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■ Abstract During the past decade, blind analysis has become a widely used tool in
nuclear and particle physics measurements. A blind analysis avoids the possibility of
experimenters biasing their result toward their own preconceptions by preventing them
from knowing the answer until the analysis is complete. There is at least circumstantial
evidence that such a bias has affected past measurements, and as experiments have
become costlier and more difficult and hence harder to reproduce, the possibility of bias
has become a more important issue than in the past. We describe here the motivations
for performing a blind analysis, and give several modern examples of successful blind
analysis strategies.
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1. INTRODUCTION

Hans von Osten, who lived at the beginning of the twentieth century, could do

math. Given a pair of single-digit numbers written on a blackboard, Hans could

add them together correctly nearly all of the time. What was remarkable about this
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142 KLEIN � ROODMAN

ability was the fact that Hans—often called “Clever Hans”—was a horse. He would

demonstrate his skill by pawing the ground with his hoof until he had reached the

sum of the two numbers, while those who had presented the problem looked on.

Critics of Hans’s ability tried to determine whether his trainer was providing him

with signals, but could find none. Eventually, they asked the trainer to leave the

room, but still Hans managed to add the numbers correctly more often than not.

The mystery of Hans’s ability was only solved in 1907 when the psychologist

Oskar Pfungst proposed that a trial be done in which no one in the room with

Hans knew both of the numbers presented (1). With all the observers blind to the

answer, Hans was unable to produce a correct result. The conclusion was that Hans

was indeed clever: He had been using subtle non-verbal cues from those in the

room—cues his observers were not even aware they were providing—to decide

when to stop pawing the ground.

The Clever Hans Effect1 has left its impression on modern science, particularly

on medicine. Most large-scale clinical trials of new drugs not only require that the

patients be unaware of whether they are receiving a placebo or not, but also that

those who administer the drug be kept blind as to which patients are in the control

sample (the trials are thus doubly blind).2

By contrast, throughout most of their history, nuclear and particle physics have

run open experiments in which an estimate of the final answer is known well before

the analysis is complete. Adjustments to cuts, measurements of backgrounds and

acceptances, and evaluations of systematic uncertainties are routinely made with

full knowledge of the current value of the intended measurement and the effects

any changes have upon it. Such an approach makes a great deal of sense in a

physics experiment, as it allows us to bring to bear some of our most commonly

used techniques: we check that the answer makes sense; we give particular scrutiny

to results which contradict established models, previous measurements, or con-

ventional wisdom; we are conservative in our estimates of systematic uncertainties

to avoid misleading others about the significance of our result.

1The effect of experimenter expectations on the behavior of subjects is more often referred

to as the Hawthorne Effect, named after a factory at which worker productivity was being

studied. The productivity was a strong function of what the experimenters indicated they

thought would be important (for example, light levels).
2Nevertheless, in some extreme cases, the results of a clinical trial have been used by the

experimenters as an unacknowledged criterion for their publication: no one wants to publish

the fact that their new drug does not work. In such cases, the trial may be repeated until a

desired result is obtained, thus leading to a bias in the published data. The problem has so

concerned the medical field that the International Committee of Medical Journal Editors (2)

now formally requires all clinical trials to first be registered in a public trials registry before

the trial begins. With such registration, the investigators essentially commit to publishing

the results of their experiments, regardless of whether the outcome is favorable to them or

their sponsors.
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BLIND ANALYSIS 143

In his 1932 paper presenting the results of his measurement of the electron

charge to mass ratio e/m (3), Frank Dunnington concludes with a warning born of

his own experience applying these common sense principles:

It is also desirable to emphasize the importance of the human equation in

accurate measurements such as these. It is easier than is generally realized

to unconsciously work toward a certain value. One cannot, of course, alter

or change natural phenomena . . . but one can, for instance, seek for those

corrections and refinements which shift the results in the desired direction.

Every effort has been made to avoid such tendencies in the present work.

At least part of Dunnington’s effort “to avoid such tendencies” was to keep himself

from actually knowing the results of his measurement until he was finished with

it. To do this, he kept the value of the angle between the electron source and his

detector hidden from himself, by asking his machinist to build something close—

but not exactly at—the 340◦ that was needed (4). Without exact knowledge of this

angle, he could not make the final calculations that would change his data into a

measurement of e/m.

Is there any evidence over the history of nuclear and particle physics that exper-

imentalists, in Dunnington’s words, “unconsciously work toward a certain value”?

It would be almost impossible to say definitively, because, of course, we do not

know what any particular experimentalist was thinking (unconsciously or other-

wise) during the process of a measurement. We might expect that if such a bias

exists, then over time new measurements would tend to agree better with prior

measurements than with their modern and much more precise value.

Perhaps the classic example of a measurement suspected of experimenter’s bias

is the speed of light. Measurements of the speed of light span an entire century,

with improvements of five orders of magnitude in the experimental uncertainties. A

summary of measurements (5), using a variety of techniques, made prior to 1960 is

shown in Figure 1, along with the much more accurate value from later results using

a methane absorption line frequency (6). One striking feature is the 17 km/sec shift

between the series of experiments from 1930–1940 and later determinations. A

fascinating post-mortem on the systematic uncertainties in these experiments (7),

noting the different techniques used in the four low results, speculates about one

of the sources of bias:

the investigator searches for the source or sources of such errors, and continues

to search until he gets a result close to the accepted value.

Then he stops!

We have done a brief investigation of this issue in more modern particle physics

experiments, using a selected (and hence biased!) set of historical measurements

typically compiled by the Particle Data Group (PDG). The PDG’s own history

plots, which they have published from time to time since 1975 as part of their

Reviews of Particle Physics, depict only what the PDG itself published in each

year. Their numbers are typically averages over several measurements, and so the
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144 KLEIN � ROODMAN

Figure 1 Summary of speed of light measurements. The line indicates the ultimate

experimental value. Among other interesting features, the series of four measurements

from 1930–1940 displays a 17 km/sec systematic shift from the true value (5).

published values over time are by construction correlated with one another. They

therefore do not by themselves necessarily indicate that there is any bias in the data.

We have looked instead at the individual measurements, compiled by the PDG or

by other reviews, and compared them to the published values which existed at the

time of the measurement.

Figure 2 shows the four measurements we have examined: the neutron life-

time, the K0
S lifetime, the mass of the �, and the value of the ratio gA/gV deter-

mined from neutron β decay (8–41). The measurements are shown as open circles,

with the error bars depicting the uncertainties published along with the measure-

ment. The published average which existed at the time each measurement was

made (that is, not including the measurement itself) is represented by the dashed

curves, where the spacing between the curves represents the published 1σ uncer-

tainty on those averages. The horizontal dotted lines show the 2004 PDG averages

(41).

Although the effect is not striking, the measurements do tend to cluster nearer

the prior published averages than the final value. Grouping all the data points

together, the χ2 for the hypothesis that the measurements are normally distributed

around the prior averages is 131.2 for 83 degrees of freedom, whereas the χ2 for

the hypothesis that they are normally distributed about the final average is 249.7

for ∼82 degrees of freedom.

Even if Figure 2 showed a strong correlation between the measurements and pre-

viously published averages, that would not necessarily mean that the experimental

results were biased by experimenters’ concerns about contradicting conventional
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BLIND ANALYSIS 145

wisdom. Many other explanations could account for the behavior—common tech-

niques that were used and were later found to have systematic effects which had

been neglected, for example, or physical corrections which were unknown for

many years and which would have shifted all the values nearer to the modern av-

erages. Other examples often cited as possible evidence of bias in measurements

are the unusually low χ2 values found in global fits to data sets, such as the the

average B meson lifetime χ2 = 4.5 for 13 degrees of freedom (4), or global fits

to solar neutrino data which have, for example, χ2 = 70.2 for 81 degrees of

freedom (42).

Although we cannot say conclusively whether bias has influenced measure-

ments in nuclear and particle physics, the way to avoid even the possibility is to

follow Dunnington’s and Pfungst’s examples and perform measurements while

staying blind to the value of our answer. Blind analysis in nuclear and particle

physics experiments has its modern origins around 1990 with experiment E791 at

Brookhaven National Laboratory, a search for the rare decay KL → µe, although

the idea had been discussed at least ten years earlier (J.R. Ritchie, private commu-

nication). As a rare process experiment, E791 had good motivation to use a blind

analysis: a potential discovery could easily be missed if they allowed flexibility in

their final cuts to remove events suspiciously close to the edge of the signal box.

We discuss this kind of hidden signal box technique in more detail in Section 3.1.

The number of experiments that analyze their data blindly has grown steadily

since E791’s example, and the approaches to how to successfully do a blind analysis

are as varied as the experiments themselves. In the next sections we describe the

fundamental philosophy behind blind analysis, and detail examples of experiments

that have results obtained using blind analysis techniques. We have restricted our

discussion only to techniques aimed at avoiding the kind of unintentional bias that

concerned both Clever Hans’s critics and Dunnington. We do not consider here

intentional bias or the bias resulting from systematic effects in instrumentation or

technique, none of which can be removed through blind analysis techniques.

2. EXPERIMENTER’S BIAS AND THE MOTIVATIONS
FOR BLIND ANALYSES

The Oxford English Dictionary defines bias as “A systematic distortion of an

expected statistical result due to a factor not allowed for in its derivation.” In

a nuclear or particle physics measurement there are many potential sources of

bias: the trigger for the experiment, the algorithms used to reconstruct events or

extract signals, or the particular instrumentation used. The accepted procedure,

when such biases cannot be directly measured or eliminated, is to estimate their

size and include the estimates as systematic uncertainties on the measurement.

Experimenter’s bias differs from these biases because its source is the human being

making the measurement, who may (in Dunnington’s words) “unconsciously work

toward a certain value.” The bias may be in the direction of previous measurements,
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146 KLEIN � ROODMAN

prior theoretical expectations, or some other preconception. The crucial difference

between experimenter’s bias and any other bias in a measurement is that the size

of an experimenter’s bias cannot be estimated. Thus the only available approach

is to use a methodology that prevents or suppresses it.

Experimenter’s bias can creep into a measurement in several ways. The first

scenario is subtle, in that the biases it may produce are of the order of the mea-

surement’s statistical uncertainty. In general, the data used for a measurement is

isolated with a series of selection requirements, or cuts. Although the value of

these cuts on a particular quantity may be chosen to maximize the sensitivity of

the result, very often there is a wide plateau in the value of the cut, over which

the quality of the result varies little. The cartoon shown in Figure 3 illustrates this

point. In the case shown, the value of the cut may be chosen arbitrarily within

the sensitivity plateau. The numerical value of the result, however, may vary as

a function of the cut value, especially for cuts that significantly alter the signal

efficiency or background contamination. Such variations will be statistical, with

a magnitude on the order of the statistical uncertainty of the measurement. If the

value of the cut is chosen with the knowledge of how that value affects the fi-

nal answer, then the measurement can be biased toward the expected (or desired)

result.

It does not take much of a statistical bias to produce a surprisingly large signal,

even if the data set contains only background events. A typical analysis sensitive

to statistical bias might be the search for a peak in an invariant mass distribution. If

the cuts are chosen in a biased way, then the actual fraction of background events

accepted in the region of a potential signal may be artificially high, and thus appear

as a false signal peak. Consider m sequential cuts whose acceptance for any event

outside the signal region is Ai but whose acceptance for any event within the signal

region A′
i is biased to permit additional events to leak into the final data sample.

The significance of a false peak, defined as S = Nsignal/
√

Nbackground, is given by

S =

( m
∏

i=1

A′
i

Ai

− 1

)

×

√

√

√

√N

m
∏

i=1

Ai , 1.

where N is the number of total number of events in the signal region before any cuts

are made. As a numerical example, if an analysis begins with N = 2500, and uses

a set of 10 cuts each with acceptance Ai = 0.9, a geometric average bias of just

1% ((
∏m

i=1 A′
i/Ai )

1/m = 1.01) will lead to an apparent signal above background

of roughly 3σ .

Even though the cuts may be asymptotically unbiased—applied to an infinite

data set, A′
i = Ai—by having been chosen based in part on how many more

apparent signal events they accept in the signal region in this data set, they can still

be biased. Put another way, if an ensemble of experiments with the same number

of events is analyzed using an identical set of cut values (tuned perhaps, on just one

of the experimental data sets), then the mean number of observed signal events will

tend toward the true value (which may be zero). But if the ensemble of experiments
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BLIND ANALYSIS 147

is analyzed and in each experiment a new value of the cuts is chosen based on the

observation of events in the signal bin, the mean number of observed events in the

signal bin can always be larger than the true number of signal events.

Of course in practice, finding a set of cuts whose geometric average bias is as

large as 1% is not necessarily easy. For example, for the first of the Ai = 0.9 cuts,

the variance on the number of accepted events is less than 1%, and so either one

needs to work hard to tune the cuts, or else another factor is at work, such as an initial

statistical fluctuation upward, or one is operating in a particularly sensitive region

of the analysis where small variations in the cut position for background events

lead to much larger variations in the number of accepted events in the signal region.

The next bias scenario, typically involving the search for rare processes or de-

cays, is much less subtle. Experiments searching for small signals, at the edge of

detectability in statistics or above backgrounds, are especially dependent on the

exact values of the selection cuts. If the values of the cuts are chosen with the

knowledge of which events are included or excluded, the results may be biased

toward either observation or elimination of a signal. Such choices can be easy to

make if each event is examined individually. Nearly every observed event can be

found to have something unusual about it, and so can be included in a signal sample

(sometimes a sample of one event) or excluded as an unexpected background. In

one extreme, cuts chosen to remove individual events will yield a better upper limit

than is deserved. In the other extreme, cuts chosen to retain individual events may

produce a signal where none is warranted. This selection bias is perhaps the most

dangerous.

Finally, another way in which experimenter’s bias may affect a measurement

is in the decision that a measurement has been completed, as the warning from

the speed of light study indicates. Galison (43) notes in his historical study How

Experiments End that “. . . there is no strictly logical termination point inherent

in the experimental process,” instead “the decision to end an investigation draws

on the full set of skills, strategies, beliefs, and instruments at the experimentalist’s

disposal.” If the decision to stop analyzing and publish relies on the value of the

result—in particular how close it adheres to the experimentalist’s preconceptions—

the result may be biased toward the preconceived value. The danger of continuing

the data analysis, finding mistakes or improving the analysis, until the result agrees

with expectations, is well known. This stopping bias may affect any kind of mea-

surement and may be a small effect or a large one. It is also probably the most

common kind of bias found in nuclear or particle physics.

A blind analysis is a method that hides some aspect of the data or result to

prevent experimenter’s bias. There is no single blind analysis technique, nor is

each technique appropriate for all measurements. Instead the blind analysis method

must carefully match the experiment, both to prevent experimenter’s bias and to

allow the measurement to be made unimpeded by the method. There are several

blind analysis methodologies that will be described in this review, each appropriate

for a certain kind of measurement. These methods can be grouped according to

exactly what is kept hidden in the measurement:
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148 KLEIN � ROODMAN

1. The signal events, when the signal occurs in a well-defined region of the

experiment’s phase space.

2. The result, when the numerical answer can be separated from all other aspects

of the analysis.

3. The number of events in the data set, when the answer relies directly upon

their count.

4. A fraction of the entire data set.

Although blind analysis techniques may not be feasible or necessary in all

measurements, as a general rule the possibility of experimenter’s bias should be

considered in all experiments. Typical objections to the use of blind analysis tech-

niques are that it slows the pace of data analysis, that certain aspects of the analysis

become difficult, and that unexpected phenomena can be found only by full explo-

ration of the data. The latter issue is a serious one. Consider the following anecdote

from a well-known physicist:

While looking for the decay π+ → e+νe, we focused all our attention on

reducing backgrounds, since a prior experiment had set a limit at the level

of 10−6 on the branching ratio. When we heard that an experiment at CERN

had seen a signal around 10−4 I switched from delayed to prompt. The signal

was right there, and could have been seen on the first day (B. Richter, private

communication).

Although some blind techniques are susceptible to this pitfall, not all are. In such

cases, a method allowing a full exploration of a data subsample would not have

missed such a large signal.

It is crucial that the blind analysis technique be designed as simply and narrowly

as possible. A good method, appropriately used, minimizes delays or difficulties

in the data analysis. In some cases, a blind analysis may delay certain aspects of an

analysis until the blind procedure has been removed, or unblinded. For example,

certain cross-checks may be possible only after the blind procedure has been

removed. The trade-offs involved must be considered according to the individual

merits of each case. However, by blinding only a very narrow aspect of the analysis,

the methods described in this review minimize the scope of the data analysis needed

after unblinding. In general, for the examples described in this review, the pace of

data analysis has been slowed only to the extent that individual data analysts have

worked to check their measurement more carefully before unblinding their result.

We note that none of the blind techniques we describe here—and perhaps no blind

technique—can be applied to an analysis in which backgrounds are cut or signals

identified by event-by-event human inspection.

Blind analyses solve only one problem, the influence of experimenter’s bias on

the measurement. Other biases in the measurement caused by the general approach

or the instrumentation are not avoided by any of the techniques we describe here.

For such biases, either a correction based on a measurement or the inclusion of the

bias as a systematic uncertainty still needs to be made, whether the analysis has

been done blindly or not.
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All sizeable collaborations have internal data analysis and publication review

processes. A blind analysis, and the associated division of the data analysis into a

blind and an unblind phase, gives the collaboration at large an opportunity to review

the work before the transition of looking at the answer. Today large collaborations

are grappling with the issue of vetting many publications for both quality and

correctness. Collaborations can require that the decision to unblind a result be

made as a part of the internal review process, with the consultation or approval of a

wider subgroup, and not by the data analysts alone (see the BABAR Blind Analysis

Task Force report, BABAR Analysis Document #91). This procedure improves the

effectiveness of the internal review.

The last issue to confront in using blind analyses as a technique is what do to if

the analysis strategy breaks down. For example, what should an experiment do if,

after all selections cuts have been set, the events in the nominal signal region are

clearly background, and additional selections to remove such background were

simply omitted? It is not necessary in the blind analysis approach to insist that,

because an analysis was done blindly, no additional selections may be applied.

Ideally, an experiment should consider such situations in advance to prepare for

such cases. One useful principle that may be adopted is that the publication sim-

ply describe the full analysis procedure, in this case to be explicit about which

selections were applied after the unblinding. The blind analysis method does not

require that data analysis stop after unblinding, nor does it ensure that the results of

the analysis are correct. There is no reason to publish a result known to be wrong,

just because the analysis was done blindly.

Multiple independent analyses are occasionally suggested as a way to prevent

experimenter’s bias. Although independent analyses can be a powerful tool for

preventing errors in a measurement, in our opinion blind analyses prevent experi-

menter’s bias much more directly than redundant analyses. The two methods can,

however, easily be used together.

As experiments have become larger, lengthier, more expensive, and therefore

harder to reproduce, the issue of whether to do a blind analysis has perhaps become

more important than it was a few decades ago. In some cases, a biased result may

stand for many years, possibly leading theorists and experimentalists down un-

productive and expensive paths. Without the luxury of having new and important

results verified quickly, the assurance that experimentalist’s bias does not con-

tribute to the many other possibilities for error is generally worth the additional

time and effort.

3. BLIND ANALYSIS METHODS

3.1. Hidden Signal Box

Perhaps the most straightforward blind analysis method is the hidden signal box.

In this technique, a subset of the data, containing the potential signal, is kept

hidden until all aspects of the analysis are complete. Often the signal region is
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defined in terms of two experimental parameters, chosen to separate the signal

from backgrounds, and this two-dimensional signal region forms a signal box.

Only after the data selection requirements, the signal efficiency, and the estimated

background are determined is the hidden signal box opened.

This method is very well suited to measurements searching for rare signals,

as long as two criteria are met. First, the signal characteristics and location must

be known. In rare decay searches, such as KL → µ±e∓ or B0 → µ+µ−, the

signal may be simulated, the efficiency determined, and an appropriate hidden box

defined using the invariant mass and another relevant kinematic variable. Second,

the experiment must be able to independently estimate the size of the background

expected in the signal box. Ideally, this may be accomplished by understanding

the source of background events near the signal box, and extrapolating from this

sideband region into the hidden signal box. In particular, the background estimate

cannot depend on the characteristics of any events that may be inside the signal

box. Generally, the size and placement of the hidden box is determined after an

optimization of signal efficiency and backgound rejection. With these conditions,

the dependence of the signal-to-background ratio on the selection requirements is

known, and the cuts may be optimized as desired, again without reference to the

events in the hidden box.

The hidden box method was first used in a search for the rare decay KL →

µ± e∓ by the E791 experiment at Brookhaven National Laboratory (BNL) (44).

They formed a hidden signal box in a region of the invariant mass, Mµe, and

the momentum transverse to the kaon beam direction, P2
T, as shown in Figure 4.

Also visible are a population of background events at lower Mµe, primarily

from KL → πeνe decays where the pion decays in flight. The many cuts ap-

plied to remove backgrounds were optimized using the sideband region, P2
T >

144 MeV/c2, and the signal box was not opened until the cuts were determined.

No events were observed, so an upper limit was set on this lepton number–violating

process.

The hidden signal box method is now a standard technique for searches of

rare decays from known particles, and it has been used by many particle physics

experiments (see, for example, Reference (45)). In most rare decay searches, the

above criteria are generally satisfied, and we recommend that this blind analysis

method always be used in these cases. Rare decay searches are distinguished from

counting experiments where a sizable signal is present, because even if a small

signal is observed, it is generally insufficient to constrain or verify the expected

signal characteristics. Thus the expected signal must be characterized by simulation

in any case, and a blind analysis causes few extra difficulties. The dividing line

between a search for a rare process and a branching fraction or cross-section

measurement is a judgment for each experiment. The important consideration

is whether or not the signal events themselves must be used to ensure that the

experimental efficiency and background rejection are well understood; if so, then

the hidden signal box method is no longer appropriate, and one of the alternative

methods described in Section 3.4 may be used instead.
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Figure 4 The P2
T vs. Mµe distribution of events from the E791

experiment (44). Also shown is the hidden signal box used for the

blind search.

There are several other considerations when using the hidden signal box tech-

nique. First, the hidden box should be chosen somewhat larger than the anticipated

signal region. Because the final signal box may be made smaller than the hidden

box, but not larger, the exact size of the signal box may be optimized during the

course of the blind analysis to maximize the signal-to-background ratio, for in-

stance. Next, in general some background may be in the signal box, and the number

of background events should be predicted from data sideband regions in advance

of opening the box.

If no events lie in the signal box, as in E791, the conclusion is straightforward.

The presence of events in the box does require additional effort, however. If there

is a significant signal, or if the events in the signal box are consistent with the es-

timated background, the results follow directly. Nevertheless, several ambiguous

situations may occur. It is possible that the events in the box are clearly due to

backgrounds, and remained in the signal box owing to the unfortunate omission

of certain cuts. Two options are available in this circumstance: to retain the events,

treating them as background, and derive a limit accordingly; or to remove them

by applying the omitted cut, but also assess the statistical impact of the entire

procedure on the result. Ideally, experiments will consider in advance which pro-

cedure to use. The next quandary may occur if there are more events in the signal

box than expected from backgrounds, but the events are very inconsistent with the
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expected signal properties. The use of a blind analysis does not require that events in

the signal box must absolutely be treated as signal, only that the cuts may not be ad-

justed to reject or include individual events. The excess events may be interpreted as

background, although a posteriori estimation of the signal probability for individ-

ual events is fraught with difficulty, and must be done carefully. Some experiments

use a hidden signal box in conjunction with an unbinned maximum likelihood fit

to the number of signal and background events; such fits incorporate directly the

signal or background probability for each event and hence avoid this issue.

3.2. Hidden Answer Methods

Measurements in which most or all of the data analysis can be separated from the

numerical value of the result are most amenable to the hidden answer blind analysis

technique. The e/m measurement of Dunnington (3) illustrates this technique.

None of the data analysis, evaluations of corrections, or other features of the e/m

measurement were dependent on the unknown angle in his spectrometer, only the

final result. The separation between a narrowly constructed hidden feature and the

bulk of the measurement permits a blind analysis with little risk or difficulty.

In general the hidden answer method works best for experiments measuring

a single precise parameter, when that parameter does not depend directly on the

number of observed events.

3.2.1. HIDDEN DETECTOR PARAMETERS Most modern nuclear and particle physics

experiments are too complex to keep their physics results hidden as Dunnington

did. A single detector parameter is unlikely to be enough to keep the physics answer

hidden, and very often these parameters need to be measured through calibration

runs that cannot wait until the analysis is complete.

One area of fundamental physics in which a hidden detector parameter approach

does work is the laboratory study of gravity. These experiments are often still

performed in the kind of laboratory environment in which ex situ measurements of

the apparatus can determine the final answer. Experimental tests of the gravitational

inverse-square law (46), such as those done at the University of California at

Irvine’s Laboratory for Gravitation Research in 1985, employ this kind of hidden

parameter approach to hide the physics answer.

The Irvine group measured the torque exerted on a torsion balance by a set of test

masses. One pair of 7.3-kg masses (the “far masses”) was positioned 105 cm away,

while a 43-g “near mass” was positioned 5 cm away. The masses and positions

were chosen so that when they were moved to opposing positions, the change in

torque predicted by Newtonian gravity was nearly zero. The Irvine group aimed

for a precision that would allow them to test deviations from Newtonian gravity

as small as one part in 104.

The Irvine group’s measurement relied on precise knowledge of many different

detector parameters—the dimensions of the torsion balance and test masses, the

positions of the test masses, and of course the masses of all test components. To
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prevent themselves from selecting data in a biased way, or from (in their words)

“slackening of analysis effort” when their answer began to meet their expectations

(what we have called a stopping bias), they kept the value of their near mass known

only to 1%—the exact mass known only to someone outside their collaboration.

They used the true value of the mass only when they had completed the analysis and

were ready to report their initial results. Subsequent improvements to the analysis

were made and later published, but they nevertheless published the measurement

made before these improvements were made.

3.2.2. HIDDEN OFFSET The hidden offset method inserts an unknown numerical

offset into the data analysis so that the true measured value is hidden from the

experimenters. This method was first used in the measurement of the direct CP

violation parameter ǫ′/ǫ by the KTeV collaboration at Fermilab (47).

Direct CP violation is measured in neutral Kaon decays using the double ratio

of decay rates for KS and KL into charged π+π− and neutral π0π0 final states, *Erratum

according to the expression

Ŵ(KL → π0π0)
/

Ŵ(KS → π0π0)

Ŵ(KL → π+π−)
/

Ŵ(KS → π+π−)
Re(ǫ′/ǫ) = 1 − 6. 2.

In practice, KTeV fit its data, in kaon energy bins, to extract a value for ǫ′/ǫ, as

well as other parameters relevant to the experiment. The aim for KTeV was to

determine ǫ′/ǫ with a precision of 1–2 × 10−4. This required both a very large

sample of kaon decays, including of order six million KL → π0π0 events, as

well as exquisite control over systematic uncertainties. For instance, KTeV made

an acceptance correction to the ratio of observed KL to KS events, derived from

simulation, of roughly 10%, which had to be understood at the 1 × 10−3 level or

better.

In addition, two prior experiments had measured ǫ′/ǫ to a precision of approx-

imately σǫ′/ǫ ∼ 7 × 10−4, but differed by roughly 2.5σ . Theoretical estimates

ranged from a few 10−4 to perhaps 15 × 10−4. Therefore, KTeV used a blind

analysis to prevent any experimenter’s bias in what is a difficult and systematically

sensitive measurement.

KTeV used a hidden offset directly in its ǫ′/ǫ fit. Instead of fitting for the value

of ǫ′/ǫ, the fit used

ǫ′/ǫ(Hidden) =

{

1

−1

}

× ǫ′/ǫ + C 3.

where C was a hidden random constant, and the choice of 1 or −1 was also hidden

and random. KTeV relied on extensive comparisons of data and simulation to de-

sign event selection criteria, acceptance corrections, and background subtractions.

None of these were affected or impeded by the hidden offset in the fit to ǫ′/ǫ. In

addition, direct but separate comparisons were made between the distributions and

number of events in data and simulation for K → π0π0 and K → π+π−. The one

*Erratum (12 Dec. 2005): See online log at http://arjournals.annualreviews.org/errata/nucl
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comparison that could not be made was to form the double ratio that appears in

the expression for ǫ′/ǫ. Fortunately, KTeV’s method for ǫ′/ǫ almost completely

separated the charged π+π− and neutral π0π0 analyses so that there was no impact

from this restriction.

Both the hidden offset C and the sign choice were made by a pseudo-random

number generator, with a seed chosen by the experimenters. The generator picked

a value of C with a Gaussian distribution, centered at zero, with a width of approx-

imately 60 × 10−4. The +1 or −1 in the hidden value served to hide the direction

ǫ′/ǫ changed as different corrections or selections were applied (48). In practice,

KTeV had to remove the sign choice at an earlier stage to permit a full evaluation

of systematic errors. Nevertheless, the first KTeV ǫ′/ǫ result was unblinded only

one week before the result was made public.

The pseudo-random distribution used for a hidden offset must be chosen with

care. A smooth Gaussian distribution with a width large enough to cover prior

measurements and predictions is often a good choice. The addition of an unknown

sign also hides the direction the result has moved with changes to the analysis. The

hidden offset technique also permits multiple analyses within an experiment. In

this case, the competing groups should begin with different seeds for the pseudo-

random generation of the hidden offset C and the hidden sign. In this way the

analyses are blind with respect to the final result and also with respect to each

other. Because the motivation for multiple analyses is to provide a strong internal

cross-check, this arrangement prevents the groups from comparing their results

directly. To make comparisons, both analyses can switch to a common seed. At

this stage, any problems with the internal cross-check may be addressed without

unblinding the final result.

3.2.3. HIDDEN OFFSET AND HIDDEN ASYMMETRY For many measurements, hid-

ing the answer would be an appropriate approach to prevent a biased result, but is

not sufficient for a blind analysis. In particular, the numerical result may be evident

in certain experimental distributions that display the data. For example, the value

of a lifetime may be inferred from the decay time distribution. A blind analysis is

still possible, but more care is required in constructing it.

A good example of such a measurement is the observation of a CP-violating

asymmetry in B-meson decays by the BABAR experiment at the PEP-II asymmetric-

energy B factory at the Stanford Linear Accelator Center. The CP-violating param-

eter sin 2β is measured by comparing the decay-time distribution for B0 and B̄0

decays into CP-eigenstates, such as J/ψK0
S . The B flavor, B0 or B̄0, is determined

by the flavor-specific decay (or flavor tag) of the other neutral B-meson in the

event. Before CP-violation had been observed, BABAR adopted a blind analysis

to avoid the possibility of bias, especially with respect to the prior expectations

around sin 2β ≡ 0.7 from other weak-interaction measurements and the unitarity

of the CKM matrix (4).

The value for the CP asymmetry is determined in a complex unbinned maximum

likelihood fit to the decay time, 
t, along with information about the flavor tag
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and the kinematics of the B0 decay (49). As such, the hidden offset method, as

described above, can easily be used to hide the value of sin 2β. The hidden offset

method by itself is not enough, however: One of the distributions that must be

examined during the course of the analysis is the decay time itself. For example,

to ensure that the maximum likelihood fit is done correctly, it is crucial that the

probability density function (PDF) used to describe the decay-time is a good match

to the data. In this case, the PDFs are determined using much larger samples of

other exclusively reconstructed B decays, and simulation may be used to verify

that the PDFs will apply for the rarer CP eigenstates. Nevertheless, the decay time

distribution for the CP sample must still be examined. The problem for a blind

analysis is that the decay time distribution shown separately for B0 and B̄0 flavor

tags, as in Figure 5a, uncovers the asymmetry.

To solve this problem, BABAR used two extra restrictions in its blind analysis.

The first restriction, used in the initial sin 2β measurements (49), was to hide the

asymmetry in the time variable used in plots. The asymmetry is evident in two

ways in the time distribution: as a difference between B0 and B̄0 flavor tags and

as an asymmetry around 
t = 0. Both visible asymmetries can be obscured by

using a hidden 
t variable, defined as:


t(Hidden) =

{

1

−1

}

× sTag × 
t + Offset. 4.

The variable sTag is equal to 1 or −1 for B0 or B̄0 flavor tags. Because the asymmetry

is nearly equal and opposite for the different B flavors, the asymmetry is hidden by

flipping one of the distributions. The asymmetry of the individual 
t distributions

around zero is hidden by the unknown offset. The result is shown in Figure 5b,

where the remaining difference in curves is due to the charm lifetime not CP

violation. Although the asymmetric shape of the distribution is still visible in these

curves, in an actual sample, limited by statistics, the asymmetry is effectively

hidden by the statistical uncertainty of the mean.

Of course, in the actual fits to the data, the true 
t is used, not the hidden 
t.

This technique allowed BABAR to look at the 
t distribution, but remain blind

to any CP asymmetry. In addition, there was one extra restriction: The resulting


t distribution from the fit could not be overlaid directly on the data, because

the smooth PDF would effectively unblind the asymmetry. Instead the residuals

between data and the smooth PDF were used to assess the quality of the fit.

The BABAR experiment has regularly updated its measurement of sin 2β as

more data has been collected. By the third public result, a simpler method of

hiding the visual asymmetry was adopted. Instead of using the hidden 
t variable,

the only 
t distribution used was for the combination of B0 and B̄0 flavor tags.

The asymmetry completely vanishes if no distinction is made between the CP

eigenstates. With the experience accumulated over the course of repeating this

analysis, it was clear that the combined 
t distribution was adequate for checking

the maximum likelihood fit prior to unblinding.
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3.2.4. DIVIDED ANALYSES As discussed in Section 2, the analysis of data by in-

dependent groups is a very powerful tool for uncovering errors, for encouraging

creativity in the analysis process, and for instilling a healthy sense of competition

to produce answers in a timely way. In this review, we do not include this ap-

proach as a method of blind analysis if each group is able to calculate a physically

meaningful answer based on their own work.

One exception is the case where the independent groups cannot by themselves

calculate a physics answer—only the combination of two (or more) pieces of the

analysis can do so, and this combination is never made until the individual analyses

have been completed.

A very nice example of this approach was the measurement of the anomalous

magnetic moment of the muon, performed by the BNL g−2 Collaboration (50).

The determination of the anomalous magnetic moment aµ relies on two completely

independent measurements: the angular frequency ωa of the difference in the

muon’s spin precession frequency and the cyclotron frequency, and the free proton

NMR frequency ωp, which yields a precise measurement of the magnetic field B.

Two independent groups were charged with the analysis—one that measured only

ωa and one that measured ωp. To discuss results between the two groups, each

group had its own hidden offset, which it applied to its measurement. Only when

both analyses were complete were the two results combined to provide the final

measurement.

3.3. Adding or Removing Events

Measurements of cross sections, branching ratios, or fluxes are typically based

on counting the number of events passing all analysis cuts. As discussed in

Section 3.2, a hidden answer method can be difficult to use in such cases, be-

cause there is no simple offset that can hide the number of events. Although a

hidden signal box approach like that described in Section 3.1 can be used for many

of these measurements, it prevents the experimenter from being able to examine

the characteristics of the signal, and hence carries the kind of risk discussed in Sec-

tion 2: a large and obvious signal can be missed while the experimenters examine

background details that later turn out to have little impact on the measurement.

In addition, a hidden signal box approach assumes that the characteristics of the

backgrounds are known well enough that nothing unexpected will be discovered

when the signal box is opened.

A very general approach to blind analysis which is appropriate for counting

experiments is to spoil the event count itself in an unknown way. The spoiling can

be done by adding an unknown set of false signal events, by removing a small

unknown number of all events from the data set, or by doing both.

3.3.1. ADDING UNKNOWN NUMBERS OF EVENTS If an unknown number of false

signal events can be added to a data sample, an analysis can examine an entire

data set while remaining blind to the physical measurement being made. In such
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an approach, the experimenters tag the false events in some way and the tag is

then used to remove them only when the analysis has been completed. To ensure

that the number of added events remains unknown, it is critical that the false

events mimic signal events as closely as possible. In some cases, a Monte Carlo

simulation that can produce realistic-looking data—with all the associated noise

and instrumental effects—can be used to provide a false signal event sample. The

Soudan 2 experiment (51), for example, was able to produce simulated events

which looked (to a human eye) indistinguishable from real detector events. They

inserted the simulated events into the data set and removed them only when the

analysis was complete. Very often, however, simulations are not so realistic, and a

better approach may be to add true detector events from a sample that looks nearly

identical to the signal.

One example of such an approach was the Sudbury Neutrino Observatory (SNO)

collaboration’s second direct measurement of the total active solar 8B neutrino flux

(42). The measurement was made in SNO’s second phase of operation, in which

the sensitivity to neutrons produced via neutral current (NC) neutrino interactions

with heavy water (ν + d → n + p + ν) was enhanced by the addition of ∼2 tons

of NaCl. The goal of the blind analysis in the second phase of the experiment was

to ensure that the measurement would be independent of the previously published

first phase measurement.

The primary detected signal from the NC reaction is the capture of a neu-

tron on the dissolved Cl in the heavy water. To hide the answer, SNO added

an unknown number of tagged neutrons that were not the result of the NC pro-

cess by solar neutrinos. Cosmic ray interactions within the SNO detector pro-

vided just such a tagged neutron sample, and except for the preceding muon,

they looked nearly identical to the signal neutrons. Figure 6 illustrates the sim-

ilarity of the reconstructed energy distribution of these “muon-follower” events

compared to data from a deployment of a 252Cf neutron source and simulated

neutral current solar neutrino events (N. McCauley, SNO Collaboration, private

communication).

These muon-follower events are normally removed from the final data sample by

applying an offline veto to all events falling no more than 20 seconds after a muon

event. With NaCl in the detector, the time between the liberation of a neutron from

a deuteron in the heavy water and its subsequent capture on Cl is roughly 5 ms. To

accept a small number of these neutrons into the final sample, a small window was

cut out from the 20 second veto. The window was selected to be near enough to the

5 ms neutron capture time that it would add a number of neutrons that was on the

order of the number expected from the neutrino neutral current interactions. Both

the location of the window and its width were kept hidden from the collaboration,

and so the number of added neutrons was not known until the analysis was complete

and the events removed from the data set. The first phase measurement by SNO of

the total active 8B neutrino flux was 5.09+0.44
−0.43(stat.)+0.46

−0.43(syst.) × 106 cm−2 s−2,

and the result of the blind analysis, after unbinding, in the second phase yielded

4.90 ± 0.24(stat.)+0.29
−0.27(syst.) × 106 cm−2 s−2, in excellent agreement.
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Figure 6 Comparison of the visible energy from neutrons created by cosmic ray

interactions in the Sudbury Neutrino Observatory to neutron calibration source data

and Monte Carlo–simulated 8B solar neutrino neutral current (NC) events. (Figure

courtesy of Neil McCauley, SNO Collaboration.)

3.3.2. REMOVING UNKNOWN NUMBERS OF EVENTS When there is no tagged sam-

ple of signal-like events to add to a data set, the complementary approach—

removing an unknown number of events—can be almost as effective. Unlike a

“data prescaling” method in which the majority of the data set is kept blind (see

Section 3.4), the fraction of removed events in this method need not be large, as

long as its intentional uncertainty is large enough to prevent the experimenters

from deriving a meaningful answer.

The method can be particularly powerful when used in conjunction with the

approach described in the previous section. Adding an unknown number of events

still allows an experimenter to have some information about the number of true

signal events in the data set—they can never be larger than the number measured

before the additional events are removed. There is thus a small possibility for

bias; if the current count of events is too small given that events have been added

to the data set by hand, then searches for problems in acceptance measurements

may be given more weight than, for example, searches for additional sources

of background. Removing an unknown fraction of events, however, gets around

the problem: One does not know which effect is bigger and so the value of the

measurement before the blind criteria are removed holds no information at all,
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and thus there is no possibility of bias. One of the earliest uses of an unknown

prescale factor was by experiment E871 at BNL. E871 was the successor to the

E791 rare K-decay search that first published a hidden signal box blind result (see

Section 3.1). In measuring the branching ratio KL → µ+µ−, E871 prescaled their

normalization sample, keeping a fraction of events known only to lie between 90–

95% (52). Another example of this approach was the neutrino flux measurement by

SNO described in the previous section: In addition to adding an unknown number

of neutrons, the collaboration removed 20–40% (the exact fraction of course being

unknown) of all the events from the data set. The events were then added back to

the data sets, and the fits to extract the fluxes re-done, shortly before publication.

The method can also be used effectively on its own, and is simple and general

enough to work in almost any experiment. The one potential problem is handling

time-correlated data, which is often present in non-accelerator experiments. To

deal with this, the data needs to be divided into blocks, and rather than removing

individual events from the data set, a fraction of the blocks are removed.

3.4. Data Prescaling

Perhaps the most direct blind analysis is one in which the entire analysis chain—

cuts, calibrations, acceptance calculations, normalizations—are developed without

any reference to the physics data set at all. Such a scenario could arise if the

complete analysis could be based on a Monte Carlo simulation, for example, and

then applied without change to the data. A second case might be an experiment that

has already analyzed a first run of data, in which the experimenters feel confident

in applying the identical analysis to a new run.

Neither of these two cases is often practical—rarely is the Monte Carlo sim-

ulation trusted enough to use in the creation of an entire analysis chain, nor is a

new run of data likely to be so identical to the first that one is willing to blindly

(and blithely) apply an older analysis. The same benefits as this completely blind

approach can be achieved, however, if the analysis is developed on a prescaled

fraction of the data set and then applied to the remainder. Unlike the small removal

of events described in the previous section, the prescaling fraction in this case is

known, Because what is blind here is the majority of the data set.

By itself, data prescaling only avoids statistical bias—the tuning of cuts to

enhance statistical fluctuations in the data. For an experiment of limited lifetime or

low statistics, this can be a potentially damaging source of bias as there is no way

to determine after the fact whether there has been any unintentional tuning—there

is only one instance of the data set to study.

Data prescaling relies on the fact that the set of cuts applied is asymptotically

unbiased—if applied to an infinite data set, they have no preference for accepting

non-signal events that happen to lie in the signal region. Imagine, for example, that

it is found that by cutting harder on a reconstructed track χ2, the significance of an

invariant mass peak grows slightly. The growth may simply be due to the fact that

by moving the cut, the number of events in the peak fluctuates high, as depicted in
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Figure 3. If the cut is then fixed and applied to a much larger data set, the cut will

have almost no preference for events in the peak region if there are no real signal

events.

Several assumptions are inherent in any data prescaling scheme:

1. The prescaling is done in an unbiased way.

2. Any data sample is the same as any other, or time-dependent variations

have characteristic scales that can be properly sampled or contained within

a subset of the data that spans those characteristic times.

3. The statistics of the prescaled sample are large enough to identify back-

grounds, but small enough that they will not bias the result for the entire

data set.

The first assumption almost always holds, unless one picks a prescaling scheme

that is based on some criteria within the data set itself. A poor choice might be to

look only at data when the trigger rates are high, for example. The safest scheme

randomly decides whether an event or set of events falls within the prescale sample

or not. For some experiments—particularly non-accelerator experiments—time

correlations between events can be important, and thus blocks of data need to

be prescaled rather than individual events.

The second assumption is not necessarily always true. It is rare that any sample

of data is exactly the same as any other—data can be taken during times when

detector subsystems are offline, or at different beam intensities, or even different

times of day. Any external variation that can change the background levels or the

detector sensitivity or acceptance can make a prescaling scheme fail if the variations

are not reasonably sampled. Here “reasonably sampled” means that the sampling

frequency—how often an event or block of data is selected to be in the prescaled

sample—is higher than the rate of known variations in detector or beam conditions.

The third assumption, strictly speaking, is almost always false. Determining

that the background in a pre-scaled sample is zero, for example, provides a very

weak limit on the background levels inside the remainder of the data set, unless

the prescaled sample is a large fraction of the full data set. In practice, one uses

the smallest data sample possible that makes the first two assumptions true, and

then determines whether the upper limit on residual backgrounds in the full data

set is acceptable. If one feels that the prescale fraction needs to be large in order

to measure backgrounds—in excess of 30%—then in principle the prescaled frac-

tion should be discarded in the calculations of the final results, as otherwise any

statistical bias in the analysis of the prescaled sample will have a nontrivial effect

on the final answer.

Many experiments have used data prescaling either alone or in combination with

other techniques. The BNL E888 experiment (53), a search for the doubly strange H

dibaryon, used a hidden signal box technique in combination with a 10% prescaled

sample of data within the signal box. The Neutrino Oscillation Magnetic Detector

(NOMAD) experiment, which searched for νµ → ντ oscillations at CERN, had
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an effective prescaling scheme in which they analyzed openly a first run of data

that constituted 20% of the data set, and then analyzed a much higher statistics run

using a hidden signal box technique (54). The E787 experiment at BNL, which

searched for the rare decay K + → π+νν̄, used a hidden signal box as their primary

blind approach, but then divided the events outside the signal box into a 1/3 and

2/3 sample. E787 then developed their analysis of backgrounds on the 1/3 sample

and applied that analysis to the remaining 2/3 to provide the final background

measurement (45). In its first publication, SNO (55) used a prescale technique as a

test of gross statistical bias—30% of the data was kept in reserve and the analysis

developed on the other 70% applied to the hidden sample. When no significant

differences were found between the 70% and the 30% data samples, results from

the complete data set were published. The Laser Interferometer Gravitational Wave

Observatory (LIGO) experiment used a 10% sample (56) for analysis optimizations

in their search for gravity wave bursts. This subsample was then discarded in the

final results. The MiniBooNE neutrino experiment currently uses a data prescaling

scheme of just 0.5% for all data, in addition to a hidden signal box approach (R.G.

Van de Water and H.A. Tanaka, private communication).

One question that can arise in treating the hidden sample as a blind data set

is, how blind is blind? As the events are recorded, on-line event displays and

other monitors are often viewed by collaborators. Does some blindness scheme

need to be imposed on these? As discussed in Section 2, a blindness scheme

is not intended to keep experimenters from looking at the data, but to keep the

results of the analysis from influencing the analysis itself. For most experiments,

event displays and other monitors carry no information about the physics results,

and therefore do not influence the analysis itself. The MiniBooNE experiment is

one example of this—low-level event and electronic channel properties can be

examined throughout the data set. The possible exceptions to this guideline are

open-ended rare process searches, where one is looking for unique and unusual

events. Noticing a few strange events by hand-scanning is likely to influence a

later search for new physics; it is hard to design a new analysis that doesn’t ensure

that these interesting events make it into the final sample.

Finally, in general it may be difficult to use a blind analysis method in searches

for new particles. However, there are also a number of cases in which new par-

ticles, observed as bumps in invariant mass distributions, were ultimately found

to be experimental artifacts (57). Often such statistical fluctuations do not have

physical characteristics—the width of the bump, for example, is found to be in-

consistent with the expected detector resolution. In addition, the evaluation of the

statistical significance of the bump depends on the measure of the search space or

the number of places a bump could have appeared (the “trials” problem). Given

the vagaries of both of these issues, searches for new particles, or bump hunting,

would clearly benefit from a blind approach. Unfortunately, the hidden signal box

technique cannot readily be applied, because the mass of the particles is obvi-

ously not known. Of the methods described, only the data division method may be

readily used. Despite the limitations described above, this method for determining
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experimental selections and analysis techniques may help prevent some purely

statistical artifacts. However, creative new approaches may be possible, and we

urge experimenters making new particle searches to consider new blind methods.

4. CONCLUSION

In his speech Cargo Cult Science (58), Richard Feynman warns that

It’s a thing that scientists are ashamed of—this history—because it’s apparent

that people did things like this: When they got a number that was too high

above Millikan’s, they thought something must be wrong—and they would

look for and find a reason why something might be wrong. When they got a

number closer to Millikan’s value they didn’t look so hard. . .

The first principle is that you must not fool yourself—and you are the easiest

person to fool.

Experimenter’s bias represents one way to fool yourself, and blind analysis pro-

vides the solution. By describing the application of different blind analysis methods

to a range of measurements, including both the motivations and potential prob-

lems, we hope that this review will be useful as a resource for experiments and will

promote the current trend towards blind analysis in nuclear and particle physics.
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Figure 2 The history of four measurements compared to published averages before

each measurement was made (dashed curves) and the currently accepted value (dot-

ted lines). The space between the dashed curves indicates the 1σ uncertainties on the

published values at the time each measurement was made.
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Figure 3 A cartoon demonstrating the variation in the central value of a measure-

ment due to fluctuations even when the sensitivity for signal is reasonably flat.
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Figure 5 The ∆t distributions for B decays into CP eigenstates, for sin2β = 0.75

and with the B0 flavor tagging and vertex resolution which are typical for the

BABAR experiment. a) The number of B0 (solid line) and B
- 0 (dashed line) decays

into CP eigenstates as a function of ∆t. b) The hidden ∆t distributions for B0 (solid

line) and  
-
B0 (dashed line).
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and Gary Shiu 71

BLIND ANALYSIS IN NUCLEAR AND PARTICLE PHYSICS,
Joshua R. Klein and Aaron Roodman 141

STUDY OF THE FUNDAMENTAL STRUCTURE OF MATTER WITH AN

ELECTRON-ION COLLIDER, Abhay Deshpande, Richard Milner,

Raju Venugopalan, and Werner Vogelsang 165

LITTLE HIGGS THEORIES, Martin Schmaltz and David Tucker-Smith 229

PHYSICS OF ULTRA-PERIPHERAL NUCLEAR COLLISIONS,
Carlos A. Bertulani, Spencer R. Klein, and Joakim Nystrand 271

LEPTOGENESIS AS THE ORIGIN OF MATTER, W. Buchmüller,

R.D. Peccei, and T. Yanagida 311

FEMTOSCOPY IN RELATIVISTIC HEAVY ION COLLISIONS: TWO

DECADES OF PROGRESS, Michael Annan Lisa, Scott Pratt,

Ron Soltz, and Urs Wiedemann 357

SMALL-X PHYSICS: FROM HERA TO LHC AND BEYOND,
Leonid Frankfurt, Mark Strikman, and Christian Weiss 403

ASCERTAINING THE CORE COLLAPSE SUPERNOVA MECHANISM:
THE STATE OF THE ART AND THE ROAD AHEAD,
Anthony Mezzacappa 467

DIRECT PHOTON PRODUCTION IN RELATIVISTIC HEAVY-ION

COLLISIONS, Paul Stankus 517

TOOLS FOR THE SIMULATION OF HARD HADRONIC COLLISIONS,
Michelangelo L. Mangano and Timothy J. Stelzer 555

vii

A
n
n
u
. 
R

ev
. 
N

u
cl

. 
P

ar
t.

 S
ci

. 
2
0
0
5
.5

5
:1

4
1
-1

6
3
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

 A
cc

es
s 

p
ro

v
id

ed
 b

y
 M

ah
id

o
l 

U
n
iv

er
si

ty
 o

n
 0

1
/3

1
/1

5
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.


