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Which Findings Should Be Published?†

By Alexander Frankel and Maximilian Kasy*

Given a scarcity of journal space, what is the optimal rule for 
whether an empirical finding should be published? Suppose pub-
lications inform the public about a  policy-relevant state. Then 
journals should publish extreme results, meaning ones that move 
beliefs sufficiently. This optimal rule may take the form of a one- or  
 two-sided test comparing a point estimate to the prior mean, with 
critical values determined by a  cost-benefit analysis. Consideration 
of future studies may additionally justify the publication of pre-
cise null results. If one insists that standard inference remain 
valid, however, publication must not select on the study’s findings.  
(JEL D61, D82, D83, L82)

Not all empirical findings get published. Journals may be more likely to pub-

lish findings that are statistically significant, as documented, for instance, by 

Franco, Malhotra, and Simonovits (2014); Brodeur et al. (2016); and Andrews and 

Kasy (2019). They may also be more likely to publish findings that are surprising 

or, conversely, ones that confirm some prior belief. Whatever its form, selective pub-

lication distorts statistical inference. If only estimates with large effect sizes were 

to be written up and published, say, then published studies would systematically 

overstate true effects. Such publication bias has been offered as one explanation for 

the perceived replication crisis in the social and life sciences.1

In response to these concerns, there have been calls for reforms in the direc-

tion of  nonselective publication. One proposal is to promote statistical practices 

that  de-emphasize statistical significance, for instance by banning “stars” in regres-

sion tables. Another proposal is for journals to adopt Registered Reports in which 

 preregistered analysis plans are reviewed and accepted prior to data collection (see 

Nosek and Lakens 2014 or Chambers et al. 2014). This has been implemented, for 

1 Worries about selective publication go back at least to Sterling (1959). Discussions of publication bias and 
other threats to the credibility and reproducibility of scientific output can be found in Ioannidis (2005, 2008) 
and in reviews including Simmons, Nelson, and Simonsohn (2011); Gelman and Loken (2014); and Christensen 
and Miguel (2016). Open Science Collaboration (2015) and Camerer et al. (2016) conduct  large-scale replications 
of experimental studies in psychology and economics, giving insight into the extent to which published results are 
in fact reproducible.
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instance, at the Journal of Development Economics. Registered Reports guarantee 

that publication will not select at all on findings—after a plan is accepted, the jour-

nal is committed to publishing the study, and the researcher has no flexibility over 

which results to write up.

This paper seeks the optimal rule for determining whether a study should be 

published given both its design (which determines a study’s standard error) and its 

findings (the point estimate). Our analysis is from an instrumental perspective: the 

value of a study is that it informs the public about some  policy-relevant state of the 

world before the public chooses a policy action. In this framework, we will show 

that  nonselective publication is not, in fact, optimal. Some findings are more valu-

able to publish than others. Since selective publication distorts statistical inference, 

this implies a  trade-off between policy relevance and statistical credibility.

In a world without constraints, the  first-best rule would be for all results—or even 

better, all raw data—to be published. This paper solves for a  second-best publication 

rule. In particular, we take as given that there is some cost of publication. One inter-

pretation is that the cost is an opportunity cost of shifting a public’s attention away 

from other studies. In that case, we can think of our paper as asking which findings 

should be published in top journals, i.e., ones where the results are more likely to 

be noticed.

The basics of our model are as follows. If a submitted study is published, the pub-

lic observes its results and takes the optimal policy action given its updated belief. 

If a study is not published, the public never observes the results and does not neces-

sarily know that a study was conducted; the public then takes a default action. This 

default action in the absence of publication is based on a default belief. We allow 

for either a Bayesian public whose default belief correctly accounts for publication 

bias or a naive public whose default belief always remains at its prior. The optimal 

publication rule is the one that maximizes the public’s expected payoff from the 

eventual policy choice minus the publication cost.

The optimal publication rule will select on a study’s findings. To understand why, 

observe that there is no instrumental value from publishing a study with a “null 

result” that doesn’t move the policy away from the default action. Publishing a null 

result incurs a cost without a benefit: the same policy would have been chosen even 

if the study weren’t published. The studies that are worth publishing are the ones 

that show a payoff gain from taking an action other than the default.

In order to generally characterize optimal publication rules, consider “supermod-

ular” policy decisions in which the public’s preferred policy action is monotonic 

in the state of the world. For example, the preferred investment in a public good 

increases in its expected return. In any supermodular environment, Theorem 1 estab-

lishes that it is more valuable to publish studies with more extreme results. These are 

the ones that move beliefs and actions further from the defaults.

For two canonical special cases, we give a more explicit description of optimal 

publication rules. In the first case, the public makes a continuous policy decision, 

such as the choice of a tax rate, and has quadratic losses in matching the policy to 

its ideal point. The optimal publication rule then takes the form of a “ two-sided 

test”: the journal publishes estimates that are sufficiently far above or below the 

prior mean. In the second case, the public makes a binary policy choice, such as 
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whether to implement a job training program. Here, the optimal rule is a “ one-sided 

test.” For instance, in the absence of publication, suppose that the public, by default, 

does not implement the program. The journal then publishes positive estimates of 

the program’s value, ones that convince the public to implement it, but not negative 

estimates. For these  two-sided and  one-sided tests, the critical values that determine 

publication come from a  cost-benefit calculation. They do not correspond to a con-

ventional significance level such as p = 0.05 against a null hypothesis of 0.

After characterizing optimal publication rules, we return to the distortions caused 

by selective publication. In Theorem 2, we show that under any rule in which the 

publication probability depends on the point estimate, common forms of frequen-

tist inference will be invalid after conditioning on publication. Point estimates are 

no longer unbiased, for instance, and uncorrected  likelihood-based estimation will 

be flawed. Moreover, when a study is not published, a naive public that maintains 

its prior will have a distorted belief relative to a Bayesian public that accounts for 

publication bias. If we desire that standard inference or naive updating be valid, we 

must impose a  nonselective publication rule that does not depend at all on the point 

estimate (although journals may still publish studies with small standard errors over 

studies with large standard errors).
Putting these results together, we see that selectively publishing extreme results is 

better for  policy relevance but leads to distorted inference. Therefore, a move away 

from the current (selective) publication regime toward  nonselective publication in 

order to improve statistical credibility might have costs as well as benefits.

An abstraction in the model as described is that it considers a “static” environment 

with a single paper to be published and a single action to be taken. One may also be 

interested in the  longer-term implications of publication rules, as in McElreath and 

Smaldino (2015) and Nissen et al. (2016).2 To get some insight into these issues, we 

consider a dynamic extension to our model that appends a second period in which 

exogenous information arrives before another action is taken. The publication deci-

sion in the first period now affects the actions in both periods. Theorem 3 charac-

terizes the optimal publication rule for this  two-period model. Here, we find a new 

benefit of publishing null results that don’t change the current action. Publishing a 

null result today helps avoid future mistakes arising from the noise in the informa-

tion that has yet to arrive.

In addition to the broad conclusions described above, the paper derives a number of 

comparative statics on optimal publication rules. Some are straightforward: for exam-

ple, it is more valuable to publish a given point estimate when the standard error is 

smaller, and correspondingly, in the  two-period model, it is more valuable to publish 

a precise null result than a noisy null result. We believe that some of these compara-

tive statics, however, would have been difficult to intuit without a formal model. For 

instance, consider the canonical quadratic loss policy environment. Suppose that we 

fix the statistical significance of some result (the  t-statistic of the point estimate relative 

to the prior mean) while varying the point estimate. Point estimates close to the prior 

2 McElreath and Smaldino (2015) and Nissen et al. (2016) provide dynamic models to study whether an academic 
publication process with publication bias will eventually converge to truthful estimates. Akerlof and Michaillat 
(2017) perform a similar exercise for a more evolutionary form of the accumulation of academic knowledge.
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move the posterior mean very little, and thus, naturally, publishing those results is not 

valuable. But point estimates too far from the prior also barely move the posterior. So 

at any specified statistical significance level, we only publish point estimates that are 

an intermediate distance from the prior mean. A similar nonmonotonicity occurs in 

the  two-period model: publishing null results today is most valuable when the future 

information is expected to be neither too precise nor too noisy.

We wish to stress that the nature of our exercise is to solve for the socially optimal 

rule regarding whether to publish a study that has some given set of results. That is, 

our model does not consider the incentives of researchers or journals, and we are not 

attempting to characterize the equilibrium publication rule arising from a strategic 

interaction of these agents. As discussed in Glaeser (2006), researcher incentives 

play an important role in the publication process. Researchers make choices over the 

topics they study and their study designs and then may selectively submit or possibly 

even manipulate their findings.3 We do explore one way in which researcher study 

design choices may respond to journal publication rules in online Appendix C.3.

Our derivations of optimal publication rules rely on characterizing the value of 

information for specified decision problems. Most theoretical treatments of the 

value of information study the  ex ante value of an experiment, i.e., the expected 

value prior to the realization; see classic treatments in Blackwell (1953); Lehmann 

(1988); or Persico (2000). These  ex ante comparisons are relevant for a characteri-

zation of  nonselective publication rules, as we examine in Proposition 3. However, 

we generally allow for publication to select on a study’s findings. We are thus pre-

dominantly concerned with the  ex post value of information given an experiment’s 

realization, as studied in Frankel and Kamenica (2019).
The decision to reveal a signal, at a cost, based on its realization is also related to 

the analysis of the discretionary disclosure of product quality in Jovanovic (1982) or 

of accounting news in Verrecchia (1983) as well as in  follow-up work. As in those 

papers, we find that information is disclosed only if it is sufficiently valuable ex 

post. Those papers, however, focus on a private value of disclosing information that 

may contain positive or negative news about one’s type. We instead consider a social 

value of information in making better decisions.

The rest of the paper is structured as follows. Section  I introduces our basic 

model of publication. Section II shows how to solve for the optimal publication 

rules and provides some characterizations of the solution. Section III addresses the 

distortions that arise from selective rather than  nonselective publication. Section IV 

presents a  two-period version of the model. Section V concludes and presents some 

extensions that we explore further in the online Appendix. We consider publica-

tion objectives that do not arise from  policy-based welfare and instead derive from 

an inherent value of learning the state or publishing point estimates close to the 

truth, we show how a journal might adjust its publication rule if submitted study 

designs are endogenous to the publication rule, and we discuss the possibility that 

3 Furukawa (2018) looks at a model (without journals) in which researcher decisions to publish papers inter-
act with a public policy choice, where in equilibrium, researchers choose to publish papers with extreme results. 
 Müller-Itten (2016) looks at a competition between journals for prestige in which journals choose whether to pub-
lish a submitted study based on a signal of its quality while researchers choose which journal to submit to.
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a study’s findings may be informative about the quality of its design. Proofs are in 

the Appendix.

I. The Model of Publication

A.  Setup

There is an uncertain state of the world whose value is relevant to some public 

policy decision. A study that reveals information about this state may or may not 

arrive, i.e., may or may not be submitted to a journal. If a study arrives, the journal 

decides whether to publish it. If it is published, the results of the study are observed 

by the public. Finally, the public chooses a policy.

Let  θ ∈ Θ ⊆ ℝ  denote the state of the world, and suppose there is a common 

prior   π 0    on  θ  shared by the public and the journal. The probability that a study 

arrives is  q ∈  (0, 1]  , independent of  θ . A study is summarized by the random vari-

ables   (X, S)  , where  S  is drawn from some distribution   F S    on   =  ℝ ++    and  X  is 

normally distributed on   = ℝ  according to  X | θ, S ∼  (θ,  S   2 )  . Call  X  the point 
estimate and  S  the standard error. In particular,  S  reflects the study’s design, con-

taining no direct information about the state θ. By contrast,  X  is the study’s finding, 

which is informative about θ; its information content depends on  S .

If a study arrives, it will be evaluated by a journal that observes   (X, S)   and 

then decides whether to publish the study. The journal uses a publication rule  

 p :  ×  →  [0, 1]  , where  p (X, S)   describes the probability that a study   (X, S)   is 

published. We say that the journal publishes a study when  p (X, S)  = 1  and does 

not publish a study when  p (X, S)  = 0 . Let  D = 0  denote the event that no study is 

published (because no study arrived or because one arrived but was not published) 
and  D = 1  the event that a study arrives and is published.

After a study is published or not, the public’s belief on  θ  updates to a posterior  

  π 1   . When no study has been published ( D = 0 ),   π 1    is equal to some default belief  
  π  1  

0  . When a study has been published ( D = 1 ),  S  and  X  are publicly observed, 

and   π 1    is instead equal to the belief   π  1  
 (X,S) 

  . See Section IB below for the description 

of the belief updating process that determines   π  1  
0   and   π  1  

 (X,S) 
  .

Given updated beliefs   π 1   , the public takes a policy action  a ∈  ⊆ ℝ  to 

maximize its expectation of a utility function  U :  × Θ → ℝ . Let   a   ∗  ( π 1  )   

∈ arg  max a    E θ∼ π 1  
   [U (a, θ) ]   indicate the chosen action when the public holds beliefs   π 1   . 

We assume existence of this argmax for any relevant utility functions and posterior 

distributions, and we confirm existence for all of our examples. Let   a   0  =  a   ∗  ( π  1  
0 )   be 

the default action, i.e., the action taken under the default belief, whereas   a   ∗  ( π  1  
 (X,S) 

 )   

is the action taken if a study   (X, S)   is published.

Social welfare, corresponding to the shared objective of both the journal and pub-

lic, is the action payoff net of a publication cost. Let  c > 0  indicate the social cost 

of publication. The welfare  W (D, a, θ)   induced by publication  D , chosen action  a , 

and state of the world θ is

(1)  W (D, a, θ)  = U (a, θ)  − Dc. 
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We will search for the publication rule  p  that maximizes the  ex ante expectation 

of welfare, which we call the optimal publication rule.

B. Belief Updating

If a study   (X, S)   is published, the public’s posterior belief is   π 1   =  π  1  
 (X,S) 

  .  

We assume that   π  1  
 (X,S) 

   is derived according to Bayes’ rule given the signal  

 X | θ, S ∼  (θ,  S   2 )  . Denote the pdf of a standard normal distribution by  φ . By 

Bayes’ rule, recalling that  S  is independent of  θ , the density of   π  1  
 (X,S) 

   relative to the 

prior   π 0    is given by

(2)    
d π  1  

 (X,S) 
 
 _ 

d π 0  
   (θ)  =   

φ ( (X − θ) /S) 
  _____________________  

∫ φ ( (X − θ′) /S)  d π 0   (θ′) 
  . 

Since the journal and the public share a common prior, we see that   π  1  
 (X,S) 

   also 

represents the journal’s Bayesian belief after it observes a submitted study   (X, S)  . 

As such, we often refer to   π  1  
 (X,S) 

   as the interim belief that the journal holds when 

evaluating a paper for publication.

If a study is not published, then the public’s posterior belief is   π 1   =  π  1  
0  , the 

default belief. We consider the possibility of two distinct updating rules to deter-

mine   π  1  
0  . Bayesian updating is the sophisticated rule that correctly accounts for selec-

tion induced by the publication process. Naive updating is the unsophisticated rule 

that ignores the possibility of unpublished studies and fails to account for selection.

Bayesian Updating: When no study is published, the public understands that this 

event could have occurred because no study arrived (probability  1 − q ) or because 

a study arrived (probability  q ) and was unpublished (probability  1 − p (X, S)  , 

with  θ ∼  π 0   ,  S ∼  F S   , and  X | θ, S ∼  (θ,  S   2 )  ). The public then updates beliefs on 

θ to   π  1  
0   according to Bayes’ rule.4 Denote this Bayesian default belief under publi-

cation rule  p  by   π  1  
0,p

  ; its density relative to the prior   π 0    is given by

(3)    
d π  1  

0,p
 
 _ 

d π 0  
   (Θ)  =   

1 − qE [p (X, S)  | θ] 
  _______________  

1 − qE [p (X, S) ] 
  . 

Naive Updating: The public’s default belief,   π  1  
0  , is equal to its prior:   π  1  

0  =  π 0   .

While Bayesian updating is “correct” in the fully specified model, we consider 

naive updating to be, in many cases, a realistic description of updating. One can 

interpret a naive public as having an incorrect model of the world: in the absence 

of seeing a publication, the public is unaware of the possibility that a study might 

have been submitted and rejected. Alternatively, naive beliefs arise as the limiting 

4 If a publication rule publishes with probability one and the probability of study arrival is  q = 1 , then nonpub-
lication is a zero probability event and beliefs are not pinned down by Bayes’ rule. As a convention, we then let the 
Bayesian default belief be equal to the prior   π 0   . 
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Bayesian beliefs when  q → 0 , i.e., a rational public that did not expect a study to 

be submitted on this topic.

C. Leading Examples of Priors and Utility Functions

A typical state of the world  θ  estimated in an empirical economics study might 

be a demand or supply elasticity, the magnitude of a treatment effect, or the net 

benefit of implementing a program. Our leading example for a prior distribution 

will be the normal prior, in which case  Θ = ℝ  and   π 0    is   ( μ 0  ,  σ  0  
2 )  , with   μ 0   ∈ ℝ  

and   σ 0   ∈  ℝ ++   . With a normal prior, the posterior belief after observing a study   

(X, S)   is given by

(4)   π  1  
 (X,S) 

  =   (  
 σ  0  

2 
 _ 

 S   2  +  σ  0  
2 
  X +    S   2  _ 

 S   2  +  σ  0  
2 
    μ 0  ,   

 S   2   σ  0  
2 
 _ 

 S   2  +  σ  0  
2 
  ) . 

Two utility functions we consider are quadratic loss and binary action utility. 

The quadratic loss utility function has   = ℝ  and  U (a, θ)  = −   (a − θ)    2  . This is 

a canonical utility function for a public that makes a continuous policy decision  a , 

with the state θ representing the public’s ideal point. Under quadratic loss utility, the 

maximizing action choice given belief   π 1    is   a   ∗  ( π 1  )  =  E θ∼ π 1  
   [θ]  .

The binary action utility function has   =  {0, 1}   and  U (a, θ)  = a · θ . 

Here, there is a binary decision, such as implementing a program ( a = 1 ) or not 

( a = 0 ). The state θ represents the net benefit of implementation. The chosen 

action is then   a   ∗  ( π 1  )  = 𝟏 ( E θ∼ π 1  
   [θ]  > 0)  , where  𝟏  is the indicator function (tak-

ing  a = 0  at indifference).

D. Interpretations of the Model

As mentioned in the introduction, not all research findings get published. The 

acceptance rate at top economics journals is now below 6 percent (Card and 

DellaVigna 2013). This paper can be viewed as solving for the optimal publication 

rule conditional on any fixed share of studies to be published. The cost  c  would then 

be a shadow cost on this publication constraint. Alternatively, there may be a gen-

uine opportunity cost of the public’s attention: if the public has a limited ability to 

process information, publishing one study pulls attention from others. To the extent 

that papers in  high-ranking, selective journals receive disproportionate attention and 

influence, one can interpret our analysis as characterizing which papers should be 

published in these top journals.

In this model, the decision to publish is based on the objective of maximizing 

 policy-based welfare. We discuss alternative social objectives in Section  V and 

online Appendices C.1 and C.2. The model also assumes that information arrives 

only once, abstracting from the possibility that later studies would further change 

the public’s beliefs and policies. Section IV extends the model to explore the deci-

sion to publish a study today when the journal expects more information to arrive 

in the future.

Throughout the paper, we make a simplifying assumption that a study is summa-

rized by a normal signal with a point estimate  X  and standard error  S . Note that one 
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might interpret the variable  S  to, in fact, be larger than a study’s reported standard 

error, which only captures uncertainty due to sampling variation. That could occur if 

the study has limited external validity, meaning that the estimated parameter is only 

partially informative about the policy parameter of interest. Violations of the identi-

fying assumptions required for internal validity could also add noise to the estimate. 

We discuss some considerations that may arise when  S  is not fully observed by the 

journal in online Appendix C.4.

II. Optimal Publication Rules

A. Characterizing the Optimum

Write out the ex ante expected welfare given some publication rule  p  and default 

action   a   0   as  EW (p,  a   0 )  :

(5)    EW (p,  a   0 )  = E [qp (X, S)  (U ( a   ∗  ( π  1  
 (X,S) 

 ) , θ)  − c)  

 +  (1 − qp (X, S) ) U ( a   0 , θ) ] , 

where the expectation is taken with respect to  θ ∼  π 0   ,  S ∼  F S   , and  

 X | θ, S ∼  (θ,  S   2 )  . Given a specified updating rule, the optimal publication rule  p  

maximizes expected welfare  EW (p,  a   0 )   for the appropriately determined default 

action   a   0  . Under naive updating,  p  is chosen to maximize  EW (p,  a   ∗  ( π 0  ) )  . Under 

Bayesian updating,  p  is chosen to maximize  EW (p,  a   ∗  ( π  1  
0,p

 ) )  .

While we seek to maximize ex ante welfare, it is helpful to consider the jour-

nal’s interim problem after a study has been submitted. The journal observes   (X, S)   

and has interim belief  π  given by  π =  π  1  
 (X,S) 

  . At this interim belief, the journal 

can evaluate the expected payoff from publication (leading to public belief   π 1   = π  

and action   a   ∗  (π)  ) and from nonpublication (leading to public belief   π 1   =  π  1  
0   and 

action   a   0  ). Denote by  Δ (π,  a   0 )   the gross interim benefit—not including publication 

costs—of publishing a study that induces interim belief  π  given default action   a   0  :5

(6)  Δ (π,  a   0 )  =  E θ∼π   [U ( a   ∗  (π) , θ)  − U ( a   0 , θ) ] . 

Say that publication rule  p  is interim optimal given default action   a   0   if it (almost 

surely) publishes a study when  Δ ( π  1  
 (X,S) 

 ,  a   0 )  > c  and does not publish when  

 Δ ( π  1  
 (X,S) 

 ,  a   0 )  < c .

Under naive updating, expected welfare is straightforwardly maximized by 

choosing the interim optimal publication rule given default action   a   0  =  a   ∗  ( π 0  )  . 

Under Bayesian updating, the default action   a   0   depends on the publication rule. 

However, we find that the Bayesian optimal publication rule is also interim optimal 

against the default action that it induces.

5 Frankel and Kamenica (2019) provide general characterizations of these gross interim benefit functions—the 
value of information, in an  ex post sense—across decision problems.
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LEMMA 1: Under either naive or Bayesian updating, let  p  be an optimal publica-
tion rule, and let   π  1  

0   be the induced default belief. The publication rule  p  is interim 
optimal given default action   a   ∗  ( π  1  

0 )  .

In other words, even under Bayesian updating, the journal’s publication rule is a 

best response to the public’s default action.6 To show this result, we first establish 

that for any fixed publication rule  p , the Bayesian default action   a   ∗  ( π  1  
0,p

 )   maximizes 

expected welfare  EW (p,  a   0 )   over choice of   a   0  . Under Bayesian updating, then, the 

journal and public can be thought of as engaging in a sequential game of common 

interest. The value of such a game is unchanged when the journal moves first (as we 

posit) or moves second:   max p    max  a   0    EW (p,  a   0 )  =  max  a   0     max p   EW (p,  a   0 )  .

Lemma 1 is a key result for characterizing optimal policies under Bayesian updat-

ing. First, the lemma implies that—as with naive updating—any characterization 

of interim optimal publication rules extends to optimal publication rules. Second, 

it simplifies the maximization program we use to solve for the optimal Bayesian 

policy: instead of maximizing over all publication rules, we can restrict attention to 

publication rules that are interim optimal given some default action.

One immediate corollary of Lemma 1 is as follows. Define a study   (X, S)   to be 

a null result if publishing the study does not change the optimal action from the 

default action, i.e., if   a   ∗  ( π  1  
 (X,S) 

 )  =  a   0  .7

OBSERVATION 1 (Do Not Publish Null Results): The gross interim benefit of pub-
lishing a null result is zero. Therefore, by Lemma 1, the optimal publication rule 
does not publish null results.

Hence, it is only ever optimal to publish studies that move the public’s beliefs—

and its corresponding action—away from the default. Intuitively, we would expect 

that “extreme” findings—ones that move beliefs and actions further from the 

defaults—are more valuable to publish than “moderate” findings. The following 

condition on utility functions allows us to formalize this result.

Say that a utility function  U :  × Θ → ℝ  is supermodular if for all    a 
¯

   <  a –   and   

θ 
¯

   <  θ 
–
   , it holds that  U ( a – ,  θ 

–
  )  + U (  a 

¯
  ,  θ 
¯

  )  ≥ U (  a 
¯

  ,  θ 
–
  )  + U ( a – ,  θ 

¯
  )  . Supermodular utili-

ties guarantee that the public takes higher actions when it believes that the state is 

higher. Quadratic loss and binary action utilities are both supermodular.

6 In a game with different timing in which the journal could not commit to a publication rule, one might define 
a publication rule  p  and default belief   π  1  

0   as constituting a Bayesian Nash equilibrium if they jointly satisfy (i) 
the publication rule  p  is interim optimal given default action   a   0  =  a   ∗  ( π  1  

0 )   and (ii) the default belief is Bayesian, 
i.e.,   π  1  

0  =  π  1  
0,p

  . Our notion of optimality under Bayesian updating does not impose (i); nevertheless, Lemma 1 
below clarifies that (i) will in fact be satisfied for an optimal publication rule. Hence, any optimal publication rule 
would induce a Bayesian Nash equilibrium, but there may exist Bayesian Nash equilibria that are not optimal. 

7 Whether a study is a “null result” in this sense depends on the default belief. Our definition differs from its 
common usage, which often refers to a point estimate that is not statistically significantly different from zero.
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THEOREM 1: Fix either updating rule. Let the utility function  U  be supermodular. 
Under an optimal publication rule, for every standard error  S = s , there exists an 
interval  I ⊆ 핉  such that   (X, s)   is published if and only if  X ∉ I .8

So with supermodular utilities, the journal publishes point estimates that are 

sufficiently high, sufficiently low, or both. Putting together Observation 1 and  

Theorem 1, we see that under these utility functions, the journal indeed publishes 

extreme findings—ones that lead to extreme beliefs and actions relative to the 

default.

The logic behind Theorem 1 is straightforward. Higher point estimates  X  yield 

higher interim beliefs on the state (in the sense of first-order stochastic dominance), 
because point estimates at a fixed standard error are ordered by the monotone like-

lihood ratio property. Under supermodularity, higher beliefs increase the benefit of 

taking higher actions. So for any low point estimate that yields an optimal action 

below the default, there would be a greater interim benefit of publishing an even 

lower point estimate. Likewise, for any high point estimate that yields an action 

above the default, there would be a greater interim benefit of publishing an even 

higher point estimate. Hence, it is interim optimal to publish point estimates that are 

sufficiently high or sufficiently low. Finally, Lemma 1 implies that this characteriza-

tion of interim optimal rules extends to the optimal publication rule as well.

The next subsection derives explicit solutions for optimal publication rules for 

our leading examples of normal priors and quadratic loss or binary action utility 

functions.

B. Examples of Optimal Publication Rules

In this section, we present the optimal publication rules for our two leading exam-

ple utility functions, quadratic loss and binary action, under the assumption of nor-

mal priors. Appendix A provides the derivations of these policies for the case of 

Bayesian updating; for naive updating, we can simply look for the interim optimal 

policy against the prior belief. It turns out that for these example utility functions and 

priors, Bayesian updating and naive updating yield identical optimal policies. Indeed, 

Appendix A presents more general conditions on priors under which Bayesian and 

naive updating yield identical publication rules for these two utility functions.

Quadratic Loss Utility with Normal Priors.—Under quadratic loss utility, wel-

fare is  W (D, a, θ)  = −   (a − θ)    2  − Dc  for  a ∈  = ℝ . The public chooses an 

action equal to its posterior mean belief about the state. So when the default action 

is   a   0  , the gross interim benefit of publishing a study   (X, S)   that induces a belief with 

mean   μ  1  
 (X,S) 

   evaluates to    ( μ  1  
 (X,S) 

  −  a   0 )    
2
  . The interim optimal publication rule is 

therefore to publish if   |  μ  1  
 (X,S) 

  −  a   0  |  ≥  √ 
_

 c   .

8 It is possible that  I = ∅ , in which case all studies with  S = s  are published, or that  I = 핉 , in which no 
studies at  S = s  are published.
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Under normal priors (for which   μ  1  
 (X,S) 

   is given by (4)), Proposition 1, part (i) 
establishes that the above rule is optimal—for Bayesian as well as naive updating—

with the default action   a   0  =  μ 0   . Parts (ii) and (iii) provide comparative statics.

PROPOSITION 1: Suppose there is quadratic loss utility and a normal prior.

 (i) Under either Bayesian or naive updating, it is optimal to publish a study   

(X, S)   if and only if   | X −  μ 0   |  ≥  (1 +  S   2 / σ  0  
2 )  √ 

_
 c   , i.e.,   |X −  μ 0  | /S ≥  

(1/S + S/ σ  0  
2 )  √ 

_
 c   .

 (ii) The publication cutoff   (1 +  S   2 / σ  0  
2 )   √ 

_
 c    in terms of the difference of the point 

estimate from the prior mean is independent of the study arrival probability  q  
and the mean   μ 0   . It is larger when the standard error  S  is larger, the prior 
variance   σ  0  

2   is smaller, or the cost of publication  c  is larger.

 (iii) The publication cutoff   (1/S + S/ σ  0  
2 )   √ 

_
 c    in terms of the magnitude of the 

 t-statistic is nonmonotonic and convex in the standard error  S : it has a mini-
mum at  S =  σ 0    and goes to infinity as  S → 0  or  S → ∞ .

The publication rule described in Proposition 1, part (i) corresponds to a 

“ two-sided test” in which the journal publishes if the point estimate is sufficiently 

high or sufficiently low. Equivalently, we can restate the publication rule in terms of 

a  two-sided test for the  t-statistic   (X −  μ 0  ) /S . See Figure 1.

The form of a  two-sided test is, of course, familiar from the  null hypothesis sig-

nificance testing paradigm. However, we wish to highlight two ways in which our 

policy is distinct from  two-sided tests as they are traditionally applied. First, we 

compare the point estimate  X  to the prior mean, not to some other point, e.g., a null 

hypothesis of  θ = 0 . Second, the cutoff for publication is not given by a conven-

tional value, such as a  t-statistic of 1.96 corresponding to a  p-value of  0.05 . The 

cutoff is instead determined by a  cost-benefit analysis.

Proposition 1, part (ii) finds that a given point estimate of  X  moves beliefs more 

and thus makes publication more likely—in the sense of a smaller cutoff value 

for  | X −  μ 0   | —when the standard error  S  is smaller or when the prior uncertainty   σ 0    

is larger. Likewise, publication is more likely when the cost of publication  c  is lower.

When deciding to publish at a given  t-statistic rather than a point estimate, 

Proposition 1, part (iii) finds a  nonmonotonic publication threshold as a function 

of  S . (For other parameters, the comparative statics in terms of the  t-statistic would 

be identical to those on the point estimate.) For a precise study with a low standard 

error or an imprecise one with a high standard error, the journal requires a high 

 t-statistic to be willing to publish; for a study of intermediate precision, the journal 

publishes at a lower  t-statistic. The journal is most willing to publish a study at a 

given  t-statistic when the standard error  S  is equal to   σ 0   , the standard deviation of 

the prior.

To gain intuition on this nonmonotonic comparative static, recall that here the 

journal publishes studies that move the interim mean sufficiently far from the prior 

mean. Fix a prior mean and standard deviation of   μ 0   = 0  and   σ 0   = 1 , and consider 
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 different studies that might arrive with a given  t-statistic  t = X/S , say,  t = 4 . If a 

very precise study ( S ≃ 0 ) arrives with  t = 4 , the point estimate must have been 

close to 0, so it moves the mean very little. As we scale up the point estimate and 

standard error while keeping  t = 4 , the posterior mean moves higher, peaking at a 

mean of 2 when  X = 4  and  S = 1 . Increasing the point estimate and standard error 

further, the mean falls back toward 0, because the study becomes too noisy (relative to 

the prior) to move beliefs much.9 In other words, fixing the “statistical significance” 

as measured by the  t-statistic, the change in mean first grows and then declines in the 

“practical significance” as measured by the magnitude of the point estimate.

Binary Action Utility with Normal Priors.—Under binary action utility, wel-

fare is given by  W (D, a, θ)  = aθ − Dc  for  a ∈  =  {0, 1}  . The public chooses 

action  a = 0  if its posterior mean belief about the state is weakly less than 0 and 

action  a = 1  if the posterior mean is positive. So for the default action   a   0  = 0 , 

the gross interim benefit of publishing a study   (X, S)   inducing belief   π  1  
 (X,S) 

   with 

mean   μ  1  
 (X,S) 

   evaluates to  max {0,  μ  1  
 (X,S) 

 }  . For the default action   a   0  = 1 , the gross 

interim benefit is instead  max {0, −  μ  1  
 (X,S) 

 }  .

Under normal priors with prior mean normalized to   μ 0   ≤ 0 , Proposition  2 

establishes that the optimal rule—for Bayesian as well as naive updating—

yields   a   0  = 0 . The corresponding (interim) optimal publication rule is therefore 

to publish if   μ  1  
 (X,S) 

  ≥ c . This publication rule corresponds to a “ one-sided test.” At 

any given standard error, a study is published only if the point estimate is sufficiently 

high.

9 The general formula for the change in mean given a  t-statistic  t =  (X −  μ 0  ) /S  and standard error  S —with a 
corresponding point estimate of  X =  μ 0   + tS —is  t  ( σ  0  

2  S/( σ  0  
2  +  S   2 ))  . To understand why this change in mean falls 

to zero when we fix  t  and take  S → ∞ , recall that the interim mean is a weighted average of the prior mean   μ 0    and 
the point estimate  X . The point estimate scales linearly with  S , but the weight on the point estimate is proportional 
to  1/ S   2  .

Figure 1. Optimal Publication Region Shaded for Quadratic Loss Utility, Normal Prior
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PROPOSITION 2: Suppose there is binary action utility and a normal prior 
with   μ 0   ≤ 0 . Then under either Bayesian or naive updating, it is optimal to pub-
lish a study if and only if  X ≥  (1 +  S   2 / σ  0  

2 ) c −  ( S   2 / σ  0  
2 )  μ 0   , i.e.,   (X −  μ 0  ) /S ≥  

(1/S + S/ σ  0  
2 )  (c −  μ 0  ) . 

Proposition 3 in online Appendix D.1 provides comparative statics for how the 

publication cutoff varies with parameters. Most of the comparative statics are anal-

ogous to those from the quadratic loss publication rule in Proposition 1. However, 

the two policies depend differently on the prior mean. Suppose we fix a point esti-

mate  X > 0  and we consider prior means   μ 0   < 0 . With quadratic loss utility, 

increasing   μ 0    toward 0 would make the journal less willing to publish: there will 

be a smaller difference  X −  μ 0   , and therefore, the posterior mean will be closer to 

the prior mean. With binary actions, increasing   μ 0    toward 0 makes the journal more 

willing to publish: the posterior mean will be higher in absolute terms, indicating 

that the benefit of switching from  a = 0  to  a = 1  is higher.

III. Selective Publication and Statistical Inference

The key conclusion from the previous section was that  welfare-maximizing pub-

lication rules should selectively publish extreme findings over moderate findings. 

This conclusion, of course, contrasts with calls for reform aimed at eliminating 

selection. Selective publication is understood to distort inference and harm repli-

cability. See, for instance, Rosenthal (1979) and Ioannidis (2005) on how standard 

inference from published results can be inaccurate when publication is based on 

statistical significance.

To study these issues in our model, say that a publication rule  p  is  nonselective 

if  p (x, s)   is constant in the point estimate  x  for each standard error  s 10 and otherwise 

10 We mean by this statement that  p (x, s)   is constant in  x  almost surely over realizations of  X , i.e., that  

 Pr (p (X, s)  = E [p (X, s)  | S = s]  | θ, S = s)  = 1  for all θ. Nothing changes if  p (x, s)   may vary with  x  on sets of  X  

that can only occur with zero probability given  θ, S = s .

Figure 2. Optimal Publication Region Shaded for Binary Action Utility, Normal Prior
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is selective. That is,  nonselective publication rules do not condition publication on 

the study’s findings.  Nonselective publication rules may still condition on the stan-

dard error (i.e., on the study’s design), which is independent of the state.

We can now see how selective publication may distort inference. Recall that the 

point estimate  X  is drawn from the distribution  X | θ, S ∼  (θ,  S   2 )   with density  

  f X|θ,S   (x | θ, s)  = φ ( (x − θ) /s) /s . Conventional statistical inference on θ from  X  

and  S  is based on this density. Under publication rule  p , however, the density of  X  

conditional on publication ( D = 1 ) is instead

(7)   f X|θ,S,D=1   (x | θ, s)  =   
p (x, s) 

  _________________  
E [p (X, S)  | θ, S = s] 

   ·  f X|θ,S   (x | θ, s) . 

If publication is  nonselective, the density conditional on publication  

  f X|θ,S,D=1    matches   f X|θ,S   . With selective publication, these densities may differ. In that 

case, conventional inferences would be flawed. We present a set of novel results 

below showing that a  nonselective publication rule is not just sufficient but also 

necessary for the validity of standard inference in a number of senses.

A. Distortions from Selection

Let  Φ  denote the cdf of a standard normal distribution.

THEOREM 2: Suppose that there is an open set   Θ 0   ⊆ 핉  contained in the support 
of the prior distribution of θ. Fix some standard error  s > 0 . Each of the following 
conditions holds if and only if the publication rule  p  is  nonselective:

 (i) (Unbiasedness) For each  θ ∈  Θ 0   ,  E [X | θ, S = s, D = 1]  = θ .

 (ii) (Publication probability constant in state) The publication probability condi-
tional on standard error,  E [p (X, S)  | θ, S = s]  , is constant over  θ ∈  Θ 0   .

 (iii) (Undistorted naive updating) For all distributions   F S    on   , the Bayesian 
default belief   π  1  

0,p
   is equal to the naive default belief   π 0   .

Suppose additionally that  Θ = 핉  and that the publication rule takes the  
form of  p (x, s)  = 1 (x ∉ I (s) )   for some interval  I (s)  ⊊ 핉 , where  nonselective 
publication corresponds to  I (s)  = ∅ . Fix some critical value  z > 0 . Then the pub-
lication rule  p  is  nonselective if and only if

 (iv) (Size control of confidence intervals) For each  θ′ ∈ Θ ,  Pr (θ′ ∈  [X − zs, X + 
 zs]  | θ = θ′, S = s, D = 1)  ≥ Φ (z)  − Φ (− z) . 

As suggested above, when the publication rule is  nonselective, the conclusions 

of parts (i)–(iv) of Theorem 2—the validity of conventional inferences—hold fairly 

straightforwardly. The novel results of the theorem are the converses, that each part 
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in turn implies  nonselective publication.11 We will first go over the interpretation of 

each part, and we then discuss the intuition behind their proofs.

Interpreting Theorem 2.—Part (i) of Theorem 2 establishes that after condi-

tioning on publication, selective publication implies that the point estimate  X  is a 

biased estimator for the state θ. For instance, suppose that a study is only published 

when  | X | > 1.96 · S ; this is the conventional cutoff for rejecting a null hypothe-

sis of  θ = 0  at the 95 percent statistical significance level. In that case, the bias  

 E [X | θ, S = s, D = 1]  − θ  will be positive if the state θ is above 0 and will be 

negative if the state is below 0. Figure 3, panel A illustrates the bias conditional on 

publication when  S = 1  and when a study is only published if  | X | > 1.96 .12

Part (ii) establishes that if publication is selective ( p (x, s)   varies with  x ), then the 

publication probability  E [p (X, S)  | θ, S = s]   conditional on any standard error  S = s  

and  θ  varies with the state  θ . From equation (7), if the publication probability varies 

with  θ , then so too does the ratio   f X|θ,S,D=1   (x | θ, s)  /  f X|θ,S   (x | θ, s)  . Selective publication 

therefore renders invalid uncorrected  likelihood-based inference, such as maximum 

likelihood estimation or likelihood ratio tests. For the example in which a study is 

published if and only if  |X| > 1.96 · S , Figure 3, panel B fixes  S = 1  and then 

shows how the publication probability depends on θ. Here, we see that the publica-

tion probability falls as the state  θ  gets closer to 0, the center of the nonpublication 

interval.

Part (iii) says that the Bayesian default belief is equal to the naive default belief 

(i.e., the prior) for every possible distribution of standard errors if and only if pub-

lication is  nonselective. To interpret this result, think of a “partially sophisticated” 

public. This public is aware that studies may sometimes go unpublished and thus 

that naive updating may lead to distorted beliefs. But it does not know the study 

arrival rate  q  or the distribution of standard errors   F S   , and it may not even have a 

 well-specified prior over these objects. Therefore, it does not know how to cor-

rect these distortions. Under a  nonselective publication rule, though, the partially 

sophisticated public can be confident in updating naively. For any  q  and any   F S   , the 

Bayesian default belief is guaranteed to be equal to the naive one.13

Figure 3, panel C illustrates how the Bayesian and naive default beliefs differ 

under the selective publication rule that publishes if  |X| > 1.96 · S . When no pub-

lication is observed, a Bayesian understands that there may have been a study with 

point estimate  X ≃ 0  that was submitted but went unpublished. Hence, the Bayesian 

default belief places a higher posterior probability on θ close to 0 and a lower prob-

ability on  θ  far from 0.14 The figure assumes a prior of  θ ∼  (0, 4)  , study arrival 

rate  q = 1 , and that the standard error is drawn as  S = 1  with certainty.

11 For parts (i), (ii), and (iv) of the theorem, if publication is  nonselective, then the results hold for each  s  and/
or  z , and if the results hold for any  s  and/or  z , then publication is  nonselective.

12 Figures similar to Figure 3, panels A and D can be found in Andrews and Kasy (2019).
13 The arrival rate  q  does not affect whether naive beliefs are distorted. The Bayesian default belief is equal to 

the prior for some  q ∈  (0, 1]   if and only if it is equal to the prior for all  q ∈  (0, 1]  .
14 Abadie (2018) demonstrates how a failure to pass a standard statistical significance threshold can be extremely 

informative when studies are precise. In such cases, the Bayesian default belief diverges greatly from the naive one.
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Finally, part (iv) of Theorem 2 restricts attention to the form of publication rule 

found in Theorem 1, in which studies are published only if the point estimate falls 

outside of an interval. We find that selective publication of this form will fail to 

control the size of conventional frequentist confidence intervals. Given standard 

error  S = s  and  z-score  z , there exists some realization of the state  θ  for which the 

probability that the interval   [X − zs, X + zs]   contains  θ  is less than the nominal con-

fidence level  Φ (z)  − Φ (− z)  .15 Figure 3, panel D fixes  S = 1  and shows the cover-

age probability of the nominal 95 percent confidence interval   [X − 1.96, X + 1.96]   

as a function of the state when the journal publishes only if  |X| > 1.96 . If the true 

state is  θ = 0 , there is in fact zero probability conditional on publication that this 

15 In online Appendix D.2, we show that, fixing  z > 0 , there do exist selective publication rules outside of 
the form of Theorem 1 for which the coverage probability of the confidence interval   [X − zS, X + zS]   does in fact 
always equal  Φ (z)  − Φ (− z)  .

Figure 3. Distortions due to Selectively Publishing Point Estimates  | X | > 1.96 
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confidence interval contains the state. For some other values of  θ , the probability 

that the confidence interval contains the state is higher than 95 percent.

Intuition for Proof of Theorem 2.—We now discuss the key intuitions behind the 

proof that parts (i)–(iv) of Theorem 2 each imply  nonselective publication.

That part (ii) (a constant publication probability in the state, conditional on the 

standard error  S = s ) implies  nonselective publication follows from the complete-

ness of the normal location family of distributions; see, for instance, Theorem 6.22 

in Lehmann and  Casella (1998). Completeness is the continuous analog of a 

full rank condition, applied to the linear operator mapping  g , a function of  x , to  

 E [g (X)  | θ, S = s]  , a function of  θ . Completeness implies that for any function  

 g (x)   for which  E [g (X)  | θ, S = s]   is constant in  θ  over an open set, it holds that  

 g (x)   must be almost everywhere constant. Plugging in the function  g (x)  = p (x, s)  , 

we see that if the conditional publication probability at state  θ  is constant in  θ , then 

the publication probability  p (x, s)   cannot vary with  x .

To show that part (i) (unbiasedness) implies part (ii), let  S = 1  without loss. 

We leverage “Tweedie’s formula” (Efron 2011), which holds because  φ′ (x)   

= − xφ (x)  :

   ∫ 
 
  
 

   (x − θ) φ (x − θ) p (x, 1)  dx =  ∂ θ   E [p (X, S)  | θ, S = 1] . 

Unbiasedness implies that the left-hand side of this equality is  0 , and thus, so is the 

right-hand side, yielding part (ii).
Next, to see that part (iii) (undistorted naive updating) implies part (ii), observe 

from equation (3) that the Bayesian default belief matches the prior—the naive 

default belief—only if the publication probability unconditional on the standard error,  

 E [p (X, S)  | θ]  , is constant in  θ . If we desire that this hold for all possible distribu-

tions over the standard error  S , then the publication probability conditional on any 

given  S = s  must also be constant, which is exactly part (ii).
Finally, we show that part (iv) (size control of confidence intervals) implies 

part  (ii). Suppose for the sake of contradiction that the publication rule is selec-

tive: at  S = s , it only publishes point estimates  X  outside a  nonempty interval  I (s)  . 

Then a straightforward calculation shows that there are states  θ′  in the interior of  

 I (s)   for which the confidence interval contains  θ′  with probability less than the nom-

inal level.

B. Optimal  Nonselective Publication

The fact that selective publication distorts inference means that there is a  trade-off 

between  policy relevance and credibility. The  policy relevance criterion pushes 

toward selectively publishing extreme results. But if we wish standard inference to 

remain valid, then we must restrict ourselves to  nonselective publication rules. What 

is the optimal  nonselective publication rule—the rule that maximizes utility subject 

to the constraint of being  nonselective?
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PROPOSITION 3: There exists   s –  ∈  핉 +   ∪  {∞}   for which an optimal  nonselective 
publication rule is to publish a study   (X, S)   if and only if  S <  s –  .16 The optimal 
 nonselective rule is the same under naive and Bayesian updating.

When the journal is not allowed to screen on the point estimate, the only remain-

ing option is to screen on the standard error. In that case, the journal should pub-

lish studies with smaller standard errors over those with larger standard errors. The 

result follows immediately from the fact that  X ∼  (θ,  s   2 )   is a Blackwell more 

informative signal of the state  θ  and is thus more valuable ex ante, when the standard 

error  s  is smaller. Under a normal prior and quadratic loss utility, for instance, we 

can explicitly solve for the optimal  nonselective publication rule. If   σ  0  
2  ≥ c  (high 

prior uncertainty, low publication costs), then a study is published if  S ≤  s –  , with   

s –  =  σ 0    √ 
______

 ( σ  0  
2 /c) − 1   ; and if   σ  0  

2  < c  (low prior uncertainty, high costs), then no 

study is published.17

The publication region for the optimal  nonselective rule neither nests nor is 

nested in that for the optimal selective rule. The  nonselective rule publishes if  

 S ≤  σ 0    √ 
______

 ( σ  0  
2 /c) − 1   , and the selective rule from Proposition 1 

for  S ≤  σ 0    √ 
____________

  |X −  μ 0  |/ √ 
_

 c   − 1  .  For  X  far from the prior mean, we see that the 

 nonselective rule publishes less often.

IV. A  Two-Period Model

The model introduced in Section I assumes that a single study is or is not pub-

lished and then a policy is chosen. If an additional study were to arrive, though, the 

public might want to switch to a new policy. This new policy would depend on the 

results of the later study as well as those of the original one (if published). So if a 

journal expects additional studies to arrive in the future, it faces new considerations 

when deciding whether to publish a study today.

In order to explore such issues, this section introduces a  two-period model. As 

before, there is an unknown  policy-relevant state of the world  θ , which we take to be 

persistent over time. The original model of publication and policy choice—which 

we now refer to as the  one-period model—makes up the first period. The new sec-

ond period captures, in reduced form, the impact of future studies: additional exog-

enous information arrives, and the public takes another action.

A. Setup of the Two-Period Model

At the start of the game, the common prior over  θ  is   π 0   . In the first period, a study 

is submitted to a journal with probability  q . If the study arrives, it has point esti-

mate and standard error   ( X 1  ,  S 1  )   with   S 1   ∼  F  S 1  
    and   X 1   | θ,  S 1   ∼  (θ,  S  1  

2 )  . The study 

16 For   s –  = 0 , no study would be published.
17 If a  nonselective publication rule is used and no publication is observed, then the default belief will be  

  π 0    (under either updating rule) so the expected welfare will be  −  var θ∼ π 0  
   [θ]  = −  σ  0  

2  . Conditional on  S  but not  X , the 

expected welfare of publishing can be solved for as   σ  0  
2  ·  ( S   2 /( S   2  +  σ  0  

2 ))  − c . An optimal  nonselective publication 

rule publishes a study if   σ  0  
2  ·  ( S   2 /( S   2  +  σ  0  

2 ))  − c > −  σ  0  
2  .
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is published with probability  p ( X 1  ,  S 1  )  . The public updates to belief   π 1    as before, 

with   π 1   =  π  1  
 ( X 1  , S 1  ) 

   following publication ( D = 1 ), or to default belief   π 1   =  π  1  
0   

following  nonpublication ( D = 0 ). The induced belief   π  1  
 ( X 1  , S 1  ) 

   is given by Bayes’ 

rule, and the default belief   π  1  
0   may be determined by either naive or Bayesian updat-

ing. Then the action   a 1    is taken, with   a 1   =  a   ∗  ( π 1  )  ∈ arg  max a    E θ∼ π 1  
   [U (a, θ) ]  .

In the second period, an exogenous signal   X 2   ∼  (θ,  s  2  
2 )  —independent 

of  D  and of   ( X 1  ,  S 1  )   given  θ —is publicly observed. Beliefs update according 

to Bayes’ rule from prior   π 1    to posterior   π 2   . Finally, the action   a 2    is taken, with  

  a 2   =  a   ∗  ( π 2  )  ∈ arg  max a    E θ∼ π 2  
   [U (a, θ) ]  .

We assume that the standard error of the  second-period signal,   s 2   , is a parameter 

that is known by the journal at the start of the game. Our interpretation is that   s 2    

would be low (i.e., precise) when the journal expects that other high-quality studies 

on the topic in question will soon be performed. The parameter   s 2    would be high 

(imprecise) when the journal expects future studies on the topic to be performed 

infrequently or be of low quality.

Let  α ∈  [0, 1)   describe the payoff weight on the  first-period action relative 

to  1 − α  on the second-period action. Social welfare is the weighted sum of action 

payoffs minus a cost of publication  c > 0  incurred if a study is published:

(8)  W (D,  a 1  ,  a 2  , θ)  = αU ( a 1  , θ)  − Dc +  (1 − α) U ( a 2  , θ) . 

A dynamically optimal publication rule maximizes the  ex ante expectation of 

welfare from (8). For a journal that has  period 1 interim belief   π  1  
I    after observ-

ing a study and faces default belief   π  1  
0  , the gross interim benefit of publishing the 

study, denoted  Δ ( π  1  
I  ,  π  1  

0 )  , is the journal’s subjective belief about the increase in 

weighted action payoffs  αU ( a 1  , θ)  +  (1 − α) U ( a 2  , θ)   if the study is published.18 A 

publication rule is dynamically interim optimal given default belief   π  1  
0   if it (almost 

surely) publishes a study when  Δ ( π  1  
 (X,S) 

 ,  π  1  
0 )  > c  and does not publish when  

 Δ ( π  1  
 (X,S) 

 ,  π  1  
0 )  < c .

Going forward in this section, we will restrict attention to quadratic loss utility. 

We explore binary action utility in online Appendix D.3.

B. General Properties of Dynamically Optimal Publication

We start our analysis by observing that the result of Lemma 1, that optimal pub-

lication rules are interim optimal, extends immediately to the  two-period model.

18 Unlike in the  one-period model, the gross interim benefit here depends on the full default belief   π  1  
0  , not just 

the first-period default action   a   ∗  ( π  1  
0 )  . To expand out the formula for  Δ ( π  1  

I  ,  π  1  
0 )  , first denote by   π  2  

I, X 2     and   π  2  
0, X 2     the 

Bayesian updated beliefs after observing   X 2   , starting from respective priors   π  1  
I    and   π  1  

0  . We then have

    Δ ( π  1  
I  ,  π  1  

0 )  =  E θ∼ π  1  
I  , X 2  ∼(θ, s  2  

2 )   [α (U ( a   ∗  ( π  1  
I  ) , θ)  − U  ( a   ∗  ( π  1  

0 ) , θ) ) 

 +  (1 − α)  (U ( a   ∗  ( π  2  
I, X 2   ) , θ)  − U  ( a   ∗  ( π  2  

0, X 2   ) , θ) ) ]  .
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LEMMA 1′: Consider the  two-period model. Under either naive or Bayesian updat-
ing, let  p  be a dynamically optimal publication rule, and let   π  1  

0   be the induced 
default belief. Then the publication rule  p  is dynamically interim optimal given 
default belief   π  1  

0  .

In other words, given the appropriate default belief, the journal will publish a 

submitted paper if the gross interim benefit is above the publication cost  c .

Theorem 3, below, derives some key properties of gross interim benefit functions 

under quadratic loss utility. First, the theorem establishes that there is a positive 

benefit of publishing any study that changes the public’s belief distribution from 

the default—even null results that don’t change the mean belief.19 So unlike in the 

 one-period model, null results may now sometimes be published. Second, the theo-

rem looks at how the benefit of publishing null results depends on the informative-

ness of the future study, parameterized by standard error   s 2   . It finds that the benefit 

of publishing null results goes to zero when the future study is either very precise or 

very imprecise. That is, it is more valuable to publish a null result when the preci-

sion of future information is neither too high nor too low.

To guarantee that the benefit of publication goes to zero as future information 

becomes imprecise, we introduce a mild sufficient condition on the prior distribu-

tion   π 0   . Say that a belief  π  is bounded by Pareto tails with finite variance if there 

exist  K > 0 ,  C > 0 , and  γ > 3  such that for  θ  outside of the interval   [− K, K]  ,  π  

admits a density, and this density is bounded above by  C  | θ |   −γ  .20

THEOREM 3: Consider the  two-period model with quadratic loss utility. Given some 
prior   π 0    with finite variance, let   π  1  

0   be the induced default belief either from naive 
updating or from Bayesian updating under some publication rule and some  q < 1 . 
Consider  Δ ( π  1  

I  ,  π  1  
0 )  , the gross interim benefit of publishing a study that induces 

 period 1 interim belief   π  1  
I   .

 (i) If   π  1  
I   ≠  π  1  

0  , then  Δ ( π  1  
I  ,  π  1  

0 )   is strictly positive.

 (ii) Suppose further that   π  1  
0   and   π  1  

I    have the same mean. Then:
 (a)  Δ ( π  1  

I  ,  π  1  
0 )   goes to 0 as   s 2    goes to 0.

 (b)  Under the additional assumption that   π 0    is bounded by Pareto tails with 
finite variance,  Δ ( π  1  

I  ,  π  1  
0 )   goes to 0 as   s 2    goes to infinity.

As mentioned above, the novel takeaway from part (i) is that in the  two-period 

model, there is now a benefit from publishing a null result study, one for which the 

mean of the induced interim belief   π  1  
I    is equal to the mean of the default belief   π  1  

0  . 

To prove this result, it suffices for us to show that whenever   π  1  
I   ≠  π  1  

0  , there exists 

19 In the context of the  two-period model, we say a study is a “null result” if it leads to the default action in 
period 1.

20 As indicated by the terminology, the Pareto distribution with pdf decaying at a rate of   θ   −γ   has finite variance 
if and only if  γ > 3  (corresponding to a standard Pareto shape parameter, usually denoted  α , strictly greater than 
2). Any distribution with compact support, normal tails, or exponentially decaying tails is bounded by Pareto tails 
with finite variance.
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a positive measure of realizations of   X 2    for which the posterior means of the 

 second-period beliefs updated from these priors would differ. At these realizations 

of   X 2   , the expected  second-period utility  U ( a 2  , θ)  —evaluated by a journal with 

belief   π  1  
I   —is higher for a public that updated from   π  1  

I    than for a public that updated 

from   π  1  
0  .

Restating the above logic, the benefit of publishing a null result study in period 1 

is that it helps the public avoid mistakes when taking the period 2 action. Publishing 

a null result helps prevent the noisy signal   X 2    from moving the public’s mean 

belief in period 2 away from the truth. Theorem 3, part (ii)a observes that when the 

 second-period signal is extremely precise   ( s 2   ≃ 0)  , there is actually no such bene-

fit from publishing a null result. The signal   X 2    will reveal the state very precisely, so 

to the extent that   X 2    moves beliefs, it moves beliefs to the truth. Part (ii)b similarly 

points out that when the  second-period signal is extremely imprecise (  s 2   ≃ ∞ ), 
there is also no need to publish a null result: with high probability, observing   X 2    will 

barely move beliefs. The period 2 studies that may cause mistakes by moving the 
public’s belief away from the truth are those with an intermediate level of precision.

If the second-period signal were fully informative or completely uninforma-

tive, then the game would reduce to a  one-period problem (with respective payoff 

weights  α  and  1 ) in which null results had no benefit. So parts (ii)a and (ii)b can 

essentially be reinterpreted as stating that the value of information is “continuous” 

as the second-period information approaches these limits via a normal signal.

To see how such continuity might fail in the absence of bounds on the tail behavior 

of the prior, consider the   s 2   → ∞  limit, and suppose that the prior and default belief 

are given by the improper uniform prior on the real line. Updating this improper 

prior with the second-period signal yields the posterior   ( X 2  ,  s  2  
2 )  . If a  first-period 

result   ( X 1  ,  S 1  )   is published, then the expected  second-period action payoff is at 

worst  −  S  1  
2  , which is the expected payoff from taking   a 2   =  X 1   . If the result is not 

published, though, then with posterior   ( X 2  ,  s  2  
2 )  , the public chooses   a 2   =  X 2    and 

gets expected payoff  −  s  2  
2  . So as   s 2   → ∞ , the benefit of publishing the  first-period 

result grows without bound. Similar behavior can arise for proper but  heavy-tailed 

priors with  well-defined means.

In order to prove continuity in the appropriate limit, we need to show that the 

 second-period posterior mean after publication of a  first-period null result converges 

in  mean square to the  second-period posterior mean after  nonpublication (integrat-

ing over the realization of   X 2   ). We are able to show this result for the   s 2   → 0  limit 

by assuming a finite variance for the default belief, in which case both posterior 

means converge to   X 2   ; see Lemma 6 in Appendix BC. We are able to show this result 

for the   s 2   → ∞  limit by imposing the stronger assumption that the default belief 

is bounded by Pareto tails with finite variance, in which case both posterior means 

converge to the prior mean; see Lemma 7 in Appendix BC.

C. Example of Dynamically Optimal Publication

The following proposition gives an explicit formula for the gross interim ben-

efit function of the  two-period model under quadratic loss utility, normal priors, 

and naive updating. (Naive updating guarantees that when evaluating this interim 
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 benefit, the default belief will be the prior   π 0   .) It is dynamically optimal to publish a 

study if the gross interim benefit is above the publication cost  c .

PROPOSITION 4: In the  two-period model with quadratic loss utility, normal pri-

ors, and naive updating, the gross interim benefit  Δ ( π  1  
 ( X 1  , S 1  ) 

 ,  π 0  )   of publishing a 
study   ( X 1  ,  S 1  )   is given by   β 0   +  β 2   ·   ( X 1   −  μ 0  )    2  , where

(9)     β 0   =  (1 − α)   
 σ  0  

8   s  2  
4 
  ____________________________________    

 ( σ  0  
2  +  S  1  

2 )    ( σ  0  
2  +  s  2  

2 )    
2
  ( σ  0  

2   S  1  
2  +  σ  0  

2   s  2  
2  +  S  1  

2   s  2  
2 ) 

   > 0, 

(10)   β 2   =   
 σ  0  

4  ( s  2  
4  + 2α  σ  0  

2   s  2  
2  + α  σ  0  

4 ) 
  ____________________  

  ( σ  0  
2  +  S  1  

2 )    
2
    ( σ  0  

2  +  s  2  
2 )    

2
 
   > 0. 

The optimal publication region characterized in Proposition 4 is illustrated 

in Figure  4; the conclusion of Theorem 1, that the journal publishes point esti-

mates outside of an interval, holds here as well. Proposition 4 finds that the 

interim benefit of publication can be broken up into two additively separable 

terms,   β 0   +  β 2   ·   ( X 1   −  μ 0  )    2  , where neither   β 0    nor   β 2    depends on the point esti-

mate   X 1   . We can interpret   β 2   ·   ( X 1   −  μ 0  )    2   as a benefit of publishing extreme find-

ings, as is familiar from the  one-period model. This benefit is larger when   X 1    is 

further from the prior mean   μ 0   . Then   β 0    represents the new benefit of publishing null 

result studies with   X 1   =  μ 0   .

One insight from the formula for   β 0    in (9) is that the benefit of publishing a null 

result decreases in its standard error   S 1   : there is a bigger benefit of publishing pre-
cise null results. Indeed, as   S 1   → ∞ , the benefit of publishing a null result goes to 

zero. Proposition 4 in online Appendix D.1 provides some additional comparative 

statics on the benefit of publishing a null result. It is more valuable to publish a null 

result when the prior uncertainty   σ 0    is larger and the relative payoff weight on the 

first-period  α  is smaller. Moreover, in line with Theorem 3, part (ii), the benefit of 

publishing a null result increases, then decreases in the precision of the second-pe-

riod signal, going to zero in the fully precise and imprecise limits.

V. Conclusion

Sections I and II of this paper presented and analyzed our benchmark model of 

publication. A submitted paper is to be published or not, and the social value of 

publication is derived from its impact on a public policy decision. There is thus an 

instrumental value in publishing some new result only insofar as it changes public 

policies. Broadly speaking, we argued for the publication of extreme results over 

moderate ones. It is more valuable to publish extreme results because they move 

public beliefs, and therefore public policies, further from the defaults.

As has been noted by many observers, there are reasons outside of this model to 

be concerned about selectively publishing only extreme results. Section III formalizes 

some of these concerns. Selective publication invalidates standard statistical inference 

and causes problems for a public that updates naively in the absence of publication.
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Putting these points together, we view the main contribution of this paper as 

highlighting an important  trade-off between the statistical credibility and policy rel-

evance of the publication process—a  trade-off that has not been generally appreci-

ated in some current debates focusing on replicability. Moreover, we believe that the 

simple model of publication we introduced can serve as a basis for further analysis. 

Section  IV explored one such direction, looking at a  two-period model. We now 

conclude the paper by describing a series of additional extensions, some of which 

are covered in greater detail in the online Appendix. Each of these illustrates how 

our results might change if we were to bring some additional consideration into the 

framework of our model.

Alternative Social Objectives: Consider publication rules that maximize social 

objectives other than  policy-based welfare. Online Appendix C.1 presents a learn-
ing objective. When the social objective is to learn the true state of the world inde-

pendently of any policy problem, we show that the form of the optimal publication 

rule may be essentially unchanged from our earlier analysis. The journal continues 

to publish extreme results. Next, online Appendix C.2 presents an accuracy objec-

tive. When the social objective is to publish accurate results that are as close as pos-

sible to the truth, the publication rule can reverse: the journal now prefers to publish 

unsurprising results.

Researcher Incentives and Endogenous Study Design: One assumption maintained 

throughout the paper was that the arrival of studies submitted to journals is exogenous. 

Online Appendix C.3 considers an extension in which researchers may alter their 

study designs in response to the publication rule. Specifically, the researcher chooses 

whether to perform a study on a given question and, if so, at what level of precision. 

The researcher receives a benefit if the study is published. Her cost of performing the 

study depends on its precision; e.g., she faces a higher cost to run an experiment 

with a larger sample size. Taking into account the researcher’s incentives, we find 

that the journal optimally adjusts the publication rule in two ways: the journal 

Figure 4. Dynamically Optimal Publication Region (shaded) 
for Quadratic Loss Utility, Normal Prior, Naive Updating

Notes: Parameter values   σ 0   = 1 ,  α = 1/2 ,   s 2   = 1 ,  c = 0.1 . Under different parameters such as a higher  c , a 
study with a null result of   X 1   =  μ 0    would not be published even for   S 1   ≃ 0 .

Panel A. In terms of the point estimate X1 

and the standard error S1

Panel B. In terms of the t-statistic t1 = 

(X1 − µ0)/S1 and the standard error S1

0

S1

X1
0

S1

t1�0
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rejects imprecise studies regardless of their findings, and it becomes more willing to 

publish studies that are sufficiently precise. This modified publication rule induces the 

researcher to conduct studies that are more precise than she would otherwise choose. 

Nonetheless, extreme results are still published over moderate ones.

Imperfectly Observed Study Designs: In online Appendix C.4, we discuss the 

possibility that study designs may not be perfectly observed—a study may be a 

less reliable signal of the state than is indicated by its reported standard error. If 

that is the case, we will need to qualify our earlier claim about publishing extreme 

results: it would still be optimal to publish results that moved beliefs further, but 

those results might not be the ones with the most extreme point estimates. Extreme 

point estimates could be considered “implausible,” suggesting problems with the 

study rather than an extreme state.

Heterogeneous Policymakers: The audience for a study may consist of a number 

of heterogeneous policymakers, each with different beliefs about the state of the 

world or different preferences, as in Andrews and  Shapiro (2021). Equivalently, 

there may be a single policymaker whose beliefs or preferences are uncertain to out-

siders. In this case, we can get insight into the optimal publication rule by recalling 

the  two-period model of Section IV: different policymaker types are like members 

of the public who take different actions in period 2 because they have observed 

different signal realizations   X 2   . (The map between these models can be made exact 

when the heterogeneity is driven by private information.) As we have seen, there can 

now be a positive benefit of publishing a “null result” that doesn’t change the aver-

age belief, since it still moves the actions of some policymakers toward this mean. 

But there will be a larger benefit of more extreme findings.

Appendix A: Solving for Bayesian Optimal Publication Rules

Under Bayesian updating, the optimal publication rule solves   max p   EW (p,  a   0 )   

subject to   a   0  =  a   ∗  ( π  1  
0,p

 )  ; the default action   a   0   changes with the rule  p . One can 

simplify the problem by observing that for any fixed  p , the induced Bayesian default 

action   a   0  =  a   ∗  ( π  1  
0,p

 )   maximizes expected welfare  EW (p,  a   0 )   over choice of   a   0  . 

This is because

(11)   arg max  
 a   0 

    EW (p,  a   0 )  =  arg max  
 a   0 

    E [ (1 − qp (X, S) ) U ( a   0 , θ) ]  

 =  arg max  
 a   0 

    E [U ( a   0 , θ)  | D = 0]  

  =  arg max  
 a   0 

     E θ∼ π  1  
0,p

    [U ( a   0 , θ) ] . 

The last equality holds by Bayesian updating, because the conditional dis-

tribution of  θ  given  D = 0  is equal to   π  1  
0,p

  . Therefore, the Bayesian opti-

mal publication rule  p  equivalently solves   max p    max  a   0    EW (p,  a   0 )  , where  

  max p    max  a   0    EW (p,  a   0 )  =  max  a   0     max p   EW (p,  a   0 )  =  max p, a   0    EW (p,  a   0 )  . Put differ-

ently, in a sequential game of common interest, the value is that of the “planner’s 
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solution” maximizing the objective over the joint choice of  p  and   a   0  . Lemma 2 for-

mally states this conclusion.

LEMMA 2: Under Bayesian updating, let  p  be an optimal publication rule and 
let   a   0  =  a   ∗  ( π  1  

0,  p
 )   be the induced default action. Then for any publication rule  p′  

and any action  a′ , it holds that  EW (p,  a   0 )  ≥ EW (p′, a′)  .

Proofs of all results stated in the Appendix are found in online Appendix E.

The following lemma provides a recipe for solving for Bayesian optimal publi-

cation rules, summarizing some implications of Lemmas 1 and 2. In the statement 

of this lemma, the optimal publication rule is characterized in terms of an interim 

optimal publication rule given a particular default action. While all interim optimal 

publication rules would, in fact, yield the same payoff, for concreteness, let   p   I ( a   0 )    

be the interim optimal publication rule given   a   0   that deterministically publishes at 

indifference:   p   I ( a   0 )   = 1  if  Δ ( π  1  
 (X,S) 

 ,  a   0 )  ≥ c , and   p   I ( a   0 )   = 0  otherwise.

LEMMA 3: Suppose that the updating rule is Bayesian, in which case   π  1  
0  =  π  1  

0,p
   

and   a   0  =  a   ∗  ( π  1  
0,p

 )   under publication rule  p .

 (i) Let   a ˆ   ∈ arg  max a∈ : a= a   ∗  ( π  1  
0, p   I (a)  

 )    EW ( p   I (a)  , a)  . Then   p   I ( a ˆ  )    is an optimal publi-
cation rule.

 (ii) Let   a ˆ   ∈ arg  max a∈   EW ( p   I (a)  , a)  . Then   p   I ( a ˆ  )    is an optimal publication rule.

Lemma 3 provides two alternative maximization programs that can be solved to 

find Bayesian optimal publication rules.

To understand part (i) of Lemma 3, recall that just as each action induces an 

interim optimal publication rule, so too does each publication rule induce a Bayesian 

default action. Lemma 1 establishes that the optimal publication rule is interim opti-

mal with respect to its induced default action. In other words, the default action is a 

“fixed point” of the mapping from actions to publication rules and back to actions. 

When searching for an optimal publication rule, it is sufficient to maximize over 

interim optimal rules that are induced by some fixed point default action.

Part (ii) of Lemma 3 does not require solving for fixed points and instead 

maximizes over the full action space. Moreover, while the payoff of the 

publication rule   p   I (a)    induced by action  a  would generally be given by  

 EW ( p   I (a)  ,  a   ∗  ( π  1  
0, p   I (a)  

 ) )  —requiring one to solve for the Bayesian default action 

induced by   p   I (a)   —we need only evaluate the simpler expression  EW ( p   I (a)  , a)   since 

the maximizing action will be a fixed point.21

21 More precisely, there exists some action  a  such that  EW ( p   I (a)  , a)   achieves the welfare of the 

optimal policy,   max p, a   0    EW (p,  a   0 )   (see Lemma 2). And if  EW ( p   I (a)  , a)  =  max p, a   0    EW (p,  a   0 )    p   I (a)   , 

then   p   I (a)    is an optimal policy that does in fact induce welfare  EW ( p   I (a)  , a)  . In particular, by (11), for any action  a ,  

 EW ( p   I (a)  , a)  ≤ EW ( p   I (a)  ,  a   ∗  ( π  1  
0, p   I (a)  

 ) )  , with the  right-hand side of the inequality being the ex ante welfare of 

publication rule   p   I (a)   . So if  EW ( p   I (a)  , a)  =  max p, a   0    EW (p,  a   0 )  , then  EW ( p   I (a)  ,  a   ∗  ( π  1  
0, p   I (a)  

 ) )  =  max p, a   0    EW (p,  a   0 )   
as well.
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We now apply the two parts of Lemma 3 to solve for Bayesian optimal publi-

cation rules for quadratic loss and binary action utility under certain distributional 

conditions. Propositions 1 and 2, assuming normal priors, follow as corollaries.

For quadratic loss utility, we impose the distributional condition that the interim 

mean is  single peaked and symmetric about the prior mean.

PROPOSITION 5: Suppose that there is quadratic loss utility and that, conditional 

on a study arriving, the distribution of the interim mean   μ  1  
 (X,S) 

   is  single peaked 
and symmetric about the prior mean   μ 0   .

22 Then the optimal publication rule 
under Bayesian updating is the same as under naive updating: publish if and only  

if   |  μ  1  
 (X,S) 

  −  μ 0   |  ≥  √ 
_

 c   .

To prove Proposition 5, we show that under  single peakedness and symmetry, 

the prior mean is the only fixed point default action under Bayesian updating. So by 

Lemma 3, part (i), it must be the default action for the optimal policy.

For binary action utility, normalize the prior mean of θ to be less than zero, mean-

ing that the naive default action will be   a   0  = 0 . We then impose the condition 

that the  ex ante distribution of interim expectations on the state is sufficiently “ left 

leaning” relative to  θ = 0 . (An analogous result would hold for   a   0  = 1  and a suf-

ficiently “ right-leaning” distribution if the prior mean were above zero.)

PROPOSITION 6: Let   μ 0   ≤ 0 . Suppose that there is binary action utility and 
that, conditional on a study arriving, the distribution of the interim mean satisfies  

 Pr ( μ  1  
 (X,S) 

  ≤ − k)  ≥ Pr ( μ  1  
 (X,S) 

  ≥ k)   for all  k > 0 . Then the optimal publication 
rule under Bayesian updating is the same as under naive updating: publish if and 

only if   μ  1  
 (X,S) 

  ≥ c .

To prove Proposition 6, we apply Lemma 3, part (ii). There are two possible 

default actions, and we confirm that the interim optimal publication rule for default 

action   a   0  = 0  gives a higher payoff than that for default action   a   0  = 1 .

Note that the distributional assumption of Proposition 6 is strictly weaker than 

that of Proposition 5: given a prior mean   μ 0   ≤ 0 , any symmetric distribution of the 

interim mean   μ  1  
 (X,S) 

   is guaranteed to satisfy the condition of Proposition 6.

22 To be precise, by  single peaked and symmetric, we mean that (i) the distribution of the random vari-

able   μ  1  
 (X,S) 

   has a pdf that is symmetric about   μ 0    and (ii) for any  μ′ < μ″ ≤  μ 0   , it holds that if the pdf evaluated 

at  μ ′ is strictly positive, then the pdf evaluated at  μ″  is strictly larger than at  μ′ . (Symmetry implies the same result 
for   μ 0   ≤ μ″ < μ′ .) 
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Appendix B: Proofs

A. Proofs for Section II (Optimal Publication Rules)

PROOF OF LEMMA 1:

For naive updating, the result follows from arguments in the text. For Bayesian 

updating, the result follows from Lemma 2 in Appendix A. In particular, if  p  is 

the Bayesian optimal publication rule and   a   0   is the induced Bayesian default 

action, then Lemma 2 establishes that  EW (p,  a   0 )  ≥  max p′   EW (p′,  a   0 )  . Hence,  

 EW (p,  a   0 )  =  max p′   EW (p′,  a   0 )  , establishing that  p  is interim optimal given   a   0  . ∎

PROOF OF THEOREM 1:

We begin by stating a Lemma. The notation   ≥ FOSD    indicates an ordering of dis-

tributions according to first-order stochastic dominance.

LEMMA 4: Let  U  be supermodular. Let beliefs  π′, π″,  and  π′″  sat-
isfy  π′″  ≥ FOSD   π″  ≥ FOSD   π′ . Then for any default action   a   0  , it holds that  Δ ( · ,  a   0 )   is 
quasiconvex in the sense that  Δ (π″,  a   0 )  ≤ max {Δ (π′,  a   0 ) , Δ (π′″,  a   0 ) }  .

Fix standard error  S = s , and consider ordered point estimates  x′″ > x″ > x′ . To 

prove the theorem, it suffices to show that if study   (x″, s)   is published, then at least one 

of   (x″′, s)   or   (x′, s)   is published as well. By Lemma 1, it is, in turn, sufficient to show 

that the gross interim benefit of publishing the middle study   (x″, s)   cannot be strictly 

higher than that from both the lower study   (x′, s)   and the higher study   (x″′, s)  .
To see why this is the case, recall that at any fixed standard error  S = s , higher 

point estimates are more likely than lower point estimates at higher states in the 

sense of the monotone ratio likelihood property (MLRP).23 MLRP implies that for 

any fixed prior, the corresponding posteriors are ranked by first-order stochastic 

dominance according to their point estimates:   π  1  
 (x′″,s) 

   ≥ FOSD    π  1  
 (x″,s) 

   ≥ FOSD    π  1  
 (x′,s) 

  . 
Hence, Lemma 4 implies the result. ∎

PROOF OF PROPOSITION 1:

 (i) This prior and signal structure satisfy the hypotheses of Proposition 5 in 

Appendix A: the distribution of the interim mean is normally distributed and 

therefore symmetric and  single peaked. So the optimal policy, for either updat-

ing rule, is to publish if  |  μ  1  
 (X,S) 

  −  μ 0   | ≥  √ 
_

 c   . By the normal updating formula 

(4),  |  μ  1  
 (X,S) 

  −  μ 0   | =  ( σ  0  
2 /( S   2  +  σ  0  

2 ))  |X −  μ 0  | =   (1 +  S   2 / σ  0  
2 )    

−1
  |X −  μ 0   | .

 (ii) All comparative statics are immediate from the formula.

 (iii) The only comparative static that is not immediate is that for the  t-statistic 

cutoff,   (1/S + S/ σ  0  
2 )   √ 

_
 c   , with respect to  S . Taking straightforward limits 

23 That is, for point estimates  x″ > x′ , the ratio   f X|θ,S   (x″ | θ, s) / f X|θ,S   (x′ | θ, s)   is increasing in  θ .
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 confirms that the cutoff goes to infinity as  S → 0  and  S → ∞ . The deriv-

ative of the cutoff with respect to  S  is   (− 1/ S   2  + 1/ σ  0  
2 )   √ 

_
 c   , and the second 

derivative is  2  √ 
_

 c  / S   3  . Since the second derivative is positive, the cutoff is 

convex over  S ∈  ℝ ++    and is minimized at the point where the first derivative 

is 0, which is  S =  σ  0  
2  . ∎

PROOF OF PROPOSITION 2:

This prior and signal structure satisfy the hypotheses of Proposition 6 in 

Appendix A: the distribution of the interim mean is normally distributed and therefore 

symmetric. So the optimal policy, for either updating rule, is to publish if   μ  1  
 (X,S) 

  ≥ c . 

From the normal updating formula (4), that corresponds to   ( σ  0  
2 /( S   2  +  σ  0  

2  )) X +  

 ( S  0  
2 /( S   2  +  σ  0  

2 ))   μ 0   ≥ c , i.e.,  X ≥  (1 +  S   2 / σ  0  
2 ) c −  ( S   2 / σ  0  

2 )  μ 0   . ∎

B. Proofs for Section III (Selective Publication and Statistical Inference)

We begin this section with a lemma establishing that  nonselective publication 

implies the key properties of parts (i)–(iv) of Theorem 2. For parts (i) and (iv), we 

prove something stronger than what is in Theorem 2. Part (i) establishes the unbi-

asedness of more general estimators than the estimator  X  for the state  θ . Part (iv) 
establishes size control for arbitrary confidence sets.

LEMMA 5: Suppose that the publication rule is  nonselective and that  
 Pr (D = 1)  > 0 . Then   f X|θ,S,D=1   (x | θ, s)  =  f X|θ,S   (x | θ, s)  , and thus, the following 
properties hold.

 (i) (Frequentist unbiasedness) If the estimator   g ˆ   :  ×  → ℝ  for the esti-
mand  g : Θ ×  → ℝ  satisfies  E [ g ˆ   (X, S)  | θ, S = s]  = g (θ, s)   for all  θ  
and  s , then  E [ g ˆ   (X, S)  | θ, S = s, D = 1]  = g (θ, s)   for all  θ  and  s .

 (ii) (Publication probability constant in state) The publication probability  
 E [p (X, S)  | θ, S = s]   is constant in  θ  for all  s .

 (iii) (Bayesian validity of naive updating) The Bayesian default belief   π  1  
0,p

   is 
equal to the naive default belief, i.e., the prior   π 0   .

 (iv) (Frequentist size control) Fix a level  α ∈  (0, 1)   and consider a confidence 
set  C  mapping from   ×   to subsets of  Θ . If  Pr (θ ∈ C (X, S)  | θ, S = s)   

≥ 1 − α  for all  θ  and  s , then  Pr (θ ∈ C (X, S)  | θ, S = s, D = 1)   

≥ 1 − α  for all  θ  and  s .

PROOF OF THEOREM 2:

 Nonselectivity implies the other parts by Lemma 5. Specifically, for part (i) of 

the Theorem, apply part (i) of Lemma 5 with   g ˆ   (X, S)  = X  and  g (θ, S)  = θ , and 

for part (iv) of the Theorem, apply part (iv) of Lemma 5 with  C =  [X − zs, X + zs]   

and  1 − α = Φ (z)  − Φ (− z)  . We next show the reverse implications.
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Part (ii)  ⇒   Nonselective Publication: Fixing  S = s , recall that  X  is a complete 

statistic for θ in the normal location model when   Θ 0    contains an open set in  ℝ ; see, 

for instance, Theorem 6.22 in Lehmann and Casella (1998). Completeness means 

that for any measurable function  g :  → ℝ , if  E [g (X)  | θ, S = s]  = 0  for 

all  θ ∈  Θ 0   , then  Pr (g (X)  = 0 | θ, S = s)  = 1  for all  θ ∈  Θ 0   . Apply this defini-

tion to  g (x)  = p (x, s)  − E [p (X, s)  | S = s]  . Assuming part (ii), that the publication 

probability is constant over  θ ∈  Θ 0   , it holds that the expectation of  g (X)   is 0 for 

all  θ ∈  Θ 0    and hence that  p (X, s)  = E [p (X, s)  | S = s]   with probability 1 given  θ  

and  S = s , establishing  nonselective publication.

Part (i)  ⇒  Part (ii): To simplify notation, consider without loss of generality 

the case  s = 1 . Then the unbiasedness condition  E [X | θ, S = 1, D = 1]   can be 

written as

    
∫ xφ (x − θ) p (x, 1)  dx

  __________________  
∫ φ (x − θ) p (x, 1)  dx

   = θ. 

Equivalently, using the fact that  φ′ (x)  = − x · φ (x)  ,

  0 =  ∫ 
 
  
 

   (x − θ) φ (x − θ) p (x, 1)  dx = −  ∫ 
 
  
 

  φ′ (x − θ) p (x, 1)  dx 

  =  ∂ θ   [ ∫ 
 
  
 

  φ (x − θ) p (x, 1)  dx]  =  ∂ θ   E [p (X, S)  | θ, S = 1] . 

If the final expression is equal to 0, then  E [p (X, S)  | θ, S = 1]   is constant over  

 θ  in any open set contained in the support. The same argument applies for all other 

values of  S .

Part (iii)  ⇒  Part (ii): Restating (3), the relative density of the Bayesian default 

belief to the prior is given by

    
d π  1  

0,p
 
 _ 

d π 0  
   (θ)  =   

1 − q · E [p (X, S)  | θ] 
  _________________  

1 − q · E [p (X, S) ] 
  . 

The Bayesian default belief is equal to the prior when, under the prior  θ ∼  π 0   , this 

relative density is almost surely constant in  θ  (in which case the ratio is identically 

equal to 1). In other words, it holds when  E [p (X, S)  | θ]   is almost surely constant in  θ . 

Moreover, note that  E [p (X, S)  | θ]   must be continuous in  θ  since the signal density 

function   f X|θ,S   (x | θ, s)   is a smooth function of  θ  for all  x, s . Hence, if the Bayesian 

default belief is equal to the prior, then  E [p (X, S)  | θ]   must be constant in  θ  over the 

support of the prior.

Now, highlighting the dependence of this publication probability on the distribu-

tion   F S   ,

  E [p (X, S)  | θ]  =  ∫ 
s∈  

 

    E [p (X, S)  | θ, S = s]  d F S   (s) . 

We see that the LHS of this equation is constant over  θ  in the support of the prior 

for all distributions   F S    if and only if, for all  s ,  E [p (X, S)  | θ, S = s]   is constant over  θ  
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in the support. (If there exists  s ′ such that  E [p (X, S)  | θ, S = s′]   varies in  θ , then the 

distribution   F S    placing all probability mass on  s′  will have  E [p (X, S)  | θ]   vary in  θ .) 
So if the Bayesian default belief is equal to the prior for all   F S   , then the publication 

probability is constant over  θ  in   Θ 0    for all  s .

Part (iv)  ⇒   Nonselective Publication: Without loss of generality,  

fix  s = 1 . We show that if  I (1)  ≠ ∅ , then there exists  θ′  for which  

 Pr (θ′ ∈  [X − z, X + z]  | θ = θ′, S = 1, D = 1)  < Φ (z)  − Φ (− z)  .

First, consider the case of a bounded interval  I (1)  . Then there exist  θ′  (the mid-

point of the interval) and  y > 0  (the radius) such that  I (1)  =  [θ′ − y, θ′ + y]  . 
If  y > z ,  Pr (θ′ ∈  [X − z, X + z]  | θ = θ′, S = 1, D = 1)  = 0,  and the result fol-

lows. If  y ≤ z , applying the law of iterated expectations and letting  R = 1  denote 

the event of study submission,

 Φ (z)  − Φ (− z)  = Pr (θ′ ∈  [X − z, X + z]  | θ = θ′, S = 1, R = 1)  

  = Pr (D = 0 | θ = θ′, S = 1, R = 1)  

  × Pr (θ′ ∈  [X − z, X + z]  | θ = θ′, S = 1, R = 1, D = 0)  

  + Pr (D = 1 | θ = θ′, S = 1, R = 1)  

 ×  Pr (θ′ ∈  [X − z, X + z]  | θ = θ′, S = 1, R = 1, D = 1) . 

Conditional on a study submitted but not published, it holds that  X ∈  [θ′ − y, θ′ + y]   
and, therefore, since  y ≤ z , that  θ′ ∈  [X − z, X + z]  :

  Pr (θ′ ∈  [X − z, X + z]  | θ = θ′, S = 1, R = 1, D = 0)  = 1. 

Therefore,  Φ (z)  − Φ (− z)   is equal to a weighted average of 1 and  Pr (θ′ ∈  

[X − z, X + z]  | θ = θ′, S = 1, D = 1, R = 1)  —with positive weights on 

both—and hence,  Pr (θ′ ∈  [X − z, X + z]  | θ = θ′, S = 1, D = 1, R = 1)   

< Φ (z)  − Φ (− z)  , yielding the desired result.

Consider, finally, the case of unbounded  I (1)  . If  I (1)  =  (− ∞, y]   for 

some  y , then for  θ′ < y − z ,  Pr (θ′ ∈  [X − z, X + z]  | θ = θ′, S = 1, D = 1)   

= 0 < Φ (z)  − Φ (− z) .  A symmetric argument holds for  I (1)  =  [y, ∞)   

and  θ′ > y + z , concluding our proof. ∎

PROOF OF PROPOSITION 3:

As stated in the text, the result follows from the fact that the signal  X | S = s  

distributed according to   (θ,  s   2 )   is a Blackwell more informative signal of  θ  

when  s  is smaller. Blackwell more informative signals have higher expected value 
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to a  decision-maker regardless of utility function  U  or prior   π 0   . The updating rule 

is irrelevant because with  nonselective publication, Bayesian updating and naive 

updating are identical. ∎

C. Proofs for Section IV (A  Two-Period Model)

PROOF OF LEMMA 1 ′ :
The argument closely follows that for Lemma 1, with updated notation. First, 

given the welfare function (8), define  EW (p,  π  1  
0 )   for the  two-period model anal-

ogously to the earlier definition of  EW (p,  a   0 )   from (5) for the  one-period model. 

For this definition, let   π  2  
0, X 2     and   π  2  

 ( X 1  , S 1  ) , X 2  
   be the Bayesian updated beliefs following 

observation of   X 2    from the  period 2 priors of either   π  1  
0   (if no  period 1 study was 

published) or   π  1  
 ( X 1  , S 1  ) 

   (if   ( X 1  ,  S 1  )   was published at  period 1):

   EW (p,  π  1  
0 )  = E  [  qp ( X 1  ,  S 1  )  (αU ( a   ∗  ( π  1  

 ( X 1  , S 1  ) 
 ) , θ)  

 − c +  (1 − α) U ( a   ∗  ( π  2  
 ( X 1  , S 1  ) , X 2  

 ) , θ) )   

   +  (1 − qp ( X 1  ,  S 1  ) )  (αU ( a   ∗  ( π  1  
0 ) , θ)  

 +  (1 − α) U ( a   ∗  ( π  2  
(0, X 2  ) ) , θ) )  ]  .  

A publication rule  p  is dynamically interim optimal given default belief   π  1  
0   if it 

solves   max  p ′     EW (p′,  π  1  
0 )  .

For the case of naive updating, the publication rule doesn’t affect the default 

belief. So as in the  one-period model, it is immediate that a dynamically optimal 

publication rule is dynamically interim optimal.

For the case of Bayesian updating, we can essentially follow the  one-period argu-

ment of Appendix A. By the same argument as in that section (see equation (11)), 
for any fixed publication rule  p , the Bayesian default belief   π  1  

0,p
   maximizes  

 EW (p,  π  1  
0 )   over choice of default beliefs   π  1  

0  . Hence, the analog of Lemma  2 

extends to the  two-period model: at the Bayesian dynamically opti-

mal rule  p  and the corresponding Bayesian default beliefs   π  1  
0,p

  , we have  

 EW (p,  π  1  
0,p

 )  =  max  p  ′    max  π  1  ′     EW (p′,  π  1  ′  )  =  max p′, π  1  ′     EW (p′,  π  1  ′  )  . In particular,  

 EW (p,  π  1  
0,p

 )  =  max p′   EW (p′,  π  1  
0,p

 )  , and so  p  is interim optimal. ∎

PROOF OF THEOREM 3:

The proof of part (i) holds for any distributions   π  1  
I   ≠  π  1  

0  . For part (ii), the proofs 

rely on the fact that both distributions arise from the same prior   π 0    (implying, for 

instance, that they share a common support) and that  q < 1  if updating is Bayesian.

 (i) Write mean beliefs at the first period when a study   ( X 1  ,  S 1  )   is pub-

lished or not by   μ  1  
 ( X 1  , S 1  ) 

   and   μ  1  
0   and in the second period conditional on  
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  X 2    by   μ  2  
 ( X 1  , S 1  ) , X 2  

   and   μ  2  
0, X 2    . The gross interim benefit of publishing a study   

( X 1  ,  S 1  )   can be expressed as follows as the  first-period action benefit plus the 

expected  second-period action benefit:

     α   ( μ  1  
 ( X 1  , S 1  ) 

  −  μ  1  
0 )    

2

  +  (1 − α)   E θ∼ π  1  
 ( X 1  , S 1  ) 

 , X 2  ∼ (θ, s  2  
2 )    [  ( μ  2  

 ( X 1  , S 1  ) , X 2  
  −  μ  2  

0, X 2   )    
2

 ]  .

  The first term, the  first-period action benefit, is nonnegative (and strictly 

positive when the means   μ  1  
 ( X 1  , S 1  ) 

   and   μ  1  
0   differ). So it suffices to show that 

when   π  1  
 ( X 1  , S 1  ) 

  ≠  π  1  
0  , the second term, the expected  second-period action ben-

efit, is strictly positive. In turn, it suffices to show that when   π  1  
 ( X 1  , S 1  ) 

  ≠  π  1  
0  , 

there exists   X 2    for which   μ  2  
 ( X 1  , S 1  ) , X 2  

  ≠  μ  2  
0, X 2    . The  second-period action bene-

fit is nonnegative and is continuous in   X 2   , and   X 2    has full support given any 

 first-period interim belief   π  1  
 ( X 1  , S 1  ) 

  . So if the  second-period action benefit is 

strictly positive at some   X 2   , then it is strictly positive in expectation.

  The claim thus follows if we can show that if   μ  2  
 ( X 1  , S 1  ) , X 2  

  =  μ  2  
0, X 2     holds for 

all   X 2   , then   π  1  
 ( X 1  , S 1  ) 

  =  π  1  
0  .

  Without loss of generality, normalize   s 2   = 1  so that   X 2   ∼  (θ, 1)  . Define

  m (x; π)  =  E θ∼π   [θ |  X 2   = x]  

  as the posterior mean of  θ  under  π  when   X 2   = x . We seek to show that if  

 m (x; π)  = m (x;  π ̃  )   for almost all  x ∈ ℝ , then  π =  π ̃   .

  Taking  φ  to be the pdf of the standard normal, define  π ∗ φ  to be the marginal 

density of   X 2    given  θ ∼ π , which always exists:

   (π ∗ φ)  (x)  =  ∫ 
ℝ

  

 

   φ (x − θ)  dπ (θ) . 

  It then holds that

(12)    
∂ log ( (π ∗ φ)  (x) ) 

  _______________ 
∂ x

   =   1 _ 
 (π ∗ φ)  (x) 

     
∂  (π ∗ φ)  (x) 

 ___________ 
∂ x

   =   
 ∫ ℝ  

 
   φ′ (x − θ)  dπ (θ) 

  _________________  
 ∫ ℝ  

 
   φ (x − θ)  dπ (θ) 

   

 =   
 ∫ ℝ  

 
    (θ − x) φ (x − θ)  dπ (θ) 

   _______________________  
 ∫ ℝ  

 
   φ (x − θ)  dπ (θ) 

   

  =  E θ∼π   [θ |  X 2   = x]  − x = m (x; π)  − x ,

  where the equality on the second line follows from the iden-

tity  φ′ (x)  = − xφ (x)  . (This equation is also known as “Tweedie’s for-

mula,” cf. Efron 2011.) Integrating the left- and  right-hand sides yields   

(π ∗ φ)  (x)  = C · exp ( ∫ 
0
  
x
   (m (x; π)  − x)  dx)   for a constant of integra-

tion  C  pinned down by the fact that  π ∗ φ  integrates to 1. The same  
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formula holds for   π ̃   ∗ φ , replacing  π  by   π ̃    on the  right-hand side. 

We can therefore conclude that if  m (x; π)  = m (x;  π ̃  )   for all  x , then  

  (π ∗ φ)  (x)  =  ( π ̃   ∗ φ)  (x)   for all  x  as well.

  So suppose that  m (x, π)  = m (x,  π ̃  )   for all  x ∈ ℝ  and hence that  

  (π ∗ φ)  (x)  =  ( π ̃   ∗ φ)  (x)  . For any distribution  π  of  θ , denote its charac-

teristic function (Fourier transform) by   ψ π   (t)  =  E θ∼π   [exp (itθ) ] .  The fact 

that  π ∗ φ =  π ̃   ∗ φ  implies

   ψ π   (t)  · exp (−  t   2  / 2)  =  ψ  π ̃     (t)  · exp (−  t   2  / 2)  

  for all  t , where  exp (−  t   2  / 2)   is the characteristic function of the standard nor-

mal distribution. This holds because the Fourier transform maps convolutions 

of random variables into products of their characteristic functions. It imme-

diately follows that   ψ π   ( · )  =  ψ  π ̃     ( · )  , since  exp (−  t   2  / 2)   is different from  0  

for all  t , so that the characteristic function of  π  is equal to the characteristic 

function of   π ̃   . Equality of their characteristic functions implies equality of  π  

and   π ̃   , by Lemma 2.15 in Van der Vaart (2000).

 (ii) Let   μ 1    denote the shared mean of   π  1  
0   and of   π  1  

I   . Throughout this proof, it will 

be convenient to highlight the dependence of the distribution of the signal   X 2    

on the standard error parameter   s 2   , and so we will write the signal as   X  2  
 ( s 2  ) 

  . In 

particular,   X  2  
 ( s 2  ) 

  | θ ∼  (θ,  s  2  
2 )  . Furthermore, let

  m (x; π,  s 2  )  =  E θ∼π   [θ |  X  2  
 ( s 2  ) 

  = x]  

  be the public’s  period 2 expectation of  θ  given  period 1 belief  π  followed by 

 period 2 observation   X  2  
 ( s 2  ) 

  = x . As a final notational point, in this proof and 

the proofs of the corresponding lemmas, any integral is to be interpreted as a 

definite integral over the domain  ℝ  unless otherwise specified.

  Since the two beliefs   π  1  
0   and of   π  1  

I    yield the same period 1 action of   a 1   =  μ 1   , 

the interim gross benefit of publishing the study is the expected benefit in the 

 second period, which can be written as

 (13)      (1 − α)   E θ∼ π  1  
I     [  (m ( X  2  

 ( s 2  ) 
 ;  π  1  

I  ,  s 2  )  − m ( X  2  
 ( s 2  ) 

 ;  π  1  
0 ,  s 2  ) )    

2

 ] . 

  We seek to show that under the appropriate conditions, the expression (13) 
goes to 0 as   s 2   → 0  (for part (ii)a) and as   s 2   → ∞  (for part (ii)b). We will 

apply Lemma 6 below to show part (ii)a of the Theorem and Lemma 7 to 

show part (ii)b.

LEMMA 6: If distribution  π  has a finite mean and variance, then

    lim  
 s 2  →0

    E θ∼π   [  (m ( X  2  
 ( s 2  ) 

 ; π,  s 2  )  −  X  2  
 ( s 2  ) 

 )    
2

 ]  = 0. 
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LEMMA 7: If distribution  π  has mean   μ 1    and is bounded by Pareto tails with finite 
variance, then

(14)    lim  
 s 2  →∞    E θ∼π   [  (m ( X  2  

 ( s 2  ) 
 ; π,  s 2  )  −  μ 1  )    

2

 ]  = 0. 

The proofs of both parts will also reference the following technical result.

LEMMA 8: Given any   π  1  
0   and   π  1  

I    as derived under the hypotheses of Theorem 3, 
there exists  C′ > 0  such that for all   s 2   > 0  and all functions  y :  핉 +   →  핉 +   , it 

holds that   E θ∼ π  1  
I     [y ( X  2  

 ( s 2  ) 
 ) ]  ≤ C′  E θ∼ π  1  

0    [y ( X  2  
 ( s 2  ) 

 ) ]  .

We now complete the proofs of Theorem 3 parts (ii)a and (ii)b.

Part (ii)a: First, observe that the distributions   π  1  
0   and   π  1  

I    both have a finite vari-

ance. To see that this holds for   π  1  
I   , recall that   π  1  

I   =  π  1  
 ( x 1  , s 1  ) 

   is a posterior distribution 

updated after observing a normal signal   ( X 1  ,  S 1  )  =  ( x 1  ,  s 1  )  . The posterior distribu-

tion (from any prior) after observing a normal signal has a finite variance. To see 

that this holds for   π  1  
0  , recall that   π  1  

0   arises as a default belief from the prior   π 0    with 

a finite variance. In the case of naive updating,   π  1  
0  =  π 0   , so the result is immediate. 

In the case of Bayesian updating, observe from (3) that   (d π  1  
0 /d π 0  )  (θ)  ≤ 1/(1 − q)  

for all  θ  and therefore   π 0   ≥  (1 − q)  π  1  
0  , so if   π  1  

0   had an infinite variance, then so too 

would   π 0   .

Plugging  π =  π  1  
I    into Lemma 6, we have that

    lim  
 s 2  →0

    E θ∼ π  1  
I     [  (m ( X  2  

 ( s 2  ) 
 ;  π  1  

I  ,  s 2  )  −  X  2  
 ( s 2  ) 

 )    
2

 ]  = 0. 

Applying Lemma 8, we also have that there exists a constant  C′ > 0  such that

       0 ≤   lim  
 s 2  →0

    E θ∼ π  1  
I     [  (m ( X  2  

 ( s 2  ) 
 ;  π  1  

0 ,  s 2  )  −  X  2  
 ( s 2  ) 

 )    
2

 ]  

 ≤   lim  
 s 2  →0

   C′  E θ∼ π  1  
0    [  (m ( X  2  

 ( s 2  ) 
 ;  π  1  

0 ,  s 2  )  −  X  2  
 ( s 2  ) 

 )    
2

 ] . 

Plugging  π =  π  1  
0   into Lemma 6, we have that the  right-hand expression is equal to 

0. Hence,

    lim  
 s 2  →0

    E θ∼ π  1  
I     [  (m ( X  2  

 ( s 2  ) 
 ;  π  1  

0 ,  s 2  )  −  X  2  
 ( s 2  ) 

 )    
2

 ]  = 0. 

In other words, both  m ( X  2  
 ( s 2  ) 

 ;  π  1  
I  ,  s 2  )   and  m ( X  2  

 ( s 2  ) 
 ;  π  1  

0 ,  s 2  )   converge to   X  2  
 ( s 2  ) 

   in 

 mean square as   s 2   → 0  under  θ ∼  π  1  
I   . Therefore, they converge to each other in 

 mean square, establishing the desired conclusion that the expression (13) goes to 0 

as   s 2   → 0  as long as the three variables  m ( X  2  
 ( s 2  ) 

 ;  π  1  
I  ,  s 2  )  ,  m ( X  2  

 ( s 2  ) 
 ;  π  1  

0 ,  s 2  )  , and   X  2  
 ( s 2  ) 

   

are all  square integrable under  θ ∼  π  1  
I   .



VOL. 14 NO. 1 35FRANKEL AND KASY: WHICH FINDINGS SHOULD BE PUBLISHED?

The three variables are indeed  square integrable, as they each have finite means 

and variance. To see that, observe that the posterior mean  m ( X  2  
 ( s 2  ) 

 ;  π  1  
I  ,  s 2  )   has mean 

equal to   μ 1    and, by the Law of Total Variance, variance less than   var θ∼ π  1  
I     : the vari-

ance of the posterior mean given some signal is bounded above by the variance of 

the prior. The other posterior mean variable  m ( X  2  
 ( s 2  ) 

 ;  π  1  
0 ,  s 2  )   has a finite mean and 

variance under the distribution  θ ∼  π  1  
0   by the same arguments and, therefore, finite 

mean and variance under the distribution  θ ∼  π  1  
I    by Lemma 8.24 Finally, the mean 

of   X  2  
 ( s 2  ) 

   is   μ 1   , and the variance is   var θ∼ π  1  
I     (θ)  +  s  2  

2  .

Part (ii)b: First, observe that the distributions   π  1  
0   and   π  1  

I    are both bounded by Pareto 

tails with finite variance since they arise from the prior   π 0    that is bounded by Pareto 

tails with finite variance. To see that this holds for   π  1  
I   , recall that   π  1  

I   =  π  1  
 ( x 1  , s 1  ) 

   is a 

posterior distribution updated after observing a normal signal   ( X 1  ,  S 1  )  =  ( x 1  ,  s 1  )  . It 

holds that  d π  1  
I   (θ) /d π 0   (θ)   is equal to a constant times  φ (( x 1   − θ)/ s 1  )   and hence the 

tails of   π  1  
I    decay at a rate at least as fast as those of   π 0   . To see that this holds for   π  1  

0   in 

the case of naive updating,   π  1  
0  =  π 0   , and so the result is immediate. To see that this 

holds for   π  1  
0   in the case of Bayesian updating, observe from (3) that   (d π  1  

0 /d π 0  )  (θ)  

≤ 1/ (1 − q)   for all  θ , and therefore   π 0   ≥  (1 − q)   π  1  
0  , so if   π  1  

0   were not bounded 

by Pareto tails with finite variance, then neither would   π 0   .

Plugging  π =  π  1  
I    into Lemma 7, we have that

    lim  
 s 2  →∞    E θ∼ π  1  

I     [  (m ( X  2  
 ( s 2  ) 

 ;  π  1  
I  ,  s 2  )  −  μ 1  )    

2

 ]  = 0. 

Applying Lemma 8, we also have that there exists a constant  C′ > 0  such that

       0 ≤   lim  
 s 2  →∞    E θ∼ π  1  

I     [  (m ( X  2  
 ( s 2  ) 

 ;  π  1  
0 ,  s 2  )  −  μ 1  )    

2

 ]  

 ≤   lim  
 s 2  →∞   C′  E θ∼ π  1  

0    [  (m ( X  2  
 ( s 2  ) 

 ;  π  1  
0 ,  s 2  )  −  μ 1  )    

2

 ] . 

Plugging  π =  π  1  
0   into Lemma 7, we have that the  right-hand expression is equal to 

0. Hence,

    lim  
 s 2  →∞    E θ∼ π  1  

I     [  (m ( X  2  
 ( s 2  ) 

 ;  π  1  
0 ,  s 2  )  −  μ 1  )    

2

 ]  = 0. 

24 To see that  m ( X  2  
 ( s 2  ) 

 ;  π  1  
0 ,  s 2  )   has a finite mean under  θ ∼  π  1  

I   , recall   E θ∼ π  1  
0    [m ( X  2  

 ( s 2  ) 
 ;  π  1  

0 ,  s 2  ) ]   is finite if and only 

if   E θ∼ π  1  
0    [ |m ( X  2  

 ( s 2  ) 
 ;  π  1  

0 ,  s 2  ) | ]   is finite, and the latter being finite implies by Lemma 8 that   E θ∼ π  1  
I     [ |m ( X  2  

 ( s 2  ) 
 ;  π  1  

0 ,  s 2  ) | ]    

and hence   E θ∼ π  1  
I     [m ( X  2  

 ( s 2  ) 
 ;  π  1  

0 ,  s 2  ) ]   are finite. Call   μ ̃    the mean of  m ( X  2  
 ( s 2  ) 

 ;  π  1  
0 ,  s 2  )   under  θ ∼  π  1  

I   ; the fact that  

 m ( X  2  
 ( s 2  ) 

 ;  π  1  
0 ,  s 2  )   has a finite variance under   θ ̃   ∼  π  1  

0   means that   E θ∼ π  1  
0     [  (m ( X  2  

 ( s 2  ) 
 ;  π  1  

0 ,  s 2  )  −  μ ̃  )    
2

 ]   is finite, and thus 

by Lemma 8,   E Θ∼ π  1  
I      [  (m ( X  2  

 ( s 2  ) 
 ;  π  1  

0 ,  s 2  )  −  μ ̃  )    
2

 ]   is also finite.
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In other words, both  m ( X  2  
 ( s 2  ) 

 ;  π  1  
I  ,  s 2  )   and  m ( X  2  

 ( s 2  ) 
 ;  π  1  

0 ,  s 2  )   converge to   μ 1    in 

 mean square as   s 2   → 0  under  θ ∼  π  1  
I   . Therefore, they converge to each other in 

 mean square, establishing the desired conclusion that the expression (13) goes to 0 

as   s 2   → 0  as long as they are both  square integrable under  θ ∼  π  1  
I   ; that was estab-

lished in the proof of the previous part. ∎

PROOF OF PROPOSITION 4:

Suppose a study   ( X 1  ,  S 1  )   arrives at period 1. Let   μ  1  
0   indicate the posterior mean at 

period 1 in the absence of publication and   μ  1  
 ( X 1  , S 1  ) 

   the posterior mean at period 1 if 

the study is published. Let   μ  2  
0, X 2     indicate the posterior mean at period 2 if the study 

had not been published, and then the second-period signal is observed to be   X 2   , 

and   μ  2  
 ( X 1  , S 1  ) , X 2  

   the posterior mean at period 2 if the study had been published. We can 

calculate these posterior means as follows:

   μ  1  
0  =  μ 0   ,

   μ  1  
 ( X 1  , S 1  ) 

  =   1 _ 
  1 _ 
 σ  0  

2 
   +   1 _ 

 S  1  
2 
  
   (  

 μ 0   _ 
 σ  0  

2 
   +   

 X 1   _ 
 S  1  

2 
  )  ,

   μ  2  
0, X 2    =   1 _ 

  1 _ 
 σ  0  

2 
   +   1 _ 

 s  2  
2 
  
   (  

 μ 0   _ 
 σ  0  

2 
   +   

 X 2   _ 
 s  2  

2 
  )  ,

   μ  2  
 ( X 1  , S 1  ) , X 2  

  =   1 _ 
  1 _ 
 σ  0  

2 
   +   1 _ 

 S  1  
2 
   +   1 _ 

 s  2  
2 
  
   (  

 μ 0   _ 
 σ  0  

2 
   +   

 X 1   _ 
 S  1  

2 
   +   

 X 2   _ 
 s  2  

2 
  ) . 

Consider the interim stage, at which   ( X 1  ,  S 1  )   has been observed by the journal 

and not yet published and hence at which the journal has interim belief   π  1  
1  ( X 1  ,  S 1  )  . 

From this interim perspective, publication has a cost of  c . It then delivers a benefit 

toward the  first-period action payoff and a benefit toward the  second-period action 

payoff.

The benefit of publication toward the  first-period payoff is  α  ( μ  1  
 ( X 1  , S 1  ) 

  −  μ  1  
0 )    

2

  , 

which simplifies to

(15)  α  ( μ  1  
 ( X 1  , S 1  ) 

  −  μ  1  
0 )    

2

  = α  
 σ  0  

4 
 _ 

  ( σ  0  
2  +  S  1  

2 )    
2
 
     ( X 1   −  μ 0  )    2  .

The period 2 action is   μ  2  
 ( X 1  , S 1  ) , X 2  

   if the study is published and is   μ  2  
0, X 2     other-

wise. Hence, conditional on   X 2   , the benefit of  first-period publication toward the 

 second-period payoff is   (1 − α)    ( μ  2  
 ( X 1  , S 1  ) , X 2  

  −  μ  2  
0, X 2   )    

2
  . At the interim stage, then, 

the expected  second-period payoff is the expectation of that value over the random 
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variable   X 2    given beliefs  θ ∼  π  1  
 ( X 1  , S 1  ) 

   and   X 2   ∼  (θ,  s  2  
2 )  . Writing out this expec-

tation and simplifying,

(16)  E [ (1 − α)    ( μ  2  
 ( X 1  , S 1  ) , X 2  

  −  μ  2  
0, X 2   )    

2

  |  X 1  ,  S 1  ]  

    =  (1 − α)  (E   [ μ  2  
 ( X 1  , S 1  ) , X 2  

  −  μ  2  
0, X 2    |  X 1  ,  S 1  ]    

2

  + var [ μ  2  
 ( X 1  , S 1  ) , X 2  

  −  μ  2  
0, X 2    |  X 1  ,  S 1  ] )  .

Next, observe that given   X 1    and   S 1   , the conditional distribution of   X 2    is

   X 2   |  ( X 1  ,  S 1  )  ∼  ( μ  1  
 ( X 1  , S 1  ) 

 ,   1 _ 
  1 _ 
 σ  0  

2 
   +   1 _ 

 S  1  
2 
  
   +  s  2  

2 ) . 

Plugging this conditional distribution into the various terms of (16) and  

simplifying,

(17)     (1 − α) E   [ μ  2  
 ( X 1  , S 1  ) , X 2  

  −  μ  2  
0, X 2    |  X 1  ,  S 1  ]    

2

  

      =  (1 − α)   (  
 σ  0  

2   s  2  
2 
 ________________  

 ( σ  0  
2  +  S  1  

2 )  ( σ  0  
2  +  s  2  

2 ) 
  )    

2

    ( X 1   −  μ 0  )    2  ,

(18)     (1 − α) var [ μ  2  
 ( X 1  , S 1  ) , X 2  

  −  μ  2  
0, X 2    |  X 1  ,  S 1  ]  

      =  (1 − α)   
 σ  0  

8   s  2  
4 
  ____________________________________    

 ( σ  0  
2  +  S  1  

2 )   ( σ  0  
2  +  s  2  

2 )    
2
  ( σ  0  

2   S  1  
2  +  σ  0  

2   s  2  
2  +  S  1  

2   s  2  
2 ) 

   .

The gross interim payoff of publication is the sum of the  right-hand sides of (15), 
(17), and (18). To get the form stated in the proposition, we add up the coefficients 

on    ( X 1   −  μ 0  )    2   in (15) and (17):

  α  
 σ  0  

4 
 _ 

  ( σ  0  
2  +  s  1  

2 )    
2
 
   +  (1 − α)   (  

 s  2  
2   σ  0  

2 
 ________________  

 ( σ  0  
2  +  s  1  

2 )  ( σ  0  
2  +  s  2  

2 ) 
  )    

2

  =   
 σ  0  

4  ( s  2  
4  + 2α  σ  0  

2   s  2  
2  + α σ  0  

4 ) 
  ____________________  

  ( σ  0  
2  +  S  1  

2 )    
2
    ( σ  0  

2  +  s  2  
2 )    

2
 
  . ∎ 
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