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Abstract Following the original interpretation of the Shapley value as a priori evalu-

ation of the prospects of a player in a multi-person interaction situation, we intend to

apply the Shapley generalized value (introduced formally in Marichal et al. in Discrete

Appl Math 155:26–43, 2007) as a tool for the assessment of a group of players that act

as a unit in a coalitional game. We propose an alternative axiomatic characterization

which does not use a direct formulation of the classical efficiency property. Relying

on this valuation, we also analyze the profitability of a group. We motivate this use

of the Shapley generalized value by means of two relevant applications in which it is

used as an objective function by a decision maker who is trying to identify an optimal

group of agents in a framework in which agents interact and the attained benefit can

be modeled by means of a transferable utility game.
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1 Introduction

In 1953, Lloyd Shapley proposed his revolutionary approach to the problem of alloca-

tion of resources in a situation of multiple interactions between agents that are willing

to cooperate in different ways. His solution, known as the Shapley value, meant a

cornerstone in the theory of cooperative TU games, and generated a vast literature in

which the authors attempt to cover many situations when a good should be shared in a

cooperative situation. Since then, a number of authors have modified and generalized

the Shapley value in order to extend it for more general situations. In this framework,

weighted Shapley values have appeared (Shapley 1953b; Kalai and Samet 1987), as

well as the Myerson value for games with graph restricted communication (Myerson

1977), values for games with coalition structures (Aumann and Drèze 1974; Owen

1977; Hart and Kurz 1983), and the generalized values (Marichal 2000), which are in

fact the main issue of this paper, among others.

In Marichal (2000), it is defined the concept of generalized values to measure the

overall influence of every coalition in a game, proposing a theoretical framework

that extends classical individual values to the case of coalitions. Then, in Marichal

et al. (2007) the authors propose axiomatizations of two classes of generalized values:

probabilistic generalized values and generalized semivalues. In this paper we focus on

the power of their Shapley generalized value -which is a special case of probabilistic

generalized value- as a priori evaluation of the prospects of a group of players in a

multi-person game; the players are supposed to act as a group, and the valuation takes

into account the power of groups in their various cooperation opportunities without

imposing on the other agents any concrete coalition structure.

We think that the term “generalized” is somewhat ambiguous, as there are other

definitions of generalized Shapley value in the literature (Hamlen et al. 1980; Gul

1989; McQuillin 2009). Because of this, and also because our study is focused on

group evaluation, we will refer to this particular instance of generalized value as

Shapley group value in most parts of our paper.

Recall that the original idea of Shapley was to use his value as a tool for evaluating

agents immersed a cooperative game; we return to this framework, making use of the

generalized Shapley value for evaluating groups of agents in the game. We describe the

applicability of the value in three different settings which share two relevant features:

(i) the objective is the selection of an optimal group, rather than the best individual; and

(ii) the performance of a group depends on its interaction with the rest of agents. In this

context, to maximize the characteristic function entails a too restrictive assumption

over the rest of agent’s behavior, i.e., only one scenario (mainly, the worst one) is

evaluated. On the contrary, we show that maximizing the value of a group allows us

to consider a more general setting, in which more than one scenario concerning other

agents’ actions is taken into account.

A key observation in our proposal is that we do not need to suppose necessarily that

the players know each other nor agree to act jointly; instead, we assume the existence

of an external agent, the decision maker, that is able to coordinate the actions of the
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members of the group. This is the case for instance of terrorist organizations like Al

Qaeda, or secret societies in which there exists a leader (or a set of leaders) who sends

a common signal that all the agents in the group are willing to follow. In this work we

describe alternative situations in which this type of external coordination occurs.

Now we briefly describe the contents of our paper. Section 2 is devoted to a general

presentation of the problem we deal with. We first introduce some standard concepts

and notation on Game Theory that will be used throughout this paper, and then we

describe two different cases in which the need for a group valuation arises. In Sect. 3 we

recall the notion of generalized value (Marichal et al. 2007) and we carefully describe

their Shapley generalized value, what which we call the Shapley group value. It is

proposed an axiomatic characterization of the value, which is proved in “Appendix”,

and we also analyze an illustrative example in the framework of diffusion in social

networks. In Sect. 4 we analyze the profitability of a group by means of comparing

its valuation as a group with the sum of its members’ individual Shapley values. In

Sect. 5 we explore one of its potential applications previously considered in Sect. 2.

Section 6 concludes the paper.

2 Motivation and notation

A cooperative game in coalitional form with side payments, or with transferable utility,

is an ordered pair (N , v), where N is a finite set of players and v : 2N → R, with

2N = {S | S ⊂ N }, is a characteristic function on N satisfying v(∅) = 0. For any

coalition S ⊂ N , v(S) ∈ R is the worth of coalition S and represents the reward that

coalition S can achieve by itself if all its members act together. Since we will restrict to

the case of TU games in the sequel, we will refer to them simply as games. For brevity,

throughout the paper, the cardinality of sets (coalitions) N , S and C will be denoted

by appropriate small letters n, s and c, respectively. Also, for notational convenience,

we will write singleton {i} as i , when no ambiguity appears.

Let U = {1, 2, . . .} be the universe of players, and let N be the class of all non-empty

finite subsets of U . For an element N in N , let GN denote the set of all characteristic

functions on player set N , and let G =
⋃

N∈N GN be the set of all characteristic

functions.1 A value ϕ is a map which associates to each game v ∈ GN , N ∈ N , a real

vector ϕ(N , v) = (ϕi (N , v))i∈N ∈ RN , where ϕi (N , v) ∈ R represents the value of

player i , i ∈ N . Shapley (1953a) defines his value as follows:

φi (N , v) =
∑

S⊂N\i

s!(n − s − 1)!

n!

(

v(S ∪ {i}) − v(S)
)

, i ∈ N . (1)

The value φi (N , v) of each player, which is a weighted average of his marginal contri-

butions, admits different interpretations, such as the payoff that player i receives when

the Shapley value is used to predict the allocation of resources in multiperson interac-

tions, or his power when averages are used to aggregate the power of players in their

1 We will use interchangeably the two terminologies, game and characteristic function, when no ambiguity

appears.
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various cooperation opportunities. As announced in the introduction, our proposal for

measuring the value of a group is based on the question originally addressed by Shap-

ley in his seminal paper: we interpret the value as the expectations of a player (group)

in a game (N , v). In other words, φi (N , v) ∈ R is an a priori value that measures the

prospects of player i ∈ N in the game v ∈ GN , and can be used as an objective func-

tion for selecting key players. Note that in general v(i) �= φi (N , v), which is precisely

the basis for not taking v(S) as a valuation of the prospects of group S; in fact, this

observation has motivated a series of papers on ranking, where the problem of how to

extend a ranking over single objects to another ranking over all possible collections

of objects -taking into account the fact the possible interactions between the grouped

objects-, is addressed. See for instance Moretti and Tsoukias (2012), and Lucchetti

et al. (2015).

The approach just discussed is undertaken in the next two cases, already considered

in the literature:

(i) In Lindelauf et al. (2013), the authors introduce a game-theoretic approach to

identify the key players in a terrorist network. They considered four different

weighted extensions of the connectivity game (Amer and Gimenez 2004) to cap-

ture the structure of the terrorist organization as well as additional individual

information about the terrorists, and then they proposed to calculate the Shap-

ley value of each game in order to identify the key players. In Sect. 5, where

we analyze in detail this application, we recover the formal definitions of those

games.

(ii) In Narayanam and Narahari (2011), the authors also introduce a game-theoretic

approach to address the target set selection problem in the framework of diffusion

of information, when it is assumed that each agent has two possible states: active,

if he has adopted the information that is being propagated, and inactive otherwise.

The authors define a game (N , v), that taking into account the stochastic diffusion

process, measures the expected number of active nodes at the end of the diffusion

process when initially all agents in coalition S are active, whereas all agents

in N\S are inactive. Then, they propose to calculate the Shapley value of the

game in order to rank the agents. Taking into account that the k agents with

highest Shapley value are not in general the optimal set of k agents, they propose

an heuristic procedure, based on the Shapley value of each agent and the social

network structure, to select the key set of k agents. We will explain this application

in detail in next Sect. 3.

Note that in the examples considered above, there exists in fact an external decision

maker who is interested in finding an optimal group of agents, rather that an optimal

agent:

(i) In the first example the police wants to identify a small group of terrorists to

neutralize in order to break up the criminal organization. Or, it could be the case,

that they were interested in selecting a small group of criminals to mislead in

order to optimally diffuse their own information through the network (by using

them as seed). In the first case, the goal could be to find the group of terrorists of

a given size 1 ≤ k < n whose removing turns into a maximum reduction of the

criminal activity. In the second case, the goal could be to find a group of minimum
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size that achieves a given percentage of information spreading. In both cases, the

police needs an objective function which evaluates the a priori performance of

every group in each of the two settings.

(i) In the target set selection problem of example two, the goal is to find a set of k key

agents that would maximize the spreading of information through the network.

Thus, we need again an objective function which measures the a priori ability of

each group to spread information.

It must also be remarked that, analogously to what happens for the individual case,

in which v(i) is not a proper valuation of the performance of player i ∈ N in the

game, a direct use of v(S) to measure the a priori value of group S is not in general

the best approach to solve this problem. For instance, to maximize v(·) in the second

example implies a pessimistic scenario in which none of the agents out of coalition S

whose diffusion power is being evaluated adopts the product spontaneously. The same

argument remains valid for the other situation considered above. Thus, since measuring

the expected value of a group is a relevant question, and taking into account that the

k most valuable agents (from the individual point of view) do not form in general the

most valuable group of k agents, the need for a specific group valuation is clear.

3 The generalized Shapley value: a tool for evaluating groups

A good choice for the valuation of groups turns out to be the generalized Shapley

value, defined by Marichal et al. (2007). In this section, taking into account that it

is not the main goal of a group valuation to distribute a fixed amount, we propose

an alternative set of axioms for it which does not include a direct formulation of the

classical efficiency axiom. We end this section with an example in which the a priori

power of diffusion of a group of agents in a social network is assessed by means of

the generalized Shapley value.

First, in order to consider an accurate valuation we must consider what group

integration means for the applications we have in mind. In this framework, group

integration does not necessarily imply that agents in C make an agreement to act

jointly. For instance, going back to the diffusion of information case, there exists a

external agent who can activate the nodes that are used as seeds to diffuse the innovation

through the network, and the activated nodes are not in general aware about the other

selected seeds’ identities. The same occurs when the police selects a group of terrorists

to turn back into double agents, or to misinform in order to spread their misinformation

through the criminal organization network. Therefore, when measuring group C’s

expectations we will evaluate them like a unit anyway, and we will adopt the merging

of players approach of Derks and Tijs (2000), who analyze the profitability of group

formation in a more general setting2 by means of considering Lehrer’s (1988) type of

merging. In that case all the agents of C are replaced by a single player c, who can act

as a proxy of any agent in C . In this setting, the generalization of the Shapley value to

groups turns out to be the Shapley generalized value (Marichal 2000; Marichal et al.

2007). As remarked in the introduction, we prefer the name “Shapley group value”

2 But not, as said above, the problem of assigning values to groups.

123



R. Flores et al.

because our work is more aimed to evaluate prospects than to generalize individual

values.

Formally, let v ∈ GN , and let C ⊂ N ∈ N be any non-empty coalition. Now, let

us consider the so called C-partition, denoted by PC , consisting of the compartments

C and the one-person coalitions of players outside C . Then, the merging game—in

the sense of Lehrer (1988)—with respect to PC is the (n − c + 1)-person cooperative

game (NC , vC ), where the agent set NC = (N\C)∪{c} with c as a single proxy player

c ≡ C , and vC is of the form:

vC (S) =

{

v(S), if c /∈ S,

v(S ∪ C) if c ∈ S,
∀ S ⊂ NC . (2)

Definition 1 (Marichal et al. 2007) A generalized value is regarded as a valuation

mapping ξ g that assigns for every game v ∈ GN and every C ⊂ N a real number

ξ g(C; N , v) ∈ R that reflects the power of coalition C in the game v, and such that

ξ g(∅; N , v) = 0.

Remark 1 In the context of this paper, generalized values will be mainly considered

as tools for evaluating groups. Hence, we will call them “group values”.

Definition 2 (Marichal et al. 2007) The Shapley group value is the group value that

assigns for every v ∈ GN , N ∈ N , the valuation mapping φg(·; N , v) given by:

φg(C; N , v) = φc(NC , vC ), for each group ∅ �= C ⊂ N .

Observe that this definition coincides with the definition of generalized Shapley

value of Marichal et al. (2007), although these authors introduced it in a different

way and only obtain the value in the merging game as a consequence of the reduced

partnership axiom. Since each φg(C; N , v) is obtained by applying the Shapley value

to a merging game, it is remarkable that for every coalition with at least two players

the corresponding merging game is different. One-person coalitions C1 = {i} and

C2 = { j} are the unique cases in which the two merging games, (NC1 , vC1) and

(NC2 , vC2), are the same for two different groups C1 and C2. Trivially these two

merging games coincide with (N , v).

Note that the previous merging game is also called the quotient game (Owen 1977)

of (N , v) with respect to the coalition structure, or in other terms to the system of a

priori unions, on N ⊂ N given by the partition PC = {C, { j}, j /∈ C} of N . Moreover,

the Shapley group value of C ⊆ N in the game (N , v) equals the a priori expectation

of group C in the first step of the process described in Owen (1977). However, as the

author points out, the principal problem solved in that paper “lies in determining a

division of that total amount among the several member of the union C”, not to explore

the prospects of the group C itself.

We are mainly interested in analyzing properties of the Shapley group value which

are relevant from the point of view of group valuation and its applications.

We first recall some definitions. A game (N , v) is a unanimity game if there exists

a coalition S ⊂ N such that for every T ⊂ N , v(T ) = 1 if S ⊂ T , and v(T ) = 0
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otherwise. In this case, the game is usually denoted by (N , uS). Unanimity games are

a basis of the vector space GN of all games with the player set N . Also recall that given

v ∈ GN , i ∈ N is a dummy player if v(S ∪ i) = v(S) + v(i) for all S ⊂ N . A dummy

player with v(i) = 0 is said to be a null player in v. A game v ∈ GN is monotonic if

v(T ) ≥ v(S) for all S ⊂ T ⊂ N .

Here are the properties we need:

Properties

Let ξ g be a real mapping defined over the set of all games G. Then, ξ g verifies:

(P1) G-null player, if ξ g(C ∪ i; N , v) = ξ g(C; N , v) for all C � N ∈ N , i ∈ N\C

and v ∈ GN , whenever i is a null player;

(P2) G-linearity, if ξ g(C; N , α1v +α2w) = α1ξ
g(C; N , v)+α2ξ

g(C; N , w) for all

C ⊂ N ∈ N , α1, α2 ∈ R, and games v,w ∈ GN , where α1v + α2w ∈ GN is

given by (α1v + α2w)(S) = α1v(S) + α2w(S) for all S ⊂ N ;

(P3) G-coalitional balanced contributions (or G-CBC for short), if for all C � N ∈

N , i, j ∈ N\C and v ∈ GN , we have

(ξ g(C ∪ i; N , v) − ξ g(C; N , v)) − (ξ g(C ∪ i; N\ j, v− j ) − ξ g(C; N\ j, v− j ))

= (ξ g(C ∪ j; N , v) − ξ g(C; N , v)) − (ξ g(C ∪ j; N\i, v−i ) − ξ g(C; N\i, v−i )), (3)

where v−i ∈ GN\i stands for the restriction of the characteristic function v to

the set of players N\i ;

(P4) G-symmetry over pure bargaining games (or G-SPB for short), if ξ g(C; N , uN )

= 1
n−c+1

for each non-empty C ⊂ N ∈ N , where (N , uN ) is the unanimity

game with respect to the grand coalition.

G-linearity coincides with the linearity (L) axiom considered in Marichal et al.

(2007), while G-null player is equivalent to the First dummy coalition axiom (DC’)

that appears in Marichal et al. (2007) since we deal with finite games.

G-coalitional balanced contributions generalizes the balanced contribution property

which adding efficiency characterizes the Shapley value (Myerson 1977). G-CBC

states that for any group C ⊂ N\{i, j}, the impact of player j’s presence over the

marginal contribution of player i to the value of group C equals the impact of player

i’s presence over the marginal contribution of player j to the value of the same group

C . This idea generalizes the original balanced contribution property of Myerson: “. . .

that player i contribute to player j’s payoff what player j contributes to player i’s

payoff.” (Winter 2002). Note that in this case payoffs refer to players’ values, and

therefore the original property is a particular case of G-CBC for C = ∅.

G-SPB leads to regard each group as one representative, independent of the number

of original players it is composed of, when all players are strictly necessary. In a voting

game in which the vote of all players is needed in order to pass a bill, all of them are

equally powerful regardless of the weights they originally have.

Theorem 1 The unique group value over the set of all games G verifying G-null

player, G-linearity, G-CBC, and G-SPB is the Shapley group value φg .
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Not to interrupt the natural flow of our arguments, and taking into account that we

are mainly interested in the applications, we postpone the proof of this theorem to

“Appendix”. We also check there that all the considered properties are necessary to

guarantee the uniqueness of the Shapley group value φg .

Remark 2 As we commented before, G-SPB leads players to act as one representative

in pure bargaining games when all players are strictly necessary, and this combined

with G-null player and G-CBC, lead to the same behavior in unanimity games (N , uS),

S ⊂ N . In fact, assume the following:

ξ g(C; N , uN ) =
c

n
, for every non-empty group C ⊂ N ∈ N . (4)

Then, condition (4), G-null player, G-linearity and G-CBC characterize the additive

group value Aφg defined as the sum of the individual Shapley values of the involved

players, where Aφg(C; N , v) :=
∑

i∈C φi (N , v), for every C ⊂ N and for all N ∈ N .

We conclude from the previous remark that in case we want to use a group val-

uation with the Shapley value standards that accounts for the synergy among group

members, then we must use the Shapley group. Next we illustrate this fact by means

of the diffusion game defined by Narayanam and Narahari (2011). This example will

help to evaluate the advantage of using the Shapley group value instead of only taking

into account the information provided by the Shapley individual value, or following a

generalist strategy (as Narayanam and Narahari), that considers the network informa-

tion always in the same manner and only uses local information, i.e. if two agents are

directly connected or not.

Example: target set in a diffusion problem

Let us recall first the target set selection problem in the framework of diffusion of

information. Let N = {1, 2, . . . , n} be a finite and fixed set of agents who interact

according to a social network. Relations between agents are exogenously given by a

weight matrix W whose entries are understood as influence weights; in particular, wi j

quantifies the weight that agent i assigns to agent j . It is assumed that these weights

are normalized in such a way that
∑

j∈Ni
wi j ≤ 1, where Ni represents the set of

neighbors of agent i (that is, Ni := { j ∈ N | wi j > 0}, for all i ∈ N ).

It is also assumed that each agent has two possible states: active, if he has adopted the

behavior or innovation that is being propagated, and inactive otherwise, characteristics

indicated by 1 or 0, respectively. From a dynamic point of view, it is assumed that the

status of the agents may change as time goes by. At each date, agents communicate with

their neighbors in the social network and update their state. Many different updating

process have been proposed. Narayanam and Narahari (2011) consider the linear

threshold model (Granovetter 1978) as the updating process: all agents that were active

in step (t − 1) remain active at step t ; and every inactive agent at step (t − 1) becomes

active if the sum of the weights of his active neighbors’ from the previous period is at

least θi , a threshold which represents the weighted fraction of the neighbors of i that

must become active in order to activate agent i . Formally, a state of the social network
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(N , W) is a tuple x ∈ {0, 1}n , xi ∈ {0, 1} being the state of agent i , i = 1, . . . , n,

where n is the cardinality of N . Thus, the updating process considered by Narayanam

and Narahari (2011) is given by:

x t
i =

{

1, if x t−1
i = 1 or

∑

j∈Ni
wi j x t−1

j > θi ,

0, otherwise.
, for all t ≥ 1.

In this conditions, the stochastic process that describes the diffusion of information

assumes that all thresholds θi , i ∈ N , are chosen uniformly at random from the interval

[0, 1] initially. Then, let σ̂ (S) be the the expected number of active nodes (or adopters)

at the end of the diffusion process when initially all agents in S are active, whereas all

agents in N\S are inactive (i.e. x0
i = 1, for all i ∈ S and x0

i = 0, for all i ∈ N\S).

The target set selection problem consists on selecting the key set of k agents that

maximizes the expected number of adopters. Kempe et al. (2005) propose a greedy

heuristic to select the key group of a given size k based on the objective function σ̂ (·).

As we have remarked previously (see page 4), this approach assumes a pessimistic

scenario in which none of the agents out the key group whose diffusion power is

being evaluated adopts the behavior spontaneously. Taking this consideration into

account, Narayanam and Narahari (2011) propose to define a game (N , v), being

v(S) := σ̂ (S), for all non-empty coalition S ⊆ N , and being v(∅) := 0, and calculate

the Shapley value of the game in order to rank the agents. Taking into account that

the k agents with highest Shapley value are not in general the optimal set of k agents,

they propose an heuristic procedure based on the Shapley value of each agent and the

social network structure, to select the key set of k agents, which they called SPIN.

The agents are selected according to their individual Shapley values as long as they

are not connected to any of the already selected ones. If there are no remaining nodes

with this property and the size of the selected group is smaller than k, then the process

selects among the remaining ones according to their ranking. The authors propose

the following example depicted in Fig. 1 to illustrate the fact that the k agents with

highest Shapley value are not in general the optimal set of k agents, and to motivate

their proposal. We will use the same example to show the ability of the Group Shapley

Value for capturing the externalities that emerge from the network structure. Thus,

using the Group Shapley value as a valuation function for a group is a better option

than following a general heuristic approach regardless of the specific structure of the

network.

In this case, the weight matrix W derived from the graph (N , �) is given by wi j = 1
di

for all j such that {i, j} ∈ �, and being di the degree of node i , i.e. di = |{ j ∈

N |{i, j} ∈ �}|. The weight wi j = 0 for all non directly connected agents.

In next table the results obtained for k = 1, 2, 3, 4 from the greedy heuristics

(Kempe et al. 2005) and SPIN (Narayanam and Narahari 2011) are shown, joint with

the point estimation of the Shapley value of every group3 and a 95% confidence

3 They have been estimated by means of a Monte Carlo simulation following Castro et al. (2009) of the

value of every group obtained with 7000 replications of the experiment.
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Fig. 1 Narayanam and Narahari (2011) example

Table 1 Shapley group valuations and estimated diffusion. Narayanam and Narahari (2011) example

k SPIN SS P
k

σ̂ (SS P
k

) φ̂g(SS P
k

) 95% CI Greedy SGr
k

σ̂ (SGr
k

) φ̂g(SGr
k

) 95% CI

1 {5} 4 1, 43 (1, 39; 1, 47) {5} 4 1, 43 (1, 39; 1, 47)

2 {5, 4} 7 2, 39 (2, 33; 2, 45) {5, 11} 8 2, 52 (2, 46; 2, 58)

3 {5, 4, 11} 10 3, 55 (3, 47; 3, 63) {5, 11, 2} 10 3,37 (3, 30; 3, 44)

4 {5, 4, 11, 15} 12 4, 57 (4, 46; 4, 67) {5, 11, 2, 15} 12 4, 32 (4, 22; 4, 41)

interval. The rank list based on the individual Shapley value obtained by (Narayanam

and Narahari 2011) is

RankList[] = {5, 4, 2, 7, 11, 15, 9, 13, 12, 10, 6, 14, 3, 1, 8}.

All the columns but the ones that make reference to the Shapley group value have been

taken from the original paper from Narayanam and Narahari (Table 1).

The SPIN strategy for groups of size two selects agents 5 and 4, which lie in the

same cluster, while the greedy strategy based on σ(·) selects agent 5 in the cluster

and agent 11 in the queue; both agents have more diffusion capacity in the pessimistic

scenario: σ̂ ({5, 4}) = 7 < 8 = σ̂ ({5, 11}), and also in average, the Shapley group

value of {5, 11} is also higher. That is, the greedy strategy selects a better group than

SPIN strategy does for k = 2. This is not the case for bigger groups.

For k = 3 and 4, although the selected groups are indistiguishable according to their

estimated expected diffusion σ̂ (·) -that only takes into consideration the worst scenario

in which no agent out of the targeted group C adopts the new behaviour spontaneously-

, the groups selected by the SPIN strategy have bigger group Shapley values than those

groups selected by the greedy strategy based on σ(·). Note that the Shapley group value

of a group C evaluates its marginal contribution in all possible scenarios, in which

every possible group of agents S ⊆ N\C out of group C whose diffusion power is

being evaluated adopts also the new behaviour spontaneously. Therefore, it seems that

SPIN strategy, which is also based on the Shapley value and thus takes into account

also all possible scenarios, outperforms the simple greedy approach for groups with

k = 3 and 4 agents.
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However, the SPIN strategy heuristics is a very generalist strategy that takes into

account the information provided by the network every time in the same way, and that

only uses very local information; hence, good results cannot be always expected, as

adjacent nodes are not redundant in general. On the contrary, the Shapley group value

is able to identify sinergies and redundancies, no matter the network structure.4 Thus,

adopting a more sophisticated greedy approach based on the Shapley group value

could be a better option that outperforms both strategies regardless of the size of the

target group. Note that in this example, if we would use a greedy strategy based on

the Shapley group value, the selected target groups would be {5}, {5, 11}, {5, 11, 4}

and {5, 11, 4, 15}, for k = 1, 2, 3 and 4, respectively. That is, we would select the best

ones among those selected by SPIN algorithm and a Greedy heuristic based on the

expected diffusion.

4 Profitability of a group

In Sect. 3 we have proposed to use the Shapley generalized value as a priori value of

a group and we have given an alternative characterization. In this section we rely on

this valuation to analyze the profitability of a group.

Next proposition shows that supperadditivity implies that the expected value of

group C is at least the value that their members can assure for themselves. Moreover,

if the game is monotonic larger groups are more valuable.

We also analyze when the integration of group C is mergeable in the sense of Derks

and Tijs (2000). We end up this section studying the marginal effect that the incor-

poration of a new member has over an already integrated group. Theorem 2 relates

this marginal effect with a measure of average complementarity between the entrant

player and the incumbent group.

Proposition 1 Let N ∈ N be any finite set of players, and v be any game in GN .

Then, the Shapley group value φg verifies the following properties:

(i) Group Rationality: φg(C; N , v) ≥ v(C) for every C ⊂ N ∈ N if the game

v ∈ GN is superadditive, and

(ii) Monotonicity: φg(C; N , v) ≤ φg(D; N , v) for every pair of coalitions C ⊂

D ⊂ N ∈ N if the game v ∈ GN is monotonic.

Now we will examine the profitability of the integration of group C measured as

the difference between the Shapley value of group C , which represents its a priori

valuation when they act as one representative, and the sum of the individual Shapley

values of the involved players (the additive Shapley group value of C), i.e.

φg(C; N , v) −
∑

i∈C

φi (N , v).

Profitability is analyzed by Derks and Tijs (2000), and also by Segal (2003). Recall

that a coalition C is called profitable if the previous condition φg(C; N , v) −

4 This fact will be analyzed in next section.
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∑

i∈C φi (N , v) holds for C . Moreover, the Harsanyi dividend of a coalition C is

defined as the number d(C) =
∑

K⊆C (−1)|C|−|K |v(K ).

Now we can review the general results obtained by Derks and Tijs in this context.

Proposition 2 (Derks and Tijs 2000) Let N ∈ N be any finite set of players, and v be

any game in GN . Then, coalition C ⊂ N ∈ N is profitable.5 whenever all coalitions

with positive Harsanyi dividend are either contained in C or have at most one player

in common with C.

Derks and Tijs also propose some interesting types of games for which every coali-

tion is profitable, or profitability can be guaranteed for certain kinds of coalitions.

The results of Segal (2003) rely on the second-order difference operator for a pair of

players i, j ∈ N , and the third-order difference operator for three players i, j, k ∈ N .

The second-order difference operator for a pair of players i, j ∈ N is defined as a

composition of marginal contribution operators (i.e., first-order difference operators)

as follows:

	2
i j (S; N , v) = v(S ∪ {i, j}) − v(S ∪ j) − v(S ∪ i) + v(S), ∀ S ⊂ N\{i, j}.

Here 	2
i j (S; N , v) expresses player i’s effect over the marginal contribution of player

j (or vice versa). Note that v(S ∪ {i, j}) − v(S) = 	2
i j (S; N , v) + 	i (S; N , v) +

	 j (S; N , v), and thus 	2
i j (S; N , v) > 0 implies that the marginal contribution of

players i, j as a group exceeds the sum of the individual marginal contributions of

each player.

In fact, following Bulow et al. (1985), players i and j are said to be complements

whenever 	2
i j (S; N , v) ≥ 0, for all S ⊂ N\{i, j}. They are said to be substitutes

whenever 	2
i j (S; N , v) ≤ 0, for all S ⊂ N\{i, j}. Therefore, 	2

i j (S; N , v) can be

interpreted as a measure of players i and j interaction with respect to the players in

S.

Analogously, the third-order difference operator for players i, j, k ∈ N is defined

as 	3
i jk(·; N , v) = 	i (	

2
jk(·; N , v)), for all S ⊂ N\{i, j, k}. Here 	3

i jk(S; N , v)

expresses player k’s effect over the complementarity between players i and j with

respect to the players in S. Again, the operator does not depend on the order of taking

differences. The notions of second and third order difference operators have also been

defined in Fujimoto et al. (2006).

Segal (2003) obtains the following result about profitability of groups of two play-

ers,6 showing that the merging of two players i, j ∈ N is profitable (unprofitable)

whenever the presence of the outside players reduces (increases) the complementarity

between the colluding players. This author also takes into account the profitability of

the incorporation of a new member j ∈ N\C to an already integrated group C (point

(i i) in next Proposition 3). In this case, profitability is measured with respect to the

situation in which the players of group C are colluding. That is, profitability means

5 Actually, Derks and Tijs (2000) refer to profitability as mergeability.

6 Note that the kind of group integration we work with is equivalent to the collusive contracts considered

by Segal (2003).
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φg(C ∪ j; N , v) ≥ φg(C; N , v) + φ j (NC , vC ). (5)

Proposition 3 (Segal 2003) Let N ∈ N be any finite set of players, and v be any

game in GN . Then:

(i) A coalition C = {i, j} ⊂ N of two players is profitable (unprofitable) if

	3
i jk(S; N , v) ≤ (≥) 0, for every coalition S ⊂ N\{i, j, k}, and for all k ∈ N\C.

If the reverse inequalities hold, then group C is unprofitable.

(ii) The union of the integrated group C ⊂ N and player j /∈ C is profitable (unprof-

itable) if 	3
i jk(S; N , v) ≤ (≥) 0, for every coalition S ⊂ N\{i, j, k}, and for all

i ∈ C, k ∈ N\(C ∪ i).

Condition (i) above states that profitability of the merging of players i and j is not

directly related with their own complementarity. In fact, if we analyze the games with

indispensable players application of Segal (2003) that models for instance the case of

a firm that is indispensable to its workers, it holds that the union of two substitutable

workers is profitable if their bargaining opponents (the remaining workers) enhances

their substitutability. With respect to the union of the firm p and one of the workers

d, which are always complements, this union is profitable (unprofitable) if worker d

is a substitute (complement) of the rest of workers.

According to Segal’s results it is clear that complementarity and substitutability are

not directly related to profitability. However, Theorem 2 below shows how the Shapley

group value incorporates those kind of relations among the players when evaluating

the value of a group. The marginal contribution of a new entrant j to the incumbent

group C is the sum of the a priori value of player j which does not depend on C , and

the average complementarity between j and C . Formally:

Definition 3 Let N ∈ N be any finite set of players, and v be any game in GN , the

average complementarity of players i, j ∈ N is defined as the following average of

second-order differences:

ψi j (N , v) :=
∑

S⊂N\{i, j}

s!(n − s − 1)!

n!
	2

i j (S; N , v), for all i �= j ∈ N . (6)

The average ψi j (N , v) is taken over all the possible orders of N = {1, . . . , n}, when

all orders are considered equally probable. The second-order difference 	2
i j (S; N , v)

is considered in all orders in which coalition S contains all players arriving between i

and j , and i comes before j . It can be interpreted as an interaction index in the sense

of Grabisch and Roubens (1999).

Theorem 2 Let N ∈ N be any finite set of players, and v be any game in GN . Let

C ⊂ N be any group in N, and let i /∈ C. Then, the marginal contribution of player

i ∈ N\C to the Shapley group value of C equals:

MC
g

i (C; N , v) := φg(C ∪ i; N , v)−φg(C; N , v) = φi (N\C, v|N\C )+ψci (NC , vC ).

(7)
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The previous result shows that the value of a group results from a complex com-

bination of independence and complementarity among its members. In particular, it

is clear that the most valuable k agents from an individual point of view do not form

in general the most valuable group of k agents. Let us illustrate this fact with the

following simple example. Again we postpone the proof to “Appendix”.

Example 1 Let us consider the following social network represented in Fig. 2 as an

undirected graph (N , �), and the connectivity game (Amer and Gimenez 2004), which

is defined as

v(S) =

{

1, if S is connected in � and |S| > 1,

0, otherwise,
, for all S ⊂ N .

Here, S ⊂ N is a connected coalition in (N , �) if for every two players i �= j in S,

{i, j} ∈ �, or there exists a path between them which consists of nodes in S. That is,

there exists a sequence of nodes and edges π(i, j) = {i = i1, i2, . . . , ik−1, ik = j},

with k ≥ 2 satisfying the property that for all 1 ≤ r ≤ k − 1, {ir , ir+1} ∈ �, and

ir ∈ S, for all 2 ≤ r ≤ k − 1.

In that case, the two most valuable players, according to their individual Shapley

values are the two centers of the satellite stars, players 4 and 6. φi (N , v) = − 8
360

, for

all the leaves i = 1, 2, 3, 7, 8, 9, φ4(N , v) = φ6(N , v) = 139
360

, for the two centers, and

φ5(N , v) = 130
360

for the hub which intermediates between players 4 and 6. However,

the most valuable group of two agents is the one composed by the hub and one out of

the two centers. In fact,

φg({4, 6}; N , v) = φ4(N , v) + φ6(N\4, v|(N\4)) + ψ46(N , v)

=
139

360
+

1

8
−

1

90
=

1

2
,

φg({4, 5}; N , v) = φ4(N , v) + φ5(N\4, v|(N\4)) + ψ45(N , v)

=
139

360
+

1

56
+

19

72
=

1

2
+

47

280
.

Fig. 2 Social network (N , �)
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The result of this computation can be interpreted in the following lines: although

the power of player 5 depends more on the presence of player 4 than the power

of 6, the average complementarity of players 4 and 5 is greater than the average

complementarity of players 4 and 6. �

5 Application: detecting a target group in terrorist networks

We will illustrate now the application of the Shapley group value to the two terrorist

networks which have been considered by Lindelauf et al. (2013): the operational

network of Jemaah Islamiyah’s Bali bombing and the network of hijackers of Al

Qaeda’s 9/11 attack. We will also rely on Theorem 2 to estimate the level of interaction

between a given incumbent group and a new potential entrant.

We want to emphasize that the goal of our study is to analyze which could be the

advantages of using Shapley group value with respect to the use of individual value.

This analysis should not be understood as predictive, and we are not interested in

giving a new description or interpretation of an event for which it already exists a

huge amount of literature. Rather we use this well-known network -whose complete

structure has only been completely described after the attack- to test our valuation

measures.

For the first case, Jemaah Islamiyah’s Bali bombing attack, the mentioned authors

use the game (N , vwconn). Let (N , �) be the undirected graph which represents the

terrorist network. The nodes in the finite set N = {1, . . . , n} are the terrorists, whereas

the edges -i.e., unordered pairs of distinct nodes- represent the known relationships

between the terrorists. In Fig. 3 the terrorist network we work with is represented.

Then, Lindelauf et al. (2013) define the game (N , vwconn), which extends the con-

nectivity game of Amer and Gimenez (2004) using information about relationships. In

that game, a coalition must be connected in order to achieve a non-zero value. That is,

players in coalition S must rely only upon their own connections in order to commu-

nicate among themselves. Then, since a terrorist cell tries to prevent discovery during

the planning and execution phase of an attack, and taking into account the available

data about the existing relationships,7 the authors define the power of a coalition as the

total number of relationships that exist within that coalition divided by the sum of the

weights (representing frequency and duration of interaction) on those relationships;

vwconn(S) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

i, j∈S
i �= j

Ii j

∑

i, j∈S
i �= j

fi j
, if S is connected in � and |S| > 1,

0, otherwise,

, for all S ⊂ N ,

(8)

where fi j is the weight assigned to relation {i, j} ∈ � in the terrorist network, Ii j = 1,

for every edge {i, j} in �, and 0 otherwise.

7 The authors collected the strength of existing relationships from Koschade (2006).

123



R. Flores et al.

Fig. 3 Operational network of JI’s Bali attack. Image taken from Lindelauf et al. (2013)

We obtain the following results concerning groups from one to four individuals.

Following Castro et al. (2009), and taking into account that the marginal contributions

in the extended connectivity games are computable in polynomial time, we have esti-

mated with Monte Carlo simulation the Shapley group value of the examples, also in

polynomial time. The results obtained are represented in Table 2, which includes the

records for the best groups arranged in decreasing order of importance.

According to the individual rankings for the JI network based on the Shapley value,

the five most valuable terrorists were, in decreasing order of importance: Samudra,

Muklas, Feri, Azahari and Sarijo.

With respect to groups of two terrorists, the most valuable group is that composed

by the two most important agents, {Samudra, Muklas}. However, the second group

of size two in importance is {Samudra, Azahari}, improving the Shapley group value

of {Samudra, Feri}, which equals 0.350, and takes the 15th place. In fact, Samudra

has all direct contacts Feri has, and therefore Feri’s presence in a group is somehow

redundant if Samudra is already in it (see the estimated interactions below). According

to what it is known about the attack, ”Samudra, an engineering graduate, played a

key role in the bombings”, whereas Azahari is the bomb expert who was considered

the ”brain” behind the entire operation.
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Taking into account expression (15), we can estimate the interaction between Samu-

dra and Feri, and Samudra with Azahari, as follows:

ψ̂Samudra,Feri (N , v) = M̂C Feri ({Samudra}; N , v)

− φ̂Feri (N\{Samudra}, v|N\{Samudra})

= −0.008477 − 0.094708 = −0.1032,

ψ̂Samudra,Azahari (N , v) = M̂C Azahari ({Samudra}; N , v)

− φ̂Azahari (N\{Samudra}, v|N\{Samudra})

= 0.034 − 0.03375 = 0.00025.

Again, the most valuable group of three terrorists is {Samudra, Muklas,Azahari}. In

fact, let C = {Samudra, Muklas} be the most valuable group of two terrorists, then:

ψ̂Feri,c(NC , vC ) = M̂C Feri (C; N , v) − φ̂Feri (N\C, v|N\C )

= −0.0790 − 0.1102 = −0.1892,

ψ̂Azahari,v(NC , vC ) = M̂C Azahari (C; N , v) − φ̂Azahari (N\C, v|N\C )

= 0.02402 − 0.1110 = −0.08698.

However, when considering a bigger group of four terrorists, then

{Samudra, Muklas, Feri, Azahari} has the highest Shapley group value.

In the analysis of the terrorist network of the 11S, Lindelauf et al.’s starting point

was the version of the network in Fig. 4, whose links come from terrorists that lived

or learned together (black edges) as well as some temporary links that were only

activated just before the attack in order to coordinate the cells. See Krebs (2002) for

further information. The authors use the game (N , vwconn2), which uses information

about the individuals:

vwconn2(S) =

⎧

⎨

⎩

∑

i∈S

wi , if S is connected in � and |S| > 1,

0, otherwise,

, for all S ⊂ N , (9)

where wi is the weight assigned to terrorist i ∈ N . The authors also determine the

terrorist weights in their analysis (see Table 5 in Lindelauf et al. 2013).

The results obtained by means of Monte carlo simulation (see Castro et al. 2009)

are depicted in Table 3, which includes the records for the best groups arranged in

decreasing order of importance.

According to the individual rankings for the Al Qaeda’s 9/11 network based on the

Shapley value, the most valuable terrorists were, in decreasing order of importance: A.

Aziz Al-Omari (WTC North cell), H. Al-Ghamdi (WTC South cell), Wd. Al-Shehri

(WTC North cell), H. Hanjour (Pentagon cell), M. Al-Shehhi (WTC South cell) and

M. Atta (WTC North cell).

With respect of groups of two terrorists, the most valuable group is that composed

by the two most important agents, C1
2 ={A. Aziz Al-Omari, Al-Ghamdi}. However,
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Fig. 4 11S Social Network. Image taken from V.E. Krebs (Copyright ©2002, First Monday)

the second group of size two in importance is C2
2 ={Aziz Al-Omari, M. Al-Sehhi},

improving the Shapley group value of {Aziz Al-Omari, Wd. Al-Shehri}, which takes

the 4th place. In fact, Wd. Al-Shehri is one out of the three hijackers that crashed the

plane into WTC South which forms a cycle in the terrorist network that is connected

to the rest of terrorist only via A. Aziz Al-Omari, who also belongs to the WTC North

cell. Thus, Wd. Al-Shehri presence in a group is not so necessary if A. Aziz Al-Omari

is already in it. In that case, the interaction between Aziz Al-Omari and M. Al-Sehhi

is negative, and thus they are not complements, whereas Al-Omari and Al-Shehri

are. However, Al-Sehhi contributes more to Al-Omari than Al-Shehri does because

the power of the most valuable terrorist from an individual point of view strongly

overlaps with Al-Shehri’s power. In fact, the power of Wd. Al-Shehri without Aziz

Al-Omari reduces to 1, which represents an 82.02% of reduction; whereas the power

of M. Al-Shehhi undergoes an increment of 17.53%.
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ψ̂Al-Omari,Al-Shehhi(N , v)

= M̂CAl-Shehhi({Al-Omari}; N , v) − φ̂Al-Shehhi(N\{Al-Omari}, v|N\{Al-Omari})

= 1.2128 − 2.5886 = −1.3758,

and

ψ̂Al-Omari,Al-Shehri(N , v)

= M̂CAl-Shehri({Al-Omari}; N , v) − φ̂Al-Shehri(N\{Al-Omari}, v|N\{Al-Omari})

= 1.1399 − 1 = 0.1399.

The most valuable group of three terrorists is C1
3 ={A. Aziz Al-Omari, H. Hanjour, M.

Al-Shehhi}= C2
2∪{Hanjour}. In that case, Wd. Al-Shehri, from WTC North cell, and

H. Al-Ghamdi, from WTC South cell, are displaced. Now, H. Hanjour, who is known

to be the leader of WTC South cell, has displaced H. Al-Ghamdi. The following figures

shed some light on what is going on. Recall that the power of Wd. Al-Shehri without

Aziz Al-Omari reduces drastically. With respect to the remaining combinations, the

one that results in C1
3 has the greatest interaction index, showing that in both cases

Hanjour is less replaceable by each incumbent group than Al-Ghamdi and Al-Shehhi.

ψ̂Al-Shehri,c1
2
(NC1

2
, vC1

2
) = M̂CAl-Shehri(C

1
2 ; N , v) − φ̂Al−Shehri (N\C1

2 , v|N\C1
2
)

= 1.7371 − 1 = 0.7371,

ψ̂Hanjour,c1
2
(NC1

2
, vC1

2
) = M̂C Hanjour (C

1
2 ; N , v) − φ̂Hanjour (N\C1

2 , v|N\C1
2
)

= 1.5606 − 5.7129 = −4.1523,

ψ̂Al-Shehhi,c1
2
(NC1

2
, vC1

2
) = M̂CAl-Shehhi(C

1
2 ; N , v) − φ̂Al-Shehhi(N\C1

2 , v|N\C1
2
)

= 1.2320 − 6.4177 = −5.1857,

and

ψ̂Al-Ghamdi,c2
2
(NC2

2
, vC2

2
) = M̂CAl-Ghamdi(C

2
2 ; N , v) − φ̂Al-Ghamdi(N\C2

2 , v|N\C2
2
)

= 1.2403 − 6.3957 = −5.1554,

ψ̂Al-Shehri,c2
2
(NC2

2
, vC2

2
) = M̂CAl-Shehri(C

2
2 ; N , v) − φ̂Al-Shehri(N\C1

2 , v|N\C1
2
)

= 1.7414 − 1 = 0.7414,

ψ̂Hanjour,c2
2
(NC2

2
, vC2

2
) = M̂C Hanjour (C

2
2 ; N , v) − φ̂Hanjour (N\C1

2 , v|N\C1
2
)

= 1.8349 − 5.2388 = −3.4039.

When considering a bigger group of four terrorists, then {A. Aziz Al-Omari, H.

Hanjour, M. Al-Sehhi, Wd. Al-Shehri} has the highest Shapley group value. The first

group with one representative for each cell, being {A. Aziz Al-Omari, H. Hanjour,

M. Al-Sehhi, Z. Jarrah}, occupies the 13th place, with a Shapley group value of

φg(D; N , wconn2) = 10.6311. Note that Z. Jarrah, who is known to be the leader of
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Table 4 11S extended network rankings

Individuals Two agents

N. Al-Hazmi (Pent), 6.132 {N. Al-Hazmi, M. Atta}, 8.424

H. Hanjour (Pent), 6.089 {N. Al-Hazmi, H. Hanjour}, 8.342

M. Atta (WTC-N), 5.926 { H. Hanjour, M. Atta}, 8.152

H. Al-Ghamdi (WTC-S), 1.844 {N. Al-Hazmi, H. Al-Ghamdi}, 7.201

Wd. Al-Shehri (WTC-N), 1.701 {H. Hanjour, Z. Jarrah}, 7.048

Z. Jarrah (Penn), 1.688 {M. Atta, Z. Jarrah}, 7.013

the Pennsylvania cell is individually in the 8th position. The group of the four cell’s

leaders L = {M. Atta, H. Hanjour, M. Al-Sehhi, Z. Jarrah} is in the 48th position with

a Shapley group value of φg(L; N , wconn2) = 9.1313.

Recall that Lindelauf et al. (2013) carried out the analysis on the terrorist network

of the nineteen hijackers which prepared and executed the attack (distributed in four

cells). We extend their analysis to a more dense network (see Fig. 5) which included

some people which did not take direct part in the attack, but support the terrorists.

In this event, the relative positions of the hijackers change: the two poor connected

terrorists from the WTC North cell, A. Aziz Al-Omari and Wd. Al-Shehri, are not so

relevant in the new network, since they are now better connected through non-hijackers

terrorists. According to the rankings for the Al Qaeda’s 9/11 hijackers based on the

individual Shapley value and the extended network,8 the most valuable hijackers were,

in decreasing order of importance, N. Al-Hazmi (Pentagon), H. Hanjour (Pentagon),

M. Atta (WTC North), H. Al-Ghamdi (WTC South), Wd. Al-Shehri (WTC North)

and Z. Jarrah (Pennsylvania).

The results obtained by means of Monte carlo simulation (see Castro et al. 2009)

are depicted in Table 4, which includes the records for the best groups arranged in

decreasing order of importance.

With respect to groups of two terrorists, the most valuable group is {N. Al-Hazmi,

M. Atta}, which does not coincide with the two most important terrorists’ group. In

that case, however, the three and four people most valuable 3-group and 4-group

are composed of the three and four, respectively, most important hijackers from an

individual point of view. Those groups, C3 and C4, have Shapley group values of

φg(C3; N ∪ M, wconn2) = 10.675 and φg(C4; N ∪ M, wconn2) = 12.529. Now, the

group L is in the twentieth position with a value of φg(L; N ∪ M, wconn2) = 10.066.

6 Conclusions

The main motivation of this work has been to apply a (marginalistic) extension of the

Shapley value to the problem of evaluation of the prospects of a group of players in

a multi-person game. Following the original formulation of Shapley, who apply his

8 In which we have again considered the wconn2 game, with a zero weight for all the terrorists who do not

take direct part in the attacks.
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Fig. 5 11S extended SN. Image taken from V.E. Krebs (Copyright ©2002, First Monday)

value to measure the expectations of players in a game; and also keeping in mind the

mentioned idea of the external decision maker, we have re-interpreted the generalized

Shapley value of Marichal et al. (2007) by means of the merging game defined by Derks

and Tijs (2000). In this work, the authors develop a concept of super-player, who in a

merging game, acts as a proxy of all the players of the coalition whose value we do

want to compute. In order to show that this extension of Shapley (which we call in this

context “Shapley group value”) is valid and interesting, we have studied the properties

of the value, and in particular we have given an axiomatic characterization of it. This

axiomatic cannot be directly deduced from the usual characterizations in the individual

case, and does not contain a direct formulation of the classical individual efficiency

axiom. We also analyze how it behaves as a method to evaluate the effectiveness of a

given set of agents to promote a given innovation or behavior in a Social Network, in

order to select a key group of k agents.
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Based on our proposal, and following ideas of Segal, we have elaborated about the

ideas of complementarity and substitutability that concerns to profitability of acting

as a group. However, it is not easy to find a straight relation between complementar-

ity/substitutability and profitability (or not) because this relation only could be found

by means of Segal third derivative, and not using only the second derivative.

Our work culminates by testing the validity of our methods in the identification of

influent groups inside a real terrorist network. The flexibility of the proposed approach

allows to suppose that our measure will be effective and usual in a variety of contexts

and making use of different interpretations of the Shapley group value. Let us think

for instance in two of them.

In a global economy context, in which many firms present a complex interlocked

shareholding structure, it may be difficult to asses a firm’s controllers. However, “a

common intuition among scholars and in media sees the global economy as being

dominated by a handful of powerful transnational corporation” (Vitali et al. 2011).

In that case, following a game theoretical approach, we can make use of the Shapley

group value to detect a small group of firms which in fact have a dominating power.

The reader is referred to Crama and Leruth (2013) for an interesting review about this

approach.

Another relevant application arises in the context of a transportation network’s

operation, where the identification of sets of stations that should be defended (or

maintained), in order to maximally preserve the network’s operation, is a relevant

question to network protection against natural and human-caused hazards. This has

become a typical research topic in engineering and social sciences, as Liu et al. (2009)

point out. In that case, following a game theoretical approach, the Shapley group

value can serve to security agencies for selecting a group of stations to defend (or

maintain). However, it should be remarked that the problem of finding the optimal

group, according to some prearranged criteria, is a combinatorial problem that merits

a more careful study. We are aware of the need of heuristics in order to apply the

Shapley group value to the group selection problem.

Acknowledgements We would like to warmly thank Javier Castro (Universidad Complutense de Madrid)

for the simulation program used to obtain the numerical results in Sect. 5.

Appendix

Theorem 1 The unique group value over the set of all games G verifying G-null

player, G-linearity, G-CBC, and G-SPB is the Shapley group value φg .

Proof Let us first prove that the Shapley group value φg satisfies the previous four

properties.

Let us arbitrarily fix the sets C and N , C ⊂ N ∈ N , and let v ∈ GN .

To check properties P1 and P2 the reader is referred to Marichal et al. (2007).
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With respect to property P3, G-CBC, let C ⊂ N ∈ N be any two finite sets, and

let v any game in GN . First let us remark that condition (3) is equivalent to:

ξ g(C ∪ i; N , v) − ξ g(C ∪ j; N , v)

= (ξ g(C ∪ i; N\ j, v− j ) − ξ g(C; N\ j, v− j ))

−(ξ g(C ∪ j; N\i, v−i ) − ξ g(C; N\i, v−i )). (10)

Also note that, by definition of the merging game and the Shapley value, for any

i, j ∈ N\C the following equalities hold:

φg(C ∪ i; N , v) =
∑

S⊂N\C
i, j /∈S

( s!(n − c − s − 1)!

(n − c)!
(v(S ∪ C ∪ i) − v(S))

+
(s + 1)!(n − c − s − 2)!

(n − c)!
(v(S ∪ C ∪ i ∪ j) − v(S ∪ j))

)

,

φg(C; N\ j, v− j ) =
∑

S⊂N\C
i, j /∈S

( s!(n − c − s − 1)!

(n − c)!
(v(S ∪ C) − v(S))

+
(s + 1)!(n − c − s − 2)!

(n − c)!
(v(S ∪ C ∪ i) − v(S ∪ i))

)

,

φg(C ∪ j; N\i, v−i ) =
∑

S⊂N\C
i, j /∈S

s!(n − c − s − 2)!

(n − c − 1)!
(v(S ∪ C ∪ j) − v(S)).

Analogous expressions hold for φg(C ∪ j; N , v), φg(C; N\i, v−i ) and φg(C ∪ i;

N\ j, v− j ). Now it is enough to check that for every S ∈ N with i, j /∈ S the coefficients

of v(S ∪ C ∪ i ∪ j), v(S ∪ C ∪ i), v(S ∪ C ∪ j), v(S ∪ C), v(S ∪ i), v(S ∪ j) and v(S)

are the same in both sides of the equation in (10), and this is easily deduced from the

previous expressions. We leave the details to the reader.

It remains property P4, G-SPB. Consider the unanimity game with respect to the

grand coalition (N , uN ), and a non-empty group C ⊂ N ∈ N . It is straightforward

to see that the merging game (NC , (uN )C ) is the unanimity game (NC , uNC
) with

respect to the grand coalition NC , so φg(C; N , uN ) := φc(NC , (uN )C ) = 1
n−c+1

, as

desired. �

Proof We have proved that the properties hold for the Shapley group value, so we are

left with the question of uniqueness.

Since {(N , uS)}S⊂N
S �=∅

forms a basis of GN for all N ∈ N , by G-linearity it is sufficient

to consider the games (N , uS), ∅ �= S ⊂ N ∈ N . So let us see that ξ g(C; N , uS) =

φg(C; N , uS) := φc(NC , (uS)C ) for all non-empty subsets C, S ⊂ N ∈ N . When

C = ∅, this equality trivially holds by definition of a group value.

The proof will consist in a double induction over the cardinality of the player set

N (first induction) and the cardinality of the unanimous coalition S ⊂ N (second

induction).
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First, we will prove that ξ g(C; N , uS) = φg(C; N , uS) for all non-empty subsets

C, S ⊂ N whenever the cardinality of N ∈ N is n ≤ 2. For the unanimity game

({i}, ui ) with just one player i ≡ N , G-SPB property P4 implies that ξ g(i; N , ui ) =

1 = φg(i; N , ui ). Now, let (N , uS) be a two-person unanimity game with N = {i, j}.

For the unanimity game uN , P4 implies that ξ g({i, j}; N , uN ) = φg({i, j}; N , uN ).

For the unanimity game (N , ui ), G-null player P1 implies:

ξ g( j; N , ui ) = ξ g(∅; N , ui ) := 0 and ξ g(i; N , ui ) = ξ g({i, j}; N , ui ), (11)

Now, G-CBC property P3 implies

ξ g(i; N , ui ) − ξ g( j; N , ui ) = (ξ g(i; {i}, ui ) − ξ g(∅; {i}, ui ) − (ξ g( j; { j}, u0)

− ξ g(∅; { j}, u0)),= 1 − 0 − 0 + 0,

where ξ g(i; N , ui ) = 0 for the trivial game ({i}, u0) with u0(i) = 0, follows from

P1. Therefore, taking into account (11), ξ g(·; {i, j}, ui ) ≡ φg(·; {i, j}, ui ) holds. The

same reasoning applies to (N , u j ).

Let us fix a player set N ∈ N with |N | = r , and consider the unanimity game

(N , uS) for a fix set ∅ �= S ⊂ N . We will prove that ξ g(C; N , uS) = φg(C; N , uS)

for all C ⊂ N . Two cases are possible:

(i) If S = N , then G-SPB implies ξ g(C; N , uN ) = φg(C; N , uN ) for any non-empty

group C in N .

(ii) Otherwise, if ∅ �= S � N , we proceed by induction on the cardinality of C . Let

us first prove the individual case C = {i}.

There is at least a player j ∈ N\S which by definition of unanimity game must

be null. Let i be a player in S. Again by G-CBC, taking C = ∅, we obtain

ξ g(i; N , uS) = ξ g(i; N\ j, uS|N\ j ), since G-null player implies ξ g( j; N , uS) =

ξ g(∅; N , uS) = 0, and taking into account that uS|N\i ≡ u0 ∈ GN\i .

Now, we may assume by the first induction that for every unanimity game

(N ′, uS|N ′) with N ′ � N we have ξ g(C; N ′, uS|N ′) = φg(C; N ′, uS|N ′) for any

group C in N ′. Thus, ξ g(i; N\ j, uS|N\ j ) = φg(i; N\ j, uS |N\ j ), which in turn is

equal to 1
s

by definition, and then ξ g(i; N , uS) = 1
s

= φi (N , uS) = φg(i; N , uS).

Note that every i /∈ S is a null player in uS and therefore G-null player implies

ξ g(i; N , uS) = 0 = φg(i; N , uS). So we are done with the individual case

C = {i}.

Now, in order to prove ξ g(C; N , uS) = φg(C; N , uS) for all groups C with c > 1,

we proceed by induction on the cardinality of C (second induction). So we take

now 1 < r ′ ≤ r , and we may assume that ξ g(C; N , uS) = φg(C; N , uS) holds

for any C ⊂ N with |C | < r ′. We will check that ξ g(D; N , uS) = φg(D; N , uS)

for all D ⊂ N with |D| = r ′.

Let D be a fixed subset of N of cardinality r ′. Since S � N , again there is a null

player j in uS . So, if j ∈ D, then D\ j is a coalition of cardinal r ′ − 1 and, thus,

G-null player and the second induction hypothesis imply

ξ g(D; N , uS) = ξ g(D\ j; N , uS) = φg(D\ j; N , uS) = φg(D; N , uS).
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Otherwise, if D does not contain any null player, then let i be a player in D ⊂ S.

By the second induction hypothesis and G-null player property it holds

ξ g((D\i) ∪ j; N , uS) = ξ g((D\i); N , uS) = φg((D\i); N , uS)

= φg((D\i) ∪ j; N , uS).

Note also that ξ g(C; N\i, uS|N\i )) = 0 = φg(C; N\i, uS|N\i )) for all C ⊂ N ,

since uS|N\i ≡ u0 ∈ GN\i . Hence, by G-CBC, taking C = D\i , and the first

induction,

ξ g(D; N , uS) − φg((D\i) ∪ j; N , uS)

= (φg(D; N\ j, uS|N\ j ) − φg(D\i; N\ j, uS|N\ j ))

−(φg((D\i) ∪ j; N\i, uS|N\i ) − φg(D\i; N\i, uS|N\i ))

= φg(D; N , uS) − φg((D\i) ∪ j; N , uS).

So we have proved the uniqueness for the unanimity games (N , uS) for all S ⊂ N ∈ N

and we are done. �

Aside from the previous considerations regarding the alternative axioms of Marichal

et al. (2007), it must be remarked that it is not a trivial extension of a characteriza-

tion of the Shapley value, since we do not impose any condition about the value of

the individual agents out of the group C we are evaluating. In particular, we have

been forced to use in the same characterization group linearity and group coalitional

balanced contributions properties. In the following we will check that all the axioms

above are necessary to guarantee the uniqueness of the Shapley group value φg .

G-null player. Let α ∈ (0, 1). Define a value ξ g in the following manner. If (N , v)

is a null game, ξ
g
C (N , v)=0 for every C ∈ N . Given a non-null unanimity game uS ,

with S � N , define ξ
g

C (uS) as

ξ
g

C (N , uS) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

c−1
∑

k=0

αn−k, if C ∩ S = ∅,

1

s − |S ∩ C | + 1
+

n−s−1
∑

k=0

αn−k, if C ∩ S �= ∅,

(12)

ξ
g
C (N , uN ) = 1

n−c+1
, for all C ⊆ N , and then extend the value by additivity. It is

clear that ξ
g
i (N , uS) = αn > 0 for all i /∈ S. So, G-null player does not hold. Let

us check that ξ g verifies G-CBC over the class of unanimity games. If (N , uN ), then

G-CBC condition (10) trivially holds. Let (N , uS) be a unanimity game with S � N .

If |S| = n − 1, then two cases are possible:

(a) If i, j ∈ S, then ξ
g

C∪i (N , uS) = 1
s−|S∩C| +

∑n−s−1
k=0 αn−k = ξ

g

C∪ j (N , uS) and (10)

holds, since uS|N\i and uS|N\ j are null games.
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(b) If i ∈ S and j /∈ S, then S = N\ j , uS|N\i ≡ 0 and uS|N\ j is a unanimity game

w.r.t. the grand coalition N\ j . Thus (10) holds:

ξ
g
C∪i (N\ j, uN\ j |N\ j ) − ξ

g
C (N\ j, uN\ j |N\ j )

=
1

(n − 1) − (c + 1) + 1
−

1

(n − 1) − c + 1
= ξ

g
C∪i (N , uN\ j ) − ξ

g
C∪ j (NuN\ j ).

If |S| < n − 1, then three cases are possible:

(a) If i, j ∈ S, then ξ
g

C∪i (N , uS) = 1
s−|S∩C| +

∑n−s−1
k=0 αn−k = ξ

g

C∪ j (N , uS) and (10)

holds.

(b) If i ∈ S and j /∈ S, then

ξ
g

C∪i (N\ j, uS|N\ j ) =
1

s − |S ∩ C |
+

n−s−1
∑

k=1

αn−k

and

ξ
g
C (N\ j, uS|N\ j ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

c
∑

k=1

αn−k, if C ⊆ N\S,

1

s − |S ∩ C | + 1
+

n−s−1
∑

k=1

αn−k, otherwise.

Thus, if C ⊆ N\S:

ξ
g
C∪i (N\ j, uS|N\ j ) − ξ

g
C (N\ j, uS|N\ j )

=
1

s
+

n−s−1
∑

k=1

αn−k −

c
∑

k=1

αn−k = ξ
g

C∪i (N , uS) − ξ
g

C∪ j (N , uS)

If C ∩ S �= ∅, then

ξ
g
C∪i (N\ j, uS|N\ j ) − ξ

g
C (N\ j, uS|N\ j )

=
1

s − |S ∩ C |
+

n−s−1
∑

k=1

αn−k −

(

1

s − |S ∩ C | + 1
+

n−s−1
∑

k=1

αn−k

= ξ
g
C∪i (N , uS) − ξ

g
C∪ j (N , uS)

)

c) If i, j ∈ N\S, then C ∪ i ⊆ N\S if, and only if, C ∪ j ⊆ N\S and, therefore

condition (10) can be easily checked.

Now, since G-CBC condition is additive ξ g satisfies it over
⋃

n≥1 Gn

G-linearity. Let ξ g be another group value over (N , v) which is defined in the fol-

lowing way:
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(A1) If there is at least a null player in N , or (N , v) is the unanimity game with respect

to the grand coalition N , then ξ
g

C (N , v) = φ
g

C (N , v) for every group C in N .

(A2) Otherwise, ξ
g
C (N , v) = φ

g
C (N , v) + k, being k �= 0 a fixed constant.

It is easily checked that G-null-player and G-SPB hold for ξ g . We will check that

the property of coalitional balanced contributions G-BMC also holds for this value.

Note that all differences in (10) match ξ
g
D(L , w) with ξ

g

D′(L , w), for some coalition

L ∈ {N , N\i, N\ j} and some game w ∈ {v, v−i , v− j }.

Taking into account that φg = ξ g in case (N , v) is some of the games in the first

case (A1), and in the second one the k′s cancel, it holds:

ξ
g

C∪i (N , v) − ξ
g

C∪ j (N , v) = φ
g

C∪i (N , v) − φ
g

C∪ j (N , v),

ξ
g
C∪i (N\ j, v− j ) − ξ

g
C (N\ j, v− j ) = φ

g
C∪i (N\ j, v− j ) − φ

g
C (N\ j, v− j ),

ξ
g
C∪ j (N\i, v−i ) − ξ

g
C (N\i, v−i ) = φ

g
C∪ j (N\i, v−i ) − φ

g
C (N\i, v−i ),

G-CBC property holds for φg , and so the property does so for ξ g , and we are done.

Note that we can modify ξ g defining ξ
g
i (N , v) = �i (N , v), for all i ∈ N , and

ξ
g
N (N , v) = v(N ), for all N ⊆ N, and the same result holds.

G-CBC. Define a value ξ g in the following manner. If (N , v) is a null game,

ξ
g
C (N , v)=0 for every C ∈ N . Given a non-null unanimity game uS with S � N ,

define ξ
g

C (uS) as

ξ
g
C (uS) =

⎧

⎪

⎨

⎪

⎩

0 if C ∩ S = ∅,

ξ
g
C (uS) = 1, if S ⊆ C,

|S ∩ C | × |S\C | if C ∩ S �= ∅ and C ∩ S �= S,

(13)

ξ
g
C (N , uN ) = 1

n−c+1
, for all C ⊆ N , and then extend the value by additivity.

Observe that all axioms but G-CBC hold. The unique one that needs a bit of discus-

sion is the G-null player axiom, which holds when considering the base of unanimity

games because in uS the null players are precisely the players outside S, and therefore:

ξ
g
C∪i (N , uS) = 0 = ξ

g
C (N , uS), if S ∩ C = ∅,

ξ
g
C∪i (N , uS) = 1 = ξ

g
C (N , uS), if S ⊆ C, and

ξ
g
C∪i (N , uS) = |S ∩ (C ∪ i)| × |S\(C ∪ i)| = |S ∩ C | × |S\C | = ξ

g
C (N , uS), otherwise,

for all player i /∈ S. Then, taking into account that the Harsanyi dividend cS(N , v) of

any coalition S containing null players in the game (N , v) equals zero, G-null player

property holds for any n-person game (N , v) ∈ Gn , for all N ⊆ N.

Let us check by means of a concrete example that the G-CBC axiom fails in this

case. Consider (N , uS) with |N | = 3, and S = {1, 2}. In the notation of the axiom,

take C = {1}, i = 2, and j = 3. Then:

ξ
g
{1,2}(N , uS) = 1, ξ

g
{1,3}(N , uS) = 1 × 1 = 1, ξ

g
{1,2}(N\3, uS|N\3)

= 1, ξ
g
1 (N\3, uS|N\3) = 1/2,
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and ξ
g
{1,3}(N\2, uS|N\2) = 0 = ξ

g
1 (N\2, uS|N\2), because the game (N\2, uS|N\2)

is null. It is clear now that the two sides of the equalities that define the axiom do not

coincide in this case.

Note that we can modify ξ g defining ξ
g
i (N , uS) = �i (N , v), for all i ∈ N , and

∅ �= S � N , for all N ⊆ N, and the same result holds. Probably it is easy to find more

examples by defining the value over C ∩ S (when C ∩ S �= ∅) as another appropriate

function of (|C ∩ S|, |S\C |).

G-symmetry over pure bargaining games. Define a value ξ g in the following manner.

If (N , v) is a null game, ξ
g
C (N , v)=0 for every C ∈ N . Given a non-null unanimity

game uS , define ξ g(N , uS) as ξ
g
C (N , uS) = |C∩S|

|S| , for all group C ⊆ N , and then

extend the value by additivity.

Observe that all axioms but G-SPB hold. The G-null player axiom trivially holds

when considering the base of unanimity games. Then, since cS(N , v) = 0 for all S

containing null players in the game (N , v), G-null player property holds in general.

Moreover, G-additivity follows from the definition.

Let us check that the G-CBC axiom holds. Let (N , v) be any n-person game with

n ≥ 2. Let C be any group in N of cardinality c ≤ n − 2, and let i, j ∈ N\C . Then:

• If i, j ∈ N\S, then (10) holds since all the involved differences are zero because

i and j are null players in the three games.

• If i, j ∈ S, then |(C ∪ i) ∩ S| = |C ∩ S| + 1 = |(C ∪ j) ∩ S|. Thus,

ξ
g
C∪i (N , uS)−ξ

g
C∪ j (N , uS) = 0, and (10) holds because the games (N\i, uS|N\i )

and (N\ j, uS|N\ j ) are null.

• If i ∈ S and j /∈ S, then ξ
g
C∪i (N , uS)−ξ

g
C∪ j (N , uS) = 1

s
= ξ

g
C∪i (N\ j, uS|N\ j )−

ξ
g
C (N\ j, uS|N\ j ), and (10) holds because uS|N\i ≡ 0.

Clearly, G-SPB fails, so we are done.

Proposition 1 Let N ∈ N be any finite set of players, and v be any game in GN .

Then, the Shapley group value φg verifies the following properties:

(i) Group Rationality: φg(C; N , v) ≥ v(C) for every C ⊂ N ∈ N if the game

v ∈ GN is superadditive, and

(ii) Monotonicity: φg(C; N , v) ≤ φg(D; N , v) for every pair of coalitions C ⊂ D ⊂

N ∈ N if the game v ∈ GN is monotonic.

Proof Group rationality follows from the individual rationality of the Shapley value.

Note that every merging game (NC , vC ), C ⊂ N , is superadditive if it is (N , v), for

all C ⊂ N ∈ N and v ∈ GN .

Monotonicity follows from being

φg(C ∪ i; N , v) − φg(C; N , v) =
∑

S⊂N\C
i /∈S

s!(n − c − s)!

(n − c + 1)!

(

v(S ∪ i ∪ C) − v(S ∪ C)
)

+
(s + 1)!(n − c − s − 1)!

(n − c + 1)!

(

v(S ∪ i) − v(S)
)

≥ 0, (14)

for all coalitions C ⊂ N ∈ N , and all players i /∈ C , whenever the game v is

monotonic. �
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Theorem 2 Let N ∈ N be any finite set of players, and v be any game in GN . Let

C ⊂ N be any group in N, and let i /∈ C. Then, the marginal contribution of player

i ∈ N\C to the Shapley group value of C equals:

MC
g

i (C; N , v) := φg(C ∪ i; N , v)−φg(C; N , v) = φi (N\C, v|N\C )+ψci (NC , vC ).

(15)

Proof Let us arbitrarily fix the sets C and N and the player i , C � N ∈ N , i ∈ N\C ,

and let v ∈ GN . Then, adding and subtracting the amount

∑

S⊂N\C
i /∈S

s!(n − c − s − 1)!

(n − c)!

(

v(S ∪ i) − v(S)
)

to the above expression (14) of the marginal contribution MC
g

i (C; N , v) follows that:

MC
g

i (C; N , v) =
∑

S⊂N\C
i /∈S

s!(n − c − s − 1)!

(n − c)!

(

v(S ∪ i) − v(S)
)

+
∑

S⊂N\C
i /∈S

s!(n − c − s)!

(n − c + 1)!

(

v(S ∪ i ∪ C) − v(S ∪ C)

− v(S ∪ i) + v(S)
)

.

The first term is precisely the Shapley value of player i in the restricted game

(N\C, v|N\C ), where players in C do not play a role. The second term can be expressed

by means of the second-order difference operators for the pair of players i, c ∈ NC ,

as follows:

∑

S⊂N\C
i /∈S

s!(n − c − s)!

(n − c + 1)!

(

v(S ∪ i ∪ C) − v(S ∪ C) − v(S ∪ i) + v(S)
)

=
∑

S⊂N\C
i /∈S

s!(n − c − s)!

(n − c + 1)!
	2

ic(S; NC , vC ) =: ψci (NC , vC ).

�
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