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SUMMARY 
The usual meta-analysis of a sequence of randomized clinical trials only considers the difference between two 
treatments and produces a point estimate and a confidence interval for a parameter that measures this 
difference. The usual parameter is the log(odds ratio) linked to Mantel-Haenszel methodology. Inference is 
made either under the assumption of homogeneity or in a random effects model that takes account of 
heterogeneity between trials. This paper has two goals. The first is to present a likelihood based method for 
the estimation of the parameters in the random effects model, which avoids the use of approximating 
Normal distributions. The second goal is to extend this method to a bivariate random effects model, in 
which the effects in both groups are supposed random. In this way inference can be made about the 
relationship between improvement and baseline effect. The method is demonstrated by a meta-analysis 
dataset of Collins and Langman. 

1. INTRODUCTION 

We consider a meta-analysis performed on the data from a number of related clinical trials in 
which treatment A is compared with treatment B. We restrict attention to clinical trials with 
a dichotomous outcome variable, but the method presented here can easily be generalized to 
different types of outcome. In each trial, we let nA and nB be the number of patients in the two 
treatment groups and XA and XB the number of patients for which a certain event is observed. 
The event may be beneficial (for example, remission of cancer), or adverse (recurrence, the 
occurrence of metastases). So the typical data we consider consist of a sequence of quadruples 
(nA, nB, XA, X , )  for each trial, that can be represented by a 2 x 2 contingency table. We let nA and 
nB be the respective probabilities of the event of interest, and 0 A  and 0, the corresponding logits 
(0 = log(n/( 1 - n))). The conventional meta-analysis uses the Mantel-Haenszel approach and 
produces a point estimate, a P-value and a confidence interval for the common odds ratio 
(nB/(l - nB))/(nA/(1 - nA)) or its logarithm o = eB - 0A.  See, for example, Yusuf et a/.' 

This approach has been questioned by several authors and an alternative random effects 
model, based on a Normal approximation for the distribution of the estimated log(odds ratio) 
was introduced by Der Simonian and Laird.' A similar setup was used by Stijnen and Van 
Houwelingen3 with focus on empirical Bayes estimation of the log(odds ratio) in each trial. In this 
paper we do not use Normal approximations, but base our analysis on the conditional non- 
central hypergeometric distribution. The parameters of the random effects model are estimated 
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by the EM algorithm (Dempster et al!), avoiding problems with the weights in the Der Simonian 
and Laird approach discussed by Mosteller and Chalmer~.~ Weighting of the trials is implicit in 
the maximum likelihood estimation procedure. 

The Mantel-Haenszel procedure and its random effects extension focus on the estimation of 
the odds ratio or its logarithm w. Information on the joint distribution of OA and OB is not used 
and there is a tacit assumption that w is in some sense independent of 6 A  (and OB). In this paper we 
show how insight into the relations between 8A, OB (and w )  can be obtained by introducing 
a bivariate random effects model for (OA, OB). The bivariate approach is also feasible for para- 
meterizations leading to either relative risk or risk difference as an effect measure. Conventional 
use of the log(odds ratio) as an effect measure is mainly for convenience. 

Our approach is demonstrated by a meta-analysis of data from Collins and Langman6 
presented in Section 2. In Section 3 we review the likelihood version of the Mantel-Haenszel 
procedure and in Section 4 we discuss the random effects extension without the use of Normal 
approximations. Section 5 presents our bivariate approach and discusses the results, while 
Section 6 makes some concluding general remarks. 

2. THE COLLINS AND LANGMAN DATASET 

Collins and Langman6 present an overview of 25 trials on the treatment of upper gastrointestinal 
bleeding by a histamine H2 antagonist. In each trial treatment (T) is compared with a placebo 
control (C) and the numbers of patients with persistent or recurrent bleedings are recorded. The 
dataset is given in Table I. 

The trials are ordered according to increasing standard error of the log(odds ratio). In Figures l(a) 
and (b) a graphical presentation of the data is given. To avoid degeneracy when X = 0 or X = n, 8 
is estimated by log(X + O5)/(n - X + 0.5). The odds ratios in Table I are estimated similarly. 

As effect measure we take the log(odds ratio); w = Oc - OT. By definition w > 0 implies 
a positive treatment effect (reduction of the number of patients with recurrent or persistent 
bleedings). Collins and Langmad analysed the data using the method of Yusuf et al.' Where 
relevant, we compare these results with ours. 

3. LIKELIHOOD BASED MANTEL-HAENSZEL-TYPE PROCEDURE 

Using the conditional distribution of Xc given XT + Xc (this is the conditional non-central 
hypergeometric distribution of the 2 x 2 table given its marginals) leads to the likelihood (of 
each trial): 

Graphs of the scaled likelihoods L(o)/J"L(w)dw are present in Figure 2. From this figure we 
conclude that w tends to be positive, because there is more of the likelihoods to the right half of 
the plot. 

Under the assumption that all trials share a common odds ratio o, the total log(like1ihood) is 
given by 

2 5  

I(w) = C li(w), 
i =  1 
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Table I. Overview of 25 trials of a histamine H2 antagonist (T) compared with placebo (C) in the treatment 
of upper gastrointestinal bleeding 

Trial Reference in Collins Year of flT XT nc X c  Odds ratio Log(odds ratio) 
and Langman publication 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
1s 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

21 
15 
24 
19 
23 
4 
3 
9 
7 

11 
22 
25 
26 
14 
10 
13 
27 
18 
6 

28 
5 

17 
Brown* 

12 
16 

1983 259 
1984 153 
1984 106 
1982 78 
1984 51 
1979 56 
1979 50 
1980 40 
1979 33 
1980 46 
1984 31 
1984 33 
1981 36 
1980 21 
1980 20 
1980 45 
1982 34 
1982 24 
1979 14 
1984 15 
1979 18 
1981 10 

? 10 
1980 18 
1981 14 

50 260 
44 132 
16 107 
14 80 
16 54 
11 53 
8 50 
9 48 

12 36 
5 47 
6 29 
6 39 

11 26 
10 19 
7 20 
9 43 
3 31 
4 24 
2 15 
2 14 
5 12 
1 9 
3 11 
0 19 
0 14 

51 1.02 
30 0.73 
15 0.92 
21 1.61 
15 0.84 
12 1.19 
16 2.39 
11 1.02 
10 0-68 
12 2.66 
12 2-80 
7 0.98 
5 057 
8 0.8 1 
8 1.22 
3 0.33 

13 6-57 
5 1.28 
6 3.42 
3 1.64 
1 032 
4 5.18 
1 0.3 1 
3 7.85 
0 1 .oo 

0.02 
- 031  
- 0.08 

0-47 
- 017 

0.18 
0.87 
002 

- 0.38 
098 
1.03 

- 0.02 
- 057 
- 0.21 

0.20 
- 1.10 

1.88 
0.25 
1.23 
0.50 

- 1.14 
1.65 

- 1.18 
2.06 
0.00 

Total 1215 254 1192 272 

* In the article of Collins and Langman no reference is given for this paper 

where li(w) = logL,(w) is the log-likelihood for the ith trial. Its graph is shown in Figure 3 (solid 
line). From this graph we conclude that the MLE h = 0.12, that I (&)  = - 53.68 and that the 95 
per cent confidence interval under the assumption of homogeneity is - 0-07 < w < 0-31 in 
perfect agreement with Collins and Langman.6 

4. RANDOM EFFECTS EXTENSION OF THE MANTEL-HAENSZEL PROCEDURE 

Relaxing the assumption of homogeneity, we consider w random with distribution G, so 
that each trial has its own wi and (wl,. . . , w Z 5 )  is a random sample from G. The values of 
wl,. . . , wZ5 are unobservable, like the w-parameter of the previous section. We make the 
important assumption that w is independent of the sample sizes (nT, nc). The likelihood for each 
trial is given by 
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Figure 1 .  Graphical display of the Collins and Langman data set (Table I )  

Figure l(a) displays the estimated probabilities and in (b) the estimated log(odds). The area of each circle is proportional to 
the total sample size of the trial, so larger circles correspond to trials with larger weights 

and G can be estimated by maximizing 
25 

I(G) = c I i ( G ) .  
1 

The non-parametric approach of Laird7 estimates G by a discrete distribution via the EM- 
algorithm (Dempster et a/?). The reader is referred to their papers for details of the estimation 
procedure. For our dataset we obtain a two-point distribution for with probability masses at 
o = - 0.03 and w = 1.10 with respective probabilities 0.79 and 0.21. The corresponding 



BIVARIATE APPROACH TO META-ANALYSIS 2277 

-4 -3 -2 -1 0 1 2 3 4 
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Figure 2. Scaled likelihoods for the individual trials 

The sharply peaked curves correspond to the trials with large total sample size. The deviant trial on the right is no. 24 for 
which L(o) is maximal at o = co 

log(like1ihood) is I ( @  = - 51.76. Comparing this with I ( & )  = - 53.68, we see that the improve- 
ment of the likelihood is not substantial. On the other hand 6 gives some idea about the 
variability between trials. The moments of G^ are given by cm = 0-21 and 6, = 0.47. 

A much smoother estimate of G is obtained from a parametric model. We consider the usual 
Normal model, that is G = N(p, a'), which leads to 

with q ( x )  = 1/~2~e- ' / ' " ' ,  the standard Normal density. The parameters can be estimated by the 
EM algorithm. Details are given in the next section for the more general k-variate case. The 
results are 

1; = 0.17 8 = 0.35 I(b, d) = - 52.99. 

The method of Der Simonian and Laird' (omitting trial 25) gives = 0.18 and 8 = 0.40. The 
parametric model fits slightly worse than the non-parametric one, but it also has one degree of 
freedom less. 

The difference 2(I(1;, d) - I ( & ) )  = 2( - 52.99 + 53.68) r= 1.38 could be used for a formal likeli- 
hood ratio test of a = 0. The corresponding P-value is 0.12, taking into account the one-sided 
nature of the test (a = 0 versus a > 0). For testing heterogeneity Collins and Langman6 report 
a conventional x:241 = 38.1 with P = 002.  They concluded that there is some heterogeneity but 
ignored it in the computation of the confidence interval. In our view a formal test of heterogeneity 
is not relevant because the value a = 0 is not very plausible. 

A 95 per cent confidence interval for ,u can be obtained via the profile log(like1ihood): 

P U P )  = SUP I(P9 0) = I ( f 4  a@)) * 
U 
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Figure 3. Graph c the log(like1ihood) under the assumption of homogeneity (solid line) and the profile ._g(likelihood) 
under the random effects model (dashed line). 

The horizontal lines are 1.92 = 1/2 x 3.84 below the dome of the curves. The intersection of each horizontal line with the 
corresponding curve gives the endpoints of the likelihood-based 95 per cent confidence interval 

Again 3(p )  can be estimated by the EM-algorithm and details are given in the next section. 
From the graph of p l ( p )  in Figure 3 (dashed line) we see that the 95 per cent confidence interval 
for p in this model is - 0.09 < p < 0.48. The method of Der Simonian and Laird’ gives a very 
similar confidence interval ( - 010, 0.45), which is wider than the one of Section 3. This is in line 
with the general objection that a fixed effect approach like the Mantel-Haenszel methodology 
produces confidence intervals that are too small because it ignores heterogeneity between trials. 
Figure 3 is typical for the comparison of homogeneous log(like1ihood) and heterogeneous profile 
log(like1ihood). The former is lower and more peaked than the latter. 

We stress that the two lines in Figure 3 have a very different meaning. Under the homogeneity 
assumption, there is only a single parameter w, for which a confidence interval can be obtained 
from the solid line in Figure 3. In the random effects model of this section, w is a random variable 
with distribution G. The mean value p of that distribution is certainly not the only parameter of 
interest; another is Pr(w > 0) = a(&), estimated by (0(0.17/0.35) = 0.69. It is also feasible to 
obtain a confidence interval for this parameter using the same methodology. 

5. BIVARIATE RANDOM EFFECTS MODEL 

5.1. Exact procedure 

The full likelihood in each trial of the bivariate parameter 8 = (&, 8,)’ is given by 

It does not make sense to assume that 8 is constant over trials, so we proceed with a random 
effects model in which 8 has a bivariate distribution G. The non-parametric approach can be 
easily extended to the bivariate case, but we do  not give details here, mainly because we think that 
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Table 11. Bivariate random effect model with 4 mass points 

9T 9c w = 9c - er Probability 

- 1.52 - 1.49 0.03 043 
- 0.90 - 1.10 - 0.20 0.26 
- 1.72 - 0.79 0.93 0.26 
- 030 - 0.43 - 0.12 0.05 

I(@ = - 1255.15 

the discrete non-parametric estimate is not very realistic. The MLE d is not very stable. In 
Table I1 we give a stable solution with 4 mass points. Extension to more mass points gave no 
significant improvement of the log-likelihood. 

The distribution is plotted in Figure 4 (triangles). The estimated distribution of o is very much 
like the 2-point distribution of Section 4. The moments of d are 

f l  = ( - 1.36, - 1.16) yielding jio = 0.19 

yielding = 0-44. 0.150 0.031 '' = (0.031 0.109) 

Because of the instability of the non-parametric MLE and its very discrete nature, we prefer 
a parametric model for G. The obvious choice is G = N(p, C). The likelihood per trial is given by 

Li(p, = Li(e)f(elp, C)de I 
where f(elp, C) is the bivariate Normal density with parameters p and X. The maximum 
likelihood estimates of p and C are obtained by the EM algorithm. Consider the unobservable 
2-vector e l , .  . . , 0 2 5  as missing observations. If e l , .  . . , 0 2 5  could be observed, the sufficient 
statistics are COi and COi8:. Since 

and 

the E-step consists of computing 4 and ?i and the M-step consists of 

1 -  
25 

p = -  mi 
- 1  

25 
C = - X f i  - pp ' ,  

Starting with an arbitrary p and non-degenerate Z, alternate iteration of E-step and M-step leads 
to the MLE of p and C. Convergence is slow but sure. The algorithm is easy to program. The 
tedious part is the computation of all 4 and fi .  In the application of the EM-algorithm in the 
previous section we used numerical integration to evaluate the integrals; this could be carried out 
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Figure 4. Datapoints and estimated mixing distributions 
The datapoints are the same as in Figure l(b). The triangles represent the non-parametric estimate of the mixing 
distribution. The size of the triangle is proportional to the probability of the point. The square represents the mean p of the 

normal mixing distribution. The ellipse is the 95 per cent content ellipse (6 - p) 'Z- ' (O - p )  = 6 

quite easily because the w parameter is one-dimensional. In this section, where the parameter is 
two-dimensional, numerical integration is still feasible but very time consuming. This 'exact' 
method can be replaced by various approximations. 

5.2. Approximate procedures 

A first approximation is based on the MLE of gi in each trial and its asymptotic covariance 
matrix 

= - l y ( O ) -  evaluated at ii. 
Here li(0) = log(Li(0)) and l ; ( O )  is the matrix of second derivatives. Replacing li(0) by 
li(0) = li(ei) - (0 - ii)'V;'(O - &) leads to 

e, = ( V Y l +  z-1)-1 ( V ; ' i i  + z - l p ) ,  

a weighted average of ii and p, and 

z'i = e,& + (V;1 + z-1)-1 

Iteration leads to the MLE of p and X in the model where the conditional distribution of ii is 
assumed to be N(Oi. 5). This is the kind of model used by Der Simonian and Laird,' and the 
asymptotic covariance matrix of fi is given by 

covariance matrix of j~ = ~ ( 6  + . 
( i  ) - I  
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Table 111. Bivariate random effects model: comparison of exact 
and approximate methods 

Parameter ‘Exact’ Approximate 

P ( -  1.35, - 1.19) ( -  1.34, - 1.17) 
Po 0.17 0.17 

E (0.067 0.129) (0.067 0.122) 
0.126 0.067 0.122 0.067 

ka 0.35 0 3 3  
- 1257.53 - 125762 4 P >  C) 

The whole method is based on the assumption that Zy(8) is constant over the range of interest, 
which is generally not true. The method can only be applied if the sample sizes per trial are fairly 
large. 

The method we advocate approximates 4 by the value of 8 that maximizes Li(8) j (8  I p,  Z), that 
is by the solution of 

/:(el = P(O - p )  

(li(8) is the vector of first derivatives). 
The solution of this equation can be obtained by the Newton-Raphson method. The whole 

process can be accelerated by using the value of 6 from the previous E-step as starting point and 
taking only the first Newton-Raphson step. The approximation of fi is obtained by Taylor 
expansion of the logarithm of the integrand about 6. This leads to a value of fi that is given by (1) 
with Vi replaced by - - vi = - iy(ei)- l .  

Similarly an approximate covariance matrix for p is given by (2) with Vi again replaced by pi. 
Approximations for the total log(like1ihood) are obtained in a similar way. Convergence of the 

EM-algorithm is reached if the total log(like1ihood) does not increase any more. 
The approximate method can be easily extended to k-variate random components with k > 2. 

The ‘exact’ method gets very computer time intensive when k > 2. 

5.3. Results from bivariate random effects model 

These are presented in Table 111. Both methods agree very well, but the approximate method is 
much faster. 

The estimated mean and the 95 per cent content ellipse of the bivariate distribution are also 
plotted in Figure 4. The main axis of the ellipse happens to be parallel with the line 8 T  = 8c. So 
w = 8, - 8 T  is uncorrelated with (8, + 8#. Both w and (8, + &)/2 show a substantial random 
fluctuation. The estimated probability that a trial with infinite sample size would result in 
a positive treatment effect is Pr(w > 0) = @(0.17/0*33) = 0.70. 

The regression line of w on 8, has slope (0.122 - 0.67)/0.122 = 048. In our view this is not an 
indication that the log(odd ratio) model for the treatment is incorrect, but merely a manifestation 
of regression to the mean. The main axis of the ellipse gives the best description of the relation 
between 8 T  and OC as in orthogonal regression. The ellipse shows the true variation among trials. 
The larger scatter of the data points is mainly due to pure random fluctuation caused by small 
sample sizes. 
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A tilted main axis of the ellipse is an indication that o is not independent of (0, + 0,)/2. This 
occurs if var(8,) # var(0,). An additive risk model might be more appropriate if 
var(n,) = var(nc) and a multiplicative risk model if var(ln(n,)) = var(ln(n,)). Approximate 
expressions for these variances can be obtained by the &method, var(g(0)) = (g’(p))2var(0). 
A more refined method is to assume a bivariate Normal model for either (n,, nc) or (log(nT), 
log(nc)). The likelihoods of the different models can be compared to select the best fitting model. 
However, technical problems can occur due to the boundary conditions 0 I TI I 1 (additive 
model) or log(n) I 0 (multiplicative model). 

obtained in the final stage of the EM-process are just the posterior means of Oi 
given the data. They are the empirical Bayes estimates of the Oi and can be used to obtain adjusted 
estimates of the effects in each trial, adjusted for random measurement error. However, empirical 
Bayes methodology is beyond the scope of this paper and we will not go into graphical 
presentation of the 6. 

The vector 

5.4. Confidence regions for means 

Finally, we discuss the construction of a confidence region for p. The approximate covariance 
matrix of jl, based on ( 2 )  with Vi replaced by vi equals 

(0.01 18 0.0032) 
0.0032 0.0114 

yielding standard error of j i u  of 0.13 which is in good agreement with the results of the previous 
section, where the method of Der Simonian and Laird gave a standard error of 0.14. The 
approximate covariance matrix can be used to compute a 95 per cent confidence region for the 
vector p. Since the second derivative of the total log-likelihood is not constant, we prefer to 
construct a 95 per cent confidence region based on the likelihood ratio test. The EM-algorithm 
can easily be adapted to estimate C if p is given. The value of p does not change during the process 
and the estimate of C is now given by 2 + (p - j l ) ( p  - jl)) with 2 and ji as defined before. This 
can be used to compute the profile log-likelihood 

P b )  = SUP U L ,  C) 
E 

Contour plots of the deviance, 2(pl(p) - p l ( p ) ) ,  are given in Figure 5, from which it can be seen 
that the 95 per cent confidence interval for w coincides with the one of Section 4. 

6 .  CONCLUDING REMARKS 

First of all it is surprising how easily a multivariate random components model can be fitted by 
means of the EM-algorithm and some approximation of the integral of smooth functions with 
respect to the multivariate Normal density. We have work in progress in which the same 
methodology is applied to multicentre multitreatment studies where the treatment effect 0 can 
vary randomly from centre to centre. By this approach we can quantify how likely it is that the 
treatments effects are in a specified order (analogous to Prob(o > 0) in this paper). 

Secondly, we think that the bivariate approach presented here has the great advantage of 
describing the relation between the effects of both treatments. It gives the information needed to 
make inferences about the nature of the relationship and to choose between additive risk, additive 
logits or multiplicative relative risks models. Moreover, it gives the opportunity to compute other 
parameters of interest. For instance, in the model of Section 5 ,  the mean risk difference can be 
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Figure 5. Deviance plot of the profile likelihood 
Contours are plotted of 2 ( p l ( p )  - p l ( p ) ) .  Deviance = 6 gives the bivariate 95 per cent confidence region. Deviance = 4 
( 2: 3.84) gives the 95 per cent confidence interval for any linear combination, such as p0,, pOe and pa. The tangents with 
slope = 1 to the deviance = 4 contour are plotted, from which the 95 per cent confidence interval for w can be obtained. 

The solid circle corresponds with the MLE jl. Observe the egg shape of the confidence region 

computed although the model is based on odds ratios. The analysis uses all available information 
and does not rely on conditioning, use of which can be questioned in many situations. 

Thirdly, we have restricted attention to a simple bivariate model for 0. The next step is to 
incorporate covariates in the model that might explain the variation in the 0’s. A first candidate 
would be the sample sizes (nT, nc), which would allow a check of our implicit assumption that 8 is 
independent of (nT, nc). More work has to be done in building models that use all data and take 
into account more random variation than simple patient-to-patient variation. 

Finally, a program written in Gauss is available from the first author. This program requires 
a set of 2 x 2 tables as input and performs all parametric analyses given in the paper. The discrete 
non-parametric procedure is not included because of its numeric instability. 
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