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SUCCESSFUL REPLICATION VERSUS 
STATISTICAL SIGNIFICANCE

By J essica  U t t s

ABSTRACT: The aim of this paper is to show that successful replication in parapsychology should not be equated with the achievement of statistical significance, whether at the .05 or at any other level. The p  value from a hypothesis test is closely related to the size of the sample used for the test; so a definition of successful replication based on a' specific p  value favors studies done with large samples. Many “nonsignificant” studies may simply be ones for which the sample size was not large enough to detect the small magnitude effect that was operating. Conversely, “significant” studies may result from a small but conceptually insignificant bias, magnified by a very large sample.The paper traces the history of die definition of statistical significance in parapsychology and then oudines the problems with using hypothesis-testing results to define successful replications, especially when applied in a cookbook fashion. Finally, suggestions are given for alternative approaches to looking at experimental data. These include calculating statistical power before doing an experiment, using estimation instead of, or in conjunction with, hypothesis testing, and implementing some of the ideas from Bayesian statistics.

Replication is a major issue in parapsychology. Arguments about 
whether a given research paradigm has been successful tend to fo
cus on what the replication rate has been. For example, the recent 
review o f parapsychology by the National Research Council includes 
statements such as “ .. .o f these 188 [RNG] experiments with some 
claim to scientific status, 58 reported statistically significant results 
(compared with the 9 or 10 experiments that would be expected by 
chance)” (Druckman & Swets, 1988, p. 185). In each section, the 
report critically evaluates “significant” experiments and ignores 
“nonsignificant” experiments. The extent to which nonsignificant 
experiments are ignored is exemplified by the following oversight, 
in which the total number of studies is equated with the number of 
“successful” studies: “Of the thirteen scientifically reported experi
ments [of remote viewing], nine are classified as successful in their 
outcomes by Hansen et al. . . .  As it turns out, all but one of the nine 
scientifically reported studies of remote viewing suffer from the flaw 
of sensory cueing” (p. 183, emphasis added). Apparently the au
thors decided that the four experiments that did not attain a p value 
of .05 or less did not even warrant acknowledgment.



306 The Journal o f Parapsychology

The practice of defining a successful replication as an experi
ment that attains a p value of .05 or less is common in parapsychol
ogy, psychology, and some other disciplines that use statistics. How
ever, like many other conventions in science, it is based on a series 
of historical events rather than on rational thought. In this paper, I 
will trace some of the history leading to this definition of a “suc
cessful" experiment, outline some problems with this approach, and 
suggest some methods that parapsychologists should consider in ad
dition to the usual hypothesis-testing regimen. Rao (1984) and Hon- 
orton (1984) have discussed similar problems and solutions in the 
context of psi experiments.

H isto ry

It has not always been the case among parapsychologists that an 
experiment was deemed successful if it reached a significance level 
of p = .05. In 1917, John Edgar Coover, who was the Thomas Wel- 
ton Stanford Psychical Research Fellow at Stanford University from 
1912 to 1937, published a book with the results from several exper
iments he had conducted up to that time (Coover, 1917/1975). Al
though hypothesis testing as we know it today had not yet been for
malized, he essentially conducted tests on many facets of this data 
and found no evidence for psi that was convincing to him. His con
clusions regarding these results are typified by an example he gave 
in which the hit rate for 518 trials was 30.1%, when 25% was ex
pected by chance (exact p value = .00476):

We get 0.9938 [p-value = 1 — 0.9938 = 0.0062] for the probability that
chance deviations will not exceed this limit [of 30.1 percent]__ Since
this value, then, lies within the field of chance deviation, although the 
probability of its occurrence by chance is fairly low, it cannot be ac
cepted as a decisive indication of some cause beyond chance which op
erated in favor of success in ■ guessing, (p. 82)
He then revealed what level of evidence would convince him that 

nonchance factors were operating: “ . . .  if we meet the requirement 
o f 'a  degree of accuracy usual in scientific work by making P = 
0.9999779, when absolute certainty is P = 1, then [there is] satisfac
tory evidence for some cause in addition to chance” (p. 83). In other 
words, he was defining significance with a p value of 2.21 X 10-5.

Coover was not alone in requiring that results conform to arbi
trarily stringent significance levels. In 1940, when Rhine et al. pub
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lished Extra-Sensory Perception After Sixty Years, they included the fol
lowing definitions in the glossary:

jb-value = probability of success in each trial
SIGNIFICANCE: When the probability that chance factors alone pro
duced a given deviation is sufficiently small to provide relative certainty 
that chance is not a reasonable expectation, the deviation is significantly 
above or below the chance level. Among ESP results, this is arbitrarily 
taken to mean a deviation in the expected direction such that the critical 
ratio is 2.5 times the standard deviation (or four times the probable er
ror) or greater, (p. 423-424)

Thus, significance was defined by z 3= 2.5, or p ^  .0062.
Seventeen years later, in their book Parapsychology: Frontier Sci

ence of the Mind, Rhine and Pratt (1957) suggested that .01 was the 
appropriate threshold:

In order for such judgments to have the necessary objectivity, a criterion 
of significance is established by practice and general agreement among 
the research workers in a particular field__ Most workers in parapsy
chology accept a probability of .01 as the criterion of significance, (p. 
186)
Finally, the Journal of Parapsychology has included a definition of 

significance in its glossary for many years, but the appropriate p 
value has fluctuated back and forth between .01 and .02, finally set
tling at .02 in 1968. The following are excerpts from those glossar
ies:

December 1949: “A numerical result is significant when it equals 
or surpasses some criterion of degree of chance improbabil
ity. Common criteria are: a probability value of .01 or less.”

March 1950 to June 1957: “The criterion commonly used in this 
Journal is a probability value of .02 or less.”

September 1957: “The criterion commonly used in this Tournal 
is P = .01.”

December 1957 to December 1967: “The criterion commonly 
used in parapsychology today is a probability value of .01 or 
less.”

March 1968 to December 1986: “The criterion commonly used 
in parapsychology today is a probability value of .02 (odds of
50 to 1 against chance) or less__ Odds of 20 to 1 (probability
of .05) are regarded as strongly suggestive.”
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March 1987: The term significance no longer appears in the glos
sary.

By the mid-1980’s, despite the value of .02 given in the Journal 
of Parapsychology, significance seemed to have been determined to 
correspond to a p value of .05. For example, in their bibliography 
of remote-viewing research, Hansen, Schlitz, and Tart (1984) claim: 
“We have found that more than half (fifteen out of twenty-eight) of 
the published formal experiments have been successful, where only 
one in twenty would be expected by chance.” As mentioned in my 
introduction, .05 was the value used by the National Research Coun
cil in their recent evaluation of parapsychology. Both Hyman (1985) 
and Honorton (1985) used .05 as the criterion for a successful ganz- 
feld study. In discussing the Schmidt REG experiments, Palmer 
(1985) implicitly used .05 as the cut-off for significance by observ
ing: “Based on Z-tests. . .  25 of the 33 (76%) were significant at the 
.05 level, two-tailed. In two of the seven non-significant studies__ ”
(p. 102).

This definition of significance is obviously not unique to para
psychology. A popular introductory textbook in psychology states 
that:

Psychologists used a statistical inference procedure that gives them an 
estimate of the probability that an observed difference could have oc
curred by chance. This computation is based on the size of the differ
ence and the spread of the scores. By common agreement, they accept 
a difference as “real” when the probability that it might be due to 
chance is less than 5 in 100 (indicated by the notation p < .05). A sig
nificant difference is one that meets this criterion__ With a statistically
significant difference, a researcher can draw a conclusion about the be
havior that was under investigation. (Zimbardo, 1988, p. 54)
Given the weight that has been attached to .05 as the criterion 

for significance, one would think that it resulted from careful con
sideration o f the issue by statisticians and psychologists. Unfortu
nately, such is not the case. It's roots apparently lie in the following 
passage published in 1926 by one of the founders of modern statis
tics, Sir Ronald A. Fisher:

It is convenient to draw the line at about the level at which we can say: 
“Either there is something in the treatment, or a coincidence has oc
curred such as does not occur more than once in twenty trials.” . ..  If 
one in twenty does not seem high enough odds, we may, if we prefer 
it, draw the line at one in fifty (the 2 per cent point), or one in a 
hundred (the 1 per cent point). Personally, the writer prefers to set a
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low standard of significance at the 5 per cent point, and ignore entirely 
all results which fail to reach that level. A scientific fact should be re
garded as experimentally established only if a properly designed exper
iment rarely fails to give this level of significance. (Fisher, 1926, p. 504; 
also quoted in Savage, 1976, p. 471)

Thus began the belief that an experiment is successful only if the 
null hypothesis can be rejected using a  = 0.05. As an immediate 
consequence of this belief, Fisher and his followers created .tables of 
F statistics that included values only for tail areas of .05 and .01. 
Since researchers did not have access to computer algorithms to de
termine intermediate p values, success came to be measured in terms 
of these two values alone.

Problem s w it h  H y po th esis  T e stin g  

Misconceptions about p Values
Most modern research reports include p values instead of simply 

discussing whether an experimental result is significant at a pre
specified level. Although this is somewhat better than the old 
method of “one star or two” (corresponding to a significant result 
at .05 or .01, respectively), it is still a misleading way to examine 
experimental results.

The problem is that many researchers interpret p values as being 
related to the probability that the null hypothesis is true. Even some so
phisticated researchers tend to think that an extremely small p value 
must correspond to a very large effect in the population and that a 
large p value (say >  .10) means that there is no effect. In other 
words, the size of the p value is incorrectly interpreted as the size of the 
effect. It should be interpreted as the probability of observing results 
as extreme or more so than those observed, if  there is no effect.

To see how arbitrary it is to base a decision about the truth or 
falsity of a statement on a p value, consider a binomial study based 
on a sample of size n which results in z = 0.30, p value = .38, one- 
tailed. One would probably abandon the hypothesis under study 
and decide not to pursue the given line of research. Now suppose 
that the study had been run with a sample of size lOOn instead and 
resulted in the exact same proportion of hits. Then we would find 
z = 3.00, p  value = .0013. These results would be regarded as 
highly significant!
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As another example, consider a chi square test for randomness 
based on a sequence of n numbers, each of which can take the val
ues 1, 2, . . .  10. Suppose that the test results in a chi-square value of 
11.0, df = 9, p value = 0.28. Now suppose the sequence was three 
times as long but the propordons of each digit remained the same. 
Then each term in the numerator of the chi-square stadsuc would 
be multiplied by 32, whereas each term in the denominator would 
only be multiplied by 3. The degrees of freedom would not change, 
but the new result would be x2 = 33.0, df = 9, p value = .00013. 
In the first case, the conclusion would be that the sequence was suf
ficiently random, yet a sequence three times as long with the same 
pattern would be seen to deviate considerably from randomness!

This problem was recognized more than 50 years ago by Berk- 
son (1938):

We may assume that it is practically certain that any series of real ob
servations does not actually follow a normal curve with absolute exactitude 
in all respects, and no matter how small the discrepancy between the 
normal curve and the true curve of observations, the chi-square P will 
be small if the sample has a sufficiently large number of observations in 
it.
If this be so, then we have something here that is apt to trouble the 
conscience of a reflective statistician using the chi-square test. For I sup
pose it would be agreed by statisticians that a large sample is always 
better than a small sample. If, then, we know in advance the P that will 
result from an application of a chi-square test to a large sample, there 
would seem to be no use in doing it on a smaller one, but since the 
result of the former test is known, it is no test at all. (pp. 526-527, 
emphasis in original)

Replication
Very often researchers simply do not understand the connection 

between the p value and the size of the sample. For example, Ro
senthal and Gaito (1963) asked nine faculty members and ten grad
uate students in a university psychology department to rate their 
degree of belief or confidence in results of hypothetical studies with 
various p values and with sample sizes of 10 and 100. Given the 
same p value, one should have more confidence in a study with a 
smaller sample because it would take a larger underlying effect to 
obtain the small p value for a small sample. Unfortunately, these

M
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respondents demonstrated that they were far more likely to believe 
results based on the large sample when the p  values were the same. 
(For a discussion of this example and some other problems with hy
pothesis testing in psychology, see Bakan, 1967.)

One consequence of this misunderstanding is that researchers 
misinterpret what constitutes a “successful replication” of an exper
iment. Tversky and Kahneman (1982) asked 84 members of the 
American Psychological Association or the Mathematical Psychology 
Group the following question:

Suppose you have run an experiment on 20 subjects, and have obtained 
a significant result which confirms your theory (z = 2.23, p < .05, two- 
tailed). You now have cause to run an additional group of 10 subjects. 
What do you think the probability is that the results will be significant, 
by a one-tailed test, separately for this group? (p. 23)
The median answer given was .85. Only 9 of the 84 respondents 

gave an answer between .40 and .60. Assuming that the value ob
tained in the first test was close to the true population value, the 
probability of achieving a p value ^  .05 on the second test is actually 
only about .47. This is because the sample size in the second study 
is so small. The effect would have to be quite large in order to be 
detected with such a small sample.

In  the same survey, Tversky and Kahneman also asked:
An investigator has reported a result that you consider implausible. He 
ran 15 subjects, and reported a significant value, t = 2.46. Another in
vestigator has attempted to duplicate his procedure, and he obtained a 
nonsignificant value of t with the same number of subjects. The direc
tion was the same in both sets of data. You are reviewing the literature. 
What is the highest value of t in the second set of data that you would 
describe as a failure to replicate? (p. 28)
The majority of respondents considered t = 1.70 as a failure to 

replicate. But if the results from both studies are combined, then 
(assuming equal variances) the result is t = 2.94, df = 29, p value 
= .003. The paradox is that the new study decreases faith in the orig
inal result if viewed separately but increases it when combined with 
the original data!

This misunderstanding about replication is quite prevalent in the 
psi literature, as demonstrated by the emphasis on successful repli
cation, where success is defined in terms of a specific p value, re
gardless of sample size. As an example of how unnecessarily dis
couraging this can be for researchers, I have shown elsewhere (Utts,
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1986) that if the true hit rate in a binomial study (such as a ganzfeld 
experiment) is actually 33%, and 25% is expected by chance, then a 
study based on a sample of size 26 should be expected to be “suc
cessful” (p =£ .05) only about one fifth of the time. Even a study 
based on a sample of size 100 should be “successful” only about half 
of the time. It is no wonder that there are so many “unsuccessful” 
attempts at replication in psi.

As another example of the paradoxical nature of this definition 
of replication, consider the “unsuccessful” direct-hit ganzfeld studies 
covered by the meta-analyses of Hyman (1985) and Honorton 
(1985). Using those studies with />(hit) = .25, there were 13 out of 
24 that were nonsignificant, a  = 0.05, one-tailed. (See Honorton, p. 
84, Table Al.) But when these 13 “failures” are combined, the re
sult is 106 hits out of 367 trials, z = 1.66, p = .0485!
Problem xuith Point Null Hypotheses

A point null hypothesis is one that specifies a particular value 
(“point”) as the one being tested. Most hypothesis testing is done 
with point null hypotheses. The problem with this approach is that 
any given hypothesis is bound to be false, even if just by a minuscule 
amount. For example, in a coin-tossing experiment, the null hy
pothesis is that the coin is fair, that is to say, H„: P = .5000000. 
This is never precisely true in nature. All coins and coin-tossers in
troduce a slight bias into the experiment. This slight bias can pro
duce a very small p value if the sample size is large enough. If, for 
example, the true probability of heads is .5001, and the observed 
proportion o f heads falls right at this value, then the null hypothesis 
will be rejected at .05 if the sample size is at least 6.7 x 107. As long 
as there is any bias at all, the p value can be made arbitrarily small 
by taking a large enough sample.

In practice, this problem was rarely serious before it became pos
sible to collect large amounts of data rapidly using computers. Stat
isticians have often used ESP as an example of one of the few cases 
where it really is possible to specify an exact value for the null hy
pothesis. But even this view is changing, as shown by this comment 
from a recent issue of a popular statistics journal:

It is rare, and perhaps impossible, to have a null hypothesis that can be 
exacdy modeled as 0 = 0O. One, might feel that hypotheses such as 

H0: A subject has no ESP, or 
H„: Talking to plants has no effect on their growth, 

are representable as exact (and believable) point nulls, but, even here,



Replication vs. Significance 313
minor biases in the experiments will usually prevent exact representa
tions as points. (Berger & Delampady, 1987, p. 320)
In summary, hypothesis testing as it is currently formulated 

tends to be a misleading approach to examining data. Small samples 
tend to lead to “nonsignificant” studies, whereas large samples can 
lead to extremely small p values, even if the null hypothesis is only 
slighdy wrong. Many researchers do not understand the meaning of 
a p value and do not understand how closely replication issues are 
ded to sample size. Arguments about replication should not be 
based on p  values alone.

So l u t io n s

Power Calculations
If a hypothesis test is to be done at all, a researcher should at 

least determine in advance whether it is likely to be successful. The 
statistical power of a test is the probability that the null hypothesis 
will be rejected. It obviously depends on what the true underlying 
state of nature is. Because this information cannot be known (or 
there would be no point in doing the experiment), it is a good idea 
to look at power for a variety of possibilities before conducting the 
experiment. The results will tell you whether you are likely to be 
able to reject the null hypothesis, using the sample size you have 
planned, for specific values of the magnitude of the effect.

Statistical power is a function of the sample size, the true under
lying magnitude of the effect, the level of significance for which the 
experiment would be considered a success, and the method of 
analysis used. It does not depend on the data.

As an example, suppose you are planning to conduct a test of 
the hypothesis H0: P = .25 using a series of 10 independent trials. 
Power calculations would proceed as follows:

1. Find the cutoff point for the number of hits that would lead 
to rejection of H0. In this case, the p value for 5 hits is .08, and for 
6 hits it is .02, so 6 hits would probably be required to reject the 
null hypothesis.

2. Power for a specific alternative is the probability that the null 
hypothesis would be rejected if that alternative value is true. In this 
case, power = P(6 or more hits). This can be computed directly, 
using the binomial formula, for any specified hit rate. Here are 
some examples:
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Hit rate Power = P(6 or more hits)
0.30 .047
0.33 .073
0.40 .166
0.50 .377

Notice that even if the true hit rate is 50% instead of the chance level 
of 25%, the chances of a “successful” replication are poor, that is, only 
37.7%. In most psi applications, 30% or 33% is probably a more re
alistic approximation to the true hit rate, so there would be a very 
small chance -of having this experiment succeed with only 10 trials.

As a second example, suppose you are planning to run the same 
experiment with 100 trials and are planning to use the normal ap
proximation instead of an exact test. Further, suppose you will re
ject the null hypothesis if z ^  1.645, where z is the usual critical 
ratio, corrected for continuity: z = (number of hits — 0.5 —
25)/ V (l00 x .25 x .75) = ,23(number of hits -  25.5). Using 
simple algebra, note that z 5* 1.645 when the number of hits 5= 
32.65. Thus, the null hypothesis will be rejected if there are 33 or 
more hits, so power = P(33 or more hits). Computing this for the 
same hypothetical hit rates as in the previous example gives:

Hit rate Power = P(33 or more hits)
0.30 .289
0.33 .538
0.40 .939
0.50 .9998

Now there is a more reasonable chance for a successful study, al
though it is still only 29% even if the true hit rate is 30%.

For studies in which the null hypothesis does not involve a single 
value, it can be more difficult to compute power because it is not so 
easy to specify a reasonable alternative. In these cases, it is still pos
sible to look at the p value that can be expected if psychic function
ing were to occur at specified levels for the sample size planned. For 
example, McClenon and Hyman (1987) conducted a remote-viewing 
study with eight trials, one for each of eight subjects, and used the 
preferential-ranking method of Solfvin, Kelly, and Burdick (1978) 
on the subject rankings. Each subject was asked to rank-order eight
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choices o f potential targets as compared to the response he or she 
had produced. By chance, the average rank should be 4.5. If 
psychic functioning had reduced the average rank to 4.0, the p 
value would have been .298, not significant. Even if the average 
rank had been reduced to 3.5, the study would still not have been 
significant, p value = .126 The average rank would have to be 3.0 
before this study would achieve a significant result. A parapsychol
ogist experienced in remote viewing should be able to determine in 
advance whether such a study would be likely to be successful with 
such a small sample.

The lesson here is that a “nonsignificant” study may be nothing 
more than a study with low power. Before investing time and 
money in a new study, it should be determined whether it is likely 
to succeed if psychic functioning is operating at a given level.
Estimation

An approach that avoids many of the problems with hypothesis 
testing is to construct a “confidence interval” or an “interval esti
mate” for the magnitude of an effect. This is done by computing an 
interval of values that almost certainly covers the true population 
value. The degree of certainty is called the confidence coefficient and 
is specified by the researcher. Common values are 95% and 99%.

As an example, consider a binomial study with 100 trials that 
results in 35 hits. Using the normal approximation, one would ex
pect the proportion of hits in the sample to be within 1.96 standard 
deviations of the true hit rate 95% of the time. The appropriate 
standard deviation for the proportion P of hits is V f>(l — P)ln. 
Thus, a 95% confidence interval for the true hit rate is found by 
adding and subtracting 1.96 of these standard deviations to the pro
portion o f hits observed in the sample. The resulting interval in this 
case is 0.35 -  0.09 to 0.35 + 0.09, or 0.26 to 0.44. This tells us that 
with a fair amount o f certainty (95%), the true hit rate is covered 
by the interval from 0.26 to 0.44. For the same proportion of hits 
in a study with 1,000 trials, the interval would be from 0.32 to 0.38. 
The larger the sample size, the shorter the width of the interval.

Consider two studies designed to test H0: P = .5:
Study 1 Study 2

z 3.60 2.40
p value .0004 .0164
n 1,000 100
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Which study provides more convincing evidence that there is a 
strong effect? In keeping with the results of Rosenthal and Gaito 
(1963) discussed earlier, most people would say that the first study 
shows a stronger effect, both because the p  value is smaller and be
cause it is based on a larger sample. In fact, the opposite is true. 
The number pf hits for the two studies are 557 (55.7%) and 62 
(62%), respectively; the'smaller study had a higher hit rate. The 
95% confidence intervals for the hit rates in the two studies are 
(0.53 to 0.59) and (0.53 to 0.72), respectively, so in both studies we 
are relatively sure that the hit rate is at least 53%, but in the second 
study it could be as high as 72% whereas in the first it is probably 
no higher than 59%.

In studies with huge sample sizes, confidence intervals make it 
evident that an infinitesimal p  value does not correspond to an ef
fect of large magnitude. For example, consider a study based on 
100,000 trials and designed to test H0: P = .50. Suppose there were 
50,500 hits. Then z = 3.16, and the p  value is 7.9 x 10-4. But what 
does this mean in practical terms? A 95% confidence interval for the 
true hit rate is from 0.5019 to 0.5081. Thus, it appears that the true 
hit rate is indeed different from 0.50, but reporting the results in 
this way makes it clear that the magnitude of the difference is very 
small. The reader can decide whether an effect of this size has any 
meaning in the context of the experiment.

In summary, confidence intervals are preferable to hypothesis 
tests for the following reasons:

1. They show the magnitude of the effect.
2. They show that the accuracy of the conclusion is highly de

pendent on the sample size.
3. They remove the focus from decision making, which is arbi

trary at best because of sample size problems.
4. They highlight the distinction between statistical significance 

and practical significance.
5. They allow the reader of a research report to come to his or 

her own conclusion.
Meta-Analyses

Meta-analytic techniques may be viewed by some parapsycholo
gists as the solution to studying the issue of replication. Even though 
these techniques can address the replication issue in useful ways,
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they also contain some dangerous pitfalls. For example, both Hy
man (1985) and Honorton (1985) used “vote-counting” in their 
meta-analyses of the ganzfeld data base. In other words, they tallied 
the number of significant studies in the data base. This procedure 
inherits all of the problem^ associated with the original determina
tion of .whether a study was “significant” in the first place. A series 
of studies, each with low power, may all be determined to be non
significant, when the combined data may lead to an extremely sig
nificant result. Conversely, a series of studies based on large samples 
may all be significant, but the magnitude of the effect may be very 
small. A vote-count showing that most studies are significant could 
mislead researchers into believing that there was a large effect.

The concept of effect size was introduced to account for the fact 
that individual study results are highly dependent on sample size. 
Estimating the effect sizes for a series of studies and seeing whether 
they are similar is a useful way of studying replication. However, 
examining only the effect size for an individual study does not give 
any indication of the accuracy of the result. This should be done in 
conjunction with some estimate of the accuracy of the result, such 
as a confidence interval.
Bayesian Methods

Many statisticians believe that the conceptual framework of hy
pothesis testing and interval estimation is philosophically incorrect. 
Rather, they start by assigning prior probabilities, based on subjec
tive belief, to various hypotheses, and then combine these “priors” 
with the data to compute final or “posterior” probabilities for the 
hypotheses. This is called the Bayesian approach to statistics. An in
troduction to the ideas of Bayesian analysis can be found in Berger 
and Berry (1988) or Edwards, Lindman, and Savage (1963). A more 
technical reference is Berger (1985).

Berger and Berry (1988), in a recent article in American Scientist, 
discussed the use of Bayesian methods instead of classical methods:

The first step of this demonstration is to calculate the actual probability 
that the hypothesis is true in light of the data. This is the domain of 
Bayesian statistics, which processes data to produce “final probabilities” 
... for hypotheses. Thus, the conclusion of a Bayesian analysis might be 
that the final probability of H is 0.30.

The direct simplicity of such a statement compared with the convo
luted reasoning necessary to interpret a P-value is in itself a potent ar-
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gument for Bayesian methods. Nothing is free, however, and the ele
gantly simple Bayesian conclusion requires additional input. To obtain 
the final probability of a hypothesis in light of the experimental data, it 
is necessary to specify the probability of the hypothesis before or apart 
from the experimental data.

Where does this initial probability come from? The answer is simple. 
It must be subjectively chosen by the person interpreting the data. A 
person who doubts the hypothesis initially might choose a probability of 
0.1; by contrast, someone who believes in it might choose 0.9. (p. 162)

They then provide an example of testing the hypothesis H: P = .5, 
where P is the proportion of hits expected in a binomial experi
ment. Suppose that in 17 trials there are 13 successes (76.5%). Then 
the p value is .049, two-tailed. Unless, of course, the experiment was 
designed to stop at the fourth failure instead of at the 17th trial. 
Then the p value, with the identical data, would only be .021. Such 
problems arise with classical methods, but not with Bayesian meth
ods.

Using the Bayesian approach, suppose that one’s prior belief 
that H is true is 50%. If H isn’t true, the prior belief is that the true 
value of P is equally likely to be anywhere between 0.5 — c and 0.5 
+ c (where c is some constant), but "tould not possibly be farther 
than that from 0.5. The choice of c represents prior opinion about 
the strength of the effect, if there is one. Choosing c = 0.1 (the 
effect isn’t likely to be very strong even if it exists) results in a final 
probability of 0.41 for H (given that there were 13 successes in 17 
trials), whereas choosing c = 0.4 results in a probability of 0.21 for 
H. In other words, the final degree of belief in H is dependent on 
one’s prior belief about the strength of the effect. It also depends 
on prior opinion about the veracity of H, and on the observed data.

One reason that Bayesian methods are not more widely used is 
that they are often difficult to apply. Another reason is that re
searchers are uncomfortable with having to specify subjective de
grees of belief in their hypotheses. This approach makes particular 
sense for parapsychology, however, because most researchers have 
strong opinions about the probability that psi is real, and these opin
ions play a central role in how psi researchers and critics evaluate 
the evidence. Posterior probabilities in Bayesian analyses are a func
tion of both the prior probabilities and the strength of the evidence; 
it may be informative to formalize these opinions and to see how 
much evidence would be needed to increase the posterior probabil
ity of a psi hypothesis to a non-negligible level when the prior prob
ability was close to zero.
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