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Introduction 

Von Neumann and Morgenstern have developed a very fruitful theory of 

two-person zero-sum games in their book Theory of Games and Economic Be- 

havior. This book also contains a theory of n-person games of a type which 

we would call cooperative. This theory is based on an analysis of the interrela- 

tionships of the various coalitions which can be formed by the players of the 

game. 

Our theory, in contradistinction, is based on the absence of coalitions in that 

it is assumed that each participant acts independently, without collaboration or 

communication with any of the others. 

The notion of an equilibrium point is the basic ingredient in our theory. This 

notion yields a generalization of the concept of the solution of a two-person zero- 

sum game. It turns out that the set of equilibrium points of a two-person zero- 

sum game is simply the set of all pairs of opposing ‘“‘good strategies.”’ 

In the immediately following sections we shall define equilibrium points and 

prove that a finite non-cooperative game always has at least one equilibrium 

point. We shall also introduce the notions of solvability and strong solvability 

of a non-cooperative game and prove a theorem on the geometrical structure of 

the set of equilibrium points of a solvable game. : 

As an example of the application of our theory we include a solution of a 

simplified three person poker game. 

Formal Definitions and Terminology 

In this section we define the basic concepts of this paper and set up standard 

terminology and notation. Important definitions will be preceded by a subtitle 

indicating the concept defined. The non-cooperative idea will be implicit, rather 

than explicit, below. 

Finite Game: 

For us an n-person game will be a set of n players, or positions, each with an 

associated finite set of pure strategies; and corresponding to each player, 7, a 

payoff function, p; , which maps the set of all n-tuples of pure strategies into the 

real numbers. When we use the term n-tuple we shall always mean a set of n 

items, with each item associated with a different player. 

Mixed Strategy, s; : 

A mixed strategy of player 2 will be a collection of non-negative numbers which 

have unit sum and are in one to one correspondence with his pure strategies. 

We writes; = > aCiaTia With c;, = Oand Dacia = 1 to represent such a mixed 

strategy, where the 7;,.’s are the pure strategies of player 1. We regard the 

S;’8 as points in a simplex whose vertices are the 7;.’s. This simplex may be re- 
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garded as a convex subset of a real vector space, giving us a natural process of 
linear combination for the mixed strategies. 

We shall use the suffixes 7, 7, k for players and a, 6, y to indicate various pure 
strategies of a player. The symbols s; , ¢; , and r; , etc. will indicate mixed strate- 
gies; 7; will indicate the z** player’s at" pure strategy, etc. 

Payoff function, p; : 

The payoff function, p;, used in the definition of a finite game above, has a 
unique extension to the n-tuples of mixed strategies which is linear in the mixed 
strategy of each player [n-linear]. This extension we shall also denote by 7; , 
writing p:(s1, 82, °°*, Sn). 

We shall write s or t to denote an n-tuple of mixed strategies and if 8 = 
(S1, 2, --+, Sn) then p,(8) shall mean p.(s, s2,---, Sn). Such an n-tuple, s, 
will also be regarded as a point in a vector space, the product space of the vector 
spaces containing the mixed strategies. And the set of all such n-tuples forms, of 
course, a convex polytope, the product of the simplices representing the mixed 
strategies. | 

For convenience we introduce the substitution notation (8; ¢;) to stand for 
(Si, 82, °°* , Sit, ti, Si4t,°°°, 82) Where 8 = (s,, 52, °°: , S,). The effect of 
successive substitutions ((8; t,;); 7;) we indicate by (8; ¢; ; r;), ete. 

Equilibrium Point: 

An n-tuple 8 is an equilibrium point if and only if for every 7 

(1) pi(8) = max [p.(8;7,)]. 
all r,’s 

Thus an equilibrium point is an n-tuple 8 such that each player’s mixed 
strategy maximizes his payoff if the strategies of the others are held fixed. Thus 

each player’s strategy is optimal against those of the others. We shall occasionally 

abbreviate equilibrium point by eq. pt. 

We say that a mixed strategy s; uses a pure strategy mia if s; = > Cismig 

and ci, > 0. If $ = (81, 8%, --+ , 8.) and s; uses m;2 we also say that $ uses mig . 

From the linearity of p,(s,,--- , 8.) in 8;, 

(2) max [p.(8; r:)] = max [pi(8; mia)]. 
all ry; 

We define p;.2(8). = p;(8; m2). Then we obtain the following trivial necessary 

and sufficient condition for s to be an equilibrium point: 

(3) pi(8) = Max Pia(8). 

If $ = (1, 8, --+, 8) and s; = oa Ciatia then p;(8) = >a CiaDia(S), COn- 

sequently for (3) to hold we must have cig = 0 whenever p;.(8) < maxg p;8(8), 

which is to say that s does not use 7;. unless it is an optimal pure strategy for 

player 7. So we write 

(4) if i is used in 8 then p,4(8) = max Die(S) 

as another necessary and sufficient condition for an equilibrium point.
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Since a criterion (3) for an eq. pt. can be expressed by the equating of n pairs 

of continuous functions on the space of n-tuples 8 the eq. pts. obviously form a 

closed subset of this space. Actually, this subset is formed from a number of 

pieces of algebraic varieties, cut out by other algebraic varieties. 

Existence of Equilibrium Points 

A proof of this existence theorem based on Kakutani’s generalized fixed point 

theorem was published in Proc. Nat. Acad. Sci. U.S. A., 36, pp. 48-49. The proof 

given here is a considerable improvement over that earlier version and is based 

directly on the Brouwer theorem. We proceed by constructing a continuous 

transformation 7 of the space of n-tuples such that the fixed points of T are 

the equilibrium points of the game. 

THEOREM 1. Every finite game has an equilibrium point. 

Proor. Let 8 be an n-tuple of mixed strategies, p;(8) the corresponding pay-off 

to player i, and p;.(8) the pay-off to player 7 if he changes to his a pure strategy 

wiz and the others continue to use their respective mixed strategies from 8. 

We now define a set of continuous functions of 8 by 

Pia(B) = max (0, pia(S) — p:(8)) 

and for each component s; of 8 we define a modification s; by 

Si + »; Y ia(B) Ria 

1 + »; P ia(S) 

  

/ 
si = 

calling 3’ the n-tuple (S1, 82, S3°°° Sn): | 

We must now show that the fixed points of the mapping T: 8 — 8’ are the 

equilibrium points. 

First consider any n-tuple 8. In s the zt* player’s mixed strategy s; will use 

certain of his pure strategies. Some one of these strategies, say mia, must be 

‘“Jeast profitable” so that p.o(8) S p.(8). This will make Pio(B) = 0. 

Now if this n-tuple 8 happens to be fixed under T the proportion of mi2 used 

in s; must not be decreased by 7’. Hence, for all §’s, gia() must be zero to prevent 

the denominator of the expression defining s; from exceeding 1. 

Thus, if 8 is fixed under 7, for any 7 and 8 gi(8) = 0. This means no player 

can improve his pay-off by moving to a pure strategy mis . But this is just a 

criterion for an eq. pt. [see (2)]. 

Conversely, if 8 is an eq. pt. it is immediate that all 9’s vanish, making $ 

a fixed point under 7. | 

Since the space of n-tuples is a cell the Brouwer fixed pomt theorem requires 

that T must have at least one fixed point 8, which must be an equilibrium point. 

Symmetries of Games 

An automorphism, or symmetry, of a game will be a permutation of its pure 

strategies which satisfies certain conditions, given below.
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If two strategies belong to a single player they must go into two strategies 

belonging to a single player. Thus if ¢ is the permutation of the pure strategies 

it induces a permutation yw of the players. 

Each n-tuple of pure strategies is therefore permuted into another n-tuple 

of pure strategies. We may call x the induced permutation of these n-tuples. 

Let & denote an n-tuple of pure strategies and p;(£) the payoff to player 7 when 

the n-tuple — is employed. We require that if 

jaw then p,(&*) = pi(é) 

which completes the definition of a symmetry. 

The permutation @ has a unique linear extension to the mixed strategies. 

If 

= )\ CiaTia We define (s:)* = > Cia(tia)®. 
a 

Qa 

The extension of ¢ to the mixed strategies clearly generates an extension of 

x to the n-tuples of mixed strategies. We shall also denote this by x. 

_ We define a symmetric n-tuple 8 of a game by 8* = 8 for all x’s 

THEOREM 2. Any finite game has a symmetric equilibrium point. 

Proor. First we note that sio = catia / > a 1 has the property (sj)* = 

8; where j = 7”, so that the n-tuple 8) = (si , S20, °** , Sno) is fixed under any x; 

hence any game has at least one symmetric n-tuple. 

If $ = (s.,---, Sn) andt = (t,,---, ¢,) are symmetric then 

stt Sith s+ bk Sn + th 

Q 2 7° 2 ? 7 2 
  

is also symmetric because 8* = 8 <> s; = (s;)*, where j = 7”, hence 

ss tt; (s)* + (t)® _ (* + “ 
2 2 2 
  

hence 

Sr t\y srt 
( 2 2 

This shows that the set of symmetric n-tuples is a convex subset of the space 

of n-tubles since it is obviously closed. 

Now observe that the mapping 7’: § — 8’ used in the proof of the existence 

theorem was intrinsically defined. Therefore, if 3. = 7's, and x is derived from 

an automorphism of the game we will have 8x = 1Ts8*. If 3; is symmetric 3/ = 

g, and therefore 3X = 7's, = 8. Consequently this mapping maps the set of 

symmetric n-tuples into itself. 

Since this set is a cell there must be a symmetric fixed point $ which must be 

a symmetric equilibrium point.
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Solutions 

We define here solutions, strong solutions, and sub-solutions. A non-cooper- 

ative game does not always have a solution, but when it does the solution is 

unique. Strong solutions are solutions with special properties. Sub-solutions 

always exist and have many of the properties of solutions, but lack uniqueness: 

S; will denote a set of mixed strategies of player 7 and @ a set of n-tuples of 

mixed strategies. 

Solvability: 

A game is solvable if its set, &, of equilibrium points satisfies the condition 

(5) (t; re and 8eH > (8; re D for all 2’s. 

This is called the interchangeability condition. The solution of a solvable game 

is its set, , of equilibrium points. 
Strong Solvability: 

A game is strongly solvable if it has a solution, &, such that for all 7’s 

$e and p7(8;7:) = p(8) > (8; rT) €D 

and then ® is called a strong solution. 

Equilibrium Strategies: 

In a solvable game let S; be the set of all mixed strategies s; such that for some 

t the n-tuple (t; s;) is an equilibrium point. [s; is the 2** component of some 

equilibrium point.] We call S; the set of equilibrium strategies of player 7. 

Sub-solutions: 

If & is a subset of the set of equilibrium points of a game and satisfies con- 

dition (1); and if & is maximal relative to this property then we call # a sub- 
solution. 

For any sub-solution & we define the 7** factor set, S;, as the set of all s,’s 

such that & contains (t; s;) for some ft. 
Note that a sub-solution, when unique, is a solution; and its factor sets are the 

sets of equilibrium strategies. 

THEOREM 3. A sub-solution, %, 1s the set of all n-tuples (81 , 8, °** , Sn) such 

that each s; eS; where 8; is the 1** factor set of ®. Geometrically, S is the product 

of us factor sets. 
Proor. Consider such an n-tuple (s1 , 2, -- + , S:). By definition dt,,t.,---, 

t, such that for each 7 (t; ; s;) « &. Using the condition (5) n—1 times we obtain 

successively (t:; si)e B, (ft. 3 81 3 Ss) € BM, -+- , (tr; S15 S25 °° 5 Sale @ 

and the last is simply (s, , S2, --- , Sn) ¢ &, which we needed to show. 

TuHEoreM 4. The factor sets S,, S2,---, Sn of a sub-solution are closed and 

convex as subsets of the mixed strategy spaces. 

Proor. It suffices to show two things: 

(a) if s; and s; e S; then s; = (s;+ s;)/2 « S; ; (b) if s* is a limit point of S; 

then s*¥ «S;. 

Let t « &. Then we have 7,;(t; s;) = p;(t; s; ; rj) and p,(t; 8:) = p;(t; si 573) 

for any r; , by using the criterion of (1) for an eq. pt. Adding these inequalities, 

using the linearity of p;(s:, --- , Sn) in s;, and dividing by 2, we get p,(t;s?) =



NON-COOPERATIVE GAMES 291 

p,(t;s; ;7;) since s; = (s; + s;)/2. From this we know that (t; s;) is an eq. pt. 

for any t e ®. If the set of all such eq. pts. (t; s7) is added to & the augmented 

set clearly satisfies condition (5), and since & was to be maximal it follows that 

a S; . 

To attack (b) note that the n-tuple (t; s*), where te &, will be a limit point 
of the set of n-tuples of the form (t; s;) where s;¢e S;, since s¥ is a limit point of 

S;. But this set is a set of eq. pts. and hence any point in its closure is an eq. 

pt., since the set of all eq. pts. is closed. Therefore (t; s¥) is an eq. pt. and hence 

s* e S; from the same argument as for s; . 

Values: 

Let be the set of equilibrium points of a game. We define 

v; =. max [p.(8)], v; = min [p:(8)]. 
Se SeH 

If vt = v; we write v; = v: =v, - vt is the upper value to player 7 of the game; 

v; the lower value; and v; the value, if it exists. 

Values will obviously have to exist if there is but one equilibrium point. 

One can define associated values for a sub-solution by restricting & to the 

eq. pts. in the sub-solution and then using the same defining equations as above. 

A two-person zero-sum game is always solvable in the sense defined above. 

The sets of equilibrium strategies S, and S; are simply the sets of ‘‘good”’ strate- 

gies. Such a game is not generally strongly solvable; strong solutions cxist only 

when there is a “‘saddle point”’ in pure strategies. 

Simple Examples 

These are intended to illustrate the concepts defined in the paper and display 

special phenomena which occur in these games. | 

The first player has the roman letter strategies and the payoff to the left, etc. 

Ex. 1 5 aa —3 9 t, 10 
| Solution (55 a+ 16 b a + 7 8) 

—4 af 4 717 

—5 ba 5 —5 1 
3 pp 4 BO Ba TS 

Ex. 2 1 aa 1 Strong Solution (0, 8) 

—10 ag 10 

10 ba -10 wy=w= —-1 

—1 obs -1 

Ex. 3 1 ae 1  Unsolvable; equilibrium points (a, a), (6, 8), 

—10 ag —10 a ba 8B . 
10 ba —10 and (5 + 9° 9 5) The strategies in the last case 

1 68 1 have maxi-min and mini-max properties. 

Ex. 4 1 ae 1 

0 af 1 

1 ba 0 1 =H =1lyn=n =0. 

0 0 bp 

Strong Solution: all pairs of mixed strategies.



292 JOHN NASH 

Ex. 5 1 aa 2 Unsolvanre; eq. pts. (a, a), (b, 8) and 

7 me 7 (Fe + — = 8, : a+ : 8), However, empirical tests 

2 08 1 showa tendency toward (a, a). 

Ex. 6 1 aa 1 Eq. pts.: (a, a) and (6, 8), with (b, 8) an example of 
0 ag 0 instability. 

0 ba 0 

0 068 0 

Geometrical Form of Solutions 

In the two-person zero-sum case it has been shown that the set of ‘‘good’’ 

strategies of a player is a convex polyhedral subset of his strategy space. We 

shall obtain the same result for a player’s set of equilibrium strategies in any 

solvable game. 

THEOREM 5. The sets S;, So,°::, Sn of equilibrium strategies in a solvable 

game are polyhedral convex subsets of the respective mixed strategy spaces. 

Proor. An n-tuple 8 will be an equilibrium point if and only if for every 7 

(6) p:i(8) = max Pia($) 

which is condition (3). An equivalent condition is for every 7 and a 

(7) pi($) — pie(8) 2 

Let us now consider the form of the set S; of equilibrium strategies, s; , of 

player j. Let t be any equilibrium point, then (t; s;) will be an equilibrium point 

if and only if s;e S;, from Theorem 2. We now apply conditions (2) to (t; s;), 

obtaining 

(8) s;éeS; <> for all i, a pi(t; s;) — pra(t; s;) = 

Since p; is n-linear and t is constant these are a set of linear inequalities of the 

form F';.(s;) 2 0. Each such inequality is either satisfied for all s; or for those 

lying on and to one side of some hyperplane passing through the strategy simplex. 

Therefore, the complete set [which is finite] of conditions will all be satisfied 

simultaneously on some convex polyhedral subset of player 7’s strategy simplex. 

[Intersection of half-spaces.]| 

As a corollary we may conclude that S; 1s s the convex closure of a finite set of 

mixed strategies [vertices]. 

Dominance and Contradiction Methods 

We say that s; dominates s, if p,(t; s;) > p:(t; s;) for every t. 

This amounts to saying that s; gives player i a higher payoff than s; no matter 

what the strategies of the other players are. To see whether a strategy s; domi- 

nates s; it suffices to consider only pure strategies for the other players because 

of the n-linearity of p; . 

It is obvious from the definitions that n no equilibrium point can involve a domi- 

nated strategy 8; . |
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The domination of one mixed strategy by another will always entail other 

dominations. For suppose s; dominates s; and ¢, uses all of the pure strategies 

which have a higher coefficient in s; than in s, . Then for a small enough p 

t; = t+ p(s; — Si) 

is a mixed strategy; and t; dominates ¢; by linearity. 

One can prove a few properties of the set of undominated strategies. It is 

simply connected and is formed by the union of some collection of faces of the 

strategy simplex. 

The information obtained by discovering dominances for one player may be 

of relevance to the others, insofar as the elimination of classes of mixed strategies 

as possible components of an equilibrium point is concerned. For the ¢’s whose 

components are all undominated are all that need be considered and thus elimi- 

nating some of the strategies of one player may make possible the elimination of 

a new Class of strategies for another player. 

Another procedure which may be used in locating equilibrium points is the 

contradiction-type analysis. Here one assumes that an equilibrium point exists 

having component strategies lying within certain regions of the strategy spaces 

and proceeds to deduce further conditions which must be satisfied if the hy- 

pothesis is true. This sort of reasoning may be carried through several stages to 

eventually obtain a contradiction indicating that there is no equilibrium point 

satisfying the initial hypothesis. 

A Three-Man Poker Game 

As an example of the application of our theory to a more or less realistic case 

we include the simplified poker game given below. The rules are as follows: 

(a) The deck is large, with equally many high and low cards, and a hand 

consists of one card. 

(b) Two chips are used to ante, open, or call. 

(c) The players play in rotation and the game ends after all have passed or 

after one player has opened and the others have had a chance to call. 

(d) If no one bets the antes are retrieved. 

(e) Otherwise the pot is divided equally among the highest hands which have 

bet. 
We find it more satisfactory to treat the game in terms of quantities we call 

“behavior parameters” than in the normal form of Theory of Games and Economic 

Behavior. In the normal form representation two mixed strategies of a player 

may be equivalent in the sense that each makes the individual choose each 

available course of action in each particular situation requiring action on his 

part with the same frequency. That is, they represent the same behavior pattern 

on the part of the individual. 

Behavior parameters give the probabilities of taking each of the various 

possible actions in each of the various possible situations which may arise. 

Thus they describe behavior patterns. 

In terms of behavior parameters the strategies of the players may be repre-
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sented as follows, assuming that since there is no point in passing with a high 
card at one’s last opportunity to bet that this will not be done. The greek letters 

are the probabilities of the various acts. 

  

  

First Moves Second Moves 

1 | ° Open on high x Call IIT on low 

8B Open on low A Call II on low 

uw Call II and III on low 

y Call I on low y Call III on low 

IT | § Open on high £ Call III and I on low 
€ Open on low 
  

¢ Call I and IT on low Player III never gets a second move 
n Open on low 

Hi 6 Call I on low 
« Call IT on low       
  

We locate all possible equilibrium points by first showing that most of the 

greek parameters must vanish. By dominance mainly with a little contradiction- 

type analysis 8 is eliminated and with it go y, ¢, and 6 by dominance. Then 

contradictions eliminate yu, ~, +, 4, x, and v in that order. This leaves us with 

a, 6, €, and 7. Contradiction analysis shows that none of these can be zero or one 

and thus we obtain a system of simultaneous algebraic equations. The equations 

happen to have but one solution with the variables in the range (0, 1). We get 

_ 21 — 321 _Sa+1 ,_5-2 | _4a-1 
10  ° " 4° 5a’ a+ 5) 

These yield a = .308, n = .635, 6 = .826, and e = .044. Since there is only one 

equilibrium point the game has values; these are © 

_ (1 + 17a) 1 — 2a 

    

  

  = —.1 = ———— = —, = — V1 47 85 fa)” V2 096 ~? 

and 

79/1 —ea 
v3O= 243 = =). 

A more complete investigation of this poker game is published in Annals of 

Mathematics Study No. 24, Contributions to the Theory of Games. There the 

solution is studied as the ratio of ante to bet varies, and the potentialities of 

coalitions are investigated. 

Applications 

The study of n-person games for which the accepted ethics of fair play imply 

non-cooperative playing is, of course, an obvious direction in which to apply this
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theory. And poker is the most obvious target. The analysis of a more realistic 

poker game than our very simple model should be quite an interesting affair. 

The complexity of the mathematical work needed for a complete investigation 

increases rather rapidly, however, with increasing complexity of the game; so 

that analysis of a game much more complex than the example given here might 

only be feasible using approximate computational methods. 

A less obvious type of application is to the study of cooperative games. By a 

cooperative game we mean a situation involving a set of players, pure strategies, 

and payoffs as usual; but with the assumption that the players can and will 

collaborate as they do in the von Neumann and Morgenstern theory. This means 

the players may communicate and form coalitions which will be enforced by an 

umpire. It is unnecessarily restrictive, however, to assume any transferability 

or even comparability of the payoffs [which should be in utility units] to dif- 

ferent players. Any desired transferability can be put into the game itself instead 

of assuming it possible in the extra-game collaboration. 

The writer has developed a “dynamical” approach to the study of cooperative 

games based upon reduction to non-cooperative form. One proceeds by con- 

structing a model of the pre-play negotiation so that the steps of negotiation 

become moves in a larger non-cooperative game [which will have an infinity of 

pure strategies] describing the total situation. 

This larger game is then treated in terms of the theory of this paper [extended 

to infinite games] and if values are obtained they are taken as the values of the 

cooperative game. Thus the problem of analyzing a cooperative game becomes 

the problem of obtaining a suitable, and convincing, non-cooperative model for 

the negotiation. 

The writer has, by such a treatment, obtained values for all finite two person 

cooperative games, and some special n-person games. 
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