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Preface 

This book presents a broad ranging view of subjective probability. Chapters
range from the discussions of the philosophy of axiom systems through to
studies in the psychological laboratory and then to the real world of business
decision-making.

Topics covered include subjective probability in statistical inference and
expert systems, the treatmentof causality in laboratory studies and in scenario
planning, whether Man is a Bayesian thinker or a frequentist thinker,
descriptive and normative theories of subjective probability, confidence and
performance, and subjective probability in gambling and court-room
decisions—a wide range of topics. Nevertheless, underpinning all the topics
and approachesis a fundamentaldesire, on the part of the authors, to analyse
and document the humanability to deal with uncertainty—no easy task. The
multidisciplinary nature of this volume—which includes authorities who are
psychologists, philosophers, statisticians, managementscientists, education-
alists, and corporate planners—illustrates the essentially human challenge of
this enormous project.

Fundamentally, we believe that a reconceptualization of the base issues will
be prompted by, and benefit from, the exchange of knowledgeacrossdisci-
plinary boundaries. The challenge of facilitating this flow of knowledge was
the driving force behind this book. We have commissioned chapters from
those individuals who possess both the subject expertise and the ability to write
in an accessible way. Our hopeis that readers of this collection will be stimu-
lated to apply fresh insights to their own disciplinary endeavours and perhaps
also be inspired to contribute to the development of new material to add to
the evolving corpus of knowiedge and debate.

The book is organized into four major parts. The first, Background,
providesthe philosophical andstatistical foundations. The second, Studies in
the Psychological Laboratory, overviews theory and research in cognitive and
developmental psychology. The third, Accuracy of Probability Judgements,
focuses on theories and modelsthat allow assessmentof the quality of assessed
probabilities. The fourth, Real World Studies, reviews subjective probability
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judgement in situations that have material consequences for the decision-

makers. A detailed chapter-by-chapter overview follows next.

In the first chapter of the Background Part, Dennis Lindley introduces

the concept of probability and the probability laws and demonstrates that,

logically, probability is inevitable.

Subjective probability depends upon two things, the event whose uncer-

tainty is contemplated, and the knowledge that you have at the time. The

calculus of probability leads to results that may not agree with commonsense

because, Lindley argues, commonsenseis often not capable of the calcu-

lations. There is no suggestion that the probability rules describe how people

behave in the face of uncertainty. The probability calculus is a norm which

intuitive ideas on uncertainty should follow. Lindley shows that subjective

probability leads directly to utility and thus to the procedure of maximization

of expected utility as the optimal decision criterion.

Patrick Suppes provides a systematic discussion of the major aspects of the

subjective theory of probability. As he notes, a central question for a set of

axioms of qualitative probability is what formal comparative relation the

expression “more probable than” must have in order to be represented by a

numerical probability measure over events. Suppes argues that the subjective

theory of probability provides necessary but not sufficient conditions for

success in probabilistically predicting future events, such as tomorrow’s

weather. Next, Suppes considers a thought experiment and argues that

individuals may ignore hypotheses that are ultimately true. It is unrealistic,

Suppes argues, to have a positive prior opinion for all plausible hypotheses.

Similarly, he debates the issue of whetherthere are situations in which it is not

sensible to make exact probability estimates about possible events about which

little is known. He argues that extension of the theory of subjective probability

to such situations is desirable.

Colin Howson and Peter Urbachreview the backgroundto the development

of a theory of inductive inference. As Howsonand Urbachnote, the apparent

impossibility of determining objective prior probabilities in any non-arbitrary

manner has been a powerful factor in convincing many people that a

probabilistic theory of inductive inference was impossible. However, as these

authors show, debates about methods for determining priors fall outside

Bayesian theory. Next, Howson and Urbach consider classical statistical

inference and arguethat, relative to Bayesianism,it has no proper foundation

and that apparently objective inferential statements are, in fact, illusory. The

principles of significance testing and estimation are, they argue, simply wrong

andbeyondrepair.

Developing this theme, Glenn Shafer argues that subjective probability is

integral to all applications of supposedly objectivistic applications. Focusing

on statistical tests, Shafer argues that subjectivity enters into probability both

in the way in which belief and frequency are unified and in the waythat this
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unification is applied to a practical problem. Shafer demonstrates that

statistical testing often uses instances of what he terms “the informal story”
(the unification) simply as standards against which to rate performance. The
divide between the “frequentists” and the “subjectivists”, he argues, has a

foundationalrigidity that may have been useful in the past, when subjectivists

had few successful, practical Bayesian applications, but is unnecessary today.

By contrast, John Fox argues that, in addition to subjective probability,

there is a family of distinct theories of uncertainty that can be shown to have

sound mathematical foundations and that these theories capture different

intuitions about uncertainty and belief. He questions the general adequacy of

the “probability paradigm” and, by introducing issues from artificial intelli-

gence (AI), argues that subjective probability does not have universal applic-
ability. He contends that a numberofalternative uncertainty formalisms,

deriving from research in AI which has attempted to formalize intuitive

concepts of “common sense”, provide an alternative framework. AI has

becomethe latest stage on which the probability debate is being conducted.

In the first chapter of the Part on Studies in the Psychological Laboratory,
Lee Roy Beach and Gary Braunidentify 1967 as the year in which experiment-
ation began in earnest. They describe early work which focused on identifying

whetherprobability theory was a descriptive behavioural modelof individuals’
judgements of subjective probability. Beach and Braun evaluate whether
probability theory is, in fact, the appropriate standard for evaluating the

quality of subjective probabilities. They argue that knowledge-based reasoning
as well as probability-law-based reasoning may give rise to subjective
probability. Whilst experimenters have generally assumed that the domain

covered by the problems they posed was properly addressed by probability

theory, the subjects of the experiments, they argue, have frequently thought
otherwise.

Gerd Gigerenzer extends this discussion and argues that, from a strong
frequencyview of probability, observed “biases” in probabilistic reasoning are
not errors, since probability theory simply does not apply to single events. In
his chapter, Gigerenzer focuses on the usefulness of a distinction between
single-event probabilities and frequencies and draws on evidence from both
the history of probability and from experimental work in the psychological
laboratory. He argues that empirical demonstrations of errors are not stable
and .cognitive “illusions” disappear when single-event probabilities are
changedto frequencies. He concludes that the untutored mindhas more of a
frequentist design than a Bayesian one.

Peter Ayton and George Wright consider this latest view of probability, as
explicated by Gigerenzer in the preceding chapter. Ayton and Wright suggest
that the well-known gambler’s fallacy can also be made to “disappear”. But
there is some evidence that judgements of frequencies can also show the
characteristic bias found for confidence judgements.
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A numberof questions are raised by Gigerenzer’s critique. How should we

view human judgement under uncertainty? For biases to be capable of being

made to disappear they have to be there in the first place: why do the con-

junction fallacy and base-rate neglect occur when they do? We note that the

evidence for, and generality of, the availability and anchor-and-adjust

heuristics proposed by Kahneman and Tversky appear untouched by the

critique. Aside from the theoretical debate as to the nature of human

probabilistic judgement there are also questionsas to its general competence.

Should we now believe that human probabilistic judgementis satisfactory and

that the evidence for incompetence wasillusory?

Shawn Curley and George Benson focus on the construction of subjective

probability estimates. They argue that the process is dominated by the

construction of reasoned arguments and develop a cognitive theory of

probability construction. Next, they utilize this theory to analyse the results of

earlier experimentation. They argue that influence diagrams and knowledge
maps, often used in the initial phases of decision analysis, are an indication

of a new focus on the process of belief assessment rather than the output of

the judgement. The latter topic, as Beach and Braun note in Chapter6, has

been the primary concern of psychologists to date. However, Curley and

Benson argue that investigation of the reasoning underlying judgemental

assessmentsis critical and, as a first step, they develop a model of “belief

processing” that supports the construction of subjective probabilities. Next

they utilize this model to elucidate judgemental heuristics in probability

assessment.

Karl Teigen argues that subjective judgements of probability are arrived at

by a number of different processes which may, or may not, cause them to

differ from the experimenters’ rules. Teigen does not debate whether or not

there should be a correspondence between subjects’ assessments and experi-

menters’ evaluation of what constitutes a good (often relative to normative

standards) performance. This issue was already debated by Beach and Braun

in Chapter 6. Instead, Teigen evaluates the conditions under which judgements

and norms show agreement and when they do not. Teigen suggests some

simple probability rules which, he argues, people generally seem to accept as

valid. Understanding and application of other rules, for example the product

rule for arriving at the probability value of a conjunction, is less common-

place. Teigen argues that, when people start judging probabilities on an

intuitive basis, judgementis dependent upon a richer source of subjectively

available concepts and strategies. Teigen concludes that we are very sophisti-

cated probabilists in most respects except the quantitative one.

Valerie Reyna and Charles Brainerd document the developmental studies of

probability judgement that have been conducted and argue that these provide

an important perspective on adult conceptions of probability. Knowledge of

developmentalstabilities and changes supply an independentbodyof evidence
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that can be used to select among competing theories of (non-)probabilistic
thinking in adulthood. Their developmental analysis deals successively with
Piagetian information processing and intuitive reasoning approaches. Reyna
and Brainerd debate the evidence for precocity on the one hand andlate
emergence on the other. They conclude that young children can perform
advanced processing operations under certain conditions. Of necessity, the
question of adult rationality is central to developmental research—if cognitive
developmentis seen as progress toward rationality. Reyna and Brainerd argue
that reasoners understand probability at an early age but that they increasingly
rely on intuitive processes as they grow older.
Jonathan Baron and Deborah Frisch analyse what they term the “ambiguity

effect”, where individuals often prefer to bet on gambles with a stated and
known chance of winning, as opposed to gambles wherethe chance of winning
is unstated and unknown butis formally identical from the perspective of
expected utility theory. This phenomenon, which has demonstrated subjects’
aversion to ambiguity, has led to empirical and theoretical research on the
causes and effects of ambiguity. In their paper, Baron and Frisch discuss the
implications of ambiguity avoidance for expected utility theory. They develop
their own theory of ambiguity as missing information and address issues
concerning the practicality of dealing with situations in which information is
missing.

Wibecke Brun focuses on the perception of risk. Some conceptualizations
define risk as a product of the probability of a loss and its magnitude. Other
definitions are concerned with lay perceptions and aim to describe how lay
personsintuitively understand the term. Nevertheless, probability is one of the
main components in most definitions of risk. Does a discrepancy between
“actual” risk measures, like statistical fatality estimates, and subjectively
perceived risk constitute a problem? Brun identifies two major research issues
in risk perception studies. The first has to do with gaining knowledge of what
public concerns are. The second has to do with identifying and explaining
attitudes and reactions toward hazards. Brun differentiates experimental
studies in the psychological laboratory and psychometric or questionnaire
studies of risk attitudes in the lay population. Brun concludes that the
uncertainty component of a risk is multidimensional, involving intuitive
probability concepts such as those described by Teigen in Chapter 9.

Nigel Harvey discusses the relationship between how well people perform
skilled tasks and the confidence that they have in their performance. Most of
the work that Harvey evaluates has to do with motorskills andcognitive skills.
The major issues are whether confidence accurately reflects performance and
whether changes in performance produce changes in confidence. Here confi-
dence is treated as an effect of performance. These issues, and especially the
formerone, are similar to those addressed by cognitively orientated studies of
probability judgement accuracy reviewedin a later section of this volume. In
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addition, however, theoretical concerns have led to an examination of how

confidence influences performance. Harvey argues that confidence and

performanceare coupled together as a dynamical system whereneither should

be seen as just a cause noras just an effect. Here, motivational factors are of

major concern. Harvey concludes that there is a need for the theoretical

integration of cognitive and motivational accounts.

RumaFalk, Abigail Lipson and Clifford Konold investigate how we cope
with the search for a target object in afinite field of locations, if one’s initial

uncertainty is met with a series of negative results. Falk, Lipson and Konold

examine the nature of probabilistic reasoning in such situations along with

the Bayesian solution. But, descriptively, how is conflict resolved between the

diminishing long-term hope and the increasing immediate hope implied by the

diminishing finite number of locations? Do we overestimate our chance of

success, thus wasting time in futile search, or underestimate our chances,

giving up too early in frustration and despair?
In the first chapter of the Part on Accuracy of Probability Judgements,

J. Frank Yates introduces the issues and analyses the variety of accuracy

measures that have been proposed. Such measures, often implemented as

scoring rules, can be used in the form of feedback to the judge as well as direct

assessmentof aspects of the judge’s (in)accuracy. Yates gives several detailed

examples of accuracy measurement in such contexts as pneumonia diagnosis,

intensive-care prognoses, andstudies of cross-national variations in propensity

to engage in probabilistic thinking.
William R. Ferrell discusses practical issues in subjective probability from

the standpointof decision analysis, and he extends discussion oftheelicitation

of subjective probabilities from individuals and subsequent accuracy measure-

ment. AsFerrell notes, the quality of a decision analysis is critically dependent

on the quality of assessed probabilities. He develops Yates’ discussion of prob-

ability accuracy, discusses the consequences of poor accuracy for decision

analysis and argues that a common formof inaccuracy is overconfidence.

Next, Ferrell describes his model of probability accuracy based on signal-

detection theory and he demonstrates that the model can explain a variety of

experimental data drawn from subjective probability judgementtasks.

Alastair McClelland and Fergus Bolger focus on the accuracyorcalibration

of subjective probability judgements. They review theories and models of

calibration that have appearedsince the time of the last review, in 1982. As

McClelland and Bolger note, there are two distinct views of the locus of

observed biases in calibration and other measures of probabilistic reasoning.

The “pessimists” believe that biases are in people whilst the “optimists”

believe that biases are in-built in the experimental tasks utilized by researchers.

Theories and models of calibration can also be located within these two

distinct views of the quality of probabilistic judgement. In their review of

seven models of subjective probability calibration, McClelland and Bolger
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conclude that the “optimists” provide the most satisfactory explanation of
calibration with general-knowledge items.

In the first chapter in the Part on Real World Studies, Gideon Keren
describes gamblers’ conceptions of uncertaintyin light of a distinction between
two different and irreducible fundamental modes of thought. One modeis
based on the abstract rules of logic (e.g. the probability laws), the other is
phenomenological in nature and is based on action and associated conscious
experience. As he notes, the fact that people gamble atall in face of negative
expected values is one of the main paradoxes of gambling behaviour.
However, as Keren argues, this paradox exists only under the rules of the
logic of the probability calculus. Gamblers’ probabilistic assessments are
contaminated by their desires and associated emotions. Clearly, the formal
theory of probability is not descriptive of how gamblers deal with uncertainty.

Paul Krause and Dominic Clark discuss the ways in which uncertainty and
subjective probability have been represented in AI systems. As the authors
note, ad hoc uncertainty calculi have often been used in AI systems because
they are computationally efficient. Bayesian updating of a system’s knowledge
base, on the other hand, is complex and posed problems of combinational
explosion both for the elicitation of subjective probabilities from human
experts and for the numerical computation of updated probabilities. However,
new efficient algorithms have been recently developed for rapid belief updating
which match the computational capability of earlier ad hoc approaches.
However, most probabilistic expert systems are still dependent on theelicita-
tion from experts of the majority of the required conditional probabilities.
Nevertheless, such expert systems are in use, for example in the diagnosis of
congenital heart disease. Krause and Clark describe such a system and argue
that there are situations where aspects of imprecision and vagueness may
be more effectively addressed with alternative calculi to that of subjective
probability. This approach supplements and extends Chapter 5 by Fox.
Willem Wagenaarfocuses on the courtroom criterion of “beyond reason-

able doubt”. As he notes, there is a paradox implicit in the criterion since if
a judge is not absolutely certain thenthis must meanthat there is a logical
possibility that the accused is innocent. Whythen is this possibility not a
reason for doubt? Wagenaar analyses the way in which judges approach the
task of probability assessment. Onedescriptive theory proposes that the
acceptance of good causal stories, given by defence or prosecution, is taken
as diagnostic of truth. Of course, presented evidence should underpin good
stories. Wagenaar argues that insight into how judges and juries deal with
probabilities may lead to better courtroom procedures and better laws.

Kees van der Heijden analyses the advantage of probabilistic planning com-
pared to scenario planning. He notes that probabilistic planning is based on
axiom-based theory, whilst scenario planning, a moreintuitive approach to
dealing with uncertainty, derives from the world of decision-makingpractice.
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Scenario planning, van der Heijden argues, addresses more adequately the

needs of managerial decision-makers, downplays the decision-maker’s poor

ability to think probabilistically and promotes managerial ability to create

causal stories of plausible futures. In general, this approach complementsthat

described by Wagenaarin the previous chapter. Scenario-planning techniques

promote the generationof action options and aid the manager’s desireto close

the gap between expected and desired futures. The contrast with probabilistic

thinking is stark.
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Background



Chapter 1
 

Foundations

Dennis Lindley
Minehead, Somerset

1.1 UNCERTAINTY

Theobject of our study is uncertainty, the situation that arises when we do

not know whethera given statementis true or false. Uncertainty is everywhere

aboutus; all the future is uncertain, and so is muchof the present andthe past.

Weare all uncomfortable with uncertainty and try to avoid it as much as

possible. But it will not go away, so let us face up to the fact that not

everything is known and study the phenomenon of uncertainty.

It will be enough if consideration is confined in the first instance to state-

ments which it would be reasonable to describe as either true or false, if only

we knew which. Such statements will be termed events, though sometimes

other descriptions, such as hypotheses, might be appropriate. It is a purely

technical problem to extend our study from uncertain events to uncertain

quantities; a problem that will not be discussed here. Thus we might take the

event of “rain tomorrow”, rather than consider the amount of rain. Events

will be denoted by capital letters, thus A, B, etc.

Someevents are more uncertain than others. For example, weare fairly sure

that the sun willrise tomorrow,less sure thatit will rain then, and very unsure

whether a tossed coin will fall heads uppermost. Let us suppose that any

degree of uncertainty can be described by a number.This is a major assump-

tion and wewill return to consider it later. For the moment, let us just see

where this reduction of a complex notion to a single value leads us.
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4 D. Lindley

In describing the uncertainty of A by a number, it must be recognized that

the number may depend onthe person contemplating A and also on how much

that person knows. We will refer to the person in the state of uncertainty

concerning A as “you”. The knowledge that you have will be denoted K.If

K changes, so might your uncertainty. Indeed, one of our main taskswill be

to quantify the change. Ourtask is to measure your uncertainty about A when

your knowledge base is K.

1.2 PROBABILITY

Underlying all measurementis the concept of comparison with a standard. To

say the length of an objectis 2.4 m is to compare the length with a standard

metre. So we need a standard foruncertainty. There are many possibilities but

an easy one to handle is that of an urn containing a numberofballs, identical
except for the fact that some are white and the remainder black. Suppose that

your knowledge base, H, contains the information that there are w white and

b black balls in the urn, w+ b=n”. You now drawa ball from the urn in such

a way that you think any oneball is as likely to be withdrawn as any other.

(This concept can be madeprecise without circularity in the argument.) We

then say that the uncertainty concerning the event W, that the ball is white,
is w/n. It is called your probability of W, given H, and written p(W | H). The
notation does not incorporate reference to you, since weshall here always be

dealing with one person.

We now have a standard for uncertainty, called subjective probability,

though the adjective will be omitted. The subject is you. If you now contem-

plate another, general event, A, when your knowledge base is K, it has

probability w/n if the uncertainty is the sameas that for the ball being white.
Thus, for given n, the value of w can be selected to make the two events

equally uncertain. Remember, we are supposing that all uncertainties can be

described numerically, so that this comparison is feasible. Notice that you

might not be able to do the direct comparison of A, given K, with W, given

Hy, any more than you would actually use the standard metre to measure

length. All that is being said is that you would regardit as possible in principle,

just as, in principle, the standard metre might be employed. Although this

procedure only provides rational numbers, it is a purely technical matter to

extend it to real numbers. Asa special case, if K includes the information that

Ais true, then you would choose w=n to make W true, and henceassign a

probability of one.

Wethus havethe first rule of probability, usually called the

Convexity rule. For any uncertain event A and state of knowledge K, the

probability of A, given K, p(A|X), lies between 0 and 1 and assumesthe

value 1 if K includes the knowledge that A is true.
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There are two important features of any measurement process: how the

measurement is made, and how different measurements combine. The first

part is solved in principle by comparison with a standard, thoughthis is rarely
practical. Let us take the second part, the rules of combination. For prob-

ability there are two of these. To describe them, somenotation is required. If

A and B are two events, then the event which is only true when both A and

B are true, the conjunction,is written AB. Similarly, if your knowledge base

is enlarged from K to include the additional information that A is true, we

write AK for the new base. If it is impossible, on K, for both A and B to be
true, we say they are exclusive on K and write AB = @, the empty event, which

is knownto befalse. If AB=@, we write A + B for the event which is true

whenever one of A or B is true, thedisjunction. The two rules can now be

stated.

Addition rule. If AB=@ on K, then p(A + B| K)=p(A|K)+p(B|K).
Multiplication rule. p(AB| K) = p(A | K)p(B| AK).

It is an easy matter to establish these rules by comparingall the probabilities

with the standard of balls in an urn. In addition to supposing someballs are

white, some black, to compare with A, as above, it will be necessary to

suppose someof the balls spotted, some plain, to compare with B. For the

addition rule, there will be no balls that are both white and spotted, corre-

sponding to AB = @. Therules are then simply a reflection of the fact that the

proportions of balls in the urn obey these rules, which are thereby transferred

to probabilities generally. The rules of probability are just those of proportions.

1.3 THE INEVITABILITY OF PROBABILITY

Probability is therefore a measure of uncertainty obeying the three rulesof

convexity, addition and multiplication. It is not the only way to measure

uncertainty. For example, gamblers use odds. But odds are merely a transform

of probability. If the probability of A, given K, is p; then the odds against
A, given K, are (1—p)/p to 1. Elsewhere in this chapter, the odds on,
p|(1—p), will be used and referred to simply as odds. In manystatistical

calculations it is convenient to use the logarithm of odds. We usually prefer

probability because the rules are simpler in that form, though Bayes’ rule,

below, will demonstrate an advantageof odds.

However,although we can switch from probability to functions, like odds,
any measure of uncertainty must be a function of probability. Workers in

fuzzy logic argue for rules expressed, not in terms of addition and multi-

plication, but in terms of maxima and minima. This is not possible. Hereis

an outline of a demonstration of this fact, due to de Finetti (1974). The

account also suggests a way of measuring uncertainty that is more practical

than the comparison with astandard, just used.



6 D. Lindley

Suppose,still accepting that uncertainty can be described by a number,that

you are asked to provide a numerical value for the uncertainty of some event

A, given K, and provide, using whatever methodyoulike, the answer, p. Then

let you be scored an amount(1 — p)’, if A is later found to be true, and Dp’

if A is false. The score is to be regarded as a penalty and you wish to minimize

your total score. It is easy to see that, under these conditions, you would

provide a value of p between 0 and 1, and that you would give the value 1 if

you knew A to betrue. This is the convexity rule. Using some beautiful,

geometric arguments of great simplicity, de Finetti showed that the numbers

that you would give must satisfy the other two rules as well. If they did not,

then you would necessarily incur a larger score: not simply expect to get a

bigger value than by using probability, but actually get one. It is not an

exaggeration to say that it would be foolish to provide numbersthat did not

satisfy the three rules. It may be objected that this depends on theparticular

method of scoring used by de Finetti. However, it can be shownthat if other

scores are used, one of two things can happen. Thefirstpossibility is that you

will give a transform of probability, for example, odds. Which transform will

be a function of the scoring system. The second is that you will always give

one of only two numbers, say either 1 or 0, which is patently absurd. All

sensible rules lead back, via a possible transformation, to probability.

Probability is inevitable.

There are other approaches, all of which lead to probability. There is

nonethat provides alternative rules like those of fuzzy logic. Jeffreys (1961)

does an analysis that might appeal to a scientist. Another method, due
to Ramsey (1926), is based on decision-making, a topic we will discuss

below. From modest assumptions, Ramsey was able to describe the class

of reasonable decision procedures. They are all based on probability. A

more modern,and detailed, development along similar lines is due to Savage

(1954).

Subjective probability for you depends on two things, the event whose

uncertainty is contemplated, and the knowledge that you have at the time. We
Say it is a function of two arguments. It is commontorefer to the probability

of A. This is strictly wrong and can lead to misunderstandings by omission of

the conditions, K. Also two people considering the same event, with the same

knowledge base, can have different probabilities. De Finetti expressed this

vividly by saying that “Probability does not exist”. Does not exist, that is,

outside of anindividual. The correct form is your probability of A, given K.

Practical experience suggests that there are bases where most people agree. For

example, on being presented with a coin similar to others that you have seen

over the years, most people would say that, if they were to toss it, the prob-

ability of heads for themis 5. Other probabilities, like those concerning the
winner of a political election, are much more subjective.
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1.4 EXTENSION OF THE CONVERSATION

Let us now lookat the rules in more detail. The whole of probability theory

evolves from the three rules. Other rules are mathematical consequences of

them. The rules are sometimes modified, but only in small ways. For example,

the addition rule has been stated for two events and can easily be extended to

any finite number. Butit is usual to supposethat it also holds for an enumer-

able infinity of events. Similarly, in the convexity rule, it is sometimes

supposed that a probability is only 1 if the knowledge base implies the truth

of the event. Notice that, although the rules are simply those of proportions,

probabilities combine in two different ways, by addition and by multiplication.

Lengths, for example, only combine by addition; multiplication yields a new

concept, area. This meansthat the calculus of probability is extremely rich.It
also means that the results do not always agree with commonsense, for

commonsense is often not capable of the calculation.

For any event A, the event which is true (false) whenever A is false (true)

is called the complement of A and will be written A‘. Since AA‘ = @ and the

event A+A° is surely true, it follows that p(A°|K)=1-p(A|K). The
addition rule shows that, since A=AB+AB‘, p(A|K)=p(AB|K)+

p(AB‘| K). Use of the multiplication rule enables this to be written

p(A|K)=p(A|BK)p(B| K) + p(A| BK)p(8*| K).

This most useful.formula is knownasthe extension of the conversation (from

A to include B). It is also known as the generalized addition rule. Its merit

lies in the fact that the probabilities of A on the right-handside are often easier

to evaluate than that on the left, because you knowledge baseis larger there.

1.5 BAYES’ RULE

If, in the multiplication rule, the roles of the two events, A and B,are

interchanged, we easily get that

p(A|K)p(B| AK) = p(B| K)p(A | Bk),

so that if p(B| K) #0,

 

p(B\AK)p(A|K)A|BK)=p(A|BK) (BI K)

This is known as Bayes’ rule. It is more easily appreciated in its odds form.

Write O(A | K)=p(A|K)/p(A‘|K), the odds on A, given K, as in Section
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1.3. With Bayes’ rule, both as written above and with A‘ replacing A, we
have

p(B| AK)
p(B|A‘K)

In this form it clearly displays the effect on the odds for A of learning the truth
of B. The original odds are multiplied by

p(B| AK)
p(B| ASK)

to obtain the new odds. The multiplier is known as thelikelihood ratio. Here
is an application that mightclarify therule.

Considera trial in a criminal court andlet G be the event that the defendant
is truly guilty of the charge. Write G‘° as J, innocence. At somepointin the
course of thetrial, let K denote the knowledge that the court has. Finally, let
E denote a newpiece of evidence before the court, additional to K. Then with
G for A and for B, Bayes’ rule says

p(E|GK)
p(E| IK)

(Since K occurs in every probability, the reader may temporarily like to omit
it as an aid in appreciating the formula.) Onthe left-hand side, there is the
odds forguilt given the new evidence (and K); on the otherside is the odds
without that evidence. Thelatter is multiplied by the likelihood ratio to obtain
the former. This, accordingto probability theory, is the procedure that should
be adopted in the court. As the trial proceeds, the odds are continually
updated by multiplication by the relevant likelihood ratio.

Let us consider this ratio in more detail. The probabilities involved are not
those of guilt, but of the new evidence. Furthermore, these have to be taken
both on the assumption of innocence, and on that of guilt, though only their
ratio matters. The court therefore has to ask itself how probable is the
evidence were the defendant guilty, and how probableis it were he innocent.
Generally, whenever there are two competing hypotheses, here guilt and
innocence, one needsto assessthe uncertainties of the evidence on the bases
of both, and compare them.

O(A | BK) = O(A | K).

O(G| EK) = O(G|K).

1.66 INVERSION, SUPPOSITION AND DESCRIPTION

There is another important feature of Bayes’ rule. On the left-hand side we
have p(G| EK), expressed in odds: on the right there is p(E | GK). Here the
roles of E and G, are reversed. People often experience difficulty in distin-
guishing between these two probabilities, yet they are essentially different.
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Statisticians find it useful to distinguish the two ideas by using different words.

Omitting K for the moment, p(A|B) is the probability of A, given B;
whereas, as a function of B, it is termed the likelihood of B, given A. Thus

in the legal application of Bayes’ rule, the odds refer to the probability of guilt;

the ratio refers to the likelihood of guilt.

Bayes’ rule also brings out another important feature of probability. The

probability p(E | GK) uses the knowledge base GK.But the court never knows

G to be true. What is being studied here is the uncertainty of the evidence on

the supposition that the defendantis guilty. Supposition replaces fact. Strictly,
one should write p(A | B: K), the probability of A, supposing B to be true and

knowing K. This complication is not needed if the assumption is made that

p(A|BC:K)=p(A|B:CK).

This says that, replacing the supposition that C is true by the knowledgethat
it is true, makes no difference to the uncertainty of A. In acquiring the
knowledge that an event is true, you often acquire other knowledge as well.

If you do not, then the assumption seems reasonable. If made, there is no

need to distinguish between supposition and fact, and the previous, simpler

notation may be used. This is almost universal practice.

There is no suggestion, in the developmentgiven, that probability describes

how people currently behave in the face of uncertainty. All that is being said

is that you would wish to behave in accordance with probability, if you could.

The calculus of probability is there to help you to do this. The methodis said

to be normative: it provides a norm by which your ideas might be expressed.

A description of how people actually behave might look very different. There

is no suggestion that courts of law nowadaysuse Bayes’rule in reaction to new

evidence; only that they should.

1.7 NUMERICAL ASSIGNMENT AND COHERENCE

If you are going to use the probability calculus, you have got to input numbers
for some probabilities. How arethese to be obtained? First, there are some

probabilities that are easy to calculate. The probability of } for a coin falling

heads, or 1/6 for a die showing an ace, are natural. Your probability that Jean

celebrates her birthday on 15 Marchis 1/365, with refinements for leap years.

Generally, from easily obtained probabilities, it is possible to. evaluate others

using the calculus. For example, if, to the one about Jean’s birthday, you
include similar statements about other people, and assumeall the judgements

independent, then it is possible to show that the probability, in a room of 23

people, that there are two whosharethe samecelebration, is about 3; a value

that is often found to be surprising. Generally, from some values you can

calculate others by use of the rules.
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Another way to influence your probability evaluations is through scoring

rules. Faced with a sequence of events and the knowledge that you are to be

scored by somesensible system, you will usually make a better job of the task

than you would without the check provided by the score. Certainly it

encourages coherence as explained in the next paragraph. Moreexperienceis

needed with this method to determine which scoring rule is best.
Perhaps the most important wayof calculating probabilities, and certainly

one that is always available, is through coherence. You are said to be coherent

in your approach to uncertainty if all the values you give obey the rules of

probability. For a single event, there is only one rule, convexity. Coherence

only comes into play with several events, and the more there are, the more

powerful it is. For example, suppose that you contemplate the event A that

your party will win the next election, knowing K, p(A|K). The state of the

economy is surely relevant to the party’s fortunes, so you might consider

extending the conversation to include B, the event that the economyis favour-

able. This will involve p(A|BK) and p(A|B‘K), contemplating election,

knowing the state of the economy. Other events, like those concerning foreign
policy, can be added. The procedure can be inverted and you may contemplate

p(B| AK), the probability of a sound economywere yourparty elected. From

evaluations already made, you can calculate others andsee whether you like

them. Computer programsexist which dothe calculations and provide ranges

between which unstated probabilities might lie, given what has been input.

1.8 FREQUENCY IDEAS

There is class of situations in which it is often easy to determine yourbelief

numerically. This is where K includes frequency information relevant to the

uncertain event being considered. For example, if you learn that, in a recent

survey, 15% of people carried a certain gene, you might assert that the prob-

ability that Tom carries the gene is 0.15. It is important to notice that

subjective probability, as developed here, has nothing to do with frequency.

It is merely a numerical expression of your belief. In this example, the

frequency belongs to K andis transferred to the uncertain event by a judge-

ment of a connection between the frequency and the event. If you learned that
Tom’s mother carriedthe gene, then the frequency of 15% would have much

less relevance. The connection between the knowledgebase and the event has

been destroyed by the additional information about the mother. Frequencies

have a usefulrole to play in the evaluation ofbeliefs but it is wrong to interpret

probability as frequency.

Frequency ideas surface in another context. Suppose that, over many days,

you forecast tomorrow’s weather by each daygiving your probability of rain

tomorrow. After a long period, you look at all the occasions on which you
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have given a specific value for the probability, say 0.25. Then one might expect

that on 25% of these occasions, it will have been found to haverained.If this

match between belief and actuality obtains for all probabilities, you are said

to be calibrated and there is agreement between belief and frequency.

Calibration is often said to be a desirable feature. It is easy to see that it is not

necessary, by thinking of the meteorologist who always provides probabilities

of 0 or 1 for rain tomorrow.Every time 0 is stated, it rains; every 1 is followed

by a dry day. This is an excellent forecaster even though quite uncalibrated;

it is only necessary to do the opposite of what his forecast suggests.

1.9 DECISION ANALYSIS

The discussion so far has been entirely in terms of beliefs. But why do we have

beliefs? Why do we wantto calculate with probabilities? The usual answeris,

in order to take action in the face of uncertainty; to decide in a situation where

not all is known. A belief does not have to be associated with a decision, but

it must have the potentiality for action if needed. You need notbet onthefall

of the coin, but the } would be useful if you did. If the gene could have
dangerous consequences for his children, Tom might find the 0.15 very

relevant to a decision whether to have children. It is easy to extend subjective

probability to encompass decision-making. This is done by the introduction of

utility.

Decisions and the resulting actions lead to consequences, which are uncer-

tain if the events are. Suppose that, amongstall the consequences that might

arise there is one that is more desirable than the others, or at least is very good.

Write this C; andgiveit a utility of 1. Similarly take a consequencethat is very

bad, Co, and giveit utility 0. Now take any consequence C whose merit lies

between these two extremes. The utility of C can be constructed as follows.

Consider a choice between an action that will lead to C for sure, and another

actionthat will yield C, with probability uw and Cp with probability 1 — u. Since

C is intermediate between the two extremes, there will be a value of u that

will make the uncertain action equivalent, in your mind, to the certain C.

This is called the utility of C and will be written u(C). The choice of 0 and

1 above is arbitrary and work with utility is unaffected by changes of origin

or scale.

Take any decision and suppose that it can lead to one of a number of

consequences cj, /=1,2,...n, with utilities u(c;), their probabilities being

p(ci), omitting reference to K. By the way in whichutility was derived, c; can

be replaced by C), the highly desirable outcome, with probability u(c;), and

otherwise Co. Hence the decision can be thought of as always leading to one

of the extreme consequences. Let us evaluate the probability of getting the



12 D. Lindley

better C; rather than the worse. By the extension of the conversation (see

above)this is

P(C1) = Lip(Ci | ci)p(ci) = Uiu(ci)p(ci).

Since you would wish to maximize your probability of getting the best ofall

possible worlds, Ci, you can achieve this by maximizing the right-handside
of the last result. The sum is called the expected utility of the decision,
obtained in the usual way with an expectation by multiplying the respective

utilities by their probabilities and adding. Hence subjective probability,

expressing yourbeliefs about uncertain events, leads directly to utility and thus

to the procedure of maximization of expected utility (MEU) as the proper

criterion for action. We do not use the term, risk, referring to undesirable

outcomes. Utility embraces the good and the bad equally and no distinction

need be made beyond the numerical value. Risk is sometimes used when

probabilities are unknown. Since our usage of probability refers to your

knowledge, or lack ofit, it is always known in principle, though sometimes

hard to determine.

It is importantto notice that utility is not an arbitrary measure of the worth

of a consequence. It is a measure on the scale of probability. A glance atthe

way that it was derived above shows that the concept of a gamble, and hence

of probability, is basic to the concept. Furthermore, since it was derived from

probability, the extension of the conversation can be used to demonstrate that

expected utility is the correct quantity to maximize in order to optimize your

decision-making. Just as a single numberdescribes uncertainty, so one value,

expected utility, is enough to decide. Actually, all utilities are really expected,

since the worth you attach to a consequence is what you expect to obtain

from it.

It is necessary to insert a caveat here. The whole edifice concerns a single

individual, called you. It does not describe how a group of people should

act. Nor does it say howtwo people in conflict should behave,either in the

play of a gameorin situation that may lead to war. But for one decision-

maker, contemplating an uncertain world, MEUis the only sensible way to
proceed.

The conceptof utility is a subtle one and requires care in its use. It applies

to any consequence and, in contemplating the consequence, you can take

accountof anything that you consider relevant. For example, suppose that you

are in a gambling situation where the outcomes are monetary. Then you may

wish to think solely in terms of money, whenall you need dois to take your

utility function for money. But you may perceive a consequencein terms of

more than just cash. Many peoplefeel that £100 received as by right, or almost

certainly, is different from £100 had unexpectedly, or with small probability.

In that case, utility of moneyis inadequate for your contemplation of gambles,

and you will need to addan extra dimension to your consideration of the
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consequences. This type of analysis lies behind the resolution of several

paradoxes, like those of Allais, that have appeared in the literature.

1.10 UNCERTAINTY AS NUMBER

Let us return to the strong assumption madeat the beginning of the chapter

to the effect that you would wish to measure your uncertainty by a single

number. People have often felt unhappy with this bold assertion, feeling that

such a complicated idea cannot be reduced to something as simple as number.

Here is an example of where it may be inadequate. If you are asked for the

probability that a coin will fall heads when tossed, then, under normal circum-

stances, you will confidently announce }. If asked whether the political party
you support will win the next election, you may also provide a probability of

1 but will feel less confident of its value. Here are two values of }, but you
feel more assured about one than the other. You might think that another
number would be needed to express this confidence. Some writers have

suggested the use of upper and lower probabilities, reflecting the range of

reasonable values. In our examples, these might be (0.49, 0.51) for the coin

but more separated values, suchas (0.35, 0.65) for the election. An argument

is now presented to suggest that this complication is not necessary.

Consider an urn that you know contains two balls, identical except for

colour. There are two scenarios:

(1) You know oneball is white, the other black, |

(2) You knowthat there are three possibilities, two black, two white or one

of each colour, and you think that all three are equally likely.

A ball is removed in such a waythat you thinkit is as likely to be one as the

other. In both scenarios, the probability that the withdrawnball is white is 5.
Yet presented with the two scenarios, most people prefer the first over the

second because it contains less uncertainty. This preference is not reflected in

the probabilities, which are } in both cases. A decision, based on a single

expected utility, would be the samein the two cases. Thesingle value of } may

be inadequate.
Now consider a second drawing from the urn,the first ball not having been

replaced, and contemplate the uncertain event that the two withdrawn balls

match. This has probability 0 in the first scenario, but 3 in the second. In other

words, belief based on a single numberis capable of distinguishing the two

scenarios whenit is necessary. It was not probability that was inadequate when

only one ball was taken, it was the fact that decision analysis did not require

any distinction. When two were taken, the distinction was essential and was

met by belief based on a single number. There have been several attempts

to produce paradoxes based on the use of a single number to describe
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uncertainty, but all, in my opinion, can be answeredin a similar fashion to

that just used in the urn illustration. An excellent defence of the idea of using

upper and lower probabilities is given by Walley (1991).

1.11 PROBABILITY AND LOGIC

Probability theory is an extension of logic. The latter deals with truth and

falsehood. Probability deals with uncertainty where the two extremesare truth

and falsehood, with probabilities 1 and 0 respectively. Two situations can look

the samelogically, yet be different when the uncertain element is introduced.

The following example has arisen in the literature. There are a number of

cards. Each card has a letter on one side and a numberonthe other: thus

(D,3). On a table, this card will appear as either (D,-) or (-,3), depending on

which face is showing. Suppose that it is a question of whether the rule “D

implies 3” applies. Logic says that, presented with four cards

(D,*) (F3*) (3) 657),

only the first, with D showing, and the last, with 7 showing, need be inves-

tigated to test the rule.

If there is a set of cards, of which these are just four, then the probability

of whether the rule obtains would be changed, through Bayes’ rule, by turn-

ing up any of the cards, especially that with the 3 showing. Equally there are

cases, where your knowledgebaseis different, where the card with a 7 showing

would not be worth consideration. This case is often known as the paradox

of the swans. Let D correspond to “swan” and 3 to “white”, so that the rule

underinvestigation is that all swans are white. But no one looking at a black

object, 7, and finding it was a jug, F, wouldthink that this supported the
rule.

1.12 SUMMARY

If every uncertainty is to be measured by a number, then it must be in terms

of numbers that obey the rules of probability. The beliefs so generated are in

an appropriate form for decision analysis and, with the conceptofutility, yield
the principle of maximization of expected utility. For a single decision-maker,

in a state of uncertainty, the theory seems adequate. There do not appear to

be difficulties caused by the restriction to a single number. The calculus

provides a generalization of logic. The problem of measurementis substantial

and coherenceis possibly the most important tool, though frequency consider-
ation are often useful.
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Chapter 2 

Qualitative Theory of Subjective
Probability

Patrick Suppes
Stanford University

Because we wantto use probability concepts to talk about everything from the
chance of drawing four aces in a hand of bridge to the probability of rain
tomorrow orthe probability distribution of position in a quantum-mechanical
experiment, it is hardly surprising that no simple categorical theory of prob-
ability can be found. The subjective theory of probability accepts this diversity
of applications, and,in fact, utilizes it to argue that the many ways in which
information must be processed to obtain a probability distribution do not
admit of categorical codification. Consequently, two reasonable men in
approximately the same circumstances can hold differing beliefs about the
probability of an event as yet unobserved. For example, according to the
subjective theory of probability, two meterorologists can be presented with the
Same weather map and the samehistory of observations of basic meterological
variables such as surface temperature, air pressure, humidity, upper air
pressures, wind, etc., and yetstill differ in the numerical probability they
assign to the forecast of rain tomorrow morning. I hasten to add, however,
that the term “subjective” can be misleading. It is not part of the subjective
theory of probability to countenance every possible diversity in the assignment
of subjective probabilities. It is a proper and important part of subjective
theory to analyze, e.g., howclassical relative-frequency data are to be incorpo-
rated into proper estimates of subjective probability. Such data are obviously
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important in any systematic estimate of probabilities, as we can see from

examination of the scientific literature in which probabilities play a serious

part. It is also obvious that the principles of symmetry naturally applied in the

classical definition of probability play an importantrole in the estimation of

subjective probabilities whenever they are applicable.

Bayes’ theorem provides an example of the sort of strong constraints to be

placed on any subjective theory. The prior probability distributions selected by

different investigators can differ widely without violating the subjective theory;

but if these investigators agree on the method of obtaining further evidence,

and if common observations are available to them, then these commonly

accepted observations will often force their beliefs to converge.

2.1 DE FINETTI’S QUALITATIVE AXIOMS

Let us turn now to a more systematic discussion of the major aspects of the

subjective theory. For a more detailed treatment of many questions the reader

is referred to the historically importantarticle of de Finetti (1937), which has

been translated in Kyburg and Smokler (1964), and also to de Finetti’s treatise

(1974; 1975). The 1937 article of de Finetti’s is one of the important pieces of

work in the foundations of probability in this century. Probably the most

influential work on these matters since 1950 is the book by Savage (1954).

Savage extends de Finetti’s ideas by paying greater attention to the behavioral

aspects of decisions, but this extension cannotbe examinedin any detail in this

chapter.

Perhaps the best way to begin a systematic analysis of the subjective theory

is by a consideration of de Finetti’s axioms for qualitative probability. The

spirit of these axiomsis to place restraints on qualitative judgments of prob-

ability which will be sufficient to prove a standard representation theorem,1.e.

to guarantee the existence of a numerical probability measure in the standard

sense. From this standpoint the axioms may be regarded as a contribution to

the theory of measurementwith particular reference to comparative judgments

of probability. The central question for such

a

set of axioms is how compli-

cated must be the condition on the qualitative relation more probable than in

order to obtain a numerical probability measure over events.

The intuitive idea of using a comparative qualitative relation is that

individuals can realistically be expected to make such judgments in a direct

way, as they cannot when the comparison is required to be quantitative. On

most occasions I can say unequivocally whether I think it is more likely to rain

or not in the next four hours at Stanford, but I cannot in the same direct way -

make a judgment of how much morelikely it is not to rain than rain. General-

izing this example, it is a natural move on the subjectivist’s part to next ask

what formal properties a qualitative comparative relation must have in order

to be represented by a standard probability measure. (Later we shall review
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some of the experimental literature on whether people’s qualitative judgments

do have the requisite properties.)

Webegin with the concept of a qualitative probability structure, the axioms

for which are very similar formally to those for a finitely additive probability

space. The set-theoretical realizations of the theory are triples (Q, ¥, > ) where

{) is anonemptyset, F is a family of subsets of 0, and the relation > is a binary

relation on S. We follow here the discussion given in Luce & Suppes (1965).

Definition 1 A structure Q =(Q, §, >) is a qualitative probability structure

if the following axiomsaresatisfied for all A, B, and C in F:

Sl. & is an algebra of sets on Q;

S2. If A > Band B > C, then A > C;

S3. A>BorB>A;

54. If AN C= and BN C=@, then A > Bif and only if AUC > BUC;
S5. A > GO;

S6. Not @ > Q.

The first axiom on & is the sameas the first axiom of finitely additive prob-

ability spaces. Axioms S2 and S3 just assert that > is a weak ordering of the
events in 5. Axiom S4 formulates in qualitative terms the important and
essential principle of additivity of mutually exclusive events. Axiom S5 says

that any event is (weakly) more probable than the impossible event, and

Axiom S6 that the certain eventis strictly more probable than the impossible

event. Defining thestrict relation > in the customary fashion:

A > B if and only if not B > A,

we maystate the last axiom as: 2 > ©.

To give a somewhatdeepersense of the structure imposed by the axioms,

westate some ofthe intuitively desirable and expected consequences of the

axioms. It is convenient in the statement of some of the theorems to use the

(weakly) less probable relation, defined in the usual manner.

A < Bif and only if B > A.

The first theorem says that < is an extension of the subset relation.

Theorem 1 If ACB, then A < B.

Proof. Suppose on the contrary, that not A < B, i.e. that A > B. By

hypothesis A © B,so there is a set C, disjoint from A such that AUC=B.

Then, because A U@# 4A, we have at once

AU@G@=A > B=AUC,

whence by contraposition of Axiom S4, @ > C, which contradicts Axiom S5.

Q.E.D.
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Someother elementary properties follow.

Theorem2

(i) If O@ < A and ANB=Q,then B < AUB;
(ii) if A > B, then —B> —A;

(iii) if A > Band C> Dand ANC=9, then AUC > BUD;

(iv) if AUB > CUD and CN D=@Q@,then A > Cor B > D;

(v) if B> —Band -C>C, then B>C.

Becauseit is relatively easy to prove that a qualitative probability structure

has many of the expected properties, as reflected in the preceding theorems,

it is natural to ask the deeper question whether or not it has all of the

properties necessary to guarantee the existence of a numerical probability

measure P such that for any events A and Bin S

P(A) > P(B) if and only if A > B. (I)

If Q is an infinite set, it is moderately easy to show that the axioms of

Definition 1 are not strong enoughto guarantee the existence of such a prob-

ability measure. General arguments from the logical theory of models in terms

of infinite models of arbitrary cardinality suffice; a counterexample is given in

Savage (1954, p. 41). De Finetti stressed the desirability of obtaining an answer
in the finite case. Kraft, Pratt & Seidenberg (1959) showed that the answeris
also negative when Q is finite; in fact, they found a counterexample fora set

Q having five elements, and, thus, 32 subsets. The gist of their counterexample

is the following construction. Let 2 = {a,b,c,d,e}, and let @ be a measure (not

a probability measure) suchthat

o(a)=4-€
o(b)=1l-e

o(c)=2
o(d)=3-€
o(e) =6,

and

O<e<}.

Noworderthe 32 subsets of 0 according to this measure—the ordering being,

of course, one that satisfies Definition 1. We then have the following strict ine-

qualities in the ordering:

{a} > {b,d} because ¢(a)=4-—e > 4-2¢e€=$(b) + (2)

{c,d} > {a,b} because $(c) + ¢(d)=5—e > 5—2e€=$(a)+ G(D)

{b, e} > {a,d} because (b) + o(e)=7-—e€ > 7—-2€=$(a)+ O(a)
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Wesee immediately also that any probability measure P that preserves these
three inequalities implies that

{c,e} > (a,b, d},

as may be seen just by adding the three inequalities. In the case of og

o(c) + o(e) =8 > 8 — 3e= (a) + (b) + O().

However, no set A different from {c, e} and {a,b,d} has the property that

(ic, e}) 2 (A) 2 $({a, b, d}).

Thus we can modify the ordering induced by ¢ to the extent of setting

(a,b, d} > {c, e} (I)

without changing anyofthe other inequalities. But no probability measure can
preserve (II) as well as the three earlier inequalities, and so the modified
ordering satisfies Definition 1 but cannot be represented by a probability
measure.

Of course,it is apparent that by addingspecial structural assumptions to the
axiomsof Definition | it is possible to guarantee the existence of a probability
measuresatisfying (I). In the finite case, for example, we can demandthatall
the atomic events be equiprobable, although this is admittedly a very strong
requirement to impose.

Fortunately, a simple general solution of the finite case has been found by
Scott (1964). (Necessary and sufficient conditions for the existence of a
proability measure in the finite case were formulated by Kraft, Pratt and
Seidenberg, but their mutliplicative conditions are difficult to understand.
Scott’s treatment represents a real gain in clarity and simplicity.) The central
idea of Scott’sformulation is to impose an algebraic condition on the indicator
(or characteristic) functions of the events. Recall that the indicator function
of a set is just the function that assigns the value 1 to elements oftheset and
the value 0 to all elements outside the set. For simplicity of notation, if A is
a set we shall denote by A’ its indicator function. Thus if A is an event

if x€ A,

0 otherwise.
A= {4

Scott’s conditions are embodied in thefollowing theorem, whose proof we do
not give.

Theorem 3 (Scott’s representation theorem). Let Q be a finite set and 2a
binary relation on the subsets of 2. Necessary and sufficient conditions that
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there exists a probability measure P on © satisfying (I) are the following: for

all subsets A and B of Q),

(1) A>BorBoA;

(2) A > 0;
(3) 2 > 0;

(4) for all subsets Ao,..., An, Bo,..., Bn of 0, if A; > B; forO <i< an, and

for all x in Q

Ai(x) +++» + Ai(x) = Bh(x) +--+ + Br(x),

then A, < Bn.

To illustrate the force of Scott’s condition (4), we may see how it implies

transitivity. First, necessarily for any three indicator functions

Ait Bi+Cl=B'+C'+A’,

i.e. for all elements x

Ai(x) + Bi(x) + C!(x) = Bi(x) + C'(x) + A'(x).

By hypothesis A > B and B > C, whence by virtue of condition (4),

C<A,

and thus by definition, A > C, as desired. The algebraic equation of condition

(4), just requires that any elementof Q, i.e. any atomic event, belong to exactly

the same number of A; and Bi, for 0 <i <n. Obviously, this algebraic condi-

tion cannot be formulated in the simple set language of Definition 1 and thus

represents quite a strong condition.

2.2 GENERAL QUALITATIVE AXIOMS

In the case that Q is infinite, a number of strong structural conditions have

been shownto be sufficient but not necessary. For example, de Finetti (1937)

and independently Koopman (1940a, 1940b, 1941) use an axiom to theeffect

that there exist partitions of 0 into arbitrarily many events equivalent in

probability. This axiom, together with those of Definition 1, is sufficient to

prove the existence of a numerical probability measure. Related existential

conditions are discussed in Savage (1954). A detailed review of these various

conditions is to be found in Chapters 5 and 9 of Krantz et al. (1971). However,

as is shown in Suppes & Zanotti (1976), by going slightly beyond the indicator

functions, simple necessary and sufficient conditions can be given for both the

finite and infinite case.

In the present case the moveis from an algebra of events to the algebra 5”

of extended indicator functions relative to ¥. The algebra 5 * is just the
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smallest semigroup (under function addition) containing the indicator func-
tions of all events in §. In other words, $* is the intersection ofall sets with
the property that if A is in § then A’ is in $* and if A* and B” are in §*,
then A*+ B* is in ¥*; It is easy to show that any function A* in ¥* is an
integer-valued function defined on Q.It is the extension from indicator func-
tions to integer-valued functions that justifies calling the elements of ¥*
extended indicator functions.
The qualitative probability ordering must be extended from § to* and the

intuitive justification of this extension must be considered. Let A* and B* be
two extendedindicator functions in §*. Then, to have A* > B* is to have the
expected value of A* equal to or greater than the expected value of B*. As
should be clear, extended indicator functions are just random variables of a
restricted sort. The qualitative comparison is now not one about the probable
occurrences of events, but about the expected value of certain restricted
random variables. The indicator functions themselves form, of course, a still
morerestricted class of random variables, but qualitative comparison of their
expected values is conceptually identical to qualitative comparison of the
probable occurrences of events.
There is more than one wayto think about the qualitative comparisons of

the expected value of extended indicator functions, and soit is useful to
consider several examples.

(1) Suppose Smith is considering two locations to fly to for a weekend vaca-
tion. Let A; be the event of sunny weatherat location J and B; be the event
of warm weather at location j. The qualitative comparison Smith is
interested in is the expected value of A‘! + B‘ versus the expected value of
A} + Bi}. It is natural to insist that the utility of the outcomes has been too
simplified by the sums A + Bi. The proper responseis that the expected
values of the two functions are being compared as a matter of belief, not
value orutility. Thus it would seem quite natural to bet that the expected
value of Aj + Bj will be greater than that of Ai + Bi, no matter how one
feels about the relative desirability of sunny versus warm weather. Put
another way, within the context of decision theory, extended indicator
functions are being used to construct the subjective probability measure,
not the measure of utility.

Note that if Smith prefers the country (j = 1) to the city (j = 2) whenit
is warm and sunny, then even if

i+ Bi~Ah+ BS

in belief, his choice of country or city could vary depending on the degree
of belief or expectation: with high expectation go to the country; with low
expectation go to thecity.
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(2) Consider a particular population of n individuals, numbered 1,..., 7. Let

Aj be the event of individual j going to Hawaii for a vacation this year,

and let B; be the event of individual j going to Acapulco. Then define

i and B*= >) Bi.
1 i=1

M
e

aNA*=
{

Obviously A* and B*are extended indicator functions—we have left

implicit the underlying set Q. It is meaningful and quite natural to

qualitatively compare the expectedvalues of A* and B*. Presumably such

comparisonsare in fact of definite significance to travel agents, airlines,

and thelike.

Webelieve that such qualitative comparisons of expected value are natural

inmany other contexts as well. What the representation theorem below shows

is that very simple necessary and sufficient conditions on the qualitative com-

parison of extended indicator functions guarantee existence of a strictly

agreeing, finitely additive measure in the sense of (I), whether the set Q of

possible outcomesis finite or infinite.

The axioms are embodied in the definition of a qualitative algebra of

extended indicator functions. Several points of notation need to benoted.

First, Q' and @’ arethe indicator or characteristic functions of the set 0 of pos-

sible outcomes and the empty set @, respectively. Second, the notation nA*

for a function in $* is just the standard notation for the (functional) sum of

A* with itself times. Third, the same notationis used for the ordering rela-

tion on ¥ and $*, because the one on S” is an extension of the one on §S: for

A and Bin,

A > Biff A‘ > B’.

Finally, the strict ordering relation > is defined in the usual way: A* > B* iff

A* > B* and not B* > A*.

Definition 2 Let Q be a nonemptyset, let § be an algebra of sets on 2, and

let > be abinary relation on §*the algebra of extended indicator functions

relative to §. Then the qualitative algebra (Q, J, >) is qualitativelysatis-

factory if and only if the following axiomsare satisfied for every A“, B*, and

C* in §*:

Axiom 1. The relation > is a weak ordering of &*;
Axiom 2 Q' > @';
Axiom 3. A* > @';
Axiom 4 A* > B* iff A*+C* > B*+C";
















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































