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THE DOUBLE DIXIE CUP PROBLEM

DonALD J. NEwMAN, Brown University, AND LAWRENCE SHEPP, Princeton University

The familiar childhood occupation of obtaining a complete set of pictures
of baseball players, movie stars, etc., which appear on the covers of dixie cups
raises some interesting questions. One, which has already been answered, is the
“single dixie cup problem,” that of determining the expected number, E(#n),
of dixie cups which must be purchased before a complete set of # pictures is ob-
tained: E(n) =n(1+1/24+ - - - +1/n) ([1] p. 213).

Some time ago W. Weissblum asked how long, on the average, it would take
to obtain #wo complete sets of # pictures. This corresponds to the situation ob-
served when two tots collect cooperatively, i.e., “trading” takes place.

This “double dixie cup” problem cannot be handled by the same device used
for the problem of the single set and in this paper we find a new method which
allows us to write down the solution, E,(n), (as an easily evaluated definite
integral) for the problem of collecting 7 sets.

For m fixed and # large the expected number of dixie cups turns out to be
n(log n+(m—1) loglog n+0(1)). Thus, although the first set “costs” # log #, all
further sets cost # loglog .

Suppose m sets are desired. Let p; be the probability of failure of obtaining
m sets up to and including the purchase of the sth dixie cup. Then the expected
number of dixie cups En(7) = X ieq pi, by a well-known argument ([1] p. 211).
Now p;=N./ni where N, is the number of ways that the purchase of ¢ dixie
cups can fail to yield 7 copies of each of the # pictures in the set. If we represent

the pictures by %1, « « -, %,, then N, is simply (%14 - - - +%,)? expanded and
evaluated at (1, - - -, 1) after all the terms have been removed which have
each exponent for each variable larger than m —1.

Now consider 7 fixed and introduce the following notation. If P(x, - - -, %n)
is a polynomial or power series we define {P(xl, -+, %,)} to be the polynomial,
or series, resulting when all terms having all exponents =m have been removed.
In terms of this notation p; is {(x1+ ce -l-x,,)‘}/n" evaluated atx,= - - - =x,
=1.

If we now make the definition

tk
€) S()) = 22—~
k<m k!

and consider the expression
2) F=cexp (@4 -+ 2) — (€1 — Sn(x1)) - - - (65 — Su(®n)),

it is easily seen that F has no terms with all exponents =Zm; but F does not have
all terms of exp(x1+ - - - +x,) with at least one exponent <m. We conclude
that
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©) F={exp @+ - +m)f=2{(m+ - +x)i}/il
By contrast, we have seen that
) En(n) = 2 pi=20 {(m+ - - - + m)i}/nf
atx1= - - - =x,=1, and so all we need now is a method for replacing 1/7! by

1/ni. This is afforded by the identity

w gl 1
nf —enidt = —
0o 4l nt

) = fo ) [exp (@14 - - - + #a)t — (618 — S(x1)) - - - (6%t — Sn(tx,) Je™4dt.

and the result is

Setting ;= - - - =x,=1, finally, gives, by (4) and (5),
THEOREM 1. 7[5 [1 — (1 = Sn(t)e~?)"]dt = En(n).

This is the solution and it is readily integrable for small m and #. It is per-
haps worthwhile to mention that if only a particular & of the pictures are de-
sired the expected number is:

0 m—1 k
nfo 1 - (1 —-e“‘(l—l—t- . +—————————(m_ 1)!))(11.

This may also be easily generalized to the case where m; copies of the kth pic-
tures are desired.

For large m, by the law of large numbers, the number required is asymptotic
to mu. It remains to obtain the asymptotic form for large #.

We now prove

THEOREM 2 .E,(n) =n[log n+(m—1) loglog n+Cn-+o(1)] for m fixed and
n— 0,
It suffices to prove that

En(n+1) En(n) 1 m—1
n+1 n n+1 nlogn

where Y| \.| <.
Now, by Theorem 1,
Ex(n+1) En(n) B
n-+4+1 n

+ A,

f we“Sm(t) [1 = e tSm(t) |ndt
0

and, changing variables by
(6) 1 — ¢iSu() =,
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we have dx=e~t[(¢"1)/(m —1)!]dt and so the above is equal to

(7)fx”Sm(t) _1)' x=folx”|:1—|—m:1+(m_1)(m—2)+---]dx.

t2

[t=t(x) is of course defined by (6)].
We now show that

(A) Forl < k < m, Z —dx<°°

n=1

1 4n 1
(B) fidx= + an, where Zloml < o
0

! nlog n

and, by (7), these will suffice to prove our theorem.
Proof of (A). By (6) we have x=1—¢"4S,(t) S1—e~* so that,

1
(8) t = log
1—x

On the other hand

t um—l t

x=1—¢etSu(t) = f et —— du = f uwldu < ™,

0 (m - 1)‘ 0
so that
) i = alm,

Now, the infinite series given in (A) is equal to

fl 1 dx flﬂ 1 dx+f1 1 dx
ol—xlk— 0 1—x t* 1/21-xt’°
The first of the integrals on the right is finite by virtue of (9) and the fact that
k <m, while the second integral is finite by (8) and the fact that £>1. This proves
(A).

Proof of (B). By (8) we obtain

T

x? 1 1
tgx+—+---—gx'[1+—+---—]zx'logr,
2 r 2 r

and so

1 xn 1 xnT 1
(10) f —dx < dx = .
o o logr (n—r+1)logr

Now let #=1 be a parameter and set
(11) a=1— Su(u)e™.
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We have

lxn a gn 1 a
——dng ——dxg-—f x"dx
o ¢ o ¢ % Jo

2 [l ] b S

Now note that by (1) and the fact that # =1, we obtain Sn.(%) <eu™ 1. Com-
bining this with the previous inequality gives

1 xn
(12) ez ——
o ! (n+ Du

If we now set 7= [n/log n] in (10) and »=Ilog #+m loglog 7 in (12) we obtain

—_ ym—2 1—u.

— dx § })
¢ n log n nlog? n

1 4n
1 _Cloglognéf % 1 +Cloglogn
nlog n n log? n 0
and this completes the proof since Y, (loglog #)/(n log? n) < «.
Reference

1. W. Feller, Introduction to Probability Theory, vol. I, New York, 1950.

THE ANTICENTER OF A GROUP

NorMAN LEVINE, University of Pittsburgh

In contrast to the center of a group G we will define the rim of G, denoted by
R(G), to be the set of elements of G which permute with no elements of G except
in trivial cases. We will define the anticenter of G, denoted by AC(G), as the
set of products of elements in R(G). More precisely:

DEerFINITION 1. R(G) = {a!ab=ba implies 3 cEG such that a=c, b=c’ for
some integers i and j.}

DEFINITION 2. AC(G) ={a; - - - a.|a:ER(G).}
LeEMMA 1. The identity e of G belongs to R(G).
Proof. eb=be implies e="50° b=>b".

LEMMA 2. If a€R(G) then a~'€R(G).

Proof. Suppose a~'b=ba~!. Then ab=ba and hence e=ci and b=c’ or b=c’
and ¢ l=c"",

LeEMMA 3. If aER(G) then b~1abER(G) for all bEG.

Proof. Let b~'abx =xb"lab for some x in G. Then abxb~!=bxb"la. Hence
a=ct and bxb~'=c¢/ or b~lab=>b"lcib=(b~lcb)¢ and x=>b"1cib=(b"1cb)!. This
proves b~labER(G).



