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ABSTRACT. At the 1988 workshop we called attention to the "Mind Projection Fallacy" 
which is present in all fields that use probability. Here we give a more complete discussion 
showing why probabilities need not correspond to physical causal influences, or "propensi­
ties" affecting mass phenomena. Probability theory is far more useful if we recognize that 
probabilities express fundamentally logical inferences pertaining to individual cases. We 
note several examples of the difference this makes in real applications. 

1. Introduction 
"Man is surely mad. He cannot make a worm; 

yet he makes Gods by the dozen." - Montaigne. 

It seems that mankind has always been occupied with the problem of how to deal with 
ignorance. Primitive man, aware of his helplessness against the forces of Nature but totally 
ignorant of their causes, would try to compensate for his ignorance by inventing hypotheses 
about them. For educated people today, the idea of directing intelligences willfully and 
consciously controlling every detail of events seems vastly more complicated than the idea 
of a machine running; but to primitive man (and even to the uneducated today) the op­
posite is true. For one who has no comprehension of physical law, but is aware of his own 
consciousness and volition, the natural question to ask is not: "What is causing it?", but 
rather: "Who is causing it?" 

The answer was to invent Gods with the same consciousness and volition as ourselves, but 
with the additional power of psychokinesis; one in control of the weather, one in control of 
the seas, and so on. This personification of Nature must have been going on for thousands of 
years before it started producing permanent written records, in ancient Egypt and Greece. 
It appears that the adult citizens of those times really believed very literally in all their 
local Gods. 

This oldest of all devices for dealing with one's ignorance, is the first form of what we 
have called the "Mind Projection Fallacy". One asserts that the creations of his own 
imagination are real properties of Nature, and thus in effect projects his own thoughts out 
onto Nature. It is still rampant today, not only in fundamentalist religion, but in every 
field where probability theory is used. 

Of course, we are not arguing against a scientist's practice of formulating hypotheses 
about what is happening in Nature. Indeed, we see it as the highest form of creativity - far 
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transcending mere mathematical skill - to conceive the right hypothesis in any field, out 
of one's educated imagination. Copernicus, Newton, Faraday, Darwin, Mendel, Pasteur, 
Wegener, Einstein are our heroes for having done this. 

The difference between an imaginative scientist on the one hand, and primitive man and 
religious fundamentalists on the other, is that the scientist clearly recognizes the creations 
of his imagination as tentative working hypotheses to be tested by observation; and he is 
prepared to test and reject a hundred different hypotheses in order to find the right one. 

2. The Mind Projection Fallacy 

The writer became fully aware of this fallacy only recently, after many years of being vaguely 
troubled by the kind of logic that is used in a dozen different fields. Eventually there came 
that sudden flash of understanding of what was causing this. 

I first learned about Bose and Fermi statistics, as an undergraduate, by this argument: 
"You and I cannot distinguish between the particles: therefore, the particles behave differ­
ently than if we could." In some vague way, the logic of this bothered me. It seemed to 
be claiming for man the powers of psychokinesis formerly reserved for those Gods. But a 
few years later, as a graduate student in Berkeley, I heard J. R. Oppenheimer expound the 
same argument, in the obvious conviction that this was an expression of deep new wisdom, 
a major advance in thinking. 

Oppy proceeded to give a dozen other "physical" arguments in support of quantum theory, 
using the same pattern of logic. I was, of course, too cowed by his authority to raise any 
open objection, and made strenuous efforts to understand such arguments as lines of rational 
thought. But I never succeeded, and quantum theory has always seemed to have more the 
character of a religion than a science. 

Then in studying probability theory, it was vaguely troubling to see reference to "gaussian 
random variables", or "stochastic processes" , or "stationary time series", or "disorder", as 
if the property of being gaussian, random, stochastic, stationary, or disorderly is a real 
property, like the property of possessing mass or length, existing in Nature. Indeed, some 
seek to develop statistical tests to determine the presence of these properties in their data. 

There was a short phase of studying philosophy, hoping that the answer to what was 
troubling me might be found there. But the reasoning of philosophers was far worse in 
the same vague way, and it was clear that they understood even less than I did about 
the meaning of quantum theory and probability theory (at least, I was familiar with the 
mathematics of the theories and could solve real problems by applying it). There were 
several more experiences like this in other fields. 

A change started with the much appreciated opportunity to spend a year at St. John's 
College, Cambridge, in the quiet contemplation that is possible only when one is free of all 
other responsibilities. This started some new lines of thought which finally congealed a few 
years later. It was in late 1987 that the sudden flash of understanding came, and I saw that 
the things that had been troubling me vaguely for 40 years were all the same basic error 
and that this error occurs not only in science and philosophy; it is ubiquitous in every area 
where people try to think. 

Why did it take so long to see this? We can reason clearly only in areas where we have 
an established symbolism for the concepts; but this error had no name. Even after sensing 
it intuitively, there was a struggle to find an appropriate name for this vaguely seen thing. 
Finally the term "Mind Projection Fallacy" seemed to be the only one that expressed the 
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idea without calling up wrong connotations. 
As soon as the error had a definite name and description, it was much easier to recognize. 

Once one has grasped the idea, one sees the Mind Projection Fallacy everywhere; what 
we have been taught as deep wisdom, is stripped of its pretensions and seen to be instead 
a foolish non sequitur. The error occurs in two complementary forms, which we might 
indicate thus: 

(A) (My own imagination) --> (Real property of Nature) 
(B) (My own ignorance) --> (Nature is indeterminate) 

Form (B) arose out of quantum theory; instead of covering up our ignorance with fanciful 
assumptions about reality, one accepts that ignorance but attributes it to Nature. Thus 
in the Copenhagen interpretation of quantum theory, whatever is left undetermined in a 
pure state 'Ij; is held to be unknown not only to us, but also to Nature herself. That is, 
one claims that 'Ij; represents a physically real "propensity" to cause events in a statistical 
sense (a certain proportion of times on the average over many repetitions of an experiment) 
but denies the existence of physical causes for the individual events below the level of 'Ij;. 
Its zealots accuse those who speculate about such causes of being "obsolete, mechanistic 
materialists", to borrow a favorite phrase. 

Yet no experiment could possibly demonstrate that no cause exists; the most that one 
could ever conclude is that no cause was found. But if we ask, "Well, how hard did you try 
to find the cause?" we will be told: "I didn't try at all, because the theory assures us there 
is none." Then in what sense can one say that any experiments confirm such a theory? How 
can anyone feel confident that no causes exist at the submicroscopic level when experiments 
give no evidence for this? Clearly, such a claim is pure type (B) Mind Projection Fallacy. 

It is evident that this pattern of thought is also present throughout orthodox statistics, 
whenever someone states, or implies, that his probabilities are real causative agents en 
masse for events that are not determined, individually, by anything. And we see that 
there can be no such thing as a statistical test for "absence of cause" or "randomness" 
or "disorder" for the same reason that there is no test for ugliness or foolishness; those 
qualities exist only in the eye of the observer. Now let us see one aspect of this in a specific 
example. 

3. Example: The Poisson Distribution 

At our Cambridge meeting in 1988, the fallacy of supposing that conditional probabilities 
must express a real physical causation in Nature (but one which operates only statistically), 
was illustrated by the example of drawing two balls from an Urn, comparing forward infer­
ence which may express such a causation with backward inference which cannot. Now let 
us give less trivial (and more useful) calculations which illustrate that in order to conduct 
sound reasoning we are not only permitted, but required, to use conditional probabilities as 
logical inferences, in situations where physical causation could not be operative. 

The elementary Poisson distribution sampling problem provides a very nice example. The 
Poisson distribution is usually derived as a limiting "low counting rate" approximation to 
the binomial distribution, but it is instructive to derive it by using probability theory as 
logic, directly from the statement of independence of different time intervals, using only the 
primitive product and sum rules. Thus define the prior information: 

I == "There is a positive real number A such that, given A, the probability that an 
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event A, or count, will occur in the time interval (t, t + dt) is P(A\>.I) = >.dt. 
Furthermore, knowledge of >. makes any information Q about the occurrence or 
nonoccurrence of the event in any other time interval irrelevant to this probability: 
P(A\>.QI) = P(A\>.I)." 

In orthodox statistics one would not want to say it this way, but instead would claim that 
>. is the sole causative agent present; the occurrence of the event in any other time interval 
exerts no physical influence on what happens in the interval dt. Our statement is very 
different. 

Denote by h(t) the probability there is no count in the time interval (0, t). Now the 
proposition: 

R == "No count in (0, t + dt)" 

is the conjunction of the two propositions: 

R= ["No count in (O,t)"]· ["No count in (t,t+dt)"] 

and so, by the independence of different time intervals, the product rule gives: 

h(t + dt) = h(t) . [1 - >'dt] 

or 8h/8t + >'h(t) = 0. The solution, with the evident intial condition h(O) = 1, is 

h(t) = e-,\t . 

N ow consider the probability, given >. and I, of the proposition 

B == "In the interval (0, t) there are exactly n counts, which happen at the times 
(tt, .. · ,tn) within tolerances (dtt, ... ,dtn), where (0 < tt,'" < tn < t)." 

This is the conjunction of (2n + 1) propositions: 

B= [nocountin(O,td]' (count in dtd· [no count in (tt,t2)]' (count in dt2)'" 
[nocountin(tn_l,tn)]· (count in dtn)· [no count in (tn,t)]. 

(1) 

(2) 

(3) 

(4) 

so by the product rule and the independence of different time intervals, the probability of 
this is the product of all their separate probabilities: 

or, writing the proposition B now more explicitly as B = 'dtl'" dtn " 

(0 < tl,'" < tn < t) (5) 

Then what is the probability, given>., that in the interval (0, t) there are exactly n counts, 
whatever the times? Since different choices of the count times represent mutually exclusive 
propositions, the continuous form of the sum rule applies: 

or, 
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(>.t)n 
p(nIAtI) = e-At -­

n! 
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(6) 

the usual Poisson distribution. Without the time ordering in our definition of B, different 
choices of count times would not all be mutually exclusive events, so the sum rule would 
not apply in the above way. 

As noted, conventional theory obtains this same formula from the premise that events in 
disjoint time intervals exert no physical influences on each other; the only causative agent 
operating is A. Some authors have turned this around, and supposed that if we verify (6) 
in the frequency sense, that proves that the events were indeed causally independent! 

This is an astonishing conclusion, when we note that one could design a hundred different 
mechanisms (or write a hundred different computer programs), which in various ways that 
are completely deterministic, generate the seemingly "random" data. That is, the time 
of the next event is completely determined by the times of the previous events by some 
complicated rule. Yet all of them could constrain the long-run frequencies to agree with 
(6) without showing any signs of correlations. 

If an experimenter did not know what that complicated rule was, there is almost no 
chance that he could discover it merely by accumulation of more data. Then the Mind 
Projection Fallacy might lead him to claim that no rule exists; and we seem to be back 
to quantum theory. This is why "randomness" is a slippery, undefined, and unverifiable 
notion. 

Now consider the next problem: let 0 < tl < t2 and let nl and n2 be the numbers of 
counts in the time intervals (0, tl) and (0, t2). What is the forward conditional probability 
p( n2lnl' A, tl, t2, J)? By the aforementioned logical independence,the probability that there 
are (n2 - nt) counts in (tl' t2) still has the form (1) independent of nl , so 

( I ' ) ->.(t2-t,) [A(t2 - tdln2 - nl 
pn2nl,A,tI,t2,J =e ()" tl <t2, nl~n2 

n2 - nl . 
(7) 

Then what is the joint probability for nl and n2? By the product rule, 

p(ntn2IAttt2I) = p(ntIAttl) p(n2IntAtttd) 

[e->.tl (Atd nl ] . [e->.(t2-t,) [A(t2 - tt)ln2-nl ] 
nt! (n2 - nt)! 

(8) 

Now this can be rearranged into 

(9) 

and we recognize the first factor as the unconditional probability P(n2IAt2I), so by the 
other way of writing the product rule, 

(10) 

the backward conditional distribution must be given by the binomial: 

(11) 
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But this is totally different from p(n2InlAtlt2); it does not even contain A! 
When we reason forward from given nl to inferred n2, knowledge of A makes nl ir­

relevant for predicting the number of counts after tl' In conventional "random variable" 
probability theory one might think that A is always the sole relevant quantity because it is 
the sole physical causative agent; and therefore p(nlln2Atlt2) == p(nlIAtl)' But our anal­
ysis shows that when we reason backward from n2 to nl, knowledge of A does not make 
n2 irrelevant; on the contrary, knowledge of n2 makes A irrelevant! 

We could hardly make the point more strongly that physical dependence and logical 
dependence are very different things. Some may find this result so disconcerting that their 
first reaction is to doubt the correctness of (11). If you find yourself with such feelings, 
please consider: If you already knew the actual number n2 of events in the long interval, 
how would you then use knowledge of A to improve your estimate of nl beyond what is 
given by (11)? 

The point is that knowledge of A does not determine n2; it gives us only probabilities for 
different values of n2. But if we know the actual value of n2 over an interval that includes 
(0, tl), common sense surely tells us that this takes precedence over anything that we could 
infer from A. That is, possession of the datum n2 makes the original sampling probabilities 
(those conditional only on A) irrelevant to the question we are asking. 

In the above we considered A known in advance (i.e. specified in the statement of the 
problem). More realistically, we will not know A exactly, and therefore information about 
either nl or n2 will enable us to improve our knowledge of A and take this into account 
to improve our estimates of other things. How will this change our results? 

Consider the case that A is unknown, but suppose for simplicity that it is known not to 
be varying with time. Then we are to replace (6) - (10) by extra integrations over A. Thus 
in place of (6) we have 

p(nII) = J p(nAIl)dA = J p(nIAl) P(AII)dA (6a) 

where p(nIM) is given by (6), and p(AII) is the prior probability density function (pdf) 
for A. In a similar way, (7) is replaced by a probabiity mixture of the original distributions: 

p(n2I nl,tl,t2,I) = J p(n2Inb A,tl,t2,I)p(AII)dA, 

and the joint probability for nl and n2 becomes 

p(nln2I tlt2I ) = J p(nln2I Atlt2 I ) P(AII) dA 

where the integrand is given by (8); again it can be rearranged as in (9), yielding 

but now we recognize in this the factor 

(7a) 

(8a) 

(9a) 
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and so from the product rule in the form p(nln2Itlt2I) = p(n2Itlt2I) p(nlln2tlt2I) we 
conclude that 

p(nlln2tlt2I) = (::) C:f1 (1- ::f2
-

n1 
, (l1a) 

in agreement with (11); this result is the same whether oX is known or unknown. Since this 
derivation allowed full opportunity for updated knowledge of oX to be taken into account, 
(l1a) is a Bayesian predictive distribution. 

In reasoning from nl to n2, the difference between (7) and (7a) represents the penalty 
we pay for not knowing oX exactly; but in reasoning from n2 to nl there is no penalty. 
Indeed, if the probability (11) is independent of oX when oX is known, it is hard to see how 
it could matter if oX was unknown; and probability theory so indicates. Possession of the 
datum n2 makes the original sampling probabilities - whether oX is known or unknown -
irrelevant to the question we are asking. 

4. Discussion 

The phenomena we have just demonstrated are true much more generally. Conventional 
sampling probabilities like p( nloXt) are relevant only for "pre-data" considerations; making 
predictions before we have seen the data. But as soon as we start accumulating data, our 
state of knowledge is different. This new information necessarily modifies our probabilities 
in a way that is incomprehensible to one who tries to interpret probabilities as expressing 
physical causation or long-run relative frequencies; but as (11) and (l1a) illustrate, this 
updating appears automatically when we use probability theory as logic. 

For example, what is the probability that in 10 binomial trials we shall find 8 or more 
successes? The binomial sampling distribution might assign to this event a probability of 
0.46. But if the first 6 trials yield only 3 successes, then we know with certainty that we 
shall not get 8 or more successes in those 10 trials; the sampling probability 0.46 becomes 
irrelevant to the question we are asking. 

How would a conventional probabilist respond to this example? He can hardly deny our 
conclusion, but he will get out of it by saying that conventional probability theory does 
not refer to the individual case as we were trying to do; it makes statements only about 
long-run relative frequencies, and we agree. 

But then we observe that probability theory as logic does apply to the individual case, and 
it is just that individual case that concerns us in virtually all our problems of inference (i.e., 
reasoning as best we can when our information is incomplete). The binomial distribution 
(11) will yield a more reliable estimate of nl than will the Poisson distribution (6) in each 
individual case because it contains cogent information, pertaining to that individual case, 
that is not in (6). 

Orthodox probabilists, who use only sampling probability distributions and do not asso­
ciate them with the individual case at all, are obliged to judge any estimation method by 
its performance "in the long run"; i.e. by the sampling distribution of the estimates when 
the procedure is repeated many times. That is of no particular concern to a Bayesian, for 
the same reason that a person with a ten-digit hand calculator has no need for a slide rule. 
The real job before us is to make the best estimates possible from the information we have 
in each individual case; and since Bayesians already have the solution to that problem, we 
have no need to discuss a lesser problem. 
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To see that long-run performance is indeed a lesser problem, note that even if we had found 
a procedure whose long-run performance is proved to be as good as can be obtained (for 
example, which achieves the minimum possible mean-square error), that would not imply 
that this procedure is best - or even tolerably good - in any particular individual case. 
One can trade off better performance for one class of samples against worse performance 
for another in a way that has no effect on long-run performance, but has a very large effect 
on performance in the individual case. 

We do, of course, want to know how accurate we can expect our estimates to be; but 
the proper criterion of this is not the sampling distribution, but the width of the Bayesian 
posterior probability distribution for the parameter. This gives an indication of the accuracy 
of our estimate in each individual case, not merely a smeared-out average over all cases. In 
this sense also, the sampling disribution is the answer to a lesser problem, and the sampling 
distribution criterion of performance is not the one an informed scientist really wants. 

The relevant question for a scientist is not: "How accurately would the estimate agree 
with the true value of the parameter in the long run over all possible data sets?" but rather: 
"How accurately does the one data set that I actually have determine the true value of the 
parameter?" This is the question that Bayes' theorem answers. When no sufficient statistic 
exists (or if one uses an estimator which is not a sufficient statistic, even though one does 
exist) the answers to these questions can be very different, and the sampling distribution 
criterion can be misleading. 

This was perceived already by R. A. Fisher in the 1930's. He noted that different data 
sets, even though they may lead to the same estimate, may still justify very different 
claims of accuracy because they have different spreads, and he sought to correct this by 
his conditioning on "ancillary statistics". But ancillary statistics do not always exist, and 
when they do, as noted by Bretthorst (1988), this procedure is mathematically equivalent to 
applying Bayes' theorem. Indeed Bayes' theorem automatically generates a log-likelihood 
that is spread over a range corresponding to that of the data, whether or not ancillary 
statistics exist. This is one of its built-in safety features; it protects us against being misled 
about the accuracy of our estimates. 

If we choose estimates by sampling distribution criteria, the conclusions we draw will 
depend, not just on the data that we actually have, but on what other data sets one thinks 
might have been observed, but were not. Thus an estimation procedure that works well 
for the data set that we have observed can be rejected on the grounds that it would have 
worked poorly for some other data set that we have not observed! We return to this point 
in "Optional Stopping" below, and see the can of worms it opens up. 

But if anyone insists on seeing it, the Bayesian can of course calculate the sampling 
distribution of his estimates. Needless to say, Bayesian procedures look very good by 
sampling theory criteria, even though they were not derived with such criteria in mind. In 
fact, analysis of many cases has shown that the Bayesian point and interval estimates based 
on noninformative priors (say, the mean ± standard deviation of the posterior distribution) 
are usually optimal by sampling theory criteria. With informative priors, Bayesian methods 
advance into an area where sampling theory cannot follow at all. 

For example, the frequency distribution of errors in estimating nl that result from using 
the Bayesian predictive distribution (lla) will be better (more accurate in the long run) 
than the distribution that one gets from using the direct sampling distribution (6). To a 
Bayesian, this is obvious without any calculation; for if a method is better in each individual 
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case, how could it fail to be better also in the long run? 
Orthodox probabilists would not accept that argument, but they would be convinced by 

comparing the two sampling distributions of the estimates, either analytically or experi­
mentally. A simple hand-waving argument leads us to predict that the mean-square error 
with (lla) will be less than that with (6) by a factor [1 - (tl/t2)]' Although we could 
demonstrate this by an explicit sampling theory calculation, it would be more interesting 
to conduct "Monte Carlo" computer experiments to check our claim. 

Of course, probability theory as logic need not be applied only to the individual case. It 
can be applied equally well to prediction of long-run relative frequencies, if that happens 
to be the thing of interest. Indeed, it can sometimes make better predictions, because by 
using the notion of probability of an hypothesis it has the means for taking into account 
relevant information that "random variable" theory cannot use. 

The philosophical difference between conventional probability theory and probability the­
ory as logic is that the former allows only sampling distributions, interprets them as phys­
ically real frequencies of "random variables", and rejects the notion of probability of an 
hypothesis as being meaningless. We take just the opposite position: that the probability 
of an hypothesis is the fundamental, necessary ingredient in all inference, and the notion 
of "randomness" is a red herring, at best irrelevant. 

But although there is a very great philosophical difference, where is the functional differ­
ence? As illustrated above, by "probability theory as logic" we mean nothing more than 
applying the standard product and sum rules of probability theory to whatever propositions 
are of interest in our problem. The first reaction of some will be: "What difference can 
this make? You are still using the same old equations!" To see why it makes a difference, 
consider some case histories from Statistical Mechanics and Artificial Intelligence. 

5. Statistical Mechanics 

Mark Kac (1956) considered it a major unsolved problem to clarify how probability con­
siderations can be introduced into physics. He confessed that he could not understand how 
one can justify the use of probability theory as Boltzmann used it, in writing down a simul­
taneous probability distribution I(x, v; t) d3 x d3v over position and velocity of a particle, 
because: 

"In every probabilistic model in physics and in all other sciences there must be some 
lack of specification over which you can average. - - - That's the whole problem as to 
how probability can be introduced in kinetic theories of mechanics. - - - I am unable 
to find a probabilistic model which will lead to the full Boltzmann equation. I will 
show you how one can very easily be led to the equation in velocity space, however. -
- - Once we have spatial homogeneity, then we have a lack of specification of position. 
And consequently we have wide freedom to average over all possible positions. If you 
don't have spatial homogeneity, then the problem becomes over-determined. There's 
absolutely no room, or at least I can't find any room, to introduce a stochastic element. 
I don't know what's random anymore, and so I cannot find a stochastic model which 
will lead to the full Boltzmann equation." 

Mark Kac was a fine mathematician, but he had this mental hangup which prevented 
him from comprehending the notion of a probability referring to an individual case, rather 
than an "ensemble" of cases. So he was reduced to inventing clever mathematical models, 
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instead of realistic physical situations, for his probability analyses. In a very idealized model 
he found that he could get a Boltzmann-like equation only if the n-particle probability 
distribution factored into a product of single-particle distributions. This led him to say of 
the Boltzmann equation: 

" - - - it is philosophically rather peculiar. Because if you believe in it you must ask 
yourself why nature prepares for you at time zero such a strange factorized distribution. 
Because otherwise you can't get Boltzmann's equation." 

We see here the Mind Projection Fallacy, in the form of a belief that his n-particle prob­
ability distributions were real things existing in Nature. The answer which I gave Mark 
Kac at the time was: "Nature does not prepare distributions, factorized or otherwise; she 
prepares states." But his thinking was so far removed from this viewpoint that he thought 
I was joking. 

Today we could explain the point a little better: "The probability distributions in phase 
space used by Maxwell, Boltzmann, and Gibbs are not realities existing in Nature; they 
are descriptions of incomplete human information about Nature. They yield the best pre­
dictions possible from the information contained in them. Probability distributions are not 
"right" or "wrong" in a factual sense; rather, some distributions make better predictions 
than others because they contain more relevant information. With a factorized distribution, 
getting knowledge of the position of one particle would tell us nothing about the position 
of any other. But at soon as the particles interact, knowing the position of one does tell us 
something about where the others are. Therefore the probability distributions which lead 
to the best physical predictions for interacting particles are not factorized." 

But we think that Kac's mathematical conclusion is quite correct; the Boltzmann equation 
does, in effect, suppose factorization. But then it follows that it cannot take full account 
of the effect of interactions. Indeed, when the particles interact, a factorized distribution 
cannot predict correctly either the equation of state or the hydrodynamic equations of 
motion. One can do much better by using the nonfactorized distribution of Gibbs, which 
contains more relevant information than does the Boltzmann distribution, in just the same 
sense that (11) contains more relevant information than does (6). Mark Kac had this 
important fact in his grasp but could not see it, and so he never appreciated the superiority 
of Gibbs' methods, and continued trying to justify Boltzmann's methods. 

We could give other recent case histories of workers (Feller, Uhlenbeck, Montroll) who 
were highly competent mathematically, but were conceptually such captives of the Mind 
Projection Fallacy that it prevented them from seeing important results that were already 
present in their equations. For others, this fallacy prevents them from finding any useful 
results at all. For example, Pool (1989) quotes a current worker in statistical mechanics 
stating as one of the long-standing problems of statistical mechanics: 

"Where does the randomness necessary for statistical behavior come from if the universe 
is at heart an orderly, deterministic place?" 

Statements like this are spread uniformly and densely throughout the literature of quantum 
theory and statistical mechanics. People who believe that probabilities are physically real, 
are thereby led to doubt the reality of mechanical causes; eventually they come to doubt 
the reality of physical objects like atoms. 

Once we have learned how to use probability theory as logic, we are free of this mental 
hangup and able at least to perceive, if not always solve, the real problems of science. 
Most of those long-standing problems of statistical mechanics are seen as non-problems. 
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We do not seek to explain "statistical behavior" because there is no such thing; what we 
see in Nature is physical behavior, which does not conflict in any way with deterministic 
physical law. Quite the contrary, probability theory as logic easily explains what we see, as 
a consequence of deterministic physical law. 

We are not puzzled by "irreversibility" because (one of those important results which has 
been in our equations for over a Century, but is still invisible to some), given the present 
macrostate, the overwhelming majority of all possible microstates lead, via just those evil, 
deterministic mechanical equations of motion, to the same macroscopic behavior; just the 
reproducible behavior that we observe in the laboratory. So what else is there to explain? 
There would be a major mystery to be explained if this behavior were not observed. 

The Maximum Entropy formulation makes these things obvious from the start, because 
it sees Statistical Mechanics not as a physical theory of "random behavior", but as a 
process of inference: predicting macroscopic behavior as best we can from our incomplete 
information about microstates. In this endeavor, as in any other problem of inference, we 
never ask, "Which quantities are random?" The relevant question is: "Which quantities are 
known, and which are unknown?" Indeed, it appears to us that whenever we get down to 
a specific calculation, all of us are obliged to use the term "random" merely as a synonym 
for "unknown". 

6. Artificial Intelligence 

This field provides examples differing in detail, but not in the basic situation. Recently, 
its stagnation has been noted by many, leading to the appearance of articles of the genre: 
"Whatever happened to AI?" We can tell you what has happened by noting two recent 
references. 

Peter Cheeseman (1988) in an eight-page article, tried to point out the need for Bayesian 
inference in AI, only to be buried under an avalanche of criticism (a total of 62 pages by 26 
authors), which prompted a 14-page reply by Cheeseman. To elicit such a response must 
mean that Cheeseman's needle struck a rather sensitive nerve. Most of the critics simply 
refused to take note of his message (which was that Bayesian methods solve some currently 
important AI problems) and attacked his work on other grounds. Obviously, we cannot go 
into all the counter-arguments here, but we can indicate their general flavor. 

The first critic objected to Bayesian methods on the grounds that they do not tell us 
how to create hypotheses (although neither do any other methods). This is like criticizing 
a computer because it will not push its own button; of course, it is up to us to tell Bayesian 
theory which problem we want it to solve. Would anybody want it otherwise? 

The second critic complained that Bayesian inference "seems to be ruled out as a can­
didate for representing commonsense reasoning" on the grounds that people often reason 
differently. Indeed they do, particularly in AI. As we have been pointing out for many 
years, people who lack Bayesian training commit all kinds of errors of reasoning, which 
Bayesian methods would have corrected. 

The third critic wrote so confusingly that I have no idea what he was trying to say. The 
fourth was concerned with Cheeseman's failure to recite the long history of the subject. The 
fifth and sixth rejected Cox's theorems on the grounds that he assumed differentiability, 
although Aczel (1966) removed that assumption long ago. Another critic resorted to name­
calling, accusing Cheeseman of being a "necessarian"; and even worse, a physicist. 

[Indeed, one with some training in physics is in a good position to perceive the logical 
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situation here, because we are familiar with it in other contexts. The present context is 
that we learn about real physical phenomena via probability theory, although probability 
is not itself a physical phenomenon. We also learn about the size and shape of objects via 
light, although light does not itself possess the properties of size and shape.] 

And so it went on and on, critics calling up every conceivable subterfuge in order to avoid 
having to recognize what Bayesian methods actually do in real problems. It was like the 
rantings of a desperately ill patient who refuses to take the one medicine that could save 
him, and accuses the doctors of trying to poison him. 

Our second example is explicit enough so that we can indicate one thing that Bayesian 
methods can do for AI. Dan Shafer (1989) tries to explain what is called in AI a "certainty 
factor" or "confidence factor". He states that (on a scale of 0 to 100) this "expresses the 
degree of confidence the user or the system has in a response or a conclusion" and warns 
us that this is something very different from a probability. In his words [italics mine]: 

"Probability-which predicts or describes the likelihood that in a given group of items 
any single item will have a particular attribute-does not enter into the issue" 

Again, the mental hangup which cannot comprehend the notion of probability applied to 
an indi vid ual case. 

Next he considers two propositions: A == "The patient's temperature is > 101." and 
B == "The patient has been resting for an hour." Then we have the technical problem: 
suppose we have the confidence factors c(A), c(B) for propositions A and B; what is the 
confidence factor for their conjunction AB = "The patient has a fever"? He notes "three 
popular methods" for calculating this: (1) the minimum; (2) the product; (3) the average. 
But then he notes that we now have a computer program named GURU, which is much 
superior because it offers the user his choice of not just three, but seven different rules for 
calculating this confidence factor! This certainly reveals the poverty of Bayesian analysis, 
which can offer only one solution to this problem. 

A "confidence factor" is a very explicit attempt to represent degrees of plausibility by 
real numbers; and so the user of it is automatically at the mercy of Cox's theorems. Cox's 
first functional equation, expressing the associativity of Boolean algebra, shows that for the 
conjunction of propositions, any AI algorithm that is not mathematically equivalent to the 
product rule of probability theory, will contain demonstrable inconsistencies when we try 
to apply it to more than two propositions. 

But these inconsistencies never appear in Shafer's discussion because it never reaches 
even the first level of comprehension, where one sees that the problem requires the notion 
of a conditonal confidence factor c(AIB). That is, knowing that a patient is not resting 
but exercising vigorously ought to increase one's "degree of confidence" that he has an 
elevated temperature, etc. The confidence factor for the conjunction AB cannot be assessed 
rationally if one fails to take this correlation into account. A potential inconsistency for 
three propositions hardly matters if we have not yet achieved consistency for two. 

If we can judge from Shafer's exposition, the AI theory of confidence factors is stumbling 
about in a condition more primitive than the probability theory of Cardano, 400 years ago. 
Yet the problems they are trying to solve are just the ones that were solved long ago in the 
Bayesian literature, as Cheeseman tried to point out. 

One disadvantage of having a little intelligence is that one can invent myths out of his own 
imagination, and come to believe them. Wild animals, lacking imagination, almost never 
do disastrously stupid things out of false perceptions of the world about them. But humans 
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create artificial disasters for themselves when their ideology makes them unable to perceive 
where their own self-interest lies. We predict that AI will continue to stumble about, 
producing results that a Bayesian considers always trivial, usually quantitatively wrong, 
and often qualitatively wrong, until it recogizes that to dissociate itself from Bayesian 
probability theory was a disastrous error. 

Almost everything we have noted here applies as well to the field of fuzzy sets; but it 
would be repetitious. 

7. Optional Stopping 

A different kind of comparison appears in the issue of optional stopping, which has been 
a point of controversy between Bayesians and Orthodoxians for 30 years. This is another 
case where the Mind Projection Fallacy is doing serious damage, leading researchers to 
erroneous conclusions and wasted effort in the area of medical testing. The issue is: can 
an overzealous experimenter produce evidence supporting a foregone false conclusion, by 
deciding when to stop taking data? 

Here orthodox theory as expounded by Armitage (1975) holds that the conclusions we 
should draw from an experiment depend not only on the experimental procedure and the 
resulting data, but also on the private thoughts that went through the experimenter's mind 
when he took the data! How can this be? 

To see how, consider again binomial sampling, observing r successes in n trials. Two 
medical researchers use the same treatment independently, in different hospitals. Neither 
would stoop to falsifying the data, but one had decided beforehand that because of finite 
resources he would stop after treating n = 100 patients, however many cures were observed 
by then. The other had staked his reputation on the efficacy of the treatment, and decided 
that he would not stop until he had data indicating a rate of cures definitely greater than 
60%, however many patients that might require. But in fact, both stopped with exactly 
the same data: n = 100, r = 70. Should we then draw different conclusions from their 
experiments? 

One who thinks that the important question is: "Which quantities are random?" is then 
in this situation. For the first researcher, n was a fixed constant, r a random variable 
with a certain sampling distribution. For the second researcher, rln was a fixed constant 
(approximately), and n was the random variable, with a very different sampling distribu­
tion. Orthodox practice will then analyze the two experiments in different ways, and will 
in general draw different conclusions about the efficacy of the treatment from them. 

This would really cause trouble in a high-energy physics laboratory, where a dozen re­
searchers may collaborate on carrying out a big experiment. Suppose that by mutual 
consent they agree to stop at a certain point; but they had a dozen different private rea­
sons for doing so. According to the principles expounded by Armitage, one ought then to 
analyze the data in a dozen different ways and publish a dozen different conclusions, from 
what is in fact only one experiment! 

Bayesian inference will not get us into this absurd situation, because it perceives auto­
matically what common sense demands; that what is relevant for this inference is not the 
relative probabilities of imaginary data sets which were not observed, but the relative like­
lihoods of different parameter values, based on the one real data set which was observed; 
and this is the same for all the experimenters. 

Actually, as Jimmie Savage (1962) explained long ago, we need not worry about being 
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misled by zealots because, contrary to what many assume, it is not posible to sample 
deliberately to a foregone conclusion that is appreciably false. From the above data, most 
statisticians would estimate the true cure rate to be about 1 ±...; 1(1 - 1)ln, or 70% ± 5% 
at one standard deviation, where 1 = Tin is the observed frequency of cures. If the true 
incidence of cures in the whole population is only 50%, then the probability that a zealot 
can ever produce data like this (i.e. data which lead to an estimated interval that strongly 
excludes the true value) is extremely small in an honestly conducted experiment, even if he 
samples to the end of time. 

Thus to produce data strongly supporting a false conclusion it is not enough merely to 
be zealous; one must be actively dishonest. Today it is not the zealots, but the medical 
testers who follow Armitage, who mislead themselves and others. 

Orthodox writers love to charge Bayesians with "subjectivity" because we use probability 
as a way of describing our information. But we have seen a few examples of their idea of 
objectivity and some of its consequences, including inability to take prior information into 
account, inability to get rid of nuisance parameters, using inefficient criteria of performance, 
and inability to see important facts. Strangest of all, orthodox teaching can lead one to 
draw conclusions that depend on whether an experimenter subjectively imagined data sets 
which were not observed! A person who does that is in no position to charge anybody with 
"subjectivity" . 

Invariably, those who attack Bayesian methods only reveal their ignorance of what 
Bayesian methods are. The blame for this lies with those educators who continue to teach 
only orthodox methods and deprecate Bayesian methods without even fully defining them, 
much less examining their performance. The fact is that Bayesian methods of inference eas­
ily solve technical problems on which orthodox methods break down, and they protect us 
automatically against the absurd errors in orthodox methods. Thus they achieve scientific 
"objectivity" in the true sense of that word. 

8. Recapitulation 

In our simplest everyday inferences, in or out of science, it has always been clear that 
two events may be physically independent without being logically independent; or put 
differently, they may be logically dependent without being physically dependent. From the 
sound of raindrops striking my window pane, I infer the likely existence of clouds overhead, 
p( cloudslsound) ~ 1, although the sound of raindrops is not a physical causative agent 
producing clouds. From the unearthing of bones in Wyoming we infer the existence of 
dinosaurs long ago: p( dinosaurs I bones ) ~ 1, although the digging of the bones is not the 
physical cause of the dinosaurs. 

Yet conventional probability theory cannot account for such simple inferences, which we 
all make constantly and which are obviously justified. As noted, it rationalizes this failure 
by claiming that probability theory expresses partial physical causation and does not apply 
to the individual case. 

But if we are to be denied the use of probability theory not only for problems of reasoning 
about the individual case; but also for problems where the cogent information does not 
happen to be about a physical cause or a frequency, we shall be obliged to invent arbitrary 
ad hockeries for dealing with virtually all real problems of inference; as indeed the orthodox 
school of thought has done. 

Therefore, if it should turn out that probability theory used as logic is, after all, the 
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unique, consistent tool for dealing with such problems, a viewpoint which denies this ap­
plicability on ideological grounds would represent a disastrous error of judgment, which 
deprives probability theory of virtually all its real value - and even worse, deprives science 
of the proper means to deal with its problems. 

As an analogy, small children start counting on their fingers and toes. Then suppose 
that the teaching of arithmetic had fallen under control of an Establishment ideology which 
proclaims that the rules of elementary arithmetic apply only to fingers and toes; and then 
invents a different ad hoc rule for counting apples, still another for counting dollars, and so 
on. Imagine the effect this would have on our civilization. 

Our position is that this is exactly what has happened in probability theory, and its effects 
are visible all about us. In theoretical physics we see the stagnation of quantum theory, an 
astonishing number of physicists having left it for other fields such as biophysics, and the 
wheel-spinning concentration on non-problems in statistical mechanics. In experimental 
science we see the absurdity of orthodox methods of data analysis. In Artificial Intelligence 
we see the consequences of militant refusal to adopt the only methods that can deal with 
their unsolved problems. 

Fortunately, children quickly reach a level of maturity where they can perceive the number 
13 as an abstract notion in its own right, not standing necessarily for ten fingers and three 
toes. It is high time that science reached the level of maturity where we can grasp the 
idea of probability of an hypothesis as an abstract notion in its own right, necessary for 
organizing our reasoning in a consistent way. Of course, just as the rules of arithmetic 
remain valid when applied to fingers and toes, the rules of probability theory remain valid 
when applied to calculation of frequencies. 

Note that probability theory as logic is more general than just Bayesian inference; it 
automatically includes calculation of sampling distributions, as in our derivation of (6), 
and Maximum Entropy calculations, in the situations where they are appropriate. Bayesian 
analysis requires that we have a model in addition to the data. If we have only an hypothesis 
space but no model, then MAXENT is the best we can do without more information. 

It may appear that in our recent concentration on Bayesian methods we have abandoned 
MAXENT. Not at all; it is an accomplished fact and we are using it constantly for its 
original purpose: to assign our priors. It is just for that reason that, for some of us, the 
focus of attention has now shifted to the Bayesian sequel. The exciting "new" fact (although 
it would not have surprised Harold Jeffreys in the least fifty years ago) is the flexibility 
of Bayesian analysis. As Bretthorst (1988) demonstrates by many specific examples, it 
can accommodate itself easily to all kinds of complicating circumstances that would bring 
orthodox methods to a standstill. 

Scientists, engineers, economists and statisticians who are ignorant of Bayesian methods 
are handicapped in the performance of their work. In physics and astronomy the greatest 
experts in instrumentation may conduct multi-million-dollar data gathering operations -
and then present their final conclusions in the form of confidence intervals which ignore not 
only some highly cogent prior information, but usually part of the information in the data. 
It is as if the best chefs in Paris had spared no effort or expense to prepare the finest food 
a restaurant can offer - and then spilled half of it down the drain and served the rest on 
paper plates. 
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Appendix: A Basic Blunder 

Finally, we must comment on a curious article entitled "The Basic Bayesian Blunder", by 
the philosopher H. E. Kyburg (1987), which amused us at this meeting. He formulates a 
problem of little interest except that the mathematical issue reduces to this: It is our basic 
blundering Bayesian belief that a weighted average of real numbers may take on all those, 
and only those, values in the range spanned by them. Thus any number in (.887, .917) can 
be written as a weighted average of (.887, .907, .917). 

Since the average 0.900 specified by Kyburg lies in that interval, Bayesians do indeed, 
just as he charges, believe that we can assign prior probabilities (0, (3, I) leading to that 
average. He devotes several pages to arguing, by reasoning that we are completely unable 
to follow, that there is no solution. For answer it should suffice to exhibit an infinity of 
solutions. The system of equations to be solved is 

.8870 + .907(3 + .9171 = .900 

and one verifies at once that the exact general solution of this system is 

( 65-r 43+3r 32-2r) 
(0,(3,/) = 140' 14iJ' 14iJ 

where r is arbitrary. To meet the further requirement of nonnegativity (0,(3,/) ;::: 0, we 
see by inspection that r is confined by (-43 ::; 3r ::; 48). There is a continuum of prior 
probability assignments which meet all the specified conditions, and which therefore enable 
a Bayesian to incorporate additional information. 
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