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Over 45 years ago Claude E. Shannon estimated the entropy of English to be about 
1 bit per character [16]. He did this by having human subjects guess samples of text, 
letter by letter. From the number of guesses made by each subject he estimated 
upper and lower bounds of 1.3 and 0.6 bits per character (bpc) for the entropy of 
English. Shannon’s methodology was not improved upon until 1978 when Cover and 
King [6] used a gambling approach to estimate the upper bound to be 1.25 bpc from 
the same text. In the cryptographic community n-gram analysis suggests 1.5 bpc as 
the asymptotic limit for 26-letter English (Tilbourg [19]). 

On the surface there is a considerable gap between these estimates arid the best 
computer based models. For the PPM scheme [5, 12, 181 a result of around 2.4 bpc 
is often quoted based on Thomas Hardy’s Fur from the Mudding Crowd [1, 51. These 
PPM results were obtained using initially empty context models. Similar results are 
achievable using a block-sort algorithm [4] which has also been shown to be context 
based [5]. In another experiment, Brown et al. [3] used 583 million words of training 
text and a trigram based word model to obtain 1.75 bpc for the million word Brown 
Corpus [9]. 

The purpose of this paper is to show that the difference between the best machine 
models and human models is smaller than might be indicated by these results. This 
follows from a number of observations: firstly, the original human experiments used 
only 27 character English (letters plus space) against full 128 character ASCII text for 
most computer experiments; secondly, using large amounts of priming text substan- 
tially improves PPM’s performance; and thirdly, the PPM algorithm can be modified 
to perform better for English text. The result of this is machine performance down 
to 1.46 bpc. 

The importance of this goes beyond the incremental improvement in the size of 
compressed text. Having a computer model that achieves close to a human’s is critical 
in areas such as speech recognition, spell-checking, OCR and language identification. 
It is also well-known in cryptography that removing redundancy is important prior 
to encryption to prevent statistical attacks [20]. It is important here that there are 
no models (human or otherwise) which are significantly better than the model used 
to remove the redundancy. 

There is no reason that machine models cannot do better than humans. After all, 
machines can keep more consistent and accurate statistics. On the other hand, a hu- 
man has access to semantic and contextual information that current computer models 
have no hope of accessing. This makes us pessimistic that dramatic improvements 
are possible in purely character-based models such as PPM. 

The first section discusses the lsroblem of 
estimating the entropy of English. The next two sections demonstrate the importance 
of training text for PPM and show also that its performance can be inlproved by 
“adjusting” the alphabet used. Results based on these improvements are then given, 
with compression down to 1.46 bpc. 
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1 
In 1948, Shannon defined the entropy of a language [15] which he used to estimate 
the entropy of printed English in a paper 3 years later. Shannon’s method of esti- 
mating the entropy was to have human subjects guess upcoming characters based on 
the immediately preceding text. He chose 100 random samples taken from Dumas 
Malone’s Jeflerson the Virginian [11]. Based on the number of incorrect guesses, 
Shannon derived upper and lower bound estimates of 1.3 bpc and 0.6 bpc. 

“His 
results would be valid only if the text they were based on was representative and 
large enough for his statistical estimates to converge. Representativity of English can 
never be established, and the text passage Shannon chose was much too short.” 

Cover and King [6] noted that Shannon’s guessing procedure only gave partial 
information about the probabilities for the upcoming symbol. A correct guess only 
tells us which symbol a subject believes is the most probable, and not how much more 
probable it is than other symbols. They developed a gambling approach where each 
subject gambled a proportion of their current capital on the next symbol. Using a 
weighted average over all the subjects’ betting schemes they were able to derive an 
upper bound of 1.25 bpc. The performance of individual subjects ranged from 1.29 
bpc to 1.90 bpc. Cover and King’s paper also contains an extensive bibliography on 
related research. 

Cover and King discuss the meaning of the phrase “the entropy of English”. “It 
should be realized that English is generated by many sources, and each source has 
its own characteristic entropy. The operational meaning of entropy is clear. It is the 
minimum expected number of bits/symbol necessary for the characterization of the 
text.” They also point out that although the true entropy is strictly less than the 
upper bound, the lower bound is really a “lower bound to an upper bound” and is 
therefore of limited meaning. 

Both Shannon’s and Cover and King’s approaches were based on human subjects 
guessing the text. Brown et al.’s approach, on the other hand, was entirely computer- 
based. They constructed a word trigram language model from 583 million words of 
training text, and then used that to estimate the entropy on the 1 million word Brown 
Corpus. Their approach differed from previous work, in that they were using a much 
larger sample of text whereas previous estimates were based on samples of at  most 
a few hundred letters. Also, rather than use 27 character English they decided to 
predict all 96 printable ASCII characters. 

PPM models are based upon context models using a varying number of prior 
characters. The models record the frequency of characters that have followed each 
of the contexts. For example, a particular context may be the letters “thei”. All 

“thei” occur in the text, the counts are used to estimate the probability for the 
upcoming character. The PPM technique blends together the context models for the 
varying lengths (such as “he?’ and “ei”) to arrive at an overall probability distribution. 

A series of carefully crafted improvements have been made to the original im- 
plementation, PPMC [la], culminating in an 8% improvement for the latest imple- 
mentation [18]. These implementations use a fixed upper bound to the length of the 
context models. Another approach is to use unbounded length context models [5]. 
Burrows and Wheeler’s block-sorting algorithm [4] also uses unbounded contexts but 
unlike the PPM methods is non-adaptive. Experiments [8, 181 based on the Calgary 
Corpus [l] show that for current implementations performance of these approaches 
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Jelinek [ lo ,  page 4761 highlights problems with Shannon’s methodology. 

the characters that  have followed this context are counted. The next time the letters 
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are similar. However, for English text fixed length PPM models of order 5 perform 
up to 5% better than the others. 

These improvements raise the question of how much the PPM modlels can be 
improved and whether the gap to the human entropy estimates can be closed. The 
first step towards this is to note that the human est [mates were done using 27 character 
English (letters plus space) whereas the machine models are for full ASCII text. A 
simple experiment of converting text to this format (by replacing all sequences of 
non-letters with a single space, and converting all letters to lower case) show a 10% 
improvement in compression. Also, have we fallen into the trap of comparing apples 
with oranges? The apple in this case is Dumas Malone’s Jeflerson the Vzrgznzan, the 
text used in Shannon’s experiments, and the oranges being the Brown Corpus (used 
in Brown et al.’s experiments) and Thomas Hardy’s book (file book1 in the Calgary 
Corpus). Indeed, the latter contains numerous typographical errors which have been 
removed in the latest electronic text available from Project Gutenberg. This corrected 
version improves compression by 3% to 2.24 bpc. In comparison, we have found that 
the entropy for the text Shannon used is in fact #% lot lower, requiring just 2.01 bpc 
to compress the entire volume. 

These musings led us to investigate ways in which PPM’s performance could he 
improved for English text. Two such methods are described in the next two sections. 

2 
One of the drawbacks with PPM is that it performs relatively poorly at the start. 
This is because it has not yet built up the counts for the higher order context models, 
so must resort to lower order models. To overcome this, a simple expedient is to use 
training text to prime PPM. 

This raises the question of which and how much training text to use. Obviously, 
finding training text that is related to the text being compressed is important, prefer- 
ably by the same author. Boggess et al. [a] highlight some of the problems: “we have 
noted that the body of work of a single writer differs significantly both from other 
writers and from norms for English text derived from large, multiple-source corpora.’’ 

One approach would be to find the greatest amount of text written by the same 
author, preferably of the same style, and about the same subject, and use this for 
training text. The complete works of Jane Austin is now available in the public 
domain: the six novels Emma, Mansfield Park, morthanger Abbey, Persua.sion, Pride 
and Prejudice and Sense and Sensibility. Their total combined size is over 4 million 
characters or nearly 720,000 words. Experiments with the novel Emma show that 
compressing the last chapter using the remaining chapters plus the other five novels 
as training text improves compression by nearly 4’7% from 2.93 bpc down to 1.56 bpc. 
This can be further improved down to 1.48 bpc using the methods described in the 
next section. 

However, there is a danger in all this. This text is not the same as that used 
by Shannon. Shannon himself found that the entropy was greater for different texts 
such as newspaper writing, scientific work and poetry. Indeed, any comparison made 
between Brown et al.’s result, which is based on the Brown Corpus, and Shannon’s 
results is invalid because of the different source texts involved. Still, the riesults with 
Emma were very promising, and gave us enough encouragement to try to repeat them 
with Shannon’s source Jegerson the Virginian. This text is the first volume in a series 
of six titled Je$erson and His Time which was awarded the Pulitzer Prize for History 
in 1975. The first volume, Jegerson the Virginian, was published in 1948, three years 

THE USE O F  TRAINING TEXT TO IMPROVE PPM MODEILS 
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vol. 
~ 

~ 

1 
2 
3 
4 

5 

6 

pub. 
date 
1948 
1951 
1962 
1970 

1974 

1977 

- - 

__ - 

no. of 
pages 

423 
488 
506 
485 

668 

499 

~ 

no. of 
words 

154035 
182633 
186852 
175441 

235622 

174940 

no. of 
chars. 

905790 
1081029 
1114406 
1058016 

1418505 

1034505 
6612253 

title 

Jefferson the Virginian 
Jefferson and the Rights of Man 
Jefferson and the Ordeal of Liberty 
Jefferson the President 
First Term 1801-1805 
Jefferson the President 
Second Term 1805-1809 
The Sage of Monticello 
Jefferson and His Time 

Table 1: Dumas Malone’s epic work Jefferson and His T ime 

before Shannon published his paper. Fortuitously (at least for our experiments), 
Dumas Malone then proceeded to write and publish the remaining five volumes over 
a period of 26 years. 

In order to gain access to these one million words of text, all six volumes were 
scanned into the computer. Numerous errors made by the OCR software were cor- 
rected, and all footnotes, headings, page numbers and end-of-line hyphens were re- 
moved. Table 1 summarizes information about the resulting text. We estimate that 
the percentage of incorrect words remaining is about 0.2% based upon the number 
of errors found in the last chapter of the first volume. Our experiments with this 
text shows that over 30% improvement in compression is possible using the other five 
volumes as training text for the first. 

The question of how much training text should be used is an important one. 
Brown et al. in their experiments with trigram models used a training corpus con- 
taining over 580 million words. In comparison, the training text we use for our 
method is just 1.1 million words for Jegerson the Virginian or 0.7 million words for 
Emma,  although admittedly, this training text is far better tuned to the text being 
modelled. Experiments using training text from different authors show a marked 
reduction in performance, and a substantial increase in the size of the training text 
would be required to overcome this. This is shown in Figure 1 which illustrates how 
the compression of the last chapters of Jefferson the Virginian and E m m a  improves 
for different sized training texts taken from different sources, in this case the Brown 
Corpus, and the remaining text from Jefferson and His Time and the complete works 
of Jane Austin. 

Clearly, related text performs as a better training vehicle although it seems that 
large amounts of unrelated text can do as well. All the curves show a quantitatively 
similar shape with a steep reduction between lo4 and lo6  characters and rather flatter 
beyond this. It is unclear whether this is a general result and what performance might 
be expected for substantially larger training texts, for example, the corpus used by 
Brown et al. 

These results pose two related questions: “how many words does it take to ‘train’ 
a human model?” and “how many words has a human encountered in their lifetime?” 
Siskind [17] estimates from language learning research that children hear between 
3,200 and 50,400 words per day. Assuming a constant rate, then a 30 year-old 
listener will have heard between 35 and 550 million words in their lifetime, values 
beyond those used in our experiments but comparable to the corpus used by Brown 
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Figure 1: How training text improves compression for PPM 
(a) for the last chapter of Dumas Malone's Jeflerson the Virginiun 

(b) for the last chapter of Jane Austin's Emma 

et al. It is unclear to what extent the difference between spoken and written English 
would affect human performance. 

3 IMPROVING THE PPM MODEL BY ENLARGING THE ALPHABET 
In English some bigrams (pairs of characters) occur more frequently than individual 
letters. This led us to investigate the effect of replacing such frequent bigrams by 
new unique symbols. For example, one of the most frequent bigrams in English is th. 
Performance of the PPM encoder improves by up to 1% if all occurrences (of th in the 
text are replaced with a single uniquely identifiable character. Curiously, a look at 
the history of English spelling [14] helps us understand why. In Old English, th was 
written as two single letters - the thorn and the eth, corresponding to the unvoiced 
and voiced sounds in thzng and the. Caxton, the first English printer, sometimes used 
thorn's nearest typographical equivalent Y as there was no equivalent letter in the 
continental type used then by the printing presses. This may still be seen today in 
old-style signs such as Ye Olde Gzfte Shoppe. 

To encode text using this idea it is scanned from left to right, with the. upcoming 
bigram replaced by a unique symbol if it occurs in a lookup table. Various encoding 
methods using this approach are described below, and are illustrated in Figure 2. The 
encoding methods fall into three categories: bigram, digram and vowel/consonant 
methods. It is worth noting that these methods, when combined with PPM usually 
perform better than PPM by itself. 

BIGRAM BASED METHODS 

Bzgrum coding. Bigram coding replaces frequently occurring pairs of characters with 
a single unique character. This presents two immediate problems: which bigrams are 
the most frequent, and how many bigrams should be replaced? Both problems can 
be solved by using frequency counts gleaned from a large corpus of representative 
English text (e.g. the Brown Corpus) to select the N most frequent bigrams, with N 
being adjusted to find the maximum compression (typically when N M 104). 
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Bigram based methods 
Bigram encoding‘ 

Digram encoding’ 

* - excluding spaces 
VoweVconsonant based methods 

CV encoding 

VC-bigram 
encoding 

Figure 2: Various encodings for the string “the rights of man” 
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Table 2: The 110 most frequent non-space bigrams from the Brown Corpus 

Experimental results show that replacing bigrams containing spaces degrades per- 
formance. This is similar to the effect that removing spaces from English text has on 
compressed output size - the compressed output actually increases even though as 
much as 15% of the text may have been removed! Consequently, the bigram encoding 
method replaces only the most frequent bigrams that do not contain spaces. For 
example, the three most frequent non-space bigrams are th,  he and in. Table 2 is the 
list of bigrams we used in our experiments (sorted in decreasing order of frequency 
from left to right). 

Figure 2 illustrates how the string the rights of m a n  is bigram encoded, reducing 
from 17 characters down to 11 symbols. Each box represents a separate symbol in the 
expanded alphabet, with the blank box representing the space symbol. Note that the 
bigram he in the word the is not replaced, despite it being the second most frequently 
occurring non-space bigram in the Brown Corpus. This is because the bigram th just 
before it is replaced first. 

Digram coding. A digram (or digraph) is defined by Webster’s dictionary as “a group 
of two successive letters whose phonetic value is a single sound (as ea in bread or ng in 
sing)”. Digram coding [13] attempts to  reduce the text by replacing digrams defined 
using the following simple algorithm. Digrams are designated as consisting of two 
characters - a master character (space, n,  t and the vowels) followed by a combining 
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character (space and all letters except j ,  k,  p, x, y and 2). Replacement of digrams 
proceeds from left to right with spaces ignored in the same manner as bigram coding. 

VOWEL/CONSONANT BASED METHODS 

Another bigram-based approach uses vowels and consonants. This attempts to  define 
bigrams which have distinct phonetic sounds (like the digram-based approa.ch). Denes 
and Pinson [7] define a syllable as usually consisting of a “vowel surroundeqd by one or 
more consonants.” Consequently, these methods also capture some of the regularity 
between, syllables in the text. 

C V  encoding. This method of encoding replaces consonant-vowel bigr.ams in the 
text. Processing from left to right, whenever a consonant is followed by the vowel, 
the pair of characters is replaced by a single uniquely identifiable character, otherwise 
the character is left unchanged. There are 105 possible pairings (21 consonants by 5 
vowels), 

VC encoding. This method is similar to CV encoding except that vowel-consonant 
bigrams are replaced rather than the other way round. 

VC-bigram encoding. Supplementing either CV or VC encoding with bigram coding 
presents further possibilities. After the bigrams have been replaced, a second pass 
through the text replaces some of the remaining bigrams. Experimental results show, 
however, that this approach is only effective after VC-encoding and then only for a, 
few bigrams. The greatest improvement occurs for the bigram th. Most other bigrams 
degrade the performance. Some exceptions are the bigrams ly, ph and oe, although 
the improvement for the latter two is very slight. One could envisage searching all 
possible bigrams to find the combination of bigrams and VC encoding that leads to  
the best performed model for English text. This has not been investigated because it 
is computationally intractable and the resultant gains probably minor. 

4 
The performance of the bigram encoding methods on the last chapter of 1)umas Mal- 
one’s Jeflerson the Vzrgznzan is compared with PPM on the unencoded text in Table 3. 
The table lists the encoding method, and the compression ratios for both trained and 
untrained PPM (using fixed models of order 5 ) .  The percentage improvement of each 
method over unencoded PPM is shown in the last column. The text was prle-converted 
to 27 character English for these experiments, and consists of 7985 words and 46137 
characters. The best result is for the bigram encoding method at  1.488 bpc. 

The results in the table graphically illustrate the importance of using training text 
to  pre-load PPM’s context models, with each method improving by ove1 30%. The 
training text used in this case was the remaining 5 volumes of Dumas Malone’s work, 
plus all but the last chapter of the first volume, containing 1.1 million words or 6.4 
million characters. 

It is interesting that, although bigram encoding performs the best of all the en- 
coding techniques, when used with untrained text it actually makes the compression 
0.5% worse. To further test the robustness of bigram encoding a number of other 27 
character texts were bigram encoded and compressed using untrained PF‘M. Table 4 
shows that in all cases there was an improvement over unencoded text of 2% to 7%. 
The poor result in Table 3 may be due to the short length of the test text used there. 

AN ESTIMATE OF THE ENTROPY O F  ENGLISH 



60 

source text 

Dumas Malone’s JefSeerson and His Time 
Complete works of Jane Austin 
Brown Corpus 
King James Bible 

encoding method untrained trained improve- 
PPM (bpc) PPM (bpc) ment (96) 

unencoded text 2.402 1.598 
bigram encoding 2.415 1.488 
digram encoding 2.391 1.498 
CV encoding 2.399 1.506 

1.503 5.93 

Table 3: Compression ratios for the last chapter of Jeflerson the Virginian 

size of PPM bigram 
text encoding 

(chars) (bpc) (bpc) 
5063237 1.620 1.544 
3872447 1.659 1.603 
5391575 1.938 1.895 
4139727 1.574 1.464 

improve- 
ment 

4.66 
3.36 
2.24 
7.04 

(%I 

Table 4: Compression ratios for various texts using untrained PPM 

Shannon for his experiments used 100 samples each containing 100 characters 
taken at random from the text. However his paper does not indicate which passages 
were chosen so we cannot make a direct comparison with this text. Cover and King 
instead chose a passage of 1490 characters (260 words) to predict the next 75 char- 
acters. Using trained PPM with bigram encoding on this short piece of text results 
in an estimate of 1.726 bpc. This compares with 1.488 bpc for our larger sample of 
46137 characters taken from the last chapter. 

This result improves even more if further related training text is available. For 
example, the collection of writings by Thomas Jefferson shown in Table 5 is now 
available in the public domain. The addition of this collection to the training text 
improves the estimate down to 1.461 bpc. In comparison, unrelated text does not do 
as well, with the addition of the entire Brown Corpus (almost doubling the size of 
the training text) only improving the estimate down to  1.482 bpc. 

5 SUMMARY A N D  CONCLUSIONS 

A number of English texts have been compressed by machine models, with results 
that can be reasonably compared with previous estimates of the “entropy of English” 
made by Shannon and Cover and King using human subjects. We have achieved 
1.46 bpc on text that Shannon estimated to have an entropy between 0.6 and 1.3 
bpc. We achieved 1.726 bpc for text on which individual subjects in Cover and 
King’s experiments obtained between 1.29 and 1.90 bpc and on which an aggregate 
“committee” model obtained 1.25 bpc. 

These values are significantly less than the usual range of 2.3 bpc and over quoted 
for machine models. This contrast is accounted for by a number of factors. The 
human experiments were done on 27 character English, so for purposes of comparison, 
the same has been done for the machine models. As well, the machine models were 
improved by using (in order of decreasing importance): 
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title 

A Summary View of the Rights of British America 
Addresses, Messages, and Replies 
Autobiography 
First Inaugural Address 
Indian Addresses 
Letters 
Miscellany 
Notes on the State of Virginia 
Public Papers 
Second Inaugural Address 
Total 

no. of 
words 
7012 

20874 
40902 

1724 
5847 

310445 
50043 
66050 
58409 
2164 

563470 

no. of 
chars. 
41177 

126942 
239219 

___- ~- 

103382 
31569 

1785007 
290524 
404735 
348392 
13034 

3290921 
~- 

Table 5: A collection of writings by Thomas Jefferson 

large (> lo6 characters) amounts of English training text 

closely related training text 

0 replacement of frequent bigrams by single symbols 

texts with fewer typographical errors. 

These results show machine models can perform in the range achieved by humans. 
This is important for encryption, which requires that there be no models (human or 
otherwise) which are significantly better than the model used to remove the redun- 
dancy. 

The results also indicate that it may be difficult to obtain large improvements in 
machine models. On the other hand, they also indicate that the blending mechanism 
of PPM encoders is deficient because the best models are obtained by fixing the order 
of the PPM models to 5 and replacing bigrams by unique symbols. If the blending 
algorithms were working correctly then these steps should not be necessary. 
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