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Recent work in cognitive science has uncovered a diversity of explanatory

values, or dimensions along which we judge explanations as better or worse.

We propose a Bayesian account of these values that clarifies their function and

shows how they fit together to guide explanation-making. The resulting taxon-

omy shows that core values from psychology, statistics, and the philosophy of

science emerge from a common mathematical framework and provide insight

into why people adopt the explanations they do. This framework not only

operationalizes the explanatory virtues associated with, for example, scientific

argument-making, but also enables us to reinterpret the explanatory vices that

drive phenomena such as conspiracy theories, delusions, and extremist ideologies.

Explaining Explanation

Individuals use a variety of general, cross-domain criteria to evaluate the quality of explanations

(see Glossary). These explanatory values appear in early childhood [1–4] and influence our

most sophisticated social knowledge-formation processes [5]. Understanding the foundation of

these values is a key goal in the psychology of reasoning [6]. However, despite great empirical

progress in demonstrating the existence and importance of explanatory values [7], we lack a

unified framework that explains their origin and shows how they fit together to guide our beliefs.

The diversity of these values also appears to conflict with Bayesian models of cognition, which

some have claimed cannot account for the richness of our explanatory judgments [8,9].

This opinion shows how explanatory values can, in fact, emerge from Bayes’ rule, either directly,

from an algebraic decomposition of its mathematical structure, or indirectly, from the normative con-

siderations that guide its application.We argue that the resulting set of ‘atomic’ values, which include

co-explanation, descriptiveness, and simplicity, capture many of the existing values proposed

by psychologists, philosophers, historians of science, and statisticians. A Bayesian framing provides

mathematical definitions of explanatory values, shows how they interact to produce evaluations, and

enhances our ability to experimentally probe explanation-making. It leads to the insight that some

observed values emerge as different ways for approximating simplicity in practice. It also predicts

the existence of new values, and, taking the example of consilience [10], shows how complex

explanatory values in the history of science can be decomposed into these atoms.

The diverse values seen in the laboratory are often hard to reconcile with each other. People

prefer broad explanations that can account for more phenomena [11,12], but seemingly only

when those phenomena are actually observed [13]. People generally seem to value simplicity,

but the concept has been difficult to pin down; while some studies have demonstrated a prefer-

ence for parsimony [14], others have indicated that this preferencemay interact with explanatory

domain in nontrivial ways [15,16].

Highlights

Recent experiments show that we value

explanations for many reasons, such as

predictive power and simplicity.

Bayesian rational analysis provides

a functional account of these values,

along with concrete definitions that

allow us to measure and compare them

across a variety of contexts, including

visual perception, politics, and science.

These values include descriptiveness,

co-explanation, and measures of sim-

plicity such as parsimony and concision.

The first two are associated with the

evaluation of explanations in the light of

experience, while the latter concern the

intrinsic features of an explanation.

Failures to explain well can be under-

stood as imbalances in these values:

a conspiracy theorist, for example,

may over-rate co-explanation relative

to simplicity, and many similar ‘failures

to explain’ that we see in social life

may be analyzable at this level.
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Viewing explanatory values in terms of the computational goal of Bayesian inference resolves

some of these conceptual puzzles. This approach, sometimes known as rational analysis

[17,18], has been used to explain a wide range of subjective states (e.g., judgments of represen-

tativeness [19], suspicious coincidence [20], and subjective randomness [21]) by showing how

they help individuals approximate Bayesian thinking. While resource bounds on cognition limit

the degree to which the mind actually achieves the Bayesian standard, rational analysis neverthe-

less provides insights into the origin, function, and form of these mental states. The clarity of the

Bayesian framework can also help us understand violations of normative principles, such as

judgment biases, conspiracy-mindedness, and delusion.

A Bayesian Framework for Explanatory Values

Probabilistic models of cognition state that people evaluate explanations in terms of how likely

they are to be true. Bayesian models of cognition further assume that individuals split this evalu-

ation into two parts: (i) the log-likelihood, which measures how probable an explanation makes

the observed evidence; and (ii) the log-prior, which measures how probable the explanation is

independent of the evidence.

We propose that individuals evaluate explanations in terms of the atomic representations that

emerge when this decomposition is taken one step further (Box 1). Our framework breaks the

log-likelihood into two empirical values, descriptiveness and co-explanation, that capture

qualitatively different features of how an explanation accounts for evidence.

The log-prior likewise decomposes into two theoretical values: a domain-dependent prior

that captures information such as base-rates, and a domain-general and normatively-grounded

simplicity term. As we will show, simplicity is difficult to assess directly. A key feature of our

account is how a number of different explanatory values can be understood as heuristics and

rules of thumb for approximating it.

Empirical Values: Descriptiveness and Co-explanation

The simplest, or at least ‘rough and ready’ way to judge an explanation is to consider each piece of

evidence independently, tallying the degree to which it makes the explanation look better or worse.

This is captured by descriptiveness, the sum of the independent log-probabilities of the relevant

facts. This value is familiar from statistics, where it is used to judge amodel’s fit under the assumption

that observations are independent of each other. Although descriptiveness neglects the fact that

different pieces of evidence are rarely, if ever, independent, it often works quite well. For example,

when evaluating students on the basis of their grades, we can often interpret each grade as an

independent reflection of academic ability, thusmaking grade point average (GPA) a useful summary.

Descriptiveness is generally taken to be an uncontroversial value: all other things being equal,

good explanations make each piece of evidence seem more probable. This value has its limits,

however, and overemphasis on descriptiveness in a domain where correlations really do matter

results in a cognitive bias known as correlation neglect [22].

In addition to considering facts in isolation, we also care about how they connect together. This

is captured by co-explanation, which measures how well an explanation predicts observations

by reference to underlying patterns. Mathematically, co-explanation is the point-wise multi-

information between the observations [23] and measures the reduction in uncertainty when one

considers observations together instead of separately. The definition follows from the Bayesian

decomposition in Box 1 and matches existing proposals for an operationalization of explanatory

considerations in the philosophical literature [24,25].

Glossary

Co-explanation: the relative increase

in log-probability that an explanation

gives a pattern of observed data above

its ability to predict each piece in

isolation.

Concision: an approximation to

simplicity that tracks how briefly or

compactly an explanation can be

represented within a larger framework.

Consilience: the increased credence

one places in an explanation when it

fortuitously explains additional

phenomena outside its original domain

of development.

Descriptiveness: the total log-

probability of observed data given an

explanation when each observation is

considered in isolation.

Domain-dependent prior: a term that

captures the influence of domain-

specific tacit knowledge and

background information (such as base

rates).

Empirical values: ways in which an

explanation can be valued on the basis

of data.

Explanation: an account of some facts

about the world. In the Bayesian

framework, an explanation supplies a

probability distribution over events.

Explanatory values: features of

explanations that lead us to prefer one

over another.

Log-likelihood: the log-probability of

observed data given an explanation.

Log-prior: the log-probability of an

explanation before evidence was seen.

Parsimony: an approximation to

simplicity that implements some version

of Occam’s razor. Examples include

counting the number of causes or

parameters, as well as more formal

principles such as the Bayesian

Occam’s razor.

Simplicity: an umbrella term that

captures how ‘easily’ an explanation

may be represented.

Theoretical values: ‘priors’, or ways in

which an explanation can be valued

without reference to data.

Unification: the expected co-

explanation of data conditional on the

explanation being true. Also equal to the

mutual information in the case of two

variables, or the multi-information in the

general case. Measures the degree to

which an explanation predicts patterns

of outcomes and connects multiple

variables together. Another

approximation to simplicity.
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Co-explanation measures how well an explanation connects patterns of evidence into a whole.

It was identified under the name coherence by early empirical work on explanations [26].

Consider learning that two coworkers are secretly dating. This revelation is likely to lead to

the feeling of a wide array of disparate observations suddenly ‘clicking into place’. The facts

about each person considered separately (e.g., the weeks they take vacation, the places

Validity: increased credence in an

explanation caused by its ability to

account for ‘new’ (out-of-sample)

evidence.

Box 1. Bayes’ Rule Decomposes into Explanatory Values

The cognitive evaluation of an explanation E on the basis of evidence x = {x1,…, xn} can be broken down into atomic values

that collectively decompose the log-additive version of Bayes rule as follows:

TrendsTrends inin CognitiveCognitive SciencesSciences

Probabilistic models of cognition represent the degrees of belief in an explanation as the (subjective) probability that it is

true. Bayesian theories of cognition assert, in turn, that people reason according to Bayes’ rule, which implies that these

beliefs decompose into two pieces: the likelihood, or the extent to which the explanation makes the things one sees more

likely, and the prior, or extent to which one is predisposed to believe the explanation before seeing evidence. Since we are

concerned with the relative degrees of belief in different explanations, we omit the normalization constant given that it is

constant across the set of explanations for a given body of evidence.

Just as, mathematically, Bayes’s rule uses the algebra of probabilities to decompose a degree of belief into a likelihood and a

prior, these two objects can, in turn, be further decomposed into terms which, we propose, correspond to values we use to

judge explanations. The formal validity of the decomposition of the likelihood into descriptiveness and co-explanation follows

from the fact that logA is equal to logB + log A/B. This simple algebraic change has a key cognitive implication, however, as it

separates the evaluation of an explanation’s relationship to evidence into two intuitively familiar concepts: descriptiveness,

which corresponds to the surprise [83] of seeing the items of evidence separately, and co-explanation, which captures the

relative surprise of seeing the evidence together, as a whole, versus separately.

In the same way, the log-prior is decomposed into a sum of terms that that each capture considerations that make an

explanation more or likely before evidence. Two terms appear: a ‘domain’ prior that measures the extent the explanation

(or ones like it) tends to be true in that domain, and simplicity. Simplicity, as we show, is approximated in a number of

different ways that match key features tracked in laboratory experiments.

Trends in Cognitive Sciences
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they have visited, the films they have seen) all have innocent explanations. The explanation that

the pair is a couple has co-explanatory value because it shows that these facts predict one an-

other: when one of them schedules vacation, we now have reason to suspect the other will as

well; if one of them has seen a film, the other one may well have too (since it is likely they saw it

together), and so on.

Co-explanation is part of the pleasure of many leisure activities, such as reading detective novels,

which often involve the protagonist co-explaining a number of seemingly innocuous facts (‘clues’,

such as ‘the dog that did not bark’) by identifying the murderer, method, andmotive. Equivalently,

co-explanation implies mutual predictability: an explanation with high co-explanation suggests

that some of the observations could have been be used to predict the others, making the universe

seem less arbitrary. The ‘eureka’ moment when one thinks up a new co-explanatory theory can

produce a powerful hedonic response [27] and seems to play an important role in an innate drive

for ‘sense-making’ [28]. These experiences can be seductive and, as with descriptiveness, can

be overvalued; among other things, this may impede learning when the patterns to be learned

have exceptions [29].

Co-explanation is agnostic on the reasons for predictability. An explanation with co-explanatory

power might say that one feature directly causes the other, that features are generated by a

hidden common cause, or indeed, that the associations between features emerges ‘just so’.

While evidence suggests that people do have preferences for certain types of explanations

(e.g., causal accounts and, within those, sparse networks that conform to folk intuitions

[30–32]) the Bayesian framework requires that such preferences inform theoretical values that

are considered separately from the evidence at hand.

That said, invoking common causes is a ubiquitous way to achieve co-explanation in practice and

plays a prominent role in domains such as medical diagnosis [33], legal trials [34], and social

interactions [26]. Psychological studies of explanation in these domains are often implicit tests

of an individual’s sensitivity to co-explanation (Box 2). For example, one study [35] trained

participants on cases that noted the presence or absence of various symptoms for patients

with a fictitious disease. When asked to judge which of two new patients was more likely to

have the disease, subjects were sensitive to not only whether each of their symptoms was likely

(descriptiveness), but also whether their presentation preserved correlations between symptoms

seen in the training set (co-explanation).

Theoretical Values: Domain-Dependent Priors and Simplicity

Theoretical values come in two forms. Any explanation will, in the first instance, be judged in part

on the basis of background knowledge. In the Bayesian formulation, such knowledge takes the

form of domain-dependent priors. Having well-calibrated priors is part of real-world competence:

a good automobile mechanic can anticipate the most likely explanation for an engine failure in a

particular model by drawing on their experience with similar cars. The existence of domain-

dependent priors is rather uncontroversial and recent investigations have confirmed their

influence on explanatory preferences. For example, a subject’s diagnostic preferences track

their perception of the base-rates of the different diseases [14].

Domain-dependent priors, however, may not be enough [36]. A key insight of what is sometimes

called the ‘objective’Bayesian perspective is that, even when combined with descriptiveness and

co-explanation, domain-specific priors are rarely sufficient for identifying good explanations. This

is because one can often improve an explanation (i.e., make it more consistent with what one has

observed) by introducing additional complications.Without some counterbalancing force, this will
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lead to the construction of complicated explanations that account for every detail, even those

properly attributed to chance. A variety of normative arguments in probability theory show how

a preference for simplicity corrects this tendency [37–39].

Box 2. Explanatory Values in Action

TrendsTrends inin CognitiveCognitive SciencesSciences

A common paradigm to tease apart explanatory values is disease diagnosis [12,14,35]. Participants are asked to explain a

patient’s symptoms by reference to different medical conditions. Figure I illustrates a general case of this task, where there

are three potential explanations (shaded in red, blue, and yellow, with density of each color indicating probability) that might

produce different patterns of symptoms (here, different combinations of a patient’s blood oxygenation and temperature).

In our framework, the blue explanation has low power (it allows for a wide range of outcomes) and low unification (patient

temperature is not particularly well predicted by oxygenation). The red explanation has higher power (a narrower range of

possibilities) and non-zero co-explanation (high patient temperatures are usually accompanied by low blood oxygenation).

The yellow explanation is similar to the red in that it is both powerful and co-explanatory, but has, by contrast, a less simple

relationship between oxygenation and temperature.

Confronted with three different patients (A, B, and C), these explanations also have different empirical values. For example,

the red explanation has lower descriptiveness than the yellow explanation (patient A falls somewhat outside the normal

range for red), but higher co-explanation than the blue (the temperatures of all three patients predict their oxygenation).

For the particular case of patient A, yellow also has higher co-explanation than red; under the yellow explanation, a

patient with A’s oxygenation has a more predictable temperature than under the red one, where the allowable range of

temperatures at that oxygenation level is wider.

Which explanation is best depends on context. Even if the yellow explanation is more valued on the basis of descriptive-

ness and co-explanation, power, or unification, a person may still come to prefer the red, or even the blue, with a strong

enough preference for simplicity. For example, the yellow explanation may produce its complex relationship between

oxygenation and temperature by invoking the presence of two diseases simultaneously, or through a complicated

interaction of different underlying conditions.

Explanations are evaluated relative to a (usually stable) background ontology: here, oxygenation and temperature. If the

ontology changes, so do the values and if, for example, doctors worked with a quantity equal to ‘temperature minus

oxygenation’, then the red explanation would become less co-explanatory andmore descriptive, while their sum remained

constant.

Figure I. Three Diagnoses with

Different Explanatory Values.
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In ordinary use there are many answers to what counts as simple. One common conception is

parsimony: the ability to explain with fewer ‘parts’. Depending on context, these might be

constructs, causes, relationships, or parameters. Parsimony is most famously associated with

Occam’s razor, which states that ‘entities should not be multiplied without necessity’ [40].

There is good empirical evidence that humans value parsimony. For example, one study [14]

found that explanatory preferences were consistent with a Bayesian judgment that included a

data-independent prior penalty in favor of parsimony, operationalized as the number of diseases

required to explain an alien’s symptoms. Further research has shown that such preferences form

early in childhood and are robust across contexts [1,4,7,41].

However, individuals sometimes prefer explanations that have more causes [15]. This has been

explained as an instance of ‘complexity matching’, which holds that people prefer explanations

that are as complex as the phenomena in question [16] (J. Lim, PhD thesis, University of California,

Los Angeles, 2018). The apparent tension between complexity matching and simplicity was

resolved by further work [42] confirming (as suggested by [15]) that a preference for complex

explanations goes hand in handwith perceptions of their empirical value. A preference for complexity

is consistent with a prior for parsimony because subjects use an ‘opponent heuristic’ that complex

(i.e., multiple-cause) explanations typically increase the likelihood of the evidence.

Parsimony is more than a human quirk. It also emerges as a normative principle in Bayesian

statistics, where the most straightforward approach is to be parsimonious in the number of

‘free parameters’: features of an explanation that must be specified before the explanation

makes definite predictions. This perspective judges parsimony by reference to an intermediate

layer that lies between an explanation and what it is intended to explain. For example, if I explain

that my friend is late because their bus broke down, I leave ambiguous the question of precisely

where this breakdown occurred. The unspecified detail matters, however: if the bus broke down

only a block away, it would not explain why they were late. Informally, ‘where the bus broke down’

is a free parameter in the explanation.

Two common methods enforce parsimony by penalizing the likelihood: the Akaike Information

Criterion (AIC) [43] and the Bayesian Information Criterion (BIC) [44]. For example, in AIC, an ex-

planation must make the observed data roughly 2.7 times more likely in order to compensate for

adding an additional parameter.

AIC and BIC are imperfect, however, because they simply count parameters while, intuitively, we

judge parsimony based only on the parameters that matter (i.e., those that might affect the

explanandum). A generalization of BIC, the Bayesian Occam factor (BOF) [45], shows that the

intuition is grounded: some parameters do not affect the complexity of an explanation because

they are irrelevant and, whatever value they take, the explanation still provides a good empirical

account of the evidence. Other parameters do matter and when the data comes in they must

be specified to a greater or lesser degree of rigor. Both sides appear to be in play: people are

sensitive to fine-tuning in the free parameters that matter [46], but do not penalize the introduction

of irrelevant details [47]. [There is a subtle difference between the BOF and the more general

Bayesian Occam’s razor (BOR) principle [46]. The BOF approximates BOR, penalizing an expla-

nation on the basis of how fine-tuned the ‘best’ choice of parameters is; BIC, it can be shown, in

turn approximates BOF.]

A feature of BOF is that, in certain situations, the perceived parsimony of an explanation can

depend on the particular evidence to hand. This predicts the intriguing possibility that we may
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be sensitive to ‘revealed’ complexity when we judge an explanation. Things can happen that

make unexpected demands on the parameters, causing the explanation to look more compli-

cated and fine-tuned in retrospect: imagine discovering that the explanation, earlier, of why a

friend was late requires a very precise timing for when the bus broke down. Evidence [48]

suggests that some of these post hoc considerations tracked by BOF may in fact be captured

by the values of descriptiveness and co-explanation. Further work needs to be done to determine

how this terminology can be mapped onto the phenomenology of human cognition, an issue we

turn to now.

From Parsimony to Concision

While concepts such as BOF provide a rigorous way to define simplicity, they are not the final

answer to the problem. One issue is that while parameters have a clear meaning in statistics,

they are harder to spot in the informal language of ordinary explanation. Alternative approaches

operationalize simplicity in other, potentially more cognitively relevant ways.

For example, Minimum Description Length (MDL) shows that BOF is equivalent to a measure of

concision (i.e., how succinctly the ambiguities in an explanation can be resolved) [49,50].

According to this perspective, instead of evaluating simplicity in terms of the likelihood of the

free parameters (the BOF prescription), one can just as well use the concision of an explanation’s

expression or perhaps its mental representation [51]. This concision is a rather abstract and

‘optimal’ one, however, and more work needs to be done to show how it might correspond to,

for example, how briefly explanations can be expressed in natural language and how they are

encoded by the mind.

Another issue is that any explanation can be understood as a specific instance of a larger, more

abstract framework: a disease diagnosis, for example, occurs within a larger causal ontology [32].

This hierarchical nature of explanation [52] means that the concision of an explanation depends

upon how far up the hierarchy one looks; an explanation may be very concise within a framework,

but the framework itself may be very complicated. It also complicates comparison: to compare

the concision of, say, an explanation for poverty in terms of expected utility theory with one in

Marxist theory, one would have to estimate, and compare, the concision of the two theories

themselves.

These problems are sometimes addressed with ‘algorithmic’ criteria such as Kolmogorov

Complexity [53] and Solomonoff Induction [37]. Theoretically, these measure the ‘true’ simplicity

of any explanation, but technical aspects complicate their use as literal models of cognition. Most

notably, both are uncomputable, meaning that it is impossible, in principle, to do better than place

upper bounds on concision [54]. An explanation that seems long-winded may have an unexpect-

edly concise rephrasing and no decision principle can be guaranteed to select the most ‘truly’

concise explanation from a set.

In the absence of a general method for measuring concision, we fall back on heuristics such as

counting causes. One version is unification, the expected co-explanation of the explanation

conditional upon its truth. Unification says that the world is characterized by patterns, not

coincidences. It is a common value in the philosophy of science and some have argued that a

good scientific theory makes the manifestation of different phenomena dependent on each

other [55] or forms a systemic picture of the order of nature [56].

Causal theories, in particular, are often very good at inducing unification, because they correlate

variables with hidden common causes [57]. Such accounts often involve talk in terms of
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counterfactuals and not just the probabilities that form the basis of our values here [58]. In many

cases, however, such as Pearl’s ‘do’ operator [59], while counterfactual interventions are neces-

sary for causal inference (i.e., for coming to know causes), they are not part of the representation

of the resulting explanation itself, which can be done entirely in terms of Bayesian causal nets [60].

We may have to think counterfactually in order choose the right interventions, but this does not

mean we require counterfactuals to evaluate the explanations of the outcomes.

Unification tracks concision because it tends to enforce parsimony at the level of unexplained

(‘root’ [61]) causes. A recent study [61] found a preference for root-cause parsimony by showing

participants preferred disease diagnoses with fewer unexplained causes, rather than the total

number of causes; in the language of Figure 1, an ‘elaborate unified’ explanation may be more

concise than a ‘parsimonious disjointed’ one. While unification correlates with root-cause

parsimony, it is not identical. Unification can be high when a theory has a causal bottleneck

[i.e., where a diversity of hidden root causes combine to produce a single hidden cause that

then explains (and correlates) the evidence]. A theory that explains symptoms by reference to a

single disease has both high unification and parsimony in root causes. Another theory that

includes a complex, multicausal account of how the disease itself came to be contracted has

equal unification, but more root causes.

Another source of concision is ‘uniformity’ [16], or the consistency of relationships among the de-

tails of an explanation. Uniformity may provide concision evenwhen parsimony is lacking because

many causes may be described at once. It is concise, for example, to say that a traffic jam was

caused by everyone trying to get to work at the same time. There may be hundreds of separate

causes (the desires of each driver to get to work), but they are all, in effect, the same. Concision

may also lead to a preference for explanations that show how new phenomena can be put

into analogy with familiar ones [62]. A successful analogy means that one can express the large

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 1. Diagrams Representing the Causal Structure of Different Explanations. Shaded nodes represent

observables, other nodes represent postulated latent causes, and arrows represent causal relationships. One way of

assessing simplicity is parsimony, which counts the number of parameters, or latent causes invoked by an explanation. A

second way of assessing simplicity is unification, which measures the degree to which a theory provides an overarching,

connected account of multiple features of the world. Explanations can vary along each of these dimensions independently,

so that their overall ‘simplicity’ might be judged as a weighted combination of the two.
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number of relationships necessary to achieve descriptiveness and co-explanation very concisely

by saying they are just like something already known, along with a relatively brief statement of

what corresponds to what.

Validity and the Virtue of Not Overfitting

If simplicity is not taken into account, one generally produces ‘overfit’ explanations with complica-

tions that enable inappropriate fine-tuning to match the data. An infamous example of overfitting

in statistics is p-hacking. Overfit explanations work ‘too well’: they explain not only the law-like

regularities in the data, but also coincidences and noise. This makes them fragile, because they

latch on to misleading coincidences to predict what will happen next.

The very fragility of an overfit explanation, however, suggests a way to avoid it: before you build

your explanations, hold some data in reserve. After building them, compare their empirical values

solely on this held-out data; overfit explanations will underperform. In statistics, this method is

known as cross-validation [63].

The power of cross-validation suggests, in turn, the possibility of a corresponding value in human

cognition. We call this validity: the value ascribed to an explanation when it is able to predict new

evidence. In the ordinary course of life, it is difficult to deliberately conceal knowledge from one’s

self while constructing explanations and it is (at the very least) impolite to do so to someone else. It

does happen naturally, however, when we uncover new information either actively or passively. If

validity is a value, this newly manifested information should have greater impact on our credence

in an explanation than the data that came before.

While validity has not been the subject of detailed empirical study in the psychology of

explanation-making, it appears quite early in the philosophical literature as part of consilience.

Consilience was introduced by William Whewell [64] in the 19th century to describe features of

scientific explanations that, he argued, both are, and ought to be, prized by the community. As

defined by Whewell, ‘the Consilience of Inductions takes place when an induction, obtained

from one class of facts, coincides with an induction, obtained from another class’ (i.e., when an

explanation constructed to explain phenomena in one domain turns out to predict phenomena

in an entirely different one as well). Importantly, these new facts were not considered during its

construction. For Whewell, ‘such a coincidence of untried facts with speculative assertions

cannot be the work of chance, but implies some portion of truth in the principles on which the

reasoning is founded’.

Consilience is an example of how values combine: in this case, the values of concision, unification,

and validity. A consilient explanation is certainly more concise than what we had before: at the very

least, it can replace whatever previous explanation we had for the facts of the second domain with-

out becomingmore complex. It is also more unified, making the second domain dependent on the

same things as the first. Finally, that the facts of the second domain are ‘untried’ gives a consilient

explanation greater validity.

Other Virtues, Other Vices

A prominent alternative to Bayesian conceptions of explanation is inference to the best explana-

tion (IBE) [5], which says belief formation is, or should be, guided by ‘explanatory considerations’

[7,65]. In Harman’s original formulation, these were additional factors that justified accepting one

hypothesis from a pool of alternatives.While IBE has traditionally been opposed to Bayesianism, it

has also been somewhat loosely defined, making it possible for some to argue that the two are

either compatible [66–70] or potentially even identical [71,72].
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Recent work on ‘explanationism’ [8,9] has sharpened and revived the tension. Explanationism is

the hypothesis that people update explanations in a way that violates Bayes’ rule and uses,

instead, a separate group of IBE-like, non-Bayesian explanatory values. Depending on one’s

goals, these values may even be improvements on Bayes’ rule, allowing one to get the right

answer, more quickly, most of the time [8]. Intriguingly, a pair of recent papers [73,74] that

reanalyzes earlier data [75] finds evidence for two such rules, associated with Karl Popper and

I.J. Good.

Because explanationism replaces Bayes’ rule, it revises the decomposition in Box 1. In proposal

[8], this is equivalent to adding a new term to the decomposition: a boost (or penalty) that

combines both data and intrinsic properties of the explanation, leading to a correction factor

that can be tested in the laboratory. Explanationism is incompatible with Bayesianism, but

there is a clear path forward for separating them experimentally.

Indeed, one of the benefits of our decomposition is that it allows us to quantify deviations from

Bayesian behavior due not only to potential non-Bayesian virtues such as IBE, but also to

‘vices’ of thought caused by improper weighting of the terms in play (Box 3). Deviations, for

example, that overweight co-explanation, correspond to undue preference for correlations.

Other sources of non-Bayesian behavior may come from cognitive constraints: this appears to

be the explanation for ‘latent scope bias’ [13], which appears to derive from the use of an

Box 3. When Values Become Vices

One benefit of our framework is that it enables us to understand characteristic explanatory pathologies, the subject of ‘vice

epistemology’ [84], as deviations from the normative weighting of explanatory values.

Consider the phenomenon of overgeneralization [29] (i.e., attempting to cover all examples with a single explanation rather

than allowing for exceptions). This can be caused by over-valuing co-explanation relative to descriptiveness, or by over-

valuing unification (since theories that have high unification will tend to have higher co-explanation when they are good fits

to the data). Recent empirical work has started to tie abnormal reasoning to common inferential biases that generalize

across domains in a way that suggests the systemic miscalibration of values may be at fault.

For example, those prone to paranormal thinking also show greater susceptibility to the conjunction fallacy [85], which can re-

sult from overvaluing co-explanation because labeling Linda a feminist as well as a bank teller [86] provides a co-explanatory

account of her behavior. There are also strong individual differences in the tendency to believe conspiracies: those who believe

one are more likely to believe others [87]. Notably, this trait is common in individuals with schizotypal disorder [88], which is in

turn linked to many other explanatory abnormalities [89].

Conspiracy theories are often both abnormally co-explanatory and descriptive [90]. They account for anomalous facts that

are unlikely under the ‘official’ explanation (‘errant data’ [91], as exemplified by, e.g., Oklahoma City bombing conspiracy

theories [92]) and show how seemingly arbitrary facts of ordinary life are correlated by hidden events [93]. Along these

lines, manipulations that induce subjects to see illusory correlations in neutral domains, like stock returns, also increase

beliefs in conspiracy theories [94]. Finally, and famously, conspiracy theories are unifying: they describe a universe where

everything is correlated by a network of hidden common causes: the motives and meetings of the conspirators [95].

Valuing these features is not, in and of itself, a vice; what frequently goes wrong is the failure to balance them against

others. On the surface, a conspiracy theory is simple; as it is unfolded, however, increasing complexity is required to

explain contradictory evidence and the cover-up that has, so far, prevented it from coming to light. Such a judgment is itself

open to criticism; as noted by [96], some conspiracies are extremely compelling on normative grounds. Some even turn

out to be true.

Striking a virtuous balance between so many considerations is itself a challenging cognitive problem, one that we solve

partially by reliance on the judgments of others to correct our faults. Reliance on the faulty values of others might help

explain membership in antivaccination movements [97], COVID-19 conspiracies [98], the use of pseudoscience in

extremist ideologies [99], and science denialism [100]. However, while these beliefs are in part formed and maintained

by social processes, they interact with individual-level predispositions. One avenue for future research is how social

processes serve to maintain, accentuate, or exploit individual-level explanatory miscalibrations.

Trends in Cognitive Sciences

10 Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx



improper heuristic (‘inferred evidence’) for the otherwise Bayesian evaluation of empirical values in

terms of ‘manifest scope’ [76,77].

Concluding Remarks and Future Directions

This opinion article suggests that it may be possible to explain the diversity of how we judge and

compare explanations using a small number of atomic values. It says that parsimony, concision,

and unification, for example, are different forms of an underlying simplicity value, and that we are

sensitive to two forms of empirical value, descriptiveness and co-explanation. It predicts the

existence of new values, such as revealed complexity and validity, that correspond to features

of Bayesian statistical inference. In other cases, it can help show how explanatory values in the

history of science, such as consilience, are complex combinations of these atoms. Our claims

are supported in part by research that shows that preferences that appear to be incompatible

with these values, such as complexity matching and narrow latent scope, may in fact be conse-

quences of heuristics, rather than separate values in their own right.

We have focused on how explanatory values influence our judgments of explanations in the pres-

ence of data. This is not all values are called on to do, however, and a key question is how values

influence the way people construct explanations [78] and test and reason about them in a social

context [79]. A recent study [80], for example, provides an account of scientific investigation

where decidedly non-Bayesian criteria, such as attention to salient outliers, guide which explana-

tions to explore and modify next. Explanatory values are only partial guides to judgments of what

stands in need of an explanation [81] and non-epistemic values, such as future utility, influence

how satisfied we are when we get them [82]. We expand on a number of other exciting avenues

for future work (see Outstanding Questions).
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