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Abstract 

It has recently been proposed that individual job performance follows a power law distribution 
(O’Boyle & Aguinis, 2012). We present an argument and evidence for why the conclusion does 
not follow from the premises. We discuss the nature of generating mechanisms of statistical 
distributions, and compare the normal, lognormal, and Pareto distributions. We review 
statistically principled methods of testing power-law distributions, and point out how it is 
necessary to compare them to a plausible alternative distribution (Clauset, Shalizi, & Newman, 
2009). We reiterate the importance of explicitly examining the assumptions and consequences of 
statistical models, and review the methods that are available to organizational researchers when 
the norm of normality is violated. 
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Is individual job performance distributed according to a power law? A review of methods 
for comparing heavy-tailed distributions 

As difficulties associated with the complexity of organizational phenomena become more 

prevalent (e.g., Marion & Uhl-Bien, 2001; Lichtenstein & Plowman, 2009), there is increasing 

interest in the applications of analytical tools from statistical physics in organizational science 

(e.g., Andriani & McKelvey, 2009; O’Boyle & Aguinis, 2012), in particular the use of power 

laws to describe distributions (or, more pointedly, the tails of distributions; Newman, 2005; 

Clauset, Shalizi, & Newman, 2009). The recent paper by O’Boyle and Aguinis shows some of 

the promise of using these tools—and the potential dangers of using them when they are not fully 

applicable. O’Boyle and Aguinis raise one very important concern: the distributions of the 

variables we study in the organizational sciences are given little attention and often entirely 

ignored—normality is often assumed, and seldom checked.  

 O’Boyle and Aguinis examine the norm of normality—that normality is generally 

assumed in organizational sciences, contrast it with the Pareto power law distribution, and 

marshal considerable empirical evidence that individual job performance is not normally 

distributed, concluding that it is, instead, distributed according to a power law. It is clear to 

visual inspection that the performance variables included in their paper are not normally 

distributed; there is, however, little evidence that those variables are distributed according to a 

power law as suggested by O’Boyle and Aguinis—that is, the tests provided are significant, but 

not critical.  

 The current paper will attempt to address four issues: (1) provide organizational 

researchers with an understanding of power law distributions, and distinguish them from similar, 

less exotic but heavy-tailed distributions, (2) discuss the evidence for power law distributions in 
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individual performance data in O’Boyle and Aguinis (2012), (3) illustrate rigorous methods for 

testing the claim of fit to a power law distribution, and (4) discuss statistical methods for fitting 

models to data drawn from distributions more exotic than the commonly known normal, log-

normal, binomial, and Poisson distributions.  

 The literature in statistical physics has recently gone through a period of exuberance for 

power laws, along with strong claims about generating mechanisms and universality, only to 

have more sober findings tone the original claims down (e.g., Barabási, 2005; Clauset, Shalizi, & 

Newman, 2009; Malmgren, Stouffer, Motter, & Amaral, 2008; Stumpf & Porter, 2012; Vázquez, 

Oliveira, Dezső, Goh, Kondor, & Barabási, 2006). When we say generating mechanisms, we 

mean theoretical models for the processes that produce an outcome that has a power law 

distribution (e.g., some forms of growth, preferential attachment, see below). By universality we 

mean a property that belongs to all members of a class of models, such that a highly simplified 

toy model can be studied and the results will apply to any member of that class, including much 

more complicated phenomena in the real world (as is the case with phase transitions in statistical 

physics). We hope to provide a cautionary tale to help organizational researchers learn from this 

history, while also providing generally available tools to examine their assumptions. 

Why the concern with power law distributions? 

The search for power laws has become de rigeur in several sciences, including physics (Albert & 

Barabási, 2002; Vázquez et al., 2006) and computer science (Mitzenmacher, 2004a, 2004b). For 

instance, consider the networks of scientific collaborations in mathematics and neuroscience 

examined by several statistical physicists (Barabási, Jeong, Néda, Ravasz, Schubert, & Vicsek, 

2002, cf., Newman, 2001). The degree distribution of researchers was found to follow a power 
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law distribution (that is the number of collaborators that an individual researcher is connected 

with via coauthorship), and the authors argued this was due to a mechanism of preferential 

attachment—researchers with more collaborators are more likely to gain additional collaborators 

in any given time-step; the rich get richer. In general, the papers claiming a power law 

distribution for some phenomenon in the physics literature provide a theoretical generating 

mechanism—they propose a theoretical model and rigorously derive the power law as a 

consequence, and then fit the data. One concern in the physics literature is that the data-fitting 

component has often been based on heuristic methods that are demonstrably unreliable (Clauset 

et al., 2009). 

 This search for power laws in some fields has been driven by concerns over “black swan” 

events (e.g., Talib, 2007)—rare but important events that may have extraordinary consequences, 

such as fluctuations in financial markets (Gabaix, Gopikrishnan, Plerou, & Stanley, 2003). If the 

true distribution is Gaussian (normal), then very, very large fluctuations should be rare in the 

extreme. If, on the other hand, the true distribution of these events follows a heavy-tailed 

distribution, such as a power law, handling them with normal-theory based statistical models will 

severely underestimate their prevalence and give biased estimates of model parameters. This is 

an important consideration as most of the standard toolkit of statistical inference is built on 

normal theory and may fail spectacularly when the (conditional1) distribution is wildly non-

normal. It is worth noting, though, that entire branches of statistical theory are devoted to 

understanding these types of events. 

Reconsidering the norm of normality 
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Why is the normal distribution considered so fundamental? O'Boyle and Aguinis do not address 

the functional generation of normal distributions—or Pareto distributions. As a result, we would 

like to take some time to consider how the distributions of our variables come about. When an 

observed measurement is an additive linear function of many “small” random variables, its 

distribution will generally conform to a normal, or Gaussian, curve (unless the contributing 

random variables themselves have pathological distributions). This is a consequence of the 

central limit theorem (Cramér, 1946, p. 213). This may be considered a self-evident result, since 

it is taught in any introductory statistics course; however, understanding what it means is critical. 

 Many important variables have Gaussian distributions—at least when treated properly. 

For instance, consider height. The distribution of the heights of all adults in the US is very non-

Gaussian—it is bimodal and exceptionally wide, unless it is conditioned on biological sex: 

within-sex, the distribution of heights is very nearly perfectly Gaussian. The central limit 

theorem drags distributions towards normality when they are the sum of many small causes, but 

when there is a single large (possibly non-normal) cause—like biological sex, the central limit 

theorem no longer applies (e.g., Gelman & Hill, 2007, p. 14). 

 But what if the contributing variables do not sum up, but multiply instead? The resulting 

distribution is the lognormal, that distribution whose log-transformation is normal. As Gaussian 

distributions arise from the previously mentioned additive mechanisms, the lognormal arises 

when the random variable under consideration is the product of many “small” random variables: 

  log(xy) = log(x) + log(y) (1) 

For the same reasons (i.e., the properties of the central limit theorem) that Gaussian distribution 

is common, so is the lognormal. 
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The distribution of job performance 

How is individual performance generated? The consensus in industrial/organizational 

psychology is that performance is some function of ability and motivation, and well predicted by 

measures of general cognitive ability and conscientiousness, among other individual differences 

(e.g., Schmidt & Hunter, 1998). If this were true, it would imply that the generating mechanism 

for individual performance has the form of the following regression model (under the assumption 

that the function is linear and additive): 

 Perfi = B0 + B1*abilityi + B2*conscientiousnessi + B3*skills + B4*job-knowledge+ ei (2) 

where the conditional mean of performance depends linearly on the values of ability and 

conscientiousness and its variance is a function of the variance of those quantities and the error 

term (which is independent and identically distributed N(0,σ2); cf., Berk, 2004). Of course, if 

none of the generating variables—cognitive ability, conscientiousness, and error—is too 

pathological (i.e., very non-normal), then Performance will also be normally distributed. 

 If performance is not normally distributed, our consensus model has not answered the 

question: what is the generating mechanism for performance (cf., Mitzenmacher, 2004b)? In 

their model of human dynamics, Vázquez and colleagues (2005) proposed a priority-queuing 

model. That is, individuals effectively have a to-do list (a priority queue) in their heads. For 

performance, this model would imply that each employee has a list of tasks in their minds and 

executes the first in list. The list updates each time a completed task is pushed off of it.  

 This model leads to a power-law distribution for inter-event times—typically, tasks are 

completed in rapid succession with some very long intervals in between some tasks. Think about 

it in this overly simplified way: a person goes to work, checks their email for things they need to 
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do during the day, the person executes a handful of basic tasks quickly and easily, then spend an 

hour working on a presentation, then execute a few more easy tasks and take a lunch break, next 

he or she works on several things during the afternoon and then heads home for the night, and 

comes in to start the cycle again the next day. Some gaps between tasks are seconds to minutes, 

some an hour or so, and one long break between days. Analogically, human movements have a 

similar pattern, in that most of our daily movements are small, that is we tend to move around 

close to our homes and work, but we occasionally take trips to other parts of the world.  

 The priority-queuing model is simple, and conceptually fits with certain theories of job 

performance (e.g., Beal, Weiss, Barros, & MacDermid, 2005). The only problem is that it does 

not apply to individual performance. It implies that the temporal distribution of, say, academic 

papers or home runs would be bursty and heavy-tailed, but not what the distribution of individual 

performance looks like. Specifically, papers should come out in lumps, for instance, an 

individual academic might be able to get a lot more writing done during winter and summer 

breaks than during semesters, so the pattern of paper submissions would clump in these times 

and be comparatively rarer during teaching times. The queuing model implies this sort of a 

temporal distribution of performance, with the lags between paper submissions following a 

power law, but the distribution of individual job performance in the form of total number of 

papers following a power law does not follow without imposing additional assumptions (e.g., 

time aggregation). 

 We could perhaps apply some sort of aggregating function to this model to determine a 

distribution for individual performance. Such a model might involve individual differences in 

queue length, speed of task execution, plasticity in task priority, etc. But that is just one option. 

Other models may be more appropriate. For instance, a variety of growth models conform to 
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either a power-law or a lognormal distribution (Mitzenmacher, 2004b). If we take a view of 

individual performance as a repertoire of learned behaviors that grows over time (e.g., Spain, 

2010), such models may make sense. That is, if individual job performance is a behavioral 

repertoire that grows according to, say, a logistic map, then the size of the individual repertoires 

should have a log-normal distribution, akin to the distribution of sizes of animal populations in 

ecology.  Analogously to cognitive abilities (e.g., Humphreys, 1992), larger repertoires should 

generally equate with better performance. 

So, you think you’ve got a power-law? 

One important property of power law distributions is that they are scale invariant. But, what 

does it means for a phenomenon to be “scale invariant”? That is, a phenomenon whose frequency 

scales as an inverse power of its extremity (e.g., Clauset, Young, & Gleditsch, 2007). This is the 

definition of a power law distribution: 

  Pr(x) ∝ x -α  (3) 

where α is a constant called the scaling exponent. Scaling parameters typically obtain values 

between 2 and 3, but there may be exceptions (Vázquez et al., 2005). Additionally, it is 

considered rare for empirical phenomena to obey power laws throughout the range of x. It is 

more common for the power law to apply only for values greater than some minimum value, 

xmin. The tail of the distribution is said to follow a power law (Clauset et al., 2005, p. 662).  

 Many quantities of interest to OBHR researchers have a characteristic scale—in the 

manner that physicists use the word. While psychometricians will usually refer to scale as the 

variance of the characteristic, a physicist is likely to mean a typical size that measurements 

cluster around, such as the mean (e.g., Newman, 2005). For instance, males in the US have an 
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average height of about 180cm, and the ratio of tallest ever male to the shortest ever is about 5—

272cm versus 57cm, respectively. The heights of males cover two orders of magnitude and have 

a small dynamic range (cf., Newman, 2005, pg. 262). In contrast, we can characterize an 

arithmetic average for US cities, but it tells us little about the size of the typical US city—such a 

distribution leaves us with the question, is there even such a thing as a typical size for a US city? 

 O’Boyle and Aguinis make the interesting point that if performance is scale-free the 

distribution should be the same across levels of analysis. Specifically, they suggest that 

individual job performance and firm performance should both follow power-law distributions. 

This statement may be plausible, but it does not reflect the meaning of scale invariance as used in 

describing power laws. Instead, let us consider a hypothetical power-law regime, that is, some 

distribution that is distributed according to a power-law in the tail above the critical xmin. Scale-

invariance means that the same power-law describes the entire tail as describes any more 

extreme subset. That is, if we compare p(X > xmin) to p(X > xk) where xk > xmin, the same power-

law distribution will hold for both cases. 

The origins of power laws. Above we discussed the typical central limit theorem, wherein the 

normal distribution is the limiting distribution. Instead suppose drawing a sample of independent 

random variables from heavy-tailed distributions. Under a version of the central limit theorem 

(Willinger, Alderson, Doyle, & Li, 2004), the sum of these variables is generically a power law 

(Stumpf & Porter, 2012). That is, under this regime, the power law emerges as the limiting 

distribution, analogously to the normal distribution in the more standard central limit theorem. 

Because of this, power law distributions may arise in empirical data for non-specific reasons 

(i.e., not due to a particular generating mechanism; cf., Stumpf & Porter, 2012), just because the 
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phenomenon is a result of the mixing of various heavy-tailed distributions, none of which 

themselves need to follow a power law. 

Fitting the power law model: Naïve approach. Andriani and McKelvey (2009) point out a fact 

well-known to physicists, but probably not among organizational scientists: when extremity and 

frequency are both log-transformed and plotted against each other (a log-log plot), variables 

following a power law distribution will decay linearly, while Gaussian variables will show an 

exponential decay. Generations of physicists have followed Pareto’s lead and concluded that a 

power law underlies their data with such plots as confirmation. Many distributions decay 

approximately linearly on a log-log plot, including the log-normal.  

 A power-law distribution appears as a straight, negatively sloped line on a log-log plot 

(see Figure 2). Therefore, one basic approach is to regress log-frequency on log-rank and assess 

the R2 (Gilmore, 2006, p. 21). The slope of the regression line can serve as an estimate of the 

scaling exponent. One major problem with this approach is that, over any sufficiently short range 

of values, a straight line can approximate any smooth function. This problem is general, as it can 

take a very large range of data in order to fully distinguish a power-law from other heavy-tailed 

distributions, such as the lognormal or Weibull. 

--Insert Figure 2 about here-- 

Fitting the power law model: Principled approach. At this point, we provide a review of the 

statistical procedures for assessing whether a dataset is power-law distributed given by Clauset et 

al. (2009)2. 

Step 1: Use maximum likelihood methods to estimate the scaling exponent 𝛼 from Equation 3.  
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Step 2: Use goodness-of-fit measures to estimate the critical value xmin where the scaling regime 

begins—that is, where the power law distribution takes over from whichever distribution rules 

the bulk of the data. As noted above, it is usually the tails of a distribution that are expected to 

follow a power-law distribution, not the entire distribution. Clauset et al. provide statistical tools 

for using the Kolmogorov-Smirnov statistic to estimate the location of xmin. In general, this 

approach attempts to find the best scaling region for the power law fit. That is to say, if a power 

law were fitted to the entire distribution it would generally fit more poorly than if fitted to only 

the region identified by this step. 

Step 3: Use goodness-of-fit tests to assess the overall fit of the power-law model. Clauset et al. 

(2009) provide guidelines on using the Kolmogorov-Smirnov statistic to assess the fit of the 

distribution to data.  

Step 4: Compare the fit of the power-law to other right-skewed distributions, such as the 

lognormal and the Weibull. These will probably fit equally well or better (e.g., Clauset et al. 

2009; Stouffer, Malmgren, & Amaral, 2005; cf., Malmgren, Stouffer, Motter, & Amaral, 2008). 

Clauset et al. (2009) suggest using Vuong’s (1989) likelihood ratio test to do this. 

Is performance power-law distributed? 

O’Boyle and Aguinis (2012) present a massive amount of data in their attempt to demonstrate 

that the distribution of individual performance follows a power law. We do not believe that their 

evidence demonstrates that performance is power-law distributed. There are several reasons we 

believe this to be the case. 

 First, the data themselves may not represent performance itself, but the outcomes of 

performance (Campbell, 1990; cf., Beck, Beatty, & Sackett, in press). According to the Campbell 
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model, performance is behavior. For instance, the acts of reviewing the literature, engaging in 

theoretical reasoning, collecting and analyzing data, writing, and submitting this manuscript are 

performance; whether it is accepted for presentation or publication is a measure of 

effectiveness—an evaluation of the outcome of the earlier performance behaviors. Publications, 

awards, electoral wins, and even points scored/home runs are effectiveness measures, not 

performance. Of course, effectiveness is, itself, of considerable practical interest for real 

organizations. Effective performance behaviors are naturally more valuable to the organization 

than ineffective performance behaviors. So, the data presented are still relevant, but they do not 

directly inform questions regarding individual job performance. Since at least one other 

mechanism (evaluation) is involved in transforming performance to effectiveness, it is possible 

for performance and effectiveness to have decidedly different distributions. That is, it is possible 

that performance could be normally distributed and effectiveness could have some more exotic 

distribution, if the function mapping performance to effectiveness is nonlinear. 

 The data presented by O’Boyle and Aguinis cover a wide spectrum of professions: 

published researchers, entertainers of various stripes, elected officials, and professional and 

college athletes.  However, these are all fairly elite professions. Even the publications track only 

publications appearing in the top 5 journals in each field. This condition brings with it two 

concerns: one mostly substantive and one purely methodological. First, even if we accept that the 

measures considered are performance rather than effectiveness, how general are the results? Do 

these findings apply to a random sample of mid-level managers—or would their performance be 

normally distributed? Second, it is impossible to be sure how the truncation of the sample due to 

talent (or previous success) affects the power law scaling, and it is effectively impossible to 

properly estimate the value of xmin at which the power law scaling takes over (a point made by 
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Beck et al., in press). For instance, there are presumably many researchers who never publish in 

the top five journals and many working actors who never appear in a venue to even potentially 

be nominated for an award.  

 Third, the vanilla Gaussian distribution is an inappropriate null model for comparison to 

the power-law distribution. Figure 1 in O’Boyle & Aguinis (2012) shows the extraordinary 

difference between a power-law distribution and the full range of a Gaussian—in general, it is 

the tail of the Gaussian that invites comparison with the power-law, as discussed above. If the 

data are substantially skewed, the power law will almost certainly fit better than the Gaussian, 

even if the power-law model is itself a fairly bad fit. Step 4 above is a principled approach to 

comparing the power law to other highly skewed distributions, albeit ones substantially less 

exotic than power laws. Additionally (see next section), it is clear by inspection that the data 

examined by O’Boyle and Aguinis are non-normal. Specifically, all data considered are discrete 

and all are counts of success. Therefore, the Poisson distribution is probably a better null model, 

in that it assumes a constant rate for occurrences of independent events (e.g., journal article 

publications; cf., Gelman & Hill, p. 110 - 111). The fit of the Pareto distribution was superior to 

the Gaussian, but since the Gaussian is a priori a poor model for the data-generating mechanism, 

this test is not severe—it does little to probe the hypothesis that the data truly follow the Pareto 

distribution (cf., Mayo, 1996, p. 7). 

 Finally, even if a more appropriate null model was used, the fits of the Pareto distribution 

appear fairly poor in many cases. The weighted average of the 𝜒2 statistics reported by O’Boyle 

and Aguinis for each of their 5 studies were: 27897, 2024, 8692, 1076, and 79753—substantially 

bad fits. The fits for the Gaussian models were immensely worse in almost all cases, but this 

comparison does little to support the contention that the data were drawn from Pareto 
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distributions. Before we conclude that individual performance follows a power law distribution, 

its fit to data should be assessed with a method designed for distributions – the Kolmogorov-

Smirnov statistic (Clauset et al., 2009).  

 The previous point bears emphasizing: even if the power law was found to fit the data 

well, it should then be compared to plausible alternative models, such as the lognormal (or even 

the Poisson). For instance, the lognormal was not ruled out for any of the two-dozen datasets 

reanalyzed by Clauset and colleagues, except for HTTP connections (2009, p. 689), each of 

which had been previously identified in the literature as following a power law distribution. To 

be clear, the tests performed by O’Boyle and Aguinis are appropriate for testing the norm of 

normality, and that the test of that norm is one of their central concerns. The tests clearly 

demonstrate that the normal distribution produces extremely poor fits to all of their data sets. It is 

only in the claim that the data are distributed according to a power law that these tests are weak. 

 Recall, also, that it can take a very wide range of data values to distinguish a power law 

from other skewed, heavy-tailed distributions. O’Boyle and Aguinis (2012) do not provide min-

max ranges, but given their reported means and standard deviations, it is unlikely that these data 

cover more than a couple of orders of magnitude. Without a wider range of data it may not even 

be possible to distinguish a power-law distribution from one of these other, plausible 

distributions. If this were the case, then it would take strong theory about the generating 

mechanisms for individual job performance to choose between different distributions, theory that 

has not been adequately provided by the literature on individual job performance (Campbell, 

1990; Borman, 1991). 

Empirical Illustration4 
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Example I: Earnings of professional golfers in tournaments 

We begin with somewhat exaggerated example: data on the total earnings in 2012 for the 146 

professional golfers on the PGA tour is displayed in a histogram in Figure 3. We use this as an 

effectiveness metric, and we will present a more plausible measure of golfer performance shortly. 

It is clear to visual inspection that these data are non-normal—they are strongly right-skewed and 

not even approximately symmetric about their mode. To demonstrate that the distribution is most 

definitely not Gaussian, we conducted a Kolmogorov-Smirnov (K-S) test comparing the data to a 

normal distribution with the sample mean and standard deviation (in R; R Development core 

team, 2012): 

--Insert Figure 3 about here-- 

 > ks.test(sm.money,"pnorm",mean=mean(sm.money),sd=sd(sm.money)) 

 One-sample Kolmogorov-Smirnov test 

 data:  sm.money  

 D = 0.2117, p-value = 2.282e-05 

 alternative hypothesis: two-sided  

The results show that there is strong evidence that the data do not support the hypothesis that 

these earnings are normally distributed. This clearly demonstrates that the data we are dealing 

with should not be approached directly using the norm of normality, consistent with the claims of 

O’Boyle and Aguinis. We can provide some initial evidence that these data are log-normally 

distributed by log-transforming them and seeing whether that distribution is normal using the K-

S test: 

Electronic copy available at: https://ssrn.com/abstract=2238126



Power	
  laws	
  in	
  performance	
   16	
  

> log.money <- log(sm.money) 

> ks.test(log.money,"pnorm",mean=mean(log.money), sd=sd(log.money)) 

 One-sample Kolmogorov-Smirnov test 

data:  log.money  

D = 0.0901, p-value = 0.2534 

alternative hypothesis: two-sided 

--Insert Figure 4 about here-- 

Based on the results of this K-S test, we cannot rule out the claim that the money earned in 

tournaments within a given year by professional golfers is log-normally distributed. 

 We next fit a Pareto distribution to the data in two ways. We first used the naïve power 

law fit (regression method), which produced an exponent estimate of 1.49 (the slope of the 

regression line) and an R2 of .66 (i.e. 66% of the variance in log-frequency was explained by log-

rank). We then used the methods described in Clauset and colleagues’ (2009) paper. Figure 4 

displays the empirical upper cumulative distribution of the golfers’ tournament earnings. The red 

line is the maximum likelihood estimate of the power law model and the blue line is the fit 

derived from the lognormal model. As can be plainly seen in Figure 4, the earnings of 

professional golfers can be approximated using a Pareto distribution with an exponent of -1.09, 

but the fit is poor. The earnings data appear to show approximately quadratic decay, and in fact 

appear to decline more quickly than implied by even the lognormal model. The log-likelihood 

for the Pareto model is -1922.65, the log-likelihood for the lognormal is -1815.72 (smaller is 
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better), and the Vuong test comparing the two models is -9.29 (one-sided p-value 7.5e-21—or << 

.000001)5.  

 In this case, we have set xmin to the minimum of the distribution of money earned. That is, 

we are testing whether the entire (observed) distribution follows a power law or a lognormal 

distribution. This approach appears to be consistent with that used by O’Boyle and Aguinis. 

Further, we attempted to use the Kolmogorov-Smirnov approach described in step 2 above, but 

doing so set xmin so high that only 31 data points remained in the sample. Under this model, the 

Pareto distribution and the lognormal fit the data nearly equally well (the log-normal fit trivially 

and non-significantly better). Essentially, using the fully principled approach left too little data to 

be informative about the research question. 

Average score over tournaments. One problem with total earnings as a metric for player 

performance is that earnings per tournament are distinct, potentially nonlinear transformations of 

the players’ scores. Another useful performance metric for professional golfers is the actual score 

they obtain in a given tournament. Here, we use each player’s mean (averaged over both days of 

the tournament and across tournaments) to rank players. The histogram (with an accompanying 

normal approximation to the histogram) is displayed in figure 5. Since lower scores are better in 

golf, the raw scores were reflected around their mean prior to these analyses. 

-- Insert Figure 5 about here -- 

 Again, this distribution is not particularly normal, but it is much more symmetric than the 

earnings. A KS test of normality provides a test statistic of 0.14 (p = 0.013), indicating that the 

data are non-normal. In this case, KS test of the log-transformation of the average scores 

produced a test statistic of .14 (p = .017), indicating that the data are not log-normally 
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distributed, either. The naïve fit of the power law model provides an estimated xmin of 70.57 and 

the unlikely exponent value of 97.85. Similarly to the above example, using the KS approach to 

detect xmin leaves only 68 data points above the threshold, leading to an inconclusive model 

comparison. When using all data points, the power law model has a log-likelihood of -250.73, 

and the lognormal model has a log-likelihood of -183.99, with Vuong test of -4.81 (one-sided p-

value of 7.69e-07, or << 0.0001). However, we should make it very clear that none of the 

normal, lognormal, or Poisson distributions fit these data very well. 

-- Insert Figure 6 about here -- 

Example II: Congressional fundraising data 

Our second example analysis is fundraising by US congress members in 2012. The Kolmogorov-

Smirnov test of normality produced a test statistic of 0.235 (p < .000001), indicating substantial 

non-normality. A histogram of the data is presented in Figure 5. As in the previous example, we 

then ran a K-S test on the log-transformed fundraising data, yielding a test statistic of 0.04 (p = 

0.432). As with the previous example, this transformation and test provides some evidence that 

these data are distributed log-normally. 

--Insert Figure 7 about here-- 

 The naïve fit of the power law model provided an estimate of 2.5 for the scaling exponent 

and an R2 of .89. The principled fitting provided an estimate of the scaling exponent of 1.5 and a 

log-likelihood of -5907.22. The log-normal model had a log-likelihood of -5634.57. The Vuong 

test produced a test statistic of -14.35 (p < .000001). Figure 6 displays the empirical upper 

cumulative distribution in black, the power law fit in red, and the lognormal fit in blue. When 

estimating xmin from data, the estimate was so high that only 110 data points remained in the 
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sample, and the Vuong test could not distinguish between the power law and the log-normal 

models. Figure 6 shows the two models plotted against the data. Like the previous example, the 

power law model severely overpredicts high levels of funds raised; however, in the case of this 

data set, the lognormal does underpredict extremely high amounts of funds raised. We should 

also note that there are two Congress members who raised substantially more funds than the 

others. These individuals could be considered outliers, but we retained them in the analysis 

because their presence should increase the likelihood that the power law would fit the data better 

than the log-normal (i.e. these extreme values are substantially more likely under the power law 

than under the log-normal). 

--Insert Figure 8 about here-- 

Example III: Professional football players 

Our next example involves several productivity measures for 235 NFL wide receivers. We 

examine total receptions, total yardage of receptions, and total touchdowns for the 2012 season. 

Touchdowns. We first modeled the total touchdowns by NFL wide receivers (histogram 

presented in Figure 9). The mean for this performance indicator was 3.22 touchdowns with 

standard deviation 2.72 touchdowns. The KS test for normality was strongly rejected (.21, p-

value = 3.77e-9). The test for log-normality was also strongly rejected (.24, p-value = 4.55e-12). 

We also attempted to fit an exponential distribution (.27, p-value = 5.77e-15) and a Poisson 

distribution (.21, p-value = 1.89e-9). 

-- Insert Figure 9 about here-- 
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 The naïve fit for the power law distribution provided an estimated scaling exponent of 

1.15 with R2 of .86. The principled fit of Clauset et al. provided a scaling exponent estimate of 

3.55 and log-likelihood of -147.01. The log-normal model produced a log-likelihood of -146.54. 

With xmin set to 4 touchdowns, these models were indistinguishable. The exponential distribution 

was also indistinguishable (log-likelihood of -147.07). There were only 80 data points over this 

threshold.  

 When we used the minimum of touchdowns (1 touchdown), we found that the Pareto had 

an estimated scaling exponent of 2.17 and log-likelihood of -398.16. The log-normal model 

produced a log-likelihood of -397.35 and the exponential distribution produced a log-likelihood 

of -422.54. By the Vuong test, the Pareto and the log-normal were indistinguishable (-0.68, one-

sided p-value = 0.25), and the Pareto fit the data significantly better than the exponential (2.23, 

two-sided p-value = 0.03).  

-- Insert Figure 10 about here -- 

 Given the low maximum of touchdowns (14 touchdowns), it is possible that the 

discreteness of the data leads to the generally bad fits above. So, we fit two discrete alternative 

models, as well, the zeta distribution for the power law and the Poisson distribution for the less-

exotic right-skewed, asymmetric distribution. The zeta distribution produced a scaling exponent 

of 1.76 and a log-likelihood of -509.24. The Poisson distribution produced a log-likelihood of -

556.82. The zeta did not fit the data significantly better than the Poisson, according to the Vuong 

test (1.83, one-sided p-value = 0.97, two-sided p-value = 0.07). Since none of these fits prove 

conclusively better, we also tried fitting a discretized exponential distribution (see Clauset et al., 

2009 and accompanying source code). This model produced a log-likelihood of -543.09. The 
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discrete exponential model did fit the data significantly better than the zeta distribution, 

according to the Vuong test (-2.58, one-sided p-value = 0.005, two-side p-value = 0.01). The data 

and all fitted models are presented in Figure 10. 

Total yards. We also modeled the total yards gained by the 235 NFL wide receivers (histogram 

presented in Figure 11). The mean for this performance indicator was 269.2 yards and the 

standard deviation was 329.6 yards. The KS test was not consistent with the data being normally 

distributed (.20, p = 2.22e-16), while the test for the log-normal was better, it still did not fit the 

data well (.07, p = .03).  

-- Insert Figure 11 about here -- 

 The Pareto distribution (using the naïve approach produced an estimated scaling 

coefficient of 1.59 with an R2 of .69 and) the Clauset et al approach produced an estimated 

scaling coefficient of 3.93 and estimated threshold value of 626 yards and a log-likelihood of -

482.66. The log-likelihood for the log-normal model was -479.98. We also fit an exponential 

distribution, which had a log-likelihood of -479.80. With 72 data points above the threshold, the 

Vuong test was not fully conclusive (-2.79 against the exponential distribution, one-side p-value 

= .04, two-sided p-value = .07; -2.68 against the log-normal, one-sided p-value = .07, two-side p-

value = .14). When we set the minimum to 1 yard (the minimum positive value, yardage can be 

negative), the estimated Pareto scaling exponent was 1.21 with log-likelihood of -3331.67. The 

exponential distribution had a log-likelihood of -3029.16 (Voung test comparing it to the Pareto: 

-12.03, two-sided p-value = 2.45e-33). The log-normal model had a log-likelihood of  -3016.58 

(Vuong test comparing it to the Pareto: -18.07, two-sided p-value = 2.53e-73).  
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So, it is clear that for total yardage, both the log-normal and the exponential distribution, neither 

of which appear to fit the data perfectly, by the KS test, fit substantially better than does the 

Pareto distribution. The fits of these models compared to the upper cumulative distribution is 

shown in Figure 12. 

-- Insert Figure 12 about here -- 

Total receptions. Finally, we modeled the number of total receptions made by 235 wide 

receivers in the National Football League in the 2012 season (histogram presented in Figure 13). 

The mean for this performance indicator was 23.16 and its standard deviation was 24.85. The 

data robustly fail a KS test for normality (.19, p = 1.58e-14, or << .0001). A KS test of the log 

transformation is cleaner, but still fails (.09, p = .002).  

-- Insert Figure 13 about here -- 

 The Pareto distribution (using the naïve approach produced an estimated scaling 

coefficient of 1.55 with an R2 of .72 and) fitted using the Clauset et al techniques produced a 

scaling coefficient of 3.95 with a log-likelihood of -387.84. The log-normal fit had a log-

likelihood of -384.08 and so fit the data weakly better than the Pareto (LR = -3.75, one-sided p-

value = .04, two-sided p-value = .08). We also fitted an exponential distribution to the data (se 

Figure 13), which fit the data significantly better than the Pareto (LR = -4.00, one-sided p-value 

= .01, two-sided p-value = .02). Figure 14 shows the fit of each of these models to the data, with 

the power law in red, the log-normal in blue, and the exponential in green.  

-- Insert Figure 14 about here -- 
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Discussion 

In each of the empirical examples, the data were distinctly non-normal. The norm of normality 

was definitely violated for all cases, consistent with O’Boyle and Aguinis’s (2012) main thesis. 

Both performance outcomes had qualitative features similar to those presented in O’Boyle and 

Aguinis (2012). Further, these are qualitative features that are germane to the Pareto distribution: 

right-skew and heavy tails. On the other hand, for both outcomes, we demonstrated that the 

normal distribution fit well enough to a reasonable transformation of the data. Further, we 

conducted reasonably principled statistical fittings of both the Pareto and the lognormal 

distributions. When fit to all of the data, the lognormal fit significantly better in both cases. 

When we attempted to find the best-fitting power law regime, as recommended by Clauset and 

colleagues (2009), we were left with too little data to distinguish the power law from the 

lognormal. This does not mean that variables similar to ours’ never follow a Pareto distribution. 

It seems clear that to suggest such a distribution, a researcher should (a) have a good theoretical 

rationale for proposing the Pareto, and (b) take care to compare the fit of the Pareto to plausible 

alternative models. 

The forgotten Step 5: Does the power-law matter? 

The histograms presented by O’Boyle and Aguinis (2012) in their Figure 2 are clearly non-

normal. Simple visual inspection shows them to be a) all-positive and b) highly right-skewed 

(they are clearly non-symmetrical and bounded on the left by zero). Regardless of whether the 

data conform to a power law or not, they are decidedly heavy-tailed. This is a point that goes 

back to Tukey (1977; Mosteller & Tukey, 1977)—maybe further—that empirical data often have 
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wider, heavier tails than that predicted by normal-theory methods. Even if data are not properly 

Gaussian, there are a range of options for statistical inference.  

 If data are lognormal or similarly shaped, transformations to normality can be used 

(Gelman & Hill, 2009, p. 59 – 68). If data are symmetrical, but more variable than predicted by 

the Gaussian distribution, robust regression techniques based on the t-distribution (Gelman & 

Hill, 2009, pp. 124 – 125; Kruschke, 2011, pp. 430 – 433) or M-estimators (Huber, 1964; cf., 

Fox, 2008, pp. 530 – 539) can be used. Such robust approaches also have the added advantage of 

being more resistant to outliers than OLS models. Generalized linear models (Nelder & 

Wedderbrun, 1972) can be used to fit regression models to a variety of discrete, non-normal 

outcomes (including logistic, ordered logistic, and Poisson regression; Gelman & Hill, 2009, p. 

109 – 124; given the count-based nature of most of the effectiveness measures considered by 

O’Boyle and Aguinis, some form of Poisson regression could work if one wanted to predict these 

outcomes). Other forms of non-normality may arise from mixtures of distributions (of which the 

combined heights of males and females described above is a simple example), which can be 

handled with mixture models (e.g., Benaglia, Chaveau, Hunter, & Young, 2009). 

 In many situations, the qualitative phenomenon of a right-skewed, heavy-tailed 

distribution is going to be far more important than the exact mathematical form of the 

distribution (Stumpf & Porter, 2012). An obvious situation occurs in market crashes: on one 

hand, it is important to note that these occur considerably more frequently than predicted by a 

Gaussian distribution (Gabaix et al., 2003), regardless of the form of the distribution. On the 

other hand, a thorough understanding of the form of the distribution may be essential to 

developing good theory for the underlying mechanisms that drive these fluctuations—

understanding of which is important for designing policy interventions. 
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Implications of non-normal distributions for HRM practices 

If it has been established that a particular performance measure is not normally distributed, how 

should personnel psychologists or HR practitioners deal with problems such as selection? The 

methods of classical linear regression are deeply entrenched in this area. A measure of linear 

association is the traditional standard of validity and incremental validity. Any sort of non-

normality in performance raises the questions of how valuable such indices for validity are.  

 It is our opinion that statistics in this area can no longer be considered cut-and-dried. That 

is, the traditional toolbox of classical statistics needs upgrading to be useful to practicing 

organizational scientists. It is increasingly clear that plugging an outcome and a set of predictors 

into a linear regression model yields results that are not meaningful (Achen, 2002; 2005; we 

discuss only linear regression models here, but the argument applies to more sophisticated 

models, such as structural equations, with or without latent variables; Berk, 2004). One avenue is 

provided by Bayesian methods—which should also not be thoughtlessly applied. The Bayesian 

formalism encourages careful practitioners to build explicit probability models, which should 

simultaneously encourage some care in selecting the distributions used. It should be noted that 

the Bayesian formalism allows considerable freedom to researchers in specifying both 

likelihoods (data models) and prior distributions. This freedom can be misused or abused, so we 

are not suggesting that Bayesian methods will solve all scientific problems in organizational 

research. We merely suggest that these tools should become part of the regular toolkit of 

organizational scientists (Kruschke, Aguinis, & Joo, 2012). 

 Another route is to use non-parametric statistical models (e.g., Fox, 2009; Shalizi, 2012; 

Spain, Sotak, Tsai, & Harms, 2013). Kernel density methods can be used to estimate the shape of 
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the distribution, and various non-parametric techniques can be used to fit essentially arbitrarily 

complex models linking predictors and criteria. Like more traditional approaches, these models 

too can be thoughtlessly applied, in which case they may be even more damaging than simple 

linear schemes. Non-parametric models have effectively infinite parameter spaces (in practice 

the parameter space is bounded, but it grows with the sample size). Without care, they can 

optimally fit noise easily. Non-parametric models need good out-of-sample tests of their 

predictions (so do linear models, but cross-validation is even more of a concern when the fitted 

model is allowed to be as rough as non-parametric models allow).  

 Furthermore, if the performance variable of interest really is distributed according to a 

power law, it can be regressed on predictor variables using nonlinear least squares (NLS, e.g., 

Fox, 2009, pp. 463 – 469; Shalizi, 2012). NLS approaches work by finding α  that minimizes a 

loss function of the form (yi − y0xi
−α )2

n=1

N

∑ , where y is an outcome of interest, x is a predictor, and 

−α  is the scaling parameter. This is a more difficult function to optimize than the linear least 

squares loss function, and usually must be fit using an algorithm like gradient descent—an 

iterative approach that is guaranteed to converge to a(n at least local) minimum. Methods like 

this—power law regression fit using NLS—are not implemented in general-purpose software. 

Organizational scientists need to become more familiar with applying modern, computational 

statistics (e.g., programming methods like the above in R or some similar language) if we are 

going to handle these sorts of non-standard models6. 

Checking assumptions 

It is important that researchers and practitioners routinely perform checks of a variety of 

assumptions before applying rote statistical models to data. For instance, the Kolmogorov-
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Smirnov (KS) test and the Shapiro-Wilk test can be used to assess whether a distribution matches 

a target distribution (e.g., Normal, Poisson, etc.) or is distributed normally, respectively. In 

particular, the KS test is useful for a wide variety of applied problems, and should probably be 

used more broadly (see, e.g., approaches to comparing entire distributions for differences, 

Handcock & Morris, 1999). 

 The distribution of the outcome (and more importantly, the error terms) is an important 

aspect of the specification of a statistical model. In general, the assumptions underlying 

statistical models are seldom checked in many fields (e.g., Achen, 2005; Antonakis, Bendahan, 

Jacquart, & Lalive, 2010; Berk, 2004; Shalizi, 2012; Spain et al., 2013). It is important to address 

these assumptions and to use methods consistent with the data at hand. Otherwise theoretically 

driven tests will not be severe; that is, the tests will do little to demonstrate whether or not the 

theory makes errors in predicting reality (Gelman & Shalizi, 2013; Mayo, 1996). The methods 

reviewed in this paper can help address assumptions about the distribution of data, and 

understanding the distribution of particular data can help to build better scientific models. 

 This question of specification is a broad concern for social sciences, in general, and the 

organizational sciences, in particular. Too often, traditional data models, like OLS regression or 

structural equation models, are applied in situations where any conclusions are suspect (e.g., 

Achen, 2005; Berk, 2004; Shalizi, 2012). Tools that can provide more robust inferences about 

associations are available (Wilcox & Keselman, 2012), as are methods for allowing flexible 

estimation of the functional form of relationships between predictor and criterion variables (e.g., 

Spain et al., 2013). A lot of modern approaches based in statistical learning theory make far 

weaker assumptions about distributions and functional forms than do traditional methods (see 

Hastie, Tibshirani, & Friedman, 2009 for an in-depth introduction, and Berk, 2008 for an 
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overview using regression-type models). The emphasis of these new methods is on learning from 

data, with less emphasis on traditional null hypothesis significance testing (though such tests can 

generally be formulated, e.g., Fox, 2009; Shalizi, 2012; Spain et al., 2013). Greater emphasis on 

approaches based on statistical learning theory could help organizational scientists to formulate 

and test more complex, realistic models of organizational behavior and rely less on traditional 

toolboxes and heuristics like the norm of normality. 

Conclusion 

We believe that Andriani and McKelvey (2009) and O’Boyle and Aguinis (2012) have opened 

an important and interesting dialogue in the organization sciences. It is becoming nearly 

impossible to ignore the influence of complex systems thinking in our fields, even such 

traditional areas as individual job performance. We do not believe that O’Boyle and Aguinis 

have convincingly demonstrated that job performance follows a power law, but they have 

convincingly demonstrated that some indices of performance follow very badly non-normal 

distributions. Their findings should be especially important for anyone studying constructs like 

creative performance, where outcomes like published papers or entertainment awards are 

germane to the research questions. Papers such as theirs’ should cause our research enterprise to 

pause and consider our methods—and how well they match the phenomena we wish to study.  
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Figures 

Figure 1a. Illustration of power law, several normal, log-normal, and exponential distributions 

Figure 1b. Illustration of how the scaling exponent changes the shape of a Pareto distribution 
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Figure 2a. Example of a power law fitted to a log-log plot. 

Figure 2b. Illustration of scale invariance. The horizontal brackets span different ranges, but 

would be described by the same power law. 
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Figure 3. Histogram of total money earned in tournaments. 
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Figure 4. Data on total money earned by PGA players and empirical fits of the Pareto and log-
normal distributions. 
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Note. Black line is the empirical upper cumulative distribution function (on the log-log scale, this 
is sometimes known as the “survival function”). The red line is the fit from the power law model. 
The blue line is the fit from a log-normal model. 

 

Figure 5. Histogram of average PGA player scores for 2012 with normal density overlaid.  
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Figure 6. Data on average scores of PGA players and empirical fits of the Pareto (red) and log-
normal (blue) distributions. 
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Note. 

Figure 7. Histogram of fundraising by incumbent congress members in 2012. 
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Figure 8. Data on fundraising by congress members and empirical fits of the power law and log-
normal models. 
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Figure 9. Histogram of touchdowns by NFL wide receivers with distribution functions for the 

log-normal (red) and exponential (black) superimposed. 
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Figure 10. Fit of Pareto (red), log-normal (blue), and exponential (green) distributions to the 

empirical upper cumulative distribution of total touchdowns. 
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Figure 11. Histogram of total receptions with exponential distribution (black) and log-normal 

distribution (red) imposed. 
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Figure 12. Fit of Pareto (red), log-normal (blue), and exponential (green) distributions to the 

empirical upper cumulative distribution of total yards. 
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Figure 13. Histogram of total receptions with exponential distribution (black) and log-normal 

distribution (red) imposed. 
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Figure 14. Fit of Pareto (red), log-normal (blue), and exponential (green) distributions to the 
empirical upper cumulative distribution of total receptions. 
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1	
  It	
  should	
  be	
  noted	
  that	
  standard	
  statistical	
  theory	
  does	
  not	
  actually	
  require	
  a	
  dependent	
  
variable	
  to	
  be	
  normally	
  distributed,	
  but	
  that	
  it	
  is	
  conditionally	
  normal.	
  Consider	
  the	
  linear	
  
regression	
  equation,	
  yi	
  =	
  B0	
  +	
  B1Xi	
  +	
  ei.	
  Depending	
  on	
  the	
  distribution	
  of	
  the	
  predictors,	
  Xi	
  
(say,	
  binary),	
  then	
  the	
  distribution	
  of	
  the	
  yis	
  may	
  be	
  decidedly	
  non-­‐normal.	
  The	
  error	
  term,	
  
e,	
  is	
  what	
  is	
  normally	
  distributed	
  in	
  classical	
  regression.	
  	
  

2	
  In addition to the Clauset et al. (2009) paper, this discussion draws on C.R. Shalizi’s comments 
on the paper at http://cscs.umich.edu/~crshalizi/weblog/491.html 

3 The algorithms used by the @Risk used by O’Boyle and Aguinis software to fit these models 
are not given in the company’s publicly available user’s manuals. 

4	
  The data for all empirical examples included in this paper are available for download at: 
http://bingweb.binghamton.edu/~sspain/adv-stat/gauss.html	
  	
  

5 R functions for fitting these models are available from Aaron Clauset at 
http://tuvalu.santafe.edu/~aaronc/powerlaws/. Tutorial information on using the code is available 
at http://intersci.ss.uci.edu/wiki/index.php/Power-law_distributions. Some functions that 
accompany their paper require compiling C code, but none of the functions needed for the 
analyses in the current manuscript do. 
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