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Ah&act--A relative risk estimate which relates an exposure to risk of disease will tend 
to be estimated too close to unity if that exposure is subject to random measurement 
error or intra-subject variability. “Independent” relative risk estimates, for the effect of 
one exposure after adjusting for confounding exposures, may be biased in either 
direction, depending on the amount of measurement imprecision in the exposure of 
interest and in the confounders. We describe two methods which estimate the bias in 
multivariate relative risk estimates due to the effect of measurement imprecision in one 
or more of the exposure variables in the model. Results from the two methods are 
compared in an example involving HDL cholesterol, triglycerides and coronary heart 
disease. In this example, the degree of bias in relative risk estimates is shown to be highly 
dependent on the amount of measurement imprecision ascribed to the exposures. It is 
concluded that when two exposures are substantially correlated, and one or both is 
subject to sizeable measurement imprecision, a study in which exposures are measured 
only once will be inadequate for investigating the independent effect of the exposures. 
Where feasible, epidemiologists should seek study populations where the correlation 
between the exposures is smaller. 

Errors-in-variables Measurement imprecision Adjusted relative risk estimates 
Correlated exposures Independent effects 

INTRODUCTION unity. Increased recognition of this has resulted 

Both intra-subject variability and technical 
in proposals regarding how to adjust parameter 

measurement error of exposures lead to distor- 
estimates to account for it [l-4]. In one method 

tion of relative risk estimates in epidemiological 
[2,3] for adjusting logistic regression coefficients 

analyses. If this variability/error is random and 
the regression coefficient of the “true” exposure 

independent of the outcome (e.g. death) then the 
values on the measured values is calculated (A), 

relative risk estimate associated with a given 
and the logistic regression coefficient between 

exposure will tend to be estimated too close to 
the measured exposure and the outcome is then 
divided by Iz. In general, these procedures 
require validation studies in which the relation- 
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then only estimates of measurement repeata- what appear to be independent effects associ- 
bility are required, not the relationship between ated with factors which actually have no such 
measured and “true” values [3]. role [lo]. 

This describes the situation where one is 
considering the univariate association between 
an exposure which is measured imprecisely (we 
shall use this term from now on to refer to the 
random technical measurement error and/or 
intra-subject variability associated with an 
exposure) and risk of the outcome. Different 
degrees of measurement imprecision in corre- 
lated exposure variables will have complex con- 
sequences for the strengths (and even for the 
existence) of the apparent independent effects 
associated with the exposures in multivariate 
models. This has important implications for the 
study of diseases believed to be multifactoral in 
origin, since the main aim of many such investi- 
gations is to assess the importance of putative 
causal agents after taking account of already 
established risk factors. 

It has been shown that random error and 
variability in the measurement of exposures 
in multiple logistic models can lead to either 
increased or decreased parameter estimates 
[1 1, 121. As yet there has been inadequate atten- 
tion paid to this problem, with most, but not 
all, of what has been written focusing upon the 
effect of misclassification of categorical vari- 
ables in case-control studies [ 1 l-l 7J. Estimation 
problems due to strong correlations between 
continuous exposures (collinearity) in multiple 
logistic models have been studied, but the poss- 
ible additional effect of measurement impreci- 
sion in those correlated exposures has, with 
some exceptions [16, 181, been ignored in this 
context. The estimation problem caused by 
collinearity in exposures becomes more acute if 
those exposures are measured imprecisely. 

In a 1959 article reviewing the evidence 
that smoking causes lung cancer, Cornfield and 
colleagues [5] addressed the suggestion that 
the association between the two was due to 
confounding by a factor related to both, such as 
urban residence. They stated that this could not 
be the case since the relative risk attached to 
smoking was greater than that attached to any 
of the potential confounding factors. This state- 
ment has been extended into the general rule 
that the relationship between an exposure and 
an outcome cannot be due to confounding by a 
factor more weakly associated with the outcome 
b-91. 

In this paper we describe two methods which 
provide multivariate relative risk estimates 
which have been “corrected” for the effect of 
imprecision in one or more of the exposures in 
the model. However, as we shall discuss further, 
such correction methods should not be seen as 
a panacea and these results are derived in order 
to approximately assess the extent to which 
multivariate relative risk estimates can be biased 
due to measurement imprecision of exposures, 
rather than as an encouragement for attempts to 
“correct” relative risk estimates in this way. 

ASSESSMENT OF THE BIAS IN MULTIVARIATE 

If the exposure measures were without techni- 
cal error and took account of intra-individual 
variability then this rule is necessarily true. 
This is rarely what actually pertains when it is 
applied, however. In situations with measure- 
ment imprecision in exposures it could produce 
misleading conclusions. For a badly measured 
or highly variable cause a strongly correlated 
factor allowing stable and precise measurement 
could serve as a better proxy measure of ex- 
posure to the cause than its ostensible direct 
measurement. In this situation the non-causal 
factor would have a higher associated relative 
risk estimate than the actual cause. Clearly even 
in the absence of this extreme situation greater 
error or variability in measurement of the causal 
factor than of its non-causal correlate could lead 
to an apparent association between the latter 
and the outcome after adjustment for the for- 
mer. This residual confounding would produce 

RELATIVE RISK ESTIMATES DUE TO 
MEASUREMENT IMPRECISION IN EXPOSURES 

In this section we attempt to quantify the 
amount by which a multivariate relative risk 
estimate (we refer to relative risk throughout 
this text although, strictly, it is the relative odds 
that is under consideration) may be biased due 
to failure to account for the fact that one or 
more of the exposures in the model may be 
measured imprecisely. As an example, we con- 
sider the effect of two serum lipids, HDL choles- 
terol and triglycerides on risk of coronary heart 
disease. Using a simulation method, we estimate 
the extent of this bias and give the “corrected” 
relative risk estimates. Another approach to the 
“correction” of relative risks has been described 
by Rosner and colleagues [3,16]. This method 
is briefly described and comparison is made 
between the results obtained from the two 
methods. 
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Consider a situation where we wish to 
measure the effect of some risk exposure on a 
binary disease outcome after adjustment for 
confounding exposures using a multiple logistic 
model. Let us assume that the underlying 
“usual”, or long-term average, level is the aspect 
of the exposure which is most important in 
determining risk of the disease (as opposed, for 
example, to the peak level reached over a period 
of time). Let us call these “usual” exposures 
x, . . . X,. Due to biological variability and/or 
measurement error the Xi (i = 1, n) are each 
measured with some amount of random error, 
as Zi. We assume that the random error associ- 
ated with the Xi is uncorrelated. Without loss of 
generality, let us further assume that the Xi and 
Zi have been transformed such that they have 
mean zero and standard deviation 1. 

Let X and Z be (n x 1) vectors of the Xi and 
Zi, respectively. For our multiple logistic model 
we have 

In ” -=a’+/?‘.X 
1 -p’ 

where p’ is the estimated probability of disease 
and /?’ is the (1 x n) vector of “correct” logistic 
coefficients and 

In ’ - =ct +/I*z 
1-P 

where p is the estimated probability of disease 
and /? is the (1 x n) vector of naively estimated 
logistic coefficients. 

Note that X is unknown, so /I’, the parameter 
we wish to know, cannot be estimated directly. 
Now consider the multivariate linear regression 
of X on Z 

X=A.Z+e 

where 1 is an (n x n) matrix of regression 
coefficients and e an (n x 1) vector of error 
terms, is distributed as multivariate normal with 
mean 0. The intercept is zero since the Xi and Zi 
have mean zero. 

Rosner et al. suggest that the “corrected” 
logistic coefficients 1’ can be estimated by /’ 
where 

Given the assumption of multivariate normality, 
this method can only be applied to situations 
where there is measurement imprecision in (suit- 
ably transformed) continuous exposures, and 
not where there is misclassification of categorical 
risk factors. Another assumption made is that 
the probability of the disease outcome is small. 

Simulation procedure 
The simulation procedure has been carried 

out for the situation where we have “usual” 
exposures X, and X,, which are measured as Z, 
and Z,. As has been discussed, the measurement 
imprecision means that the association between 
Z, and the disease outcome will tend to be 
weaker than that between X, and the outcome. 
Similarly for Z, and X,. In addition, the corre- 
lation between Z, and Z, will be smaller than 
that between X, and X,. The simulation pro- 
cedure is a method for adjusting Z, and Z, such 
that they have stronger associations with the 
disease outcome and a stronger association with 
each other. The adjustments of Z, and Z, result 
in variables _I’: and I’$’ which mimic X, and X,. 
They mimic X, and X, in that when the appro- 
priate degree of measurement imprecision (i.e. 
random error) is added to them the resulting 
variables, Z: and Z:, have the same correlation 
with each other and, respectively, the same 
association with the disease outcome as Z, and 
Z,. Once these mimics X: and X: are created, 
a logistic model can be fitted on these variables 
to obtain estimates of the “corrected” logistic 
coefficients. 

We specify the measurement imprecision in 
terms of the Pearson correlation coefficient be- 
tween the “usual” and the measured exposures. 
Let 

rl = corm (X,,Z,) and r2 = corm (X,,Z,) 

We assume that these values are known, or can 
be estimated. These ri can be estimated as the 
square root of the intra-class correlation co- 
efficient between replicate measures. When there 
are two replicates only, the intra-class corre- 
lation coefficient is equivalent to calculating the 
usual Pearson correlation coefficient between 
two measurements, provided each pair of 
measurements is counted twice, the second time 
in reverse order. Note that the correlation co- 
efficients ri indicate the measurement impreci- 
sion of an exposure and should not be confused 
with the correlation between two exposures. 

Thus, in summary, the method is as follows. 
Given the measurement imprecision yi to be 
attributed to the exposures (where yi is normal 
with mean zero and variance such that corm 
(XF,ZF) = ri, i = 1,2) we adjust the Zi to create 
xt (mimics of Xi) such that 

xi*+y,=z: (1) 

where Z: have the following properties 
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corm (Z:, Z:) = corm (Z,, Z,) 

and 

Bi=Bi* 

where fli and pi* are multiple logistic coefficient 
estimates for Zi and Z,*, respectively. Once the 
Xi* have been created we can fit a logistic model 
on them to obtain our “corrected” logistic 
coefficient estimates. 

Creation of Xi* from Zi 

Z, was adjusted, to varying degrees, in three 
ways. 

(i) to increase the association between Z, and 
the outcome: the level of Z, in all individ- 
uals who are cases was raised by a fixed 
amount and the level of ZI in individuals 
who are non-cases was lowered by the same 
amount (or vice versa if the association 
between Z, and disease outcome is 
negative) . 

(ii) to increase the correlation between Z, and 
Zz: the value of Z, was moved closer to the 
value of Z, (or further away if correlation 
is negative). This was achieved by fitting the 
regression of Z1 on Z,, giving slope b. Each 
individual’s value of Z, was then moved 
proportionately closer to their value of 
b-Z,. 

(iii) random error (normally distributed) was 
added. 

This process was carried out simultaneously for 
both Z, and Z, in order to create new variables 
XT and X:. An iterative process was used in 
order to reach a point of convergence. At every 
step variables were re-transformed to have a 
mean zero and variance of one. The point of 
convergence was the point where the parameters 
for (i), (ii) and (iii) were such that equation (1) 
was satisfied (in expectation). Since random 
error is added to create XT and X2, it is only 
possible to define a set of parameters such that 
on average, over multiple simulations, the XT 
and X: satisfy equation (1); i.e. the mean of the 
/I, equals the mean of the pt. Similarly for the 
correlation between the Zj+ and the Zi. There- 
fore, for any given set of parameters, variables 
X7 and X$’ were created 50 times in 50 separate 
simulations (and for each XT and X2 a single 
corresponding Zf’ and Z:). If, on average over 
the 50 simulations, equation (1) is satisfied, then 
the means of the multiple logistic coefficient 
estimates for the Xi@ and X$ are taken as the 
“corrected” logistic coefficient estimates. 

When multiple simulations are carried out 
with the same parameters then the correlation 
coefficient between Zf’ and Zf (and that be- 
tween XT and X,l) varies only to a negligible 
degree (i.e. error range of around 0.02). How- 
ever, the logistic coefficient estimates vary quite 
substantially from simulation to simulation, due 
to the random component of the process. It is 
only for the logistic coefficient estimates that the 
random component causes any significant vari- 
ation between simulations, due to the fact that 
these estimates are much less stable, being based 
on the number of cases of disease as opposed to 
the total number of subjects. The greater the 
measured correlation between the Zi the greater 
the problem of collinearity in the estimation of 
the logistic coefficients for the Zi and, especially, 
the X: (because the collinearity is greater). In 
some cases more than 50 simulations would be 
required to reach a stable estimate for the /3: 
values. 

Example-HDL cholesterol, triglycerides and 
heart attacks 

One area in which measurement imprecision 
in confounded exposures arises is in the determi- 
nation of the relative importance of triglycerides 
(TG) and high density lipoprotein cholesterol 
(HDLC) in the genesis of coronary heart disease 
(CHD). It has been postulated that high TG 
levels increase susceptibility to CHD whereas 
high HDLC levels offer protection. Measures of 
TG and HDLC are strongly inversely correlated 
[19]. In a review in 1980, Hulley et al. [20] 
considered the independence of the association 
between TG and risk of CHD reported by some 
studies to be due to the lack of inclusion of 
HDLC in the analyses. They demonstrated that 
the relative risk associated with TG fell 
markedly after adjustment for HDLC in a logis- 
tic model. A reference to a discussion by Corn- 
field [21] of attribution of cause was included to 
support the conclusion. This interpretation is 
now generally accepted [22]. The inter-relation- 
ships of TG, HDLC and CHD are used in the 
following example. There has been some dissent 
to the prevailing view regarding the relative lack 
of importance of TG [23], with the high variabil- 
ity of TG [24,25] and the collinearity between 
TG and HDLC [26] being mentioned as poten- 
tial sources of difficulty in establishing any 
independent effect associated with TG. We 
stress, however, that we are not here attempting 
to make any specific claims about the correct 
solution to this problem-we are merely using 



Relative Risk Estimation 1227 

this relatively well known example for the illus- 
tration of a general point. 

The data for this example come from the 
British Regional Heart Study, a prospective 
study of risk factors for coronary heart disease 
in 7735 men aged 40-59 [27,28]. 316 of the men 
suffered a heart attack during the follow-up 
period considered here. Non-fasting TG and 
HDLC were measured at screening. TG has 
been log (natural) transformed due to its skew 
distribution. The correlation coefficient between 
HDL and TG was -0.44. For the purposes of 
this example, we have taken the correlation 
coefficient between the “usual” TG level and a 
single measure of TG as 0.6. For HDL we have 
taken a value of 0.9. These values were chosen 
on the basis of previous work on the relative 
variability of measures of the two lipids [29]. 
The coefficients chosen would imply that the 
correlation between “usual” TG and “usual” 
HDL must therefore be substantially higher 
than the value of - 0.44 found between HDL as 
measured and TG as measured. For clarity, we 
shall continue to use the terms Xi, Zi, XT and 
Ziy. For HDLC i = 1, for TG i = 2. 

In Table 1 we show the univariate logistic 
coefficients for HDLC and for TG as well as the 
coefficients after adjustment for each other (all 
coefficients refer to a one standard deviation 
difference). Notice that the logistic coefficient 
estimate for TG has fallen markedly, from 0.26 
to 0.12, after inclusion of HDLC in the model. 
Naive interpretation of these results would 
suggest that TG is a significantly less important 
risk factor for coronary heart disease than is 
HDLC since both the univariate and adjusted 
logistic coefficients for HDL cholesterol have a 
substantially greater magnitude than those for 
TG. Also in Table 1 are the results of 50 
simulations as described above. 

In each simulation the correlation coefficient 
between our mimics of “usual” TG and “usual” 
HDLC (X: and X:) was -0.81. This was the 
degree of correlation that was required such that 
when the appropriate amount of error was 
added (to create Z: and Z:) the correlation fell 
to -0.44. The values presented in Table 1 are 
means of the uncorrected logistic coefficients 
(i.e. coefficients for Z: and Z:) and means of 
the corrected logistic coefficients (i.e. coefficients 
for Xr and X:, “usual” TG and “usual” HDL) 
over the 50 simulations. The uncorrected values 
are presented merely to show the degree to 
which the logistic coefficients for Z: and Z: 
agree with those for Z, and Z,, as they should. 

The “corrected” values for the univariate 
logistic coefficients are, as expected, further 
from zero than they were before correction, to 
a degree approximately proportional to the 
error in measurement of the respective vari- 
ables. Thus the magnitude of the univariate 
coefficient for HDLC is slightly raised, from 
-0.39 to -0.44, and the magnitude of the 
univariate coefficient for TG is greatly raised, 
from 0.26 to 0.46. After adjustment for TG, the 
corrected estimate for HDLC is much closer to 
zero (about half the magnitude) than it was 
originally. This is because the effect of TG on 
risk and the association between TG and HDL 
cholesterol were previously underestimated. The 
resulting adjusted coefficient for TG is higher 
than it was previously, by almost 3-fold. 

In order to compare these results with those 
from Rosner’s method [ 161, we need to know the 
2 x 2 matrix I of regression coefficients of the 
“usual” HDL-C and “usual” TG on HDLC as 
measured and TG as measured (i.e. for X1 and 
X, on Z, and Z,). Let us assume that “usual” 
HDLC (Xi) and “usual” TG (X,) are multivari- 
ate normal (with mean 0, SD 1). We can define 
X, and X, such that if error is added (normally 
distributed, mean 0, error in X, uncorrelated 
with error in X,) to create 2, and Z,--so that 
Z, is correlated with X, with r = 0.9, Z, is 
correlated with X, with r = 0.6 and that the 
correlation between Z, and Z, is -0.4~then 
(if Z, and Z, have SD = 1) the matrix is given by 

( 

0.86 -0.12 
-0.57 0.35 ) 

The values for the corrected logistic regression 
coefficients presented in Table 1 (row four) 
were obtained using this matrix and Rosner’s 
formula. Overall the agreement is good. It 
should be noted that the assumption of bivariate 
normality holds reasonably well in this case. 

In Tables 2 and 3, we show the situation for 
different amounts of measurement imprecision 
associated with HDLC and TG. In both cases, 
the two methods appear to give similar results. 
It is important to note from Table 2, where r, 
(HDL) is still taken as 0.9 but r, (triglycerides) 
is taken as 0.7 instead of 0.6, that there is a 
substantial difference in the “corrected” logistic 
coefficients for HDLC and for TG. This indi- 
cates that these “corrected” estimates are heav- 
ily dependent upon the degree of measurement 
imprecision in the exposures under consider- 
ation. Note that, in general, r,rz cannot be less 
than the correlation between Z, and Z, because 
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Table 1. Table of naively estimated logistic coefficient estimates for HDLC and TG (i.e. for Z, and 
Zd together with the mean (SD) logistic coefficient estimate over 50 simulations for X,* and X,+ (i.e. 
“corrected” estimates) and for Z,* and Z,* where r, = 0.9, r, = 0.6. The average correlation between 
X,* and I’,* was -0.81. Also given are “corrected” logistic coefficient estimates obtained by using 
Rosner’s method. For comparison with the simulation procedure, these are obtained by multiplying 

the mean of the logistic coefficient estimates for the Z,* and Z,* by the matrix 1-l 

Logistic coefficient estimates 

TG HDLC 

Adjusted for Adjusted for 
Univariate HDLC Univariate TG 

From original data (Z, and ZJ 0.26 

Using simulation mean (SD) over 50 simulations 
Uncorrected 0.25 
(Z,* and Z,*) (0.05) 
Corrected 0.46 
(X,* and X,*) (0.03) 
Using Rosner’s method 0.42 

0.12 -0.39 -0.32 

0.13 -0.38 -0.32 
(;E) (0.04) (0.05) 

(0:08) 
-0.44 -0.15 

(0.04) (0.08) 
0.32 -0.42 -0.17 

this would imply that the correlation between X, 
and X2 were above one. 

Comment on the two methods 

We have assumed a model whereby exposures 
are measured with random error, due to 
measurement error/biological variability, and 
that those errors are uncorrelated between 
exposures. Rosner’s method also deals with 
systematic (biased) error and allows for corre- 
lated errors. In this case, it is necessary to have 
data from a validation, not merely a replication, 
study. The other useful element in Rosner’s 
method is that confidence limits have been 
derived for the “corrected” logistic coefficient 
estimates. These not only take into account the 
fact that exposures measured with error tend to 
have artefactually narrow confidence intervals 
but they also allow for the variation introduced 
due to the limited size of the validation study. 
Unlike Rosner’s method, our simulation method 
is not dependent upon the distributions of the 

risk exposures in the model. Its disadvantage is 
that it can only be used when a limited number 
of exposures are being considered. However, it 
is rare that there are more than one or two strong 
confounders in any given situation. One further 
point should be noted about these two methods. 
If the multiple logistic model has been fitted for 
use in prediction of future cases of disease, then 
it would not be appropriate to apply the correc- 
tion. If single measurements of the exposures are 
used to derive a predictive score from a logistic 
model then that score is optimal for use as a 
predictive score based on single exposure 
measurements on each individual. 

DISCUSSION 

In this paper we have demonstrated how 
differential degrees of measurement imprecision 
(whether due to error or biological variability) 
in exposures can distort the multivariate relative 
risk estimates attached to them. In this way, 

Table 2. Table of naively estimated logistic coefficient estimates for HDLC and TG (i.e. for Z, and 
ZJ together with the mean (SD) logistic coefficient estimate over 50 simulations for X,* and X,* (i.e. 
“corrected” estimates) and for Z,* and Z,* where r, = 0.9, r, = 0.7. The average correlation between 
X,* and X,* was -0.72. Also given are “corrected” logistic coefficient estimates obtained by using 
Rosner’s method. For comnarison with the simulation procedure, these are obtained by multiplying 

the mean of the logistic coefficient estimates for the Z,* and Z,* by the matrix 1-l 

Lo&tic coefficient estimates 

TG HDLC 

Adjusted for Adjusted for 
Univariate HDLC Univariate TG 

From original data (Z, and ZJ 0.26 0.12 -0.39 -0.32 

Using simulation mean (SD) over 50 simulations 
Uncorrected 0.25 0.12 -0.38 -0.33 
(Z,* and Z,*) (i.9;) (0.03) (0.05) 
corrected 

(0:03) 
-0.43 -0.30 

(X,’ and X,‘) (0.04) (0.06) 
Usinn Rosner’s method 0.36 -0.42 -0.31 
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Table 3. Table of naively estimated logistic coefficient estimates for HDLC and TG (i.e. for Z, and 
Z3 together with the mean (SD) logistic coefficient estimate over 50 simulations for X,* and X,* (i.e. 
“corrected” estimates) and for Z,* and Z,* where r, = 0.95, r, = 0.7. The average correlation between 
X,* and X,* was -0.69. Also given are “corrected” logistic coefficient estimates obtained by using 
Rosner’s method. For comparison with the simulation procedure, these are obtained by multiplying 

the mean of the logistic coefficient estimates for the Z,* and Z,* by the matrix L-’ 

Logistic coefficient estimates 

TG HDLC 

Adjusted for Adjusted for 
Univariate HDLC Univariate TG 

From original data (Z, and Zb 0.26 0.12 -0.39 -0.32 

Using simulation mean (SD) over 50 simulations 
Uncorrected 0.24 0.11 -0.38 -0.32 
(Z,* and Z,*) (0.05) (0.03) (0.04) 
Corrected 0.37 -0.41 -0.25 
(XI* and X,*) (0.04) (0.02) (0.05) 
Using Rosner’s method 0.35 -0.40 -0.27 

exposures can appear to have “independent” 
effects on a disease outcome when this is not in 
fact the case. In the HDLC/TG example given, 
which modelled plausible degrees of measure- 
ment imprecision, the adjustments made lead to 
a dramatic change in relative risk estimates. 
HDLC, with the larger relative risk in univariate 
analysis, virtually displaced TG in a multiple 
logistic model. After associating a greater degree 
of measurement imprecision to TG than to 
HDLC this situation was completely reversed. 
The results before and after examining the 
possible effects of measurement imprecision 
would have very different implications for the 
attribution of causal primacy. 

Even so, the “corrected” results were highly 
dependent on the amount of measurement im- 
precision attributed to HDLC and TG (compare 
Tables l-3) and also involved making several 
assumptions (e.g. that the “usual” level is the 
most important aspect of the exposure and that 
the random error associated with the exposures 
are uncorrelated). This illustrates the problems 
with attempting to correct for measurement 
imprecision, when a study is being analysed. In 
some instances, when exposures are substantially 
correlated and one or more is measured with a 
sizeable amount of imprecision, it may have to 
be faced that the methodology of the study which 
has been carried out is inadequate to disentangle 
the independent contributions of the various 
exposures to the disease outcome. The 
HDLC/TG example would appear to be a case 
in point. We have used this example to illustrate 
how sensitive the “corrected” relative risk esti- 
mates are to the amount of imprecision at- 
tributed to the exposures when those exposures 
are substantially correlated, in order to show the 
importance of considering measurement impre- 

cision in the design of epidemiological studies. 
The example is not intended to encourage the use 
of “correction” methods to generate “corrected” 
estimates from inadequately designed studies. 

A further example of where measurement 
imprecision in correlated exposures causes a 
problem occurs in the investigation of cervical 
cancer. Cigarette smoking has been advanced as 
a contributory factor in the aetiology of cervical 
cancer [30]. It is generally accepted that a sexu- 
ally transmitted infectious agent is involved in 
the genesis of this condition, but in epidemiolog- 
ical studies reported sexual behaviour is taken as 
a proxy measure of risk of contact with this 
agent. In the populations studied, cigarette 
smoking and reports regarding sexual behaviour 
(e.g. number of sexual partners and age at first 
intercourse) are strongly associated. Thus in one 
study [3 l] the relative odds for cervical cancer for 
current cigarette smokers, compared to never 
smokers, was 10.1, which fell to 3.4 after adjust- 
ment for confounders, which included number of 
sexual partners. It is likely that classification as 
a current smoker is a relatively precise procedure 
compared to the use of the number of sexual 
partners as a proxy for the chance of contact 
with the putative transmissible agent for cervical 
cancer. Only a small degree of imprecision in the 
indexing of risk of contact, through a question 
regarding number of sexual partners, would be 
necessary to produce an apparent independent 
effect of cigarette smoking. 

In response to a comment along similar lines 
regarding these results [32], data from a different 
study were produced, which demonstrated a 
higher crude odds ratio for smoking 20 or more 
cigarettes a day than for reporting of 4 or more 
lifetime sexual partners [33]. Furthermore, in a 
logistic model the relative odds associated with 
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smoking was reduced by only 25%, whereas the 
relative odds associated with number of sexual 
partners was reduced by a greater amount, 
3 1%. Thus, it was implied, an observer without 
preconceptions would consider smoking to be 
the factor more likely to be causally associated 
with cervical cancer. 

These results can be seen as analogous to 
those in our example. When using the actual 
measurements HDLC was associated with a 
larger crude relative risk than TG, with the 
relative odds associated with TG also decreasing 
more in the logistic model. However, modelling 
a greater degree of measurement imprecision for 
TG than HDLC reversed these relationships. 
In the cervical cancer example neither the 
demonstration that the relative odds associated 
with smoking was larger than that associated 
with number of sexual partners, nor the fact 
that adjustment reduced the latter more than the 
former can be taken as necessarily supporting 
an important causal role for smoking. This 
conclusion is strengthened when consideration 
is given to the likely degree of measurement 
error in smoking and sexual behaviour data 
and to the role of reported sexual behaviour 
as a proxy measure for a more fundamental 
exposure. Again, in this instance, one could not 
have sufficient confidence in methods of “cor- 
rection” to use them in order to make inferences 
about the aetiology of cervical cancer. 

As we have said, rather than seek to correct 
for measurement imprecision at the analysis 
stage, epidemiologists should attempt to prevent 
it by improving the design of studies. It may be 
necessary, for example to take more than one 
measurement over a period of time for some 
exposures. Furthermore, since, as we have illus- 
trated, the problems of measurement impreci- 
sion are most acute when two exposures are 
substantially correlated, epidemiologists faced 
with two correlated exposures measured impre- 
cisely should seek populations where the corre- 
lation between the two exposures is smaller; i.e. 
where the confounding is broken. For the cervi- 
cal cancer example, this would mean finding a 
culture where cigarette smoking is uncorrelated 
with sexual behaviour. The correction methods 
described in this paper may be useful for assess- 
ing whether measurement imprecision poses a 
significant problem in a particular situation. 
However, if a significant problem is identified, 
such as in the HDLC/TG example, then it 
would be dangerous to make inferences from 
such “corrected” relative risk estimates. 

In conclusion, ignoring measurement impre- 
cision in correlated exposures can lead to 
serious distortions of relative risk estimates 
from epidemiological studies. These can have 
important implications for the interpretation 
and implementation of the results of such stud- 
ies. Epidemiologists designing future studies 
should anticipate measurement imprecision by 
collecting multiple measurements, where necess- 
ary, and attempting to minimalize correlations 
between exposures. 
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