
THE POPULATION FREQUENCIES OF SPECIES AND THE 

ESTIMATION OF POPULATION PARAFETERS 


BYI. J. GOOD 

A random sample is drawn from a population of animals of various species. (The theory may also be 
applied to studies of literary vocabulary, for example.) If a particular species is represented r times 
in the sample of size N, then r / N is not a good estimate of the population frequency, p, when r is small. 
Methods are given for estimating p, assuming virtually nothing about the underlying population. 
The estimates are expressed in terms of smoothed values of the numbers n, (r= 1, 2, 3, ...), where n, 
is the number of distinct species that are each represented r times in the sample. (n, may be described 
as 'the frequency of the frequency r'.) Turing is acknowledged for the most interesting formula in this 
part of the work. An estimate of the proportion of the population represented by the species occurring 
in the sample is an immediate corollary. Estimates are made of measures of heterogeneity of the 
population, including Yule's 'characteristic'and Shannon's 'entropy '. Methods are then discussed that 
do depend on assumptions about the underlying population. I t  is here that most work has been done 
by other writers. I t  is pointed out that a hypothesis can give a good fit to the numbers r~,but can give 
quite the wrong value for Yule's characteristic. An example of this is Fisher's fit to some data of 
Williams's on Macrolepidoptera. 

1. Introduction. We imagine a random sample to be drawn from an infinite population of 
animals of various species. Let the sample size be N and let n, distinct species be each 
represented exactly r times in the sample, so that 

-
rn, = N. 

r=l  

The sample tells us the values of n,, n,, ...,but not of no. In fact it is not quite essential that 
no should be finite though we shall find it convenient to suppose that it is. 

We shall suggest a method of estimating, among other things, 
(i) the population frequency of each species; 
(ii)the total population frequency of all species represented in the sample, or, as we may 

say, 'the proportion of the population represented by (the species occurring in) the sample '; 
(iii)various general population parameters measuring heterogeneity, including 'entropy '. 

By 'general' parameters we mean parameters defined without reference to any special form 
of hypothesis. I n  $7 we shall consider the estimation of parameters for hypotheses of special 
forms. 

Our results are applicable, for example, to studies of literary vocabulary, of accident 
proneness and of chess bpenings, but for definiteness we formulate the theory in terms of 
species of animals. 

The formula (2) was first suggested to me, together with an intuitive demonstration, by 
Dr A. M. Turing several years ago. Hence a very large part of the credit for the present 
paper should be given to him, and 1am most grateful to him for allowing me to publish this 
work. 

Reasonably precise conditions under which our general results are applicable will be given 
in $4, but we state a t  once that the larger is n, the more applicable the results. When n, is 
large, no will also be large, but we shall not for the most part attempt to estimate it. There 
will be a fleeting reference to the estimation of no a t  the end of $ 5  and a few more references 
in $$7 and 8. (See, for example, equation (73).) For populations of known finite size, the 
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problem has been considered by Goodman (1949). He proved that if the sample size is not 
less than the maximum number of individuals in the population belonging to a single 
species, then there is only one unbiased estimate of no and he found it. He also pointed out 
that the unbiased estimate is liable to be unreasonable and suggested some alternative 
estimates that are always reasonable. There is practically no overlapping between the 
present work and that of Goodman. 

Jeffreys (1948, $3.23) has discussed what is superficially the same problem as (i) above, 
under the heading 'multiple sampling'. He refers to some earlier work of Johnson (1932). 
The methods of Johnson and Jeffreys depend on assumptions that, as Jeffreys himself 
points out, are not always acceptable. Moreover, their methods are not intended to be 
applicable when no is unknown. The matter is taken up again in $ 2. 

Other work on the frequencies of species has been mainly concerned with the fitting of 
particular distributions to the data, with or without a theoretical explanation of why these 
distributions might be expected to be suitable. See, for example, Arlscombe (1950), Chambers 
& Yule (1942), Corbet, Fisher & Williams (1943), Greenwood &Yule (1920), Newbold (1927), 
Preston (1948), Yule (1944) and Zipf (1932). The methods of the first six sections of the 
present paper are largely independent of the distributions of population frequencies. 

We shall be largely concerned with q,., the population frequency of an arbitrary species 
that is represented r times in the sample. We shdl use the notation &(q,.) for the expected 
value of q,., in a sense to be explained in $2. Our main result, expressed rather loosely, is 
that the expected value of q,. is r*/N, where 

(The symbol '--' is used throughout to mean 'is approximately equal to'.) More precisely 
the nr's should first be smoothed before applying formula (2). Smoothing is briefly discussed 
in $3  with examples in $ 8. If the smoothed values are denoted by n;, n;, n;, ..., then the 
more accurate form of equation (2) is 

The reader will find i t  instructive to consider the special case when n: is of the Poisson 
form s e-"ar/r ! Then r* reduces to a constant. 

The formula (2) can be generalized to give higher moments of q,.. I n  fact 

where tcm) = t ( t  - 1).. . (t -m + 1). We can also write (3) in the form 

Moreover, the variance of q,. is 

An immediate deduction from (2) is that the expected total chance of all species that are each 
represented r times (r  2 1) in the sample is approximately 



Hence also the expected total chance of all species that are represented r times or more in 
the sample is approximately 

In particular, the expected total chance of all species represented a t  all in the sample is 
approximately N-l(2n2+312, + . . .) = 1-n,/N. (8) 

We may say that the proportion of the population represented by the sample is approxi- 
mately 1 -n,/N, and the chance that the next animal sampled will belong to a new species is 
approximately 

n1lN. (9)
(Thus (6) is true even if r = 0.) 

The results (6), (7) ,  (8) and (9) are improved in accuracy by writing the respective 
formulae as 

and 

I n  most applications this last expression will be extremely close to n;/N, and this in its turn 
will often be very close to n,/N. It follows that (8') and (9') are practically the same as (8) 
and (9). For the sake of mathematical consistency, the smoothing should be such that (8') 
and (9') add up to 1. 

An index of notations used in a fixed sense is given in 5 9. 
I am grateful, and my readers will also be grateful, to Prof. M. G. Kendall for forcing me 

to clarify some obscurities, especially in 5s 1and 2. 

2. Proofs. Let the number of species in the population be s, which we suppose is finite. 
This is the same supposition as that no is finite. Our results as far as 5 6 would be practically 
unchanged if s were enumerably infinite, but the proofs are more rigorous when i t  is finite. 
Let the population frequencies of the species be, in some order, p,, p,, . . .,p,, where 

Let H, or more explicitly H(p,,p,, . . . , p a ) ,be the statistical hypothesis asserting that 
p,,p,, . . .,p, are the population frequencies. We shall discuss the expectation of n,, given H.  
It may be objected that the expectation of nr is simply the observed number n,, whatever 
the information, and this objection would be logically correct. Strictly we should introduce 

for the random variable that is the frequency of the frequency r in 
a random sample of size N. Then we could introduce the notation W(v , ,  I H )  for the expecta- 
tion of v,,,given H. (Logically this expectation would remain unaffected if particular 
values of n,, n,, n,, .. . were given.) In  order to avoid the extra notation v , ,  we shall 
write C(n,) or &(n, I H )  or &,(n, I H )  instead of &(v,,, I H). Confusion can be avoided by 
reading 8,(n, I H )  as ' the expectation of the frequency of the frequency r when H is given 

16-2 
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and when the sample size is N'. Similarly, we write V(nr) = V(nrIH) = VN(nrIH) for the 
variance of v,,, given H and gN(n; I H), etc., for b(vr,$ I H). 

We recall the theorem that an expectation of a sum is the sum of the expectations. It-

follows that gN(nr I H )  is the sum over all s species of the probabilities that each will occur 
r times, given H. So 

8N(nr 1 = b(nr I = b(nr) 

8 

In particular g ~ ( n ~I H, = Z(l-P,)? (11) 
,= 1 

If s were infinite this series would diverge. The divergence would be appropriate since no 
would also be infinite. 

Now suppose that in a sample of size N a particular species occurs r times (r = 0,1,2,...). 
We shall consider the final (posterior) probability that this species is the pth one (of popula- 
tion frequency p,). For the sake of rigour it is necessary to define more precisely how the 
species is selected for consideration. We shall suppose that it is sampled 'a t  random', or 
rather equiprobably, from the s species, and that then its number of occurrences in the 
sample is counted. Thus the initial (prior) probability that the species is the pth one is 11s. 
If the species is the pth one then the likelihood that the observed number of occurrences 

We write qr for the (unknown) population frequency of an arbitrary species that is represented 
r times in the sample. The final probability that the species is the pth one can be written as 
P(qr =p, I H) provided that the p,'s are unequal. (If any of the p,'s are equal they can be 
adjusted microscopically so as to be made unequal. These adjustments will have no practical 
effect.) We may at  once deduce the final probability that the species is the pth one by using 
Bayes's theorem in the form thai, the final probabilities are proportional to the initial ones 
times the likelihoods. We find that 

iP>(1-P,)~-?
,=I 

It follows that for any positive integer m, 

in view of (10) and of (10) with N replaced by N +m. Immediate consequences of (14) are 
the basic result 1 H,'?'+ & ~ + l ( ~ r + l  

(r = 0,1,2, ...) 

and 



where 

by (10) and (14). It is clear from either form of (18) that the numbers (t = 0,1,2, ...) 
form a sequence of moment constants and therefore satisfy Liapounoff's inequality. (See, 
for example, Good (1950a), or Uspensky (1937).) This checks that the right side of (16) is 
positive, as it should be being a variance. [It is obvious incidentally that (16) would be 
true with pi,l,N defined as &(qf I H)  times any expression independent oft.] 

We can now approximate the formulae (14) and (15) by replacing &N+m(nr+m I H) by the 
observed value, n,,,, in the sample of size N, or rather by the smoothed value ni,,. If 
m is very small compared with N, if n, and n,+, are not too small and if the sequence 
n,, n,, n,, . . . is smoothed in the neighbourhood of n, and nr+,, then we may expect the 
approximations to be good. We thus obtain all the approximate results of $1. Note that 
when the approximation is made of replacing &N+m(nr+m H) by n:+, we naturally also I 
change the potation b(q,"I H)  to &(qT). For the results become roughly independent of 
H unless the n,'s are too small to smooth. Observe that &(qy I H)  does not depend on the 
sample, unless H is itself determined by using the sample. On the other hand, &(q,") does 
depend on the sample. This may seem a little paradoxical and the following explanation 
is perhaps worth giving. When we select a particular sequence of smoothed values 
n;,n;, nj, .. . we are virtually accepting a particular hypothesis H, say H{N; n;, n;, nj, ...), 
with curly brackets. (I do not think that this hypothesis is usually a simple statistical 
hypothesis.) Then $(qT) can be regarded as a shorthand for $(qT I H{N; n;, n;, nj, ...)). (If 
H{...) is not a simple statistical hypothesis this last expression could in theory be given 
a definite value by assuming a definite distribution of probabilities of the simple statistical 
hypotheses of which H is a disjunction.) When we regard the smoothing as reasonably 
reliable we are virtually taking H{N; n;, n;, nj, . . .)for granted, as an approximation, so that 
it can be omitted from the notation without serious risk of corlfusion. In order to remind 
ourselves that there is a logical question that is obscured by the notation, we may describe 
b(q,")as say a 'credential expectation'. 

If a specific H is accepted it is clearly not necessary to use the approximations since 
equation (13) can then be used directly. Similarly, if H is assumed to be selected from 
a superpopulation, with an assigned probability density, then again it is theoretically 
possible to di~pense with the approximations. In fact if the 'point ' (p,, p,, ...,p,) is assumed 
to be selected from the 'simplex 'p, +p,+ .. . +p, = 1, with probability density proportional 
to (p1p2.. .pJk-l, where k is a constant, then it is possible to deduce Johnson's estimate 
qr = (r+k)/(N+ ks). Jeffreys's estimate is the special case k = 1, when the probability 
density is uniform. Jeffreys suggests conditions for the applicability of his estimate, but 
these conditions are not valid for our problem in general. This is clear if only because we do 
not assume s to be known. 

JefTreys assumes explicitly that all ordered partitions of N into s non-negative parts are 
initially equally probable, while Johnson assumes that the probability that the next 
individual sampled will be of a particular species depends only on N and on the number 
of times that that species is already represented in the sample. Clearly both methods ignore 
my information that can be obtained from the entire set of freqnencies of all species. 
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The ignored information is considerable when it is reasonable to smooth the frequencies -
of the frequencies. 

3. Smoothing. The purpose of smoothing the sequence n,, n,, n,, ... and replacing i t  by 
a new sequence n;, n;, ni, ...,is to be able to make sensible use of the exact results (14) and 
(1 5). Ignoring the discrepancy between gNand&'+,, the best value of ni would be &"(nr I H), 
where H is true. One method of smoothing would be to assume that H = H(p,,p,, . . . ,p,) 
belongs to some particular set of possible H's, to determine one of these, say H,, by maximum 
likelihood and then to calculate ni as cfN(nr IH,). This method is closely related to that of 
Fisher in Corbet et al. (1943). Since one of our aims is to suggest methods which are virtually 
distribution-free, it would be most satisfactory to carry out the above method using all 
possible H's as the set from which to determine H,. Unfortunately, this theoretically 
satisfying method leads to a mathematical problem that I have not solved. 

It is worth noticing that the sequence {gN(n, 1 H))(r = 0,1,2, ...) has some properties 
invariant with respect to changes in H .  Ideally the sequence {ni) should be forced to have 
these invariant properties. In  particular the sequence {pi,,, N )  (t = 0,1,2, ...), defined by 
(17), is a sequence of moment constants. But if t = o(2/N), then N-l(r+t)! ni+,-- pi,,,^, so 
that if t = o(JN) we can assume that the sequence r! ni is a sequence of moment constants 
and satisfies Liapounoff's inequalities. But this simply implies that 0*, I*, 2*, ...,t* forms 
an increasing sequence (see equation (2')), a result which is intuitively obvious even without 
the restriction t = o(JN). (Indeed, the argument could be reversed in order to obtain a new 
proof of Liapounoff's inequality.) We also intuitively require that 0*, l*, 2*. ..should itself 
be a 'smooth ' sequence. 

Since the sequence (t = 0,1,2, ...) is a sequence of moment constants of a prob- 
ability distribution it follows from Hardy (1949, 511.8) that the sequence is 'totally 
increasing', i.e. that all its finite differences are non-negative. This result is unfortunately 
too weak to be useful for our purposes, but i t  may be possible to make use of some other 
theorems concerning moment constants. This line of research will not be pursued in the 
present paper. 

A natural principle to adopt when smoothing is that 

should not be significant with r degrees of freedom. In  $ 5  we shall obtain an approximate 
formula for V(nr I H), applicable when r2 = o(N). The chi-squared test will therefore be 
applicable when r2 = o(N). [See formulae (22), (25), (26) and, for particular H's, (65), (85), 

(861.1 
Another similar principle can be understood by thinking of the histogram of n, as several 

piles of pennies, n, pennies in the rth pile. We may visualize the smoothing as the moving of 
pennies from pile to pile, and we may reasonably insist that pennies moved to the rth pile 
should not have been moved much further horizontally than a distance Jr and almost never 
further than 2Jr. For r = 0 we would not insist on this rule, i.e. we do not insist that  

w CO 

ni = C n,. The analogy with piles of pennies amounts to saying that a species that 
r = l  r = l  
'should' have occurred r times is unlikely to have occurred less than r -Jr or more than 
r + ,/T times. 



Let N' = Ern:. It seems unnecessary to insist on N' = N, provided that N is replaced by 
N' in such formulae as b(q,) ==r*/N. It will be convenient, however, in $6 to assume N' = N. 

For some applications very little smoothing will be required, while for others i t  may be 
necessary to use quite elaborate methods. For example, we could 

(i) Smooth the n,'s for the range of values of r that interests us, holding in mind the 
above chi-squared test and the rule concerning Jr. The smoothing techniques may include 
the use of freehand curves. Rather than working directly with n,, n,, n,, . . . i t  may be found 
more suitable to work with the cumulative sums n,, n, +n,, n, +n, +n,, . . . or with the 
cumulative sums of the rn,or with the logarithms log n,, log n,, log n,, . . ..There is much to 
be said for working with the numbers Jn,, Jn,, Jn,, . . . . For if we assume that V(n, I H )  is 
approximately equal to n, (and in view of (26) and (27) of $ 3 this approximation is not on 
the whole too bad), then it would follow that the standard deviation of Jn, is of the order 
of 4 and therefore largely independent of r. Hence graphical and other smoothing methods 
can be carried out without having constantly to hold in mind that I ni -n, I can reasonably 
take much larger values when n, is large than when it is small. [The square-root transforma- 
tion for a Poisson variable, x, was suggested by Bartlett (1936) in order to facilitate the 
analysis of variance. He showed also that the transformation J(x + 4) leads to an even more 
constant variance. Anscombe (1948) proved that J ( x +  $) has the most nearly constant 
variance of any variable of the form J(x +c), namely, t ,when the mean of x is large. He 
attributes this result to A. H. L. Johnson.] 

(ii) Calculate (r + 1) n:+,/n:. 
(iii) Smooth these values getting, say, r*. 
(iv) Possibly use the values of r* to improve the smoothing of the n,'s. If this makes 

a serious difference i t  will be necessary to check again that the chi-squared test and the J r  
rule have not been violated. 

(v) Light can be shed on the reliability of the estimates of the q,'s, etc., if the data are 
smoothed two or three times, possibly by different people. 

In short, the estimation of the q,'s should be done in such a way as to be consistent with 
the axioms of probability and also with any intuitive judgements that the users of the 
method are not prepared to abandon or to modify. (This recommendation applies to much 
more general theoretical scientific work, though there are rare occasions when i t  may be 
preferred to abandon the axioms of a science.) 

An objection could be raised to the methods of smoothing suggested in the present 
section. It could be argued that all smoothing methods indirectly assume something about 
the distribution p,, and that one might just as well apply the method of Greenwood & Yule 
(1920) and its modification by Corbet et al. (1943) of assuming a distribution of Pearson's 
Type 111,Apae-PP, or of some other form. Our reply would be that smoothing can be done 
by making only local assumptions, for example, that the square root of &(n, I H), as a 
function of r, is approximately 'parabolic' for any nine consecutive values of r. Moreover, 
it may often be more convenient to apply the general methods of the present section than 
to attempt to find an adequate hypothesis, H. 

4. Conditions for the applicability of the results of §§ 1 and 2. The condition for the applic- 
ability of the results of $ 5  1 and 2 is that the user of the methods should be satisfied with his 
approximations to c?&,+,,(n,+, I H )  corresponding to the values of r and rn used in the 
application. This condition is clearly correct, since equation (14) is exact. In  particular, if 
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n,is1arge.enough the user would be quitehappy to deduce (9)from (15) withr =0.Similarly, 
he will be satisfied with the estimates of say q,, q, and q, provided he is satisfied with the 
smoothed values (n;, n:, ni, n;) of n,, n,, n, and n,. 

5. The variance of n,. For the application of the chi-squared test described in § 3 we need 
to know more about V(n,). We begin by obtaining an exact formula for V(n, I H )  = VN(n, I H )  
and we then make approximations that justify the omission of the symbol H from the 
notation. It is convenient to introduce the random variable x , ,  = xP that is defined as 
1 if the 'pth species ' (of population frequency p,) occurs precisely r times in a sample of size 

N ( H  being given), otherwise x, = 0. Clearly P (x, = 1 I H )  = (7pl,(1-P,)~-,. NOW 

&(n,21 H )  = &(C xJ2 
P 

= C &(x,xv) 
P, " 

P*" 

= C &(x,) + C &(x,x,) 


P P, " 

This is exact. We now make some approximations of the sort used in deriving the Poisson 
distribution from the binomial. We get, assuming r2/N, rp, and rp, to be small, 

(Np,)" ecNpr 
r! = a,, say, 

N !
and p;p:(l -pp-p,)N-2r==apav.

r!  r! (N-  2r)! 

Moreover, i t  is intuitively clear that terms for which p, or p, is far from r/N can make no 
serious contribution to the summation in (20). Hence, if r2 = o(N), 

Therefore the variance of n, for samples of size N is 

Formulae (21) and (22) are elegant but need further transformation, when H is unknown, 
before they can be used for calculation. Notice first that there are nu species whose expected 
population frequencies are qu (u = 0, 1,2, . . .). Hence we have for r = 0, 1,2, ...; r2= o(N), 



Similarly and rather more simply, when r2 = o(N), 

Now for any positive x, xr e-% < rr e-', so 

&(nr1 H ) $ V ( ~ ~1 ~ ) T & ( n ~ lH)  (25) 

Using Stirling's formula for r - 1 we have 

&(n,I H)%V(nr I H)F&(nrI H)  (r = 2,3, ...), (26) 

while (27) 

(see also formula (65) in $7). Now the most desirable value for ni would be b(nr IH)  where 
H is true, so if our smoothing of the nr's is to be satisfactory for any particular values of 
r small compared with JN we may write 

w U*re-u* 
ni== nu- (28) 

U=O r! ' 
and these jtpproximate equations may be used as a test of consistency for the values of 
ni and u*. Indeed, it may be possible iteratively to solve equations (28) combined with 
(2') and thus very systematically to obtain estimates of ni and r* for values of r small 
compared with ,/N. This iterative process may possibly lead to estimates of n; and O*, but 
I have not yet trisd out the process. For most applications the less systematic methods 
previously described will probably prove to be adequate, and any smoothing obtained by 
these methods can be partially tested by means of x2 in the form (19), together with the 
inequalities (26) and (27). (See also the remarks following equations (65) and (87).) 

6. Estimation of some population parameters, including entropy. Let us consider the 
population parameters 

a 

which can be regarded as measures of heterogeneity of the population. The sequence 
c,,, = 1, c,,, = s, c2,,, c,,,, . . .may be called the :moment constants' of the population, while 
c, ,is called the 'entropy' in the modern theory of communication (see Shannon, 1948). 
More generally, c,,, is the moment about zero of the amount of information from each 
selection of an animal (or word), where 'amount of information' is here used in the sense of 
Good (19506, p. 75), i.e. as minus the logarithm of a probability. (The last sentence of p. 75 
of this reference is incorrect, as Prof. M. S. Bartlett has pointed out.) We find it no more 
difficult to give estimates of c,,, than of c,,,, a t  any rate when n = 0 or 1. 

It is an immediate consequence of (10) that an unbiased estimate of c,,, is 

E2,, is in effect used by Yule (1944) to measure the heterogeneity of samples of vocabulary, 
and he calls 10,000E2,,(1 - l /N)  the 'characteristic' of the material. The sequence of all 
sampling moments of E,,, involves all the population parameters c,,,. For example, as 
pointed out by Simpson (1949), for large N, 
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Unbiased statistics are rather unfashionable nowadays, partly because they can take 
impossible values. For example, 2m,0could vanish, although i t  is easy to see that c,, ,2dm-'). 
(Compare Good (1950b, p. 103), where estimates of c,,, are implicit for general multinomial 
distributions, no attempt being made to smooth the nr's.) We shall find estimates of c,,, and 
also estimates of c,,, that are at least sometimes better than &,. 

We have 
em,, = ,,1 zr'm'&(nrI HI, (31) 

r 

since this is in effect what is meant by saying that gm,, is an unbiased estimate of c,,,. If the 
statistician is satisfied with his smoothing, i.e. if he assumes that ni----G(nr ( H), and if he has 
forced N' = N, then he can estimate c,,, as 

and he will be prepared to assume that this is a more efficient estimate than &m,o. More 
generally if the smoothing is satisfactory for r = 1,2, ...,t but not for all larger values of 
r, then a good estimate of c,,, will be %,,(t), where 

We shall next consider estimates en,,,of c,,,. We shall begin by proving that (exactly) 

The differential coefficient in this expression is made meaningful by means of a suitable 
definition of &(nr I H )  for non-integral values of r. This definition is obtained from equation 

( lo)by writing r ( N +  l ) / r ( r +  1) r ( N - r +  1) instead of (Sr . 
. , 

I n  order to prove (34) we shall need the following generalization of (13), valid for any 
function f ( .) : 

(35) 

We also require the following property of the gamma function. If b is a non-negative integer, 

where y = 0.577215 ... is the Euler-Mascheroni constant. (See, for example, Jeffreys & 
Jeffreys (1946, $15.04).) I t  follows from ( P O )  and (36) that 
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by (35). Therefore 

by (35) again. Multiplying by and summing with respect to r, we find that the 
right-hand side of (34) equals 

as asserted. 

c,,, can be evaluated in a similar manner by first writing down (g)&(n, I H),  but the 

result is complicated and will be omitted. 
As in the estimation of c,,,, if the statistician is satisfied with his smoothing, then he can 

write 
1 1 d 

If  N is large the approximation can be written 

r* -r
Now it  is intuitively clear that d ,which equals -

N 
therefore 

1 1
where g, = 1 + - +

2 ...+,-y. (38) 

I n  particular, the entropy cl ,==Z1,,, where 

The differentiation can be performed graphically for all r or by numerical differentiation for 
r = 3,4,5, .... (For numerical differentiation see, for example, Jeffreys & Jeffreys (1946, 

A 

$9.07).) Another estimate of the entropy is El,,, where 

in which the 'prime' has been omitted from the first occurrence of ni in (39). This estimate, 
A 

El,,, has leanings towards being an unbiased estimate of the entropy. It can hardly be as 
good as (39) when the smoothing is reliable. Perhaps the best method of using the present 
theory for estimating c,,, is to use the compromise 'Zm,,(t) defined in the obvious way by 
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d
analogy with (33). For large values of r, the factor g, +-log ni may be replaced by log r to 

dr 
a good approximation. Terms of EmVl(t) for which this approximation is made, i.e. terms of 
the form rn,log r may be regarded as crude and unadjusted. 

7. Special hypotheses, H. In  this section we shall consider some special classes of hypo- 
theses, H,  which determine the distribution p,. So far we have taken this distribution as 
discrete for the sake of logical simplicity. In the present section we shall find it convenient 
to assume that there is a density function, f (p),  where f (p )  dp is the number of species whose 
population frequencies lie betweenp andp + dp. (The formulae may of course be generalized 
to arbitrary distributions by using the Stieltjes integral.) Clearly 

The expected value of p for an animal a t  random from the population is 

The appropriate modifications of the previous formulae are obvious. For example, instead 
of (10) and (20) we have 

Notice the elegant checks of (44) and (45) that g0(no I H)  = s, 4 (n1  I H)  = 1, &(no I H)  = 0, 
V,(n, I H )  = 0. Formula (44) leads to the less precise but often more convenient formula 

gN(n,I 
H) = - 1+ 0[ :! -(;)I J; 
(pN)le-PNf (p)dp 

while a similar treatment of formula (45) leads back merely to formula (22). 
We shall now list a number of different types of possible hypotheses and then discuss 

them. The normalizing constants are all deduced from (42). 

HI (Pearson's Type I): 

H2 (Pearson's Type 111): 
p + 2

f (p)  = -----pa e-82, (a> - 1,P >'o).
(a+ l ) !  



H3 (same as Hz but with a = - 1): 

f (p )  = Pp-l e-BP (/I> 0). 

H, (truncated form of H3) : f (p)  = ( PP-1 e-BP (P>P,), 
0 (P<P,). 

H, (truncated form of another special case of Hz): 

(p>p,),
f (p )= ,E(p0P) 

where E(w) = -Ei ( -w) = [ a0 a-1 e-udu. Ei (w) is known as the ' exponential integral ' and 
J w  

has been tabulated several times. (For a list of these tables see Fletcher, Miller & Rosenhead 
(1946, $9 13.2 and 13.21).) 

We list also a few less completely formulated hypotheses, H7, Ha and H9, for which the 
population is not explicitly specified, but only the values of cfN(n, I H). Hence for these 
hypotheses the parameters may depend on N. 

H7 (Zipf laws): &(n,lH,).cr-[ ( r> l ,C>o) ,  (53) 

where is often taken as 2 by Zipf. (See also (94) below.) 

H, (H, with a convergence factor): 

H, (a modification of a special case of Ha): 
Axr

4%I H9) = q q j  (r3 1). 


We now discuss the nine hypotheses. 

(i) Hl has the advantage that the exact, formula (44) can be evaluated in elementary 

terms. We can see from (41) and (43) that 

In most applications we want f (p)to be small when p is not small and & ( p I H )  to be large 
compared with 11s. Hence if a hypothesis of the form HI is to be appropriate at  all, we shall 
usually want P to be large, by (47), and a to be close to - 1,by (57). 

Bv (44) we see that 

Hence, by (2'), if the smoothed values ni and n:,, were equal to their expectations, given 
Hl, we would have 

r* = ( a + r +  1) (N-r)  
P + N - r  ' (59) 

(ii) H, can be regarded as a convenient approximation to Hl if /3 > 0. Strictly, the 
hypothesis Hz is impossible since it allows values of p greater than 1, but it gives all such 
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values ofp combined a very small probability provided that P is large. H, was used by Green 
wood & Yule (1920) and by Fisher (see Corbet et al. 1943). We have 

so that a must be close to - 1. Hence, if r2 = o(N), 

which is of the negative binomial form. 

(iii) Of all hypotheses of the form H2, Fisher (Corbet et al. 1943) was mainly concerned 
with H,, the case a = - 1. (See example (i) in $8 below.) Then 

say. For large samples, x (which, unlike P, depends on N)  is close to 1 and the factor Y may 

be regarded as a convergence factor which prevents 2 
m 

gN(nrI H,) from becoming infinite. 
r=l  

The convergence factor also increases the likelihood of being able to h d  a satisfactory fit 
to given frequencies, n,, merely because it involves a new parameter. 

We see from (22) that 

1 H ~ )I ~ -A(:)~ ~ (&p)r)*( ~ ~ 
IfPr = o ( N )it  follows that 

Thus in these circumstances VN(nr I H,) lies between the bounds given by (26) and (27), being 
for each r about twice as close to the smaller bound than to the larger one. When applying 
the chi-squared test, where x2is defined by equation (19), we can hardly go far wrong by 
assuming (65) to be applicable whatever the distribution determined by H may be. But, of 
course, we may often be able to improve on (65) when H is specified in terms of the dis- 
tribution of p. For convenience in applying (65) we give a short table of values of 

For larger values of r, the approximation 1+ 1/((2 J(nr))) is correct to two places of decimals. 



Suppose we are given a sample of size N and we wish to estimate ,8 and x. The method 
used by Fisher was to equate the observed values of Ern, = A' and En,. = Sto their expected 
values. (Note that S is the observed number of species and should not be confused with s.) 

This led him to the equations 

which he solved by using a table of x/(l-x) in terms of log,, (NIS). 
A theoretically more satisfactory method of estimating /3 and x would be by minimizing 

2 2 ,  defined by (19), with r = co. This method leads to equations which would be most 
laborious to solve by hand but which will be given here since large-scale computers now 
exist. To prevent misunderstanding we mention a t  once that Fisher obtained a perfectly 
good fit by the simpler method, in his example, i.e. example (i) of $ 8  below, though, as 
pointed out in $ 8, H, must not be too literally regarded as true. 

By (65) we may write 
x2= x k, --2n, + (69)

r-1  

The equations giving P and x will then be 

and these equations could be solved iteratively. 
When P and x are specified the cumulative sums of &",(n, I H,) can be found by making use 

of the approximation ,,,x, 11 +Blog,x--), 6r (72) 

which will be a very good approximation if the terms involving 4log x and -
1 

are negligible. 
6r 

This approximation can be obtained by means of the Euler-Maclaurin summation formula. 
(See, for example, Whittaker & Watson (1935, $ 7.21).) 

(iv)Wehave justseenthatwhena = - 1 in H,weobtains =aand of course f\-(n, / H) =XI. 
There are strong indications in examples (ii), (iii) and (iv) of 98 that we may wish to take 
a < - 1, and then even worse divergencies occur. For example, if a = -2 we would obtain, 
from (61)) the intolerable result, 

I n  order to avoid these divergencies we could in theory use hypothesis H,, with a small value 
of s. Unfortunately, this hypothesis seems to be analytically unwieldy; i t  is mentioned 
partly for its interest as intermediate between Pearson's Types I11 and V. 

(v) Another method of avoiding divergencies is to use truncated distributions. These 
truncated distributions are not theoretically pleasing but a t  least some of them can be 
handled analytically. H5 is a truncated form of H,. We map de~cribe p, as the smallest 
possible population frequency of any species. In  most applications i t  would be difficult to 
obtain a sample large enough to determine p, with any accuracy. In fact if the estimate of 
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powere to be reliable the sample would need to be so large that n, would vanish for all small 
values of r. In  the examples of $ 8, n, is always larger than any other value of n,, so these 
samples would need to be increased greatly before one could expect even n, to vanish. 

We obtain from (41) 
s = PE(p0P). 

w2 203
Now E(w)= -y- log,w+w--+-- ..., (74)2!2 3!3 

an equation which is undoubtedly well known. It can be proved, for example, by using 
Dirichlet's formula for y. (See, for example, Whittaker & Watson (1935, $ 12.3, example 2).) 
I n  particular, if w is very small, 

E(w)- -log, (y'w), -(75) 

where y' = ey = 1.781072. (76) 

(Cf. Jahnke & Emde (1933, p. 79), where our y' is denoted by y.) Since p, is assumed to be 
small, we have 

s -- -plog (p, y'p), p, np-l e-y-slj. (77) 

On applying equation (46) we see that 

The check may be noticed that equations (77), (78) and (79) are consistent with 

Formula (77) is of some interest, but in most applications both p, and s will be largely 
metaphysical, i.e. observable only within very wide proportional limits. 

(vi)The difficulty of determiningp, would not apply to the same extent if a = -2, i.e. for 
hypothesis H,. (This hypothesis is fairly appropriate for example (iv) of $8.) We have, 

POY'NgN(nl 1 H,) fihxE[p,(p +N)]-- -AX log ---x '  

where x and A, unlike /3 and p,, depend on N and are given by 

and 

If A and x can be est'imated from a sample, then /3 and p, can be determined by (82) and (83) 
and s can then be determined from (41), which gives 



In order to estimate h and x from a sample, one could minimize x2, more or less as described 
above for H,. For this purpose and for others it may be noted that, by (22), 

By comparing (85) with (65) we can get an idea of the smallness of the error arising when 
calculating x2if (65) is used for hypotheses other than H,. 

Another method of estimating hand x, rather less efficient, but easier, is the one analogous 
to that used by Fisher for H,, namely, we may assume that the expected values of N -n, 
and of S -n, are equal to their observed values, i.e. 

where x = 1-e-Y.  We may solve (90)iteratively, for Y, i.e. Y = lim Y,, where Y, = 0 and, 
n+ m 

When h and x are specified, the cumulative sums of GN(nr 1 H,)can be found by making 
use of the approximation 

tar  ,$ xr (l+tlogex--

Fqiq --xE[- (r- l)logex]-E(-rlogex) +-
2r(r- 1) 

which will be a very good approximation if the terms involving 8 log x and -
1 

are negligible 
3r 

(cf. equation (72)). If (1-x) r  is small while r is large, then we can prove the following 
approximation: 

If 1-x is small but (1-x) r is large, then 

When in doubt about the accuracy of (93) and (93A) it is best to use (92), the calculation of 
which is, however, ill-conditioned, so that the error integrals may be needed to several 
decimal places. 

Biometrika 40 17 
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(vii) We now come to the 'less completely formulated' hypotheses. H7 is discussed by 
Zipf, especially with 5 = 2 and also in the slightly modified form 

(See Zipf (1 949, pp. 546-7), where there are further references, including ones to J.B. Estoup, 
M. Joos, G. Dewey and E. V. Condon.) Yule (1944, p. 55) refers to Zipf (1932) and objects 
to Zipf's word distributions on two grounds. First Yule asserts that the fits are un-
satisfactory, and secondly he points out that (in our notation) 

(viii) Yule's second objection to H7 can be overcome by introducing a 'convergence 
factor', xr, giving H8. If H7 is any good a t  all for any particular application then x will be 
fairly close to 1. It would be of interest to specify H8 in terms of a density function, f (p) ,  
by solving the simultaneous integral equations 

If c = 1, then H8 reduces of course to H3. 

(ix) H, is of interest mainly because it works so well in examples (ii)and (iii) of $8. 
Besides its formal similarity to H8 with 5 = 2, H, also resembles H,, in virtue of equation 
(81).A disadvantage of not specifying f (p )  is that VN(nT I H,) cannot be conveniently worked 
out from (22), though i t  can always be estimated from (23) with considerably more work. 
Moreover, a correct specification off (p)is more fundamental than that  of the expected 
values of the n,'s and is more likely to lead to a better understanding of the structure of the 
population. 

In  order to estimate h and x from a sample, we could use either of the two methods 
discussed for H3 and H,, except that in the method of minimizing ~2 it would perhaps be 
best to guess a formula for 'V,(nT I H,), after experimenting with formula (23). We shall not 
discuss this method further in this section. The second method consists in determining hand 
x from the equations 

* xT hN = A C - - - = - - [X+loge (1-x)]
T=lr+  1 x 

x can be determined either by tabulating the right-hand side of (98) or by writing x = 1-e-Y 

and determining Y from the equation 



Y can befounditeratively by writing Y = lim Y,, where Yl = 1+NIS, and, for n = 1,2,3,..., 
n+m 

Y-l -- e-Yn)-l- ( 1+SIN)-l. (100)n + l  (1-

XN
Then, by (961,we can find h from A = - (101)Y-x' 

Having determined h and x we may wish to test how well H9 agrees with the sample. For 
this purpose we need to calculate cumulative sums of the expectations of the n,'s. This can 
be done by means of the approximation 

deducible from (92). If (1-x)r  is small while r is large, then we have the following 
approximation: 

t>r 
(103) 

deducible from and of precisely the same form as (93). An idea of the closeness of this 
approximation can be obtained from example (ii) below. If 1-x is small but (1-x)r is 
large, then t>r 

C &(ntI H9)---
Axr 

t (1-x)r2  

When in doubt about the accuracy of (103)and (103A)it  is best to use equation (102). (See 
the remarks following equation (93A).) 

8. Examples. In  each of the four examples given below we use a t  least two different 
methods of $moothing the data. One of these methods is, in each example, the graphical 
smoothing of Jn, for the smaller values of r and another method is the fitting of one or other 
of the nine special hypotheses of $7.  The discussion of these examples is by no means 
intended to be complete. 

Example (i). Captures of Macrolepidoptera in a light-trap at Rothamsted. (Summarized 
from Williams's data (Corbet et al. 1943).) N = 15,609,S =: 240. 

t In future tables this word 'summed' will be taken for granted and omitted. 

We now present the results of the calculations, followed by comments. (The columns 
headed nfv in the table above are explained in these comments.) 
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n r  4 n:' 
n"' 

n:' $.* $.** $.*** $.**** 
--P-----

-- 

1 
2 
3 
4 
5 
6 
7 

35 
11 
15 
14 
10 
11 
5 

35 
19.4 
13.7 
10.2 
7.8 
6.3 
5.3 

35 
24.0 
18.1 
13.1 
10.2 
8.1 
6.8 

35 
22.5 
16.3 
12.3 
9.7 
7.7 
6.0 

40 
20.0 
13.3 
10.0 
7.9 
6.6 
5.6 

1.1 
2.1 
3.0 
3.8 
4.8 
5.9 
-

1.4 
2.3 
2.9 
3.8 
4.8 
5.9 
-

1.3 
2.2 
3.0 
3.9 
4.8 
5.5 
-

1 
2 
3 
4 
5 
6 
-

I I I 1 I I 

The function ni was obtained by plotting Jn, against r for 1 < r <20 and smoothing 'for 
1<r < 7 by eye, holding in mind the method of least squares. (See note (i) of $3.) n," was 
obtained in the same way, but an attempt was made to keep away from the graph of n: 
(except a t  r = 1) in order to find out how different a smoothing was reasonable. Next nf was 

obtained by smoothing the cumulative sums 2 tn,. Finally, np  is the function obtained 
t = 1  

by Fisher, i.e. using our hypothesis H3 (equation (63)) with P = 40.2 and x = 0.9974. A more 
complete tabulation of n: is given in the first table. The 'summed' values of n p  were 
calculated by means of equation (72). No statistical test is necessary to see that the fit of 
nip is very good. The values of r* corresponding to the four smoothings of the data are 
denoted by r*, r**, r*** and r**** respectively. (Logically this gives r* two different 
meanings.) (r**** = 0.9974r, by (2') and (63).) I n  accordance with $3  we could force the 
r*'s, etc., to be smooth. This has not been tried here. What is clear is that if H3 is not accepted 
then most of the values of r*, etc., are unreliable to within about 0.2 or 0.3. The approximate 
values of ~2 given by (19) with r = 7 and assuming (65) are 10.9, 11.1, 9.4 and 11.7 
respectively. The number of degrees of freedom is somewhere between 6 and 7. It seems 
safe to take it as 5 for nr ,  6 for ni and n: and 7 for nfv. None of the values of x2is particularly 
significant, though all are a bit large. The data can be blamed for the largeness of the values 
of x2, since n, is obviously much smaller than it ought to be. Of the four smoothings Fisher's 
seems to be the most likely to give the best approximations to the 'true expectations'. 
There is hardly anything to choose on the evidence of the sample, but Fisher's smoothing 
has the advantage of being analytically simple. 

The most definite result of interest in this example does not depend much on the smoothing, 
namely, that the proportion of the population not represented by the species in the sample 
is about (35 _+ 5)/15,609. For the ' _+ 5' see formula (65). Perhaps this standarderror should 
be increased slightly, say from 5 to 8, to allow for the preference given to np. 

Formula (77), if it  is applicable (i.e. if the truncated form, H5, of H3 is assumed), may be 
written -loglop, = 1.18+0.01 18, so that if s were say 1000, then the smallest population 
frequency would be about 10-12. This is mentioned only for its theoretical interest : it  is an 
unjustifiable extrapolation to suppose that the distribution defined by H5 would stand up 
to sample sizes large enough to demonstrate clearly the values of s and p,. N would need to 
be of the order of 10/po. The proposition which is made probable by the actual sample is that 
H3 and H5 (with the assigned values of the parameters) would give good fits to the values of 
n, on other independent samples of 16,000 or less, j .e. that H, and H5 provide good methods 
of smoothing the data. The catitious tone of this statement can be more fully justified by 
the following considerations. 



If H5 were reliable then it should be possible to use i t  to estimate the simpler measures of 
heterogeneity, such as c,,,. &,,, Now we can see by (30) that = 0.03935 and $,,.?0.0035. 
(For the calculations, the complete data given by Williams must be used.) Hence, by (30A), 
it is reasonable to write c,,, = 0.03935 + 0.0007. Let us then see what value for c,,, is implied 
by H,. We have 

Cr(r- 1)n: = pX(r-1)f l  = pxs/(l-x), = 0.0243. 

[As a check, /owpY(P) dp = e-~pdp= @ qe-qdq-P-1 = 0025.1 
Po 


Clearly then H5 cannot be used to estimate c,,,. It would be true if misleading to say that 
H5 is decisively disproved by the data. Similar remarks would apply in the examples below. 

Example (ii). Eldridge's statistics for fully injected words in American newspaper English. 
Eldridge's statistics (1 91 1) are summarized by Zipf ( 1949, pp. 64 and 25). We give a summary 
of Zipf's summary in column (ii) below; more fully in the second table. N = 43,989,S =6,001. 

In  this example the values of n, for r < 10 are much larger than in example (i), so we have 
far more confidence in the smoothing that is independent of particular hypotheses. We shall 
present some of the numerical calculations in columns and then make comments on each 
column. We may assert a t  once, however, by equations (7), (8)and (9), that the proportion 
of the population represented by the sample is close to 1 -n,/N = 14/15. If a foreigner were 
to learn all 6001 words which occurred in the sample he would afterwards meet a new word 
a t  about 6.7 % of words read. If he learnt only S-n, = 3025 words he would meet a new 
word about 11.6 % of the time. The corresponding results for word-roots rather than for 
fully inflected words would be of more interest to a linguist. 

(iii) (vii) 
4% rb; say 

(i) and (5).We first consider the values of r only as far as r = 10. For larger values of 
r the smoothing could be done by using k-point smoothing formulae with k--2 Jr.  

(iii) Each entry in this column has standard error of about &, so one place of decimals is 
appropriate. 

(iv) This column was obtained by smoothing a graph of column (iii) by eye. Experiments 
with the five-point smoothing formula did not give quite as convincing results. For the 
five-point smoothing formula, see, for example, Whittaker & Robinson (1944, 5 146). For 
the present application it would be Jni = Jn, -&A4( Jn,) (r = 3,4,5, ...). 
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(v) This column of differences is given as a verification of the smoothneaa of column (iv). 
In  fact minor adjustments were made in column (iv) in order to improve the smoothness of 
column (v). 

(vi) The numbers b, of column (iv) are roughly proportional to r-l. This fact suggests that 
rb, should be formed and smoothed again in order to improve the smoothing of dn, still 
further. This process is of course distinct from assuming that rbi should be constant, where 
the function b: is a smoothing of the function b,. 

(vii) and (viii) These columns have already been partly explained. The purpose of this 
improvement in the smoothing is more for the sake of the ratios ni+,/n; than of the n: 
themselves. 
(ix)Where the smoothing of dnr had no noticeable effect we have taken b:2 = n,. It is 

clearly typical that biz = n,, since the eye-smoothing is unlikely to affect n, convincingly. 
Therefore if the smoothing is tested by means of a chi-squared test i t  will be reasonable to 
subtract about two degrees of freedom. 

9 9 
(x) We have scaled up column (ix) so as to force C rn: = C rn,. We can then assume 

r- 1 r = l  
9 

N' = N ,  convenient for applications of $6. Note that k,(ni-nr)2/ni = 6.5, so that x2, 
r = l  

given by (19) and bccepting (65) as a good enough approximation, is not significant on eight 
degrees of freedom. Thus our smoothing is satisfactory, though there may be other satis- 
factory smoothings. 

(xi) r* is obtained from formula (2'). The larger is r the larger is the standard error of r*. 
We may get some idea of the error by means of an alternative smoothing. The standard error 
of 1 * can be very roughly calculated by an ad hoc argument, inapplicable to say 5*. We may 
reasonably say that the variance of 2n;ln; with respect to all eye-smoothings will be about 
the same as that obtained by regarding n; and n; as independent random variables with 
variances circumscribed by the inequalities (26) and (27), or nearly enough, defined by (65). 
Now if w and z are independent random variables with expectations W and Z ,  we have 

and hence, to a crude approximation, 

It follows that 

so that V(l*) = 0.732x 0.0010 = 0.00052 and l *  = 0.73 + 0.023. 

(xii) (see the second table). An analytic smoothing which is remarkably good for r < 15 is 
m 

given by n," = Sl(r2+r). For larger values of r there is a serious discrepancy, since n," =374 
r=16 

m 

while I: n, =297. It is clear without reference to the sample that n,"cannot be satisfactory 
r=16 

for sufficiently large values of r, since Crn," = oo instead of being equal to N .  



(xiii) (xiv) 
nr T** 

(xiii) The fit can be improved by writing nr = hxr/(r2+r) as in equation (55), i.e. using 
hypothesis H,. We find by equations (100) and (101) that h = 6017.4 and x = 0.999667. 
Column (xiii) can then be easily calculated directly for r 6 10 and by use of (102) or (103) 
for r > 10. ((103) gives the correct values for n;l' and n;",, to the nearest integer, and i t  gives 
m m znr  = 89.96, as compared with 89.90 when (102) is used.) Note that C n: = 365, which 
61 r=16 

implies an improvement on n,"but is still significantly too large. A better fit could be obtained 
by the method of minimum ~2 or by using some simple convergence factor other than f l ,  
such as e-ar-br%ith a > 0, b > 0. 

(xiv) r** is defined as (r  + 1) nr+,/n, and is equal to r(r + l ) / ( r+ 2). This column may be 
compared with column (xi). The agreement looks fairly good. It is by no means clear which 
of the two columns gives more reliable estimates of the ' true' values of r* for r ,< 7 .  Column 
(x)is a better fit to Eldridge's data for r ,< 9 (and could be extended to be a better fit for all r) 
than is column (xiii) but is not as smooth. Columns (xii) and (xiii) would be preferable if 
some theoretical explanation of the analytic forms could be provided. Such an explanation 
might also show why the fit is not good for large r, even with the convergence factor x. The 
limitation on r in equation (46) may be relevant. 

If H, is true, the population parameter c,,,, given by (31), can be expressed in the form 

Formula (106) would give c,., = 0.00928, but this value is probably a bad over-estimate 
h r - 1

since n r  is too large for large r and the terms of N,Z xr for large r make most of the 

contribution. Similarly, c",,,, given by (30), depends mainly on the larger values of r repre- 
sented in the sample, but Zipf's summary of Eldridge's data is not complete enough to  
calculate c",,,. Similarly, assuming H,, the entropy, c,,,, could be estimated from equation 
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(39), and this method could be expected to give close agreement with the correct value, 
since c,,, does not depend so very much on the more frequent species. But I have not 
obtained a closed formula, resembling (106) for example, and the arithmetic required if no 
closed formula is available would be heavy. The estimation of measures of heterogeneity will 
be discussed again under example (iii). 

Example (iii).Sample of nouns in Macaulay's essay on Bacon. (Taken from Yule (1944) 
Table 4.4, p. 63.) N = 8045, S = 2048. 

As in example (ii)we can state some conclusions a t  once, without doing the smoothing. 
If our foreigner learns all 2048 nouns that occur in the sample his vocabulary will represent 

all but (12.3 + 0.5) % of the population, assuming formulae (9) and (65) or (87). If he learns 
only 1058 nouns his vocabulary will still represent all but (n, +%,)IN = 19.3% of the 
population. 

We now present three different smoothings corresponding precisely to  those of example (ii). 

r 

1 
2 

nr 

990 
367 

n: 

--p 

990 
367 

n: 

1024 
341 

I 

I 
I 
/ 

nF 

1060 
350 

r* 

0.74 
1.4 

0.67 
1.5 

'*** 

0.66 
1.5 

-

d 
-&1og,on: 

-0.50 
-0.30 

d 
-&log1,4" 

-0.65 
-0.37 

~rlogloe 

0.184 
0.401 

3 173 173 170 174 2.6 2.4 2.4 -0.24 -0.26 0.545 
4 112 112 102 103 3.4 3.3 3.3 -0.17 -0.20 0.654 
5 72 76 68 68 4.4 4.3 4.3 -0.15 -0.16 0.741 
6 47 56 49 48 5.3 5.2 5.1 -0.12 -0.14 0.813 
7 41 42 35.5 36 6.5 6.2 6.1 -0.11 -0.12 0.876 
8 31 34 28.5 28 7.3 7.2 7.1 -0.10 -0.11 0.930 
9 34 27 22.7 22 8.2 8.2 8.1 -0.09 -0.10 0.978 

10 
11 

17 
24 

22 
18.5 

18.4 
15.5 

18 
15 

-
-

9.2 
10.2 

9.1 
10.1 

-0.08 
-

-0.09 - 1.021 
-

12 19 16.0 13.1 12 - 11.1 11.0 - - -
13 10 13.7 11.3 10 - 12.1 12.0 - - -
14 10 10.9 9.7 9 - 13.1 13.0 - - -
15 13 9.6 8.5 8 - 14.1 14.0 - - -
16-20 31 32.5 30.5 27 - - - - - -
21-30 31 - 31.5 26 - - - - - -
31-50 19 - 25.9 19 - - - - - -
51-100 6 - 19.9 11 - - - - - -

101- 00 1 - 20.3 3.6 - - - - - -
255 1 - - - - 254 252 - - -

jn; was obtained by smoothing ,In, graphically. 



n: = S/(r2+r). It is curious that this should again give such a good fit for values of r that 
are not too large (r < 30). The sample is of nouns only and, moreover, Yule took different 
inflexions of the same word as the same. 

n/ = hq/(r2+r), where h = 2138.90, x = 0.991074, the values being obtained from (100) 
and (101) as in example (ii). 

15 

The expressions 2 (ni-nr)2/ni, etc., take the values 9.5, 21.2 and 27.3. The values of 

r = l  

~2 would be about 2 or 3 larger. (See (19), (26), (27), (65).) There is no question of accepting 
n: for r >50 but it is better than n: for r < 15. When r < 9 the values of r* and r** (and there- 
fore of r***) show good agreement except for r = 1 and r = 7. If the analytic smoothings had 
not been found, the value of 6* would have been smoothed off, with repercussions on the 
function ni. The discrepancy in l*  must be attributed either to a fault in the value of 
ny (and therefore in H,) or must be blamed on n, (i.e. on sample variation). If I had not 
noticed the analytic smoothings I would have asserted that l *  = 0.74 with a standard error 
of something like 0.04. (See equation (105).) 

We now consider two of the measures of heterogeneity in the population, namely, c,,, and 
c,,,. By (30) we can see that 6,,, = 0.00272, agreeing with Yule (1944, p. 57). Also 
6,,, = 0.00003957, so that by (30A) we may reasonably write c,,, = 0.00272 + 0.00013. 
Assuming H, to be valid for r <30, we may also estimate c,,, by E, , ,  (30) as in equation (33). 
We have, in a self-explanatory notation, 

Now, as in (72), 

COT-1 3or-1
But, as in (106), C -d = 99.501, so that 2-d = 16.577. It follows from (107) that 

1 r + l  1 r + l  
&,,(30 I H,) = 0.00246. This is about two standard errors below its expected value, based on 
the simple unbiased statistic $,o. The discrepancy may again be attributed to the large 
value of $. If, instead of n:, the smoothing n," is accepted for r < 30, we would get 
E2,,(30) = 0.00267. (Itwas in order to obtain this comparison that we calculated Z2,,(30 ( H,) 
rather than &,(50 I H,). The fit of n: deteriorates a t  about r = 30.) 

The last three columns of the table are related to the estimation of the entropy, c,,,. (See 
d

equation (40)' and the remarks following it.) -log,,ni was obtained graphically for r = 1,
dr 

2 and 3 by numerical differentiation for r = 3,4, . . . , lo .  (The graphical and numerical 
d

values agreed to two decimal places for r = 3.) The column -dog,, n: was of course calculated 

(! +L) 
dr 

as log,, x- log,,, e. The crude estimate of the 'entropy to base 10' or 'entropy 
r + l  

expressed in decimal digits ' is log,, N --
1 2 rnr log,, r = 2.968 decimal digits. If n: is 

N r 

accepted for r = 1,2,3, ..., 10 we find that 

d OD 


8,,,(10) = log,, N - logloe+-loglon~) + z rnrloglo r = 3-051 decimal digits. 

dr r=11 

http:2138.90
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We shall next calculate E1,,(50 I H,), using another self-explanatory notation. Since, by 
Jeffreys & Jeffreys (1946, 3 15.05), 

1 1
gr~loger+------ ...,

2r 12r2 
i t  can be seen that 

+ 2 
50 

rn: log,, r +log,, x 
50 
2 rn; --

3 log,, e 50 
2 n: + 2(D 

rn, log,, r 
11 11 2 11 51 

= 3.192 decimal digits, 

as we may see by means of rather heavy calculations, using the last column of the table, 
together with equations (72), (74) and (92). The crude estimate of c,,, is the smallest of the 
three. This is not surprising, since the crude estimate is always too small in the special case 
of sampling from a population of s species all of which are equally probable. 

Example (iv). Chess openings in games published in the British Chess Magazine, 1951. For 
the purposes of this example we arbitrarily regard the openings of two games as equivalent 
only if the Grst six moves (three white and three black) are the same and in the same order 
in both games. N = 385, S = 174. 

Jni was obtained by graphical smoothing of Jn,. 
n: was obtained by assuming I& (see equation (52)), i.e. n," = ~f'~',,,(n,I I&),where the 

parameters x and h were obtained from (91) and (89). These gave x = 0.99473, h = 49.635 
and n: for r 2 2 is then given by (81). Next p, was determined as 0.00011304 = 118846 by 
using equation (80). Then (82) gave /3 = 2.040, so that, in accordance with (52) and (74), 



Finally, equation (84) gives t3 = 1132. This then is the estimate of the total number of 
openings in the population, though the sample is too small to put any reliance in it. 

n!(r 2 2) is simply (8-n,)/(r2-r) = 48/(r2-r). 

This is just as good a fit as n,". It gives an infinite value to c2,,, but this is not as serious an 
objection as it sounds since I& would also give quite the wrong value for c2,,. (Cf. the 
concluding remarks in the discussion of example (i).) 

We list in the table the values of r* corresponding to n:, calling the values r** in conformity 
with the convention of the present section. Clearly r** = (r- 1)x when r 2 2. Thus the 
average population frequency of the 126 openings that each occurred once onlyin the sample 
is 0.39/385 = 0.001. 

A player who learnt all 174 openings would expect to recognize about 67 % of future 
openings for the same population, assuming that the sample was random. If he learnt the 
48 openings that each occurred twice or more in the sample the percentage would drop to 
55 % and if he learnt the 26 that occurred three times or more the percentage would drop 
to 49 %. (See formula (67.) 

9. Index of notations having ajlxed meaning. 

$1. N , n, (but see also $2), no, q,, r* (as a definition of the asterisk, but there is a slight 
change of convention in $ 8), ni (here again there is a slight change in 5 8),b( ), V (  ). 

$2. 8, P,, H(pl, p2, ...,ps)= H, &N, I"i,t, N* 

$3. N'. 

$5. Xppr = x,', a,'. 
A 

A - . r$6. c,,,, Crn,O,Crn,O, Cm,o(t), Y, 9~9 ai.1, Zm,i(t).  

$7. p , f (p) ,  PO, Hi to H9, E( ), kr, 8,7'. 
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