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Why Most Discovered True Associations Are Inflated 
John P. A. Ioannidis 

Abstract: Newly discovered true (non-null) associations often have 

inflated effects compared with the true effect sizes. I discuss here the 
main reasons for this inflation. First, theoretical considerations prove 
that when true discovery is claimed based on crossing a threshold of 
statistical significance and the discovery study is underpowered, the 
observed effects are expected to be inflated. This has been demon 

strated in various fields ranging from early stopped clinical trials to 

genome-wide associations. Second, flexible analyses coupled with 

selective reporting may inflate the published discovered effects. The 
vibration ratio (the ratio of the largest vs. smallest effect on the same 

association approached with different analytic choices) can be very 

large. Third, effects may be inflated at the stage of interpretation due 
to diverse conflicts of interest. Discovered effects are not always 

inflated, and under some circumstances may be deflated?for exam 

ple, in the setting of late discovery of associations in sequentially 
accumulated overpowered evidence, in some types of misclassifica 

tion from measurement error, and in conflicts causing reverse biases. 

Finally, I discuss potential approaches to this problem. These in 
clude being cautious about newly discovered effect sizes, consider 

ing some rational down-adjustment, using analytical methods that 

correct for the anticipated inflation, ignoring the magnitude of the 
effect (if not necessary), conducting large studies in the discovery 
phase, using strict protocols for analyses, pursuing complete and 

transparent reporting of all results, placing emphasis on replication, 
and being fair with interpretation of results. 

{Epidemiology 2008;19: 640-648) 

The 

discovery and replication of associations is a core 

activity of quantitative research. This article will not deal 
with the debate on whether research findings are credible.1 I 
will focus instead on the interesting subset of research find 

ings that are true. Research findings discussed here encom 

pass all types of associations that emerge from quantitative 
measurements, and are expressed as effect metrics. This 
includes treatment effects from clinical trials, measures of 
risk for observational risk factors, prognostic effects for 
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prognostic studies, and so forth. I start here with the assump 
tion that a research finding is indeed true (non-null), ie, it 
reflects a genuine association that is not entirely due to 
chance or biases (confounding, misclassification, selection 

biases, selective reporting, or other). The question is: do the 
effect sizes for such associations, at the time they are first 
discovered and published in the scientific literature, accu 

rately reflect the true effect sizes? 
The article has the following sections: a brief literature 

review on inflated early-effect sizes based on theoretical and 

empirical considerations; a description of the major reasons 

why early discovered effects are inflated and the major 
countering forces that may occasionally lead to deflated 
effects (underestimates); and suggestions on how to deal with 
these problems. 

Evidence About Inflated Early-Effect Sizes 
Table 1 cites articles suggesting that early studies give 

(on average) inflated estimates of effect.2-34 I list here only 
selected evaluations that cover either many different articles/ 
effects or a whole research domain or method. This list is 
nowhere close to exhaustive. For some topics, such as the 
inflation of regression coefficients for variables selected through 
stepwise statistical-significance-based processes, the literature is 
vast. The theme of inflated early effects has been encountered 
in various disguises in many scientific disciplines in the 
biomedical sciences and beyond. For empirical studies, it 

may not be known whether the subsequent studies are more 
correct than the original discovery, but when a pattern is seen 

repeatedly in a field, the association is probably real, even if 
its exact extent can be debated. One should also acknowledge 
the difficulty in differentiating between an early inflated but 
true (non-null) effect and an entirely false (null) one. In 

addition to empirical studies, however, Table 1 also includes 
theoretical work that proves why inflation is anticipated; 
some of these arguments are discussed in the next section. 

I mention here a few examples to demonstrate the 

seriousness of the problem. The prognostic significance of a 

70-gene expression signature for lymph-node-negative breast 
cancer is accepted beyond doubt.35 However, while the first 

study published in Nature showed almost perfect sensitivity 
and specificity, even in an independent replication exercise of 
19 patients,36 subsequent evaluation in a cohort of 307 

women showed sensitivity of 90% and specificity of only 
40% (AUC for survival 0.648).37 Prognostic ability is 

640 Epidemiology Volume 19, Number 5, September 2008 

This content downloaded from 130.179.16.201 on Sat, 21 Nov 2015 01:10:53 UTC
All use subject to JSTOR Terms and Conditions



Epidemiology Volume 19, Number 5, September 2008_Why 
Most Discovered True Associations Are Inflated 

TABLE 1. Selected Evaluations Suggesting That Early Discovered Effects Are Inflated 

Research Field Theoretical Work or Empirical Evidence and References 

Highly cited clinical research A quarter of most-cited clinical trials and 5/6 most-cited epidemiological studies were either fully 
contradicted or found to have exaggerated results2 

Early stopped clinical trials Early stopping results in inflated effects in theory3'4 and shown also in practice5 

Clinical trials of mental health interventions More likely for effect sizes of pharmacotherapies to diminish than to increase over time6 

Clinical trials on heart failure interventions "Regression to the truth" in phase III trials for interventions with early promising results7 

Clinical trials on diverse interventions Effectiveness shown to fade over time8 

Multiple meta-analyses on effectiveness Eleven independent meta-analyses on acetylcysteine show decreasing effects over time9 

Epidemiologic associations Expected to be inflated in multiple testing with significance threshold; empirical demonstration for 

occupational carcinogens10 

Pharmacoepidemiology "Phantom ship" associations that do not stand upon further evaluation11 

Gene-disease associations Several empirical evaluations showing dissipation of effect sizes over time12-15 

Linkage studies in humans Theory anticipates large upward bias ("winner's curse") in effects of discovered loci16"18 

Genetic traits in experimental crosses As above (actually literature on the "Beavis effect" precedes literature on humans)19"22 

Genome-wide associations Large winner's curse anticipated for discovered effects in underpowered conditions23'24 

Ecology and evolution Empirical demonstration that relationships fade over time25'26 

Psychology Replication studies in psychology failing to confirm true effects because the new studies were 

underpowered due to reliance on the estimate of effect from the original positive study27 

Early repeated data peaking in general Simulations to model inflation of effects with repeated data peaking28 

Prognostic models Overestimated prognostic performance with stepwise selection of variables based on significance 
thresholds29"32 

Regression models in general Exaggerated effects (coefficients) with stepwise selection based on significance thresholds and small 

datasets32"34; may correct substantially if a very lenient alpha 
= 0.20 is used for selection34 [thus 

having enough power] 

present, but the difference between an almost-perfect predic 
tor and a modest-to-poor predictor is prominent.35 

Many high-profile clinical trials are stopped early during 
their conduct. This is performed according to robust rules that 

suggest termination when a demanding threshold of statistical 

significance is crossed during an interim analysis.3'4 These 
interventions are indeed effective (the null of "no effectiveness" 
is correctly rejected). However, as shown both in theory3'4 and 
in practice,5 the effect sizes derived from such early terminated 
trials are inflated. With very early termination, the effect sizes 

may be markedly inflated,5 with implications for decision 

making in the use of these interventions. 
Theoretical considerations prove that linkage signals of 

genome-wide linkage studies are inflated.12-15 These studies 
have aimed to reveal loci that harbor genetic variants that are 
related to various phenotypes. Several thousands of such studies 
conducted over 2 decades have yielded very few replicated hits. 

Although the replication record is better with genome-wide 
association studies, theoretical considerations again show the 

early discovered effects are inflated.23'24 Furthermore, if the 
observed effects are used as estimates in designing replication 
studies, these subsequent studies will be underpowered, and 

genuine effects will be falsely nonreplicated.38 

Inflated Effect Sizes Due to Selection 
Thresholds and Suboptimal Power 

Effect sizes of newly discovered true (non-null) asso 
ciations are inherently inflated on average. This is due to the 

key characteristic of the discovery process. Inflation is ex 

pected when, to claim success (discovery), an association has 
to pass a certain threshold of statistical significance, and the 

study that leads to the discovery has suboptimal power to 

make the discovery at the requested threshold of statistical 

significance. Both conditions are necessary to inflate effect 
sizes. If investigators were not fixated on claiming discover 
ies based on P value thresholds, this would not be an issue. 

Similarly if the discovery studies were fully powered, infla 
tion would not be an issue. Selection usually entails P values, 
but a similar pattern may be seen if selection is based on 
effect size or some other threshold measure. 

For illustrative purposes, I use here a simulation ap 

proach to demonstrate this phenomenon and the relationship 
between inflation and lack of power. Suppose that the true 
odds ratio (OR) for an association is 1.10 or 1.25 and that the 

proportion of exposed individuals in the control group is 
30%. We can simulate a set of studies that have an equal 
number of participants (n) in each of the 2 compared groups. 
The number of exposed in the control group in each simulated 

study is drawn randomly from a binomial distribution with 

probability 0.30. The number of exposed in the case group in 

each simulated study is drawn randomly from a binomial 
distribution with probability 0.3203 or 0.3488, so as to 

correspond to OR =1.10 and 1.25, respectively. The median 
OR of these simulated studies is expected to be 1.10 or 1.25, 

respectively. However, this is not so when we focus only on 
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TABLE 2. Simulations for Effect Sizes Passing the Threshold 
of Formal Statistical Significance (P 

= 
0.05) 

Observed OR in Significant 
Associations 

True Control Group Sample n Median Fold 
OR Rate (%) Per Group Median (IQR) Inflation 

1.10 30 1000 1.23 (1.23-1.29) 1.11 

1.10 30 250 1.51 (1.49-1.55) 1.37 

1.25 30 1000 1.29(1.26-1.39) 1.03 

1.25 30 250 1.60(1.50-1.67) 1.28 

1.25 30 50 2.73 (2.60-3.16) 2.18 

IQR indicates interquartile range. 

the simulated studies that have a P value for the association 

crossing a specific level of statistical significance. Table 2 
shows the median and IQR of the ORs that cross the "P value = 

0.05" threshold of statistical significance for different values 
of n. As shown, even though the true OR is 1.10, the median 
observed OR when a study discovers this association (P < 

0.05) is 1.51 when n = 250 (a study of 500 participants total). 
With similar sample sizes, when the true OR = 1.25, the 
discovered median OR is 1.60. When the studies have n = 50 

(100 participants total), the median discovered OR is 2.73 
instead of 1.25, representing huge inflation. One should note also 
the skewed nature of the distributions of discovered effects. 

One may argue that we do not know the true effect sizes 

necessary to make these simulations for specific hypotheses. 
In the example above, if the true OR were 500, then studies 

with 250 participants per group would have excellent power 
to detect it at a = 0.05 and the discovered effects would not 
be inflated compared with the true OR = 500. In some fields, 
there may be considerable uncertainty about the magnitude of 
the true effect sizes. However, in most fields, we can make 
reasonable guesses about the effect sizes, with only modest 

uncertainty. For example, in genetic associations of common 

variants with common diseases, we have repeatedly found 
that effect sizes of consistently and extensively replicated 
associations tend to be small or even very small (most ORs = 

1.1-1.4; a few, 1.4-2).39-41 Similarly, for most medical 
interventions with hard clinical outcomes (including mortal 

ity) relative risk decreases of 10%?30% are the best we can 

hope for. Some fields that have proposed much larger effect 
sizes may simply need a reality check. Perhaps some of these 
fields have been stuck in doing underpowered studies, and 
thus effects circulating in their literature appear large when 

they are actually much smaller. 

Inflated Effects Due to Flexible Analyses 
(Vibration of Effects) and Selective Reporting 

Until now, we have assumed that the (simulated) stud 
ies arise out of the play of chance alone. We have assumed 
that there is no human intervention in the analysis process and 

there is only one analysis based on the observed results. This 
situation is rare in discovery research. The hallmark of 

discovery is the performance of exploratory analyses. Flexi 
ble analyses lead to vibration of effects. Vibration conveys 
the extent to which an effect may change in alternative 

analytical approaches. 
Vibration is mostly due to the availability of alternative 

options in statistical model selection (eg, Cox model for 
time-to-death vs. logistic regression for death in 30 days); 
statistical inference machine (eg, different methods for com 

putation of the odds ratio [eg, with or without Wolf correction 
and with different corrections of zero cells] and its vari 

ance42); data selection (eg, possibility to exclude or include 
some participants based on some partly prespecified, pre 
specified but ambivalent, or entirely post hoc criteria); de 

pendent arbitration of equivocal data; and wide choice of 

adjustments for other covariates (especially when there are 

many such). Changes may affect not only the analytic core 
but also the question formulation itself, eg, changing eligi 
bility criteria may modify the research question. 

I define the vibration ratio for effect size as the ratio 
between the extremes of effect sizes that can be obtained 
in the same study under different analytical options. In 

Figure 1,1 have analyzed the same dataset (250 participants) 
with different approaches. Unadjusted analysis yields OR = 

2.10 (95% confidence interval [CI] 
= 

1.18-3.72). I simulate 
2 random variables and also perform analyses adjusting the 
association for each one of them. The vibration ratio is only 
1.01. I simulate another random variable and perform analy 
ses where the top 6% or the top 10% of the participants for 
this random variable are considered noneligible for the anal 

ysis. The vibration ratio is 1.18. Then, I also simulate 5 
observations (only 2% of the data) for which exposure is 
considered equivocal, and is either changed to specifically 
agree with the direction of the association or is changed to 

specifically disagree with the direction of the association. The 
vibration ratio is 1.55. The possible combinations of random 

adjustment, random eligibility, and dependent arbitration, as 

above, yield a vibration ratio of 1.95: ORs as divergent as 

1.48 (CI 0.81-2.70) and 2.88 (1.55-5.35) are obtained with 
these relatively subtle options. Without trying hard, I changed 
the OR 2-fold. 

The vibration ratio will be larger in small datasets and 
in those with hazy definitions of variables, unclear eligibility 
criteria, large numbers of covariates, and no consensus in the 
field about what analysis should be the default. In most discov 

ery research, this explosive mix is the rule. It is difficult to obtain 

funding to run very large studies for taking a first shot into the 

dark, and discovery is inherently related to situations where hazy 
definitions and iterative searching abound. The wealth of data 

bases in covariates has also grown over time. 
Even if enormous, vibration alone would not lead to 

inflated discovered effects if one eventually presents all the 
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FIGURE 1. Vibration of an effect size: the odds ratio with 95% 
confidence interval is obtained for a simulated study, with or 
without adjustment (AO indicates no adjustment; Al, adjust 
ment for one randomly generated variable; A2, adjustment for 
another randomly generated variable), application of various 

eligibility criteria (E0 indicates all participants included; E1, 
excluding 6% of the participants according to high values on 
a random variable; E2, excluding 10% of the participants 
according to high values on a random variable) and arbitration 
of 2% of the data on the exposure based on knowledge of 
outcome (DO indicates no arbitration; D1, 2% of the exposure 
data [5 observations] changed to be consistent with the direc 
tion of the association; D2, 2% of the exposure data [5 
observations] changed to be against the direction of the pos 
tulated association). 

applied analytical options without any preference. However, 

typically only one or a few analyses are presented. Moreover, 
vibration would not be a problem if the one or few analyses 
selected for presentation were a random choice of the possi 
ble ones, selected with an impartial view and no interest in 

making a discovery. However, this is counterintuitive to the 

discovery process. One makes exploratory analyses specifi 
cally to find something. The effects selected for presentation 
are likely to be among the largest observed, if not the largest 
possible. Secondary analyses similarly may be chosen to 
show that they are consistent with the main selected analysis. 

Selective analyses and outcome reporting have been 

extensively demonstrated in clinical-trials research compar 

ing protocols against reported results.43 
45 In theory, random 

ized trials have more inflexible protocols compared with 
observational epidemiology and fully exploratory research. 

For observational research, similar evaluations are more dif 
ficult to conduct because protocols are not readily available? 
often there is no protocol at all. Empirical evidence has 
demonstrated across a large sample of 379 epidemiologic 
studies that investigators selected the contrasts for contin 
uous variables so as to show effects as being larger: more 

extreme contrasts were presented, when effects were in 

herently smaller.46 
Post hoc demonstration of selective analysis and out 

come reporting is difficult. Recently, a test was proposed to 

examine whether the number of reported study results that 

pass certain levels of statistical significance is reasonable or 

larger than what one would expect, even if the effect sizes for 
the proposed associations (eg, as suggested by meta-analyses 
of all relevant studies) were true 47 Testing has suggested 
substantial selective reporting biases in both clinical trials and 
observational epidemiology.12 

47-49 

Inflated Interpretation for Effect Sizes 
Inflated interpretation is the toughest of all sources of 

inflation to tackle. In a culture that rewards discovery, inves 

tigators may make an extra effort to present results in the 
most favorable way. This goes beyond selective reporting and 
enters the realm of qualitative interpretation of quantitative 
effects. Typical variants of inflated interpretation include unwar 

ranted extrapolations and over-stated generalizability,50 silenc 

ing or downplaying limitations and caveats,51 mishandling 
external evidence,52'53 and extension of promises to different 
inferential levels. In the last category, some typical leaps of 
faith in the epidemiologic literature include the interpretation 
of association as causation, the interpretation of association 
or even causation as anticipated treatment effects, and the 

interpretation of optimal efficacy as effectiveness in every 

day life and clinical practice. In the molecular literature, a 

typical leap of faith is the interpretation that a modest asso 

ciation pointing to a new biologic pathway can be translated 
into a major benefit for treatment of diseases that may 
somehow be involved in this pathway. The sparse successful 
clinical translation of major promises made in the most 

high-profile basic science journals shows that this over 

interpretation is common.54 

Why Published True Associations May 
Sometimes Have Deflated Effects 

Contrary to the above, some discovered associations 

may have deflated effect sizes compared with the true ones. 
For example, this may occur with overpowered studies, 
where interim looks at the data are performed at early stages 
and discovery happens late. If the association does not cross 
the desired threshold of significance at the interim looks, but 

only at the very end, the effect may be deflated, although the 
deflation is typically small.3,4 The same situation would arise 
if the discovery process occurs as a regularly updated pro 
spective meta-analysis, a true association gets discovered 
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(becomes formally significant for the first time) only after 

many studies have been performed and combined in the 

meta-analysis, and the power of these combined studies is 

high to detect such as association. Nevertheless, in most 

fields, overpowered studies at the discovery phase are still a 
small minority compared with underpowered studies55-60; 

moreover, the paradigm of prospective cumulative meta-analy 
sis as a discovery tool has not been widely disseminated. 

Another reason for deflated effect sizes is independent 
nondifferential misclassification due to measurement error in 
the associated variables. There is an extensive literature on 

misclassification and how to correct effect sizes for misclas 
sification.61 However, such corrections have never become 

main stream. Perhaps this is because usually nonindependent 
and differential misclassification has been difficult to ex 

clude, and these can either deflate or inflate observed ef 
fects.62'63 Measurement error has decreased over time for 

many fields of research in the current era. For example, 
genetic measurements have very minor measurement error if 
measurement platforms are used properly. Conversely, for 
some other variables, (eg, lifestyle), measurement error may 
remain substantial. Even in molecular/genetic epidemiology, 
misclassification remains important for evaluating gene-en 
vironment interactions.64-67 Of note, when effects diminish 
because of misclassification, power to detect them also di 
minishes sharply68; this enhances the inflation upon discov 

ery (inflation of a deflated effect), as above. 

Furthermore, vibration of effects with selective report 
ing and interpretation of effects may sometimes reflect re 
verse biases. Various conflicts of interest may work in the 
direction of silencing or diminishing newly discovered asso 

ciations that don't fit financial or other dogmatic perspectives. 
For therapeutic research, although financial conflicts may 
lead to inflation of treatment effects for new interventions,69 
they may similarly lead to deflation of the magnitude of 
adverse events.70 For example, although most meta-analy 
ses71,72 of rosiglitazone found ORs for myocardial infarction 
in the range of 1.43, a meta-analysis originally conducted by 

Glaxo found a more conservative OR and the company did 
not consider it to be of concern.73 However, the literature on 

adverse events of interventions is small compared with the 
literature on effectiveness.74 Most harms probably remain 
unknown rather than silenced.75 

Finally, conflicts may be of nonfinancial nature. Some 

investigators may fervently support their line of research and 
beliefs. For example, even the most strongly refuted associ 
ations continue to have supporters many years after the 

refutation.76 Investigators may suppress new findings when 

they do not suit their beliefs. 

What To Do 
At the time of first postulated discovery, we usually can 

not tell whether an association exists at all,1 let alone judge its 
effect size. As a starting principle, one should be cautious 

about effect sizes. Uncertainty is not conveyed simply by CIs 

(no matter if these are 95%, 99%, or 99.9% CIs) (Table 3). 
For a new proposed association, credibility and accu 

racy of its proposed effect varies depending on the case. One 

may ask the following questions: does the research commu 

nity in this field adopt widely statistical significance or 
similar selection thresholds for claiming research findings? 
Did the discovery arise from a small study? Is there room for 

large flexibility in the analyses? Are we unprotected from 
selective reporting (eg, was the protocol not fully available 

upfront)? Are there people or organizations interested in 

finding and promoting specific "positive" results? Finally, are 
the counteracting forces that would deflate effects minimal? 

Modeling or correcting some of the sources of inflation 
is possible with (more) appropriate methods, such as for 

genetic linkage or association17,23 or for regression coeffi 
cients in general.33,77 These methods are probably more 

useful in estimating expected effect sizes, so as to perform 
more proper power calculations for future replication efforts, 
rather than for claiming that accurate "corrected" estimates of 
effect are known. In each case, one has to ask whether it is 

appropriate to ignore completely the effect size for a new 

proposed association. It may be best to wait for additional, 
larger studies and cumulative evidence to reach a more firm 
conclusion on whether an effect exists at all, and then worry 
about its size later. Most fields can wait for the conduct of 

replication studies. 
The conduct of larger studies in the discovery phase 

will diminish inflation due to suboptimal power. However, 
this is not always feasible. Discovery may sometimes arise 
from small investigations or even unanticipated case obser 

vations.70 However, even if many discoveries in the past 
arose out of haphazard encounters of scientists with phenom 
ena, this does not mean that we cannot improve in the future 

by running larger discovery-oriented studies. Agnostic ge 
nome-wide associations provide such an example.78 

Using a strict protocol for the design, conduct, and 

analysis of a study can diminish vibration, but would this 
stifle creativity? Flexible analyses will not cause a problem if 

TABLE 3. Avoiding Being Misled on Effect Sizes of True 
Associations in Early Discovery 

Be cautious about effect sizes (and even about the mere presence of any 
effect in new discoveries) 

Consider rational down-adjustment of effect sizes 

Consider analytical methods that correct for anticipated inflation 

Ignore effect sizes arising from discovery research 

Conduct large studies in discovery phase 
Use strict protocols for analyses 

Adopt complete and transparent reporting of all results 

Use methodologically rigorous, unbiased replication (potentially ad infinitum) 

Be fair with interpretation 
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they are accompanied by complete and transparent reporting 
of all results. Despite demonstrable progress and the avail 

ability of evidence-based guidance for reporting, such as 

CONSORT,79'80 STROBE,81 and STARD,82 full reporting 
remains an unattained target even in fields such as random 
ized trials, which are further ahead in registration and report 

ing efforts.83'84 Making databases publicly available is more 

easily said than done, and there are many challenges in 

making this a widespread practice.85'86 Still, the antithesis of 

practices among various fields is striking. For example, ge 
nome-wide associations studies currently test hundreds of 
thousands of associations, ask for very demanding thresholds 

(eg, P < 10~7), report all results in a single paper, and then 
often make the data publicly available.87,88 Conversely, in 
traditional risk-factor epidemiology (eg, nutritional epidemi 
ology), each (or a few) of the thousands of tested associations 
is reported as a single separate paper, "P < 0.05" rules are 

still widespread, and databases rarely become public. Imagine 
what would happen if the criteria of genome-wide association 
studies were applied to nutritional epidemiology associations. 
There are clearly other major differences among such fields,89 
but one wonders whether such widely discrepant practices are 

justified. Inclusive consortia of investigators may also help 
enhance transparency and completeness of reporting of results 90 

Discovery can be unfettered, haphazard, exploratory, 
opportunistic, selective, and highly subjectively interpreted. 
Conversely, these same characteristics that are perfectly fine 
for discovery are not desirable of replication. Replication is 
essential for all discoveries and with few exceptions (eg, 
treatment effects in interventional studies) only resource 

constrains and prioritization issues would prohibit replication 
ad infinitum. Replication offers a wider evidence base on 

which to try to make inferences about the truth and biases that 

may affect it. 
A crucial question is whether replication suffices to 

correct the inflated effects that arise in early studies.91,92 For 

example, should a meta-analysis worry about including an 

early terminated study? In principle, the replication process, 
if unbiased, should correct the inflation91 and if stopping is 
not very early, inflation is small regardless.93 However, the 

replication process may not be unbiased, and may sometimes 
suffer from similar problems as (or more problems than) the 

discovery. Observational evidence has been attacked as un 

reliable, and even the best meta-analyses of observational 
data meet with skepticism for their spurious precision.94 
Problems may arise, however, even for the supposedly more 

rigorous design of randomized trials. To demonstrate this 

problem, an evaluation of the whole Cochrane Library shows 
1011 systematic reviews that have at least one meta-analysis 

with at least 4 studies.95 Selecting the largest meta-analysis in 
each of these reviews, 256 of the 1011 meta-analyses have 

formally statistically significant results (P < 0.05) by random 
effects calculations in the OR scale. The effect sizes of these 
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FIGURE 2. Relationship between total sample size and the 
effect size (odds ratio) for 256 Cochrane meta-analyses with 

formally statistically significant results (JP < 0.05 according to 
random effects calculations) and at least 4 included studies. 
Both axes are in loglO scale. Also shown is a fit LOESS line. All 
odds ratios have been coined to be >1.00 for consistency. The 
median effect size for the 40 meta-analyses with at least 
10,000 subjects is 1.53. Not shown are 5 outliers with extreme 

sample size or effect size. 

"positive" meta-analyses are inversely related to the amount 
of evidence accumulated (Fig. 2). Perhaps large anticipated 
effects lead to the conduct of small trials and small antici 

pated effects promote several large trials. However, the ob 
served pattern is consistent with what one would expect based 
on the inflation biases described above. Most meta-analyses 
remain largely underpowered for small-to-modest effects.96 

Superimposed selective reporting can also be operating. 
Thus, even in the theoretically most rigorous study design 
(randomized trials), not only discoveries but also pragmati 
cally limited replication efforts may not eliminate inflation of 

effects, and may not even ensure that any effect at all is 

present. 

What constitutes fair interpretation of new discoveries is 

unavoidably subjective. However, critical discussion of limita 

tions, caveats, and a reserved stance against one's findings is 
useful. Thresholds of significance that dictate a discovery may 
have to be abolished. Instead, all results would be reported, 
grading their credibility and the uncertainty thereof in a Bayes 
ian framework. Suggestions to adopt Bayesian views of research 
results have long been made.1'11'97-103 However, inflation of 
effects may still be an issue, even if effects are selected based 
on Bayes factor thresholds rather than P value thresholds. 
This depends on how Bayes factors are calculated. For 

example, direct translation99 of P values (or z-scores) to 
minimum Bayes factors, exp(?z2/2), would face the same 

problem, whereas if priors assume that small effects are 
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TABLE 4. Two Stances in Hunting Associations 

Aggressive Discoverer Reflective Replicator 

What matters is ... Discovery Replication 
Databases are ... Private goldmines not to Public commodity 

be shared 

A good Can think of more Is robust about design 
epidemiologist ... exploratory analyses and analysis plan 

One should report ... What is interesting Everything 
Publication mode Publish each association Publish everything as 

as a separate paper single paper 
After reporting ... Push your findings forward Be critical/cautious 

plausible but large effects are implausible, Bayes factors 
become most promising for small effects.103 Bayesian views 
are useful when coupled with unselective presentation of all 
results. In this way, one can see which results are more 

interesting based on different prior assumptions, and whether 
there is consistency in highlighting specific results. New 
results modify future priors. If new results are biased because 
of selection, priors get biased and we may keep pursuing, 
believing, and expecting nonexistent large effects. 

Finally, Table 4 summarizes 2 stances in hunting asso 
ciations?the aggressive discoverer versus the reflective rep 
licator. These stances may underlie the root of the problems 
that I discussed here, and their possible solutions. In trying to 
reward or punish scientists for their stance and in shaping the 
new generation of scientists, we need to think hard about 
which of the 2 modes we want to promote, and whether some 

good elements can be picked from each list. 
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