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THE DOUBLE DIXIE CUP PROBLEM 

DONALD J. NEWMAN, Brown University, AND LAWRENCE SHEPP, Princeton University 

The familiar childhood occupation of obtaining a complete set of pictures 
of baseball players, movie stars, etc., which appear on the covers of dixie cups 
raises some interesting questions. One, which has already been answered, is the 
"single dixie cup problem," that of determining the expected number, E(n), 
of dixie cups which must be purchased before a complete set of n pictures is ob- 
tained: E(n) = n(I + 1/2 + * * * + 1 /n) ( [1 ] p. 213). 

Some time ago W. Weissblum asked how long, on the average, it would take 
to obtain two complete sets of n pictures. This corresponds to the situation ob- 
served when two tots collect cooperatively, i.e., "trading" takes place. 

This "double dixie cup" problem cannot be handled by the same device used 
for the problem of the single set and in this paper we find a new method which 
allows us to write down the solution, Em(ln), (as an easily evaluated definite 
integral) for the problem of collecting m sets. 

For m fixed and n large the expected number of dixie cups turns out to be 
n(log n+(m- 1) loglog n+o(l)). Thus, although the first set "costs" n log n, all 
further sets cost n loglog n. 

Suppose m sets are desired. Let pi be the probability of failure of obtaining 
m sets up to and including the purchase of the ith dixie cup. Then the expected 
number of dixie cups Em(ln) = Z%=0 pi, by a well-known argument ([1] p. 211). 
Now pi= Ni/ni where Ni is the number of ways that the purchase of i dixie 
cups can fail to yield m copies of each of the n pictures in the set. If we represent 
the pictures by xi, * , xn, then Ni is simply (xi + * * * +xn)i expanded and 
evaluated at (1, . . ., 1) after all the terms have been removed which have 
each exponent for each variable larger than m -1. 

Now consider m fixed and introduce the following notation. If P(x1, . . . , x,,) 
is a polynomial or power series we define { P(xi, . . . , x,C) } to be the polynomial, 
or series, resulting when all terms having all exponents _ m have been removed. 
In terms of this notation pi is { (xi + * +x.) } /ni evaluated at x = *= 
-1. 

If we now make the definition 

A; 

(1) Sm(t) m E - 
k<m k! 

and consider the expression 

(2) F = exp (xI + * * * + x.) - (e - Sm(xi)) . . . (exn - Sm(xn)), 

it is easily seen that F has no terms with all exponents > m; but F does not have 
all terms of exp(xl+ +xn) with at least one exponent <m. We conclude 
that 
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(3) F = {exp (Xi + + x.)} = E {(xi ? + x)}/!. 

By contrast, we have seen that 

(4) Em(n) = E pi = E { (xi + + xn) i }/ni 

at x 3 x =X1, and so all we need now is a method for replacing 1/i! by 
1/nt. This is afforded by the identity 

rX tz 
nf - -e-dt = 

and the result is 
,*00 

(5) nj) [exp (xl + * + X), - (exit - Sm(tX,)) (et - Sm(Ix)]e tndt. 

Settinlg xi = * * =xn 1, finally, gives, by (4) and (5), 

THEOREM 1. nf;O0 [1 -(1 -Sm(t)e-1)n ]dh-Em(n). 

This is the solution and it is readily integrable for small m and n. It is per- 
haps worthwhile to mention that if only a particular k of the pictures are de- 
sired the expected number is: 

r0 X m-1 \k nJ 1 1--t+t + ))dt. 

This may also be easily generalized to the case where Mk copies of the kth pic- 
tures are desired. 

For large m, by the law of large numbers, the number required is asymptotic 
to mn. It remains to obtain the asymptotic form for large n. 

We now prove 

THEOREM 2 .Em(.n)n [log n+(m-1) loglog nf+C.+o(1) for m fixed and 
n-* O. 

It suffices to prove that 

Em(n + 1) Em(n) 1 m r 1 
+ + Xn, 

n+1 n n+ 1 nlog n 

where E KXI I < X . 
Now, by Theorem 1, 

Em(n+ 1) eSEm(t) _ C e-S(Irl e-tSm(t)]ndt 

and, changing variables by 

(6) 1e-etsm(t) = X, 



60 MATHEMATICAL NOTES [January 

we have dx -e-t [(tm-1)/(m -1)! ]dt and so the above is equal to 

r l 5 (m - 1)! F - m-1 (m-1)(m-2) 
(7) m(t) fS ) dx= x I + + dx. 

Jo ~~tm-i .J L I + 2dx 

=t(x) is of course defined by (6)1. 
We now show that 

00 r Xn 
(A) Forl<k<m, Z) - dx< oo; 

1 :)t;n 1 
(B) J dx- +an, where E Ian I < oo; 

ot n log n 

and, by (7), these will suffice to prove our theorem. 
Proof of (A). By (6) we have x= 1 -e-tSm(t) < 1 -e- so that, 

(8) t _ log 
1x 

On the other hand 
rt um-1 t 

x-1 e-tSm'(t) =e-u d j dum-ldu ? ttm 

so that 

(9) t > x hn. 

Now, the infinite series given in (A) is equal to 

1 1 dx 1/2 1 dx 1 1 dx 
I - X tkiJe 1 - X tk, J/2 1 - X tk 

The first of the integrals on the right is finite by virtue of (9) and the fact that 
k < m, while the second integral is finite by (8) and the fact that k > 1. This proves 
(A). 

Proof of (B). By (8) we obtain 

x 2 Xt 1 
t_x + -+ **->= xr 1 +-+ ..._ 2xr log r, 

2 r L2 r 

and so 

r xn r Xn-r (10) 
f 

-dx 
f 

< dx= _ d- log r dx (n-r + 1) logr 

Now let u > 1 be a parameter and set 

(11) a = 1 - Sm(u)e7u. 
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We have 

fLixn a xn 1a 
-dx 2 dx Xndx 

> Xndx- dx] ( 1 ______ by (11). 
u 0 a (n + 1)u u 

Now note that by (1) and the fact that u _ 1, we obtain Sm(u) ? eum-l. Com- 
bining this with the previous inequality gives 

r1xn 1 
(12) - dx > - um-2el-u. 

.7 t (n+ 1)u 

If we now set r= [n/log n] in (10) and u=log n+m loglog n in (12) we obtain 

1 Cloglogn 1 xn 1 Cloglogn 
< -dx < + 

n log n n log2 n n log n n log2 n 

and this completes the proof since !(loglog n)/(n log2 n) <00. 

Reference 
1. W. Feller, Introduction to Probability Theory, vol. I, New York, 1950. 

THE ANTICENTER OF A GROUP 

NORMAN LEVINE, University of Pittsburgh 

In contrast to the center of a group G we will define the rim of G, denoted by 
R(G), to be the set of elements of G which permute with no elements of G except 
in trivial cases. We will define the anticenter of G, denoted by A C(G), as the 
set of products of elements in R(G). More precisely: 

DEFINITION 1. R(G) a l ab=ba implies a cEG such that a=ci, b=ci for 
some integers i and j. } 

DEFINITION 2. AC(G) {a ... a,IaER(G).} 

LEMMA 1. The identity e of G belongs to R(G). 

Proof. eb = be implies e = b?, b = bl. 

LEMMA 2. If aER(G) then a-'GR(G). 

Proof. Suppose a-lb = ba-1. Then ab = ba and hence a ci and b = ci or b = ci 
and a-'= c-i. 

LEMMA 3. If aCER(G) then b-labER(G) for all bXG. 

Proof. Let b-1abx = xb-lab for some x in G. Then abxb- = bxb1a. Hence 
a = ci and bxb-'=ci or b1ab=b-lcib=(b-lcb)i and x = b-lcib = (b-lcb) i. This 
proves b-labEER(G). 


