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Abstract
This research examines the ability of six popular Web search
engines, individually and collectively, to locate Web pages
containing common marketing/management phrases. We
propose and validate a model for search engine performance
that is able to represent key patterns of coverage and overlap
among the engines.

The model enables us to estimate the typical additional
benefit of using multiple search engines, depending on the
particular set of engines being considered. It also provides
an estimate of the number of relevant Web pages not found
by any of the engines. For a typical marketing/management

phrase we estimate that the “best” search engine locates
about 50% of the pages, and all six engines together find
about 90% of the total.

The model is also used to examine how properties of a
Web page and characteristics of a phrase affect the probabil-
ity that a given search engine will find a given page. For
example, we find that the number of Web page links in-
creases the prospect that each of the six search engines will
find it. Finally, we summarize the relationship between ma-
jor structural characteristics of a search engine and its per-
formance in locating relevant Web pages.
(Capture/Recapture; Hierarchical Bayes; Marketing Information;
Probability Models; World Wide Web)
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1. Introduction
The World Wide Web (WWW) is important to man-
agers in three rather different respects. First, managers
use it to engage in electronic commercial transactions
as sellers or as buyers (Alba et al. 1997, Hoffman et al.
1996). Second, they use it to disseminate information
to customers or gather information as (business) cus-
tomers, including both Web advertising (acquiring
new customers) and after-sales support to retain cus-
tomers (Bakos 1997, Burke 1996, Hoffman and Novak
1996). Third, the Web is emerging as a rich source of
managerial information that assists in decision-
making, e.g., competitive intelligence, demographic in-
formation, market forecasts, general economic infor-
mation, sources of external expertise or training,
innovative managerial tools, tactics and strategies, and
regulatory and other governmental information. Pro-
viders of such information include news organizations,
governments, educational institutions, corporations,
and nonprofit organizations, etc. Web search engines
are commonly used to help locate this kind of infor-
mation, and it is this performance of such engines that
interests us here.
Search engine performance has begun to attract at-

tention by both researchers and managers. Selberg and
Etzioni (1996) studied search queries and their results
using various popular search engines for the period
July through September 1995. In a more recent and
comprehensive study published in Science, Lawrence
and Giles (1998) examined the URLs returned for a
large number of queries during December 1997. A
follow-up to that study, using more comprehensive
search methods, a greater number of engines, and a
larger number of phrase queries, has recently appeared
in Nature for queries collected in February 1999. They
were particularly interested in the relative number of
URLs returned by different search engines and in es-
timating the number of URLs not found by any (or all)
search engines. Coverage of those findings in The Wall
Street Journal (1998) showed both the managerial inter-
est and also the controversy generated by the findings.
With significant advertising revenue at stake, those re-
sponsible for the engines are sensitive to assessments
of their relative performance. Indeed, such assess-
ments have loomed large in the business press discus-
sion of the vast sums paid to acquire search engine
sites.

In this study we will offer the following contribu-
tions. First, we present and validate a model for the
performance of multipleWeb search engines in finding
URLs. We also analyze some natural, relatively simple
models (Rasch-type ability/difficulty model and cap-
ture/recapture model) and find that they fail to rep-
resent key aspects of search engine performance
(which the proposed model does contain). Second, we
analyze the performance of six popular Web search
engines in finding marketing/management phrases.
Selberg and Etzioni (1996) studied all queries submit-
ted to MetaCrawler, and Lawrence and Giles (1998,
1999) examined queries from the scientists at the NEC
Research Institute in Princeton. Neither focused on
management information. Third, we show how some
characteristics of marketing/management phrases and
of Web pages/URLs affect search engine performance.
We also highlight the association between structural
characteristics of a search engine (e.g., size of universe
covered, depth of search) and that engine’s success.
Fourth, our empirical model application allows us to
do more than just “rate the search engines,” enabling
us to describe the distinctive patterns of overlap and
distinctiveness among them. Finally, for these kinds of
management phrases, we are able to estimate the num-
ber of URLs not found by individual search engines,
and indeed not by the collection of engines. We also
can calculate the incremental benefit in adding a par-
ticular search engine’s results to those URLs already
found. The next section offers a description of the
search process and search outcomes, some summary
statistics regarding search engine performance, and a
conceptualization of factors thought to affect that per-
formance. The subsequent sections develop ourmodel,
validate it empirically, and use it to draw substantive
conclusions.

2. Searching the Web for Marketing
Information

A simple example will help illustrate the research is-
sues of interest. In October 1998, we queried each of
six popular Web search engines to find documents
containing the phrase “mere exposure effect.” Alta
Vista found 99 documents. Northern Light located 83;
of course, many of these duplicated the ones fromAlta
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Vista. HotBot found fewer (49), but some had not been
discovered by either Alta Vista or Northern Light. Fi-
nally, engines Infoseek, Excite, and Lycos found fewer
documents (22, 21, and 9, respectively) but again some
new pages were included. Together, all six engines lo-
cated 172 documents, so even the “best” search engine
(for this phrase) found less than 60% of this total (i.e.,
Alta Vista’s 99 out of 172).
We should highlight that what we refer to simply as

“search” (which is of course from the user’s perspec-
tive) is really the result of a complex process. A search
request does not directly cause a real-time search of
the Web, but rather a (potentially complicated) look-
up in a very large database. This database arises as the
result of past webcrawling (i.e., proceeding from URL
to URL and indexing the Web page contents) by the
search engine and (less often) by specific requests from
sites to be included in the engine’s database. While any
“search” request, then, produces only a search result
from a database that is essentially static, a search re-
quest can affect the database for future searches, e.g.,
by causing certain URLs to be checked for viability or
by influencing the future webcrawling pattern (by
changing the engine’s inferred popularity/importance
for certain words or phrases). Our study simply ex-
amines the user’s experience upon requesting URLs
whose corresponding Web pages contain a particular
phrase for these studied search engines.
We also acknowledge at the outset that this study

will not attempt to assess the relative “value” of the
individual sites found, and indeed one might well be
skeptical of any mechanism that claimed to do so. Dif-
ferent searchers will no doubt have different interests
or needs. Rather, thinking about this simple example
leads directly to the five research issues that we do
address:
1. Search Engine Performance Across Phrases. Would

the search-result pattern above hold up for other mar-
keting phrases? “Mere exposure effect” is relatively
new to marketing and is associated more with aca-
demic research than with current marketing manage-
ment practice. Perhaps some engines would do better
for longer-established phrases, or thosemore prevalent
among practitioners. Certainly, because Web crawlers
proceed from document to document via the links pro-
vided, they may end up covering relatively separate,

disparate parts of the space of URLs. Such a propensity
can be exacerbated by, for instance, the inclination of
academic sites to link to other academic sites (via con-
nection to coauthors, references, etc.).
2. Factors Affecting Discovery of URLs. In the example

above, several URLs were found by all of the engines,
while others were located by only one. For a given
phrase, what makes some URLs “easy” to locate? In
light of the Web crawler process mentioned, the more
sites that link to a URL, the easier finding that URL
will be. Of course, this measure is essentially impos-
sible to observe. It is also not directly controllable by
a site that wishes to be found. Instead, we focus on two
factors that are observable and (within limits) control-
lable: the number of links on a URL (to other docu-
ments), and the domain type (.com, .edu, .org, etc.).
The former should be related to URL discoverability
because it is an indicator of sophistication and con-
nectedness and may also stimulate reciprocal linkage
(i.e., a linked site electing to provide a link back). The
latter factor (domain type) may matter through a pro-
pensity for sites to link within (rather than across)
these types.
3. Search Engine Structural Characteristics. Although

search engines’ operating details are proprietary, they
are known to differ with respect to some basic char-
acteristics. We will summarize the apparent relation-
ship between such structural properties and the en-
gines’ search performance.
4. Overlap and Sequential Search. We are also inter-

ested in the way in which patterns of overlap among
the search engines determine their incremental benefit
when combined. In our example above imagine that
Alta Vista was the search engine used first. Would us-
ing a second engine be expected to add substantially
to the number of documents found? What about a
third? How many engines are needed to find the
“lion’s share” of relevant documents?Which particular
engine would add most to, say, Alta Vista’s results?
The proposed model will allow us to answer these
questions.
5. How Much Information Did We Miss? Using all six

search engines we found 172 documents mentioning
“mere exposure effect.” But how many documents did
we fail to find? Note that any single URL’s search re-
sults can be summarized by a binary six-vector, where
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the ith element is a “1” if search engine i found the
URL in question and a “0” if it did not. There are, of
course, 26 � 64 such patterns, and for each phrase
searched we can create the full frequency count among
these 64 patterns—except for one. The number ofURLs
associated with the (0,0,0,0,0,0) vector is not available
because this represents the number of URLs missed by
all six search engines. However, after creating a model
that represents well the engines’ Web coverage and
overlap (by fitting the 63 patterns above), we will fore-
cast the frequency of this 64th pattern—as it indicates
the size of the remaining “undiscovered” part of the
Web.
To build a model that would address these five is-

sues, we proceeded through four steps to build an ap-
propriate database.
Step 1: Marketing Phrases for Search. The marketing

phrases searched needed to be diverse enough to rep-
resent an interesting universe and also vary on the fac-
tors thought to affect search engine performance (i.e.,
research issue 1, above). Accordingly, phrases were se-
lected via three criteria:
1. They are relatively central to marketing thought,

appearing in popular reference works (Bennett et al.
1995, Clemente 1992).
2. They are specific enough so that a Web search

need not be refined further (e.g., “marketing manage-
ment” was found on 44,432 Web pages by Alta Vista—
too many to be helpful without more detail).
3. They span the two phrase dimensions discussed

earlier: managerial versus academic, and newer versus
older. Five phrases were selected in each cell of the
resulting 2 � 2 design, leading to 20 phrases overall.
Step 2: Phrase Search Via Search Engine. The six search

engines examined here (Alta Vista, HotBot, Excite, In-
foseek, Northern Light, Lycos, located at http://
www.altavista.com, http://www.hotbot.com, http://
www.excite.com, http://infoseek.go.com, http://
www.northernlight.com, and http://www.lycos.com,
respectively) are the most popular based on user
awareness, popular press mentions, and inclusion in
previous studies and in metasearch programs (PC
Magazine Online 1998, Beatty 1998, Feldman 1998,
Lawrence and Giles 1998 and 1999). Note that while
Yahoo! is often mentioned by users as a “search en-
gine,” it is actually a directory, and at the time of our

study Yahoo! additionally incorporated Inktomi, the
same search engine used by HotBot. Thus, we did not
include it. Although, as recently pointed out by
Lawrence and Giles (1999), HotBot, Microsoft Snap,
and Yahoo! do not return exactly the same information
because of filtering and/or different underlying Ink-
tomi databases. The 20 phrases were searched using
each of the six engines during October 1998. During
the search, two properties of each located URL were
recorded: the number of links (0–5, 6–10, or 10�), and
the domain type (.com, .edu, .org, or “other”) indicat-
ing whether the site was commercial, academic, an or-
ganization, or other (the latter including non-U.S.
sites). This URL information will allow us to address
research issue 2 above.
Step 3: Integrate Search Results. As noted earlier, the

search result for any located URL can be summarized
in a binary six-vector. However, meaningfully com-
paring these results across engines requires substantial
care. The same document may be reached by different
alphanumeric strings, requiring that the documents
themselves be accessed and checked both for similarity
across engines and for duplication within an engine.
URLs were also checked to verify that they were active
and in fact contained the phrase in question. (Both Ex-
cite and Infoseek use heuristics that may return URLs
similar—but not identical—to the phrase searched.
These instances were deleted.)
Step 4: Search Engine Characteristics. As in research

issue 3, we want to link search engines’ performance
to their characteristics. Because the number of search
engines is small, it would not be useful to formally
incorporate these characteristics into the model itself,
but we will be able to investigate an association be-
tween overall search performance and an engine’s
structural properties. The key properties of interest are
engine size (the total number of pages indexed) and
several binary indicators of capability. The latter in-
cludes Depth (whether an engine searches an entire
site without a preset limit), Frame Support (ability to
follow frame links), Image Maps (ability to follow im-
age maps), and Learns Frequency (whether an engine
estimates the frequency with which a page’s content
changes, and uses that information to determine visit
frequency). Other search engine characteristics would
be interesting to include (such as number of pages
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crawled per day) but do not appear to be reliably mea-
sured and available (Sullivan 1998). The search engine
features above were taken from the Search Engine
Watch site (Sullivan 1998) and were measured as of
August 4, 1998.
Table 1 shows the 20 marketing phrases, their cate-

gorization regarding newness and academic/mana-
gerial, and the total number of URLs found by each
engine for each phrase. Note that this table is not the
complete data, but rather is a summary. For each of
the 1588 located URLs, the data used in our model-
development are a binary six-vector together with the
two URL characteristics (number of links, domain
type) and two phrase characteristics (as above).
As a further summary, Table 2 shows how the URLs

found are distributed across phrase and URL charac-
teristics. The table entries provide for a given engine,
the proportion of all URLs found (by any engine) hav-

ing a particular characteristic. For instance, Alta Vista
located 52.1% of all managerial-phrase URLs that were
found. It did a little better (53.5%) finding academic-
phrase URLs. Relative to the engine’s baseline level of
performance across all phrases, Infoseek had the great-
est skew toward locating academic-phrase URLs (0.163
academic versus 0.125 managerial), and Northern
Light had the greatest inclination toward managerial-
phrase URLs (0.462 academic versus 0.529 manage-
rial). Overall, Alta Vista had the best performance in
finding academic-phrase URLs, while Northern Light
had the greatest success finding marketing-managerial
ones. Analogous conclusions for other phrase/URL
characteristics are available via Table 2. Table 3 pro-
vides the structural characteristics of the engines.
Before developing our model, it was useful to note

what would happen if search outcomes for any given
phrase were independent—i.e. if each URL had some

Table 1. Number of URLs Found By Search Engine and Marketing Phrase

Search Engine*

Phrase Manag. Newer AV HB EX IS NL LY Total: 6 Engines

flanker brand 1 1 9 9 1 6 5 0 19
umbrella branding 1 1 38 21 7 4 51 0 76
second mover advantage 1 1 8 9 4 2 20 1 26
professional respondents 1 1 41 19 12 7 31 0 62
audience fragmentation 1 1 106 59 37 36 120 14 215
category development index 1 0 18 11 0 2 19 2 29
modified rebuy 1 0 40 23 5 3 33 1 78
perceived value pricing 1 0 19 14 4 6 21 5 38
simulated test market 1 0 25 15 8 15 35 7 66
unaided recall 1 0 92 45 29 14 67 13 150
low involvement learning 0 1 10 11 5 7 13 4 22
elimination by aspects 0 1 61 35 21 8 57 4 114
mere exposure effect 0 1 99 49 21 22 83 9 172
preference map 0 1 29 21 10 35 41 1 101
decision calculus 0 1 74 54 28 32 55 14 134
multiattribute attitude models 0 0 17 6 2 1 26 2 37
Reilly’s law 0 0 27 13 6 3 20 0 40
wheel of retailing 0 0 68 28 12 10 44 2 113
beta binomial model 0 0 39 13 9 10 33 4 64
diffusion of innovation model 0 0 20 13 6 7 11 2 32

Total 840 468 227 230 785 85 1588

*AV � Alta Vista, HB � HotBot, EX � Excite, IS � Infoseek, NL � Northern Light, LY � Lycos

Note: Manag. � 1 indicates a managerial phrase, 0 an Academic phrase. Newer � 1 a newer phrase, 0 an older phrase.
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probability of being located (possibly engine-specific)
and one engine’s finding the URL told us nothing
about any other engine’s. In such a situation, substan-
tive research issues 1 and 2 (effect of URL and phrase
characteristics) could be addressed by a separate sim-
ple model (e.g., logistic regression) for each search en-
gine, and research issue 4 (overlap between engines)
would have a very simple answer for any set of en-
gines. The independence assumption is also the linch-
pin of the most careful model published so far for
search engine performance (Lawrence and Giles 1998).
They consider a model with the top two engines as-
sumed to be independent. Accordingly, we begin by
considering the independence assumption in detail.

3. Are Search Engine Outcomes
Independent?

The simplest, and arguably the most natural, starting
point for representing the URLs found by multiple

Web search engines is the independent binomial
model. It is based on two assumptions. First, for any
given search phrase j, it imagines that any given search
engine i finds any one of the URLs containing that
phrase independently of its finding other such URLs,
and with some probability pij. Second, the model as-
sumes that the probability pij that search engine i finds
any particular URL containing phrase j does not de-
pend on the set of URLs found by any other search
engine.
For a single URL containing phrase j, the data can

be written simply as the binary six-vector (y1jk, y2jk, y3jk,
y4jk, y5jk, y6jk), where yijk � 1 if the kth URL for phrase
j is found by search engine i, and is 0 otherwise. For
URL k and phrase j the likelihood function is

L(y , y , y , y , y , y )1jk 2jk 3jk 4jk 5jk 6jk

6
y 1�yijk ijk� p (1 � p ) , (1)� ijij

i�1

where pij is the probability that engine i finds any given
URL containing phrase j. Because the URLs are ex-
changeable by assumption, the likelihood for the data
for phrase j is the product of (1) across all URLs (in
practice, a partial likelihood will be used, since the
(0,0,0,0,0,0) vector will be missing).
This independent binomial model has much to rec-

ommend it. It is parsimonious: Each search engine i
(for each phrase j) can be summarized by a single
quantity—its search success probability pij. The model
can provide an estimate of the number of URLs not
found. After any number of search engines have been
used, the expected number of new URLs from another

Table 2 Search Engine Results by Phrase Age, Phrase Type, URL Number of Links, and Domain Extension

Age Type Links Domain

Engine New Old Manag. Acad. 0–5 6–10 10� edu com org other

AV 0.504 0.564 0.521 0.535 0.523 0.545 0.548 0.495 0.557 0.644 0.530
HB 0.304 0.280 0.297 0.293 0.284 0.288 0.328 0.312 0.269 0.328 0.288
Ex 0.155 0.125 0.140 0.144 0.146 0.138 0.137 0.140 0.142 0.164 0.143
IS 0.169 0.109 0.125 0.163 0.135 0.155 0.167 0.153 0.110 0.205 0.147
NL 0.506 0.478 0.529 0.462 0.481 0.551 0.505 0.502 0.526 0.521 0.458
LY 0.050 0.058 0.056 0.050 0.044 0.080 0.066 0.056 0.088 0.041 0.026

Table 3 Structural Characteristics of Search Engines*

Search Engine

Characteristics AV HB EX IS NL LY

Size (million pages) 140 110 55 30 80 30
Depth of Search No Limit No Limit No Limit Sample No Limit Sample
Frames Support Yes No No No Yes No
Image Maps Yes No No Yes Yes No
Learns Frequency Yes Yes No Yes No No

*Source Search Engine Watch (Sullivan 1998)
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Table 4 Global Goodness-of-Fit for Independence Models

Model # Parameters �2*LL BIC

Constant p 1 11236.72 11245.88
Different p by engine 6 9602.83 9657.80
Different p by phrase 20 11197.58 11380.82
Different p engine by phrase 120 9276.17 10375.60

Note: Reported are �2* Log-Likelihood, and the BIC criterion.

search engine h is simply (Nj � m)phj, where m is the
cumulative number of URLs already found and Nj is
the (unknown) number of URLs containing phrase j.
Lawrence and Giles (1998) expressed concern about

the independence assumption, and that concern was
well founded. We report in Table 4 the value of �logL
for this model and the associated BIC statistic. Four
particular versions of the independent binomial model
were evaluated: (1) constant p, (2) different p for each
engine but constant across phrases, (3) different p for
each phrase but constant across engines, and (4) dif-
ferent p for each engine and phrase. A simple chi-
square test on the value of �2logL rejects each of these
four models. Naturally, with over 1,500 observations
the power of such a test is very high and may not in
itself present a strong case for substantial interdepen-
dence. Instead, two other considerations will argue for
a model that relaxes the independence assumption.
First, we will see later that relevant goodness-of-fit in-
dicators can be improved substantially via a spatial
interdependence model. Second, we note that the BIC
criterion (which penalizes highly parameterized mod-
els for data overfitting) actually prefers, among inde-
pendence models, the one where location probabilities
differ only by search engine (and not by phrase). In
other words, search is characterized simply by six pi-
values, one for each search engine (the relative mag-
nitude of the pi are given by the total URL count by
engine in Table 1).
It is easy to show that an estimate of the number of

URLs found by all engines in any three-engine set (de-
noted 1,2, t for convenience) under this model is:

2n12n � n . (2)12t tn n1 2

Taking, for instance, Alta Vista and HotBot as en-
gines “1” and “2,” the actual three-way overlap n12t
and the overlap predicted by the independence model
via (2), are:

Set of
Search Engines

Actual
Number
of URLs

Predicted
Number
of URLs

Alta Vista, HotBot, Excite 50 22.4
Alta Vista, HotBot, Infoseek 37 22.7
Alta Vista, HotBot, Northern Light 100 77.5
Alta Vista, HotBot, Lycos 19 8.3

In short, looking across our 20 marketing phrases,
the independence model substantially underpredicts
the actual overlap for these triplets of search engines.
These positive residuals suggest that two search en-
gines with high coverage (Alta Vista and HotBot) are
inclined to subsume the other four engines. This sug-
gests the use of Rasch-type ability/difficulty models
(Rasch 1966, Andersen 1973), whereby the probability
that a given URL is located is a function of both a URL
“difficulty” parameter and an search engine “ability”
parameter. In this kind of model the “easy” URLs will
tend to be found by all search engines and the “hard”
URLs only by the search engines that find many over-
all. In other words, Alta Vista and HotBot will overlap
somewhat, but the other search engines will overlap
even moreso with this pair (and hence produce posi-
tive residuals) because the URLs they find will tend to
be the “easy” ones. Of course, other search engine trip-
lets could show different discrepancies than those ob-
served above. Our main point is the observation that
independence does not appear to be a solidly sup-
ported assumption, and amodel where spatial location
of search engines determines patterns of overlap may
have value.

4. A General Proximity Model
We provide initially a heuristic description of our
modeling approach for WWW data. This non-formal
description is useful to describe our intuition, why we
expect this class of models to improve on simpler ones,
and the expected limitations and subsequent improve-
ment in fit as our models become more complex.
Needed notation and formal models are presented
after.
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4.1. Heuristic and Graphical Descriptions
We posit a general class of models for the ability of
WWW search engines based on the proximity (“dis-
tance”) from a specific engine to a given URL and the
“reach” of an engine. Our basic model suggests that
when an engine and URL are proximate, the engine is
likely to find that URL, and unlikely when not. In par-
ticular, each engine and URL are hypothesized to “sit”
at an unknown location in D-dimensional space. A
URL’s location is modeled to be centered around a
mean location determined by both its phrase and co-
variates specific to the phrase and URL (e.g., type of
phrase, URL domain extension, etc.). Then, from an
engine’s location, it “throws out a net” and probabil-
istically captures URLs within its reach. That is, there
is a monotonically decreasing relationship between
distance from engine to URL and the probability a URL
is found. Pushing this analogy farther, inferences of
interest under the model are then derived from: (1) the
location of each engine (that is, do “weaker” engines
find just a subset of those URLs found by the better
engines, which would follow if all engines were lo-
cated at the same place, or do engines “carve” out their
own locations), (2) the size of the net for each engine
(in our model this is the ability of the engine), (3) the
shape of the net (are the underlying dimensions re-
lated), (4) the number of underlying dimensions D ad-
equate to model the data, (5) the effects, if any, of
phrase and URL covariates on URL’s locations and
hence their probability of being found, and (6) an ex-
ponent determining how fast the probability of an en-
gine finding a URL drops off as a function of their
proximity. We considered three specific cases of this
general proximity model.
As a point of reference for describing the proximity

models, consider the graphical representation of the
independent binomial model (§ 3) shown in Figure 1,
panel A. The horizontal line represents the (D � 1 di-
mensional) space of URL locations, and the various
search engines differ in the degree towhich they (prob-
abilistically) cover this space, beginning at the origin.
The graph can be interpreted as having each engine
stand at the origin and throw out a line, capturing as
many URLs (“fish”) as possible. Because engines with
longer fishing lines (i.e., more ability) reach out farther

from the origin, they are likely to “catch” more URLs,
although which URLs the better engine (engine 1) finds
is unrelated to the specific URLs found by the weaker
engine (engine 2). That is, via the independence as-
sumption, it is as if the URLs randomly redistributed
their locations in the time elapsed between the search
by the two engines.
As an alternative to this independence model, we

will examine a D � 1 dimensional proximity model,
depicted in Figure 1 panel B and denoted “Model 1”
below. Here, each engine is again located at the origin
and casts its probabilistic coverage of the line accord-
ing to its “ability.” But unlike the independencemodel,
here the URL locations remain fixed. Accordingly,
some URLs really are more difficult to locate (i.e., those
labeled “D” and “E”) than others (e.g., “A” and “B”)
as they lie far from the origin. As a result, it is unlikely
that the search engines with lesser ability will find
URLs not found by the better engines. As suggested in
§ 2 (and confirmed in § 5.1) this feature of Model 1
does not fit the data particularly well. (Even the weak-
est engine Lycos finds URLs not found by other en-
gines). This suggested the extension of Model 1 in two
ways under our general proximity model structure.
First, in Model 2 (Figure 1 panel (C)) we extend to D
� 2 dimensions yet leave all of the engine locations at
the origin. A more general version considered in
Model 3 (Figure 1 panel (D)) also allows the engine
locations to vary—i.e., as suggested earlier, a search
engine may “stake out” a distinctive part of the URL
space. As shown below, the results indicate thatModel
3 is necessary to provide an adequate fit to the pattern
of Web search results for marketing information.

4.2. Model Notation, Development, and
Computational Approach

We consider the case described in § 2 where each of i
� 1, . . . , I search engines is utilized on the WWW to
locate URLs for each of j � 1, . . . , J phrases. Let Kj
denote the total number of distinct URLs found for the
jth phrase (by any of the engines) and yijk a binary out-
come where yijk � 1, k � 1, . . . , Kj, if the kth URL for
the jth phrase is found by engine i, and 0 otherwise.
The collection of all outcomes yijk is denoted Y. In ad-
dition, for each URL we obtain covariate vector xjk �
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Figure 1 Models for URL Discovery by Web Search Engines

(xjk1, . . . , xjkP) to identify known characteristics of
phrases and/or URLs that may make them harder or
easier to find. The collection of all covariates is denoted
X.
We posit a proximity model for pijk � Prob(yijk � 1)

defined as a function of the following engine and URL
specific parameters. Let � (hi1, . . . , hiD) and �t th ci jk

(cjk1, . . . , cjkD) denote the location of the ith engine and
kth URL for phrase j in D-dimensional space.
Additionally, define Ri, a D � D dimensional scaling
matrix for engine i, and dijk � d(hi, cjk) �

(hi � a squaredMahalanobis distancet �1c ) R (h � c )jk i i jk

between engine i and the k-th URL for phrase j. Thus,
the diagonal elements of Ri are the abilities (“reach”)
and the off-diagonal elements indicate the covariation
of abilities for engine i in the D dimensions.
We assert a model for pijk as a function of dijk given

by

1
p � , (3)ijk u1 � dijk

where u defines the rate at which the probability an
engine finds a given URL drops off. In general, spatial/
distance models have been utilized in other marketing
contexts, especially brand choice (Elrod 1988,
Kamakura and Srivastava 1984). We note that (3) is
equivalent to logit(pijk) � �u • log(dijk), a logistic link
where u is the slope of regressor log(dijk). Assuming
conditional independence of engines, phrases, and
URLs within phrase this yields a product Bernoulli
likelihood for parameters X1 � (h1, . . . , hI, c11, . . . ;

, R1, . . . , RI, u) equal toc KJ J

y 1�yuijk ijk1 dijkp(Y|X ) � . (4)1 � � � � u � � u �1 � d 1 � di j k ijk ijk

Because commonalities are likely to exist among the
engines, the phrases, and the URLs, we extend the
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model for Y given in (4) to include a set of prior dis-
tributions for X1, allowing for the sharing of informa-
tion across units. The choice of priors for the compo-
nents of X1 were made in the following manner.
Because the six engines that we consider represent the
engines of interest, we treat the engine specific param-
eters as fixed effects and put non-informative priors on
hi, Ri, i � 1, . . . , I. A non-informative prior is also
adopted for u reflecting our lack of knowledge regard-
ing this parameter. In contrast, it is of interest to sum-
marize the location of phrase j for which we may re-
gard cjk, k � 1, . . . , Kj as a random sample of URLs
drawn from a population distribution. By convention
and for computational convenience, we put a hierar-
chical multivariate normal-InverseWishart prior struc-
ture on the URL locations:

c � MVN (� � bx , K )jk D j jk j

� � MVN (�̄, R ))j D �

�1K � W (S), (5)j �

where MVND(x, y) denotes a D-dimensional multivar-
iate normal distribution with mean vector x and co-
variance matrix y, �j � (�j1, . . . , �jD) the mean location
of phrase j, b a D � P dimensional coefficient matrix
where bdp is the slope for the pth covariate in dimen-
sion d, � the population mean of the�̄ (�̄ , . . . , �̄ )1 D

phrase locations, Kj and R� are D � D-dimensional
covariance matrices for phrase j and the population of
phrasemeans, and denotes an Inverse-Wishart�1W (Q)j

distribution with j degrees of freedom and scale ma-
trix Q. The values of � and S were chosen as uninfor-
mative, allowing the data to fully specify the values of
Kj. As well, a noninformative prior distribution was
utilized for b. We denote the prior level parameters by
X2 � (�1, . . . , �J, b, K1, . . . , KJ, R�) and the prior�̄,
distribution by p(X1|X2).
Inferences for the model parameters X1 and X2 were

derived by obtaining samples from the marginal pos-
terior distributions p(X1|Y, X) and p(X2|Y, X) using a
Markov chain Monte Carlo (MCMC) sampler (Gelfand
et al. 1990, Rossi et al. 1996). For each of Model 1,
Model 2, and Model 3, we report results obtained by
running three independent chains for 3000 draws from
overdispersed starting positions, discarding the initial
500 draws of each chain after determining convergence

(German and Rubin 1992) and estimating the quanti-
ties of interest using the remaining 7500 draws. Further
details are provided in the appendix.

5. Results
5.1. Model 1: One-Dimensional Ability/Difficulty

Model
We first considered a simple special case of the general
proximitymodel defined by (3), (4), and (5), which con-
sisted of a D � 1 dimensional model with all engines
located at the origin h1 � . . . hI � 0. To identify the
model, we set as a reference point R1 � 1, the ability
of Alta Vista indexed as i � 1, and set the rate factor
u � 0.5. This model, in which each engine (“exam-
inee”) has a unidimensional ability Ri and each URL
has a unidimensional location cjk (“test item diffi-
culty”), is similar in spirit to the Rasch (1960) model
commonly used in educational testing.
Model 1 was applied to the set of 20 phrases and

1588 URLs described in § 2. A summary of results for
engine abilities, presented as Ri is given in column 2
of Table 5. The ordering of engine abilities suggested
(Alta Vista, Northern Light, HotBot, Excite� Infoseek,
Lycos) is unambiguous in all comparisons (true for all
7500 draws) except for the comparison (a) Alta Vista
� Northern Light, p � 0.78 and (b) Excite � Infoseek,
p� 0.48. The results fromModels 2 and 3, better fitting
models described later, will further refine these
relations.
Inferences under Model 1 for the phrase and URL

covariates (1) domain extension: .edu, .com, .org, other,
(2) # of Links on the URL: 0–5, 6–10, 10�, (3) Type of
Phrase: Managerial/Academic, (4) Age of Phrase:
Newer/Older, and (5) the interaction between (3) and
(4), on the mean of URL locations cjk and hence pijk, are
given in column 2 of Tables 6 and 7. In Table 6 we
report the posterior median, standard error, and prob-
ability of the effect being greater than 0 for each co-
variate. Table 7 gives the adjusted phrase mean for
URLs with a given covariate level. To interpret these
findings, recall that all engines for Model 1 are located
at the origin, thus any positive coefficient suggests that
the covariate level makes URLs of that type harder to
find, and vice-versa. We observe strong evidence that
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Table 5 Posterior Medium Engine Abilities on Dimensions 1 and 2 (R11, R22), Correlation (q12), and Distance Factor u for Models 1, 2, and 3

Model 1 Model 2 Model 3

Engine Dim 1 Dim 1 Dim 2 q Dim 1 Dim 2 q

AV 1.000 (�) 1.000 (�) 1.760 (0.41) 0.005 (0.01) 1.000 (�) 1.960 (0.40) 0.020 (0.01)
HB 0.128 (0.03) 0.157 (0.01) 0.199 (0.00) 0.006 (0.01) 0.074 (0.01) 0.761 (0.01) 0.020 (0.00)
Ex 0.017 (0.00) 0.040 (0.01) 0.024 (0.01) �0.586 (0.01) 0.020 (0.01) 0.060 (0.01) �0.630 (0.01)
IS 0.017 (0.00) 0.010 (0.01) 0.040 (0.01) 0.593 (0.01) 0.055 (0.01) 0.052 (0.01) 0.640 (0.01)
NL 0.945 (0.08) 2.670 (0.48) 1.020 (0.40) �0.007 (0.09) 3.720 (0.52) 1.870 (0.45) �0.003 (0.00)
LY 0.001 (0.00) .0004 (0.00) 0.001 (0.00) 0.000 (0.00) 0.0003 (0.00) .0008 (0.00) 0.000 (0.00)
u 0.500 (�) 0.369 (0.02) 0.354 (0.015)

Note: Posterior standard errors are in parenthesis.

Table 6 Phrase and URL Covariate Slopes (b) for Models 1, 2, and 3.

Model 1 Model 2 Model 3

Cov. Dim 1 Dim 2 Dim 1 Dim 2 Dim 2

.edu �0.052 (0.06) 0.177 �0.104 (0.05) 0.050 �0.145 (0.07) 0.008 �0.208 (0.06) 0.000 0.017 (0.04) 0.653

.com 0.018 (0.07) 0.610 �0.223 (0.09) 0.003 0.008 (0.08) 0.423 �0.213 (0.09) 0.003 �0.182 (0.04) 0.000

.org �0.090 (0.12) 0.117 �0.134 (0.11) 0.005 0.020 (0.10) 0.633 �0.222 (0.10) 0.018 0.057 (0.05) 0.998
0L-5L 0.099 (0.05) 0.957 �0.280 (0.06) 0.005 �0.030 (0.08) 0.470 0.138 (0.06) 0.990 �0.146 (0.03) 0.000
6L-10L 0.136 (0.09) 0.947 0.090 (0.10) 0.733 �0.017 (0.09) 0.360 0.042 (0.09) 0.673 �0.132 (0.05) 0.005
Man. 0.067 (0.11) 0.733 0.198 (0.11) 0.990 0.370 (0.12) 1.000 �0.114 (0.10) 0.148 0.148 (0.10) 0.913
Newer 0.106 (0.11) 0.807 0.137 (0.08) 0.930 0.082 (0.15) 0.635 �0.230 (0.08) 0.000 0.280 (0.04) 1.000
Int. �0.112 (0.15) 0.237 �0.457 (0.15) 0.000 �0.388 (0.22) 0.010 0.026 (0.13) 0.560 �0.374 (0.10) 0.000

Note: Reported are the posterior medians (standard deviations) and posterior probability of the effect being greater than 0. Int. is the interaction between
managerial and newer.

URLs with fewer links are harder to find than those
with the most number of links (10�) and modest evi-
dence that URLs having domain extensions .edu or
.org are slightly easier to find. These results are also
confirmed by Lawrence and Giles (1999). Other infer-
ences were: (1) there was no significant difference in
the phrase locations (posterior median of R� � 0.001),
which is consistent with the stable hit rates for each
engine by phrase reported in Table 1 and the log-
likelihoods reported in Table 4, and (2) URL variances
Rjwere inversely related to the number of URLs found
(r � �0.85).
A more detailed and informative look at the perfor-

mance of Model 1 is presented in columns 3 through

6 of Table 8. Here we consider the number of URLs,
showing each of the 26 � 64 possible engine-hit pat-
terns. The table provides the observed number nobs for
each pattern (excluding (0,0,0,0,0,0)), as well as the
2.5%, 50%, and 97.5% percentiles for the predicted fre-
quency. Some interesting residuals are evident. First,
we note that Model 1 tends to underpredict the num-
ber of unique URLs found by each engine as seen in
the unique engine-hit patterns 32, 48, 56, 60, and 62
(pattern 63 is slightly overpredicted). Second, and re-
lated to the underprediction in the number of uniques,
Model 1 also tends to overpredict the number of URLs
found by exactly two engines, as seen in patterns 16,
24, 28, 30, 44, 46, 47, 52, 54, 59, and 61 (patterns 31, 55,
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Table 7 Effect of Phrase and URL Covariates xjk on the Mean Phrase
Location

xjk

Model 1

l1

Model 2

(l1, l2)

Model 3

(l1, l2)

.edu 0.968 (0.026, �0.225) (0.017, 0.085)

.com 1.038 (�0.093, �0.072) (0.012, �0.114)

.org 1.011 (0.004, �0.060) (0.003, 0.125)
0L-5L 1.119 (�0.105, �0.110) (0.363, �0.078)
6L-10L 1.156 (0.220, �0.097) (0.268, �0.064)
Man. 1.087 (0.328, 0.290) (0.111, 0.216)
Newer 1.126 (0.267, 0.000) (�0.005, 0.348)
New � Man. 1.081 (�0.008, �0.016) (�0.113, 0.112)

Note: is the mean phrase location with all covariates at baseline(�̄ , �̄ )1 2

levels. (l1, l2) � (�1 � b1xjk, � b2xjk) are the new coordinates including�̄2

the covariate effects. Model 1: � 1.020, Model 2: � (0.130,–�̄ (�̄ , �̄ )1 2

0.080), Model 3: � (0.225, 0.068)(�̄ , ¯� )1 2

and 58 are adequately fit, and pattern 40 is underpre-
dicted). These results were not surprising because in
Model 1 each engine is located at the origin and is cast-
ing its “fishing line” in the same direction.
One further inference that can be derived from the

model is an estimate of the number of URLs not found
by any of the engines. This question has managerial
relevance from two perspectives: (1) A manager
searching for URLs on a specific topic may wish to
know the fraction of those related URLs he or she is
likely to find by using these six engines; and (2) con-
sider the owner of a URL wanting his or her Webpage
to be found. Under the model, we can compute the
posterior distribution of the number of URLs not
found, K, by noting that

P(all engines miss a URL)
� (1 � p ) ⇒� ijk

i

P(at least one finds it)
� 1 � (1 � p ) ⇒� ijk

i

n � 1 � (1 � p ) * K ⇒obs � ijk� �
i

nobsK � . (6)
1 � (1 � p )� ijk

i

These results are shown in pattern 64 and suggest that
the 95% posterior interval for the number of missing
URLs for the 20 phrases is (253.94, 330.30) with pos-
terior median 283.43. This indicates that Model 1 pre-
dicts 283.43/(1588 � 283.43) � 15% of the URLs are
missed by using all six engines.

5.2. Model 2 and Model 3 Results
We considered two additional special cases of the gen-
eral proximity model to improve on Model 1. Model 2
consisted of a D � 2 dimensional version where each
engine was located at the origin (h11 � h12 � . . . hI1 �

h I2 � 0). As a scale identifiability constraint we setR11,
the ability of Alta Vista on dimension 1, equal to 1. By
definition, the addition of a second dimension would
improve the fit; however, we suspected that locating
each engine at the origin, as per a pure ability/diffi-
culty model, would still provide an inadequate fit. In
Model 3, we generalize Model 2 to allow individual
search engines to carve out a distinctive portion of
(two-dimensional) URL space, i.e., the engine locations
(hi1, hi2) were allowed to vary. In fitting Model 3, we
set h11 � h12 � 0, h21 � 0, restricted h31 � 0, and put
R11 � 1 as shift, y-axis rotation, x-axis rotation, and
scale identifiability constraints respectively.
Models 2 and 3 results for engine abilities Ri11, Ri22,

and the correlation between dimensions qi12 is given in
Table 5 (columns 3–8). A graphical representation of
the engine performances for Model 3 is given in Figure
2, panels A and B. The results suggest that there are
indeed two unique dimensions in which engines op-
erate. Model 2 findings give the ordering in dimension
1 of Northern Light, Alta Vista, HotBot, Excite, Info-
seek, and Lycos, whereas dimension 2 results give the
ordering Alta Vista, Northern Light, HotBot, Infoseek,
Excite, and Lycos. This is consistent with Model 1 find-
ings of an ambiguous ordering of Alta Vista versus
Northern Light and Excite versus Infoseek. However,
we note that the total “area” covered by Northern
Light is superior to that of Alta Vista because its pos-
terior median abilities (2.670, 1.020) suggest greater
coverage than Alta Vista’s (1.000, 1.760). These find-
ings are replicated inModel 3, in whichNorthern Light
is far superior to Alta Vista on dimension 1 (3.720 ver-
sus 1.000) and almost equal on dimension 2 (1.870 ver-
sus 1.960). This is suggested by Northern Light’s high
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Table 8. Table of Web Engine Patterns and 95% Confidence Intervals for Models 1 through 3

Model 1 Model 2 Model 3

Number Pattern nobs 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

1 111111 2 0.020 0.032 0.052 0.019 0.113 0.825 0.017 0.104 0.623
2 111110 3 0.573 0.901 1.262 0.453 2.009 9.105 0.385 1.796 11.195
3 111101 1 0.024 0.041 0.060 0.016 0.096 1.009 0.021 0.115 0.843
4 111100 2 0.809 1.120 1.415 0.372 2.006 11.473 0.467 2.067 9.218
5 111011 3 0.175 0.284 0.450 0.153 0.805 3.599 0.155 0.616 3.553
6 111010 21 5.641 7.762 10.218 3.647 13.798 38.908 3.794 10.159 46.521
7 111001 0 0.225 0.353 0.509 0.148 0.740 4.358 0.162 0.706 4.677
8 111000 18 7.946 9.418 11.372 3.569 13.459 55.313 4.115 10.819 43.796
9 110111 3 0.179 0.289 0.425 0.190 0.625 6.061 0.213 0.788 3.075

10 110110 16 5.911 7.831 9.669 5.174 11.833 44.923 4.465 13.090 38.602
11 110101 1 0.246 0.357 0.509 0.121 0.619 4.927 0.263 0.794 3.828
12 110100 9 8.188 9.518 11.848 3.874 11.461 45.196 4.783 13.902 42.832
13 110011 7 1.721 2.556 3.427 1.243 4.902 20.107 1.478 4.284 16.198
14 110010 45 56.218 68.057 76.816 39.428 89.492 227.409 33.747 80.826 149.755
15 110001 2 2.220 3.086 4.035 1.198 4.844 18.233 1.495 5.245 19.813
16 110000 64 77.743 82.908 94.274 36.453 83.855 203.724 38.321 89.130 174.093
17 101111 3 0.071 0.111 0.176 0.045 0.220 1.527 0.053 0.252 1.727
18 101110 5 2.090 2.957 3.983 0.807 4.139 19.556 0.944 4.334 25.004
19 101101 0 0.089 0.139 0.212 0.040 0.195 1.360 0.057 0.264 1.962
20 101100 4 2.947 3.648 4.577 0.751 3.936 20.847 1.097 4.850 20.581
21 101011 4 0.631 0.973 1.431 0.253 1.671 7.866 0.400 1.569 8.107
22 101010 25 20.300 25.408 32.607 6.517 27.677 91.151 9.312 26.298 123.853
23 101001 1 0.825 1.210 1.782 0.371 1.481 7.023 0.423 1.669 9.798
24 101000 25 28.132 31.949 36.674 5.151 27.985 109.350 11.617 28.970 106.308
25 100111 2 0.681 0.971 1.415 0.412 1.388 11.372 0.539 1.893 8.642
26 100110 20 21.908 26.016 31.929 8.630 24.931 92.002 13.482 32.703 98.609
27 100101 4 0.883 1.176 1.710 0.343 1.290 8.354 0.545 2.091 9.668
28 100100 19 28.950 32.011 37.390 6.627 24.896 115.699 12.236 35.924 129.168
29 100011 9 6.364 8.431 11.262 3.053 10.262 41.608 3.704 12.416 38.137
30 100010 174 206.952 225.715 244.697 89.316 194.995 394.634 102.703 209.021 379.458
31 100001 8 7.843 10.398 14.566 2.678 9.751 30.043 4.200 13.789 42.763
32 100000 340 259.575 279.628 303.729 47.639 186.828 347.876 197.822 290.697 378.992
33 011111 2 0.024 0.040 0.059 0.019 0.115 0.716 0.017 0.091 0.435
34 011110 1 0.747 1.097 1.440 0.688 2.015 7.967 0.386 1.451 8.018
35 011101 0 0.031 0.050 0.075 0.014 0.107 0.703 0.019 0.096 0.587
36 011100 3 1.025 1.331 1.661 0.479 1.970 11.391 0.414 1.675 7.726
37 011011 0 0.217 0.348 0.512 0.146 0.822 3.502 0.101 0.566 3.300
38 011010 9 7.311 9.215 11.637 4.358 15.006 51.108 3.175 9.224 33.472
39 011001 0 0.289 0.424 0.631 0.176 0.718 2.900 0.098 0.600 4.482
40 011000 24 9.909 11.462 13.131 3.415 13.234 60.630 2.877 10.249 36.014
41 010111 3 0.235 0.351 0.495 0.190 0.752 4.655 0.229 0.723 2.877
42 010110 11 7.567 9.521 11.487 4.499 12.636 45.393 3.630 11.113 40.041
43 010101 2 0.303 0.432 0.624 0.147 0.666 3.678 0.140 0.799 3.564
44 010100 8 9.834 11.614 14.324 3.495 11.751 58.152 2.893 13.000 40.329
45 010011 3 2.199 3.041 3.941 1.410 5.082 22.546 1.281 4.111 14.191
46 010010 54 73.643 81.158 91.576 31.988 99.461 192.606 26.370 76.380 144.021
47 010001 2 2.703 3.684 5.172 3.182 5.192 17.191 1.211 4.632 19.091
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Table 8. (Continued) Table of Web Engine Patterns and 95% Confidence Intervals for Models 1 through 3

Model 1 Model 2 Model 3

Number Pattern nobs 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

48 010000 149 88.824 100.612 113.904 28.300 94.545 244.392 68.209 124.176 164.069
49 001111 1 0.087 0.135 0.201 0.056 0.245 1.740 0.046 0.236 1.440
50 001110 4 2.732 3.597 4.634 1.248 4.310 21.954 0.908 4.136 22.126
51 001101 0 0.111 0.166 0.261 0.043 0.204 1.232 0.054 0.245 1.673
52 001100 2 3.636 4.416 5.447 0.787 3.936 19.224 1.057 4.550 21.405
53 001011 0 0.798 1.180 1.700 0.294 1.680 9.401 0.260 1.500 8.731
54 001010 16 26.524 31.352 37.340 8.416 31.783 127.606 6.588 26.053 85.965
55 001001 1 0.986 1.417 2.314 0.304 1.759 6.933 0.320 1.580 10.571
56 001000 47 31.994 37.984 46.043 5.575 31.091 116.979 6.935 47.154 90.273
57 000111 5 0.873 1.159 1.651 0.426 1.675 9.338 0.496 1.734 7.448
58 000110 36 27.684 31.448 36.390 7.405 28.992 86.199 9.828 29.417 98.250
59 000101 0 1.058 1.401 2.210 0.370 1.423 6.813 0.405 1.862 9.071
60 000100 58 33.064 39.282 45.388 8.765 25.982 87.026 8.498 52.983 114.146
61 000011 7 7.793 10.255 13.397 8.992 51.819 36.697 3.479 11.115 38.810
62 000010 291 260.756 273.615 289.516 80.482 213.347 416.143 111.628 289.659 340.592
63 000001 9 9.430 12.453 18.961 2.735 10.615 27.031 2.946 11.953 40.908
64 000000 NA 253.938 283.431 330.301 44.592 174.756 327.190 82.149 192.704 354.000

number of unique finds (pattern 62), indicating its lo-
cation far from the other engines, but still high hit rate
785/1588 (i.e., high ability to “compensate” for a dis-
tant location). The remaining ordering of engines for
Model 3 are similar to those described for Model 2.
The engine locations for Model 3 are given in Table

9 (also seen in Figure 2) and suggest that the engines
do carve out different locations. Northern Light, and
HotBot are located the farthest distance from Alta
Vista, indicating their abilities to have unique finds.
Infoseek and Lycos are located “half-way” between
Northern Light and Alta Vista and in a sense are “max-
imizing” their ability to find URLs that happen not to
be found by either of the two best-performing engines.
Excite’s location near Alta Vista suggests, as described
more fully in § 6.3, that the additional benefit of using
Excite if Alta Vista has already been used is less than
that for Infoseek, despite the fact that they are “equally
able” engines.
The effects of the phrase and URL covariates on di-

mensions 1 and 2 for Models 2 and 3 are given in Ta-
bles 6 and 7. The posterior probabilities of the effects
being greater than 0 (Table 6 columns 4, 6, 8, 10) in-
dicate that in fact domain extension, number of links,

and type and age of phrase do have a significant im-
pact on the mean phrase location. To interpret their
effects on the probability that a given URL is found,
consider Table 7, which gives the coordinates of the
mean phrase location for a URL with each of the given
covariate attribute levels, and that of a URL with each
covariate level at the baseline condition. Because under
Model 2 all engines are located at the origin, and the
mean phrase under the baseline condition is at (0.130,
�0.080), any covariate level that brings the phrase
mean closer to the origin will increase the probability
a URL is found, and vice-versa. The results indicate
that fewer than 10� links and managerial phrases
move the mean farther from the origin and hence
lower the find probabilities. The domain extension
.com, .org, and the interaction of new and managerial
phrase condition move the mean phrase locations
closer to the origin. The remaining covariate levels
have results that depend on the ability of a given en-
gine in each dimension. The covariate-effect results for
Model 3 generally need to be examined separately for
each search engine because the locations of the engines
vary. This examination is straightforward, using the
phrase/URL locations from Table 7 and the search en-
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Figure 2 URL Coverage by Six Popular Web Search Engines

Table 9. 2.5%, 50%, and 97.5% Posterior Percentiles for Model 3
Engine Locations (h1, h2)

Dimension 1 Dimension 2

Engine 2.5% 50% 97.5% 2.5% 50% 97.5%

AV 0.000 0.000 0.000 0.000 0.000 0.000
HB 0.000 0.000 0.000 �2.100 �1.820 �1.340
EX 0.150 0.265 0.626 �0.321 0.010 0.187
IS �1.080 �0.800 �0.350 �0.110 0.330 0.600
NL �2.140 �1.640 �1.377 �0.316 �0.004 0.184
LY �0.949 �0.799 �0.645 �0.091 0.162 0.418

gine locations from Table 9. The results for Model 3 do,
however, indicate one consistent finding across search
engines: The 0–5 and 6–10 link conditions move the
mean phrase locations further away from the locations
of the engines, decreasing the predicted probability
that they are found. For the remaining cases, the results
depend on the covariate and the specific engine.

A more detailed analysis for Models 2 (columns 7–
9) and 3 (columns 10–12) of the 26 engine-hit patterns
with observed counts nobs and 2.5%, 50%, 97.5% quan-
tiles is provided in Table 8. We observe a significant
improvement in Model 3 fit for the uniques (patterns
32, 48, 56, 60, 62, 63) relative to Models 1 and 2. We
also note that for 14 of the 15 engine pairs (excluding
pattern 59), the 95% interval for Model 3 contains the
observed value compared to 3 out of 15 for Model 1
and 12 out of 15 for Model 2. An estimate of the frac-
tion of URLs not found is also obtained in pattern 64.
The estimates under Model 2 (174.756/(1588 �

174.756) � 10% and that for Model 3 (192.704/(1588 �

192.704) � 11% are consistent with each other and sug-
gest that these six engines as a whole, for these 20
phrases, cover a significant proportion of the Web. A
global comparison of model fit is presented next.

5.3. Model Comparison and Cross-Validation
A global goodness-of-fit comparison was performed
for each of Models 1 through 3 against the simple
“strawman” independence models described earlier:
(1) constant p, (2) different p for each engine but con-
stant across phrases, (3) different p for each phrase but
constant across engines, and (4) different p for each
engine and phrase. Table 10 presents the number of
parameters and the natural log of the Bayes Factor
log(p(Mi|Y, X)/p(M1|Y, X)), as described in Newton
and Raftery (1994), comparing each models marginal
likelihood p(Mi|Y, X) to the constant pmodel, p(M1|Y,
X) in turn. For the independence models, p(Mi|Y, X)
is evaluated at the MLE, for Models 1 through 3 p(Mi|
Y, X) is computed as the harmonic mean of the log-
likelihood evaluated at the 7500 MCMC draws. Larger
values of the Bayes factor indicate model superiority.
In the end, Model 3 is selected as superior. Interest-
ingly, we note that Model 1 does not defeat the simple
model of constant p for each engine and phrase or a
different p by engine.
To assess the predictive ability of our model, we em-

ployed a version of Bayesian cross-validation (Rust
and Schmittlein 1985) where we dropped out in turn
each of the 1588 URLs, re-estimated the model, and
predicted the engine find pattern for the left out URL.
To make this approach computationally feasible under
a MCMC simulation structure, we employed the
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Table 10. Global Goodness-of-Fit for Various Models

Model # Parameters log (Bayes Factors)

Constant p 1 0
Different p by engine 6 816.90
Different p by phrase 20 19.50
Different p engine by phrase 120 980.28
Model 1 63 253.46
Model 2 140 1501.04
Model 3 149 1564.96

Note: Reported are log(Bayes Factor) comparing each model in turn to the
Constant p model.

method of Bradlow and Zaslavsky (1997), in which
case deletion of URLs is implemented by importance
reweighting the parameter draws from the full data
posterior distribution. As a result of the conditional
independence structure of the likelihood given in (4),
the importance reweighting scheme is trivial and com-
putationally cheap in that each parameter draw is rew-
eighted for URL jk by the inverse of its contribution to
the likelihood, i.e., p(yjk|X1, X2)�1. The total number
of predictions made under this approach 9528 (1588
URLs by 6 engines) provides an adequate basis for val-
idation. The results of the validation experiment indi-
cated that Models 1 through 3, were able to predict
58%, 72%, and 81%, respectively, of the URL correctly
(all results significant at the 0.05 level), suggesting an
adequate predictive ability of the modeling approach
and a substantial preference for Model 3.

6. Discussion and Conclusions
We set out to better understand the performance of
popular Web search engines in finding marketing
phrases. This required development of amodel (Model
3) able to capture distinctive patterns of overlap and
coverage among the engines. Furthermore, we wanted
to understand how some characteristics of the phrase
being searched, and of the URL being sought, would
affect search outcomes. As discussed in § 5.2, two
phrase characteristics (newer/older and managerial/
academic) and two URL characteristics (number of
links, domain type) significantly affected search engine
outcomes. The effect of number-of-links happens to be
consistent across engines: The more links, the more

likely the document will be located. Given the dispar-
ity in Web engine coverage patterns (as in Figure 2),
the other substantive effects differed by engine. For
instance, a search for an academic phrase (as opposed
to managerial) aided Infoseek’s prospect for locating
URLs, but hindered that of Northern Light.
To elaborate on our empirical and model-based re-

sults, we conclude by addressing four simple
questions:
—What search engine “works best”?
—Why do certain search engines find more URLs

than other engines?
—What are the benefits to sequential search?
—How much information is still unaccounted for?

6.1. What Search Engine “Works Best?”
We again acknowledge that “best” here means simply
locating more URLs containing the desired marketing
phrase. Overall, based on the Model 3 estimates in Ta-
ble 8 (and consistent with Table 1), we can make five
simple statements concerning the “best engine
question”:
1. Overall, for a randomly chosen marketing phrase

and URL, the search enginemost likely to find it is Alta
Vista.
2. BUT, Northern Light is a very close second and,

in fact, does slightly better than Alta Vista in finding
managerial phrases.
3. HotBot is a very respectable third, locating a little

over 50%–60% asmanyURLs as Alta Vista orNorthern
Light.
4. Excite and Infoseek trail more substantially, lo-

cating 20%–30% as many documents as the two lead-
ing engines.
5. Lycos found 10%–15% as many documents as the

two leaders.
Of course, these findings pertain specifically to the
time period of search (October 1998), the information
domain of interest to us (marketing phrases), and the
particular 20 phrases selected. With respect to this last
restriction, however, we note that the variation in
mean locations across phrases (after accounting for our
covariates) was very small. (The variance across
phrases in the baseline mean phrase location (�̄ , �̄ )1 2

from Table 7 is only 0.0027 for and 0.002 for That�̄ �̄.)1

is, another set of 20 phrases drawn at random from our
marketing-phrase universe would have essentially no

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

12
2.

23
0.

13
2]

 o
n 

28
 M

ar
ch

 2
01

6,
 a

t 1
4:

59
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



BRADLOW AND SCHMITTLEIN
The Little Engines That Could: Modeling Performance of WWW Search Engines

Marketing Science/Vol. 19, No. 1, Winter 2000 59

Table 11. The Relation Between Search Engine Performance and
Search Engine Structural Characteristics

Engine (a) Total
URLs Found

(b) Size
(millions)

(c)
URLs/Size

(d) Sophistication
Index*

AV 840 140 6.0 4
NL 785 80 9.8 3
HB 468 110 4.3 2
IS 230 30 7.7 2
EX 227 55 4.1 0
LY 85 30 2.8 0

*Sum of indicators for high performance in Depth of Search, Frames Sup-
port, Image Maps, and Learns Frequency from Table 3

chance to change our findings. We next consider pos-
sible explanations for the engines’ differential
performance.

6.2. Why Do Certain Engines Find More URLs?
Research issue 3 in § 2 addressed how structural char-
acteristics of search engines would affect the search re-
sults. Recall that some fundamental measures of this
sort were provided in Table 3. Because the number of
popular search engines (here, six) is small relative to
the information, it was not desirable to embed these
features formally in our URL-location model. Armed,
however, with overall performance statistics engine-
by-engine we can conduct an exploratory analysis link-
ing search engine properties to overall search
effectiveness.
Of course, the factor that looms largest in such an

analysis is search engine size—i.e., the total number of
Web pages indexed. Not only would it be extraordi-
nary if “size did not matter,” but it could be well ar-
gued that “size is everything,” i.e., that the number of
URLs found by search engine A relative to engine B is
entirely predicted by their relative sizes. This last hy-
pothesis was essentially tested with the independence
model of search outcomes, and rejected, in § 3. In other
words, ourModel 3, with search engines that are some-
what distinct in the space that they cover, argues that
structural characteristics beyond size may have an im-
pact on search outcomes and motivated us to examine
the full set of engine characteristics in Table 3.
Accordingly, our profiling search outcomes based

on engine characteristics was done in two sequential
steps. The first examined the relationship between size
and overall URLs found. The second looked at any de-
viations from a “size/total-URLs” connection to see if
those deviations are associated with other engine
properties from Table 3. Essentially, the factor size rep-
resents a very simple “par” model for engine perfor-
mance, and we examine in step 2 engines that over-
perform (and underperform) relative to size.
Table 11 reports the results of these analyses. Col-

umns (a) and (b) show clearly that our marketing
phrase search outcomes are correlated substantially
with engine size (q � 0.833). They also show that size
is far from the only factor. Column (c) reports the ratio
of URLs found to engine size. The variation in these

values shows that much more is going on than simply
engines indexing more pages. Based on column (c),
three engines did substantially better in locating URLs
than their size would indicate: Northern Light, Alta
Vista, and Infoseek. At the other extreme, not only was
Lycos tied for smallest size, but it also found fewer
URLs relative to its size than any of the other engines.
Taking the overperformance of Northern Light and
Alta Vista alone, one might suggest a convex relation-
ship between size and URLs found (increasing returns
to size) as opposed to a linear one posited in column
(c), but this explanation is inconsistent with HotBot’s
underperformance and Infoseek’s overperformance.
Instead, we sought to understand the variation in

column (c) via the other search engine characteristics.
Specifically, we created a simple index of search so-
phistication from the characteristics Depth of Search,
Frames Support, Image Maps, and Learns Frequency.
For each engine, we summed the binary indicators for
each of the four variables (“1” � more sophisticated
search, “0” � less sophisticated) and report the re-
sulting index in Table 11 column (d).
Our measure of sophistication does a good job of

explaining which engines overperform relative to their
size. The three overperforming engines in column (c)
are also leaders with respect to the sophistication in-
dex, although Infoseek and HotBot were admittedly
tied. Overall, the correlation between overperformance
in column (c) and the sophistication index in (d) is q

� 0.658, which shows that these structural properties
of search engines are substantially related to engine
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performance, and in a way not reflected in the engine’s
size.

6.3. Sequential Search
One practical question of managerial interest is “which
search engine should I use?” We believe that the pre-
vious two subsections summarize what our data and
modeling say about that. Another practical question is
“Now that I have used search engine W should I do
an additional search, and if so what engine Z should I
use?” Let’s examine the first part of this question.
Based on the results for Model 3 (Table 8), Alta Vista
would be one’s best single search engine choice, ex-
pected to find 48% of the marketing/management
phrase URLs that exist. This is pretty good, but there
is still plenty to find. More to the point, there is still
plenty that can readily be found. Now turning to the
second part above, if one added a second search engine
after using Alta Vista, which should it be? Figure 2 by
itself does not provide a clear answer. Instead, this fig-
ure shows that a putative case could be made for four
of the other engines. HotBot’s coverage does not over-
lap much with Alta Vista’s, but Northern Light also
does not overlap completely and covers a great deal of
the URL space. Alternatively, Alta Vista will not ac-
tually find all URLs in its Figure 2 coverage area as
indicated by the probability values 0.5 and 0.33 for the
iso-probability curves, and many URLs exist to be
found close to the origin. Excite and Infoseek are cen-
tered near the origin and accordingly are well-
positioned to locate those residual URLs.
As it turns out, Northern Light is easily the best

choice here for finding additional URLs. This can be
established both by Table 8 using the actual search pat-
tern finds (column 3) or Model 3’s predicted search
pattern outcomes. For our purposes it will suffice to
simply tally the incremental URLs (not found by Alta
Vista) for each of the remaining five engines. These are,
in order, Northern Light (actual incremental � 443,
predicted incremental using Model 3 � 468), HotBot
(actual � 271, predicted � 259), Infoseek (actual �

136, predicted � 124), Excite (actual � 110, predicted
� 109), and Lycos (actual � 35, predicted � 42). Thus
we conclude that in general it is important to consider
both overall coverage ability and overlap in selecting
combinations of search engines.

6.4. How Much Information Is Still Unaccounted
For?

We have seen that combined search outcomes from
multiple engines improves greatly on any one engine’s
performance. Yet, how much marketing information
remains unlocated, even after using all six engines? For
our 20 marketing phrases, the results in Table 8 pro-
vide an answer to that question. Based on the estimate
fromModel 3, the fraction of total relevant URLsmissed
by all six search engines is just 10.8% (192.704/
1786.967). Given the small variation in phrase location
for our 20 marketing phrases searched, the reader
should feel confident that the search engines cover
about 90% of what exists to be found for these kind of
phrases.
This is quite different—and much better—than the

Web coverage estimated by Lawrence and Giles (1998)
for their scientific-phrase searches. There, the six
search engines were estimated to cover about 60% of
the indexable URLs. In their updated 1999 article, this
figure is even lower and, as they suggest, states that
“engines aren’t keeping up.” Two explanations for the
discrepancy across studies suggest themselves readily.
First, the estimated number of URLs not found could
be highly sensitive to the particular model specifica-
tion selected. As we have seen, our marketing data re-
ject the independent binomial model used by
Lawrence and Giles because that model does not ef-
fectively capture the patterns of overlap for sets of en-
gines. So if we had to select one model to estimate the
size of the Web, we would propose our Model 3 as a
more appealing approach. Nonetheless, if the esti-
mated Web size is so sensitive to model specification,
onemight well question the ability of any of thesemod-
els to provide a reliable estimate—at least without ex-
haustive checking of individual assumptions. Fortu-
nately, this situation has not arisen. While we do not
recommend using the independent binomialmodel, its
estimate of cumulative URL coverage by our six search
engines (across all 20 phrases) is 89.6%—very close to
the value found using our Model 3. In short, while the
independent binomial model methodology is suspect,
it too indicates high coverage of marketing informa-
tion. Accordingly, the differences between our results
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do not stem from hypersensitivity to model
assumptions.
This brings us to the second explanation: namely,

that these kinds of marketing/management docu-
ments are relatively easy to locate. While we cannot
prove this, it is a reasonable hypothesis. Parts of the
Web are of course much more “active” than others,
with respect to both availability of hyperlinks from one
document to another, and the degree of use of those
links. This interconnectedness is the key to a search
engine’s performance. Documents containing ourmar-
keting research and marketing management phrases
may well be relatively active in this respect. That is,
otherWeb documentsmay be particularly likely to link
to the commercial sites, educational sites, or organi-
zations’ sites that contain the information. While our
results do not say that Web-based marketing infor-
mation providers can simply count on search engines
bringing multitudes to their location, they do indicate
that much of the marketing information currently on
the Web can be located readily—if one uses multiple
search engines.

6.5. Limitations and Future Research
This study is limited in that it used six specific search
engines (the ones discussed most often in the popular
press and examined in other systematic studies) dur-
ing one specific time period (October 1998) to search
for Web pages containing each of 20 specific market-
ing/management phrases (obtained by surveying
commonmarketing reference sources). In addition, our
analysis treats each Web page containing the search
phrase as fully and equally valued, i.e., we do not judg-
mentally assess how “good” a page is (for an unspe-
cified search purpose). To be sure, we are skeptical of
attempts to do this assessment. In this area, we essen-
tially assume that the searcher is able to articulatewhat
is in fact being sought. Accordingly, we also do not
evaluate the heuristics used by search engines to rank
URLs reported in a search.
Changing any of these study design elements may

materially affect the empirical results. We note in par-
ticular that the relative performance of search engines
has been observed to vary over time (Lawrence and
Giles 1999). We are less concerned about selection of
the search phrases because search phrase locations did

not vary substantially across the 20 examined here.
Our investigation of the role played by the search
phrase characteristics and search engine characteristics
is limited by judgmental coding of the former and the
need to rely on nonproprietary factors for the latter.
The study found significant effects for each despite
these limitations.
We hope that this paper has provided some useful

data, and some insight, concerning use of Web search
engines to find managerial information. Our proposed
(and validated) spatial coverage model provides both
a “snapshot summary” of the search engines vis-a-vis
each other (as in Figure 2), and also yields predictions
regarding cumulative performance of engine combi-
nations. We have shown that certain characteristics of
search engines, search phrases, and URL locations af-
fect the probability that a given engine will locate a
given URL. Of course, the search engines themselves
will evolve, and patterns of coverage and overlap can
change accordingly. This evolution (and its causes)
will be interesting to explore in future research.We are
hopeful that our model framework will continue to
provide a basis for summarizing these patterns. The
marketing information base on the Web is evolving—
and expanding—very rapidly. For many purposes it
has (and will continue to) outstrip the ability of man-
aged directories, lists, and the like to provide focused
useful direction, or even to keep up with change. The
Web search engines are well positioned to meet this
challenge in the future, and currently they collec-
tively—if not individually—can do so for the kind of
marketing information examined here.1

Appendix
Inferences for parameters X1 and X2 are obtained from the marginal
posterior distributions

p(X |Y) � p(Y|X )p(X |X )p(X )dX , and (7)1 1 1 2 2 2�
p(X |Y) � p(Y|X )p(X |X )p(X )dX , (8)2 1 1 2 2 1�

defined by the likelihood and priors given in (4) and (5). The non-
conjugate likelihood and prior structure prevent closed-form inte-

1The authors thank the Special Issue editor, area editor, and three
anonymous reviewers for useful suggestions.
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gration of (7) and (8). The approach taken here to solve these intrac-
table integrals is iterative simulation via a Markov chain Monte
Carlo (MCMC) sampler. This approach states that under certain reg-
ularity conditions, samples from (7) and (8) may be obtained by re-
peatedly sampling values from the conditional distribution(t�1)X1

and from until convergence, and(t) (t�1) (t�1)p(X |Y, X ) X p(X |Y ,X )1 2 2 2 1

treating draws thereafter as draws from the desired marginal pos-
terior distributions.

Unfortunately, for our model the conditional distributions
necessary to straightforwardly implement an MCMC(t)p(X |Y,X )1 2

sampler cannot be sampled from directly. We note that the condi-
tional distribution of can be sampled directly because(t�1)p(X |Y,X )2 1

of the conjugate multivariate normal � Inverse Wishart prior struc-
ture chosen for X1. To sample from we imple-(t�1) (t)X p(X |Y,X )1 1 2

mented a Metropolis-Hastings jumping algorithm (Hastings 1970),
where for each parameter that was unconstrained, we utilized a sym-
metric Gaussian jumping distribution with mean at the previously
drawn value , and variance set to provide a high acceptance rate.(t)X1

For those parameters constrained to the positive real line (variances,
u, and h31 in Model 3), we utilized a Gamma distribution kernel with
shape parameter and scale parameter , which has mean(t) 2 (t)k(X ) kX1 1

equal to the previous draw and variance 1/k. The value of kwas(t)X1

set differently for each parameter to obtain an adequate acceptance
rate.

Three independent streams for each of the three models were run
using overdispersed starting values obtained from an initial run.
Computing times for Models 1 through 3 were 3, 12, and 14 seconds,
respectively, per iteration on an HP7000 workstation using Fortran
77 code.
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