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Introduction 

The earliest method of estimation of statistical parameters is the method of 

least squares due to Markoff. A set of observations whose expectations are 

linear functions of a number of unknown parameters being given, the prob

lem which Markoff posed for solution is to find out a linear function of obser

vations whose expectation is an assigned linear function of the unknown 

parameters and whose variance is a minimum. There is no assumption about 

the distribution of the observations except that each has a finite variance. 

A significant advance in the theory of estimation is due to Fisher (1921) 

who introduced the concepts of consistency, efficiency and sufficiency of esti

mating functions and advocated the use of the maximum likelihood method. 

The principle accepts as the estimate of an unknown parameter (J, in a proba

bility function ¢J( (J) of an assigned type, that function t(x 1, •.. , xn) of the sam

pled observations which makes the probability density a maximum. The va

lidity of this principle arises from the fact that out of a large class of un biassed 

estimating functions following the normal distribution the function given by 

maximising the probability density has the least variance. Even when the 

distribution of t is not normal the property of minimum variance tends to 

hold as the size of the sample is increased. 
Taking the analogue of Markoff's set up Aitken (1941) proceeded to find 

a function t(x l , •.• , xn) such that 

f t¢J((J)n dx; = (J 

and 
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f (t - O)2l/J(O)n dx; is minimum. 

Estimation by this method was possible only for a class of distribution func

tions which admit sufficient statistics. Some simple conditions under which 

the maximum likelihood provides an estimate accurately possessing the mini

mum variance, even though the sample is finite and the distribution of the 

estimating function is not normal, have emerged. 

The object of the paper is to derive certain inequality relations connecting 

the elements of the Information Matrix as defined by Fisher (1921) and the 

variances and covariances of the estimating functions. A class of distribution 

functions which admit estimation of parameters with the minimum possible 

variance has been discussed. 

The concept of distance between populations of a given type has been 

developed starting from a quadratic differential metric defining the element 

of length. 

Estimation by Minimising Variance 

Let the probability density l/J(x l , ..• , X n ; 0) for a sample of n observations' 

contain a parameter e which is to be estimated by a function t = f(x l , ..• , xn) 

of the observations. This estimate may be considered to be the best, if with 

respect to any other function t', independent of e, the probabilities satisfy the 

inequality 

p(e - Al < t < e + A2) <j:: p(e - Al < t' < e + A2) (2.1) 

for all positive Al and A2 in an interval (0, A). The choice of the interval may 

be fixed by other considerations depending on the frequency and magnitude 

of the departure of t from e. If we replace the condition (2.1) by a less stringent 

one that (2.1) should be satisfied for all A we get as a necessary condition that 

E(t - e)2 ::t> E(t' - e)2, (2.2) 

where E stands for the mathematical expectation. We may further assume the 

property of unbiassedness of the estimating functions viz., E(t) = e, in which 

case the function t has to be determined subject to the conditions E(t) = e and 

E(t - e)2 is minimum. 

As no simple solution exists satisfying the postulate (2.1) the inevitable 

arbitrariness of these postulates of unbiassedness and minimum variance 

needs no emphasis. The only justification for selecting an estimate with mini

mum variance from a class of un biassed estimates is that a necessary condi

tion for (2.1) with the further requirement that E(t) = e is ensured. The condi

tion of unbiassedness is particularly defective in that many biassed estimates 

with smaller variances lose their claims as estimating functions when com-
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pared with unbiassed estimates with greater variances. There are, however, 

numerous examples where a slightly biassed estimate is preferred to an un

biassed estimate with a greater variance. Until a unified solution of the prob

lem of estimation is set forth we have to subject the estimating functions to 

a critical examination as to its bias, variance and the frequency of a given 

amount of departure of the estimating function from the parameter before 
utilising it. 

Single Parameter and the Efficiency Attainable 

Let f/J(XI, ... , xn) be the probability density of the observations Xl' X2, ... , Xn, 
and t(XI' ... , xn) be an unbiassed estimate of O. Then 

(3.1) 

Differentiating with respect to () under the integral sign, we get 

f ··, ftdf/J 1t dx· = 1 
dO • 

(3.2) 

if the integral exists, which shows that the covariance of t and ~ ~: is unity. 

Since the square of the covariance of two variates is not greater than the 

product of the variances of the variates we get using V and C for variance and 

covariance 

( 1 df/J) {( 1 df/J)}2 
V(t)V ~ dO <t:: C t, ~ dO (3.3) 

which gives that 

Vet) <t:: 1/1 

where 

_ (1 df/J) _ {_ d2 log f/J} 
I - V ~ dO - E d02 

(3.4) 

is the intrinsic accuracy defined by Fisher (1921). This shows that the variance 

of any unbiassed estimate of 0 is greater than the inverse of I which is defined 

independently of any method of estimation. The assumption of the normality 

of the distribution function of the estimate is not necessary. 

If instead of 0 we are estimating f(O), a function of 0, then 

(3.5) 

If there exists a sufficient statistic T for 0 then the necessary and sufficient 
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condition is that ,p(x; 0) the probability density of the sample observations 

satisfies the equality 

(3.6) 

where", does not involve 0 and <II(T, 0) is the probability density of T. If t is 

an unbiassed estimate of 0 then 

o = f t,pn dXi = f f(T)<II(T, 0) dT (3.7) 

which shows that there exists a function f(T) of T, independent of 0 and is an 

unbiassed estimate of O. Also 

~ f [f(T) - 0]2<11(T, 0) dT, (3.8) 

which shows that 

V[f(T)] ::t> V(t) (3.9) 

and hence we get the result that if a sufficient statistic and an unbiassed esti

mate exist for 0, then the best unbiassed estimate of 0 is an explicit function of 

the sufficient statistic. It usually happens that instead of 0, a certain function 

of 0 can be estimated by this method for a function of 0 may admit an un

biassed estimate. 

It also follows that if T is a sufficient statistic for 0 and E(T) = f(O), then 

there exists no other statistic whose expectation is /(0) with the property that 

its variance is smaller than that of T. 

It has been shown by Koopman (1936) that under certain conditions, the 

distribution function ,p(x, 0) admitting a sufficient statistic can be expressed as 

(3.10) 

where Xl and X2 are functions of Xl' X 2 , •.. , Xn only and 0 1 and O 2 are 

functions of 0 only. Making use of the relation 

f exp(0 1Xl + O 2 + X2 )7t dX i = 1, (3.11) 

we get 

and (3.12) 

If we choose - ~:: as the parameter to be estimated we get the minimum 

variance attainable is by (3.5) 
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{ d dEl2}2j{d 2El2 dEll} d2El2 
dO dEll dEli de = - dEli = V(Xd· 

(3.13) 

dEl 
Hence Xl is the best unbiassed estimate of - dEl:' Thus for the distributions 

of the type (3.10), there exists a function of the observations which has the 

maximum precision as an estimate of a function of O. 

Case of Several Parameters 

Let 01 , 82 , ... , Oq be q unknown parameters occurring in the probability 

density t/J(x l , ... , xn ; 81 , O2 , ... , Oq) and t l , t2 , ... , tq be q functions indepen-

dent of 01 , O2 , ... , Oq such that 

(4.1) 

Differentiating under the integral sign with respect to 0i and OJ, we get, if the 

following integrals exist, 

f· .. ft. ot/J 1t dx = 1 
'OOi k , 

and 

Defining 

and 

E(t i - OJ(tj - OJ) = V;j' 

we get the result that the matrix of the determinant 

Iii 

o Iql Iqi Iqq 

(4.2) 

(4.4) 

(4.4) 

(4.5) 

(4.6) 

.' d 1 ot/J (. 1 
being the dispersion matrix of the stochastIc varIates ti an ~ oOj ) = , 
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2, ... , q) is positive definite or semi-definite. If we assume that there is no 

linear relationship of the type 

1 ot/J 
I. Aj~ oOj = 0 

(4.7) 

among the variables ~ ot/J (j = 1,2, ... , q) then the matrix II Iijll, which is 
t/J oOj 

known as the information matrix due to 01 , 02' ... , Oq, is positive definite in 

which case there exists a matrix IIIijl1 inverse to IIIijll. From (4.6) we derive that 

(4.8) 

which shows that minimum variance attainable for the estimating function of 

0i when 0l' 02' ... , Oq are not known is Iii, the element in the i-th row and the i-th 

column of the matrix IIIijl1 inverse to the iriformation matrix IIIijll. 
The equality is attained when 

1 ot/J 
ti - 0i = I. flj~ oOj' (4.9) 

We can obtain a generalisation of (4.8) by considering the dispersion ma-

. f 1 ot/J 
tnxo tl,t2, ... ,tiand~oOr(r= 1,2, ... ,q) 

Vll Vli 1 0 0 0 

V2l V2i 0 0 0 

Vil Vii 0 0 0 (4.10) 

0 III 112 Ili I lq 

0 0 Iql Iq2 Iqi Iqq 

This being positive definite or semi-definite we get the result that the 

determinant 

Iv,.. - Irs I ~ 0, (r, s = 1, 2, ... , i) (4.11) 

for i = 1, 2, ... , q. The above inequality is evidently independent of the order 

of the elements so that, in particular, we get that the determinant 

I Vii - Ii.i, 

~i - fl', 
Vij - Iii I 0 
V· - Ijj ~ , 

}} 

(4.12) 

which gives the result that if Vii = Iii, so that maximum precision is attainable 

for the estimation of 0i' then Vij = Iij for (j = 1, 2, ... , q). 

In the case of the normal distribution 

t/J(x; m, a) = const. exp - HI. (Xi - m)2/a2}, (4.13) 
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we have 

(4.14) 

Since the mean of observations (Xl + X2 + ... + xn)/n is the best unbiassed 

estimate of the parameter m and the maximum precision is attainable viz., 

Vmm = r m, it follows that any unbiassed estimate of the parameter (1 is un

correlated with the mean of observations for Vma = r a = O. Thus in the case 

of the univariate normal distribution any function of the observations whose 

expectation is a function of (1 and independent of m is uncorrelated with the 

mean of the observations. This can be extended to the case of multivariate 

normal populations where any un biassed estimates of the variances and co

variances are uncorrelated with the means of the observations for the several 

variates. 

If there exists no functional relationships among the estimating functions 

t l , t2 , ... , tq then IlVijll the inverse of the matrix II V;jll exists in which case we 

get that the determinant 

I vrs - Irsl, (r, s = 1,2, ... , i) (4.15) 

is greater than or equal to zero for i = 1,2, ... , q, which is analogous to (4.11). 

If a sufficient set of statistics T1 , T2 , ... , Tq exist for (}1' (}2' ... , (}q then we 

can show as in the case of a single parameter that the best estimating func

tions of the parameters or functions of parameters are explicit functions of the 

sufficient set of statistics. 

Koopman (1936) has shown that under some conditions the distribution 

function tP(Xl' X2' ... , xn; 91 , 92 , ... , 9q ) admitting a set of statistics T1, T2, .. ·, 

Tq sufficient for 91, (}2' ... , (}q can be expressed in the form 

tP = exp(9 1Xl + 9 2 X 2 + ... + 9 qXq + 9 + X) (4.16) 

where X's are independent of 9's and 9's are independent of x's. Making use 

of the relation 

f tP dv = 1, (4.17) 

we get 

(4.18) 

This being the maximum precision available we get that for this class of di~tri
bution laws there exist functions of observations which are the best possible 

estimates of functions of parameters. 
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Loss of Information 

If t 1 , t 2 , ... , tq, the estimates of 01 , O2 , ... , Oq, have the joint distribution 

<f)(t l' t2 , ... , tq; 01 , O2 , •••• Oq) then the information matrix on 01 , O2 ..... Oq due 

to t 1• t 2 ..... tq is l!Fijll where 

{ a2 log <f)} 
Fij = E - aoiaoj . (5.1) 

The equality 

(j = (Iij - Fij) + Fij (5.2) 

1 a¢J d 1 a¢J . h' d 
effects a partition of the covariance between ~ aOi an ~ aOj as Wit m an 

between the regions formed by the intersection of the surfaces for constant 

values of t 1 , t 2 , ••• , tq • Hence we get that the matrices 

IIIij - Fijll and l!Fijll (5.3) 

f .. 1 a¢J 
which may be defined as the dispersion matrices 0 the quantities ~ aOi 

(i = 1, 2, ...• q) within and between the meshes formed by the surfaces of con

stant values of t l' t 2' ... , tq , is positive definite or semidefinite. This may be 

considered as a generalisation of Fisher's inequality Iii ~ Fii in the case of a 

single parameter. 

If Iii = Fii , then it follows that Iij = F;j for allj for otherwise the determinant 

I Iii - Fii Iij - Fiji < o. 
Iij - F;j Ijj - Fjj 

(5.4) 

If in the determinant 

IIij - Fiji, (i,j = 1,2, ... , q), (5.5) 

the zero rows and columns are omitted, the resulting determinant will be 

positive and less than the determinant obtained by omitting the correspond

ing rows and columns in IIijl. If we represent the resulting determinants by 

dashes, we may define the loss of information in using the statistics t 1, t 2 •••. , 

tq as 

(5.6) 

If <f) is the joint distribution of t 1, t 2' ... , tq the estimates of 01, O2 , ••• , Oq 
with the dispersion matrix II V;jll then we have the relations analogous to (4.11) 

and (4.15) connecting the elements of II V;jll and l!Fijll defined above. Proceed

ing as before we get that the determinants 

I v,:s - Frs I and !Frs - Vrsl, (r, s = 1. 2 •... , i), (5.7) 

are greater than or equal to zero for all i = 1,2, ... , q. 
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The Population Space 

Let the distribution of a certain number of characters in a population be 
characterised by the probability differential 

(6.1) 

The quantities 01 , O2 , ••• , Oq are called population parameters. Given the 

functional form in x's as in (6.1) which determines the type of the distribution 

function, we can generate different populations by varying 01 , O2 , ••• , Oq. If 
these quantities are represented in a space of q dimensions, then a population 

may be identified by a point in this space which may be defined as the popula
tion space (P.S). 

Let 01 , O2 , .•• , Oq and 01 + dOl' O2 + d02 , •.. , Oq + dOq be two contiguous 
points in (P.S). At any assigned value of the characters of the populations 

corresponding to these contiguous points, the probability densities differ by 

(6.2) 

retaining only first order differentials. It is a matter of importance to consider 

the relative discrepancy dt/J/t/J rather than the actual discrepancy. The distribu

tion of this quantity over the x's summarises the consequences of replacing 

01 , O2 , .•. , Oq by 01 + dOl, ... , Oq + dOq. The variance ofthis distribution or the 

expectation of the square of this relative discrepancy comes out as the positive 
definite quadratic differential form 

ds2 = L L gij dOi dOj , (6.3) 

where 

gij = EG ~~)G ~~). (6.4) 

Since the quadratic form is invariant for transformations in (P.S) it follows 

that glj form the components of a covariant tensor of the second order and is 

also symmetric for gij = gji by definition. This quadratic differential form with 

its fundamental tensor as the elements of the lriformation matrix may be used 

as a suitable measure of divergence between two populations defined by two 

contiguous points. The properties of(P.S) may be studied with this as the qua

dratic differential metric defining the element of length. The space based on 

such a metric is called the Riemannian space and the geometry associated with 

this is the Riemannian geometry with its definitions of distances and angles. 

The Distance Between Two Populations 

If two populations are represented by two points A and B in (P.S) then we 

can find the distance between A and B by integrating along a geodesic using 

the element of length 
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ds2 = L I gij d8i d8j. (7.1) 

If the equations to the geodesic are 

8i = h(t), (7.2) 

where t is a parameter, then the functions h are derivable from the set of 

differential equations 

q d 20j q • dOj dO, _ 
~j gjkdt2 + ~j' [JI, k] dt dt - 0, (7.3) 

where [jl, k] is the Christoffel symbol defined by 

[iI, k] = ~[Ogjk + Og'k + Ogj'J. 
2 00, oOj OOk 

(7.4) 

The estimation of distance, however, present some difficulty. If the two 

samples from two populations are large then the best estimate of distance can 

be found by substituting the maximum likelihood estimates of the parameters 

in the above expression for distance. In the case of small samples we can get 

the fiducial limits only in a limited number of cases. 

We apply the metric (7.1) to find the distance between two normal popula

tions defined by (m l , ad and (m2' 0'2) the distribution being of the type 

1 1 (x - m)2 
¢J(x, m, 0') = J(2n0'2) expo - 2" 0'2 (7.5) 

The quantities % defined above have the values 

gll = 1/0'2, g12 = 0, g22 = 2/0'2, (7.6) 

so that the element of length is obtained from 

(dm)2 2 
ds2 = -- + _(dO')2. 

0'2 0'2 
(7.7) 

If ml -# m2 and 0'1 -# 0'2 then the distance comes out as 

D - J21 tan Od2 
AB - og tan O2 /2 (7.8) 

where 

(Ji = sin-1 O'j{J and [3 = O'f + [(m 1 - m2 )2 - 2(O'i - O'f)]/8(m l - m2)2. 

(7.9) 

(7.10) 

(7.11) 
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Distance in Tests of Significance and Classification 

The necessity for the introduction of a suitable measure of distance between 

two populations arises when the position of a population with respect to an 

assigned set of characteristics of a given population or with respect to a num

ber of populations has to be studied. The first problem leads to tests of signifi

cance and the second to the problem of classification. Thus if the assigned 

values of parameters which define some characteristics in a population are li1 , 

li2 , ••• , liq represented by the point 0, and the true values are 81 , 82 , .•• , 8q 
represented by the point A, then we can define the divergence from the as

signed sets of parameters by D AO' the distance defined before in the (P.S.). The 

testing of the hypothesis 

li; = 8;, (i = 1,2, ... , q), (8.1) 

may be made equivalent to the test for the significance of the estimated dis

tance DAO on the large sample assumption. If DAO = t/J«()I' ••• , ()q; li1 , ••• , liq) 
and the maximum likelihood estimates of ()1' ()2' ... , ()q are e1 , e2 , ••• , eq , then 

the estimate of DAO is given by 

(8.2) 

The covariances between the maximum likelihood estimates being given 

by the elements of the information matrix, we can calculate the large sample 

approximation to the variance of the estimate of DAO by the following formula 

(8.3) 

We can substitute the maximum likelihood estimates of 81, ()2' ... , 8q in the 

expression for variance. The statistic 

DAO 
W = ------=-=-=-----

[V(DAO)r/2 

(8.4) 

can be used as a normal variate with zero mean and unit variance to test the 

hypothesis (8.1). 
If the hypothesis is that two populations have the same set of parameters 

then the statistic 

W = ~ , 
[V(DAB)r/2 

(8.5) 

where DAB is the estimate of the distance between two populations defined by 

two points A and B in (P.S) can be used as (8.4). The expression for variance 

has to be calculated by the usual large sample assumption. 

If the sample is small the appropriate test will be to find out a suitable 

region in the sample space which affords the greatest average power over the 

surfaces in the (P.S) defined by constant values of distances. The appropriate 

methods for this purpose are under consideration and will be dealt with in a 

future communication. 
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The estimated distances can also be used in the problem of classification. 

It usually becomes necessary to know whether a certain population is closer 

to one of a number of given populations when it is known that populations 

are all different from one another. In this case the distances among the popu

lations taken two by two settle the question. We take that population whose 

distance from a given population is significantly the least as the one closest to 

the given population. 

This general concept of distance between two statistical populations (as 

different from tests of significance) was first developed by Prof. P.c. Maha

lanobis. The generalised distance defined by him (Mahalanobis, 1936) has 

become a powerful tool in biological and anthropological research. A per

fectly general measure of divergence has been developed by Bhattacharya 

(1942) who defines the distance between populations as the angular distance 

between two points representing the populations on a unit sphere. If n l' 
n2 , ••• , nk are the proportions in a population consisting of k classes then the 

population can be represented by a point with coordinates Jn l , Jn2"'" Jnk 

on a unit sphere in a space of k dimensions. If two populations have the 

proportions n l , n2 , ••• , nk and n~, n;, ... , n~ the points representing them have 

the co-ordinates Jn l , Jn 2 , ... , Jnk and Jn~, In;, ... , Jn~. The distance 
between them is given by 

(8.6) 

If the populations are continuous with probability densities ¢J(x) and Ij;(x) 
the distance is given by 

cos- l f J{¢J(x)lj;(x)} dx. (8.7) 

The representation of a population as a point on a unit sphere as given by 

Bhattacharya (1942) throws the quadratic differential metric (7.1) in an inter

esting light. By changing ()l, ()2' ... , ()q the parameters occurring in the proba

bility density, the points representing the corresponding popUlations describe 

a surface on the unit sphere. It is easy to verify that the element of length 

ds connecting two points corresponding to ()l, ()2' ... , ()q and ()l + d()l, ... , 
{}q + d()q on this is given by 

(8.8) 

where gij are the same as the elements of the quadratic differential metric 
defined in (7.1). 

Further aspects of the problems of distance will be dealt with in an exten
sive paper to be published shortly. 
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