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Abstract

We investigated the reproducibility of the major statistical conclusions drawn in 46 articles published in

2012 in three APA journals. After having identified 232 key statistical claims, we tried to reproduce, for

each claim, the test statistic, its degrees of freedom, and the corresponding p value, starting from the raw

data that were provided by the authors and closely following the Method section in the article. Out of the

232 claims, we were able to successfully reproduce 163 (70%), 18 of which only by deviating from the

article’s analytical description. Thirteen (7%) of the 185 claims deemed significant by the authors are no

longer so. The reproduction successes were often the result of cumbersome and time-consuming

trial-and-error work, suggesting that APA style reporting in conjunction with raw data makes numerical

verification at least hard, if not impossible. This article discusses the types of mistakes we could identify

and the tediousness of our reproduction efforts in the light of a newly developed taxonomy for

reproducibility. We then link our findings with other findings of empirical research on this topic, give

practical recommendations on how to achieve reproducibility, and discuss the challenges of large-scale

reproducibility checks as well as promising ideas that could considerably increase the reproducibility of

psychological research.

Translational Abstract

Reproducible findings, that are findings that can be verified by an independent researcher using the same

data and repeating the exact same calculations, are a pillar of empirical scientific research. We

investigated the reproducibility of the major statistical conclusions drawn in 46 scientific articles from

2012. After having identified over 200 key statistical conclusions drawn in those articles, we tried to

reproduce, for each conclusion, the underlying statistical results starting from the raw data that were

provided by the authors and closely following the descriptions of the article. We were unable to

successfully reproduce the underlying statistical results for almost one third of the identified conclusions.

Moreover, around 5% of these conclusions do no longer hold. Successfully reproduced conclusions were

often the result of cumbersome and time-consuming trial-and-error work, suggesting that the prevailing

reporting style in psychology makes verification of statistical results through an independent reanalysis

at least hard, if not impossible. This work discusses the types of mistakes we could identify and the

tediousness of our reproduction efforts in the light of a newly developed taxonomy for reproducibility.

We then link our findings with other findings of empirical research on this topic, give practical

recommendations on how to achieve reproducibility, and discuss the challenges of large-scale reproduc-

ibility checks as well as promising ideas that could considerably increase the reproducibility of

psychological research.
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Intending to examine the relation between p values and Bayes

factors in commonly used statistical procedures such as linear

regressions and mixed ANOVAs, Vanpaemel et al. (2015) asked

for the raw data of 394 articles published in 2012 in four different

APA journals: Emotion, Experimental and Clinical Psychophar-

macology, Journal of Abnormal Psychology, and Psychology and

Aging. Their empirical procedure seemed straightforward and sim-

ple at the onset: In a first step, identify the key statistical claims for

each article where the underlying raw data were provided. Next,

redo the original, frequentist analyses underlying these claims to

make sure that the correct data was received and that the meaning

of the variables is understood, and to verify the identified claims.

In a third step, compute an equivalent Bayesian analysis for each

claim, using the BayesFactor R package (Morey & Rouder, 2015).

Finally, compare the frequentist and Bayesian conclusions.

In this article, we are reporting on the first two steps. The reason

we believe such a report is worthwhile is that the reproduction of

the identified statistical results was seldom straightforward, often

utterly frustrating, and, for many articles, impossible. In total, we

tried to reproduce 232 key statistical results reached in a selection

of 46 articles, making this work the most comprehensive report on

reproducibility in psychology to date.

We define the reproducibility of a reported statistical result as

the ability to be verified by an independent researcher through the

act of identification and execution of the underlying (often deter-

ministic) calculation(s) on the same dataset. Further, we define the

replicability of a research finding as the ability of an independent

researcher, collecting new data under sufficiently similar condi-

tions as in the original study, to reach similar conclusions. Under

the wide-held assumption that the laws of nature are the same at all

times and all places in the universe, replicability constitutes the

foundation of the scientific method. Unfortunately, a significant

portion of conducted direct replication studies in psychology fails

to support the conclusion drawn in the original study (see, e.g.,

Open Science Collaboration, 2015; R. A. Klein et al., 2018).

From an epistemological viewpoint, reproducibility should be

assessed before replicability (and generalizability). After all, it

makes little sense to try to replicate (let alone generalize) a finding

if the results supporting the finding are numerically incorrect.

What complicates matters is that an irreproducible numerical result

is not necessarily incorrect. The inability to reproduce the number

might be the result of the scientific report lacking fundamental

details, or it might be due to a lack of the necessary skills, rigor,

or patience on the part of the person trying to reproduce the result.

Relative to replicability, little research on reproducibility exists. In

particular, it is unclear what proportion of failed replications can

be attributed to irreproducible results in the original or the repli-

cation study.

Hampering discussions on reproducibility and replicability is

the fact that these terms are not universally agreed upon and are

often used interchangeably within the scientific literature, leading

to a lot of confusion. For example, Freese (2007) discusses the

importance of reproducibility in sociology but refers to it as

replicability. Xie (2015) uses the term reproducible research as the

union of reproducibility and replicability in his book about the

knitr R package which allows the integration of R code into

LATEX and Markdown documents. Chang and Li (2015), reana-

lyzing 59 economics articles using the underlying data and code of

analysis provided by the authors, compare their success rate to the

success rate of 100 independent replications of psychological

experiments (Open Science Collaboration, 2015; which, ironically,

sports reproducibility in its title). In the field of economics, until

very recently, assessments of reproducibility were almost univer-

sally labeled replications or replications in the narrow sense. In the

field of psychology, most recent literature uses the terms repro-

ducibility and replicability similarly to us (see, e.g., Epskamp,

2019). An in-depth discussion of terminology in different scientific

fields can be found in Goodman et al. (2016). In this article,

reproducibility and replicability are always used as defined by us

when discussing other articles, regardless of what term was used

by the authors.

In the remainder of this article, we start with an overview of

studies investigating reproducibility in psychology and other

fields. Then, we detail the relevant parts of our empirical investi-

gation, including the selection of articles and key statistical claims

and our workflow. Next, we summarize our results, discuss the

types of errors found, and dissect the reasons for the encountered

difficulties in the reproductions. Building on our observations, we

propose a taxonomy for reproducibility, discuss the state of repro-

ducibility in psychology, and give practical recommendations for

producing correct and quickly reproducible results in scientific

articles. We conclude by highlighting the need for and the chal-

lenges of future research on this subject.

Previous Research Assessing Reproducibility

We conducted a Google Scholar search with the following

keywords: analytical reproducibility, computational reproducibil-

ity, methods reproducibility, misreporting of results, repeatability,

replicability, reporting errors, reproduction of published results.

For each article we found that reported on an empirical analysis of

reproducibility in psychology, we looked at all the articles it

references and at all articles that cited it. Table 1 lists all published

empirical investigations of reproducibility in psychology as of

August 2020. To put these findings into perspective, Table 1

further lists important investigations on reproducibility in related

sciences. Below, we first discuss the main findings in psychology.

We make a distinction between articles that focus on reproduc-

ibility in the strict sense, which is based on the raw data and is the

topic of this article, and a more loose interpretation of reproduc-

ibility, which does not rely on the raw data and could be termed

consistency. We then summarize important empirical findings on

reproducibility in related fields. Please note that those empirical

studies in Table 1 that are based on raw data differ in several

relevant aspects and that it is therefore difficult to compare them.

As they differ, for instance, in whether code of analysis was used,

whether authors were contacted for assistance, the types of statis-

tical models investigated, the definition of what constitutes a

successful reproduction, as well as the size of the reproduction

team and the effort put into the reproductions rigorous compari-

sons ought to be done by a detailed reading of the respective

articles and supplementary materials.

Checking Reproducibility via Reanalysis of Raw Data

Hardwicke et al. (2018) is the only published investigation in

psychology that systematically reproduced statistical results by

reanalysis of the underlying raw data. Hardwicke et al. (2018)
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Table 1

Empirical Studies on Reproducibility

First author Year Scientific field
# of

articles Study design Findings

Wolins 1962 Psychology 7 Reproduction of “analyses” based on
privately shared data.

Three of seven reanalyzed datasets contained
severe errors.

Rossi 1987 Psychology 67 Reproduction of test statistics by
using summary statistics reported
in the articles themselves.

Five out of 21 (Study 1) and 26 out of 46
(Study 2) recalculated test statistics
deviated from the reported ones to an
extent that could not be explained by
rounding. Approximately 13% of tests
published as statistically significant in
Study 2 were found not significant in the
reproduction.

Garcia-Berthou 2004 Multidisciplinary/
Medicine

32 Consistency checks for p values. 38% of 32 articles published in Nature and
25% of twelve articles published in BMJ

contained at least one consistency error.
Out of all 244 recomputations, 28 (11.5%)
were inconsistent.

Berle 2007 Psychiatry 96 Consistency checks for p values. Percent of inconsistent p values in the three
analyzed psychiatric journals were 13.9%,
14.8%, and 14.2%, respectively.

Gotzsche 2007 Biomedicine 27 Reproduction of standardized mean
differences (SMDs) and their
confidence intervals for two
randomly selected trials in 27
meta-analyses; reproduction of the
complete meta-analysis for those
articles where at least one trial
could not be reproduced.

Ten meta-analysis had at least one trial
where the SMD and/or the length of its
confidence interval could not be
reproduced. Seven of these had at least
one trial where the SMD differed by more
than 0.2. The complete reproduction
attempt for these 10 meta-analyses found
that the pooled estimates and/or the length
of their confidence intervals differed by
more than 0.1 for seven of them.

Ioannidis 2009 Genetics 18 Reproduction of a randomly selected
table or figure in each article via
publically available raw data.

Six of the 18 articles could not be
reproduced due to a lack of data. Of the
remaining 12 articles, four could not be
reproduced at all, six were reproduced
with minor deviations and only two were
reproduced close enough to warrant the
label “reproduced in principle”.

Bakker 2011 Psychology 257 Consistency checks for p values. Three-hundred and 94 (9.7%) of 4,077
recalculated statistical results coming from
194 articles were found to be inconsistent.
For 50 (1.2%) results the conclusion
changed from significant to nonsignificant
or vice versa.

Wicherts 2011 Psychology 49 Consistency checks for p values. Consistency checks for 1,148 NHST results
with p � .05 found that 49 (4.3%) were
inconsistent. Forty-seven of the
recalculated p values were larger than the
reported one.

Petrocelli 2013 Psychology 87 Consistency checks for coefficients in
single-mediator models.

Thirty-eight (24%) of 156 single-mediator
models coming from 87 articles contained
inconsistencies that could not be explained
by rounding.

Caperos 2013 Psychology 102 Consistency checks for p values. One-hundred and 48 (12%) of 1,212 exactly
reported pairs of test statistic and degrees
of freedom were found to be incongruent
with the reported p value. For 28 (2.3%)
results the conclusion changed from
significant to nonsignificant or vice versa.

Bakker 2014 Psychology 61 Consistency checks for p values via
Statcheck.

Sixty-seven (9.7%) of 886 recalculated
statistical results coming from 61 articles
published in six journals were found to be
inconsistent. For 11 (1.2%) results the
conclusion changed from significant to
nonsignificant or vice versa.

(table continues)
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Table 1 (continued)

First author Year Scientific field
# of

articles Study design Findings

Veldkamp 2014 Psychology 697 Consistency checks for p values via
Statcheck.

10.6% of 8,105 re-calculated statistical
results coming from 697 articles published
in six journals were found to be
inconsistent. For 0.8% of the results the
conclusion changed from significant to
nonsignificant or vice versa.

Chang 2015 Economics 67 Reproduction of the “key empirical
results” by using publically
available raw data and code of
analysis.

Twenty-nine of the 67 papers could not be
reanalyzed because data or code was not
publically available. Of the 38 papers that
could be reanalyzed, 22 (58%) were
successfully reproduced without contacting
the authors, seven (18%) were
successfully reproduced after contacting
the authors, and nine (24%) contained
incorrect data and/or code.

Nuijten 2016 Psychology 30717 Consistency checks for p values via
Statcheck.

10.6% of 258,105 recalculated statistical
results coming from 16,695 articles
published in eight journals were found to
be inconsistent. For 0.8% of the results,
the conclusion changed from significant to
nonsignificant or vice versa. More than
half of the articles included at least one
inconsistent p value.

Eubank 2016 Political Science 24 Reproduction of all numerical values
in the articles by rerunning
provided code of analysis on
provided raw data files in light of
an in-house reproducibility review.

Twenty of the 24 empirical papers needed at
least minor modifications in order to run.
Fourteen (58%) articles included results
that differed from the output of their own
code of analysis. Severe errors sometimes
required changes in whole columns or
tables of results.

Bergh 2017 Strategic
Management

88 Reproduction of inferential statistics
by using summary and correlational
statistics reported in the articles
themselves.

Fifty-eight of the 88 articles did not provide
sufficient information to reproduce any
result. Sixty-two (8.5%) of the
recalculated coefficients had a different
sign. Fourteen out of the 144 (9.7%)
p values associated with linear regression,
and 12 out of 55 (22%) p values
associated with SEM, that were reported
as significant in the article, were no
longer so.

Brown 2017 Psychology 71 Consistency check of summary
statistics (mainly the mean) that are
based on ordinal data (i.e. Likert
scale) by using only data reported
in the articles themselves.

A consistency check of 71 articles with the
GRIM (granularity-related inconsistency
of means) technique found at least one
inconsistent mean in 36 (51%) of them. In
16 of those 36 articles, multiple issues
were detected.

Naudet 2018 Medicine 17 Reproduction of effect sizes and
p values for all primary outcomes
of randomized control RCTs by
using publically or privately shared
raw data and, when available, code
of analysis provided by the authors.

For 14 (82%) of the 17 reanalyzed RCTs, all
identified primary outcomes could be
reproduced. One RCT could not be
reproduced for a lack of information about
the statistical analysis. Two RCTs
contained errors but were similar to the
reanalyses in terms of magnitude and
statistical significance of the effect.

Hardwicke 2018 Psychology 35 Reproduction of a set of inter-related
values related to the first identified
substantive finding in each article
by using publically available raw
data and when available code of
analysis provided by the authors.

Eleven (31%) articles were reproduced
without author assistance, 11 (31%) were
reproduced with author assistance, and 13
(37%) were not reproduced despite author
assistance.

(table continues)
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reanalyzed 35 articles that were published in the journal Cognition

between 2015 and 2017, a period in which the journal’s open data

policy required as a prerequisite for publication that the study’s

raw data are shared on a suitable third party repository. Hardwicke

et al. (2018) identified key statistical results coming from basic

statistical analyses (e.g., t test, ANOVA) for each of the 35 articles

under investigation, and systematically reproduced them via R (R

Core Team, 2018) using a pilot/copilot approach. In total, 11 out

of 35 articles could be reproduced.1 After contacting the authors of

the 24 problematic articles, they were able to reproduce another 11

because code of analysis, additional data sets, or additional infor-

mation on the calculations of the reported numbers that could not

be reproduced were provided. The remaining 13 articles contained

identifiable errors and could not be reproduced, despite author

assistance. The number of issues in their sample is remarkable

insofar that the authors had to share their raw data publically.

Checking Reproducibility Without Raw Data

Without the raw data, reproducibility can be assessed by check-

ing the consistency of reported numbers that are mathematically

connected. The first such investigation was conducted by (Rossi,

1987) who recalculated together with his students the test statistics

and degrees of freedom for �2-tests, independent group t tests, and

one-way ANOVAs based on the reported means, standard devia-

tions, and sample sizes. Although the sobering results (see Table 1)

cannot be considered to be representative of the psychology liter-

ature at that time because articles and results were not selected

systematically,2 it does surprise us that this article has only been

cited a few times and that its findings did not result in immediate

follow-up studies with similar designs.

More recently, two studies found similar results, indicating

many inconsistencies in published test statistics. Petrocelli et al.

(2013), who cleverly verified the consistency of reported results in

single mediator models, and Brown and Heathers (2017), who

made use of the fact that summary statistics of ordinal variables

(e.g., Likert rating scale), can only take values from a known set of

rational numbers which depends on the sample size (see Table 1).

By far the most common type of consistency check in psychol-

ogy is based on the fact that for fixed degrees of freedom—the

parameters that determine the distribution under H0—the p value is

a bijective function of the test statistic for t, �2, and F tests. The

same holds for z test statistics whose distribution is parameter-free.

Given data, the random test statistic and its degrees of freedom

take specific values and consequently uniquely determine the p

value. Hence, a potentially incorrectly reported p value can be

detected without access to raw data by checking whether it

matches the reported test statistic and degrees of freedom, an

approach which has been pioneered by García-Berthou and Al-

caraz (2004). Since then, inconsistencies in published p values

have been studied in tens of thousands of published psychology

articles. Investigations by Berle and Starcevic (2007); Bakker and

Wicherts (2011); Wicherts et al. (2011); and Caperos and Pardo

Merino (2013) found that between 4.3% and 14.8% of published p

values are inconsistent. Further investigations by Bakker and

Wicherts (2014); Veldkamp et al. (2014); and Nuijten et al. (2016)

by means of a text-mining algorithm named statcheck, which was

developed by Epskamp and Nuijten (2018) and is available both

online and in the form of a package in the statistical software R (R

Core Team, 2018), found that between 9.7% and 10.6% of pub-

lished p values are inconsistent. Furthermore, between 0.8% and

1.2% of all p values were found to be grossly inconsistent, mean-

ing that the statistical conclusion (significance vs. nonsignificance)

would change if one were to calculate and interpret the p value

based on the reported test statistic and degrees of freedom.3

A recent empirical study investigated the reproducibility of 33

meta-analyses published in 2011 or 2012 in a variety of journals

(Maassen et al., 2020). In total, Maassen et al. (2020) tried to

reproduce 500 of the 1,978 primary study effect sizes that were

reported and used in the 33 selected meta-analyses via the infor-

mation in the corresponding primary study articles. They found

that only 276 (55%) primary effect sizes could be reproduced

without any issues. For 54 (11%) no effect size was recalculated

because essential information was missing in the primary study.

Further, 114 (23%) effect sizes differed upon recalculation, 52

(10%) of which moderately or large. The remaining 56 (11%)

1 They consider an article to be reproduced in the absence of any
insufficient information errors, any major numerical errors, as well as any
decision errors (i.e., no change in significance).

2 The study was part of a class assignment for students. Rossi (1987)
reports to have also recalculated those test statistics that were not selected
by the students (144 in total) and that there were relatively fewer repro-
ducibility issues among them.

3 For an overview of all previous research on p value inconsistencies we
refer the reader to Nuijten et al. (2016) and their Table 2, and note that they
did not indicate that Berle and Starcevic (2007) only reanalyzed exact p

values.

Table 1 (continued)

First author Year Scientific field
# of

articles Study design Findings

Maassen 2020 Psychology 33 Reproduction of 500 primary study
effect sizes reported and used in 33
published meta-analyses via the
information in the corresponding
primary study articles.

Two-hundred and 76 (55%) primary study
effect sizes could be reproduced without
issues. One-hundred and 14 (23%)
differed upon recalculation. The remaining
effect sizes could not be reproduced
because the primary study did not contain
sufficient information (54) or because it
was unclear which calculations the
respective meta-analysis performed (56).

Note. BMJ � British Medical Journal; NHST � null hypothesis significance testing; SEM � structural equation model.
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could only be numerically reproduced by trying out multiple

plausible ways of calculating them. Maassen et al. (2020) further

investigated the impact of the 114 differing effect sizes on the

respective meta-analytic conclusion in various ways and found

small or moderate discrepancies in 13 (39%) of them. In none of

the 33 meta-analyses did the statistical significance of the pooled

effect size change, and no bias toward over- or underestimation

could be detected.

Reproducibility in Related Fields

Our literature search revealed two studies in other social sci-

ences and two in the life sciences that systematically used raw data

to check the reproducibility of published results. One extensive

study in economics by Chang and Li (2015)4 found problems in 29

out of 67 articles. Especially in the field of economics, reproduc-

ibility seems to be a big problem as the study of Chang and Li

(2015) was built on worrisome findings in previous empirical

assessments of reproducibility in economics research such as De-

wald et al. (1986) and McCullough et al. (2006). Two studies, one

in genetics (Ioannidis et al., 2009) and one in political science

(Eubank, 2016), discovered even greater problems (10 out of 18

and 20 out of 24). A more recent study in medicine (Naudet et al.,

2018), on the other hand, found a lesser rate of issues (14 out of 17

could be reproduced; see Table 1).

One approach to checking reproducibility without the raw data

in more complex models, which has not yet been used in psychol-

ogy, is to recalculate p values by using not just reported summary

statistics (e.g., mean values, standard errors, sample sizes) but also

reported inference statistics (e.g., correlations, covariances). An

example of such a design is Bergh et al. (2017) who recalculated

p values in regressions and structural equation models (SEMs) in

30 articles published between 2000 and 2013 in Strategic Man-

agement Journal. Worryingly, 14 out of the 144 (9.7%) p values

associated with linear regression, and 12 out of 55 (22%) p values

associated with SEM that were reported as significant in the article

were no longer so in the reanalysis.

The Current Study

Numerically incorrect results unnoticed by the scientific com-

munity considerably slow down the accumulation of knowledge, at

the very least, as they lead to aggravated uncertainty about what to

conclude on the subject at hand. Furthermore, in the case that

numerically incorrect results are nonrandom, they systematically

distort the inferences. Reporting errors biased toward significance

and inflated effect sizes potentially constitute an important factor

in the observed disappearance and decline of effects in replication

studies such as Open Science Collaboration (2015); Camerer et al.

(2016); R. A. Klein et al. (2018), and Camerer et al. (2018). In this

article, we report on our systematic investigation of reproducibility

via unpublished raw data in psychology.

Method

Selection of Articles and the Key Statistical Claims

The articles that are the focus of our investigation are a subset

of the 394 articles published in 2012 in four different APA jour-

nals, namely Emotion, Experimental and Clinical Psychopharma-

cology, Journal of Abnormal Psychology, and Psychology and

Aging, for which Vanpaemel et al. (2015) asked the corresponding

authors for their raw data (see Figure 1) as a basis for the planned

comparison between Bayesian and frequentist inference.

Eventually, Vanpaemel et al. (2015) received raw data from 148

of the 394 contacted authors. Before we decided on our final

guidelines, we read in the raw data of a handful of articles

published in the journals Psychology and Aging and Journal of

Abnormal Psychology. We then started to identify and reproduce

key statistical results reported in those articles. This revealed the

time-consuming nature of this study and led us to exclude the 72

papers from the journal Emotion for which the raw data was shared

from our reanalysis. For two articles in Experimental and Clinical

Psychopharmacology, we only had temporary permission to use

the raw data, so these were excluded from reanalysis. Four articles

from the journal Psychology and Aging were also excluded for

various reasons. One article was excluded because the wrong data

set has been shared. Another one was not considered because the

provided raw data was only temporarily available. And two other

articles were excluded because essential data was missing. The

remaining 70 articles were, in principle, eligible for reanalysis.

Most scientific articles contain several statistical inferences, but

they are not all equally important. In this study, we focused on

statistical inferences that support claims of primary interest. We

defined a primary claim (PC) as an a priori hypothesis that is

mentioned in the article’s Abstract and whose plausibility is being

evaluated using null hypothesis significance testing (NHST). Con-

sequently, each PC is underlied by a numerical triplet consisting of

test statistic, degrees of freedom, and the corresponding p value

(e.g., F(2, 30) � 4.35, p � .022).

Due to the original goal of comparing the Bayesian and fre-

quentist conclusions, we applied several exclusion criteria to all

PCs in our sample of articles. First, we focused only on PCs that

were based on models for which a Bayes factor could be computed

via the R package BayesFactor (Morey & Rouder, 2015, Version

0.9.12–2). The featured models in this package constitute mostly

univariate linear models. Table 2 shows the definitions of the

(overlapping) type of models for which the BayesFactor package

provides support, and the respective R functions we used for

reproduction.5 Second, we only included PCs for which at least

one precise numerical value (either p value, test statistic, or some

coefficient on which the test statistic depends, such as a regression

coefficient) was reported. This requirement is a basic prerequisite

to reasonably accurately assess reproducibility. Third, we dis-

carded PCs that were based on post hoc tests (because in the light

of our original frequentist-Bayesian comparison, it was not clear

how to deal with these tests). Fourth, we excluded PCs for which

the raw data necessary for reproduction was not available (some

authors shared only incomplete data). Lastly, the maximum num-

4 It is unclear if this article has been peer reviewed. Multiple versions of
this article exist and it is listed as forthcoming in the journal Critical

Finance Review ever since 2017. Here is a link to a version that includes
an Appendix with details about the reanalyzed articles: https://pdfs
.semanticscholar.org/5c79/5fc4910264e9a9e8dc559e7689594e0f146c.pdf.

5 Binomial regression was included because, at the start of this study, we
speculated that binomial (i.e., logistic and probit) regression models would
be included in future versions of this package.
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ber of PCs per article was restricted to 10, aiming to strike a fair

balance between ensuring that most relevant statistical conclusions

are investigated and not skewing our Bayesian comparison too

much toward those few articles with an enormous number of

eligible statistical results. In the case that more than 10 statistical

results fulfilled all criteria of our guidelines, we followed the

subsequent Points 1 to 3 consecutively until no more than 10 PCs

remained:

1. We select the most important result(s) based on the

Abstract and the Discussion section.

2. We focus on the objective/hypothesis that is mentioned

first.

3. We select those results that are explicitly mentioned in

the text of the Results section.

Figure 1

The Count of Articles (n) at Various Steps of the Article Selection Process, the

Count of Primary Claims (k) That Were Identified for This Reproducibility Study,

and the Counts of the Different Types of Fitted Statistical Models Underlying Them
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All PCs were identified according to these guidelines (see

Figure 1 and Table 2) by SS, under the supervision of FTu and

WV. After applying these exclusion criteria, we ended up with 232

PCs from 46 articles. Most of the excluded articles used statistical

models not included in Table 2, such as structural equation models

(SEM), factor analysis, receiver operating characteristic (ROC)

curve analysis, latent growth model, and multivariate analysis of

variance (MANOVA). In total, six PCs in three articles had to be

excluded because the relevant raw data was missing.6

Figure 1 shows the composition of the 176 models underlying

the 232 PCs. Each of these 176 underlying models was fit to a

unique set of data vectors by the respective R function (see Table

2) in light of the reproductions. All 232 PCs rely on simple

statistical hypotheses tests (i.e., using a pivotal test statistic, such

as the t-statistic, whose distribution under H0 depends only on the

sample size) for either one model parameter (193 PCs with H0 :

� � 0 vs. H1 : � � 0 and 2 PCs with H0 : � � 0 vs. H1 : � � 0)

or for multiple model parameters simultaneously (37 PCs with H0

: �i � �j @ i, j � {1, 2, . . . , a}, i � j vs. H1 : �i � �j ? i, j � {1,

2, . . . , a} for some a � �, a � 2). t tests and correlation

hypothesis tests always underlie precisely one PC. On the other

hand, some of the fitted ANOVAs, ANCOVAs, and regressions

underlie multiple PCs. For instance, if both main effects plus the

interaction effect of a two-way crossed ANOVA were identified as

PCs, then this ANOVA model underlies these three PCs. The 46

articles where at least one PC was identified relied heavily on p

values and rarely reported effect size estimates. All 46 articles

featured purely experimental study designs with human partici-

pants. In many cases, repeated measurements were taken on the

same variable(s) for each subject, as reflected by the large number

of within-subject and mixed ANOVAs.

As is shown in Figure 1, we included PCs for which we ended

up fitting MANOVAs (3x repeated-measurement design in two

different articles contributing to four PCs) even though our guide-

lines did not include these types of models (see Table 2). The

reason is that during the identification of the PCs, it was not clear

that the authors fitted MANOVAs. This only became apparent at

the stage of reproduction because the method/result sections were

either too vague (Article A) or incorrect (Article B).7

Reproduction Procedure

Four members of our team (RA, SG, SS, and TV) worked

systematically on the reproductions of the 232 PCs that were

identified in the selected 46 articles, using the statistical software

R (R Core Team, 2018), often taking advantage of relevant pre-

processing work done by FTr. Each article was analyzed according

to the following procedure with a “pilot” (lead and first analyzer)

and “copilot” (double-check and second analyzer):

1. The pilot of the article read in the relevant raw data and

started to reproduce the identified PCs by carefully fol-

lowing the method section and by incorporating all rel-

evant information in other parts of the article such as the

Introduction, the Results, and Discussion sections, and

footnotes. If necessary, information in referenced articles

was incorporated too. The complete code of analysis was

saved as an R file. In addition, pilots produced a brief

report for each article, detailing the main findings of their

reproduction attempt.

2. The article was transferred to the copilot, who continued

to work on the reproductions of the PCs. If the pilot was

able to reproduce a PC, the copilot checked the analysis

6 We did not formally study the interrater reliability in selecting the
article’s PCs based on our guidelines, despite the fact that linking conclu-
sions in the abstract with statistical results in the body of the article was not
always straightforward. However, when performing the reanalyses, the
analysts assessed the correctness of the application of the guidelines for
each article and found no issues with the selection of PCs. The only
exception was the removal of the six PCs for which the relevant data had
not been provided, a fact of which SS was not aware while selecting the
PCs.

7 Three of these four PCs (2x Article A, 1x Article B) have exactly the
same F-test statistic when a mixed ANOVA is fitted instead because they
are either associated with a between-subject factor (2x) or with an inter-
action of a between-subject factor and a within-subject factor with only two
levels (see, e.g., Maxwell et al., 2018). We labeled all three models as
MANOVAs because the authors of the two articles always chose the
multivariate F-ratios in case they differed to the univariate ones (i.e., for
testing within-subject factors with more than two levels).

Table 2

Statistical Model Families for Which Bayes Factors Can Be Calculated via the BayesFactor R Package (Morey & Rouder, 2015,

Version 0.9.12–2), Classified by Means of Variable Types (Cont. � Continuous; Cat. � Categorical; Dich. � Dichotomous),

Together With the Respective R Functions Used for Reproduction

Type of model Type of DV Number; Type(s) of IV(s); additions R function used

linear correlation cont. 1; cont. corr.test()
t-test cont. 1; dich. t.test()
regression cont. �2; �1 IV cont.; focus on cont. IV lm()
ANCOVA cont. �2; �1 cont. & �1 cat.; focus on cat. IV lm()
ANOVA between cont. �2; cat.; no IV’s repeatedly measured ezANOVA()
ANOVA within cont. �2; cat.; all IV’s repeatedly measured ezANOVA()
ANOVA mixed cont. �2; cat.; some IV’s repeatedly measured ezANOVA()
linear mixed model cont. �1; cont. & cat.; random effects lmer()
contingency table dich. �1; cat. chisq.test()
binomial regression� dich. �1; cont. & cat.; logit/probit link function for DV glm()

Note. DV � dependent variable; IV � independent variable.
� Not included in the BayesFactor package (Morey & Rouder, 2015, Version 0.9.12–2).
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code for errors and plausibility. In the case of nonmatch-

ing results, the copilot tried to achieve reproduction by

writing new R code into a separate file. The potentially

different conclusions and the summary of this second

attempt were then added to the report. Never did the

copilot alter the pilot’s code or report, not even in case of

mistakes.

3. In the case that neither the pilot nor the copilot was

confident that their code of analysis exactly corresponded

to the descriptions in the article or was error-free, a third

team member went through their code of analysis and,

when necessary, wrote additional R code.

4. Eventually, if, despite all efforts, a PC could not be

reproduced, the team members tried to identify (plausi-

ble) reasons for the irreproducibility.

Assessing the reproducibility of the 232 PCs turned out to be a

challenging and laborious endeavor, and we went great lengths to

arrive at successful reproductions for all 46 analyzed articles.

When an initial reproduction attempt failed, we employed the

following strategy. First, we deviated from the article’s description

to get matching numerical results and to pinpoint the reasons for

nonmatching reproductions. In some cases, statistical models that

were close but not identical to the ones reported in the article were

fitted, such as models with additional or fewer covariates/interac-

tions. In other cases, various plausible subsets of participants (e.g.,

not applying a reported exclusion criterion or removing cases with

missing values in some variables) were used in case of nonmatch-

ing degrees of freedom. Second, we used every reported numerical

information regarding the used variables to pinpoint the reason(s)

for deviating results. In particular, we tried to reproduce numerical

values reported in the article that were not the prime target of

reproduction but seemed relevant for this PC (e.g., means, standard

deviations, sample sizes, demographic information about the sub-

jects) as doing so could help in figuring out what the authors

calculated exactly (e.g., checking the reported descriptives might

help to identify which participants were included in the analysis).

In cases where little or no additional numerical information be-

sides test statistic, degrees of freedom, and p value was reported,

we tried to reproduce relevant figures from the article to assess

whether we were working with the same raw data or not. These

additional analyses were neither done exhaustively nor systemat-

ically. We did not contact the authors of the article in case of

reproducibility issues. The reason is that we believe that, ideally,

reproducibility should be possible without the assistance of the

authors, and this study assesses the extent to which reality deviates

from this ideal situation.

Once all 46 articles were analyzed by a pilot, a copilot, and if

needed, a third pair of eyes, RA and TV summarized the repro-

ducibility results. The systematic summary contains the following

information about each PC:

• Model information: the type of the statistical model and

the type of variables it includes, the effect of interest (main

or interaction effect?), the distribution of test statistic

under H0;

• Numerical information: reported and reproduced values of

test statistic, degrees of freedom, and p value;

• Verbal descriptions: information about potential mis-

matches between reported and actual calculation, issues

encountered during the reproduction attempt, numerical

checks of related and underlying numerical results, sus-

pected reasons for irreproducibility, and additional infor-

mation about the PC.

• As a measure of numerical precision, the absolute (value

of the) relative deviation (ARD) between original and

reproduced result was then calculated for each PC as

follows:

ARD : � | Treproduced � Treported

Treported | , (1)

If a test statistic was reported in the article, Treported represents

its value and Treproduced represents the value of the test statistic in

the reproduction rounded to the same number of digits as Treported.

If the value of the test statistic was not reported, ARDs were

calculated based on regression coefficients (35�), standardized

regression coefficients (4�), odds ratios (1�), correlation coeffi-

cients (24�), and, as a last resort, p values (2�), again using

Equation 1 and again rounding the recomputed values to the same

number of digits as in the reported values. The p value was not

used as the primary number to quantify the numerical precision via

Equation 1 because it was either not reported precisely (155 PCs)

or reported with fewer or equal significant digits8 as the test

statistic or the reported coefficient on which the test statistic

depends (74 PCs).

Further, we checked whether the reproduced degrees of freedom

match with the reported ones. This was impossible for 87 of the

232 PCs, most of them coming from regressions and correlation

tests, for which no degrees of freedom were reported. Not report-

ing degrees of freedom was quite common for t-statistics (e.g., a

linear regression result of 	 � 
4.543, SE � 2.12, t � 2.143, p �

.05).9

Quantifying the Magnitude of Deviation

Some authors (e.g., Hardwicke et al., 2018) use the ARD to

classify discrepancies as minor or major numerical errors de-

pending on whether or not the obtained ARD exceeds a chosen

threshold for a variety of quantities such as sample sizes,

standard errors, test statistics, effect size estimates, and p values

(e.g., Hardwicke et al., 2018 used a single cutoff of 10% for

these widely different scales). However, ARDs computed on

different scales (such as F and t statistics, regression coeffi-

cients, correlation coefficients, and p values) are not commen-

surable. This is easily demonstrated with the following ficti-

tious example where the article reports t(20) � 2 for a PC, and

8 For example, the significant digits of the test statistic and the p value
in t(30) � 2.452, p � 0.02 are 4 and 2, respectively.

9 Although the degrees of freedom of a t-statistic are a function of the
sample size (e.g., df � n 
 2 in the case of a correlation test), we did not
compare the sample size reported in the article with ours as a substitute in
case no degrees of freedom but a sample size was reported for a PC. Such
a comparison would be problematic because it is often not clear whether
the reported sample size represents all cases or only those cases without
missing values or specific characteristics (e.g., that some variable lies
within a certain range). In linear regression, for instance, all cases with at
least one missing value for any of the used variables are dropped, and the
actual sample size represents all cases without any missing values.
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the reproduction produces t(20) � 1.8 yielding an ARD of 10%.

Because �F�1, n� follows the same distribution as | t�n� | , the

article could have chosen to report F(1, 20) � 4 instead. If then

the reproduced value for F(1, 20) is 3.24 (� 1.82), this results

in an ARD of 19%. Equally, the authors could have chosen to

report the (two-sided) p value of 0.059 instead. The ARD would

then be approximately 47% because the reproduced rounded p

value is 0.087 (based on F(1, 20) � 3.24). Because of this lack

of commensurability, we do not classify the PCs into ordered

categories of severity of deviations via the ARD.

To create commensurable quantifications of the magnitude of

deviation via some common distance measure such as the ARD,

the (to be) reproduced values need to lie on a common or at

least on a similar scale for each PC. Suitable common scales for

NHST results are effect size scales. Rosnow and Rosenthal

(2003) classify effect size scales into three families. The d

family which includes standardized scales such as Cohen’s d

and root mean squared error standardized effect, the � family

which includes scales that measures the strength of association

such as (partial) �2, and (partial) 2, and the ratio family which

consists of the relative risk and the odds ratio. Members of the

� family are particularly suited to be used to quantify the

magnitude of deviation (e.g., via the absolute deviation) be-

cause they are bounded between zero and one. Unfortunately,

the reported information was not sufficient to calculate effect

size measures for many PCs (e.g., due to missing degrees of

freedom), making it impossible to transform all PCs onto a

common scale.

A second, more obvious, common scale to all analyzed PCs is

the p value scale. Hardwicke et al. (2018) assessed for each

selected hypothesis test whether or not the reproduced p value falls

on the other side of the 0.05 threshold compared with the reported

p value. Because, in the 46 analyzed articles, p values were solely

computed to assess whether or not they passed the 0.05 threshold,

we will adopt this dichotomization of irreproducibility. As such,

when we encounter a deviation between the reported and the

recomputed result, as indicated by an ARD above zero, we will

classify a change in significance as a decision error.

Transparency

The study of Vanpaemel et al. (2015) received approval from

the Ethics Committee of the Faculty of Psychology and Edu-

cational Sciences of the University of Leuven under the restric-

tion that it will not be disclosed who shared their data and who

did not. Only those researchers working directly with the data

gathered by Vanpaemel et al. (2015) know for which of the 394

articles raw data was shared. In order to not constitute a breach

of confidentiality, we do not reveal which articles were reana-

lyzed. We regret that this implies our study is, in itself, not

reproducible, as it is impossible for others to check the correct-

ness of our reanalyses. We have tried to accommodate this by

providing concrete (anonymized) examples of the problems we

encountered below. If individual authors whose article might be

included in our study are interested in the reproducibility status

of their article, we invite them to contact us, so that we can

share the code and conclusions of our reanalysis of their article

with them.

Results

Summary of the Reproductive Success

Our main results are summarized in Figure 2. As shown by

uncolored cells in Figure 2, we were able to successfully reproduce

163 (70%) of the 232 PCs, in the sense that the ARD is zero.

However, 26 of these 163 PCs do not qualify as successful repro-

ductions in the strictest sense. For seven PCs, marked with an X,

the ARD is zero, but we could not reproduce the reported degrees

of freedom. The reproductions for four of those seven PCs pro-

duced the reported p value, but the reported test statistic and

degrees of freedom are inconsistent with the reported p value,

implying that the reported degrees of freedom are typos. For the

three other PCs, no p values were reported, making a complete

consistency check impossible. For two of these three PCs,

we believe that the reported degrees of freedom are typos in the

sense that they were not used by the authors to compute the p

value. This belief is based on the fact that they are equivalent to the

reported degrees of freedom of another PC from the same article,

which suggests a copy-paste error.10

For another 18 PCs, marked with an exclamation mark in Figure 2,

the ARD of zero could only be achieved by deviating from the

article’s method description. For 13 PCs we needed to deviate from

the reported exclusion criteria to achieve reproduction, for two PCs

we were successful by using the binned version of a variable instead

of its raw version (unlike what was reported in the article), for one PC

we had to use the Greenhouse-Geisser correction (unlike what was

reported in the article), for one PC we only had to use cases where a

factor variable had a certain level and not all cases (as was implied by

the method description), and for one PC we had to use a multivariate

test statistic instead of the reported univariate test statistic.

Finally, for one PC, marked with an “S,” the ARD of zero was only

achieved by taking the absolute value of the reported t-statistic. We

chose this because, for one, we identified the sign of the reported

t-statistic as a typo, because the reported corresponding regression

coefficient had the opposite sign and, second, a two-sided test was

performed which meant that the p value did not depend on the sign of

the t-statistic.

As indicated by colored cells in Figure 2, we were unable to

achieve an ARD of zero for 69 (30%) of the 232 PCs. For one PC, the

variable and data selection, and also the description of the statistical

model fitted, was so unclear and internally inconsistent that we

refrained from fitting and reporting the result of a specific model. For

three of these 69 PCs, marked with the exclamation mark, we used a

sample that violated some of the reported exclusion criteria, as this

resulted in matching degrees of freedom and other PCs from these two

articles were successfully reproduced by using that sample.11

For 185 of the 232 identified PCs (including the abandoned PC),

a p value of less than or equal to 0.05 was reported in the article

10 It is possible that two test statistics are very similar (i.e., equal when
sufficiently rounded) even though a different subset of participants was
used for their calculation leaving us only with the certainty that we are
either dealing with an inconsequential incorrect calculation or a typo.

11 Technically speaking, these two articles contain contradictory infor-
mation because their exclusion criteria did not match the reported degrees
of freedom, which are a function of the sample size. Hence, some infor-
mation in the article is violated, regardless of which sample is used for
reproduction.
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and interpreted as statistically significant (one PC had a p value of

exactly 0.05). Excluding the abandoned PC, we encountered 13

decision errors, all of which with reproduced p values larger than

0.05. This means that 7% of all decisions to reject the tested null

hypothesis could not be reproduced. Conversely, none of the 47

PCs with reported p values larger than 0.05 achieved significance

in our reproductions.

We estimate the total amount of time spent on the reproductions

of the 232 identified PCs to be 280 workdays, vastly exceeding our

worst predictions. This enormous duration is not just the result of

the 69 PCs we were unable to reproduce. The 163 reproduced PCs

contributed considerably too. Only for a tiny minority of them was

the successful reproduction as straightforward as reading in the

data and exactly following the analytical steps as detailed in

the article. In contrast, most reproduced PCs are the result of the

laborious task of reverse-engineering the data analytic steps, an

effort that took multiple days if not weeks of work. Successful

reproduction of a PC was often only achieved by the copilot, and

for a handful of PCs, only the third pair of eyes was able to

reconstruct the calculations conducted by the authors.

In what follows, we discuss the likely reasons for the 69 repro-

ductive failures as well as how vagueness made 163 reproductive

successes hard gained.

Reasons for Reproductive Failure and

Identified Errors

For some of the nonreproduced PCs, we could pinpoint errors in

the statistical analysis or the reporting of the results as the rea-

son(s) of irreproducibility. In light of our reanalysis, we also

identified many incorrect statistical results in the articles that were

not part of the 232 PCs, such as summary statistics (e.g., means,

standard deviations, sample sizes) and other NHST results. Fur-

ther, we sometimes were able to identify incorrect verbal descrip-

tions of the conducted statistical analysis, as indicated by the

exclamation mark in Figure 2. Here, we present a list of error types

that contain many of the identified errors:

1. Rounding of numerical output that had already been

rounded. It is well-known that repeated rounding can

Figure 2

Absolute Relative Deviation (%) of the 232 Primary Claims That We Identified in 46 Articles Published 2012 in Three

APA Journals: Psychology and Aging (P&A), Journal of Abnormal Psychology (JAP), and Experimental and Clinical

Psychopharmacology (E&C)

Note. ARD � relative deviation. See the online article for the color version of this figure.
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lead to an accumulation of numerical errors. How re-

peated rounding can lead to an incorrect result becomes

clear in the following example: If the test statistic is T �

3.41461880 . . ., it is shown in SPSS as a rounded result

of T � 3.415. Taking the SPSS output and rounding it

once more before reporting leads to the erroneous result

of T � 3.42 in the article.

2. Using rounded values in calculations. This problem is

related to the first one. In subsequent steps of a calcula-

tion, the most accurate representation of a number should

be used. However, some authors used rounded values for

the calculation of means and standard deviations or to fit

a statistical model. In some cases, variables were con-

structed based on the rounded values of other variables.

3. Inconsistency in the selection of cases or variables.

The selection of data (cases or variables) for which the

authors fitted the statistical model is inconsistent with

what has been described in the article. We encountered

incorrectly applied filter variables, incorrect selections of

subsets, and wrongly selected variables. In one case, the

used sample size was inflated because it included empty

rows in the data file. Obviously, in most of those cases,

we are not able to determine whether the authors erred in

their data analyses or in the reporting of their methods.

As mentioned above, 13 PCs (coming from three differ-

ent articles) had a mismatch between the participants

included in the analysis and the exclusion criteria re-

ported in the article, which were of the type “Only

participants with a score higher than X in variable Y are

going to be used for the analysis.”

4. Incorrect labeling of variables or numerical results.

Examples are the switching of column labels inside a

table, the switching of the labels of two experiments,

incorrect information in the caption of tables or figures,

and the mixing up of standard deviation (SD) and stan-

dard error (SE) which can easily go undetected for small

sample sizes. We succeeded in finding these errors by

first spotting implausible values and then finding related

variables/results with precisely that value.

5. Typos. Typos are estimated to occur in about 0.2% of the

words in written scholarly texts (see Pollock & Zamora,

1983) and we do expect similar error rates for numerical

results. Reported results that are simply impossible (e.g.,

a p value that is larger than 1 or negative) must be typos.

However, most of the time, only strong indications but

not certainties exist regarding deviating results. Exam-

ples are transposition errors (reporting 0.045 as opposed

to 0.054) and transcription errors (reporting 2.742 as

opposed to 2.7042) within the range of possible values.

6. Copy-paste errors. Copy-paste is convenient for type-

writing, but it is also a source of mistakes. An incorrect

statistical result can be copy-pasted (e.g., an uninten-

tional mixing up of MANOVA and ANOVA F-ratios or

of error degrees of freedom from different within-subject

factors in the SPSS GLM output). We suspect that au-

thors frequently copy-paste and adapt the statistical out-

put of a neighboring result out of convenience. However,

if the result is subsequently not correctly altered, an error

is committed. One example would be to forget to replace

the degrees of freedom when copy-pasting the main

effect F(2, 32) � 5.3, p � .05 of an ANOVA to faster

report on the interaction effect. Copy-paste errors were

identified and discussed by Bakker and Wicherts (2011)

who conclude that they are quite common.

Besides errors from the above six categories, we could some-

times identify a reported statistical result as incorrect despite not

knowing the reason for the deviation because it contradicted other

related results, such as a summary statistic of the underlying raw

data or another statistical result from the same model. Our repro-

ductions revealed a surprisingly high number of glaring reporting

errors, for which no raw data is needed to identify them as

mistakes. Examples are inconsistent test statistic, degrees of free-

dom, and p value triplets, numbers that are outside the possible

range of values (e.g., positive values for the logarithms of numbers

that are smaller than one), opposite signs for regression coeffi-

cients and the corresponding t-statistic, and the reporting of non-

matching numbers for the exact same statistical result in different

parts of the article. Some of these glaring errors even made it into

the abstract of the article.

Pinpointing the reasons for deviating results was impossible for

many PCs. The reason is that the origin of a PC was often obscured

due to vague data, variable, and model descriptions, an issue that

is discussed in-depth in the next section. Software differences (we

used R, whereas the authors in the reanalyzed articles used SPSS,

SAS, Excel, Mplus, and GraphPad PRISM) are unlikely to explain

encountered differences in numerical values. What differs between

various statistical software when it comes to t tests, ANOVAs, and

regressions are the default settings (e.g., TYPE I vs. TYPE III

ANOVA or maximum likelihood vs. unbiased variance estimator

in regressions), and we always computed all alternative model

specifications if the initial reproduction attempt failed.

Vagueness Makes Assessing

Reproducibility a Nightmare

While a 70% reproduction rate might seem reason for light

optimism, we fear such optimism is not warranted. The reason is

that most successful reproductions are predominantly the result of

tedious and time-consuming work. This was due to the fact that

that information about the provided raw data was often difficult to

understand, and information about the relevant variables, data

manipulations, and the used statistical model was often vague or

inaccurate. Lacking a culture of data sharing and reanalysis in

psychology, it is fair to assume that most of the corresponding

authors that shared their raw data with Vanpaemel et al. (2015) did

not take special efforts to make the shared data easy to use and

understand for independent reproducers. We believe, however, that

even if all analyzed data sets in this study had been well-structured

and well-documented, the reanalyses would not have taken con-

siderably less time.

To accurately repeat the calculations underlying the PC of

interest, it is necessary to know the used variables and the used
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cases of each variable, all relevant transformation and missing-data

imputations of these variables, the nature of the used statistical

model, and the used estimators. These four categories will be

defined and elaborated below with some examples.12

1. Information about the provided raw data. For each

relevant variable, it must be known what the correspond-

ing raw data vector is and what its entries represent.

2. Information about the exact handling of the provided

raw data. In situations where the included variables are

derived from other primary variables, information about

the necessary calculation(s) must be provided (e.g., the

false positive rate is calculated by taking the ratio of all

successfully identified cases and all identified cases for

each participant). Ideally, this information is provided

even for seemingly obvious calculations, as there might

be differences in tacit assumptions between researchers

and scientific fields. If only a subset of cases is used for

the calculation, it must be clear how this subset is com-

posed (e.g., only participants older than x years, only

measurements in Condition A). Furthermore, it must be

clear how to deal with missing values (e.g., case-wise

deletion).

3. Information about the exact statistical model, the depen-

dent and independent variables it includes and the vari-

able(s) associated with this hypothesis test.

4. Information about the calculation of the test statistic and

the estimation of the parameters determining its distribu-

tion under H0. This includes information about how

standard errors and the degrees of freedom are estimated.

The specific types of estimators used should be men-

tioned, and ideally, a justification for that choice, partic-

ularly in the case of nonstandard estimators, should be

given.

Let us start with Category 1 (provided raw data). For 25 of the

46 articles, the raw data was provided via SPSS (.sav). For another

18 articles, it was provided in the form of an MS Excel file

(.xls,.xlsx) or in comma-separated value format (.csv). For the

remaining three articles, the raw data was provided as.txt files.

The majority of provided raw data sets had a comprehensible

structure and self-explanatory column names. However, around

one third of all provided data sets contained either cryptic column

names or cryptic factor levels or both. This complicated assessing

reproducibility considerably, especially if the dataset included

many variables (i.e., columns). Column names such as “ckettrm1,”

“mck3,” “PCLR-03,” and “OxiCtPl” and factor levels such as YK,

YM, AK, AM are ambiguous and should come in conjunction with

a detailed description of their meaning. Numerical factor levels

such as 1, 2, 3, 4 are even more mysterious. For instance, some of

the provided data sets included dummy variables where it was not

clear what the zeros and ones stood for. Databooks or metadata

with details about abbreviated variable names and factor levels

have not been provided for many data sets in this sample of 46

articles, and if so, the information was often not sufficiently

detailed. We managed to reproduce PCs with unclear variables and

factor levels mainly by looking at reported summary statistics and

by fitting multiple plausible models.

A common Category 2 (handling raw data) issue was finding out

which cases were used in the original analysis. If the reported

degrees of freedom did not match with the use of all cases

contained in the dataset and no further (or incorrect) information

was given, we tried to get matching results by using reasonable

subsets. However, testing all possible subsets was not always a

feasible strategy. If there was no indication of which cases had

been used, and the number of cases was large and significantly

greater than the specified degrees of freedom, the number of

meaningful subsets was simply too large. Reasons for ambiguity

can be imprecise descriptions on the handling of outliers. One

article, for example, stated that outliers identified using a fixed

z-score as a cutoff were removed. It was, however, not clear

whether this was done for all or only for some of the relevant

variables.

Once having identified the used cases, it has then to be assessed

how the provided numerical information maps to the variables

used in the statistical analysis. The following two cases are illus-

trative examples of missing or incomplete information on data

handling:

• One of the provided data sets included a participant with

missing values for two relevant variables, each of them

part of a PC. The article did not mention this participant at

all. It turned out that one PC was calculated by fitting a

model without this participant. In case of the other PC, we

found out by trial and error that the relevant missing

variable (a sum of eight dummy variables also included in

the provided data set) was imputed by summing only those

variables (six out of the eight) that did not contain missing

values for this subject.

• Accuracy (d=) and response bias (c) had to be calculated

based on the hit rate (HR) and the false alarm rate (FAR).

The article only references a book with the standard def-

inition of d= � z(HR) 
 z(FAR) and c � 
0.5· (z(HR) 


z(FAR)) where z(·) is the quantile function of the standard

normal distribution. However, d= could not be calculated

like this with the provided data set because it included

extreme values for HR and FAR (i.e., 0 or 1), resulting in

a nonfinite quantile function. A literature research on

d= and c revealed multiple ways to calculate d= and c. Trial

and error revealed that the authors used the “loglinear”

approach (described, e.g., in the unreferenced Stanislaw &

Todorov, 1999, p. 144).

Overall, figuring out the necessary Category 3 information

(statistical model, hypotheses, and tests) was the most time-

consuming task. Essential information about the statistical model

was either missing or hard to extract for the majority of analyzed

articles because descriptions of manipulated and observed vari-

ables were mostly presented verbally, without equations or sym-

bolic notation for the important variables and models. Further-

more, many articles described a handful of fitted models in one

part of the article (often the Method section) and a myriad of test

statistics and p values in another part (mainly the Results section),

12 Whenever a article is quoted, the quote is rephrased in order not to
reveal the identity of the article and the authors.
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without a clear indication of which result belongs to which model

and which variable. The mapping between models and the results

of hypothesis tests was especially hard to decipher when only the

results of some of the fitted models were reported. The following

article, for example, contains four hypothesis tests, but only two

test statistics are reported: “We observed a significant main effect

of sleep condition for accuracy and frequency for Group 1 and

Group 4 (F(1, 12) equals 6.4 and 5.8, respectively).” In the case of

ANOVAs, the description was often not clear about whether

interaction effects were included or not. If in case of unclarity, no

interaction effect is being reported in the result section, it might not

have been included in the model, or it might have turned out to be

insignificant and deemed unworthy of a report. Only a small

number of articles made reproduction easy by reporting fitted

models in a formal language (e.g., Model III: Y� X1 � X2 � X1
�

X2 in the Method section and Model III found an interaction effect

of X1 and X2, F(1,42) � 6.23, p � .05 in the Results section).

One source of confusion was the use of adjectives that are

ambiguous in a statistical context such as “hierarchical,” “mixed,”

and “random.” Some authors referred to the variable selection

procedure of nested models as hierarchical models, whereas others

used hierarchical to signal that some variables are nested within

other variables. The modifiers mixed and random were used to

describe linear mixed models by some authors and repeated mea-

sures ANOVAs by others.

What follows are two illustrative examples of unclear model

descriptions:

• One article states that “Regardless of wealth, subjects

rated their own drawings less attractive than those created

by a friend” and our reproduction showed that the authors

had fitted a model that does not include the variable

wealth. However, one could also interpret this statement as

a description of a significant main effect for the factor

(oneself vs. friend), despite wealth being included in the

model, or no interaction effect between wealth and this

factor, or both.

• In another article, the authors stated: “The product terms

were residualized relative to lower-order terms to facilitate

the interpretation of main effects in each model and to

avoid multicollinearity problems.” Based on such a verbal

description in the Method section, it is very hard to figure

out what the underlying statistical model is. The reproduc-

tion of the PC related to this model description was

achieved by fitting a classical linear regression. Another

reported statistical result related to this model (not iden-

tified as a PC), on the other hand, could not be reproduced.

Hence, we are still uncertain about the meaning of this

description and the exact model they fitted.

A final necessary piece of information needed to solve the

reproduction puzzle involves details regarding the calculation of

the test statistic and the estimation of the degrees of freedom (i.e.,

Category 4 information). Commonly used estimators for degrees

of freedom are the Welch-Satterthwaite approximation for t tests,

the Greenhouse-Geisser and Hyunh-Feldt corrections for ANO-

VAs, and the Satterthwaite’ and Kenward-Roger’s approximations

for linear mixed models. These estimators typically produce non-

integer degrees of freedom, indicating their use without an explicit

statement. What made reproductions sometimes delicate is that

precise non-integer estimates for the degrees of freedom were

rounded to and reported as integer values either by hand or by

software. If the used correction is not mentioned in the article, the

reader might then falsely assume that degrees of freedom are

computed without any correction, meaning that they are just a

function of the sample size and the levels of the respective factor

and conclude that not all cases had been used.

Regarding Category 4, information about the precise estimators

used was rarely given in the analyzed articles. Almost none of the

analyzed articles mentioned whether Type I, II, or III sums of

squares were used for ANOVAs in case of unequal group sizes.

The used residual variance estimator in regression analysis was

never reported (see below). Details about estimators in linear

mixed models were scarce (e.g., REML vs. ML). We observed that

the vast majority of statistical analysis we were able to reproduce

were conducted by using the default settings of the respective

statistical software (e.g., TYPE III ANOVA in SPSS). For this

reason, we assume that at least some of the authors were not aware

of default settings and potential statistical alternatives. This is

unfortunate because the default choices made in the software

packages can have a significant impact. For example, Mplus

(Version 6) computes as a default the maximum likelihood esti-

mator (assuming a Gaussian likelihood) to estimate the variance of

the residuals in regressions, which is a biased estimator of the

population variance. This estimator differs from the more com-

monly used unbiased estimator by a factor of
n�k

n
. In the case of

a low number of participants n and a high number of estimated

regression coefficients k, this difference is non-negligible and it

can cause p values to differ and potentially become smaller or

larger than .05 depending on the used estimator.

Discussion

The vast majority of successful reproductions in this study are

the result of a painful and frustrating process of trial and error,

because of the existence of multiple, plausible data analytic path-

ways to calculate the numerical triplet of the primary claim that are

compatible with the provided raw data combined with the vague

description of the statistical methods in the article. Ideally, pub-

lished statistical results are both correct and easily verifiable by

another reasonably skilled researcher. Only when sufficient details

are available can a reproduction attempt conclude whether or not

the reported result is correct. In the case of numerous possible

ways to calculate a reported result without violating any informa-

tion regarding its calculation, the correct way might be missed if

“only” a few of those ways were tried. What makes matters worse

is that if an analysis (out of a large number of attempts) yields a

matching result, it cannot be ruled out that the reproduction was

due to coincidence, especially when dealing with rounded values.

The lack of precision in the description of the origin of a

reported statistical result makes its verification difficult, time-

consuming, and frustrating. From this study, we conclude for the

APA journals we investigated that reproducing the reported sta-

tistics based on the raw data and the described methodology from

the article is similar to the reconstruction of the route taken by a

walker in the garden of forking paths (Gelman & Loken, 2013).

A Two-Dimensional Classification of Reproducibility

To properly address the challenges associated with verifying

published statistical results, we propose a novel method for clas-
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sifying the reproducibility of numerical results (see Figure 3). This

classification is done by evaluating two dimensions: vagueness

and correctness.

A reported number is correct if it can be reproduced without

violating the reported information regarding the underlying cal-

culations. This dimension is dichotomous if the number of interest

is the result of nonstochastic calculations. The result from the

calculation 2 � 2 is exactly 4 and every other value, be it 20, 3.9,

or, 4.0001, is incorrect. In practice, it will be useful to define a

margin of error around the true value (e.g., via the absolute

(relative) deviation) and to consider all values within that interval

as correct. By doing this, one allows the differentiation between

meaningful errors and minuscule deviations stemming from soft-

ware differences, rounding, or something else.

The degree of vagueness is determined by the amount of infor-

mation provided about all necessary steps to calculate the re-

ported number from the underlying raw data. Unlike correctness,

this dimension is not dichotomous. A natural way to quantify

vagueness is to define a vagueness score that is equal to the precise

number of possible ways that are not in disagreement with the

available information. A vagueness score of 1, then, signifies the

absence of any ambiguity about the origin of the reported number,

while a vagueness score of 33 means that there exist exactly 33

different ways to calculate it that do not contradict the provided

information. If, for instance, the relevant variables and the corre-

sponding columns in the data set, and also the handling of potential

variable transformations and missing values are precisely de-

scribed for a two-sample t test, but no information regarding the

assumption of equal variances is given, we are left with only two

possible calculations (i.e., the vagueness score equals 2).13 In

practice, researchers will not be eager to spend time counting all

possible ways to arrive at a result. Fortunately, this is not necessary

as the most practical classification of a reproducibility attempt is

achieved by dichotomizing the vagueness dimension into high and

low. Two natural dichotomization approaches exist. A strict ap-

proach that only classifies cases with absolutely no ambiguity as

low, and a more lenient one, where all cases with a small number

of easily computable ways fall into the category low.

Once it has been determined when the reported number of

interest is considered as correct or incorrect and when its vague-

ness is considered as low or high, a reproduction attempt puts it

into one of four categories (see Figure 3): (a) definite/strong

reproducibility (a correct number and low vagueness); (b) ambig-

uous reproducibility (a correct number and high vagueness); (c)

definite irreproducibility (an incorrect number and low vague-

ness); and (d) ambiguous irreproducibility (an incorrect number

and high vagueness).

In the case that a reanalyst is not infinitely skilled and flawless

but human, it is obviously possible that mistakes were made in the

reproduction attempt of a reported statistical result (e.g., a p value,

a sample mean, or an estimated effect size) that resulted in a

miss-classification. For the sake of simplicity, it is assumed that an

error-free reanalysis was conducted for the remainder of this

paragraph. In the case of a definitely irreproducible result, it can

then be concluded that the reported number is incorrect. On the

other hand, verifying the incorrectness of an ambiguously irrepro-

ducible result is close to impossible because it cannot properly be

differentiated between a reporting error and the failure of the

reanalyst to repeat the true underlying calculations. Strongly re-

producible results are what we should strive for. If a statistical

result is strongly reproducible, the reported number is correct and

sufficient transparency about its calculation, allowing its verifica-

tion by independent researchers within a reasonable amount of

time, is available. Ambiguously reproducible results are to be

interpreted with great care, especially if the prespecified margin of

error is wide. In the case, that one chooses to classify a statistical

result without dichotomizing vagueness, it applies that the higher

the vagueness, the lesser the difference between reproducibility

and irreproducibility (hence the greying out in Figure 3) and the

smaller the merit of a reproduction attempt as it is just not clear

what exactly to reproduce.

How (Strongly) Reproducible Is Psychology?

Sixty-nine (30%) of 232 identified key statistical claims from 46

articles could not be reproduced exactly, despite a huge investment

of our time and effort. For some of these claims, this resulted in a

loss of statistical significance. Further, we encountered incorrect

method descriptions and errors in the conducted data analyses and

the reporting of statistical results.14

To interpret our findings we turn to the findings of Hardwicke

et al. (2018), the only other investigation of reproducibility via raw

data in psychology. Inspection of Hardwicke et al.’s (2018) re-

analysis scripts (https://osf.io/q4qy3/) reveals that their sample of

articles contains very similar issues than the sample of articles in

13 In this example, it is assumed that the researcher either used the
classical t-test or the Welch-test but no other (unconventional) way to
estimate the pooled variance of the two groups.

14 Although it is tempting to summarize the severity of encountered
discrepancies in a single number and reproducibility on the article level via
some categorization, we will not do so because it would give an unjusti-
fiable impression of precision.

Figure 3

Classification of Reproducibility via

Correctness of the Reported Value

and the Amount of Information Pro-

vided to Repeat the Underlying Calcu-

lations (Vagueness), Together With

Ways to Reduce the Vagueness of the

Performed Calculations

See the online article for the color version of

this figure.
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this study, with the rate of problems being a bit higher overall. The

identified number of reproducibility issues in their sample of

articles is particularly surprising because the authors were required

by the journal to share their raw data publically. This indicates that

authors do not necessarily go to great lengths in the avoidance of

reporting errors just because other researchers can redo and verify

their statistical analyses without first having to ask for the under-

lying raw data. Somewhat surprisingly, they did not encounter a

single decision error despite having recalculated 185 p values.

However, the absence of decision errors in this sample of p values

might be a statistical fluke considering that 17 of these 185 p

values had ARDs larger than 10%. Future research might be able

to tell if reporting errors are particularly likely to be inconsequen-

tial.

Both Hardwicke et al. (2018) and our study made use of the raw

data. However, as mentioned in the literature overview (see also

Table 1), several studies looked at the consistency of the reported

results in the articles. In the sample of the current study, a precise

triplet of test statistic, degrees of freedom, and p value was

reported for 52 (32%) of the 163 successfully reproduced and for

23 (33%) of the 69 PCs that we could not exactly reproduce. Five

of these 52 and none of these 23 PCs had inconsistent p values.

Four of the five PCs are inconsistent because the reported degrees

of freedom are incorrect. The fifth PC is inconsistent because the

reported p value is incorrect. However, the numerical difference is

small and inconsequential and can be explained by calculating the

p value with the rounded test statistic. These observations suggest

that there is no evidence that key statistical results with consistent

p values are more likely to be reproducible than inconsistent ones.

In any case, p value consistency checks are no substitute for a

reanalysis that starts from raw data if one wants to verify the

conclusions drawn via NHST.

Generalizability of the Current Study

There are at least two ways in which our current study may fail

to generalize broadly. First, the articles reanalyzed may not be

representative of the full set of articles published in 2012 in one of

the three analyzed journals. Second, the current study may provide

limited information on the reproducibility of comparable articles

that were published more recently.

The results of our article are likely positively biased due to two

selection effects. First, by design, we only assessed the reproduc-

ibility of the PCs for which the authors were willing to share their

raw data. We suspect that the willingness to share raw data is

negatively related to the reproducibility of the results, primarily

because authors that are unsure about the correctness of their

statistical analyses are unlikely to voluntarily share their raw data

for reanalysis. In the case that authors are aware of reporting errors

in their published work or suspect that the conducted data selec-

tion, data transformation, and statistical analysis are problematic in

some regard, it seems even less likely that they are willing to share

the underlying data. We think that it is reasonable to assume that

some of the corresponding authors that received a request to share

their raw data by Vanpaemel et al. (2015) reran the statistical

analysis to verify them before deciding on whether or not to share

their data. Authors unable to reproduce their published statistical

results then potentially refrained from sharing their data. We also

believe that those articles we could not reanalyze because the

underlying raw data were lost, destroyed, or inaccessible at the

time of the sharing request in 2013, the year following the publi-

cation, are likely to be indicative of a careless and sloppy work-

flow, which likely results in relatively more issues with reproduc-

ibility. How much more frequent (severe) errors are in articles

where the authors are not willing (or unable) to share the raw data,

however, is unknown and not directly empirically investigable.15

This selection effect could be quite strong, as shown by empir-

ical evidence in the field of neuroscience. Miyakawa, then Editor-

in-Chief of the journal Molecular Brain, asked the authors of 41

out of 180 articles that had been submitted between 2017 and 2019

in Molecular Brain for their raw data because the empirical find-

ings were “too beautiful to be true” (Miyakawa, 2020). The au-

thors of 21 of these 41 articles responded with a withdrawal of

their submission without providing the raw data. The authors of the

remaining 20 articles provided some raw data. However, 19 of

these articles were then rejected because either the provided data

was insufficient, or some of the articles’ empirical findings were

found to be irreproducible. A follow-up investigation further re-

vealed that 14 of these 41 articles were then published in other

journals, 12 of which in journals that require or recommend data

sharing. An email request for the raw data for these 12 articles was

unanswered by 10 and declined by one. The author of the 12th

article only sent some of the raw data (see Figure 1 in Miyakawa,

2020).

The second selection effect is that our study only reproduced

PCs based on the most common and simple statistical models,

thereby excluding more complicated and potentially more error-

prone analyses. The study of Bergh et al. (2017) (see Table 1)

concluded that the analyzed (complicated) SEMs had more than

twice as many reproducibility issues as the analyzed (relatively

simple) linear regressions. This is clear evidence for the discussed

selection effect. Given its model complexity and the fact that only

a small proportion of researchers are willing to share syntax or

code used to fit the SEM with other researches (see Wicherts &

Crompvoets, 2017), we do not suspect many strongly reproducible

SEM results in the psychological literature.

Due to these two selection effects, it seems reasonable to con-

clude that relatively less strongly reproducible results exist in the

full set of the 245 articles that were published in 2012 in one of the

three analyzed journals. With 5-year impact factors in 2018 (i.e.,

years 2013–2017) of 3.777, 6.286, and 2.590 for Psychology and

Aging, Journal of Abnormal Psychology, and Experimental and

Clinical Psychopharmacology, respectively, the analyzed journals

are representative for the majority of APA journals. Coupled with

the fact that only the most basic statistical models were investi-

gated, we conclude that it is in general very challenging to repro-

duce the key statistical results in articles published in APA jour-

nals in the year 2012 when the underlying raw data is made

available.

In light of the above reasoning, it seems justified to assume that

a randomly picked article published in an APA journal around the

year 2012 has relatively more reproducibility issues compared

15 A similar hypothesis about the relation between data sharing and
consistency among test statistics, degrees of freedom, and p values was
investigated empirically by Wicherts et al. (2011) and Nuijten et al. (2017).
Their findings are compatible with either no relation or slightly more
inconsistencies in articles for which data was not shared.
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with a randomly picked article from our sample of reanalyzed

articles. How reproducible more recent publications in APA jour-

nals are, is unclear, and can only be answered via future empirical

investigations. One reason to suspect that issues with reproduc-

ibility decreased in recent years is that issues with replicability,

including questionable research practices (Simmons et al., 2011)

and fraud cases Stroebe et al. (2012), were put center stage since

2012. This could have potentially increased the overall care of

researchers with respect to data analysis and the reporting of

statistical results. Additionally, the awareness of reproducibility

problems has increased and the three analyzed journals are cur-

rently encouraging authors to share their data and code of analysis

together with their article (P&A and E&C) or are at least pointing

out this possibility without explicitly encouraging it (JAP). In

favor of generalizability of the current study to more recent pub-

lications, it turns out that in terms of explicit guidelines, no

changes occurred between 2012 and 2019 since the 6th edition of

the APA publication manual (APA, 2010) was in effect from 2009

until 2019. In 2020, the 6th edition of the APA publication manual

was replaced with the 7th edition (APA, 2020), but this new

edition did not bring meaningful changes with respect to the

reporting of quantitative results.

Future Research on Reproducibility

Reproducibility crucially depends on several factors, such as the

availability of software, incentives, journal policies, training, and a

general awareness about the importance of and issues with repro-

ducibility. As these factors are constantly in flux, the state of

reproducibility of psychology is bound to change. Studying poten-

tial changes in the number and type of reproducibility issues in the

last decade requires new empirical studies, using sufficiently large

samples of more recent articles. Considering the importance of this

topic, we believe that the field of psychology would be well-served

by it, despite the resource-binding, time-consuming nature of such

studies. Given its scope, the current study informs on typical

variations within articles, within journals, and across journals and

could therefore serve as a benchmark for potential future studies

on the reproducibility of ANOVA and regression designs.

Future studies on reproducibility should assess both vagueness

and correctness of published statistical results. One possible ap-

proach for achieving this goal is via multilab collaborations similar

to the Psychological Science Accelerator (Moshontz et al., 2018)

where reanalysts independently attempt to reproduce identified

statistical results. Both the interrater reliability and the average

time until reproduction success would then inform about the

vagueness of the identified statistical results. Large-scale multilab

collaborations have one distinct advantage over single lab studies

like the current study, which is large manpower. This allows not

only for the reproduction of a large number of articles published in

a multitude of different journals and in different time periods but

also for relatively quick reproducibility assessments. As a result,

the effects of policy changes on the reproducibility of published

results could be assessed not too long after their implementation.

Ideally, future research in psychology will explore uncharted

territory when it comes to reproducibility. In particular, we would

like to see reproducibility assessments of complicated and

computation-heavy statistical designs such as structural equation

models and multilevel VAR models as well as Monte Carlo

simulation studies with their unique challenges with respect to

reproducibility (see Fitzpatrick, 2019, for a discussion of these

challenges).

Recommendations for Strongly Reproducible Research

Our reanalysis attempts indicate that the current workflow in

psychological research frequently leads to a pain-staking repro-

ducibility experience that relies on patient trial and error and to

reporting errors. This leads us to the conclusion that the currently

prevailing workflow of writing and publishing empirical articles is

ill-suited to prevent irreproducible results.

Obviously, reproducibility depends on the availability of the raw

data. So strictly speaking, reproducibility is much lower than 70%

in this study, because for over two thirds of the articles in the three

analyzed journals the key statistical results were not reproducible

in principle, because the data were not made available (see Figure

1). As this study showed, sharing the study’s raw data in conjunc-

tion with the article rarely suffices to make the statistical results

strongly reproducible. To adequately describe the meaning of the

provided data columns and how higher-level variables that are

essential for the conducted analysis are then created, a codebook is

necessary. For guidelines on codebooks for typical data in psy-

chological research, the reader is referred to the codebook cook-

book (see https://osf.io/72hrh/). A wonderful way to create code-

books with all the necessary metadata for common data files such

as.rds,.sav,.dta,.xlsx, and.csv files can be done via the freely avail-

able codebook R package (Arslan, 2019). More general guidelines

on what and what not to share and how to share it including

detailed information on public repositories are provided by (Klein,

Vianello, et al., 2018).

Likely, copy-pasting values from long statistical outputs (e.g.,

SPSS ANOVA outputs) containing a large number of values with

test statistics, p values and degrees of freedom spreading over

multiple pages into the article is an error-prone workflow. Journals

usually take care of the final formatting of a submitted article, and

we suspect that a non-negligible portion of copy-paste errors occur

at this stage of the publication process both via the probabilistic

reasoning that “all sorts of mistakes that can happen, happen” and

by the assumption that everyone makes mistakes, including au-

thors and copy editors of journals.

There are several easy ways to increase the probability of

strongly reproducible statistical results: Avoid copy-pasting nu-

merical values as much as possible. Round numbers only once and

at the end. Avoid manual data manipulation steps, such as exclud-

ing outliers and transformations of variables in the data file.

Instead, conduct data manipulations via code and store that code.

To make the selection of cases transparent in your article, use

flowcharts as they are custom in the biomedical literature (see, e.g.,

the CONSORT guidelines http://www.consort-statement.org/). Doing so

maximizes transparency and facilitates the ease of performing

alternative data transformations without the need to store multiple

data files that differ only slightly. Ask a colleague to redo your

analyses based on your description, which provides useful infor-

mation both about the correctness of your numerical result and

about the clarity of your reporting (and return the favor later). Such

independent reanalyses are part of the “co-pilot model of statistical

analysis” (see Veldkamp et al., 2014; Wicherts, 2011). Further,

share the analysis code, as it is a great way to remove interpretation
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issues regarding the specifics of the fitted model. You can easily

create the analysis code in any standard statistical software even

when using a graphical user interface when analyzing the data

(e.g., by clicking “Paste” as opposed to “OK” in SPSS). Beware

that it can be incredibly hard to comprehend many lines of code.

By adding comments to the code of analysis, you aid other researchers

that want to reproduce your results considerably. Naturally, the output

generated by computer code depends on all the software that is being

used to run the code. For a discussion of the intricacies of generating

reproducible statistical results when using continuously changing sta-

tistical software, including code containers like Code Ocean, see

Epskamp (2019) and the references therein.

Probably the most potent way to increase reproducibility is by

writing a so-called dynamic report (document/notebook). A dynamic

report is the combination of the article’s narrative (i.e., all the text) and

computer code for all statistical analyses that are directly linked to the

raw data. The converted (rendered) report then comprises the narra-

tive, as well as all code and generated output (e.g., summary statistics,

results of statistical analyses, figures) that one wishes to show to the

reader. This converted report then constitutes an article ready for

publication, and because of the connection of raw data, statistical

analysis, and output, the likelihood of incorrect statistical results as a

result of copy-and-paste, repeated rounding, or intermediary round-

ing, is drastically reduced.

In the case that a dynamic report is published in conjunction

with the article, the vagueness of the statistical results in the article

is drastically reduced. Inconsistencies between the selections (e.g.,

the applied exclusion criteria), transformations (e.g., the compu-

tation of some index), and methods (e.g., the used estimator)

described in the article’s narrative and the actually executed cal-

culations can be identified by the reader rather handily by looking

at the code and its connection with the produced statistical output.

The better structured and the clearer the code, the easier is such a

consistency check. To achieve maximal transparency and to enable

the reader to conduct a reproducibility check for every statistical

result in the rendered report, the used raw data sets have to be

made available in addition to the dynamic report, ideally suffi-

ciently supplemented with metadata that makes clear what each

column and all their entries represent. Ideally, a dynamic report

includes information about the necessary version(s) of the used

statistical software, packages, and functions. In R (R Core Team,

2018) this can be done via the command sessionInfo().

The statistical programming language R (R Core Team, 2018)

currently offers two ways to create dynamic reports, via LATEX code

(Sweave) and via markdown code (Rmarkdown) (see RStudio Team,

2015). Writing a dynamic document with the LATEX language offers

an extensive range of options, but it takes some time to become

efficient. Getting acquainted with the Markdown language, on the

other hand, is quite easy and for most purposes, its range of possibil-

ities should be sufficient.16 Another option for creating dynamic

reports are Jupyter notebooks, which can be used in conjunction with

R (R Core Team, 2018) or Python (Python Core Team, 2015).

For researchers who are not keen on writing code but prefer to

work with a graphical user interface instead, we recommend ex-

hausting all transparency options offered by the used software. For

example, users of the freely available statistical software JASP

(JASP Team, 2020) could share the .jasp file used to generate the

statistical analyses together with the article, as this would reveal

which variables and cases were selected, the fitted statistical

model, as well as the chosen estimators. Sufficient annotation then

allows other researchers to link results in the article with those in

the .jasp file. To disseminate the used data files and the .jasp file,

researchers can, for instance, use the Open Science Framework

(https://osf.io/). In doing so, it is advisable to make use of the

OSF’s version control feature to track changes made to the used

raw data or the performed analyses.

Conclusion and a Look Forward

Although discussions about reproducibility issues in psychology

are certainly not new (see e.g., Wolins (1962)), systematic empirical

investigations are rare. Our study indicates, together with the few

other existing empirical investigations of reproducibility (see Table

1), that it is imprudent just to assume that reporting errors are rare and

noninfluential in psychological research, let alone that reported num-

bers are strongly reproducible with just the article and the raw data.

However, empirical evidence does not suggest that reproducibility

issues are particularly bad in the field of psychology. Potentially, all

empirical research in the social sciences is subverted with irreproduc-

ible statistical results (see Stodden, 2015, for a selection of infamous

examples of irreproducibility).

The time-consuming, painstaking nature of validating published

statistical results without a code of analysis also means that we will

never be able to validate large numbers of articles published in the

past—even in the case that the relevant raw data is made available by

the authors. Moving forward as a science, strongly reproducible

results simply have to become the norm in psychology. Delightfully,

some journals and initiatives have already started to emphasize this

issue: The Center for Open Science (Nosek et al., 2012) and curate-

science.org (LeBel et al., 2018), for instance, are currently working on

reproducibility badges, signaling the crowdsourced verification of all

relevant results by independent researchers, and the journal Metapsy-

chology, which conducts reproducibility check on all statistical anal-

yses in the submitted article, already has one. In the case of Meta-

psychology, the reproducibility checks are conducted by a team

consisting of the statistical editor and the editorial assistant. Such an

in-house review constitutes an excellent service to the scientific com-

munity. Due to the resource-consuming nature of such an approach, it

does not seem likely that large journals that publish multiple issues of

empirical articles per year will follow suit. An approach that does

seem feasible for all scholarly journals is only to reproduce some

empirical findings per article or only to reproduce a random sample of

submitted articles (see Stodden et al., 2016). An alternative approach

would be to burden the reviewers of an article with that task. This

could be done by splitting duties, where a methodologically skilled

reviewer focuses on the correctness and transparency of the conduct-

ing empirical analyses. In contrast, another reviewer focuses on the

general quality of the article. It seems paramount to add that any

rigorous reproducibility check will be time-consuming, even if the

code of analysis was shared with the raw data. The reason is that it

does not suffice only to check whether running the code produces the

results reported in the data. Instead, it also has to be checked whether

the code adequately does what is described in the Method section of

the article.

16 An R package is currently being developed that will facilitate the
creation of documents that comply with the APA guidelines using Rmark-
down (Aust & Barth, 2018).
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Making research transparent and reproducible by sharing desensi-

tized raw data and code of analysis, ideally in the form of dynamic

reports, is a powerful way to decrease the chances of reporting errors

of honest researchers and to allow the efficient reuse of gathered data.

One very ambitious project that will hopefully find imitators in

psychology is the Reproducible Document Stack (RDS) project of the

online journal eLife. This project aims at publishing articles in the

form of reproducible documents in a way that establishes strong

reproducibility while simultaneously allowing the reader to interact

with the code of analysis and the data to generate alternative figures,

tables, and statistical analyses (see, e.g., https://repro.elifesciences.org/

example.html) in a user-friendly way.

Because sharing of well-documented data together with well-

commented code of analysis and all necessary metadata constitutes a

great service to the scientific community, we agree with Stodden et al.

(2016) who advocate that digital scholarly objects such as data sets

stored on a third-party repository should be cited in the reference

section to credit its distributors adequately. Any future research that

makes use of such a digital scholarly object (e.g., by data mining an

existing dataset or by using an R (R Core Team, 2018) package that

was created in light of a scientific publication) should then equally cite

that object in the reference section. Such a system would incentivize

the sharing of data sets, code of analysis, algorithms, and software

and, thereby, assist in the quest for strongly reproducible research.

As is demonstrated in a witty and delightfully funny way in

McCullough et al. (2006), sharing of data together with some code of

analysis that was used does not necessarily allow the reproduction of

the empirical findings. What is further needed is all necessary meta-

data, including information about the raw data, on how to run the code

and the software requirements. To allow for a complete, computer-

assisted reproduction of empirical findings Wilkinson et al. (2016)

developed four elaborate principles for digital scholarly articles.

These principles are findability, accessibility, interoperability, and

reusability. Scholarly articles that follow all of these principles can

then be conveniently labeled as FAIR.

Another advantage of a scientific shift toward transparency and

strongly reproducible results is that it can potentially make the lives of

science fraudsters, who deliberately omit, delete, change, or make up

raw data or statistical analyses with bad intentions, considerably

harder.

We hope that an increasing number of researchers in psychology

will take full advantage of all the transparency options that techno-

logical progress has brought us. We believe that providing the nec-

essary tools to make statistical analyses maximally transparent and

minimally error-prone, while simultaneously stressing the importance

of openness in scientific research to the new generation of scientists,

will change the field of psychology for the better.
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