1/8846),

()= (p < 1/8846).
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Finally, equation (84) gives 8 = 1132. This then is the estimate of the total number of
openings in the population, though the sample is too small to put any reliance in it.

ny (r > 2) is simply (8 —n,)/(r?—r) = 48/(r2—7r).

This is just as good a fit as n;. It gives an infinite value to c, ¢, but this is not as serious an
objection as it sounds since Hy would also give quite the wrong value for ¢, o. (Cf. the
concluding remarks in the discussion of example (i).)

Welist in the table the values of 7* corresponding to n;, calling the values r** in conformity
with the convention of the present section. Clearly r** = (r—1)x when r > 2. Thus the
average population frequency of the 126 openings that each occurred once only in the sample
is 0-39/385 = 0-001.

A player who learnt all 174 openings would expect to recognize about 67 %, of future
openings for the same population, assuming that the sample was random. If he learnt the
48 openings that each occurred twice or more in the sample the percentage would drop to
55 9, and if he learnt the 26 that occurred three times or more the percentage would drop
to 49 9,. (See formula (6’).)

9. Index of notations having a fixed meaning.

§1. N,n, (but see also §2), n,,¢,,r* (as a definition of the asterisk, but there is a slight
change of convention in §8), n, (here again there is a slight change in §8), &( ), V( ).

§2. 8,0y H(Dy, Doy s o) = H, Ey,y i 4 v
§3. N'.

§56. z,, =2, 0,

§6' cm,n’ 6m,0’ Em,o’ Em,o(t)’ Y5 9rs 51,1) Em,l(t)-
§7' p’f(p)» Do Hl to HQ» E( )’ kr: ‘S» Y'-
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