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Do the world’s best tennis pros play Nash equilibrium mixed strategies?
We answer this question using data on serve-direction choices (to the
receiver’s left, right, or body) from the Match Charting Project. Using a
new approach, we test and reject a key implication of a mixed-strategy
Nash equilibrium: that the probability of winning the service game is
identical for all possible serve strategies. We calculate best-response serve
strategies by dynamic programming (DP) and show that for most elite
pro servers, the DP strategy significantly increases their win probability rel-
ative to the mixed strategies they actually use.
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I. Introduction

Walker andWooders (2001) analyzed 40 tennis “point games” fromGrand
Slam tournaments, focusing on the server’s choice of first-serve direction:
to the receiver’s left or right. They analyzed first serves to the ad (left) and
deuce (right) courts separately, with each treated as repeated IID (inde-
pendent and identically distributed) one-shot simultaneous-move games
between the server and receiver. They then concluded that serve-location
choices are consistent with a mixed-strategy Nash equilibrium in their
hypothesized static game. In particular, the server’s chance of winning a
point is the same whether the serve is to the left or to the right. Equality of
win rates across serve directions has been confirmed in several follow-up
studies using additional data. In contrast, our tests typically reject the hy-
pothesis of equal win probabilities across serve directions. We find that most
elite professional players—such as Roger Federer, Rafael Nadal, and Novak
Djokovic—could significantly increase their chances of winning if they were
to systematically exploit these differences.
Our analysis differs from that of Walker and Wooders (2001) by con-

sidering three serve directions (left, right, and body) and modeling ten-
nis as a dynamic game. We allow for body serves because tennis pros be-
lieve that they are important; see, for example, Rive andWilliams (2011).
Dynamics are relevant because the server’s strategy and probability of
winning the service game depend on the score state as well as muscle-
memory effects. For instance, the server may be more likely to be success-
ful when serving to the same location as the previous serve. Alternatively,
the receivermay havemore success receiving a serve hit to the same location
as the previous serve. We capture muscle memory via the directions of
the two previous first serves and show that it can explain serial correlation
in serves even when play is in Nash equilibrium. Previous studies, includ-
ing Walker and Wooders’s, have found serial correlation and interpreted
it as evidence against Nash equilibrium.
Accounting for dynamics, a third serve direction, and state-dependent

serve-direction probabilities leads tomore powerful tests of mixed-strategy
play. Our analysis is based on an online database called the Match Chart-
ing Project (MCP), run by Sackmann (2013), which crowdsources play-by-
play data from professional tennis matches and records all three serve di-
rections used in our analysis. Even after restricting our sample to matches
playedonhard courts,1weendupwith roughly 10 times asmany serves per
server-receiver pair as Walker and Wooders (2001).
However, themain reason why we reject the hypothesis of Nash equilib-

rium play is a new methodology that models tennis as a dynamic game, in

1 We do this to eliminate a potential source of heterogeneity that could confound our
results, since playing characteristics differ across surfaces. We extend our analysis to grass
and clay courts in sec. V.C.
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contrast to previous work that treated serves as choices in repeated static
games.Wemodel serves as decisions at each subgame of the overall service
game between a server and receiver, which ends when one of the players
has won at least four points and at least two more points than their op-
ponent. The server chooses the location, speed, and spin of each serve,
while the receiver allocates a fixed attention budget to the three serve lo-
cations. We test the null hypothesis that observed play in a tennis service
game is realization of a Markov perfect equilibrium (MPE), in which the
server and receiver’s strategies depend only on the muscle memory and
score state.2

Weprove that anMPE exists and is unique in the sense that all subgame
perfect equilibria result in the same win probability for the server. Serve
strategies are also completely mixed; that is, at every state of the service game,
the server has a positive probability of choosing any of the three possible
serve directions. We define point outcome probabilities (POPs) as the equilib-
riumprobabilities that a serve to a given direction is in, as well as the prob-
ability that the server wins the rally, given that the serve is in. Both are con-
ditional onmusclememory, score state, and serve direction. The POPs are
endogenous objects, since they depend on unobserved choices by the
server and receiver. However, in a completely mixed MPE, the POPs can
be treated as fixed and invariant to temporary changes in serve strategy.
The reason is that a receiver would not be able to detect any deviation in
serve strategy from a small number of observations if serve directions are
chosen randomly at every stage of the service game.
This fact allows us to estimate the POPs as “reduced-form objects” or

“projections” that reflect the unobserved strategic decisions of both play-
ers in terms of observable outcomes (i.e., faults and points following ral-
lies), conditional on the choice of serve direction, which we do observe. This
converts the dynamic game to a single-agent dynamic programming (DP)
problem, since the POPs constitute the payoff-relevant beliefs that the server
needs to evaluate different serve strategies. According to the one-shot devi-
ation principle of game theory, a necessary condition for a serve strategy to
be anMPE strategy is that there is no deviation at any stage of the dynamic
game that strictly increases the server’s expected win probability. In most
games, this means that any deviation in serve strategy strictly reduces the
probability of winning. However, in a completely mixedMPE, a much stron-
ger restriction holds: all temporary deviations in serve strategy have the
same win probability. This is an extremely strong implication of a com-
pletely mixed MPE that results in infinitely many testable restrictions, which
we exploit to develop powerful new tests of equilibrium play.

2 While the underlying characteristics of the game do not directly depend on the current
score, it is the case that with muscle-memory effects, strategies generally depend on the score
state.
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In particular, the service-game win probability must be the same for
all serve directions in all states of the service game. We test these strong
implications of a mixed-strategy equilibrium by estimating the POPs and
the actual serve strategy used in the service game. Since our model has
324 muscle-memory/score states and three serve directions, a fully un-
restricted estimator of the serve strategy and the POPs would require
4,536 parameters for each server-receiver pair—far too many to estimate,
given the size of our dataset. In section IV, under a testable assumption
that actual serve strategies and POPs are stationary and Markovian (but
not necessarily MPE strategies), we estimate flexible reduced-form para-
metric models of serve strategies and the POPs that include the unre-
stricted specification as a special case. We use the Akaike information cri-
terion (AIC) to select a preferred specification with 44 parameters (12 for
the server’s strategy and 32 for the POPs) that balances the desire for flexi-
bility against the danger of overfitting.
Rather than separately testing for equal win probabilities across serve

locations by aggregating data across individual points (treating first serves
as independent, static games, as Walker andWooders 2001 did), we intro-
duce a new,more powerful “omnibusWald test” of the hypothesis of equal
win probabilities that must hold across all possible states of the service
game simultaneously. We also deriveWald tests of the other key restriction
of a completelymixedMPE: that win probabilities are the same for all pos-
sible deviation strategies. These tests strongly reject the equal win proba-
bilities for all serve directions implied by completely mixed MPE play for
the majority of the elite pros we analyzed, including the very top players,
such as Federer, Nadal, and Djokovic. The tests are based on recursive cal-
culations of the conditional probability of winning the entire service game
for any given serve strategy in all game states and serve directions. Our tests
allow for serial correlation in serve directions and the POPs due to muscle-
memory effects, thus allowing for state dependence in serve behavior and
outcomes that cannot be captured in static approaches to testing for equal
win probabilities. Not only doesmusclememory explain serial correlation
in serve directions: accounting for it is the key to the strong rejections of
equal win probabilities, even under tests similar to the static testing meth-
odology that Walker and Wooders employed that assume that servers max-
imize the probability of winning each point rather than the overall service
game.
To quantify the potential deviation gains from systematically exploiting

the unequal win probabilities that our tests reveal, we use DP to calcu-
late best-response serve strategies for individual server-receiver pairs,
using the estimated POPs to provide outcome probabilities for each point,
given the choice of serve direction. For all the elite pros we analyze, the
DP strategy significantly increases win probabilities relative to the mixed
serve strategies implied by our reduced-form estimates of their serve
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behavior. Adopting the DP serve strategy would improve Nadal’s proba-
bility of winning a service game against Djokovic from 71% (his current
win rate) to 91.5% and Djokovic’s chance of winning against Nadal from
83% to 93.7%.3

Thus, the play of elite tennis pros does not constitute an MPE: our em-
pirical analysis reveals many small advantageous one-shot deviations (i.e.,
changes in serve direction at individual points), and the DP strategy takes
maximal advantage of all of them, resulting in muchmore significant de-
viation gains at the level of the entire service game.4 The reason why we
find much larger deviation gains by modeling tennis as a dynamic game
rather than as a sequence of repeated static games is an implication of the
tennis scoring system we call the “magnification effect.”5 For example, if
we assume that each point is an IID Bernoulli draw with a 50% chance of a
win for the server, the server will also win the service game with 50% prob-
ability, since the rules of tennis imply that points evolve as a random walk
with absorbing states of win and loss. However, if a change in serve strategy
results in a small increase in winning each point, say an increase to 55% (a
10% increase), then tennis scores evolve as a randomwalkwith drift. This
causes the probability of winning the service game to increase to 62.3%, a
nearly 25% increase.
Though the majority of our analysis focuses on elite male pros playing

on hard courts, we show that our findings extend to elite women and other
less elite pros, as well as to play on clay and grass courts. In general, we find
that the magnitude of deviation gains from adopting the DP best-response
serve strategy is a declining function of “relative ability,” as proxied by the
server’s probability of winning the service game against specific opponents.
We do not advise tennis pros to adopt our best-response serve strategies,
since they are pure strategies that the receiver would eventually learn and
adapt to. However, we also calculate “robust” mixed serve strategies that
account for estimation error and uncertainty about the POPs and the
strategy of the receiver. The robust strategies also significantly increase serv-
ers’ win probabilities but are more difficult for a receiver to detect and
adapt to.

3 Traditional game theory has little to say about “mental ability,” since all players are
equally rational and intelligent. In the context of our model, these increases in win rates
result from a better mental approach to the game. This is because the estimates assume that
the receiver’s strategy and other aspects of the server’s play are unchanged under the DP serve
strategy. Therefore, relative physical ability is held constant.

4 We find significant improvements from the DP best-response serve strategies for all
94 server-receiver-surface combinations for which we have sufficient data to precisely esti-
mate our model. See sec. V.C for details.

5 See sec. 4 of the appendix (the appendix is available online) for further discussion of
this “magnification effect” that causes our omnibus Wald test of equal win probabilities over
the different possible serve directions to have far greater power than Walker and Wooders’s
(2001) tests.
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To gain insight into the reasons for suboptimal serve choices, we es-
timate three structural models of the serve-direction choices involving
increasing degrees of farsightedness. These models allow for persistent
shocks to server performance (muscle memory) as well as IID shocks that
reflect unobserved transitory factors that affect servers’ choices. In the
fully dynamic model, the server uses backward induction to maximize the
probability of winning the entire service game, which is effectively an
infinite-horizon problem because service games must be won by at least
two points. In the point-myopic model, the server solves a two-period DP
problem to maximize the probability of winning the current point. Here,
the server accounts for the option value of a second serve but ignores the
effect of current decisions on the future state of the service game. Finally,
in the serve-myopic model, the server maximizes the probability of winning
on each serve, a completely static problem that ignores even the option
value of the second serve.
The serve-myopic model is typically rejected because of significant dif-

ferences in observed serve directions between first and second serves that
result from the option value of the second serve. The fully dynamicmodel
is also nearly always rejected because it implies subjective POPs that are
too “pessimistic,” compared to our unrestricted estimate of the actual
objective POPs. In most cases, the best-fitting model is the point-myopic
model. It implies mixed serve strategies that are close to the ones players
actually use while constituting a nearly optimal response to the “subjec-
tive POPs,” in the sense that additional increases in win probability from
adopting a full DP serve strategy are negligible. The suboptimality in serve
behavior we identify is primarily driven by incorrect server beliefs, that
is, a lack of rational expectations of the server and receiver’s strengths
and weaknesses as captured by the POPs, rather than players’ inability to
optimize.
We address concerns that we have, and therefore use, only estimates

of the POPs, rather than the true POPs, which can result in spurious,
upward-biased estimates of the deviation gains. To account for this, we
derive an approximate probability distribution for the true POPs based
on the observed data. We calculate win probabilities for the fully dynamic,
point-myopic, and serve-myopic serve strategies, using a random sample
of POPs drawn from the asymptotic distribution centered on the point
estimates of the POPs. This robustness exercise confirms our core finding:
the fully dynamic and point-myopic strategies based on “rational POPs”
have significantly higher win probabilities (in the sense of first-order sto-
chastic dominance) than those implied by the mixed serve strategies the
elite pros actually use.
The paper is organized as follows. In section II, we briefly review pre-

vious work on testing for minimax play in tennis. Section III introduces
our dynamic models of tennis serve behavior and the relevant implications
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from game theory for equilibrium play that we test empirically in this pa-
per. In section IV, we summarize the key findings from our reduced-form
empirical analysis of the MCP database, including our key finding: the fre-
quent rejection of the hypothesis of equal win probabilities for all serve
directions. In section V, we present estimation results for the three struc-
tural models of tennis serve behavior discussed above, and we calculate
the deviation gains from using unrestricted estimates of the “objective
POPs” to compute optimal serve strategies. Section VI concludes with fur-
ther discussion/speculation as to why many elite tennis pros appear to
fail to adopt optimal serve strategies, given the strong incentives to do so.

II. Previous Literature

The first empirical analysis of tennis using statistical methods that we
are aware of is by George (1973), who analyzed the decision of whether
the serve should be strong (i.e., fast and more difficult to return, but with
a higher probability of faulting) or weak (i.e., slow and easier to return,
but with a lower probability of faulting). The first analysis of the tennis
service game using DP that we are aware of is by Norman (1985), who used
it to determine “whether to serve fast or slow on either or both serves at
each stage in a game, and a simple policy is found” (75).
We already noted the seminal work of Walker and Wooders (2001),

who focused on first serves modeled as independent static games and
were unable to reject the hypothesis of equal win probabilities for serv-
ing left or right. They also found negative serial correlation in serve di-
rections across individual points in tennis, which they interpreted as evi-
dence against equilibrium play. With a larger dataset, Hsu, Huang, and
Tang (2007) confirmed Walker and Wooders’s conclusions regarding
equal win probabilities across observed serve directions, but they did not
find serial correlation. Wiles (2006) showed that serial correlation may
not necessarily be evidence of disequilibrium play because of the presence
of a “timing variable,” which is analogous to our muscle-memory effects.
In addition, Walker, Wooders, and Amir (2011) showed that if a mono-

tonicity condition holds—namely, if it is always better to win the current
point than lose it—then the strategy that maximizes the probability of
winning each point also maximizes the probability of winning the service
game. This could explain why the “point-myopic” serve behavior we find
is not necessarily suboptimal, as we discuss in section III.E. Also, Lasso de
la Vega and Volij (2020) proved that MPEs exist in a class of recursive zero-
sum games that include our model without muscle-memory effects. Most
recently, Gauriot, Page, Wooders (2023), using data from 3,000 matches and
nearly 500,000 serves, confirmed Walker and Wooders’s conclusions
and noted that “the behavior in the field of more highly ranked (i.e.,
better) players conforms more closely to theory” (981). But unlike Hsu,
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Huang, and Tang (2007), they find evidence against serial independence
of serve directions as a result of having a large dataset that includes non-
elite pros.
Other related papers include Klaassen andMagnus (2001, 2009). Klaassen

and Magnus (2001) tested whether successive points in tennis are IID bi-
nary random variables, using 481 Wimbledon matches containing nearly
90,000 points. They rejected the IID hypothesis, but they found that “de-
viations from iid are small, however, and hence the iid hypothesis will
still provide a good approximation in many cases” (Klaassen andMagnus
2001, 500). Klaassen and Magnus (2009) abstracted from serve direction
and focused on the trade-off between making a serve hard to return and
faulting on the serve, considering both the first and second serves of a
point. They rejected the hypothesis that servers optimally solve this trade-
off, but found that “the estimated inefficiencies are not large” (72). In
section VI, we also discuss empirical evidence for disequilibrium play in
other sports, including soccer, football, and baseball. The findings are
mixed: there is strong support for minimax play in penalty kicks in soccer
but strong evidence against equilibrium play in first-down decisions in foot-
ball and pitch locations in baseball.

III. Modeling Tennis as a Dynamic Game

Tennis is two-player game between a server and a receiver played in tour-
naments composed of matches. A match consists of a sequence of sets.6

A set, in turn, is a sequence of service games in which one of the two play-
ers is the server. The server of the first game is chosen by a flip of a coin,
and the identity of the server alternates in each game thereafter. Win-
ning a set typically requires winning six games with a lead of at least two
games.7 Each service game consists of a sequence of subgames that are
called points. A point consists of a first serve, plus an option for a second
serve after a “faulted,” or missed, first serve.8 First serves alternate between
the right (deuce) and left (ad) sides of the court. The service game ends
when one of the players wins at least four points in total and at least two
more points than their opponent.

A. Dynamic Theory of the Service Game

We use the scalar x to track both the cumulative points scored by each player
in the current service game and whether or not the server is attempting a

6 Depending on the tournament, a player must win two of three sets or three of five sets
to win the match.

7 Alternatively, if the score is tied at 6-all, the set is decided by a “tiebreak,” in which the
winner is the first to score seven points and be ahead by at least two points.

8 If a serve touches the net and lands in the field of play (a “let”), then the serve (first or
second) is redone. Since our data do not record lets, we do not include them in our model.
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first or second serve. Figure 1 is a directed graph of all the transitions for
the point-state variable x within a service game. The circular nodes indi-
cate first serves, whereas the square nodes indicate second serves. The
game starts in state x 5 1, which corresponds to a first serve at the tennis

FIG. 1.—Score states and transitions in the service game.
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score 0–0. If the server wins the point on that first serve, the point state
transits to x 5 3, corresponding to a first serve at the score 15–0. If
the server faults the first serve, the state transits to x 5 2, which is a sec-
ond serve at 0–0, and so forth. There are three possible transitions at every
first-serve node, two possible transitions at every second-serve node, and
two absorbing states (i.e., terminal nodes whose arrows point only in):
the server wins (x 5 37) or loses (x 5 38) the game.
The arrows connecting most nodes are unidirectional, leading to

higher states x. But state x 5 31 (deuce) is connected by a bidirectional
arrow to both x 5 33 and x 5 35. This follows from the fact that when
the players are tied at 40–40 (i.e., deuce), one of the players must win by
two points to win the game. Collectively, we refer to states 31 2 38 as the
deuce endgame.9

Given these scoring rules, the probability of winning an individual point
is generally not the same as the probability of winning the service game, as
illustrated in figure 2. It plots the service-game win probability g(p) as a
function of the point win probability p under the assumption that each
point of tennis is an IID Bernoulli draw with probability p of success. Al-
though we relax the assumption that plays at different points are inde-
pendent draws in our model below, the IID Bernoulli assumption implies
that the point state in tennis evolves as a random walk with drift, with ab-
sorbing states x 5 37 (win for the server) and x 5 38 (loss for the server).
The game win probability g(p) equals p at p 5 0:5, as we noted in the in-
troduction. However, any changes in serve strategy that increase the prob-
ability of winning each point have a magnified effect on the probability of
winning the game. Near p 5 0:5, the slope of the game win probability g(p)
is approximately 2.5, so each 10% increase in the point win probability
increases the game win probability by 25%. The magnification effect shows
how small, hard-to-detect deviation gains at each point of tennis cumu-
late into much bigger and easier-to-detect deviation gains in the overall
service game, a feature we exploit to derive more powerful tests of Nash
play.
At each tennis serve, the server chooses the serve type t 5(s, d), where

d ∈ fl, r, bg indicates the direction: to the receiver’s left (l) or right (r)
or directly into the receiver’s body (b).10 Moreover, s ∈ S ⊂ R

2 indicates
the speed and spin of the serve (S is nonempty, closed, and bounded).
The receiver anticipates the direction choice of the server. Anticipation

9 Note that states 23 and 24 (29 and 30) are strategically equivalent to 33 and 34 (35 and
36): the transitions to future states in the game including winning or losing are identical.

10 We follow the literature in assuming that servers “choose” a location, and we believe
that it is a reasonable fit for the players we analyze. After all, these location categories are
broad, and our servers are the “best of the best.” Tea and Swartz (2023) group serves into
our three categories on the basis of “heat maps” of the directions of tens of thousands of men
and women’s serves at the Grand Slam tournament Roland-Garros in 2019 and 2020.
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includes observable (e.g., where to stand) and unobservable choices. We
model anticipation with an attention vector (a l, ar, ab) ≥ 0, where ad de-
notes the attention the receiver devotes to serve location d. We normalize
the attention budget a l

1 ar
1 ab

5 1. We assume throughout that the
serve-direction choice weakly follows the choice of a. This captures both
the case in which a is a pure location choice, chosen strictly before the server
chooses a direction, and the case in which a represents a simultaneous pure
mental choice of anticipation.11

The probability ‘ that a serve “lands in” (i.e., is not a fault) depends on
the court (c ∈ f0, 1g)12 and serve type t, while the probability q that the

11 All results extend to a model in which the receiver first chooses a subset of the unit
triangle and then chooses a specific element of this subset, simultaneous to the server
choosing t. This allows for the realistic case in which the physical location of the receiver
on the court constrains, but does not fully determine, the attention vector.

12 Recall that first serves alternate between the deuce (0) and ad (1) courts.

FIG. 2.—Probabilities of winning the point versus the service game.
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server wins the subsequent rally (conditional on serving in) depends on
the serve type t, court, and attention vector a. We also assume that these
probabilities can be affected by “muscle memory” m, which we encode as
the directions of the previous two first serves. Thus, m 5(d1, d2), where d1
is the direction of the previous first serve and d2 is the direction chosen
two first serves ago. We track the previous two first serves because of the
alternation of serves between ad and deuce courts and the possibility that
muscle memory may be more affected by the last serve to the same court
rather than by the last serve, which is to a different court. We initialize
muscle memory to null m 5(∅,∅) at the start of the service game, and
after any first serve, we update muscle memory from m 5(d1, d2) to
m 0

5 f (m, d) 5(d, d1), reflecting the direction of the current first serve.
We assume that muscle memory is updated only after first-serve states.
This still allows m to capture muscle-memory effects of the faulted first
serve on the subsequent second serve, as well as allowing first-serve direc-
tions to depend on the direction of the previous first serve to the same
court.
We assume that the probabilities ‘(m, d, c, s) and q(m, d, c, s, a) are con-

tinuous in (s, a), satisfy ‘x ∈ ½
�
w, �w� for some 0 <

�
w < �w < 1), and are sta-

tionary; namely:
Assumption 1 (Stationarity I). The functions ‘ and qmay vary across

server-receiver pairs but do not vary over time (independent of m and x)
or across service games.
We assume that each player’s objective is to win the service game, and

so we normalize the winning payoff to 1 and the losing payoff to 0. Since
‘q is strictly interior, the game will almost surely end in a finite number
of serves. But for completeness’ sake, we assume that each player earns
payoff 1/2 if the game never ends.
Let (jS, jR) denote the server and receiver’s strategies (perhaps mixed

and arbitrarily history dependent) in the service game. And let W(x,m)
be the set of probabilities that the server wins the game starting in state
(x, m) induced by some pair of (not necessarily Markovian) subgame per-
fect equilibrium (SPE) strategies (j*S , j

*
R) for the server and receiver. Sec-

tion 1 of the appendix proves theorem 1:
Theorem 1. All subgames have a unique value (i.e.,W(x,m) is a sin-

gleton), and there exists an MPE in which strategies depend only on the
current state (x, m).
Our empirical approach is valid in any MPE in which all strategies

depend only on (x, m), and theorem 1 guarantees that there exists an
equilibrium with this property. But if there are multiple MPEs, then one
can construct nonstationary equilibria by making history-dependent se-
lections from the set of MPEs. In fact, our empirical approach does not
rely on Markovian choices of serve direction, meaning that it is suffi-
cient for the server’s (speed, spin) strategy and the receiver’s attention
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strategy to be Markovian in (x, m). The next assumption guarantees that
this is true in any SPE; the proof of theorem 2 is also in section 1 of the
appendix.
Assumption 2. The win chance q and the chance of not faulting ‘

obey three conditions: (i) q is strictly convex in attention a, (ii) ‘q is strictly
concave in (speed, spin) s, and (iii) ‘(q 2 1) is concave in s.
Theorem 2. If assumption 2 holds, then every SPE has the same atten-

tion strategy and the same (speed, spin) strategy, and each of these strat-
egies is Markovian in the current state (x, m).

B. Serve-Direction Strategies from the Induced
Dynamic Program

Our empirical analysis uses MCP data, which do not record the serve
speed or spin or the location of the receiver. To overcome this shortcom-
ing, we use theorem 1 to project any MPE into the induced DP problem
that the server faces when choosing serve directions to maximize the
chances of winning the service game. To do so, let r(sjx,m) denote a
Markov mixed strategy over the speed-and-spin vector s ∈ S for the server,
and let a(ajx,m) denote a Markov mixed strategy over attention for the
receiver.
Definition 1. Given any MPE (r*, a*), the POPs Π are

p(injx,m, d) ;

ð

‘(m, d, c(x), s) dr*(sjx,m),

p(winjx,m, d) ;

ð ð

q(m, d, c(x), s, a) dr*(sjx,m) da*(ajx,m):

Note that the mixing probabilities (r*, a*) will generally depend on the
state of the game (x, m), so the POPs will depend on (x, m) even if the un-
derlying conditional probabilities ‘ and q do not. Given any MPE strate-
gies (r*, a*), the probabilitiesp define a single agent “game against nature,”
that is, a dynamic optimization problem in which the server chooses a serve
direction at each node in figure 1 in order to maximize the probability of
winning the service game. Figure 3 illustrates the extensive form of the
point subgame, namely, the subset of the larger directed graph starting at
every odd point state x. In the point subgame, the server chooses a serve
direction for the first serve d1, and in the event of a fault, the direction of
a second serve d2. The point subgame ends with the server winning or los-
ing a point at each square node.
Building on Norman (1985), we describe the server’s DP problem, given

p. LetW(x,m) denote the server’s maximal conditional win probability in
state (x, m). LetW(x, m, d) be the conditional win probability for the server
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under the assumption that he serves to direction d on the current serve
and behaves optimally on all following serves. Finally, let x1(x) and x2(x)
denote the successor state in the event that the server wins or loses the
point on the current serve, respectively.
The optimal serve strategy can be calculated recursively with the Bell-

man equation given by

W (x,m) 5 max
d∈ l,b,rf g

W (x,m, d): (1)

W (x,m, d) 5 p(injx,m, d) p(winjx,m, d)W (x1(x),m 0)½

1 (1 2 p(winjx,m, d))W (x2(x),m 0)�

1 (1 2 p(injx,m, d))W (x 1 1,m 0) (2)

when x is a first-serve state (i.e., x is one of the odd-numbered circular
nodes in fig. 1), and

W (x,m, d) 5 p(injx,m, d) p(winjx,m, d)W (x1(x),m)½

1 (1 2 p(winjx,m, d))W (x2(x),m)�
1 ½1 2 p(injx,m, d)�W (x2(x),m) (3)

FIG. 3.—Details of the point subgame of tennis.

(2)

(3)
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when x is a second-serve state (i.e., x is one of the even-numbered square
nodes in fig. 1). The optimal serve strategy D*(x, m) is the set of serve di-
rections that maximize the win probability

D*(x,m) 5 argmax
d∈ l,b,rf g

W (x,m, d): (4)

A necessary condition for an MPE serve strategy to be a mixed strategy
is that D*(x, m) contains more than one serve direction. A completely
mixed MPE serve strategy requires equality of the three win probabilities
fW (x,m, l),W (x,m, b),W (x,m, r)g in all states (x,m). Since the win prob-
ability does not depend on the serve direction in any state (x, m) in a
completely mixed MPE, this immediately implies the very strong strategy-
independence result, which is that in equilibrium, any deviation in serve strat-
egy implies the same win probability W(x,m) in all states (x, m). In sec-
tion IV, we use this strong implication of completely mixed MPE play to
construct powerful tests of equilibrium play.
Tennis can be viewed as an example of a directional dynamic game, de-

fined by Iskhakov, Rust, and Schjerning (2016), with the exception of
the deuce endgame, where directionality is not present. While most ser-
vice games are reasonably short in practice (fewer than 10 points), there
is no fixed upper bound on the duration of the deuce endgame, the sub-
game starting at x 5 31.13 As a result, tennis must be analyzed as an infinite-
horizon dynamic game, starting with the deuce endgame, which is a fully
recursive subgame where win probabilities are determined by solving the
Bellman equation simultaneously as the unique fixed point W 5 Γ(W ).
After solving the deuce endgame, we use state recursion to solve the rest
of the game by backward induction across the remaining directionally or-
dered states x < 31.14

C. Calculating Win Probabilities for Stationary
Serve Strategies

It is sufficient for our empirical analysis that the unobserved elements
of choice (speed, spin, and receiver attention) are Markovian in (x, m),
but this condition is not necessary. Instead, we can make the following as-
sumption directly on the induced probabilities:

13 The longest deuce endgame that we are aware of was between Anthony Fawcett and
Keith Glass in 1975. The score reverted back to deuce 37 times before Glass won the game.
Fawcett, however, won the match.

14 Norman (1985) recognized the directionality of tennis and grasped the essence of
state recursion when he described how the optimal tennis serve strategy and correspond-
ing win probabilities could be calculated by DP.
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Assumption 3 (Stationarity II). The actual POPs (those implied even
if players are not using MPE strategies) are given by families of conditional
probabilities fp(injx,m, d), p(winjx,m, d)g that do not vary over time (in-
dependent of (x, m)) or across service games.
Assumption 1 andMPE (serve, speed, and attention) strategies are jointly

sufficient, but not necessary, for assumption 3. While assumption 3 does
not impose equilibrium, it does implicitly assume that the players are un-
aware of whether they are failing to play mutual best responses. Other-
wise, they would have an incentive to alter their strategies, perhaps touch-
ing off a learning and adaptation process that would violate stationarity.
When stationarity holds and we have enough data, we can consistently

estimate Π and use DP to calculate optimal serve strategies numerically.
We then compare optimal win probabilities to win probabilities, given ac-
tual serve strategies (which can also be consistently estimated, given suffi-
cient observations on serve directions). Specifically, let P(djx,m) be an
arbitrary (potentially suboptimal) Markovian serve strategy, that is, the
probability that the server chooses direction d in state (x, m). Let WP(x, m)
be the server’s win probability starting in state (x, m) and using strategy P
for all future serves, and let WP(x, m, d) be their win probability, given
choice of serve direction d in state (x, m) and using strategy P for all fu-
ture serves. We then have the analogue to equation (1):

WP(x,m) 5 o
d∈ l,b,rf g

WP(x,m, d)P(djx,m), (5)

where WP(x, m, d) is given by equations (2) and (3), with WP in place of
W. These equations make it clear that WP is an implicit function of the
POPs Π and the serve strategy P.
In fact, we can write an expression for WP as the solution to a system of

linear equations, as is well known in the DP literature on policy evalua-
tion. Since there are 298 distinct states (x, m):15

WP 5 wP(P ,Π) 1 MP(P ,Π)WP : (6)

Here, wP(P, Π) is a 298 � 1 vector providing the probability of directly win-
ning the service game in each state (inmost states this is zero), andMP(P,Π)
is a 298 � 298 Markov subtransition matrix (i.e., not all of its rows sum to
1)16 representing the probability of transitioning between any two states
induced by the serve strategy P and POPs Π. Since MP(P, Π) is a Markov

15 There is only one possible muscle-memory state at the start of the service game x 5 1,
three possible muscle-memory states for x 5 2, 3, and 9, and nine possible muscle-memory
states for the remaining 32 score states. Thus, 1 � 1 1 3 � 3 1 32 � 9 5 298 states (x, m).

16 The rows of MP do not all sum to 1; ‘q ∈ ½
�
w, �w� implies p(in)p(win) ∈ ½

�
w, �w� for any

strategy choices.
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subtransition matrix, the linear system (6) has a unique solution WP.17 We
can see from equation (6) that WP is an implicit function of both P and
Π. We use this result later in the paper to rapidly calculate win probabil-
ities, and via the implicit-function theorem, the gradients of the win and
conditional win probabilities with respect to model parameters. This en-
ables us to compute standard errors for win probabilities and conduct ef-
ficient Wald tests of the hypothesis of equal win probabilities.
With enough observations of service games between a given server and

receiver,WP(x, m, d) can be consistently estimated as the fraction of service
games won when the server chose direction d in state (x, m). If the POPs
and serve strategies are stationary and Markovian, any win probability WP

must obey identity (6). With 298 states (x, m), nonparametric estimation
of WP involves 298 � 3 5 894 individual probabilities WP(x, m, d). Our
analysis also requires an estimate of the actual Markovian serve strategy
P and the observed POPs Π. Nonparametric estimation of P requires
298 probabilities and Π a total of 894 � 2 5 1,788 probabilities. To-
gether, nonparametric estimation of WP, P, and Π involves a total of
894 1 298 1 1,788 5 2,980 probabilities, which would require tens of
thousands of service games to estimate with any accuracy.
However, in our dataset, we typically have only 100–200 service games

per server-receiver pair. To overcome this data limitation, we introduce
parametric reduced-form models for serve probabilities and the POPs in
section IV. We still refer to these models as “unrestricted” models of serve
behavior because, unlike the dynamic structural models we introduce next,
we do not require serve-direction choices to be best responses to the serv-
er’s beliefs about the POPs.

D. Dynamic Discrete-Choice Models of Serve Behavior

To get deeper insight into the behavior of elite servers, we introduce
three different structural models of serve behavior that we use in our em-
pirical analysis: (1) a fully dynamic model that assumes that the server
chooses a strategy that maximizes the probability of winning the entire
service game; (2) a point-myopic model that assumes that the server
chooses serve directions to maximize the probability of winning each
point; and (3) a serve-myopic model that assumes that the server chooses
serve directions to maximize the probability of winning each serve, ig-
noring the option value of the second serve. For each of these models,
we estimate the server’s subjective POPs, which rationalize observed serve
behavior as a best response to the server’s potentially subjective beliefs
about their own performance and the performance of the receiver.

17 We prove this in a corollary of lemma 1 in step 3 of the proof of theorem 1 in sec. 1 of the
appendix.
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The other important aspect of these dynamic discrete-choice models
is the introduction of unobserved shocks affecting a server’s choice of
serve direction. These shocks can be interpreted as idiosyncratic factors
that affect the server’s choice, which, unlike muscle memory, are not per-
sistent over states of the game. Technically, the introduction of these
shocks implies that the server is using a pure strategy that appears to
be a mixed strategy only because of the effect of the unobserved “serve
shocks,” though it is tempting to interpret the conditional choice prob-
abilities (CCPs) P(djx,m) implied by these models as mixed strategies.18

We assume that these trembles or preference shocks are IID across
successive serves and are observed only by the server but not by the re-
ceiver or the econometrician. Let ε(d) be the tremble associated with
serving to direction d. We further assume that fε(l), ε(b), ε(r)g has a stan-
dardized Type 1 extreme-value distribution with location parameter nor-
malized so that Efmaxdε(d)g 5 0 scaled by l ≥ 0. If l is large enough,
the server’s behavior can mimic a mixed serve strategy even when the
win probabilities for different serve directions are unequal. However,
as l ↓ 0, the CCPs converge to a mixed strategy only if the subjective
POPs satisfy the equal-win-probability restriction. Thus, dynamic discrete-
choice models are a natural way to model server behavior while convert-
ing the test for equal win probabilities into a simpler test of whether the
estimated value of l equals 0.
Let jFD(x, m, ε) be the server’s strategy under the fully dynamic struc-

tural model as a function of the observed state (x, m) and the unobserved
trembles ε 5(ε(l), ε(b), ε(r)). The fully dynamic model presumes that for
each (x, m, ε), the server chooses the serve direction that maximizes the
probability of winning the service game, given by

jFD(x,m, ε) 5 argmax
d∈ l,b,rf g

lε(d) 1 Vl(x,m, d)ð Þ, (7)

where Vl(x, m, d) is a conditional value function, the analogue of the con-
ditional win probabilityW(x, m, d) defined in equations (2) and (3) of sec-
tion III.19 Here, the analogue of the functionW(x,m) given by the Bellman

18 An alternative, game-theoretic interpretation is that these shocks represent trembles,
or incomplete information on players’ preferences that imply a Bayesian Nash equilibrium.
McKelvey and Palfrey (1995, 1998) studied games of this type and referred to them as “quantal
response equilibria.”However, the perspective we take is tomodel the server’s direction choice
as a single-agent dynamic discrete-choice problem, taking the receiver’s behavior as given and
embodied in the POPs. Under this interpretation, following Rust (1987), the ε shocks are
unobserved state variables, i.e., idiosyncratic IID private information or preference shocks
that are known by the server (though not the receiver or econometrician) but make the serv-
er’s behavior appear random even if the actual serve strategy is a pure strategy (i.e., a deter-
ministic function of the server’s information).

19 Generically, the optimal strategy jFD(x, m, ε) will be a pure strategy, since the probabil-
ity of more than one serve direction resulting in the same expected reward (including the
shock ε(d)) is zero. Below, we characterize a necessary condition for jFD to converge to a
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equation (1) is replaced by Vl(m, d), which is given by

Vl(x,m) 5 l log o
d∈ l,b,rf g

exp Vl(x,m, d)=lf g
 !

: (8)

The serve-direction probability implied by the fully dynamic model is de-
noted PFD(djx,m):

PFD(djx,m) 5 Pr d 5 jFD(x,m, ε)jx,mf g

5
exp Vl(x,m, d)=lf g

od 0
∈ l,b,rf g expfVl(x,m, d 0)=lg :

(9)

Equation (9) gives the probability of choosing to serve to direction d in
observed state (x, m) while accounting for the randomness of the unob-
served trembles ε. Since the trembles are IID across serves, it would appear
that this model should also imply conditional independence of serve di-
rections across successive first and second serves. However, that will actu-
ally be true only if there is no muscle memory; that is, the variable m does
not enter Vl(x, m, d) (recall that m is a vector that stores the directions of
the two most recent first serves). With muscle memory present, we can still
have serial correlation of serves even though the trembles are IID.
By theorem 3 of Iskhakov et al. (2017), we have

W (x,m, d) 5 lim
l↓0

Vl(x,m, d), (10)

uniformly for all (x, m, d). This implies that the only way for PFD(djx,m)
to converge to a completely mixed serve strategy as l ↓ 0 is if the limiting
conditional win probabilities W(x, m, d) obey the equal-win-probability
constraints, W (x,m, l) 5 W (x,m, b) 5 W (x,m, r) for all (x, m).
The point-myopic and serve-myopicmodels have the same general struc-

ture as the fully dynamic model, so the serve strategies, value functions, and
choice (mixing) probabilities are given by the same equations: (7), (8), and
(9), respectively. The difference is in the equations defining Vl. In the serve-
myopic model, we have

Vl(x,m, d) 5 p(injd, x,m)p(winjd, x,m); (11)

that is, Vl(x, m, d) is the probability of winning the serve. A serve-myopic
server maximizes the probability of winning each serve, while the point-
myopic server’s objective is to win each point. Thus, a point-myopic server

mixed strategy as l ↓ 0: this requires the limiting values of Vl to be equal for all d. As a re-
viewer noted, using private-information shocks to provide an alternative interpretation of
what might otherwise appear to be mixed strategies dates back to Harsanyi (1973) and can
be used “as a way of justifying the paper’s structural model.” Indeed, we show in sec. 5.2 of
the appendix that eqq. (7)–(9) hold in any Bayesian Nash equilibrium in which the server,
but not the receiver, learns ε before choosing his serve strategy.
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performs a two-period backward-induction calculation. In any second-
serve state, the value of the point-myopic server Vl(x, m, d) coincides with
the serve-myopic formula given in equation (11) above. But in any non-
terminal first-serve state, Vl is given by

Vl(x,m, d) 5 p(injd, x,m)p(winjd, x,m)

1 1 2 p(injd, x,m)ð ÞVl(x 1 1,m 0),
(12)

where m 0
5 (d21, d), and Vl(x 1 1,m 0) is the maximum win probability

over all the second-serve directions given in equation (11).
Note that all three structural models imply probabilistic serve strate-

gies that are entirely determined by the POPs and the scale parameter l
for the trembles. In contrast, the reduced-form model of serve directions
does not depend on the POPs, since it is estimated separately with a flex-
ible parameterization of serve directions. The structural models can be
viewed as restricted special cases of the most flexible specification of the
reduced-form model. This enables us to conduct likelihood-ratio (LR)
specification tests for the three structural models relative to the unrestricted
reduced-form specification.20

E. The Monotonicity Condition and Myopic Optimality

Unlike chess, where a player’s ability to look ahead and consider the con-
sequences of different moves is critical to success, planning ahead may
not be as critical to success in tennis. However, the ability to solve at least
a two-period DP problem is important, and in section IV.A, we provide
clear evidence that the option of a second serve affects the first-serve strat-
egy. In particular, first serves are significantly faster but have a higher chance
of faulting than second serves. Second serves are also more likely to be
body serves, which are less likely to miss wide in either direction.
But it is less clear whether there is a payoff to solving an infinite-horizon

DP problem to determine optimal serve strategies as we did in section III.B.
Indeed, absent muscle-memory effects, point-myopic play is optimal. In
particular, Walker, Wooders, and Amir (2011) show that tennis is a binary
Markov game, which is a two-player constant-sum game with only two pos-
sible outcomes, for both the overall game and all component subgames.

20 A valid LR specification test would be based on a fully unrestricted version of the
reduced-form model with a total of 624 parameters, so that it has the flexibility to replicate
any conditional probability P(djx,m). Given the limited number of observations for spe-
cific server-receiver pairs, our specification for P(djx,m) depends on only 12 parameters,
though it produces estimates that fit the data well. While our reduced-form specification
does not strictly nest the structural models, it has sufficient flexibility to closely approxi-
mate the structural serve probabilities. We can also perform tests using the nonnested spec-
ification test of Vuong (1989). However, we prefer the LR tests and also rely on the AIC model-
selection criterion to select our preferred structural specification, similar to the way we used
it to select our preferred specification for the reduced-form model.
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They assume that the probability of winning a point is independent of the
current score and all prior choices. They define aminimax-stationary strategy
for the overall game as one where each player focuses only on winning the
current point. They show that the minimax-stationary strategy coincides
with the MPE of the overall game, provided that a monotonicity condition
(MC) holds, namely that the probability of winning the service game is
always higher after winning any point than after losing it. Thus, point-
myopic play is optimal without muscle-memory effects, since the MC holds
in this special case of our model.
However, the MC is not sufficient for Walker, Wooders, and Amir’s

(2011) decomposition result to hold in our model with muscle-memory
effects.21 Of course, their decomposition result is sufficient, but not nec-
essary, for a point-myopic serve strategy to be optimal. For example, a
point-myopic serve strategy will be optimal whenever points are IID Ber-
noulli outcomes, since we showed in section III.A that this implies that the
tennis score state is a random walk with drift. Therefore, a strategy that
increases the probability of winning any point also increases the proba-
bility of winning the service game.
In fact, a point-myopic serve strategy will be trivially optimal in our data

as long as we are observing a Nash equilibrium in which the server is using
a completely mixed strategy, since any deviation serve strategy is optimal
in that case. So in this section, we assume that we are not observing a com-
plete mixed Nash equilibrium, allowing for pure strategies in some states
and/or disequilibrium play. The following testable condition implies that
point-myopic play is optimal in the presence of muscle memory:
Definition 2 (Generalized MC [GMC]). The probability of winning

the game is always higher after winning a point than after losing it:

W (x1(x),m) > W (x2(x),m) for all (x,m): (13)

Also, at any first-serve state x and for any direction d1 of the previous first
serve, if the probability of winning the point is higher for serving to direc-
tion d than to d 0, then

W (x1(x), (d, d1)) ≥ W (x1(x), (d 0, d1)),

W (x2(x), (d, d1)) ≥ W (x2(x), (d 0, d1)):
(14)

21 In the presence of dynamic effects such as muscle memory, we can imagine that there
might be trade-offs, such as serve directions that increase the chance of winning the current
point but compromise the ability to win subsequent points. For example, serving to the same
direction as theprevious servemay reduce the chanceof faulting as a result ofmuscle-memory
effects, but doing so might improve the receiver’s ability to return future serves hit to that di-
rection, reducing the server’s effectiveness in subsequent states of the game.
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The first inequality in (13) is the same monotonicity condition that
Walker, Wooders, and Amir (2011) showed is sufficient to establish that an
optimal point-myopic strategy also maximizes the probability of winning
the service game when there is no “state dependence” other than through
the score state x.When there are dynamic effects such asmusclememory, the
MC alone will no longer be sufficient to establish this result. The new con-
dition (14) imposes the additional restriction that if a particular serve di-
rection d results in a higher probability of winning the current point than
some other serve direction d 0, the choice of d will not lower the server’s
probability of winning the service game relative to d 0 in the subsequent
states x1(x) and x2(x).
A stronger sufficient condition that implies condition (14) is to require

that at any first-serve state x, the service-game win probability does not
depend on the direction of the previous first serve (though it can depend
on the serve direction d2 two first serves ago when the server was serving
to the same court, unless d2 5 ∅ for the first serves in the game to the
deuce and ad courts). When there is muscle memory, the choice of first-
serve direction has future consequences because it affects the evolution
of muscle memory, which in turn affects the server effectiveness in future
states of the game. However, if muscle memory operates only across suc-
cessive serves to the same court, then condition (14) will hold, and the
server will not have to consider the current serve direction’s effects on the
probabilities of winning in subsequent game states.
Theorem 3. If the GMC holds, then the optimal point-myopic and

fully dynamic serve strategies coincide and result in the same service-game
win probabilities for the server.
The proof of theorem 3 is in section 1.4 of the appendix. In sec-

tion IV, we show that the GMC is testable, and there are server-receiver
pairs for which the GMC fails for our empirically estimated W. In these
cases, point-myopic strategies are suboptimal, although we show that typ-
ically the cost of suboptimality in terms of reduced service-game win prob-
ability is small.
Consider the implications for serial independence of serve directions.

If there are no muscle-memory effects, then Walker, Wooders, and Amir’s
(2011) MC is equivalent to inequality (13) and implies that any strategy
that maximizes the probability of winning each point also maximizes the
probability of winning the service game. This leads Walker and Wooders
(2001, 1522) to the wrong conclusion that “in addition to equality of play-
ers’ winning probabilities, equilibrium play also requires that each player’s
choices be independent draws from a random process.” Independence
in serve directions is a consequence of their assumption that serve strat-
egies do not depend on previous choices and outcomes. When there is
history dependence such as muscle memory, equilibrium strategies will
generally depend on both the score state x and muscle memory m. This
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history dependence implies that a point-myopic serve strategy will gen-
erally be suboptimal in terms of maximizing the probability of winning
the service game. However, even when the stronger form of the MC—
our GMC assumption (14)—holds and a point-myopic serve strategy is
optimal, serial correlation in serve directions will still be a general prop-
erty of an MPE, as we show in section 1.4 of the appendix. Thus, serial
independence of serve directions is generally not an implication (i.e., nec-
essary condition) of a mixed-strategy MPE in the presence of muscle mem-
ory, though independence does hold in the absence of dynamic effects
such as muscle memory.
We conclude by summarizing the testable implications of the theory we

have presented:

1. Nash equilibrium: there should not be any alternative serve strategy
that increases the server’s probability of winning.

2. Mixed-strategy equilibrium: the probability of winning in state (x, m)
should be equal for all serve directions chosen with positive proba-
bility in state (x, m).

We also test the following behavioral implications of the GMC:

3. Optimality of point-myopic serve strategies: when the GMC holds,
it is optimal for the server to adopt a point-myopic strategy that
focuses only on the goal of maximizing the probability of winning
each point.

4. Serial independence: if GMC holds and there are no muscle-memory
effects, the direction of a first serve should not depend on the di-
rection of any previous first serve.

IV. Reduced-Form Analysis of Serve Strategies

In this section, we start with a model-free descriptive analysis of our data.
Then we introduce a flexible reduced-form model of tennis that we use
to test several of the key implications of game theory summarized in sec-
tion III, particularly the implication that conditional win probabilities
are the same for all serve directions.22 Most of our analysis focuses on a
set of elite professional tennis players, who have all been ranked number 1
in the world and won multiple Grand Slam tournaments. These players are
Roger Federer, Rafael Nadal, NovakDjokovic, AndyMurray, Pete Sampras,

22 Our analysis is not assumption-free, as we maintain assumption 2 for validity of our
statistical tests.
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and Andre Agassi.23 We focus on these players for two reasons: first, we
have themost observations for them, and second, if we can show that they
serve suboptimally, that means that even the best of the best are susceptible
to strategic errors.

A. Analysis of Play of Specific Server-Receiver Pairs

We have sufficient observations to analyze serve decisions of specific server-
receiver pairs. Table 1 summarizes some of the key statistics for 10 selected
elite server-receiver pairs, revealing a great deal of player-specific hetero-
geneity that would be masked in pooled statistics. The table presents the
total number of service games and serves we observe for each pair. A typ-
ical service game ends after seven to nine serves. The third column breaks
down the total number of serves we observe into first and second serves.
We can see that the “crude fault rate” (fraction of total serves that are sec-
ond serves) differs across servers, ranging from a low of 21% for Nadal
serving to Federer to a high of 30% for Sampras serving to Agassi.
The three columns under “Serve Direction” list the fractions of first

and second serves to the receiver’s left, body, and right for each server-
receiver pair. We see that in general, servers use mixed strategies, but the
mixing probabilities for second serves differ significantly from those for first
serves. The last column of the table includes the p-value of an LR test of
the null hypothesis that the mixing probabilities for the first and second
serves are equal. We see that for all servers, we can decisively reject this
hypothesis. In general, the fraction of second serves to the body is about
twice as large as that for first serves.
We also see that servers adjust their serve strategies for different receiv-

ers. For example, from table 1, we can see that Nadal uses a different serve
strategy when serving to Federer than when serving to Djokovic. The pen-
ultimate column of table 1 shows the empirical service-game win prob-
ability for the server and its estimated standard error (i.e., the fraction of
games the server won). We see quite a bit of variation in service-game win
probabilities across different server-receiver pairs, ranging from a low of
72% for Nadal serving to Djokovic, to a high of 90% for Sampras serving
to Agassi. Even controlling for the same server, we see a fairly big variation
in win probabilities, depending on the receiver: for example, Nadal has an
81% service-game win probability when serving to Federer, as Federer is a
weaker receiver than Djokovic. Given the relatively small standard deviations
in estimated win probabilities, we can strongly reject the null hypothesis
that the variation in estimated win probabilities is due to sampling error.

23 We provide results for women and additional men in sec. V.C.
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B. A Flexible, Agnostic Reduced-Form Probability
Model of Tennis

In order to test the key necessary condition for a mixed-strategy equi-
librium—equality of win probabilities for all serve directions—a deeper
econometric analysis is required. As discussed in section III, we do not have
enough data to estimate a nonparametric model. Instead, we estimate
a flexibly parameterized reduced-form specification for serve strategies
P(djx,m) andPOPs (p(injx,m, d), p(winjx,m, d)). Following standard ter-
minology in the dynamic discrete-choice literature, we refer to the serve
probabilities below as CCPs. Let f(x, m, d) be a 1 � KP vector of indicators
for various subsets of the state/action space. We describe specific choices
for f below. In general, f partitions the state space into subsets where
serve-direction probabilities are similar. Let vP be a conformable KP � 1
vector of coefficients to be estimated. We use the following flexible logit
model for the CCPs:

P(djx,m, vP) 5
exp f (x,m, d)0vPf g

od∈ l,b,rf g expf f (x,m, d)0vPg
: (15)

Similarly, let gin(x, m, d) and gwin(x, m, d) be 1 � Kin and 1 � K win vectors
of indicators used to define the following binary logit models for p(inj
x,m, vin) and p(winjx,m, vwin) that depend on parameter vectors (vin, vwin):

p(injx,m, d, vin) 5
exp gin(x,m, d)0vinf g

1 1 exp gin(x,m, d)0vinf g , (16)

p(winjx,m, d, vwin) 5
exp gwin(x,m, d)0vwinf g

1 1 exp gwin(x,m, d)0vwinf g : (17)

We estimate the parameter vector v 5(vP , vin, vwin) by maximum likelihood,
using the log-likelihood function L(v) given by

L(v) 5 o
N

n51
o
Sn

s51

log P(ds,njxs,n,ms,n, vP)ð Þ 1 log h(os,njxs,n,ms,n, ds,n, vin, vwin)ð Þð Þ,
(18)

where N is the total number of service games observed for a particular
server-receiver pair, Sn is the number of serves in game n, and (ds,n, xs,n, ms,n)
are the observed serve direction, game state, and muscle-memory state,
respectively, at serve s in game n. The variable os,n is the outcome of serve
s of game n and takes one of three possible values: os,n 5 1 if the serve is
in (i.e., not faulted) and the server wins the subsequent rally, os,n 5 2 if
the serve is in and the server loses the subsequent rally, or os,n 5 3 if the
serve is faulted. In all first-serve states (i.e., odd values of x), the service-
game state transits to a second serve in the event that o 5 3, but in any
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second-serve state the server loses the point when o 5 3 (i.e., the server
“double-faults”). The conditional probability h(ojx,m, d, vin, vwin) is de-
fined in terms of the POPs as follows:

h(ojx,m, d, vin, vwin)5

p(injx,m, d, vin)p(winjx,m, d, vwin) if o 5 1,

p(injx,m, d, vin) 12 p(winjx,m, d, vin)ð Þ if o 5 2,

1 2 p(injx,m, d, vin) if o 5 3:

8

>

>

>

<

>

>

>

:

(19)

Different specifications correspond to different partitions of the state/
action space. The finest partition, in which every pair (x, m) is a partition
element, yields the full nonparametric specification for (P, Π). Since we
do not have sufficient observations to reliably estimate a fully nonpara-
metric model, we face a classic bias/variance trade-off between estimating
a flexiblemodel withmany parameters and estimating amore parsimonious
model with sufficiently many observations per parameter to guard against
overfitting plus outliers that could distort our estimates of the POPs.
Wemanage this trade-off usingmodel-selection techniques, particularly the

AIC, which penalizes model complexity. Specifically, AIC 5 2(K 2 L(v̂)),
where K is the total number of parameters estimated in a given model,
L(v̂) is the maximized value of the log-likelihood function, and v̂ is the
maximum-likelihood estimate of the parameters of the particular model.
We evaluated several different specifications (i.e., choices for f, g in, and gwin
with different numbers of parameters and different partitions of the state
space)and chose as our preferred specification (see sec. 2 of the appen-
dix) the model with the lowest AIC.24

Our preferred specification still involves a large number of parame-
ters per server-receiver pair. In particular, the serve-direction probabil-
ities P(dj⋅) are governed by 12 parameters. Eight are for the full set of
interactions between direction d ∈ fl, rg25 and the court (deuce vs. ad)
and serve (first vs. second) dummy variables. The other four are muscle-
memory parameters that interact the court and serve dummies with a
dummy indicating whether the direction of the current serve equals the
direction of the previous first serve to the same court. Each of the POPs
(vin, vwin) is determined by 16 parameters, which correspond to the indi-
cators just described for serve probabilities, except that the current serve

24 We also used the Bayesian information criterion (BIC) BIC 5 K log(N ) 2 2L(v̂), which
has a stronger penalty for model complexity. But we found that the higher complexity penalty
caused the BIC to select models with fewer parameters. In cases where one model specifica-
tion was nested within another encompassing specification, the BIC would choose themore
parsimonious restricted specification even though LR tests would lead us to reject the par-
simonious restricted specification relative to the less restricted encompassing model.

25 Since P(djx,m, vP ) sums to 1 across directions, we need include only two dummies for
current serve direction.

216 journal of political economy



direction must include all three directions, since the probabilities p(in)
and p(win) need not sum to 1 across serve directions.26

We do not have the space to present all these parameter estimates and
the associated standard errors for each of the server-receiver pairs we an-
alyzed, though we provide them for Federer versus Djokovic in section 2
of the appendix and can provide the rest on request. As we will describe
further in the next sections, our preferred specification balances the trade-
off described above: it provides an accurate probability model of the en-
tire service game for individual server-receiver pairs while avoiding the
dangers of overfitting. In the remainder of this section, we will use this
model to test several of our key assumptions, including the key hypothesis
of Nash equilibrium play in tennis.

C. Testing for Stationarity across Matches

We now test assumption 3, that is, stationarity of the POPs (p(inj
x,m, d, vin), p(winjx,m, d, vwin)) over time and across service games. Sup-
pose that the CCPs are also stationary in this same sense. Then the sto-
chastic processes of serves and serve outcomes in any given service game
of a given server-receiver pair on a given type of court are Markovian, and
the realizations of these Markov processes are IID across successive service
games. While the presence of muscle memory and the scoring rules of
tennis imply that the sequences of serve directions and serve outcomes
will be serially correlated within a service game, there will be no depen-
dence across successive games, because we assume that muscle memory is
reset at the start of each service game and there are no other effects that
lead to dependence across successive games.
It is easy to think of reasons why assumption 3 may not hold. For ex-

ample, if a server injures his shoulder, this can adversely affect the POPs.
Or there might be psychological effects, such as confidence or a “hot
hand,” that could lead to serial correlation across successive service games
served by the same player. Finally, if a player is learning and adapting, his
strategy may slowly evolve as he learns more about his opponent’s weak-
nesses and adjusts to exploit them.
On the other hand, we need to pool across service games to have any

hope of efficiently estimating the parameters determining the CCPs and
POPs. From the previous section, our preferred reduced-formmodel has a
total of 32 parameters (24 if we exclude muscle-memory effects). Given that
a typical service game lasts for about seven to nine serves, we need at least

26 We also estimated our models with a reduced-form specification that adds a binary
partition of the score state capturing how far ahead (or behind) the server is in the current
service game to the reduced-form specification of the POPs and CCPs. All of our qualitative
results are robust to this alternative specification.
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100 games of data to estimate these 32 (or even 24 parameters) with suf-
ficient accuracy. We are particularly concerned about overfitting, along with
the possibility that the model’s predictions of conditional win probabilities
will be incredibly high or low because of the lack of sufficient observations.
The stationarity assumption is testable, and we present results from a

simple way of testing for stationarity in tables 2 and 3 below. For the same
set of 10 server-receiver pairs in table 1, we estimate separate CCPs and
POPs for different subsets of service games on the basis of year groupings
of our data.27 For example, for Agassi and Sampras, we divide the data into
two subperiods, one from 1995 to 1999, where we have 67 service games,
and another from 2000 to 2002, where we have 60 games. For Federer and
Nadal, we have sufficient data to create three subperiods: 2004–7, 2008–12,
and 2013–17, with 67, 81, and 91 service games, respectively. We estimate
a pooled, or “restricted,” model using all games in all years and impos-
ing stationarity. Next, we estimate an “unrestricted” model that allows the
CCPs and POPs to be different in each subperiod.
We calculate an LR test statistic of the stationarity hypothesis by taking

two times the difference between the log likelihood for the unrestricted
model (i.e., summing the individual subperiod log likelihoods) and the
log likelihood for the restricted model. The unrestricted model with two
subperiods has a total of 2 � 32 5 64 (with muscle memory) or 2 � 24 5

48 (without muscle memory) parameters, which are estimated separately
without placing any equality restrictions across the two sample subsets. Thus,
the LR test has 32 degrees of freedom for the specification with muscle
memory and 24 degrees of freedom for the specification without muscle
memory. For the player pairs where we have enough data to divide the sample
into three subperiods, the test has 64 and 48 degrees of freedom, respectively.
Table 2 shows that we are unable to reject our stationarity assumption 3

at the 5% level for any of the 10 player pairs we analyzed under the muscle-
memory specification. For the specification without muscle memory (which
is the preferred one for all 10 pairs under the AIC criterion), we reject sta-
tionarity only for Agassi serving to Sampras. We conclude that assumption 3
is a reasonable approximation to the data, which justifies pooling across
service games to get the most reliable possible estimates of the CCPs
and POPs.
Table 3 displays the results of LR tests of stationarity of the CCPs. The

AIC is lowest for the muscle-memory specification for seven of the 10 player
pairs. We reject stationarity of the CCPs for eight of the 10 and nine of
the 10 pairs under the muscle-memory and no-muscle-memory specifica-
tions, respectively. Under the assumptions in section III, if the POPs are
stationary, then players use MPE strategies, and if the MPE is unique, then

27 We provide test results for stationarity with an alternative partition of the data in sec. 3 of
the appendix.
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the CCPs must be stationary as well. Thus, we conclude that the rejections
in table 3 indicate that either (a) there are multiple MPEs, and the play-
ers “select” different MPEs in different time periods, or (b) players are
not playing MPE strategies, and the variation in CCPs reflects the effect of
some sort of learning or experimentation with different serve strategies
over time.

D. Testing Equality of Win Probabilities over Directions
and Strategies

We now present tests of the key implication of a completely mixed MPE
that point and service-game win probabilities are independent of serve
direction, plus the stronger implication that all deviation serve strategies
imply the same win probability. We strongly reject these implications in
models with muscle memory. As we show below, the data support the pres-
ence of muscle memory for almost all player pairs because of strong evi-
dence of serial dependence in serve directions. Accounting for this depen-
dence is key to our ability to detect violations of equal win probabilities.
Table 4 compares the recursively calculated game win probabilities

from equation (6) to nonparametric estimates (i.e., simply the fraction of
games won) of these probabilities at the first serve of each service game.
We restrict attention to the first serve of the game because it provides the
most observations to reliably estimate the game win probability nonpara-
metrically. The final column shows the p-value of a Durbin-Hausman-Wu
(DHW) test of our preferred reduced-form specification. Recall that the
DHW test compares a consistent but inefficient nonparametric estimator
of the game win probability to a relatively efficient estimate of it from
equation (6).28

We see that the calculated win probabilities are close to the nonpara-
metric estimates and are almost always within a standard deviation of each
other. The high p-values of the DHW specification tests in the final column
of the table show that for all servers except Federer serving to Nadal, we
are unable to reject the reduced-form specification and its implied win
probability. In the case of Federer serving to Nadal, the reduced-form
estimate of the win probability is 0.796, slightly more than 1 standard

28 The DHW specification test compares two estimators of a given quantity or parameter:
an inefficient but

ffiffiffiffiffi

N
p

-consistent estimator that is consistent under both the null and alter-
native hypotheses, and an efficient estimator that is also

ffiffiffiffiffi

N
p

-consistent for the true param-
eter under the null hypothesis but may be inconsistent under the alternative hypothesis (N
denotes the sample size). In our case, the relevant null hypothesis is that our reduced-form
specification for (P, Π) is correct, and the nonparametric estimates of the win probabilities
in table 4 are inefficient but consistent even if the null hypothesis is false (i.e., our reduced-
formmodel is misspecified). Under the null, the DHW test statistic is equal to the square of
the two estimates of the win probability divided by the differences in the asymptotic vari-
ances, and it converges to a x2 random variable with 1 degree of freedom.
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deviation away from the nonparametric estimate of the win probability,
0.829. The middle columns compare the nonparametric estimates of the
conditional win probabilities with the corresponding estimates implied by
the reduced-form model, WP(1, 1, d) for d ∈ fl, b, rg. The estimates are
generally close to each other, though there are some cases where there

TABLE 4
Estimated Win and Conditional Win Probabilities at First Serve of Service Game

Server →

Receiver

Win Probability,
First Serve

Conditional Win Probability,
First Serve

DHW Test
p -ValueLeft Body Right

Federer →
Nadal .004

NP estimate .796 (.026) .816 (.025) .650 (.030) .803 (.025)
RF estimate .829 (.023) .828 (.024) .819 (.027) .833 (.022)

Nadal →
Federer .107

NP estimate .786 (.026) .748 (.028) .896 (.020) .762 (.028)
RF estimate .807 (.023) .808 (.023) .807 (.025) .803 (.025)

Federer →
Djokovic .504

NP estimate .810 (.024) .844 (.022) .867 (.021) .767 (.025)
RF estimate .818 (.020) .826 (.020) .812 (.023) .813 (.021)

Djokovic →

Federer .910
NP estimate .782 (.025) .769 (.026) .710 (.028) .815 (.024)
RF estimate .781 (.022) .792 (.022) .769 (.026) .774 (.024)

Nadal →
Djokovic .992

NP estimate .712 (.035) .685 (.036) .726 (.035) .750 (.034)
RF estimate .712 (.034) .712 (.034) .701 (.035) .718 (.034)

Djokovic →

Nadal .278
NP estimate .829 (.029) .868 (.026) .735 (.034) .833 (.029)
RF estimate .848 (.023) .854 (.023) .830 (.027) .849 (.023)

Djokovic →

Murray .871
NP estimate .794 (.034) .759 (.036) .750 (.036) .841 (.031)
RF estimate .791 (.029) .796 (.031) .758 (.034) .799 (.029)

Murray →
Djokovic .675

NP estimate .721 (.038) .816 (.033) .500 (.042) .701 (.038)
RF estimate .717 (.036) .735 (.036) .712 (.039) .703 (.037)

Sampras →
Agassi .150

NP estimate .885 (.028) .894 (.027) 1.00 (.000) .859 (.030)
RF estimate .866 (.024) .866 (.025) .839 (.029) .872 (.024)

Agassi →
Sampras .362

NP estimate .874 (.029) .907 (.026) .867 (.030) .852 (.032)
RF estimate .859 (.024) .861 (.026) .853 (.026) .859 (.024)

Note.—NP estimate 5 nonparametric estimate; RF estimate 5 reduced-form estimate.
Standard errors are in parentheses.
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are large differences due to small numbers of observations, resulting in
noisy nonparametric estimates.29

In contrast, the middle columns of table 4 reveal big differences in
game win probabilities for different serve directions. The largest gap is
a 31 percentage point difference between the win probability for left
(81.6%) versus body (50%) for Murray serving to Djokovic, roughly 10 times
their estimated standard errors. The average value of the maximum de-
viation in game win probabilities over all states and serve directions in
table 4 is 19 percentage points, nearly four times as large as the estimated
standard errors of these maximum deviations.
Although table 4 reassures us that our recursive calculation of game

win probabilities results in accurate and efficient estimates, some readers
may be skeptical that the evidence against equal game win probabilities
is as convincing as the tests of equal point win probabilities that Walker
and Wooders (2001) and most of the subsequent literature have focused
on. In table 5, we present omnibus Wald tests of equality of the point win
probabilities at all states (x, m) of tennis simultaneously. Recall that under
the point-myopic theory of play, the server does not consider the future
consequences of different serve directions and instead maximizes the prob-
ability of winning each point, which is a two-period DP problem. Starting
at the second serve, the restriction that point win probabilities are the same
for all serve directions holds if the serve win probability V(x, m, d) given by

V (x,m, d) 5 p(injx,m, d)p(winjx,m, d) (20)

is the same for all three serve directions in all second-serve states (x, m).
In any first-serve state, the point win probability V(x, m, d) is given by

V (x,m, d) 5 p(injx,m, d)p(winjx,m, d)

1 1 2 p(injx,m, dð Þ)
�

o
d 0
∈ l,b,rf g

P(d 0jx,m 0)p(injx 1 1,m 0, d 0)p(winjx 1 1,m 0, d 0)

�

,

(21)

and it should also be the same for all d, where m 0
5 f (m, d 0) is the new

muscle-memory state implied by serve direction d 0, which is updated only
in first-serve states.
Table 5 provides the test statistics, p-values, and degrees of freedom for

the omnibus Wald test of equality of conditional win probabilities for

29 For example, in the case of Sampras serving to Agassi, because of the low probability
that Sampras serves to the body (approximately 7%; see table 1) and the relatively low num-
ber of games in which we observe him serving (140), the nonparametric estimate of the
conditional win probability of serving to the body equals 1. Of course, this nonparametric
estimate is probably not a reasonable estimate: instead it is likely to be a lucky outcome for
Sampras, who happened to win every one of the eight games where he served to Agassi’s
body on the very first serve of the game.

(21)
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all serve directions, that is, the restrictions that V (x,m, l) 5 V (x,m, b) 5

V (x,m, r) for all 298 states (x, m), where V(x, m, d) is given in equa-
tions (20) and (21) above. We see that there are strong rejections of the
hypothesis of equal win probabilities for all player pairs except for Federer
serving to Djokovic. Overall, we also see big differences in point win prob-
abilities across different serve directions: the average maximum deviation
over all 10 player pairs is .275, with a standard deviation of .083.
Why are we able to reject the hypothesis of equal point win probabili-

ties so strongly when previous studies were unable to do so? We believe
that accounting for muscle memory is a large part of the story. If we re-
peat the Wald tests in table 5 under the no-muscle-memory specification,
we find smaller maximum deviations in win probabilities over serve direc-
tions over the reduced state space, and we reject the equal-win-probability
hypothesis for only two of the 10 player pairs above.30 Previous tests, such
as those by Walker and Wooders (2001), focused only on first serves and
pooled all first-serve observations into just two groups: the deuce and ad
courts. Pooling the data in this way masks big differences in win proba-
bilities for different serve directions that appear once we control for serial
correlation in serves by conditioning on previous serve history via the
muscle-memory state. The importance of controlling for muscle mem-
ory is confirmed in section 4 of the appendix, where we present the re-
sults of Wald tests of equal win probabilities under the no-muscle-memory
specification, essentially replicating Walker and Wooders’s approach but
using our data and including second serves. Like Walker and Wooders’s,
these tests usually fail to reject equal win probabilities.

TABLE 5
Wald Tests of Equal Point Win Probabilities,

Muscle-Memory Specification

Server → Receiver Wald Statistic Degrees of Freedom p-Value

Federer → Nadal 405.4 29 5.9 � 10268

Nadal → Federer 243.2 30 2.9 � 10235

Federer → Djokovic 23.6 30 .75
Djokovic → Federer 274.5 27 8.9 � 10243

Nadal → Djokovic 83.5 29 3.5 � 1027

Djokovic → Nadal 69.6 28 2.1 � 1025

Djokovic → Murray 52.3 30 .007
Murray → Djokovic 212.0 30 2.7 � 10229

Sampras → Agassi 146.4 30 2.9 � 10217

Agassi → Sampras 198.6 30 8.9 � 10227

30 These pairs are Djokovic serving to Murray and Djokovic serving to Nadal (the Wald
statistics are 18.4 and 23.0, with p-values of .018 and .003, respectively, under 8 degrees of
freedom). Also, the average value of the maximum difference in point win probabilities
over all directions and states for these 10 pairs is .20 (standard deviation 5 .08).
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We now turn to testing for equal service-game win probabilities using
the fully dynamic version of the model with recursively calculated game
win probabilitiesWP from equation (5). We also use equations (2), (3), and
(5) to calculate the direction-specific win probabilitiesWP(x,m, d) entering
the recursive formula for WP(x, m). The omnibus Wald test of equal win
probabilities for all serve directions involves testing in all 298 states (x, m)
the equality restrictions:

WP(x,m, l) 5 WP(x,m, b) 5 WP(x,m, r): (22)

In our preferred specification with muscle memory, this test amounts to
a test of 596 equality restrictions of the form given in equation (22).31

Since the conditional win probabilities are implicit functions of (P, Π)
and (P, Π) are functions of the 44-dimensional parameter vector v̂ 5

(v̂P , v̂in, v̂win), we use the delta method to construct the omnibus Wald test
statistic. This is a quadratic form in the 596 � 1 vector of differences in
conditional win probabilities between serve directions over all states, using
the Moore-Penrose inverse of the 596 � 596 covariance matrix of win prob-
ability differences, expressed as a sandwich formula in terms of the 44 � 44
variance-covariance matrix for the reduced-form parameter vector v̂. We
need to use the Moore-Penrose inverse rather than the standard matrix
inverse because the rank of the covariance matrix (which equals the de-
grees of freedom of the x2 distribution of the omnibus test statistic under
the null hypothesis) is at most 44.32

We find that the omnibus Wald test results in rejections of equal service-
game win probabilities even stronger than those we obtained when testing
for the equality of point win probabilities in table 5, with p-values of nearly
0 for all player pairs (see table 6). However, there are reasons to distrust
such strong rejections due to small-sample numerical issues with the
Moore-Penrose inverse, which is not a continuous function of its matrix ar-
gument. The discontinuity can invalidate the standard x2 asymptotic distri-
bution of the Wald test statistic under the null hypothesis. Andrews (1987)
provides a sufficient condition for “generalized Wald tests” (which rely
on the Moore-Penrose inverse) to have the usual asymptotic x2 distribu-
tion: namely, the rank of the finite sample covariance matrix of the re-
strictions must converge with probability 1 to the rank of the limiting co-
variance matrix. Matrix rank is not a continuous function either, but it is

31 The specification with muscle memory is our preferred specification, since the no-
muscle-memory specification is strongly rejected for all but one of the player pairs (see ta-
ble 7 in sec. IV.E below).

32 The rank of the covariance matrix is generally even lower than 44 (the number of pa-
rameters) because the rank of the 596 � 44 gradient matrix of the win probability differences
is often less than 44.
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semicontinuous, so the rank condition of Andrews (1987) should hold
generically.33

Nevertheless, we have observed a tendency for Wald test statistics to
grow rapidly with the total number of restrictions being tested, so we have
opted to adopt amore conservative approach to testing for equal win prob-
abilities using small subsets of the total number of restrictions. Since ma-
trix inversion is continuous, our conservative approach reduces the prob-
lem of spurious rejections, though it does lead to power/size trade-offs
in the choice of how many restrictions to test. It also requires additional
choices over which subset of restrictions we choose to test.
The last column of table 6 presents the p-values for our more conserva-

tive test of equal win probabilities at a subset of six points in the state space:
(1) 0–0, (2) 15–0, (3) 0–15, (4) 40–15, (5) 15–40, and (6) deuce. This test
has 12 restrictions, and since the covariance matrix for these restrictions
is invertible, the test has 12 degrees of freedom. It rejects the hypothesis
of equal game win probabilities at the 5% level for six of the 10 player
pairs in the table.34

The second column of table 6 reports p-values for a Wald test of the in-
variance of win probabilities with respect to strategy deviations that must
hold when MPE serve strategies are completely mixed. We compute the
win probabilities of four different fixed strategies at three points in the
state space, resulting in a test with nine restrictions and degrees of freedom
(since the covariance matrix for this reduced set of restrictions is invert-
ible). The four fixed serve strategies are (1) always serve left, (2) always

TABLE 6
Wald Tests of Equal Service-Game Win Probabilities,

Muscle-Memory Specification

Server → Receiver
Four Fixed Serve Strategies

at Three States (9 df)
Reduced-Form Serve Strategy

at Four States (12 df)

Federer → Nadal 1.4 � 10211 .605
Nadal → Federer .873 .018
Federer → Djokovic 6.5 � 10230 1.6 � 10268

Djokovic → Federer .0009 .220
Nadal → Djokovic 2.2 � 102254 .526
Djokovic → Nadal 4.0 � 10291 4.5 � 10244

Djokovic → Murray 1.4 � 10269 .018
Murray → Djokovic 9.1 � 10291 .00001
Sampras → Agassi .787 .003
Agassi → Sampras .764 .667

33 A sufficient condition for the rank condition in Andrews (1987) to hold is that the limit
covariance matrix of the restrictions must be regular : i.e., the rank must be the same for all
covariance matrices in a neighborhood of the limiting value. In addition, proposition 4 of
Lewis (2009) establishes that the set of regular matrices is an open and dense set of the space
of all matrices.

34 A test of equal point win probabilities over the same score states rejects for three of the
10 pairs at the 5% level.
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serve to the body, (3) always serve right, and (4) serve to each direction
with probability 1/3 (i.e., a uniform distribution across the serve direc-
tions). The three particular score states used in these tests are (1) 40–15,
(2) 15–40, and (3) deuce. This test strongly rejects the hypothesis of equal
win probabilities for seven of the 10 player pairs. Thus, our new approach
to testing for equal win probabilities, allowing for serial correlation in
serve directions via muscle-memory effects, and our inclusion of body serves
andmoreobservations explainwhywe rejectmixed-strategyNashplay for the
majority of the elite player pairs in our data set.

E. Testing for “Muscle-Memory” Effects

We conclude this section by presenting evidence of serial dependence in
the CCPs and, to a lesser extent, the POPs. We have already shown in
section IV.A that there are significant differences between the mixture
probabilities for first and second serves, so it should not be surprising that
we also find significant serial dependence between first and second
serves. However, this serial dependence is not necessarily inconsistent
with equilibrium play, since the server considers the option value of the
second serve when choosing the speed, spin, and direction of the first
serve.
The more important question is whether there is serial correlation

across successive first serves hit to the same court. Our preferred specifi-
cation for our reduced-form model of serve directions conditions on the
deuce versus the ad court, so the server’s strategy can alternate across
courts. However, this effect does not induce serial correlation in serve
directions across successive first serves to the same court. We capture se-
rial correlation in such serve directions via muscle memory. The muscle-
memory specification also induces serial correlation between first and
second serves, since the CCPs for second serves depend on the direction
of the faulted first serve. The specification withoutmusclememory allows
for serial dependence as play alternates between courts, but it implies
zero serial correlation across successive first serves to the same court.
We use LR tests for serial correlation by comparing the likelihood that

includes muscle memory with the restricted likelihood that excludes the
muscle-memory variable m, since, as we showed in section III, serve di-
rections become serially independent under this specification. Table 7
presents the results of LR tests of the hypothesis of “no muscle-memory
effects.” The last column of this table shows that except for Nadal serving
to Federer, we can reject the hypothesis of no muscle memory in the
CCPs at the 5% level. However, when it comes to the POPs, we have far
weaker evidence of serial correlation. Formost of the server-receiver pairs
in table 7, we are unable to reject the hypothesis of no muscle-memory
effects in the POPs.
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Why is this the case? We think that it may have to do with the receiver’s
behavior. Specifically, if muscle-memory effects are real and the receiver
shifts his position accordingly, then the receiver can effectively cancel out
any effect that muscle memory would impart on the POPs. As a result, we
observe serial correlation in the server’s directional choices but not in the
POPs.35 This results can be consistent with Nash equilibrium play, as we
demonstrate in section 6 of the appendix.

V. Dynamic Structural Analysis of Serve Strategies

In the previous section, we estimated an unrestricted reduced-form
model of serve directions and POPs and showed that this flexible, agnos-
tic model of tennis rejects the key implication of a mixed-strategy Nash
equilibrium: namely, that the POPs satisfy the restriction that the server’s
win probability is the same for all serve directions in every state of the ser-
vice game (and thus that all possible serve strategies have equal win prob-
abilities). These tests did not require us to make any assumptions about
server behavior beyond assumption 3 (stationarity). This section provides
more insight into server behavior by presenting estimation results for the
three structural models we introduced in section III.D. We estimate their
parameters bymaximum likelihood, using the full-panel likelihood func-
tion (18) on data from hard courts for the 10 elite server-receiver pairs
listed in table 8.36 On the basis of our findings in section IV.E, which pro-
vide strong evidence of serial correlation in serve directions across suc-
cessive points, we focus on the specification with muscle memory. For
comparability, we use the same specification of the POPs as in our reduced-
form model presented in section IV. Therefore, our structural models
have a total of 33 parameters: the 32 � 1 vector of POP parameters (vin,
vwin) plus the extreme-value scaling parameter l.
The structural estimates of the POPs can be regarded as estimates of the

server’s subjective beliefs thatmay ormay not correspond to rational objec-
tive beliefs about the true POPs, which we estimate via our unrestricted
POP estimates. As we discussed in section III.D, the structural model im-
plies mixed-strategy Nash equilibrium play if two key restrictions are satis-
fied: (1) l 5 0 (i.e., players usemixed strategies, which canhold only if the
POPs obey the equal-win-probability restrictions), and (2) the subjective
POPs equal the objective POPs.
Unlike the reduced-form specification, the assumption of optimal play

implicit in the structural models imposes “cross-equation restrictions” on

35 We solved for the MPE in a two-direction version of our model and confirm that
muscle-memory effects induce much larger changes in the server and receiver’s equilib-
rium mixed strategies than in the POPs.

36 We extend our analysis to grass and clay courts and a much larger set of server-receiver
pairs in sec. V.C.
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the serve probabilities: they are implicit functions of the POP parameters
as well as the scale parameter l for the extreme-value-distributed trem-
bles. This implies that the likelihood function is no longer block-diagonal
between thePOPparameters (vin, vwin) andl, unlike theunrestricted reduced-
form model, where we have block diagonality between the 12 � 1
parameter vP determining serve-direction probabilities and the POPs
(vin, vwin). Thus, in the structural model, there is a tension between max-
imizing the likelihood for the POPs andmaximizing that for the serve di-
rections. As we will see, maximum likelihood resolves this tension by dis-
torting the estimates of the POPs while also driving the estimate of l close
to zero. As we noted in equation (10) of section III.D, the only way the
model can explain mixed-strategy play as l ↓ 0 is to force the POPs to
obey the equal-win-probability restrictions. Maximum likelihood results
in distorted POPs that satisfy equal-win-probability restrictions because
it enables the model to match observed serve-direction probabilities.
Table 8 summarizes the structural estimation results for the same 10 elite

server-receiver pairs that we analyzed in section IV.37 For comparison, we
show the optimized log-likelihood function for the reduced-form model
and the number of serve observations used to estimate the parameters,
along with the point estimates of l for each of the structural models.
The third and fourth rows of numbers for each server-receiver pair re-
port, respectively, the AIC value and the p-value of an “LR test” of each
structural model relative to the reduced-form model. As per our discus-
sion above, thesemodels are not strictly nested within each other, though
the reduced-formmodel is the more flexible specification, with a total of
44 parameters.
In light of this, we follow our approach in section IV and select our pre-

ferred model as the one with the smallest value of the AIC, which we pre-
sent in bold font. Note that the best-fitting model per the AIC is also the
model with the highest p-value for a quasi-LR test of each the structural
models relative to the reduced-form model. Thus, the model with the
lowest AIC is generally also themodel for which there is the least evidence
(from the quasi-LR test) against it relative to the reduced-formmodel. In
two cases, Djokovic serving to Federer and Sampras serving to Agassi, the
AIC selects the reduced-form model and the LR test strongly rejects all
three structural models.
For the other eight servers, the AIC selects the fully dynamic model in

only one case, Djokovic serving toNadal. It selects the point-myopicmodel
for four other servers and the serve-myopicmodel for the remaining three.
We would expect the serve-myopic model to be resoundingly rejected be-
cause it does not allow the server to look even just one serve ahead to take

37 Because of limited space, we do not provide the 32 parameter estimates of (vin, vwin)
and their standard errors for all 10 servers and all three structural models. We are happy
to provide these results to interested readers on request.
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advantage of the option value of a second serve when hitting a first serve.
However, the serve-myopic model does implicitly reflect adjustments in
serve strategy via the POPs that may reflect a server’s ability to look ahead.
For example, the estimated POPs for the second serve in the serve-myopic
specification show a lower probability of faulting (presumably because the
server reduces the speed of the second serve) but a lower probability of
winning the rally, given that the second serve is in (presumably because
of the receiver’s improved ability to return a slower serve). Therefore,
the serve-myopic model is able to reflect state dependence in tennis serves
via its effect on the POPs, which is why it is not so surprising that thismodel
performs as well as it does.
Note that the estimated scale parameters l̂ for all specifications are

uniformly small, so we find a limited role for “trembles” to explain the
observed mixed serve strategies of these players. Instead, the maximum-
likelihood estimates of the POPs (v̂in, v̂win) are distorted in a manner
that results in conditional win probabilities much closer to equal than
the ones implied by the reduced-form estimates of the POPs. Note that
the l estimates decline for the structural models that require increas-
ingly “farsighted” calculations by the server. When l is sufficiently
small, the conditional value functions Vl(x, m, d) are extremely close to
the conditional win probabilities, per the limiting result in equation (10).
But when l is larger, the trembles play a more important role in the
mixed serve strategies, allowing more freedom for the conditional value
functions (and the conditional win probabilities) to differ across serve
directions.
Table 9 provides the estimated service-game win probabilities and p-

values of DHW tests of the different model specifications. Recall that this
test is based on comparing the implied win probabilities calculated via
equation (6) to the nonparametric estimate of those probabilities; the
latter is simply the fraction of service games between a given server
and receiver that the server won. The first column of table 9 presents
the nonparametric estimates of the win probabilities and their standard
errors, and the remaining columns present the estimated win probabil-
ities implied by equation (6), with standard errors calculated via the
delta method.38

We see that the specification tests strongly reject the fully dynamic
model, with the exception of Djokovic serving to Nadal. Recall from ta-
ble 8 that the AIC selects the fully dynamic model as the preferred spec-
ification for Djokovic serving to Nadal, so it is reassuring to know that it is

38 Note that the model estimates are relatively efficient estimates of the win probabilities
(as reflected by their smaller standard errors), but they are consistent only if the model
specification is correct. The less efficient nonparametric estimator of the win probabilities
is consistent regardless.
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not rejected by the specification tests. But for the other servers, we note
that the fully dynamic model typically significantly underestimates the
true service-game win probability. This is caused by the need to distort
the POPs to rationalize serve behavior as a best response to the estimated
POPs in the fully dynamic model. As we will show in the next subsection,
the serve strategy for the fully dynamic model is close to the “true” serve
strategy captured by the reduced-form model, but the estimated POPs
from the fully dynamic model imply far less favorable performance for
the server than the POPs estimated from the reduced-form model. In-
deed, the fully dynamic POPs generally imply both a higher probability
of faults and a lower probability of winning the rally, given that a serve
is in, compared to the reduced-form POPs. In contrast, the specification
tests are generally unable to reject the point-myopic and serve-myopic
models. This is consistent with the results we reported in table 8, where
we showed that these models were the ones most frequently selected as
having the lowest AIC values.
Note that when l is sufficiently small, the structuralmodels predict that

the effect of trembles is negligible, and servers will choose to serve to the
direction with the highest win probability. In this situation, in order to fit
the observed mixed serve strategies, the model is forced to equate con-
ditional win probabilities. We see this most clearly in the inability of the
omnibus Wald test to reject the hypothesis of equal conditional win prob-
abilities for the fully dynamic model (not reported, for space consider-
ations). For the point-myopic and serve-myopic models, we showed that
the estimated l values are larger, so trembles play a greater role in explain-
ing serve strategies. This allowsmore freedom for thesemodels to rational-
ize the observed mixed strategies without having to equate conditional
win probabilities, which is reflected in turn by more rejections of equal
win probabilities for these models, especially the serve-myopic model. The
reduced-form model places no constraint on the estimation of the POPs,
since it estimates separate parameters and likelihoods for the CCPs and
POPs. This flexibility results in nearly unbiased estimates of the POPs and
their implied service-game win probabilities.
We also observe significant dynamic attenuation in the restricted struc-

tural estimates of the POPs. That is, as we noted in the previous section,
the reduced-form estimation results reveal much stronger evidence of se-
rial correlation in serve directions, compared to the POPs. In the fully dy-
namic model, the degree of serial correlation in both serve directions
and the POPs is attenuated (i.e., closer to zero), and it is thus less likely
to be statistically significant. In fact, for most servers, the fully dynamic
model does not exhibit any statistically detectable serial correlation in
the structural estimates of the POPs, though it does predict serial corre-
lation in serve directions. What explains this paradox? The explanation is
that when l is close to zero, serve strategies are very sensitive to small
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changes in the POPs, since trembles play a negligible role, and the server
chooses to serve to the direction with the highest win probability. Thus, it
is possible to produce significant muscle-memory effects in serve strate-
gies (i.e., the current serve direction, depending on the direction of
the previous serve to the same court) via very tiny oscillations in the POPs
that are hard to detect statistically.
Now we return to the key question of this paper: Do these distorted/

attenuated estimates of the POPs enable the structural models to ratio-
nalize observed serve behavior as mixed strategies consistent with Nash
equilibrium? We have shown that, at best, the structural models are able
to rationalize observed serve behavior as a best response, but only relative
to the server’s subjective perceptions of their environment and the re-
ceiver, as captured by the structural estimates of the POPs. These subjec-
tive beliefs are distorted estimates of the true POPs, which are consistently
estimated by the unrestricted reduced-form model. A Nash equilibrium
entails a key assumption of rationality, that is, that the players’ subjective
beliefs about each other coincide with the truth. In the next section, we
use DP to directly calculate best-response strategies for our estimates of
the true POPs and compare how well these strategies perform relative to
the mixed serve strategies the players actually use.

A. Calculating Best-Response Serve Strategies

We now provide a more powerful direct test of Nash equilibrium play in
tennis: we construct alternative deviation serve strategies that significantly
increase a server’s chance of winning the service game, compared to the
mixed strategy they are actually using. If the hypothesis ofNash equilibrium
is correct, it should be impossible to construct any such deviation strategies.
We construct optimal deviation strategies via DP, setting l 5 0 and using
the reduced-form estimates of the POPs. The DP solution results in pure
serve strategies that exploit the unequal win probabilities reflected in the
reduced-form estimates of the POPs. At each stage of the game, the DP
serve strategy chooses the serve direction that has the maximum condi-
tional win probability (see eq. [4] of sec. III), where the optimal conditional
win probabilityW(x, m, d) is calculated via the Bellman equations given in
equations (1)–(3) of section III.
Table 10 presents the optimal DP service-game win probability, as well

as game win probabilities implied by three other potentially suboptimal
serve strategies. For convenience, we repeat the first three columns of ta-
ble 9, which show the 10 player pairs, the nonparametric win probabili-
ties, and the reduced-form estimates of the win probabilities. The latter
are calculated from the estimated POPs and mixed serve strategies of
the reduced-formmodel using equation (5) in section III.C. As we noted,
the reduced-form estimates generally closely match the nonparametric
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estimates, and thus they constitute our best estimates of each server’s win
probability implied by the mixed serve strategy they actually use. The
next three columns of table 10 show counterfactual game win probabili-
ties for the serve-myopic, point-myopic, and fully dynamic serve strategies, also
using equation (5). In all three cases, we calculate game win probabilities
with the reduced-form estimates of the POPs, not the distorted structural
estimates of the POPs in table 9. We also fix l 5 0, so we do not allow for
any “trembles” in our calculated serve strategies.
By construction, the fully dynamic serve strategy maximizes the game

win probability, which we see in table 10. However, if the GMC holds, the
optimal point-myopic serve strategy coincides with the fully dynamic
strategy and implies the same game win probability. Therefore, failures
in the GMC are revealed by cases where the fully dynamic game win
probability is strictly higher than the win probability implied by the op-
timal point-myopic serve strategy. We do observe some violations of the
GMC in table 10, but in all cases, the incremental gain from using DP to
compute an optimal dynamic serve strategy is small.
The last column of table 10 presents the p-value of a Wald test for Nash

equilibrium. The test is constructed by appealing to the one-shot deviation
principle, which states that there is no deviation at any stage of a dynamic
game that can increase the server’s chance of winning, given the strategy of

TABLE 10
Improvements in Service-Game Win Probabilities

Server → Receiver

Nonparametric
Win

Probability

Reduced-
Form
Model

Serve-
Myopic
Model

Point-
Myopic
Model

Fully
Dynamic
Model

Wald Test
p -Value

Federer → Nadal .796 .829 .856 .894 .894 .002
(.026) (.023)

Nadal → Federer .785 .807 .840 .884 .884 .014
(.026) (.023)

Federer→Djokovic .810 .818 .823 .870 .877 .024
(.024) (.020)

Djokovic→ Federer .782 .781 .850 .863 .869 .002
(.025) (.023)

Nadal → Djokovic .712 .712 .855 .916 .916 .0004
(.035) (.034)

Djokovic → Nadal .829 .848 .937 .927 .937 .0001
(.029) (.023)

Djokovic → Murray .794 .792 .901 .905 .905 .0002
(.034) (.029)

Murray → Djokovic .721 .717 .845 .860 .869 .001
(.038) (.036)

Sampras → Agassi .885 .866 .942 .949 .949 .003
(.028) (.024)

Agassi → Sampras .874 .859 .912 .935 .936 .040
(.029) (.024)

Note.—Standard errors are in parentheses.
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the receiver and the service-game continuation values. We find that there
are profitable one-shot deviations at many stages of the service game, and
while each such deviation yields a modest improvement in the game win
probability, the cumulative effect of all profitable deviations is often a large
improvement in the game win probability. Of course, if a server were to
switch to the DP best response, the receiver would eventually detect the
change and adjust his own strategy, whichwould change thePOPs and thus
offset some of the gains we predict.
Recall that jSwas used in section III to denote the optimal serve strategy,

which is an implicit function of the POPs Π that we now make explicit by
writing jS(Π). LetP* andΠ*denote the true equilibriummixed serve strat-
egy and POPs, respectively, in an MPE. By assumption, the players have
common knowledge of these POPs. While we do not directly observe P*

and Π*, we can consistently estimate them with sufficient data. In particu-
lar, the hypothesis of Nash equilibrium implies that for any alternative
serve strategy j, we have

W (P*,Π*) ≥ W (j,Π*): (23)

Let jS(Π*) be the optimal dynamic serve strategy (generally a pure strategy)
calculated by DP for the true Nash equilibrium POPs Π*. Then by defini-
tion of optimality, we have

W (jS(Π*),Π*) ≥ W (P*,Π*) ≥ W (j,Π*) (24)

for all stationary Markovian serve strategies j. Together, inequalities (23)
and (24) imply the key equality:

W (P*,Π*) 5 W (jS(Π*),Π*), (25)

which serves as the basis for our direct test of a mixed-strategy Nash equi-
librium in tennis: the optimal DP serve strategy should not result in a
higher win probability, compared to the mixed serve strategy P* that the
server actually uses.
Using consistent estimators of the game win probabilities on the left-

and right-hand sides of equation (25), we can construct a test statistic based
on the squared standardized difference of these win probabilities, which
has a x2 distribution with 1 degree of freedom if the null hypothesis is true.
The last column of table 10 presents the p-values for this test, and it shows
that we strongly reject the best-response property for amixed-strategy equi-
librium (see eq. [25]) for all 10 player pairs.

B. Evaluating the Robustness of Deviation Gains

Our tests of the hypothesis of Nash equilibrium are of course based on es-
timates of the POPs rather than the true POPs. In small samples, estimation
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error could result in spurious, upward-biased estimates of service-game
win probabilities from noisy estimates of the POPs (instead of the unob-
servable true POPs) in best-response serve strategies calculated by DP. To
address this possibility, we use stochastic simulations to demonstrate the
robustness of our conclusions by comparing game win probabilities of
the estimated mixed strategies the players use and our calculated DP
best-response strategies over a large number of randomly drawn POPs.
We draw the random POPs from the asymptotic distribution of the

maximum-likelihood estimator centered on the point estimates of the
reduced-form POP parameters (v̂in, v̂win). We then calculate POPs implied
by these simulated parameter values to generate a set of POPs that are ran-
domly distributed about the true POPs. For each realization of the POPs,
we calculate the game win probability when fixing themixed serve strategy
at its estimated value P̂ and fixing our estimated DP best-response serve
strategy at the value calculated with the reduced-form point estimate of
the POPs, j(Π̂). This results in a distribution of simulated winprobabilities
for the two fixed serve strategies, allowing us to determine whether the DP
serve strategy outperforms the estimatedmixed serve strategy in a range of
environments near the true POPs. This eliminates any advantage the DP
strategy obtains from assuming that the estimated POPs are the same as
the true POPs. Thus, we force the DP strategy to confront POPs it is not
“expecting.”
Wealso calculate similar distributions of win probabilities, but using sim-

ulated draws from the structural estimates of the POPs. We call these ran-
dom draws the “perturbed POPs,” and figure 4A shows the cumulative dis-
tribution functions (CDFs) of simulated game win probabilities for three
different cases of Federer serving to Djokovic: (1) the fully dynamic serve
strategy j(Π̂) (calculatedwith l 5 0) against 500 randomperturbations of
the reduced-form estimates of the POPs Π̂ (solid black line), (2) the fully
dynamic strategy (calculated with l̂ > 0) against 500 perturbations of the
structural estimates of the POPs (solid gray line), and 3) the fully dynamic
strategy (calculatedwith l 5 0) against 500 perturbations of the structural
estimates of the POPs (dashed line). Note that the strategy used to con-
struct CDF 2 is a mixed strategy, whereas CDFs 1 and 3 are calculated by
DP with l 5 0 and thus are pure strategies.
We see that CDFs 2 and 3 (solid and dashed gray lines, respectively) are

nearly identical, which is an illustration of the “no-deviation-gains” condi-
tion in equation (25) when we assume that the server is using an MPE
strategy. Even though equal win probabilities do not hold for the 500 per-
turbations of the structural estimates of the POPs, they are close enough
to holding that the win probabilities implied by the pure strategy (i.e.,
CDF3) do not systematically outperform those implied by themixed strat-
egy (i.e., CDF 2). In contrast, CDF 1 (black line) is thewin probability CDF
implied by the DP serve strategy (with l 5 0) against perturbations of the
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reduced-form estimates of the POPs, and it clearly stochastically domi-
nates the other two CDFs.
This result illustrates the large increase in game win probabilities result-

ing from an optimal serve strategy based on an unbiased estimate of the
POPs. As we have already noted, the structural estimates of the POPs are

FIG. 4.—Distributions of winprobabilities, Federer serving toDjokovic. RF5 reduced-form.
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distorted to rationalize the observedmixed serve strategy as a best response
to the POPs. Even though the reduced-form estimates of the POPsmay re-
flect some small-sample noise, they indicate sufficiently large departures
from the equal-win-probabilities restriction to result in the large deviation
gains illustrated by the solid black CDF 1 in figure 4. Essentially, while the
structural model can “rationalize”mixed serve strategies, it can do so only
via irrational, distorted estimates of the subjective POPs.
Figure 4B plots distributions of CDFs for other serve strategies. The

line labeled 4 shows the CDF of game win probabilities implied by the es-
timatedmixed strategy from the reduced-formmodel, whereas line 5 is the
CDF of game win probabilities implied by the estimated strategy from the
fully dynamic structural model. Both CDFs are calculated using random
perturbations of the reduced-form estimates of the POPs. We see that
CDF 4 lies nearly on top of CDF 5, indicating that the estimated strategy
from the fully dynamicmodel is virtually the same as themixed strategy es-
timated by the reduced-formmodel. This result illustrates how the fully dy-
namic structural model of serve behavior succeeds in “rationalizing” ob-
served mixed serve strategies.
Note that CDF 6 and CDF 1 are the same as their counterparts in fig-

ure 4A and are included for reference (except that CDF 6 in B is CDF 2
in A). Recall that CDF 6 plots the game win probabilities implied by the
estimated fully dynamic mixed strategy (i.e., with l̂ > 0) against perturba-
tions of the subjective POPs, whereas line 1 shows theCDFof gamewin prob-
abilities implied by running the fully dynamic model (i.e., with l 5 0) on
perturbations of theunrestricted reduced-formestimate of thePOPs. Thus,
the improvement fromCDF 6 to CDF 5 can be thought of as the increase in
win probabilities from replacing the distorted subjective POPs with the
unrestricted reduced-form, or “rational,” POPs (but in both cases fixing
the estimated mixed strategy from the fully dynamic model). Meanwhile,
the additional gain in win probabilities by moving from CDF 4 or 5 to
CDF 1 comes from systematically exploiting unequal win probabilities at
all points in the game tree. The fact that the CDF 1 clearly stochastically
dominates CDFs 4 and 5 illustrates that Federer’s statistically significant
5.9 percentage point increase in game win probabilities in table 10 not only
holds at the point estimate of the POPs but also is robust to significant un-
expected deviations of the POPs.
CDFs 2 and 3 in figure 4B are the distributions of win probabilities

implied by the serve-myopic strategy and the point-myopic strategy, respec-
tively, both computedwithl 5 0 against 500 perturbations of the reduced-
form estimates of the POPs. The fact that CDFs 1–3 are also ordered by sto-
chastic dominance shows that the point-myopic strategy outperforms the
serve-myopic strategy and that the fully dynamic strategy outperforms both.
This figure illustrates a case where theGMCdoes not hold, thoughmost of
the gain comes from using a point-myopic strategy over a serve-myopic
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one. However, Federer would still benefit from the small but nonetheless
significant additional gain from adopting the fully dynamic strategy.
We also use an informal “robust-control” approach to calculate two ad-

ditional serve strategies illustrated by CDFs 7 and 8. CDF 7 is computed us-
ing a “robust strategy” that constitutes a simple average of the optimal fully
dynamic strategies for each randomly drawn set of POPs. The robust strat-
egy is a mixed strategy, which is a desirable property if receivers have more
difficulty finding best responses to mixed than to pure strategies. In addi-
tion, CDF 8 shows the performance of a minimax strategy where we com-
puted the fully dynamic strategy for theworst-case drawof POPs, that is, the
fully dynamic best response for the set of POPs that results in the lowest
game win probability over all the randomly drawn sets of POPs. Note that
to construct these CDFs, we independently draw another 500 random per-
turbations of the POPs and run the robust and minimax strategies on
them. Both these CDFs stochastically dominate CDF 4, where the latter
is computed using our reduced-form estimate of Federer’s actual mixed
serve strategy. Neither of the robust strategies does as well as the fully dy-
namic strategy, CDF 1, however.
Overall, it appears that the optimal DP serve strategy, which is a pure

strategy, performs surprisingly well in environments it is not “expecting.”
This could be because it is a pure strategy, and pure strategies may be
fairly robust to perturbations in the POPs because they are frequently “cor-
ner solutions” that will not change in response to sufficiently small changes
in the POPs. In any event, we leave further exploration of this topic, and a
deeper assessment of the value of more sophisticated versions of robust
control, to future work. Finally, we note that the optimal pure strategies
that we calculate byDP are intuitive and relatively simple to describe verbally.
For example, in the case of Djokovic serving to Nadal, the fully dynamic
serve strategy generally entails serving to Nadal’s right (i.e., backhand,
sinceNadal is a lefty) on first serves, whereas on second serves, the optimal
direction depends on the whether Djokovic is serving to the deuce or ad
court. To the deuce court, he should serve to Nadal’s backhand, whereas
to the ad court, he should serve to Nadal’s forehand. That is, Djokovic
should hit his second serve wide.

C. Results for Additional Server-Receiver Pairs
and Surfaces

We summarize our core findings for every server-receiver-surface combina-
tion for which we have sufficient data to estimate our model. In total, we
estimated the model for 99 distinct server-receiver-surface combinations.
We decisively reject the hypothesis that the estimated mixed serve strate-
gies are consistent with equilibriumplay for all 99 cases, using theWald test
of the absence of deviation gains, that is, tests that equation (25) holds.
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Figure 5 summarizes the deviation gains from switching to the best-
response strategies we calculate byDP. This figure has four panels that plot
the gain in win probability for different groups of players. In each panel,
the vertical axis is the ratio of the mean win probabilities from the fully dy-
namic best-response serve strategy to the win probability implied by our
reduced-form estimates of each server’s actual serve strategy, and the hor-
izontal axis is the mean win probability under the actual serve strategy.
Thus, the ratio of mean win probabilities shows the relative improvement
in the win probability from adopting the fully dynamic serve strategy.
We calculate the probabilities in figure 5 using the same procedure as in

section V.B; namely, by calculating win probabilities that are robust to estima-
tion error in thePOPs. Specifically, we estimate our structuralmodel for each
server-receiver pair. We then calculate win probabilities for the observed
server strategies and the fully dynamic best response for 500differentPOPs
that are IID draws from the estimated asymptotic distribution about the
point estimates of the POPs for each server in each server-receiver pair.

FIG. 5.—Relation between player ability and deviation gains for different player groups.
RF 5 reduced-form.
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Thus, each point plotted in the figures represents the average “deviation
gains” from using the DP server strategy over the 500 randomly drawn
POPs.
Figure 5A shows a scatter plot of the improvements for 99 top-ranked

server-receiver pairs for which we had sufficient data from the MCP to
reliably estimate the POPs. The points are coded with stars indicating
our calculated mean deviation gains from using the optimal DP server
strategy relative to the servers’ existingmixed strategy for “elite” servers play-
ing “elite” receivers (where we classify a player as “elite” if they were ever
ranked first or second worldwide in their career). The circles plot results
for elite servers serving to non-elite receivers, the diamonds are for non-
elite servers serving to elite receivers (we do not show non-elite servers
serving to non-elite receivers, since we had too few of these cases in our
dataset).
Themost striking finding in this graph is the obvious downward-sloping

pattern in the scatter plot: we predict that servers with lower win probabil-
ities experience the biggest relative deviation gains from switching to the
DP serve strategy. Of course, since win probabilities cannot be higher than
1, the relative gain is constrained to decline as the win probability under
the server’s existing serve strategy approaches 1. Nevertheless, the results
indicate a clear correlation between “ability,” as measured by the server’s
existing win probability, and the extent of their suboptimality: we predict
that the less effective servers have the most to gain from using DP to opti-
mize their serve strategies.
Figure 5B plots the deviation gains across surfaces (stars for grass, cir-

cles for clay, and diamonds for hard courts) for the 10 most “elite” server-
receiver pairs that we have focused our analysis on throughout this paper
(i.e., the 10 pairs in table 10, resulting in 25 player pair/surface combina-
tions).We see that the elite servers have somewhat higher service-gamewin
probabilities (77%, vs. 73% for all 99 player pair/surface combinations)
and also lower deviation gains compared to the set of all players plotted
in the figure 5A (the mean deviation gain from adopting the DP strategy
is 15% for the elite players vs. 26% for all 99 player pairs). The biggest rel-
ative gain from adopting the DP serve strategy is for the non-elite players
serving to elite opponents: these players can expect a 30% improvement
in their win probabilities from adopting the DP serve strategy.
Figures 5C and 5D plot the results formen and women, respectively. The

samenegative correlation between deviation gains and ability, asmeasured
by win probability under their existing serve strategy, is apparent for both
menandwomen servers. The relationship between averagewinprobability
and the calculated gain to switching to the fully dynamic serve strategy is
also robust across the two sexes. In particular, the male servers in our anal-
ysis have a higher average probability of winning under their current serve
strategy (74% for men vs. 70% for women) and a lower average deviation
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gain from switching to the DP serve strategy (23% for men vs. 30% for
women).

VI. Conclusion

There is substantial evidence against Nash equilibrium and minimax play
in laboratory experiments: see, for example, Brown and Rosenthal (1990)
and Camerer (2003). However, a standard critique is that laboratory sub-
jects are not sufficiently trained and incentivized to behave sufficiently
closely to the predictions of game theory. The influential study by Walker
and Wooders (2001, 1535) concluded that “the theory has performed far
better in explaining the play of top professional tennis players in our data
set.” Similar results have been found in other sports, such as soccer (see,
e.g., Chiappori, Levitt, and Groseclose 2002, who studied the direction
of penalty kicks). The general conclusion is encapsulated in the title of
the study by Palacios-Huerta (2003), “Professionals Play Minimax” (see
also Palacios-Huerta 2014).
In contrast, we show that the serve strategies of elite tennis pros are

inconsistent with the minimax prediction. Though they use mixed strat-
egies, win probabilities are not the same for all serve directions at all stages
of the game—the key restriction of the Nash equilibrium/minimax solu-
tion. There has also been considerable work on testing for serial indepen-
dence in serve directions as an additional implication ofmixed-strategy equi-
librium.We argue in section1of the appendix that serial dependence, which
has been found in many previous studies, including Walker and Wooders
(2001), is not necessarily inconsistent with equilibriumplay whenwe account
formuscle-memory effects that reflect natural improvements from repeating
recently performed actions. We also show that such muscle-memory effects
can induce both positive and negative serial correlation in serve directions
and that it is important to account for it to explain observed serve behavior.
Our empirical analysis exploits a new source of data, theMatchCharting

Project (MCP), that allows us to analyze a large number of professional ten-
nis matches at the level of individual server-receiver pairs. We also include
body serves—a feature of the MCP data—along with the left and right
serves in the previous literature. Tennis players and coaches consider body
serves to be an important component of an optimal serve strategy. Our
analysis supports this view, since body serves are used frequently in the data
and in the calculated optimal serve strategies.
However, the inclusion of body serves and access to more observations

are not the main reason why we reject the hypothesis of Nash equilibrium
play. Ourmain innovation is to provide new, more powerful tests of the dy-
namic implications of Nash equilibrium. Specifically, we introduce new
tests of the one-shot deviation principle and an omnibus Wald test of the
equal-win-probability restriction for all serve directions in all states that
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must hold in a completely mixed-strategy MPE. The latter test strongly re-
jects thehypothesis of equal winprobabilities for themajority of the 10elite
professional server-receiver pairs we analyze, as well as the majority of an
additional 66male and female top-rankedprofessional pairs.We also intro-
duce a new test of the one-shot deviation principle, that is, the restriction
that in anMPE there is no deviation strategy that strictly improves the pay-
off of the players. Using numerical DP and our econometric estimates of
the POPs that capture the probabilistic outcomes of serves to each possible
direction, we reject the hypothesis that the observed mixed strategies of
these elite pro servers constitute best responses.
Previous approaches to testing for equal win probabilities over serve di-

rections focused on the probability of winning individual points, whereas
we recursively calculate how the choice of serve direction affects the prob-
ability of winning the entire service game. Tests based on the former have
low power to detect evidence of disequilibriumplay because (as we show in
sec. 4 of the appendix) deviation gains for individual points are smaller
and statistically more difficult to detect. By focusing on the conditional
win probabilities for the entire service game, we develop muchmore pow-
erful tests of the key implications of Nash equilibriumplay that exploit the
magnification effect—that small deviation gains at each individual point
cumulate into much more substantial and easier-to-detect deviation gains
in the service game as a whole. Using DP to construct best-response serve
strategies, we show that they significantly increase the probability of win-
ning the overall service game. Then, using stochastic simulations, we show
that our calculated deviation gains are robust, in the sense that they result
in significantly higher win probabilities even when the true POPs differ
from the estimated POPs that the strategies are “expecting.”
Similar to that of Walker and Wooders (2001), our conclusion is based

on a key stationarity assumption that all learning and strategy experimen-
tation has already taken place and that strategies do not change across
games. However, our stationarity assumption is substantially weaker than
Walker and Wooders’s: like them, we assume stationary play across service
games, but unlike them,we relax the assumptionof stationary play over dif-
ferent states within a service game. We show that serve strategies and win
probabilities vary significantly across states within an individual service
game in tennis. We also show that the stationarity assumption is testable
and that we cannot reject stationarity of the POPs across service games,
though we do reject stationarity of the serve strategies (CCPs) both within
and across games. We interpret the latter rejection as further evidence
against minimax play, since if the POPs are stationary across games and
serve strategies correspond to a unique MPE of the service game, then
serve strategies should be stationary across games as well.
A reviewer noted that our structural model fails to incorporate persis-

tent private information of the players, such as their health or stamina
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during a match, and that this failure could result “in the econometrician
observing POPs that are very different from the POPs observed by the
player. Therefore, the econometrician will be using the wrong statistics
to test the ‘equal win probabilities’ hypothesis, rendering the test in-
valid.”We acknowledge this limitation, though we do account for persis-
tent public information (e.g., muscle memory) and private information
that is not persistent across serves. And although we do not account for
persistent private information, we do not believe that this necessarily im-
plies that our tests are invalid. Our estimates of the POPs, serve-direction
strategies, and the implied conditional win probabilities can be viewed as
projections onto information we do observe. Let W(y) denote the ex-
pected win probability at the start of a tennis service game, where y de-
notes any persistent private information of the players at the start of the
game. Though we do not observe y, using our data we can estimate
W (x) 5 EfW (y)jxg, which can be treated as the “projection” of the ran-
dom variable W(y) onto the information x we do observe. Thus, our es-
timates of win probabilities can be viewed as “average win probabilities”
that differ from the actual win probabilityW(y) by a serially uncorrelated
error term, W (y) 5 EfW (y)jxg 1 ε.
We have shown that there exist serve strategies that depend on the pub-

lic information x and significantly increase the expected win probability
EfW (y)jxg. That is, we construct alternative, feasible serve strategies P 0

that imply counterfactual win probabilities satisfying W 0(x) > EfW (y)jxg.
Even though these counterfactual serve strategies depend on less infor-
mation than the players actually have, and even though there may be par-
ticular realizations of the unobserved private information y for which
W (y) > W 0(x), our counterfactual strategies still improve win probabilities
on average, relative to what we actual observe, and thus still constitute
“one-shot deviations” that increase expected win probabilities, contra-
dicting the implication that there are no deviation gains in the perfect
Bayesian equilibrium (PBE) of the extendedmodel of tennis that includes
persistent private information. For this reason, we believe that our tests are
still valid even though our model does not incorporate persistent private
information.
It would be interesting to try to extend our model to incorporate per-

sistent private information, but doing it involves significant computa-
tional and identification challenges. With persistent private information,
the natural notion of equilibrium is a PBE, but calculating a PBE requires
carrying a posterior belief for each player as a state variable, and these
beliefs are potentially infinite-dimensional objects (i.e., conditional
probability distributions that depend on the entire history of the game,
and potentially previous games in a tennis match). Thus, it appears that
computing a PBE in tennis is computationally infeasible, at least given
our computational skill. Second, to form a likelihood for inference (or
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via other simulation-based approach), we would need to “integrate out”
the unobserved states of the players, that is, their beliefs about the persis-
tent private information of their opponent (which is also a function of
their own persistent private information). It may be difficult or impossible
to identify the parameters of such a model. Even in our framework, we do
not directly observe the actions of the receiver. This already creates identi-
fication challenges, and it is why we limited our analysis to the behavior of
the server, since we can reliably observe the serve direction, which is a key
strategicdecisionof the server.However, wedonot knowhow to test whether
receivers are playing equilibrium strategies because of our inability to di-
rectly observe their choices, such as the anticipation vector, (al, a r, ab).
This raises the question whether trying to overcome the challenges in-

volved in incorporating persistent private information into the model is
justified by the likely promising new empirical insights that might
emerge from this extension. Our opinion is that it is not, given the data
we have to analyze. The main support for this opinion is the results of
our stationarity tests. In particular, we conjecture that the POPs would
be nonstationary in a model with persistent private information. For ex-
ample, if the server has private information about some aspect of their
current ability, then presumably the receiver will update their own be-
liefs about the server’s ability throughout the match and adjust their strat-
egy in turn, which, intuitively, will change the POPs. However, we cannot
reject stationarity of the POPs across calendar years or between first sets
and later sets in a match. We discuss private information in significantly
more detail in section 5 of the appendix.
Our finding that many elite tennis pros fail to play serve strategies that

are best responses to their opponents may also seem surprising, given
the stakes involved in top-level tennis matches, and it is clearly contrary
to the consensus in the literature noted above. We believe that we have
convincing evidence of suboptimal serve strategies, but the ultimate test
would be to run field experiments to verify whether our DP serve strat-
egies really do deliver the increased win probabilities that we predict.
Our predicted gains may dissipate rapidly in the field as the receiver rec-
ognizes and adapts to a change in the server’s strategy. Ultimately, the
issues raised by the possibility of learning and adaptation to changes
in strategy are fascinating topics for further exploration but are beyond
the scope of this analysis.
Though we introduce behavioral models that can explain disequilib-

riumplay as a result of “distorted subjective beliefs,”we have not explained
why elite players seem to have less than fully rational expectations about
their own strengths and weaknesses and those of their opponents. The
monetary rewards to increasing the probability of winning by the magni-
tudes we estimate are very high. The usual presumption in economics
and much of the previous literature on tennis is that when there are high
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rewards, we can expect that some incompletely defined learning process
will lead to behavior consistent with Nash equilibrium. At the very least
we should not see large gains left unexploited. Thus, our findings are only
partially consistent with Simon’s (1956) principle of “satisficing”: “How-
ever adaptive the behavior of organisms in learning and choice situations,
this adaptiveness falls far short of the ideal of ‘maximizing’ postulated in
economic theory. Evidently, organisms adapt well enough to ‘satisfice’;
they do not, in general, ‘optimize’” (129).
Our conclusion that even elite pro tennis players may have inadequate

statistical knowledge or an inaccurate “mental model” of the POPs is cor-
roborated by the nascent industry of sports analytics, which provides sta-
tistical analysis and advice to improve athletes’ play in tennis and other
sports. It is unlikely that the growth in tennis analytics would be as large
as it is if most of the elite pros already have “rational beliefs” and are al-
ready playing best-response strategies on their own. Over time, if more
elite pros use increasingly powerful analytics to help improve their play,
the long-run outcome of this process of learning and experimentation
could well be something that more closely approximates Nash equilib-
rium play.
Ours is not the first study to have provided evidence that suggests that

highly compensated andmotivated sports professionals may not be behav-
ing optimally. There is the famous bookMoneyball, by Michael Lewis (2003),
that showed how analytics can improve the performance of entire baseball
teams. Also, focusing on individual baseball players, Bhattacharya and
Howard (2022, 350) found that while pitchers use mixed strategies over
different pitches (fastball, curve, etc.), “payoffs differ significantly across
pitch types.” In football, Romer (2006) usedDP to demonstrate that teams
were making suboptimal decisions regarding when to go for it on fourth
down, punt, or kick a field goal. Tennis may be another sport where econ-
ometrics, DP, and analytics can affect thinking, change behavior, and help
guide players to play in a way that more closely corresponds to the predic-
tions of Nash equilibrium.

Data Availability

Data for this study were downloaded from www.tennisabstract.com for a
selected subset of elite professional men and women tennis players. This
website is also known as the “Match Charting Project” (MCP; Sackmann
2013) and includes a huge amount of information on the outcomes of
tennismatches including point-by-point descriptions of individual games
in each set of each match of each tournament. An example is the point-
by-point description of thematch between Jannik Sinner andDaniilMed-
vedev at the 2024 Australian Open, which can be viewed at https://www
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.tennisabstract.com/charting/ by appending the match identifier 20240
128-M-Australian_Open-F-Jannik_Sinner-Daniil_Medvedev.html.
We downloaded 3,587 matches from the www.tennisabstract.com web-

site over the period1970–2018, involving a total of 961distinct professional
tennis players and a total of 548,302 observations of individual serve direc-
tions. We focused on a smaller subset of the “elite pros,” reducing our
dataset to 46 server-receiver pairs that are listed in a text file all_players_
list.txt in the Dataverse replication data (Anderson et al. 2024, in the Har-
vard Dataverse, https://doi.org/10.7910/DVN/RQ6JVL). Most of our
analysis in the paper was confined to a subset these 46 pairs that we
deemed as the “best of the best,” and we further restricted our analysis
to matches played on hard surfaces. The data used to estimate the various
models in sections I–IV of the paper are contained in the ASCII text file
lcrdata.txt. These numerical data were parsed and encoded from the orig-
inal natural language play-by-play descriptions of tennis matches on
https://www.tennisabstract.com/charting/. Our data also contain matches
played on grass and clay surfaces. We extended our analysis to a larger sub-
set of elite professional tennis players in section V.C, wherewe summarized
results for three different court surfaces; grass, clay, and hard; for a total of
99 distinct server-receiver-surface combinations that were reported in fig-
ure 5 of section V.C. The names of these additional player pairs are in
the file all_players_list_extra.txt and the serve and game outcomes are in
the file lcrdata_extra.txt on the Dataverse website. Full documentation
of the data can be found in the plain text file data_explanation.tex file in
the data we uploaded to Anderson et al. (2024). Please contact the corre-
sponding author (Rust) for further questions relating to the data, or for as-
sistance in replicating any results in this paper.
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