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We develop a simple algorithm for detecting exam cheating between students who copy off one another’s

exams. When this algorithm is applied to exams in a general science course at a top university, we find

strong evidence of cheating by at least 10% of the students. Students studying together cannot explain our

findings. Matching incorrect answers proves to be a stronger indicator of cheating than matching correct

answers. When seating locations are randomly assigned, and monitoring is increased, cheating virtually

disappears.

INTRODUCTION

Student cheating is a perennial issue. In recent years, 70 students in a New York City top

public high school were caught using smart phones to cheat on state exams (Baker 2012),

and cheating scandals have rocked Harvard, Stanford, Dartmouth and the Air Force

Academy, to name just a few.1

These well-publicized scandals are only the tip of the iceberg. McCabe (2005)

surveyed 8000 college students in the USA and Canada, finding that 11% of them admit

to ‘copying from another student on an exam without their knowledge’, 10% say they

have ‘helped someone else cheat on test’, and 9% acknowledge copying from another

student ‘with their knowledge’.

This paper develops an algorithm for identifying cases of students copying off one

another’s exam answers. We test this algorithm using data from a course taught at a top

university in which the professor suspected cheating may have occurred. We find

compelling evidence of cheating involving at least 10% of the class’s 242 students on a

midterm exam. When seating positions were randomly assigned and monitoring was

increased for the final exam, almost all evidence of cheating disappeared. We are able to

rule out that the observed correlations in answers across students who voluntarily sit next

to each other is due to studying together, as opposed to cheating on the exam, because of

an unusual experiment carried out in advance of the final exam. Students seated

themselves voluntarily, with the expectation that the seats that they chose would be the

ones in which they would take the exam. These seating choices were recorded. Prior to

the actual test, however, students were reassigned to different seats. Thus we are able to

observe the patterns in correlations among students who wanted to sit together, but then

were not allowed to.

In spite of this apparent widespread cheating, there has been little academic attention

devoted to the detection of cheating.2 Zitzewitz (2012) surveys more than 100 pages in the

emerging field of forensic economics, not one of which addresses student cheating.3 In

the statistics discipline, this issue has received more attention. Wesolowsky (2000)

develops a method similar to ours, but there are a number of important differences.

Wesolowsky’s method ignores a key aspect of our approach (differentiating between

matching answers that are correct and matching answers that are incorrect—empirically

we find that matching incorrect answers are much more informative), estimates a much

more highly parametrized functional form, and does not provide an easy metric for
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judging how unusual an individual pair of students’ answers is. Wesolowsky also does

not intervene on seating choices, and so does not observe the randomized seating

counterfactual that we have in our analysis.

The remainder of the paper is structured as follows. Section I describes the

background of the cheating incident that we analyse. Section II presents a simple

reduced-form regression analysis of the cheating patterns. Section III develops and

implements a more systematic algorithmic approach to the problem, and also considers

alternative explanations for correlations like studying together. Section IV concludes.

I. THE CHEATING INCIDENT AND THE DATA

In spring 2012, 242 students registered in an introductory natural sciences course at a top

US university. The course had three midterms and a final exam.4 All of the exams were

multiple choice, with four possible answers per question. Students recorded their answers

on Scantron sheets. There was no punishment for incorrect guesses; that is, a wrong

answer yielded no points, as did leaving the question blank. The average percentage

correct on the exams fell in the range 75–85.

The first three midterms were held in a classroom with nearly every seat occupied. A

single teaching assistant (TA) proctored the exam. During the third midterm, a student

came to the TA reporting suspicions that another student had been cheating. The proctor

did not take any action regarding the cheating during the midterm, but did report this

information to the professor after the exam. In response, the professor sent out an email,

saying that ‘cheating is morally wrong’, and encouraged students to admit their

wrongdoing. No students voluntarily came forward, although a second student said she

had also witnessed cheating. This prompted the professor to once again call for student

confessions, bolstered by the threat that he was going to contact us—the authors of this

paper—and have us catch the cheaters.5 Again, no one came forward, and the professor

did indeed contact us two weeks before the final.

The data available to us include students’ answers to each question on all four exams,

as well as seating information for the third midterm and the final exam. In addition, we

were able to carry out an unusual experiment involving the final exam. Students entered

the exam room and selected their own seats, as was usual practice. These seating choices

were recorded. Before the exam actually began, however, students were shuffled into

randomly assigned seats for the test taking. This provided us with the opportunity to

observe correlations in answer patterns among students who would have liked to sit

together (and perhaps studied together), but were then separated.

Further steps were taken to prevent cheating on the final exam. Unlike the first three

exams, where only one TA served as a proctor, four proctors were present during the

final. Finally, the professor created two different versions of the final exam; the questions

in both versions were the same, but the order in which they were asked was different.

Students randomly received one of the two different versions of the test.

II. REDUCED-FORM DETECTION OF CHEATING

We begin our analysis of possible cheating with a simple reduced-form regression

approach in which the unit of observation is a pair of students on a particular exam. For

each possible pair of students, we calculate the number of questions for which those

students gave the same correct answer, and also the number of questions for which those

students gave the same incorrect answer. If the number of common answers is high, then
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this may be an indication of cheating, although of course there may be other

explanations as well.

Copying from a student to one’s left or right is the simplest way to cheat. Thus the

key variable of interest in the regression is an indicator variable that is equal to 1 if the

students sit next to each other, and takes the value 0 otherwise.6 Given the room setup, it

is difficult to cheat from two seats away with an empty seat in the middle, but triplets of

students might effectively cheat. Therefore we include an indicator for students whose

seating pattern is ‘student 1—empty seat—student 2’ as well as an indicator if the seating

pattern is ‘student 1—some other student—student 2’. Cheating from in front or behind

another student is not easily done, so we would not expect this type of proximity to lead

to elevated numbers of shared answers due to cheating. On the other hand, if there are

other factors that lead to correlation in answers for students who sit near each other (e.g.

because they study together, or good students congregate near the front of the room),

then the back–front indicator will capture these effects. In some specifications we also

control for the gender composition of the pair, or whether they are part of the same

academic department.7

Table 1 shows the results of these regressions, using as the outcome variable the

number of shared incorrect answers across the two students. The results in columns (1)

and (2) correspond to the third midterm in which cheating is suspected. Columns (3)–(6)

reflect the final exam. In columns (3) and (4), the right-hand side variables associated

with seat locations are the initial, voluntary seats occupied by the students; columns (5)

and (6) reflect the assigned seats given to the students—where they actually sat when

TABLE 1

MATCHING INCORRECT ANSWERS AMONG PAIRS

Test

3rd midterm Final pre Final post

(1) (2) (3) (4) (5) (6)

Left–right pair 1.105*** 1.104*** 0.096 0.046 0.111 0.077

(0.253) (0.254) (0.186) (0.198) (0.195) (0.193)

Front–back pair �0.062 �0.062 0.039 0.025 0.039 0.026

(0.149) (0.151) (0.153) (0.156) (0.159) (0.165)

Two apart: middle student 0.614* 0.611* �0.149 �0.195 �0.078 �0.117

(0.268) (0.274) (0.195) (0.191) (0.219) (0.218)

Two apart: no middle student 0.147 0.119 �0.567 �0.538 �0.397 �0.359

(0.237) (0.223) (0.357) (0.360) (0.378) (0.374)

Constant 2.340*** 2.316*** 3.981*** 3.962*** 3.980*** 3.961***

(0.013) (0.019) (0.013) (0.022) (0.014) (0.022)

Controls No Yes No Yes No Yes

N 19,110 19,110 22,578 22,578 22,578 22,578

R2 0.003 0.010 0.000 0.023 0.000 0.023

Notes
Each observation is a pair of students who took the exam. Each regression uses the number of matching
incorrect answers on the given exam as the dependent variable. The variables of interest are dummies indicating
if the students sat in the specified arrangement while taking the given test. Columns (3) and (4) use each
student’s chosen seating position; columns (5) and (6) use each student’s position after randomly reassigning
seats. Odd columns do not include controls for gender and school, while even columns do include those
controls. Bootstrapped standard errors are reported.
*, **, ***indicate significance at the 10%, 5%, 1% level, respectively.
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taking the final exam. The odd columns include no controls; the even columns include

controls.

Students who sit next to one another on the midterm have an additional 1.1 shared

incorrect answers. This estimate is highly significant statistically.8 Note that because the

typical student gets most of the questions correct, the mean number of shared incorrect

answers across all pairs of students is only 2.4. Thus students who sit next to each other

have roughly 50% more shared incorrect answers than would be expected by chance. In

contrast, we see no evidence that trying to sit next to one another in the final—but being

relocated before the test begins—leads to shared incorrect answers. If, for instance,

studying together is the cause of correlated answers among people who choose to sit next

to each other, then we would expect more shared incorrect answers even after those

students are relocated prior to the test. Students who actually sit next to each other in the

final—after having been relocated and in the presence of heavy monitoring—also show

no evidence of correlated incorrect answers in columns (5) and (6) of Table 1.

Pairs of students sitting two seats away with another student in between also have

elevated levels of matching incorrect answers, on the midterm only. If there is an empty

seat in between, however, then the correlation in incorrect answers disappears. This

suggests that triplets of students may have worked together to cheat. There is no impact

on shared answers among students sitting front to back on any of the tests.

Table 2 is identical to Table 1 except that the dependent variable is the number of

shared correct answers. The pattern of coefficients is quite similar to the previous table.

Students sitting next to each other during the midterm have an extra 1.2 shared correct

answers (but off a baseline of over 30 correct shared answers, so in percentage terms the

TABLE 2

MATCHING CORRECT ANSWERS AMONG PAIRS

Test

3rd midterm Final pre Final post

(1) (2) (3) (4) (5) (6)

Left–right pair 1.203* 1.204* �0.124 �0.082 �0.388 �0.363

(0.526) (0.555) (0.770) (0.741) (0.724) (0.735)

Front–back pair 0.580 0.578 0.191 0.214 0.190 0.213

(0.450) (0.452) (0.700) (0.727) (0.697) (0.698)

Two apart:

middle student

0.762 0.770 0.486 0.568 0.129 0.190

(0.532) (0.524) (0.883) (0.873) (0.870) (0.899)

Two apart: no

middle student

�0.636 �0.550 �2.233 �2.211 �1.168 �1.104

(0.849) (0.876) (1.163) (1.163) (1.488) (1.500)

Constant 31.176*** 31.154*** 50.750*** 50.638*** 50.751*** 50.639***

(0.036) (0.053) (0.057) (0.084) (0.057) (0.080)

Controls No Yes No Yes No Yes

N 19,110 19,110 22,578 22,578 22,578 22,578

R2 0.001 0.009 0.000 0.003 0.000 0.003

Notes
Each observation is a pair of students who took the exam. Each regression uses the number of matching correct
answers on the given exam as the dependent variable. The variables of interest are dummies indicating if the
students sat in the specified arrangement while taking the given test. Columns (3) and (4) use each student’s
chosen seating position; columns (5) and (6) use each student’s position after randomly reassigning seats. Odd
columns do not include controls for gender and school, while even columns do include those controls.
Bootstrapped standard errors are reported.
*, **, ***indicate significance at the 10%, 5%, 1% level, respectively.
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impact is small). This coefficient is statistically significant at the 0.05 level. Students who

are two seats apart with another student in between on the midterm once again have

positive coefficients (but this time statistically insignificant). None of the other seating

variables coefficients is particularly predictive; if anything, sitting two seats apart with an

empty seat in the middle reduces the number of shared correct answers.

III. A MORE SYSTEMATICALGORITHMIC APPROACH TO DETECTING CHEATING

The regressions above show that students who sit next to each other tend to have an

increased number of both correct an incorrect answer pairs on average, but for

identifying likely cheaters, it is the abnormality of the answers of a particular pair of

students that is critical. In order to identify unlikely occurrences of matching answers, we

first need to establish a baseline expectation with respect to the expected number of

matching answers for any pair of students. To do so, we begin by modelling a student’s

answer on a particular question on either the third midterm or the final exam using a

multinomial logit of the form

psa ¼ Prðy ¼ aÞ ¼

eXsba

1þ
P3

a¼1
eXsba

if a\4;

1

1þ
P3

a¼1
eXsba

if a ¼ 4;

8
<

:ð1Þ

where s indexes students, and a reflects the answer that the student gave to that question.

There are four possible answers to each question (a = 1, 2, 3, 4). In our basic

TABLE 3

RESIDUAL MATCHES ON THIRD MIDTERM LESS RESIDUAL MATCHES ON FINAL

Matching incorrect Matching correct

(1) (2) (3) (4)

Left–right pair 0.958*** 0.967*** 0.671 0.670

(0.281) (0.263) (0.467) (0.482)

Front–back pair 0.094 0.105 0.458 0.458

(0.204) (0.210) (0.436) (0.427)

Two apart: middle student 0.489 0.490 0.244 0.248

(0.324) (0.319) (0.610) (0.628)

Two apart: no middle student �0.516 �0.471 �0.250 �0.237

(0.442) (0.422) (0.761) (0.800)

Constant �0.005 �0.004 �1.063*** �0.979***

(0.017) (0.024) (0.034) (0.051)

Controls No Yes No Yes

N 18,915 18,915 18,915 18,915

R2 0.001 0.006 0.000 0.001

Notes
Each observation is a pair of students who took the exam. Each regression uses residual matches on the third
midterm less residual matches on the final as the dependent variable. Residual matches are the number of
observed matching answers less the number predicted by the logit regression. The variables of interest are
dummies indicating if the students sat in the specified arrangement. Odd columns do not include controls for
gender and school, while even columns do include those controls. Bootstrapped standard errors are reported.
*, **, ***indicate significance at the 10%, 5%, 1% level, respectively.
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specifications, we use the student’s percentage correct on the final to predict the answers

that a student gives to a particular question on the third midterm or the final. We use

scores from the final exam only because the percentage correct on the midterms may be

inflated for cheating students. In computing the student’s percentage correct, we exclude

the results for that particular question.9

Let cpqia denote the estimated probability that student i gives answer a on question q.

Further, denote a as the correct answer, and b, c and d as incorrect answers. If two

students i and j answer a particular question independently, then the probability that

they both choose answer a, conditional on the variables included as controls in the

multinomial logit, is given by cpqia � cpq|a . For each pair of students ij, the expected

numbers of matching right and wrong answers are given by

Eðmatching right answersÞ ¼
X

q

cpqia � cpq|a ;ð2Þ

Eðmatching wrong answersÞ ¼
X

q

cpqib � cpq
|b þ

cpqic � cpq|c þ cpqid � cpq
|d :ð3Þ

We then compute two potential indicators of cheating based on unexpected

concordance of answer patterns: (i) the residual between the observed and predicted

number of matching correct answers (Dc), and (ii) the residual between the observed and
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FIGURE 1. Third midterm—residual matching answers for student pairs.

Notes: The figure shows residual matching correct and incorrect answers on the third midterm. A

multinomial logit estimated the expected number of matching answers using students’ percentage correct on

the final exam. Each student pair is plotted based on their seating position on the exam. [Colour figure can be

viewed at wileyonlinelibrary.com]
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predicted matching incorrect answers (Di). A priori, it is uncertain which of these two

measures will be most predictive empirically. We estimate the probabilities implied in

model (1) using data for the 214 students that took both the third midterm as well as the

final.10 We then create a dataset of all possible student pairs (22,791 = 214 9 213/2) for

which we compute the number of matching correct and incorrect answers as well as the

expected number of matching correct and incorrect answers, using equations (2) and (3),

respectively. Finally, we compute Dc and Di as the differences between the observed and

predicted number of matching correct and incorrect answers, respectively. As a further

check of our reduced-form results presented earlier, Table 3 reports identical

specifications to those shown in the earlier tables, except that the dependent variable is

now the residual number of matching answers on the third midterm minus the residual

number of matching answers on the final. We still observe highly significant results for

left–right pairs on matching incorrect answers; for matching correct answers, the sign is

positive, but the point estimate is only half as large as in Table 2 and no longer

statistically significant. This suggests that some of the observed excess in matching

correct answers is driven by students of similar abilities sitting next to one another.

Figure 1 shows a scatterplot of Dc against Di on the third midterm, where cheating

was suspected. Each symbol in the plot represents a pair of students in the class.

Triangles correspond to pairs of students who sat next to each other during the third

midterm; squares are pairs of students who had one seat in between them, with that seat
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FIGURE 2. Final pre-randomization—residual matching answers for student pairs.

Notes: The figure shows residual matching correct and incorrect answers on the final. A multinomial logit

estimated the expected number of matching answers using students’ percentage correct on the final exam.

Each student pair is plotted based on their chosen seating position pre-randomization. [Colour figure can be

viewed at wileyonlinelibrary.com]
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occupied; circles are a 1% sample of all other pairs of students. The further to the right a

pair is in the figure, the greater the number of unexpected shared incorrect answers.

The higher up a pair is in the figure, the greater the number of excess correct answers.

The triangle and square symbols are greatly overrepresented in the north-eastern part

of the figure, consistent with cheating. Although pairs of students sitting next to each

other represent only 0.5% of all possible pairs of students, three of the six rightmost data

points are pairs of students who were next to each other. Although the pattern is less

clear in the vertical dimension, the single greatest anomaly on shared correct answers is a

pair seated next to one another. A number of triangles are outliers in the north-eastern

direction, that is, they have high residuals on both dimensions. Some squares are near the

far right of the figure, but the pattern is much less obviously extreme than for the

triangles.

For purposes of comparison, Figures 2 and 3 mirror Figure 1, but for the

seating positions originally selected on the final (Figure 2) and the actual seating

positions on the final (Figure 3). In stark contrast to Figure 1, there is no visual

evidence that students wishing to sit next to each other or actually sitting next to

one another have unusual answer patterns. This supports the interpretation of

cheating on the midterm.

Figure 4 provides a more systematic means of capturing the degree to which sitting

next to one another produces anomalous patterns on the midterm. The horizontal axis in

Figure 4 captures ranges of excess incorrect answers (Di), with the rightmost columns
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FIGURE 3. Final post- randomization—residual matching answers for student pairs.

Notes: The figure shows residual matching correct and incorrect answers on the final. A multinomial logit

estimated the expected number of matching answers using students’ percentage correct on the final exam.

Each student pair is plotted based on their assigned seating position post-randomization. [Colour figure can

be viewed at wileyonlinelibrary.com]
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corresponding to the highest (most suspicious) values. The height of a column represents

the hazard rate of the frequency with which students who sit next to each other produce

outcomes in that range, compared to all pairs of students. Standard error bands are

shown as vertical lines. If students sitting side-by-side look similar to randomly chosen

pairs of students, then the hazard rates in all columns would be equal to 1. If the hazard

rate in a particular column is 2, then that means that students sitting next to each other

are twice as likely to generate answers in that range.

As can be seen in Figure 4, pairs of students who sit next to each other in the midterm

produce answer patterns that diverge greatly from random pairs of students. (Note that

the hazard rates are presented on a log scale because the differences in the tails are so
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FIGURE 4. Left–right pairs—matching incorrect answers on the third midterm.

Notes: The figure reports relative risk ratios for the percentile of residual matching incorrect answers on the

third midterm. The ratios are calculated as the ratio of the proportion of students sitting in left–right pairs

who are in the given percentile range to the proportion of students not sitting in left–right pairs who are in the

given percentile range. Standard error bars showing a 95% confidence interval are shown as vertical lines.

[Colour figure can be viewed at wileyonlinelibrary.com]
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large.) Focusing first on the rightmost column of the table, which represents outcomes in

the top 0.1% in terms of unexpected matching incorrect answers, pairs of students who

sit next to each other are roughly 47 times as likely to fall into this category as a random

pair. The null hypothesis that students sitting next to one another are no more likely than

any random pair to be in this category is easily rejected. In the next column, reflecting

outcomes in the 95.5th to 95.9th percentiles, students who sit next to each other are

approximately 10 times more frequently represented than would be expected by chance.

This result is also highly significant statistically. Chance would have us expect 0.5% of

pairs of students sitting next to each other to appear in one of the two rightmost columns,

or less than one pair. In actuality, about 7% of all left–right pairs (14 individual students

because some are in multiple pairs) show up in the extreme tail. For the third and fourth
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FIGURE 5. Left–right pairs—matching incorrect answers on the final exam pre-randomization.

Notes: The figure reports relative risk ratios for the percentile of residual matching incorrect answers on the

final using seating choices pre-randomization. The ratios are calculated as the ratio of the proportion of

students sitting in left–right pairs who are in the given percentile range to the proportion of students not

sitting in left–right pairs who are in the given percentile range. Standard error bars showing a 95% confidence

interval are shown as vertical lines. [Colour figure can be viewed at wileyonlinelibrary.com]
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rightmost columns, we also reject the null hypothesis of a hazard rate of 1 for students

who sit next to each other: 11% of all left–right pairs show up in those two columns

(compared to 4.5% which would be expected by chance). Thus almost 20% of all left–

right pairs are above the 95th percentile in residual incorrect answers. Eliminating

double-counting of students who appear multiple times, we estimate based on the excess

weight in the right tail that more than 10% of students likely cheated.

Figures 5 and 6 present parallel results for the initial and actual seatings of the final

exam. In contrast to Figure 4, there is little evidence that sitting next to another student

is associated with large jumps in shared incorrect answers. In Figure 5 the rightmost

column is significant because a single pair of students who initially chose to sit next to

one another appear in the top 0.1% of residual matching incorrect answers. We cannot
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sitting in left–right pairs who are in the given percentile range. Standard error bars showing a 95% confidence

interval are shown as vertical lines. [Colour figure can be viewed at wileyonlinelibrary.com]
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reject the null hypothesis of a hazard rate of one for any of the columns of interest in

Figure 6.

It is always easier to identify the number of cheaters than to identify individual

students as cheaters. In this case, however, because the hazard rates are so enormous

(almost 50) in the far right tail, the likelihood of false positives for that group is unusually

low (about 2%). For the second rightmost column in Figure 4, false positive rates would

be about 10%. We elected not to pursue punishment for that group, although others

might have made a different choice at that rate of false positives.

Figures 7–9 present the same set of results, but for matching correct answers rather

than for matching incorrect answers. Three pairs—six individual students—appear in the

two rightmost columns. Of these, one of the pairs also would have been labelled cheaters
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FIGURE 7. Left–right pairs—matching correct answers on the third midterm.

Notes: The figure reports relative risk ratios for the percentile of residual matching correct answers on the

third midterm. The ratios are calculated as the ratio of the proportion of students sitting in left–right pairs

who are in the given percentile range to the proportion of students not sitting in left–right pairs who are in the

given percentile range. Standard error bars showing a 95% confidence interval are shown as vertical lines.
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based on anomalies in their incorrect answers. Thus matching correct answers adds

relatively little to the potential cheating detection. Moreover, unlike for incorrect

answers, there is no overrepresentation in the rightmost column on the final exam for

those who wanted to sit together but weren’t allowed to, and there is overrepresentation

for the students who were randomly assigned to sit next to each other. The fact that

randomly assigned students who sat next to each other also have correlated correct

answers may point to some cheating on the final. If the extra weight in the tails on the

final is indeed due to cheating, then that suggests that four students cheated on the final,

still a much lower rate than on the midterm.

We have carried out a similar analysis for students who sat with a chair

between them occupied by another student.11 On the midterm, relative risk ratios
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FIGURE 8. Left–right pairs—matching correct answers on the final exam pre-randomization.

Notes: The figure reports relative risk ratios for the percentile of residual matching correct answers on the

final using seating choices pre-randomization. The ratios are calculated as the ratio of the proportion of

students sitting in left–right pairs who are in the given percentile range to the proportion of students not

sitting in left–right pairs who are in the given percentile range. Standard error bars showing a 95% confidence

interval are shown as vertical lines. [Colour figure can be viewed at wileyonlinelibrary.com]
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greater than 10 are present for the rightmost category for both incorrect and

correct answers. Doing calculations like those above, eight students sitting with a

seat between them are identified as likely cheaters on the midterm. Of those eight,

four were identified as cheaters in the analyses above; four of them would have

been missed.

IV. CONCLUSION

It is not surprising that students cheat—they have strong incentives to do so, and the

likelihood of getting caught is low. What is perhaps more surprising is that so little effort

is devoted to catching cheating students. In this paper, we develop a simple algorithm for

detecting cheating. In the particular setting in which we apply that algorithm, we
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FIGURE 9. Left–right pairs—matching correct answers on the final exam post-randomization.

Notes: The figure reports relative risk ratios for the percentile of residual matching correct answers on the

final using seating assignments post-randomization. The ratios are calculated as the ratio of the proportion of

students sitting in left–right pairs who are in the given percentile range to the proportion of students not

sitting in left–right pairs who are in the given percentile range. Standard error bars showing a 95% confidence

interval are shown as vertical lines. [Colour figure can be viewed at wileyonlinelibrary.com]
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conclude that more than 10% of the students in the class appeared to have cheated in a

manner blatant enough to be detected by our approaches.

Perhaps the best supporting evidence for our claims of cheating (and also, perhaps, a

powerful explanation as to why so little effort is invested in detecting cheaters) comes

from what happened after we carried out our analysis. Based on our initial findings, the

professor in the class forwarded the names of the six most suspicious pairs of students to

the Dean’s office, an investigation was initiated, and a student judiciary court hearing

was scheduled.12 Before the hearing could occur, four of the twelve students confessed.

Despite these admissions, the Dean’s office nonetheless cancelled the investigation the

day before the student court hearing, due to pressure from parents. While this precluded

any further admissions of guilt, the professor withheld grades of the presumptive guilty

pairs until the first day of the next semester, which resulted in scholarship

disqualification. Notwithstanding this punitive action, none of the twelve accused

students complained or sought redress.

While our results do not speak directly to effectiveness of honour codes, we are highly

sceptical regarding their effectiveness. What we observe in our analysis is that

interventions that make cheating more difficult (better proctoring, randomly assigned

seats) dramatically reduce cheating. In the presence of honour codes, there is often very

little investment in preventing cheating (e.g. students are allowed to take exams in their

dorm rooms). One would have to believe that the social/moral costs imposed by the

presence of an honour code are extremely powerful, given the strong incentives to cheat.
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NOTES

1. Harvard University admitted that ‘about 125 students might have worked in groups on a take-home final
exam’. Roughly 70 students were forced to withdraw from the university (Perez-Pena and Bidgood 2013).
Similar numbers of students were involved at Dartmouth and the Air Force Academy (Associated Press
2015a; Frosch 2007). In March 2015, Stanford University Provost John Etchemendy sent a letter to the
faculty expressing concerns over allegations of widespread cheating (Associated Press 2015b).

2. Jacob and Levitt (2003) develop a set of tools for analysing teacher cheating, some of which we build on in
this paper.

3. Organizations such as the Educational Testing Service (ETS), provider of the SAT and GRE exams, no
doubt have developed techniques for detecting cheating, but to the best of our knowledge, these tools have
never been made publicly available.

4. Students were required to take only two of the three midterms. The midterms had 50 questions each; the
final exam had 80 questions.

5. In his email, the professor warned the students that ‘[they are] extremely good at catching cheating if you
have read Freakonomics’. Apparently, none of the cheaters had read Freakonomics.

6. Because we have seating charts for only the third midterm and the final, our analysis is restricted to these
two tests.

7. For gender we include dummies for ‘both female’, ‘one female, one male’ and ‘two males’. Each student is
assigned to an academic department within the university (e.g. engineering or arts and sciences).

8. Our data have a complex dependency structure because each student appears in multiple student pairs. To
account for this, we report the bootstrapped standard errors in the regression tables.

9. An argument could be made for using only the student’s performance on the final exam as a control
variable, due to cheating concerns on the midterms. Empirically, our results are little changed if we include
the midterm scores, or if we add more covariates such as a gender dummy.
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10. We drop questions that all students answer correctly, as they provide no information. We also drop a
handful of cases where exactly one student gave a particular answer on a question because of non-
convergence of the multinomial logit estimation.

11. Full results are available from the authors.
12. Our initial detection algorithms were not as good as those that we eventually developed; that is the reason

why only 12 students were identified.
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