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A sharp null hypothesis may be strongly rejected by a 
sampling-theory test of significance and yet be awarded 
high odds by a Bayesian analysis based on a small prior 
probability for the null hypothesis and a diffuse distri- 
bution of one’s remaining probability over the alternative 
hypothesis. The Bayesian analysis seems to interpret the 
diffuse prior as a representation of strong prior evidence, 
and this may be questionable. The theory of belief func- 
tions allows us to represent the strength of prior evidence 
more realistically. These ideas are illustrated by the prob- 
lem of identifying glass by its refractive index. 
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A sharp null hypothesis may be strongly rejected by 
a standard sampling-thcory test of significance and yet 
be awarded high odds by a Bayesian analysis based on 
a small prior probability for the null hypothesis and a 
diffuse distribution of one’s remaining probability over 
the alternative hypothesis. This disagreement between 
sampling-theory and Bayesian methods was first studied 
by Harold Jeffreys in his Theory of’ Probability (1939, 
Sec. 5.0 and Appendix 1). And it has become widely 
known to the statistical community as a result of expo- 
sitions by 1. J .  Good (1956), Dennis Lindley (19571, and 
Edwards, Lindman. and Savage ( 1963). Lindley was the 
first to call the disagreement a paradox, and it has come 
to be called “Lindley’s paradox.” (See, e.g., Learner 
1978, p. 105; Berger 1980. p. 107.) Lindley himself has 
recently (1980. p. I I )  referred to the paradox as “Jeffreys’ 
paradox,” but I know of no other reference to it under 
this name. 

In this article I contrast the Bayesian treatment of Lind- 
ley’s paradox with a treatment using the theory of belief 
functions. In  order to make the discussion as concrete 
as possible I concentrate on a simplified form of a prac- 
tical problem in forensic science. the problem of identi- 
fying a glass fragment by its refractive index. This prob- 
lem is particularly interesting because it has been claimed 
that the Bayesian prior under the alternative hypothesis 
can be based on an empirical frequency distribution. A 
Bayesian treatment of the problem has been given by 
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Lindley (1977) and a sampling-theory treatment by Evett 
(1977). 

From the point of view of the theory of belief functions, 
Lindley’s paradox involves contlicting evidence. The sta- 
tistical evidence. which is the only evidence taken into 
account by the sampling-theory test of significance, 
points rather strongly to a relatively small interval of 
parameter values that does not include the null hypoth- 
esis. But the diffuse distribution over the alternative hy- 
pothesis gives only a small probability to this interval. 
reflecting, presumably. prior evidence against i t .  As in 
every case of conflicting evidence, our final opinion will 
depend crucially on our judgments of the strength and 
reliability of the opposing items of evidence. The theme 
of this article is that the theory of belief functions pro- 
vides a straightforward and meaningful way to express 
and combine these judgments. whereas the “likelihood 
ratios” of the Bayesian theory serve only to obscure 
them. 

We study the Bayesian analysis of Lindley’s paradox 
in Section I ,  and its application to the refractive index 
problem in Section 2 .  We study the theory of belief func- 
tions in Section 3 and apply it to the refractive index 
problem in Section 4.  In Section 5 we use the refractive 
index problem to illustrate the limitations of actual em- 
pirical frequency distributions. In Section 6 we compare 
the Bayesian theory and the theory of belief functions in 
their ability to represent evidence that falls short of pro- 
viding a fully relevant empirical frequency distribution. 

1. LINDLEY’S PARADOX IN ITS ABSTRACT FORM 

Consider a random quantity Y that has a Gaussian dis- 
tribution with unknown mean c) and known variance a2; 
we suppose that Y is either a measurement of 0 or an 
estimate based on several measurements. Our null hy- 
pothesis is that 8 = O 0 ,  and we wish to give a Bayesian 
assessment of the evidence for this null hypothesis. Fol- 
lowing Jeffreys’s advice, we do this by assigning a non- 
zero prior probability no to the null hypothesis and dis- 
tributing the rest of our prior probability over the real 
line according to a fairly flat probability density n,(c)). 

Let us suppose, for simplicity, that n, (0)  has a variance 
T ~ .  Suppose T~ 9 a’. And suppose we observe Y = y. 
where y is several cr from O O .  A value so far from c)() is 
very unlikely on the null hypothesis, and so we will reject 
the null hypothesis if we use a standard sampling-theory 
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test based on the test statistic ( y  - OJu. But since -? 
% d, the set of values of 9 with high likelihood, those 
within several u of y ,  will be given a very small prior 
probability by the prior density r I (8) ,  and therefore the 
overall likelihood of the alternative hypothesis 8 # 0 0 ,  

exp( - ( y  - 9 ) 2 / 2 ~ 2 )  n1 (e )de ,  
1 

LI = J-= - 
=u& 

may be even smaller-much smaller-than the likelihood 
of the null hypothesis 9 = O 0 ,  

exp( - ( y  - 90)2/2a2). Lo = - 1 
u G  

By choosing an example where the ratio of -r2 and u2 is 
sufficiently large, we may make this effect as great as we 
wish, thus making the posterior odds 

P(e = e0 I Y = Y )   IT^ I,(] - 
P(9 f 8” j Y = y) 1 - m)LI 

very large, even if the prior probability nu is very small. 
Thus we can construct examples where the Bayesian 
analysis shows the measurement to provide very large 
odds in favor of the null hypothesis 9” even though the 
test statistic ( y  - 9”)iu indicates that the measurement 
provides very strong evidence against it. This is Lindley’s 
paradox. 

Lindley’s paradox is evidently of great generality; the 
effect it exhibits can arise whenever the prior density 
under an alternative hypothesis is very diffuse relative 
to the power of discrimination of the observations. The 
effect can be thought of as an example of conflicting 
evidence: the statistical evidence points strongly to a cer- 
tain relatively small set of parameter values, but the dif- 
fuse prior density proclaims great skepticism (presum- 
ably based on prior evidence) towards this set of parameter 
values. If the prior density is sufficiently diffuse, then 
this skepticism will overwhelm the contrary evidence of 
the observations. 

The paradoxical aspect of the matter is that the diffuse 
density .rrl(f3) seems to be skeptical about all small sets 
of parameter values. Because of this, we are somewhat 
uneasy when its skepticism about values near the “ob- 
served interval” overwhelms the more straightforward 
statistical evidence in favor of those values. We are es- 
pecially uneasy if the diffuseness of  IT^ ( 8 )  represents weak 
evidence, approximating total ignorance; the more ig- 
norant we are the more diffuse ~ ~ ( 8 )  is, yet this increasing 
diffuseness is being interpreted as increasingly strong 
evidence against the “observed interval” (compare 
Dempster 1971, pp. 60-61). 

The paradox can arise whenever an estimate Y is ex- 
ceedingly precise relative to the prior density ~ ~ ( 8 ) .  The 
source of the precision does not matter; Y may be a single 
measurement made with a very precise measuring in- 
strument, or it may be precise because it is an average 
of many measurements. Most authors have emphasized 
the case where precision arises from a large sample size, 

but this may not be the most important case in practice. 
In real problems of measurement, an average does not 
become indefinitely more precise as the number of meas- 
urements is increased; there is always a limit to how large 
a sample size is sensible, and this limit is usually fairly 
low. (See Wilson 1952, pp. 252-254, or Baird 1962, pp. 
38-40.) In the example from forensic science discussed 
in this article, the relative precision of Y is not due to a 
large sample size. 

Non-Bayesian statisticians will agree, in general, with 
my criticism of the Bayesian analysis: they will agree that 
if the large dispersion of nl(9) merely expresses subjec- 
tive ignorance about 8 ,  then this dispersion should not 
be interpreted as evidence against values of 9 near the 
observation y .  There is one situation. however, where 
most statisticians will be sympathetic with the Bayesian 
analysis-the situation where .rrl(9) is based on an em- 
pirical frequency distribution. For if it seems reasonable, 
under the alternative hypothesis 9 # €lo, to regard 8 as 
having been chosen at random from a population whose 
frequency distribution  IT^ (9) is empirically known, then 
the Bayesian calculation of the odds Lo/Ll  will be unex- 
ceptionable even from a frequentist point of view. 

In this article I argue that the Bayesian analysis is 
wrong-headed even in this apparently most favorable 
case where the prior density .rr1(8) is an empirical fre- 
quency distribution. I base the argument in part on the 
practical problems in finding an empirical frequency dis- 
tribution with the reliability and detail required by the 
Bayesian argument. (And here that argument does turn 
on the fine detail of IT ,  (01.) But I also argue that we should 
refuse in principle to give any frequency distribution such 
complete credence as the Bayesian argument requires. 

2. A PROBLEM IN FORENSIC SCIENCE 

In a 1977 paper in Biometriku. Lindley studies the fol- 
lowing problem. We measure the refractive index of the 
glass of a window broken during a burglary and the re- 
fractive index of a fragment of glass found on a suspect’s 
clothing. Relative to the known frequency distribution of 
refractive indices for window glass, the two measure- 
ments are remarkably close. But relative to measurement 
error, they are rather far apart. Are the two indices the 
same? How do we combine the conflicting evidence? 

Lindley gives a Bayesian solution to this problem under 
the quite reasonable assumption that both refractive in- 
dices are measured with error. the error possibly being 
greater in the case of the fragment. We will find it useful, 
however, to think about the problem under the simpli- 
fying assumption that the refractive index of the window 
has been measured without error, for then the Bayesian 
solution takes exactly the form that we have just studied. 

Suppose, indeed, that the refractive index of the broken 
window at the scene of the burglary has been measured 
without error and found to have the value f3”, uniformly 
throughout the window. Denote by 8 the unknown value 
of the refractive index of the fragment found on the sus- 
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Shafer: Lindley's Paradox 327 

pect. A Bayesian will assign a certain prior probability 
ro to the null hypothesis c) = c)", equal. presumably, to 
the prior probability that the fragment on the suspect's 
clothing came from the broken window. Conditionally on 
the alternative hypothesis 0 # O O ,  Bayesians will suppose 
that 9 is a random refractive index from the known dis- 
tribution rl(c)) of refractive indices of window glass, and 
they will distribute the prior probability 1 - IT" assigned 
to the alternative hypothesis according to ~ ~ ( 8 ) .  We may 
assume that the measurement or  measurements of c) result 
in an estimate Y that has a Gaussian distribution with 
mean 0 and known variance u', and this variance u2 will 
in fact usually be much smaller than the variance T~ of 
r l ( 0 ) .  So Lindley's paradox can arise: because of the 
large dispersion of al(0) relative to u', an observation Y 
= y may produce impressive odds L,,IL, in favor of 8 
= Oo even though y is several u from 8".  What are we 
to think in such a case? 

Lindley argues, essentially, that the Bayesian result 
should be taken at face value; we should sometimes con- 
clude that the odds strongly favor 8 = &] even though 
this hypothesis would be rejected by the usual signifi- 
cance test. (He cautions, though, that in such cases, 
where "the data are unusual on both hypotheses," it 
would be sensible "to check that all the assumptions 
made were reasonably satisfied, or whether some hitherto 
unexpected hypothesis obtained" (see Lindley 1977. p. 
209.) Is this reasonable'! Can we really ever credit such 
a Bayesian analysis? Will our confidence in the relevance 
of the purported frequency distribution ~ ~ ( 8 )  ever be suf- 
ficient to support such reasoning'? 

Imagine a forensic expert who bases his courtroom 
testimony on such a Bayesian analysis. Measurements 
of the refractive index of the fragment, he testifies, result 
in very great odds for the hypothesis that it came from 
the broken window at the scene of the crime. Pressed by 
defense counsel, he goes into more detail. His measure- 
ments of the refractive index of the fragment gave a ran- 
dom value that was distinctly different from the refractive 
index of the broken window, he concedes, so distinctly 
different that the two indices can be the same only if 
there were extraordinary errors in his measurements. But 
it would be an even more extraordinary coincidence, he 
continues, for the fragment's refractive index to come as 
close as it does to the window's refractive index were it 
from some random source other than the window. On 
balance. then, the odds favor its being from the window. 

Why is this so unconvincing'? It is unconvincing be- 
cause it fails to address the questions raised by the con- 
flict in the evidence. The experts are weighing two con- 
flicting items of evidence-the evidence from the 
measurements and the evidence from the empirical fre- 
quency distribution. But they are doing so only in terms 
of the relative magnitudes of the coincidences suggested 
by the two. They ought also to weigh the reliability of 
the measurements. And they ought to weigh the rele- 
vance. as a guide to belief, of a frequency distribution 
that asks us to regard every possibility as an improbable 

coincidence. (It is interesting, in this connection. to note 
that the testimony we have imagined would probably not 
be admissible in a court in the United States, precisely 
because no witness, not even an expert witness. is al- 
lowed to weigh conflicting evidence. This is the prerog- 
ative of the jury. See Louisell. Kaplan. and Waltz 1976, 
pp. 13, 1023.) 

If we reject the Bayesian analysis, then how do we 
combine the two items of evidence'.' 

Lindley notes (and criticizes; see p. 209 of this paper) 
a sampling-theory approach developed by a British fo- 
rensic scientist, I. W. Evett (1977). In this approach we 
begin by performing a standard sampling-theory test of 
significance of the hypothesis 0 = OO (or, in the realistic 
case where both refractive indices are measured with 
error, the hypothesis that the two are the same). If this 
hypothesis is rejected. then the evidence is disregarded; 
if it is not rejected, then attention is drawn to the small 
intrinsic probability of a random index coming so close 
to 0". Thus if the evidence is internally conflicting it will 
not be brought to court. But if 8 is hithin measurement 
error of 0". then i t  will be suggested that the null hy- 
pothesis is very probable. 

Evett's approach has a certain appeal. but i t  is awk- 
wardly abrupt in its switch from totally discounting the 
frequency distribution .ir,(c)) (when ( y  - c)[,)/a is signifi- 
cant) to discounting it not at all (when ( y  ~ Oo)/u is not 
significant). Let us see if the theory of belief functions 
can do better. 

3. INTRODUCTION TO BELIEF FUNCTIONS 

The theory of belief functions is described in detail in 
my monograph A Mutliemuticwl Theory of Evidence 
(1976). It differs from the Bayesian theory in that it prr- 
mits nonadditive degrees of belief and emphasizes the 
combination of evidence instead of conditioning. 

Both the Bayesian theory and the theory of belief func- 
tions can be thought of as constructive theories. In  both 
theories, we construct probability judgments by locating 
our evidence on a scale of canonical examples. The Baye- 
sian theory uses canonical examples where the truth is 
generated according to known chances; when we select 
a Bayesian probability distribution P we are saying that 
our evidence is comparable in strength to knowledge that 
the truth is generated according to chances given by P. 
The theory of belief functions uses canonical examples 
where the evidence is a message whose meaning depends, 
in a certain sense, on known chances. 

Suppose someone chooses a code at random from a 
list of codes. uses the chosen code to encode a message. 
and then sends us the result. We know the list of codes 
and the chance of each code being chosen-say the list 
is c I r  . . . , c,,, and thc chance of c, being chosen is p , .  
We decode the encoded message using each of the codes 
and find that this always produces a message of the form 
"the truth is in  A" for some nonempty subset A ofa finite 
set of possibilities 8.  Let A ,  denote the subset we get 
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when we decode using c,. and set there may be A for which Bel(A) and Bel(A) add to less 

m(A) = x { p i  I 1 5 i 5 n ;  Ai = A} 

for each A C 8. The number m(A) is the sum of the 
chances for those codes that indicate A was the true mes- 
sage; i t  is, in a sense, the total chance that that true 
message was A. Notice that m(+) = 0 and that the m(A) 
sum to one. The quantity 

Bel(A) = m ( B )  (3.1) 

is, in a sense, the total chance that the true message 
implies A. If the true message is infallible and the coded 
message is our only evidence, then it is natural to call 
Bel(A) our degree of belief that the truth lies in A. (See 
Shafer 1981 for a fuller discussion.) 

Any function Be1 of the form (3.1) is called a bo/icf 
firnction. Since we can tell the story of the coded message 
with whatever values of the m ( A )  we please (provided 
m(+) = 0 and the rn(A) sum to one), this story provides 
a canonical example for every belief function on a finite 
set. Of course we will seldom or never encounter in prac- 
tice a situation in which our evidence really does consist 
of a coded message and all the assumptions of the ca- 
nonical example are satisfied. But is also rare that our 
evidence amounts to knowledge of a chance distribution 
according to which the truth has been or will be gener- 
ated. In both cases the canonical examples are meant not 
as realistic examples but as standards for comparison. 

The subsets A of 8 for which m(A) > 0 are called the 
focal elements of the belief function Bel. The relations 
among these focal elements say something about how we 
are thinking about our evidence. Focal elements A and 
B that are disjoint suggest internal conflict in our evi- 
dence: we are comparing that evidence to a message that 
might mean A or  might mean B, where B contradicts A. 
Focal elements A and B that are nested. say A 3 B. 
suggest more consonant evidence: there is evidence for 
the truth being in A and further evidence that does not 
disagree but is more specific in that it points to the truth 
being in B. When all Bel’s focal elements are nested, say 
Al  C A2 C ... C A,,, we call Be1 consonant; we see from 
(3.1) that the degree of belief given to a subset A by such 
a belief function is the same as the degree of belief given 
to the largest A; contained in A. 

We might, if the evidence is both very conflicting and 
very specific, choose the numbers m(A) so that only sin- 
gletons are focal elements. If we do this, then we can 
write (3.1) as 

H C A  

B e W  = x ~ ( 8 1 ,  
H t A  

where p(f3) = rn((8)). And this means that Be1 is a Baye- 
siar. probability distribution. In general, however. a belief 
function will not be a Bayesian probability distribution. 
It will satisfy Bel(+) = 0 and Bel(8) = 1 ,  but it will not 
always be additive-it will not always satisfy Bel(A U 
B) = Bel(A) + Bel(B) when A f l  B = +. In particular, 

than one. 
Our task, when we assess evidence using belief func- 

tions, is to choose values of m(A) that make the canonical 
example most like that evidence. But how do we do this‘? 
In complicated problems i t  is absurd. surely, to suppose 
that we can simply look at our evidence holistically and 
write down the best values for the m(A). So we need a 
theory of belief functions-a set of tools for constructing 
complicated belief functions from simpler, more elemen- 
tary judgments. 

Dempster’s rule of combination (Dempster 1967, pp. 
335-338) is the most important single tool of the theory 
of belief functions. This rule tells us how to combine a 
belief function Bell (with m values n7,(A), say) repre- 
senting one body of evidence with a belief function Be& 
(with in values m2(A)) representing an unrelated body of 
evidence so as to obtain a belief function Be1 (with m 
values m(A)) representing the pooled evidence. The idea 
underlying the rule is that the unrelatedness of the two 
bodies of evidence makes pooling them like combining 
two stochastically independent randomly coded mes- 
sages. We should, that is to say, combine the canonical 
examples corresponding to the two bodies of evidence 
by supposing that the two random choices of codes are 
stochastically independent. It is easy to see how this leads 
to a rule for obtaining the m(C)  from the ml(Al and the 
rn2(B).  Denote by c I ,  . . . , c,, and by p I ,  . . . , p,, the 
codes and their chances in the case of the first message, 
and by c ’ ] ,  . . . , c’,,, and p ’ , ,  . . . , p’,,, the codes and 
their chances in the case of the second. Then independ- 
ence means that there is a chance pip’; that the pair (c,, 
c ‘ ,~ )  of codes will be chosen. But decoding may now tell 
us something. If the message A; we get by decoding the 
first message with ci contradicts the message B; we get 
by decoding the second message with c’,; (i .e.? if A; n Bj 
= b ) ,  then we know that (c ; ,  c‘;) could not be the pair 
of codes actually used. So we must condition the chance 
distribution. eliminating such pairs and multiplying the 
chances for the others by K, where 

K - I  = x { p ; p ’ ,  I 1 I i i n ;  1 i j i m: A; n Bj # +} 

= x{ml(A)ml(B) I A c 8; B c 8 :  A n B # b } .  

Notice also that if the first message is A and the second 
message is B, then the overall message is A n B. Thus 
the total chance of the overall message being C is 

m( C )  = K x { p i p  ’j 1 1 i i i n ; 1 5 j i m : Ai fl Bj = C} 

= K C { ~ ~ ( A ) ~ ~ ( B ) I A C ~ ; B C ~ ; A ~ B  = c}. 
(3.2) 

Formula (3.2) is Dempster’s rule. 
Suppose we construct a belief function Be1 but then 

have second thoughts about the soundness of the judg- 
ments that went into the construction and wish to dis- 
count the degrees of belief Be1 gives. This is easily done 
within the theory. If we want to discount by a factor ci, 
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Shafer: Lindley's Paradox 329 

0 < a < I .  we simply reduce each of Bel's in values m(A) 
to ( I  ~ a)m(A) and then increase the i n  value for c3 by 
a. The result is a belief function Bel" related to Be1 by 

Bel"(A) = ( 1  - a)Bel(A) 

for all proper subsets A of 8. (BeI"(8) = Bel(e)  = 1. 
of course.) Discounting is an essential element in the 
belief-function treatment of conflicting evidence. For dis- 
count factors are the theory's way of expressing judg- 
ments about the relative reliability of conflicting items of 
evidence. 

In the next section wc use the theory of belief function 
in a continuous rather than a discrete setting. In the con- 
tinuous setting we do not, of course, add 111 values. In- 
stead, we integrate. But the basic ideas remain the same. 

4. A N A L Y S I S  BY BELIEF F U N C T I O N S  

In order to apply the theory of belief functions to o u r  
problem in forensic science, we must represent each of 
our two items of evidence-the evidence from the meas- 
urement and from the empirical frequency distribution- 
by a belief function. and then combine the two belief 
functions by Dempster's rule. 

In this section we begin by representing each item of 
evidence in the simplest possible way: the measurement 
is represented by a belief function corresponding to the 
usual nested confidence intervals. and the frequency dis- 
tribution is taken at face value. The results of this ap- 
proach are in qualitative agreement with those of the 
Bayesian approach. We next explore what happens when 
our reservations about the relevance of the frequency 
distribution are expressed by discounting the belief func- 
tion corresponding to it .  This, it turns out. gives results 
that are very intuitive and that resemble in some respects 
the results of Evett's sampling-theory procedure. 

As evidence, the measurement y gives us reason to 
believe that 8 is close to y. and no particular reason to 
believe that it is far from y. So it seems reasonable to 
represent this evidence by a consonant belief function. 
say by 

Bel l (A) = I" q(.r)d.r, 

where q(x) is the density for the Gaussian distribution 
with mean zero and variance 0'. and 

(1 =  SUP{^ I I ?  ~ 6, y + S ]  C A}. 

This belief function can be described by saying that our 
belief is divided into increments of the form q(.r)d.r and 
that the increment -q(.r)dr is committed to 8 being within 
I x I + dx of the measurement y. The interpretation in 
terms of the metaphor of a randomly coded message is 
that the measurement is like a message that says 0 is in 
a symmetric interval about y. Our uncertainty about the 
message is uncertainty about the width of the interval 
referred to; for eyery .r > 0, there is a chance 2-q(.r)d.x 
that the reference is to an interval of width between 2.r 
and 2(.r + d,r). 

We are supposing that the refractive index of the frag- 
ment is either or else is drawn at random from the 
distribution 7r1 (0)  of refractive indices. The beliefs about 
0 corresponding to this supposition can be represented 
by the belief function 

Bel,(A) = 

if O o  6! A 
?T,(;)d: LA if thI E A .  

This belief function corresponds to distributing one's be- 
lief according to the density IT] (:) except that all the bclief 
is allowed to move to the point in other words. the 
increment .rrl(z)d: is committed to 8 being in the set 1;. 
z + dz] U { O [ , } .  In  terms of randomly coded messages: 
the message is that the index is either or some other 
value z ;  the uncertainty about the mcaning ofthc message 
is uncertainty about the identity of ;; and this uncertainty 
is described by the density 7rI(z). 

In order to simplify later formulas. let u s  assume that 
y < and let us shift the scale of measurement so that 
y = 0. 

Let us first consider the case where Bell and Bel? are 
combined without discounting Bell. In  this case Demps- 
ter's rule amounts, except for a renormalization. to mul- 
tiplying each increment q(.r)d.r by each increment IT] (:Id; 
and committing each resulting increment q(xk1.r 7rI (:)d; 
to 8 being in the set (see Figure I )  

I - I .V 1 - d . ~  I .r 1 + d.r] n (1:. : + d:] u {e& 
This results in total belief of measure 

d: q( .x )  ?TI(:) 
= I, .o,, d-r JT,, . I  

Regions of commitment of 
two increments under Be1 

Regions 01 commitment of 
two increments under Be1 

Resulting regions of commitment 
under Be1 8 Be1 

A 2  n 8 1  

Y 80 

A 2 n  B2 = 0  

Figure 1. Some Aspects of the Combination of Bel, 
and Bel, 
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committed to 0 = 00, but also in total belief 

= I,,,,,,, dx L, dz T(S) ITI  ( z )  

committed to 0 being in the empty set. Dempster’s rule 
requires that we discard the belief committed to the empty 
set and renormalize; so our final degree of belief in the 
hypothesis 0 = €lo is Rl(1 - S). 

Notice that as r 1 ( z )  is made more and more diffuse, 

R - 2 1  q(x)d.r = fi 
%>,,, 

and 
r 

where $ is the observed significance level achieved by 
the observation Y = 0 with respect to a two-sided test 
of 0 = O 0 .  And hence our degree of belief in 0 = 0 0 ,  Rl 
(1 - S ) ,  tends to 1 regardless of the distance of O0 from 
0, the value of the measurement. This is in qualitative 
agreement with the Bayesian result previously discussed. 

Now suppose we discount Belz by the discount rate a 
before applying Dempster’s rule. Then a of our belief is 
assigned in accordance with Bell and the remaining 1 
- a is assigned as described in the preceding paragraph; 
this results in only ( 1  - a)S of our belief being assigned 
to the empty set, so that the renormalizing constant is 1l 
( 1  - ( 1  - a)S). 

If ~ ~ ( 0 )  is very diffuse and the observation Y = 0 is 
many u from OO,  then S will be nearly one; this means 
that nearly all of the ( 1  - a) will be assigned to the empty 
set and therefore discarded. Only the a assigned in ac- 
cordance with Bell will survive, and since the renormal- 
izing constant 1/(1 - (1 - a)S) will be approximately I /  
a, the final result will approximate Bel,. In particular, 
we will very strongly doubt the hypothesis 0 = eo. 

If, on the other hand, ~ ~ ( 0 )  is very diffuse but OO is 
relatively close to 0, then we may obtain a fairly strong 
degree of belief in 0 = O o .  That degree of belief is, in 
general, 

( 1  - a)R 
1 - ( 1  - a)S’ 

and as I T ]  (0) becomes more diffuse this tends to 

( 1  - a)@ - ( 1  - a)@ 
- 

1 - ( 1  - a)( l  - @, a + ( 1  - ali, 

This degree of belief cannot exceed 1 - a, but if a is not 
too great and p is fairly large relative to a, then it may 
be impressively large. 

Evett’s procedure, as we mentioned above, consists 
of drawing attention to the very improbable coincidence 
suggested by the diffuse frequency distribution  IT^ (0)  only 
if $ is large enough to avoid conventional significance, 
say $ > . l .  Since the improbability of this coincidence 
is then understood as  a measure of the force of the evi- 
dence for 0 = 0,), Evett‘s procedure seems fully appro- 

priate only if the condition $ > . I  is sufficient to assure 
that the degree of belief in 0 = €I0 is impressively large, 
say greater than .999. This would require, however, that 

or, approximately, a 5 .0001, a very low discount rate. 
If the frequency distribution seems to deserve more se- 
vere discounting than this, then we may feel that Evett’s 
procedure, though far more conservative than the Baye- 
sian solution, is not conservative enough. 

There may be occasions when Bel,, the belief function 
based on the measurements, also seems to deserve dis- 
counting. This will, of course, make a substantial degree 
of belief in 0 = 0,, yet more difficult to attain. But so long 
as the discount rate for Bell is an order of magnitude 
smaller than the discount rate for Bel,, our qualitative 
conclusions will remain unchanged. 

5. THE ELUSIVE EMPIRICAL FREQUENCY 
DISTRIBUTION 

We have been taking for granted that a frequency dis- 
tribution IT ]  (0) has been empirically observed, that its 
detail is sufficiently fine for the purposes of the Bayesian 
analysis, and that its re!evance to our alternative hy- 
pothesis is clear enough for it to deserve our trust except 
for a modest discounting. But when we look more closely 
at the available evidence, we find that it falls far short 
of this ideal. 

Heideman suggested (1975, p. 107) that a large data 
bank should be organized to collect results of refractive 
index measurements from forensic scientists. Apparently 
no such data bank now exists, but several histograms 
based on modest surveys have been published by British 
government scientists. One of these histograms, shown 
in Figure 2. is based on the refractive indices of 939 
specimens of broken window glass collected by fire bri- 
gades in England and Wales in 1968 and 1969. Another, 
shown in Figure 3, is based on the refractive indices of 
551 glass fragments found in 100 men’s suits examined 
at random during a three month period around 1970 in a 
large drycleaning establishment in southern England. 
Only 37 of the 100 suits were apparently free of glass 
fragments, but two of the suits contained 46 percent of 
the fragments, and one of these contained 166. Figure 4 
is a histogram of the 166 fragments found in the single 
suit. 

In his 1977 paper on this problem (p.  2121, Lindley uses 
the histogram in Figure 2 in applying his Bayesian anal- 
ysis to an example from Evett (1977). In this example, 
the refractive indices of both the broken window and the 
fragment are measured with error. In order to make the 
role of the histogram in the Bayesian analysis as easily 
understood as possible, I will adapt the example, using 
similar numerical values but assuming that the value go 
of the refractive index of the broken window is known 
without error. 
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1.520 1.530 1.540 

REFRACTIVE INDEX 

Figure 2. Refractive Indices for 939 Specimens 
From British Fire Survey (Dabbs and Pearson 1972) 

Suppose. then. that &, = 1.5 18458. while measurement 
of the fragment yields an estimated refractive index .v 
= 1.518472. with standard error (T = .000021Y. Then. 
following the Bayesian analysis described in Section I ,  
we calculate 

and 

= .rrl(1.518477). 

The histogram in Figure 2 shows about 3 percent of the 
refractive indices to fal l  in the interval from 1.518 to 
1.519. Assuming that ~ ~ ( 8 )  is indeed flat in this region, 
the value o f ~ ~ ( 1 . 5 1 8 4 7 2 )  will be about .03/.001 = 30. So 
on the Bayesian analysis this evidence yields odds LoILI 
= 14,850/30 = 500 for the hypothesis 0 = O1,. (This con- 
clusion in favor of the null hypothesis does not conflict 

n 

1.510 1.520 1 530 1 540 
REFRACTIVE INDEX 

Figure 3. Refractive Indices for 551 Fragments From 
700 Men’s Suits (Pearson et al. 1971) 

with the classical significance test in this case, for y - 

The Bayesian analysis turns on the fact that the ob- 
servation y is very unlikely under the diffuse distribution 

This becomes clearer if we recognize that the ob- 
servation is actually discrete rather than continuous. Our 
estimate y = 1.518472 is recorded to the nearest .000001. 
Perhaps it would be reasonable to say we have observed 
y to be in the interval from 1.5184715 to 1.5184725. which 
has width .000001 = . O h .  But this may be an exagger- 

eo/u = .64.)  

PERCENl 

1.510 1 520 1530 1.540 
REFRACTIVE INDEX 

Figure 4. Refractive lndices for 166 fragments f r o m  
One of the 100 Suits of  Figure 3 (Pearson et al. 1971) 
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ation. To be on the conservative side in the discussion 
that follows, let us say that we have observed y to be in 
the interval 1.51847 to 1.51848. which has width .00001 
;= .5m. The crux of the Bayesian analysis is that the prob- 
ability of this “observed interval” is ,00001 x LI, = ,1485 
under the null hypothesis and .00001 x L ,  = .0003 under 
the alternative hypothesis. 

Let us review the argument leading to the probability 
.0003. First we must conclude that the observation J- = 

1.518472 is meaningful to five decimal places. This is 
reasonable, for if y is not meaningful to at least this many 
decimals then its standard deviation u = .0000219 is 
fraudulent. Then we must conclude that the chance of 
the measured index being 1.51847 to five decimals is 
about the same as the chance of the true index being 
1.51847 to five decimals. This is reasonable if the distri- 
bution of true indices is flat at this scale. Then we must 
conclude from the histogram that about 3 percent of all 
true refractive indices fall between 1.518 and 1.519. This 
is reasonable provided we grant the general relevance of 
the histogram. (There are some minor difficulties: the 
figure 3 percent is obtained visually from the histogram, 
the histogram is based on a random sample rather than 
on a population, and the histogram actually represents 
measured values rather than true values. But the uncer- 
tainties arising from these difficulties are probably not 
great enough to make the figure of 3 percent any less 
precise than its one significant figure suggests.) Finally, 
from the datum that 3 percent of indices fall between 
1.518 and 1.519, we must infer that a hundredth as many 
fall between 1.5 1847 and I .5 1848. We must, that is to say, 
assume that the distribution of true indices is flat rather 
than lumpy from the third to the fifth decimal places. 

Two objections to the Bayesian analysis emerge from 
our review: (a) We do not know that the frequency dis- 
tribution estimated by Figure 2 is flat on a fine scale. (b) 
This distribution has only limited relevance to our 
problem. 

control and have tended to control it more and more 
precisely. Dabbs and Pearson (1972, p. 75) accounted for 
the concentration of refractive indices from 1.51s to I .5 18 
in Figure 2 by the fact that the window glass manufac- 
tured in England and Wales since 1945 has been held in 
this range. And recent papers in  the forensic science lit- 
erature (Dabbs et al. 1973; Reeve, Mathiesen, and Fong 
1976) have demonstrated that manufacturers now pro- 
duce large quantities of glass with variation in refractive 
index too small to be detected. Because of these large 
quantities of glass with precise refractive indices, the 
overall distribution of indices may now be lumpy rather 
than flat. 

5.2 Is Figure 2 Relevant? 

We have been following Evett and Lindley in supposing 
that the distribution of refractive indices of window glass 
estimated by Figure 2 is an appropriate model for our 
distribution of belief concerning the refractive index 8 
under the alternative hypothesis 8 # el,. But a moment’s 
reflection shows this is not so. Figure 2 is based on a 
survey of window glass, and the fragment found on the 
suspect’s clothing need not, under the alternative hy- 
pothesis, be window glass. 

A comparison of Figures 2 and 3 shows that the dis- 
tribution of refractive indices of window glass may in fact 
be quite different from the distribution of refractive in- 
dices of glass found in clothing. And this difference may 
render a Bayesian analysis based on Figure 2 very mis- 
leading. In our numerical example, Figure 2 led us to 
think that there was only a 3 percent chance of a random 
refractive index falling in the interval from 1.518 to 1.519. 
and this relative rarity of refractive indices in this interval 
contributed sharply to the 500 to 1 odds in favor of 8 
= €lo. But Figure 3 would lead us to believe that the 
interval 1.518 to 1.519 is the most common interval, con- 
taining over 10 percent of the refractive indices of frag- 
ments found on clothing. The Bayesian odds based on 
this figure would be less than 150 to 1. 

5.1 Is the True Frequency Distribution Lumpy? Should we then use Figure 3 as our frequency distri- 

The histogram in Figure 2 hardly provides any evidence 
for the distribution of refractive indices being flat in the 
fifth and sixth decimal places. Nor could we hope for 
such evidence from a closer examination of the fire bri- 
gade survey; that survey produced only about .03 x 939 
= 28 measurements in the interval from 1.518 to 1.519. 
and these were measurements, not true refractive indices. 
Clearly any belief that the distribution is flat on this scale 
must be based on an understanding of glass manufacture 
rather than on this survey or other random observations. 

- 

bution IT, (€I)‘? Most of us would be reluctant to take even 
this histogram too seriously. Comparison of i t  with Figure 
4 will be enough to make us uneasy about having any 
very definite expectations even as to what the refractive 
indices from the next 100 suits at this same dry cleaning 
establishment will be like. And what relevance does this 
establishment’s experience have for fragments found in 
clothing that is not drycleaned-or in clothing in the 
U.S.-and so forth and so on‘? All in all, our empirical 
frequency distribution has proven a chimera. 

5.3 Other Complications When we turn to what forensic scientists do know 
about current uractice in glass manufacture, we find rea- 

I 

son to think that the distribution may actually be lumpy. 
The refractive index of glass is sensitive to the compo- 
sition of the glass and thus does tend to fluctuate contin- 
uously in the process of manufacture. But modern man- 
ufacturers use the refractive index as a monitor in quality 

In the preceding paragraphs we have not attempted a 
comprehensive or fully informed account of the problem 
of identifying glass fragments by their refractive index. 
We have merely used the problem to illustrate how dif- 
ficult it is for an empirical frequency distribution to carry 
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the weight assigned to the prior density ~ ~ ( 0 )  by the Baye- 
sian analysis of Lindley's paradox. But  in the course of 
discussing the refractive index problem we have passed 
over some complications that call out for acknowledgment. 

First, it is not always true that the variation of refrac- 
tive indices within a single pane of window glass is un- 
detectable. See Dabbs and Pearson (1970) and Evett 
(1977). 

Second, as Figures 3 and 4 suggest, it is common to 
find several glass fragments, with various refractive in- 
dices, on a suspect's clothing. And the chance of one of 
the fragments accidentally matching a broken window is 
obviously a function of the number of fragments. 

Both Bayesian and non-Bayesian analyses of concrete 
examples would no doubt encounter these or other com- 
plications. But these complications do  not affect our basic 
point: no empirical frequency distribution is available that 
can sensibly be used in the role of ~ ~ ( 0 ) .  

6. PROBABILITY JUDGMENTS FROM THE FREQUENCY 
EVIDENCE 

It is, of course, no embarrassment to the Bayesian 
theory that convincing empirical frequency distributions 
are not always available to serve as priors. Bayesians 
require only degrees of belief. In  this problem they need 
only to  supply a density TI(€)) that gives their prior de- 
grees of belief about the refractive index under the al- 
ternative hypothesis. and this density need not have any 
frequency interpretation. 

But with a subjective density .;rl(f3) we still face Lind- 
ley's paradox. This subjective density T ,  (8) will have 
to be spread over the same range, from 1.51 to 1.54, as 
the empirical frequency distribution. If we make ~ ~ ( 0 )  
flat rather than lumpy down to the fifth and sixth decimal 
places, then we will be indicating strong evidence against 
the index being in the observed interval. The lesson of 
Section 5 is that this indication is not justified by the 
actual evidence. But how can Bayesians avoid it'? They 
will be hard put to justify a lump in .rrl(0) at the precise 
position of the observed interval. 

(The Bayesian can, of course, incorporate into the 
analysis the idea that there is a true frequency distribution 
and that this true distribution might have a lump at the 
precise position of the observed interval. But if this idea 
of a true frequency distribution is brought in. then the 
subjective distribution nl(0)  will presumably be an av- 
erage over all possibilities for the true frequency distri- 
bution. And if we have no specific evidence as to where 
the lumps are. then averaging over the different possible 
positions for the lumps will lead us back to a flat density 
for  IT,(^).) 

In Section 3 1 suggested that the Bayesian theory 
should be thought of as a constructive theory that com- 
pares all evidence to knowledge of chances. No matter 
what our evidence is, a Bayesian analysis will end up 
saying it is equivalent in weight to knowledge that the 
truth is generated according to certain chances. In our 

Table 1. Example of Degrees of Beliefs for Intervals 
of Various Lengths in the Range from 1.51 to 1.53 

t ,001 ,0005 ,0001 .00005 .00001 
P'(A.) .1180 .0956 ,0786 ,0774 ,0774 
Bel(A,) ,8820 ,9044 ,9214 ,9226 ,9226 

problem, this means that any evidence about what re- 
fractive indices might be expected under the alternative 
hypothesis will end up being equated with a definite dis- 
tribution for refractive indices under the alternative hy- 
pothesis. And once we are committed to such a distri- 
bution, we seem compelled to make i t  relatively flat and 
diffuse. 

The theory of belief functions, with its more flexible 
scale of canonical examples, allows us to escape from 
this trap. It allows us to compare our evidence to an 
uncertain message that warrants only limited degrees of 
belief as to what refractive index should be expected 
under the alternative hypothesis. 

Here is a crude illustration of how evidence to the 
effect that refractive indices tend to be distributed ex- 
tensively within the limits 1.51 to 1.53 might be repre- 
sented by a randomly coded message. Divide the interval 
from 1.51 to 1.53 into 4 intervals of width .005 each. 
Divide it similarly into 20 intervals of width ,001. 40 in- 
tervals of width .0005, 200 intervals of width .0001. and 
400 intervals of width .OOOOS. This gives a total of 4 + 
20 + 40 + 200 + 400 = 664 intervals. Let us say that 
the randomly coded message has a chance .0014 of mean- 
ing that the refractive index of a "random" fragment from 
someone's clothing will be in any one of these 664 inter- 
vals and a chance 1 ~ (664)(.0014) = .9296 of meaning 
merely that it will be somewhere in the whole interval 
1.51 to 153. Table 1 shows some of the values of the 
resulting belief function. In  this table, A, denotes an in- 
terval of length E, and Bel(A,) denotes the degree of belief 
that the refractive index is not in the interval. We call 1 - 
BeKA) the plausibility of the interval and denote it P * ( A ) .  
The table suggests that we give an interval of length .001 
a plausibility P * ( A , o o l )  = .12, a rather large value re- 
flecting our uncertainty about the gross features of the 
most relevant distribution of refractive indices. The table 
shows the plausibility of the index's being in a small in- 
terval declining at less than a proportionate rate as the 
interval is shrunk. This reflects the plausibility of lumpi- 
ness in the distribution of refractive indices at an 
intermediate scale, as well as the eventual meaningless- 
ness of the idea of the index's randomness as it is spec- 
ified more and more exactly. 

[ R r c e i r d  March 1979. Revised Air~ i rst  1981.1 
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Comment 
D. V. LINDLEY* 

The supporter of a theory should welcome good criti- 
cism-and I know of no better critic of the Bayesian 
viewpoint than Shafer. If the theory survives the criti- 
cism, then it is enhanced the more the better the critique. 
In my view, Bayesian ideas come out of Shafer's analysis 
rather well. 

1. RELIABILITY OF EVIDENCE 

It is not always recognized that only the relevant prob- 
ability matters: whether that probability is based on 
strong or weak evidence is immaterial. Shafer is wrong 
when he says "he ought also to weigh the reliability of 
the evidence." Consider the following example. An urn 
contains a large number of balls each of which is colored 
either red or black: one of them is to be drawn at random 
and a prize awarded if the ball is red. Contrast two sit- 
uations. In the first. the proportion of red balls is known 
to be 2.  In the second, the proportion p is unknown but 
is described by a probability density f(p) with mean i. 
As far as the prize is concerned, the relevant probability 
is that of a red ball being drawn, which is 2 in both sit- 

* D.V. Lindley was formerly Professor and Head of the Department 
of Statistics at University College London. He is now retired and live5 
at 2 Periton Lane, Minehead. TA24 8AQ. England. The research b a s  
sponsored by the United States Army under Contract No. DAAG79- 
80-C-004 I .  

uations. The fact that the knowledge of p is less reliable 
in the second case is irrelevant. Tversky (1974) reports 
that in a choice between the two situations subjects in- 
coherently prefer the first. Shafer appears to share their 
view when he discounts the histogram evidence, for only 
the probability of guilt is relevant. 

The reason for the confusion is that the irrelevant as- 
pects can become relevant if the problem is changed and 
a different probability required. To see this, modify the 
examples so that two balls are to be drawn and the prize 
awarded if they are of the same color. The relevant prob- 
ability for a given p is p 2  + ( 1  - p ) ? .  This is 4 in the first 
case but J[p' + ( 1  - ~ ) ~ ' J f ' ( p ) d p  in the second. This is 
easily evaluated to give f + 2a'. where a' is the variance 
of p .  Now the situations are distinguishable. Similarly, 
there are aspects of the histogram evidence that would 
be relevant for some questions, but for the question of 
guilt the strength of that evidence does not matter any 
more than did that about p in the example. 

2. BEHAVIORAL ASSESSMENT 

In discounting the histogram evidence, Shafer uses a 
rate a .  What does this number mean'? He argues that a 

~~ 
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