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The seven analysis-of-variance mean squares for an unreplicated 
three-way classification may be written as linear combinations of a mean 
variance and three mean covariances. Formulas are presented for computing 
the mean variances and mean covariances from linear combinations of mean 
squares. The relevance of these formulas for assessing rater biases and trait 
independence is discussed, a numerical example is provided, and proposed 
extensions are briefly noted. 

When repeated measurements of individuals are made over all levels 
of two experimental variables, three sources of covariance become possible. 
Consider the familiar si tuation where each individual is rated once by  each 
ra ter  on each trait ,  there being a t  least two individuals, two raters, and two 
traits.  Covariation can occur within each rater  across traits,  within each t rai t  
across raters, and across both  raters  and traits.  

These three sources of covariation are orthogonal. Empirically, it has been 
found tha t  covariation within raters  across traits,  inflated by  relative halo 
effect, usually exceeds covariation within trai ts  across raters, the magni-  
tude of which reflects independence of the traits. Covariation across both 
raters and traits constitutes a baseline against which the other two sources 
m a y  be judged. I t  tends to be less than  either of them. 

In  1954, Guilford ([8], p. 281) showed tha t  the various rater  biases can 
be thought  of appropriately in terms of analysis-of-variance mean squares 
involving raters: the mean squares for (i) raters, (ii) the interaction of raters 
with ratees, (iii) the interaction of raters with traits, and (iv) the second- 
order interaction of raters with both ratees and traits. Thus,  there are four 
possible sources of rater  bias, three of which (the main effect of raters and 
the two first-order interactions) may  be evaluated in a given s tudy and 
compensated for statistically, as will be shown in this article. 

The ratee-rater-trai t  matrix is used above merely as an introductory 
illustration. Also, ratees define rows only for convenience of initial exposi- 
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tion. Raters  or traits might just as well define rows. In  each instance, three 
sources of covariation can be isolated. Over the three orderings, each first- 
order interaction will be defined twice and the second-order interaction three 
times. In  a generalized, complete three-classification matr ix  each interaction 
mean square may  be shown to be a linear function of a mean within-column 
variance and three mean covariances among "levels" of the two factors de- 
fining columns. 

Method of Analysis  

Consider any  matrix of real numbers X , ,  , where i = 1, 2, . . .  , I ;  
r = 1, 2, . . .  , R; and t ---- 1, 2, . . .  , T. Part i t ion the total  sum of squared 
deviations around the mean of these I X R X T numbers into the usual 
seven sums of squares: three for main effects, three for first-order (two- 
factor) interactions, and one for second-order (three-factor) interaction. 

The four mean squares (i.e., sums of squares divided by the appro- 
priate number  of degrees of freedom) involving i m a y  be written 

MS,  = A + ( R - -  I ) B +  ( T - -  l ) C +  ( R -  1 ) ( T - -  1)D, 

MS(~x~) = A --  B + (T -- 1)C - (T - 1)D, 

M S . x , )  = A + ( R -  1 ) B - -  C -  ( R - -  1) D,  

MS.x.×~) -- A -- B -- C + D,  

A = s~: , B  = coy  (X~, , X , , , ) ,  C = c o v ( X , ,  , X , , , ) ,  D = c o v ( X , ,  , X , , , , )  

with r # r '  and t # tq Bars denote means.  (For an outline of the way in 
which the formulas were obtained, see the Appendix a t  the end of this paper.) 

If, for convenience, the i factor is considered to define rows of the matr ix  
and the other two factors columns, A is the mean of the R T  within-column 
variances of the form 

I 

~, = ] E  ( x , , ,  - 2 . , , ) ' / ( I  - 1) .  
, :=1 

B is the mean of tile T[R(R -- i)] covariances across the R raters within 
the T traits. C is the mean of the R [ T ( T  -- 1)] covariances across t 's within 
r's. D is the mean of the remaining R T ( R T  -- 1) -- R T ( R  -- 1) -- 
R T ( T  - 1) = R T ( R  - 1)(T - 1) covariances, those across both  r 's  and t's. 

Formulas (1)-(4), independent linear equations in four unknowns, can 
be solved for the mean variance and the three mean covarianees to secure 
the following formulas, where MS~ = w, MS.×. )  = x, MS.×t)  = y, and 

h l S . x , x ~ )  = z. 

(5) A = [w + (R -- l)x + (T -- l )y + (R - 1)(T -- 1)z]/RT, 
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(6) 

(7) 

(8) 

B y  

B = [w - -  x + (7' - 1)y - ( T  - 1 ) z ] / R T ,  

C =  [ w + ( R - l ) x -  y - ( R -  1) z]/RT, 

D = [w - -  x - -  y q -  z ] / R T .  

t r e a t i n g  f a c t o r  r as  de f in ing  rows  a n d  f ac to r s  i a n d  t as  de f in ing  

co lumns ,  

(9) 

(10) 

(11) 

(12) 

w h e r e  

M S ( ~ x , )  = E q-  ( t  - 1 ) F  - 

M S < ~ x ~ x o  = E - -  F - -  

one  o b t a i n s  express ions  a n a l o g o u s  to  t h o s e  of ( t ) - ( 4 ) :  

M S ~  = E -k ( I  - -  1 )F  + (T  - 1)G + ( I  - 1)(T - -  1 )H ,  

MS(~x;)  = E - F -k (T  - -  I )G - (T  - I ) H ,  

G - -  ( I  - -  1) I t ,  

G + t i ,  

2 
E = s .  , 

G = c o y  ( X .  , X , . , ) ,  

w i t h i  ~ i '  a n d  t ~ t ' .  

F = e o v  ( X .  , X , . , ) ,  

H = c o y  ( X .  , X , . , , ) ,  

S o l v i n g  (9 ) - (12) ,  one  o b t a i n s  t i le  fo l lowing  fo rmu la s ,  w h e r e  

MS~ = u ,  M S ( ~ × o  = MS(~×~) = x,  MS(~×,)  = v, 

(13) E = [u + (I  - 1)x + (T - 1)v + (R - 1 ) (T  - -  1 ) z ] / I T ,  

(14) F = [(T - -  1)(v - -  z) + u - -  x ] / I T ,  

(15) G = [(I - 1)(x - z) + u - v ] / I T ,  

(16) H = [(u - x - v + z ) ] / 1 T .  

(17) 

(is) 

(19) 

(2O) 

w h e r e  

F i n a l l y ,  t r e a t i n g  t as  de f in ing  rows a n d  i a n d  r as  def in ing  co lumns ,  

h i S ,  = J + ( I  - 1 )K + (R - I ) L  + ( I  - l ) (R  - -  I ) M ,  

M S ( , x , )  = J -  K + ( R -  1 ) L -  (R - I ) M ,  

M S ( , x r )  = J + ( I  - 1 )K - L - ( I  - 1) M ,  

MS(~xlx~) = J - -  K - -  L + M ,  

J = s~-r , K = c o y  ( X i .  , X . . ) ,  

L = c o y  ( X ~  , X . , ) ,  M = c o y  (X~. , X~.r . ) ,  

w i t h  i ~ i '  a n d  r ~ r ' .  S o l v i n g  (17) - (20)  one  o b t a i n s  t h e  fo l lowing  fo rmu la s ,  
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where  

h i S ,  

(21)  

(22) 

(23) 

(24) 

= q,  h f S ( , x o  = y ,  MS(,×r)  = v, and  MS(,x~×~) = z. 

J = [q + ( I  - -  1)y -F (R - 1)v -t- ( I  - 1)(R - 1 ) z ] / I R ,  

K --- [(R - 1)(v - z )  -k- q - y ] / I R ,  

L = [(I - 1)(y - z )  - k  q - v ] / I R ,  

M = [(q - y - -  v -k- z ) ] / I R .  

N o t e  t ha t  each of the  two- fac to r  in te rac t ions  is defined twice while 
the  th ree - fac to r  in t e rac t ion  is defined thr ice .  F o r  example ,  b y  (2) and  (10), 

MS(,×r)  = A - B + (T - -  1)C - (7' - ] ) D  

= E  -- F q - ( T -  1 ) G -  ( T -  1)H. 

B y  (4) and  (12), 

MS( ,× .x , )  = A - - B - -  C +  D = E - - F - - G + H .  

Ignor ing  the  m e a n  squares  themse lves  a n d  s u b t r a c t i n g  the  expressions for 
M S  (; ×.) f rom cor respond ing  expressions  for  M S ,  X r X, ) , 

C - D = G - - H .  

I n  o the r  words,  

c o y  ( X , ,  , X r , , )  - c o v  ( X r ,  , X , , , , )  = c o v  ( X , ,  , X , , , )  - c o y  ( X , ,  , X , , , , ) .  

Simi lar ly ,  

B --  D = L - -  M ,  and  F -  H = K -  M .  

No te  in pa r t i cu l a r  the  fol lowing re la t ionsh ips :  

1 1 
(25) B - D = L - M = ~ (y --  z) = ~ [MS( ,x , ,  - MS, ,×r× , ) ] ,  

1 1 
C - D = (I - -  H = ~ ( x  - -  z) = ~ [ M S , , × . )  - M S , × r × , ) ] ,  

and  

(27) 
1 1 

F --  t t  = K - M = 7 (v - z) = i [MS(r×, ,  - M S , × . × , ) ] .  

M u l t i r a t e r - M u l t i t r a i t  M a t r i c e s  

The  above  fo rmulas  (no significance tes t s  impl ied)  pe r t a in  to  a n y  com- 
p le te  m a t r i x  of real  numbers ,  however  ga the red  a n d  regardless  of w h a t  i. r,  
and  t happen  to represent .  An  especia l ly  i m p o r t a n t  a p p l i c a t i o n  occurs  when  
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i designates ratees, r designates raters, and t designates traits. From tile 
work of Guilford [8], Willingham and Jones [19], and others, the three mean 
squares involving ratees (r)--MSr , MS,×r) , and MSc.×t)--may reflect, 
respectively, differences among some raters in general level of rating, bias 
of some raters toward certain individuals, and bias of some raters toward 
certain traits. Finally, MS,×,) reflects differential meaning of the various 
traits, as Willingham and Jones [19] have shown. "Valid variance" in ratee- 
rater-trait studies usually consists chiefly of the variance components z~ 
and a~×,) ; sometimes differences in trait means may be of interest, too. 

From the definitions of B, C, and D, one sees that B is the mean of the 
covariance within traits (t = t) across raters (r # r'). For the tth trait there 
are R ( R  - 1) covariances among the R raters, half of these being dupli- 
cates of the other half because coy (r, r') = coy (r', r). C is the mean of the 
covariances within raters (r = r) across traits (t # t'). For the rth rater 
there are T ( T  - t) covariances among the T traits, half of them duplicates 
of the other half. D, on the other hand, is the mean of the covariances across 
both raters (r # r p) and traits (t # t'). Its magnitude reflects neither inter- 
action of ratees with traits, as does B, nor bias of raters toward ratees, as 
does C. D constitutes the only internal base for evaluating the magnitudes 
of B and C. Typically, B >_ D and C >_ D, though of course D could exceed 
B or C. In order to maximize differential meaning of the traits used, B should 
be as large as possible relative to D, and to minimize the bias of some raters 
toward certain ratees, C ~_ D. 

Chi ([3], p. 237) sensed part of this latter relationship when he wrote " . . .  

the correlation between two traits, according to the ratings by one rater, 
tends to be higher than it should be. On the other hand, since two raters 
are not likely to take the same attitude or to be under the same prejudice 
toward an individual rated, the correlation between two traits, according 
to the ratings by two different raters, would be relatively free from the halo 
effect. Hence the difference between the former and the latter correlation 
coefficients may be regarded as the halo effect contained in the ratings by 
one rater." He performed a factor analysis of such differences and found a 
general factor of halo, independent of the general factor of the ratings them- 
selves, that accounted for about half as much of the total variance (17 vs. 
32 percent). 

In a given study, one may find any degree of relative halo effect and 
any degree of trait independence, for MS,x~) is independent of MS(~×,) . 
These constitute two separate  criteria for the adequacy of ratings, as Camp- 
bell and Fiske [2] and Humphreys [12] point out with respect to multitrait- 
multimethod matrices. If one reads rater  in the present paper for method  in 
theirs, he has at his command some of the objective summary statistical 
procedures for which Campbell and Fiske asked. 

Formula (25) shows that the difference between B and D (or L and M) 
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is a simple function of M S . x .  and MS(:×r×,) • B reflects eovariation common 
to all rt, r't '  pairings, plus covariation among the rt, r't  pairings. B -- D is 
estimated by the final part of (25). For example, (3) may be written as 

(28) 5IS(,×,) = ( A  - B - C + D) + R ( B  - D) 

= MS(ix,x,~ + R ( B  - D) .  

The "Pigeonhole" Model  

How is one to get tests of significance for B -- D, C -- D, and F - H? 
From (28), the ratio M S , x , ) / M S ( , x ~ x , )  resembles an F ratio, with (B - D) 
being the effect tested. Is this ratio in fact distributed as F under the null 
hypothesis? Less stringently, is the right-hand member of (25) an unbiased 
estimate of the variance component (using that expression in a broad sense) 
a~x,) ? The answer to this latter question would seem to depend upon which 
analysis-of-variance model yields appropriate expected mean squares for the 
particular study conducted. 

Consider the relatively unrestrictive general linear model set up by 
Cornfield and Tukey [4] for their "pigeonhole" model (which may also be 
generalized to an urn-sampling model). By extension of their model for two 
crossed factors ([4], p. 920), for the rating x,~,.  received by the ith ratee 
from the rth rater on the tth trait the sth time he is rated by that rater  on 
that trait 

Theta represents the general contribution, estimated by X .... (for the pigeon- 
hole model, a~ = 0). The next seven Greek letters denote the three main 
contributions and four interactions that are possible. Assumptions are as 
listed in ([4], pp. 920-921). 

Expected mean squares for the finite case of the above linear model 
are given in ([4], p. 929). (For rather similar E[MS]'s, see [14].) Under what 
conditions do formulas (25)-(27) estimate variance components without 
bias? 

The right-hand member of (25) estimates the variance component 
if the raters used in the study were drawn randomly from a large popu- Cr~tXt ) 

lation of raters. The right-hand member of (26) estimates a~x~) if the traits 
used in the study were drawn randomly from a large population of traits. 
The right-hand member of (27) estimates a~rx,) if the ratees used in the 
study were drawn randomly from a large population of ratees. Otherwise, 
the respective variance components will tend to be underestimated by 
formulas (25)-(27), unless a~x .x , )  = 0, as will the analogous F-ratios com- 
puted to test significance. 

Usually, investigators capture "grab groups" of ratees and raters, who 



JULIAN C. STANLEY 211 

then constitutc the entire population "samplcd." Such groups may be com- 
posed of volunteers or entire "handcuffed volunteer" classes, but rarely arc 
individuals (ratces or raters) sampled randomly from any defined population. 
In view of the three conclusions reached above concerning variance com- 
ponents and tests of significance, this appears disturbing. Nearly always 
we want to generalize beyond the particular ratees and raters used in the 
study to other ratees and raters "like them." In  repeating the study, we 
would probably use new ratees and raters, but  the same traits (though in a 
given study we might have each ratee rated more than once by each rater 
on each trait, as allowed for in the above model). 

Can we merely consider the ratees used in the study as a random sample 
from a large hypothetical population of ratees "like themselves," and con- 
sider the raters similarly? If so, we would have a mixed model (ratees and 
raters random, traits fixed) for which (25) and (27) would yield unbiased 

2 and 2 estimates of the variance components a,x,~ a(r×O . 
Cornfield and Tukey ([4], pp. 913-914) tend to encourage this "boot- 

strap randomization," while Wilk and Kempthorne ([16], pp. 1162-1163; 
[18], pp. 953.-954) discourage it. The latter writers remark: "There are some 
circumstances under which it may be useful to consider the levels of a random 
factor actually used as though they were the levels of a fixed factor (with 
a corresponding redefinition of main effects and interactions), but  thcre 
appears to be no objective basis for the converse case" ([16], p. 1163). 

The mat ter  seems by 11o means settled yet.  By  adopting the Cornfield- 
Tukey  point of view we are of course "bet ter  off" with the unrepIicated 
ratees-raters-traits s tudy than we would be under the greater restrictions of 
the Wilk-Kempthorne approach. Replication seems desirable in most in- 
stances, however, both within ratee-rater-trait  "cells" and across studies 
with other "grab groups" of ratees and raters. I t  may be best to assume a 
fixed-effects model and use MS,×r×,×,) for testing all effects and interactions 
in a given study. 

Replication within a given study has the added advantage of revealing 
further biases of raters: i X r X t, i X r X s, r X s X t, and r X s. These can 
be compensated for statistically in a manner analogous to that  of (30), 
which appears later in this article. 

Trait Independence and Rater Bias 

B /A  should be a close estimate of ~,t .~., , the mean correlation among 
raters within traits. D/A should be a close estimate of L,.~,,, , the mean 
correlation across both raters and traits. 

If B significantly exceeds D, then it  may  be worthwhile to weight the 
trait  scores differentially for predictive purposes. If it does not, then the 
standard score of the i th  individual differs only randomly from trait to trait, 
and differential weighting is futile. (Here, for the fixed-effects model, we 
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assume again that MS(,x.x,) has as its expected value ~ , pure error-of- 
measurement variation [4].) 

When statistical significance occurs for MS,x,) , one may want to 
find a linear combination of trait factor scores that maximizes the ratio 
MSdMS,x.~ , thereby making differences among the means of individuals 
as large as possible relative to rater bias toward individuals. This is one way 
to correct for what Guilford ([8], p. 284) calls relative halo effects. Abelson 
[1] shows how to employ linear discriminant analysis to maximize variance 
ratios of this sort. Bias of raters toward ratees is usually so strong that in 
large studies the i X r interaction probably shows up as significant, even 
when MS(~x~x,~ is used as the error term. Independence of traits and biases 
of raters toward traits seem less potent. 

The better controlled the investigation, the closer D/A will probably 
approach zero--that is, the poorer the correlation across both raters and 
traits. (There is, of course, the problem of generally prejudicing information, 
affecting several raters across traits within ratees.) Careful randomization 
of the order of presentation of the I X T ratee-trait combinations, inde- 
pendently for each rater, when experimentally feasible might reduce the 
extent of interactive rater biases and perhaps increase the independence of 
traits. (Johnson and Vidulich [13] tried two orders, all traits for one indi- 
vidual vs. all individuals for one trait, but apparently did not randomize 
anything.) 

Consideration of the various possibilities for randomizing the order 
of ratees, raters, and/or traits used, and of their influences upon expected 
mean squares, is beyond the scope of this paper; suffice it to say that the 
analysis of variance mentioned above presupposes complete randomization 
of the order of the I × R × T combinations. Kempthorne and collabora- 
tors, having contributed greatly to analysis of completely and restrictively 
randomized designs [16, 17, 18], are now devising analyses (structures) for 
situations where randomization within the experiment itself can vary from 
little or none to much or complete, as in the ratee-rater-trait type of investi- 
gation. Generally, expected mean squares arc considered by them to depend 
upon what randomization actually takes place within the study (this in 
addition to the sampling of levels of the factors themselves). 

Probably we are well advised to design fuller studies, in which each 
rater rates each ratee at least twice on each trait. Then there will be a third- 
order interaction mean square whose mathematical expectation more nearly 
approaches pure measurement error than does the expected mean square 
for the second-order interaction. 

If this unwillingness to assume the variance component for the inter- 
action of ratees, raters, and traits inconsequential seems pedantic, note 
that we are dealing with two sets of individuals, ratees and raters, organisms 
probably far more likely to interact with each other and with traits than are 
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many of the variables manipulated by psychologists. While, for example, 
strong interaction of style of printing type with size of printing type with color 
of paper may seem quite unlikely, a priori, we cannot in our present state 
of ignorance about intra-individual characteristics afford to assume that  
second-order interactions involving individuals are infinitesimal. 

Statistical Adjustments for Biases of Raters 

Guilford ([8], pp. 280-288) recommends that  ratings be adjusted to 
remove the biases due to raters, reflected in significant MS~ , MS(~×.) , and 
MS(~×,) . His procedure is equivalent to the following, where X~.  repre- 
sents the adjusted rating of the i th  ratee by  the r th  rater  on the tth trait, 
and X's  denote means: 

(29) X~r, = X, , ,  -- (2 . , .  -- X.. .)  -- (2 , , .  -- X,. .  -- 2.~. + X...) 

- ( 2 . , ,  - 2 . ~ .  - 2 t  + 2 . . . ) .  

The application of (29) results in adjusted ratings for which MS. , 
MS(ixr) , and MS(rx,) all are zero, but  it does not affect MS.×.×,) or the 
other mean squares. Referring back to (26) and (27), C - D and F -- H 
then become negative: - M S . x ~ x , ) / T  and - M S . × ~ x , ) / I ,  respectively. 
Therefore, Guilford's procedure over-corrects, causing negative bias. The 
mean covariance across traits within raters becomes less than the mean 
covariance across traits across raters, representing negative relative halo 
of magnitude - M S , × , x , ) / T  when MS(~x,×,) is the appropriate error term 
for MS({x,) . Similarly, the mean covariance across individuals within traits 
is made smaller than the mean covariance across individuals across traits. 

In order not to over-adjust ratings, one needs a procedure that  makes 
MS,x , )  , MS(,x~) , and MS, exactly equal to MS ,x ,x ~  without disturbing 
mean squares other than the three being reduced. This can be done by multi- 
plying each of the two interaction residuals of (29) by the coefficient (1 minus 
the square root of the ratio of the three-factor interaction mean square to 
the mean square for the pertinent two-factor interaction): 
1 - %/MS(~x,x~)/MS(,x,) for the first residual and 1 - %/MS(,x,x,)/MS(~x~) 
for the second. Also, for the fixed-effects case, multiply (X.~. - 2 . . . )  by 
1 -- %/MS(~x~xo/MS,. Calling these coefficients a, b, and c, respectively, 
and simplifying, one obtains a formula that  makes the nature of the ad- 
justed scores, X~,~ , somewhat clearer: 

(30) X~,, = X,, ,  + a(X,..  -- 2 , , . )  + b ( X ,  - X , , )  

+ (a + b - c)(X ,. - X . . ) .  

I t  is easy to show that,  by reducing MS,x , )  to zero, (29) guarantees 
perfect correlation among raters for total scores of individuals (summed 
across traits within raters). One estimates the mean correlation among 
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(3~) 

where r ¢ r' and 

raters with respect to the sums (or means), over traits, of ratees by ([15], 
eq. 1) 

MS; -- MS~,×,, 
~x , , . x , , . .  = M S ,  + (R - I) MS~,x.) ' 

T T 

X , , .  = ~ X , , ,  and X , , , .  = ~ . , X , . , ,  . 

For MS,x,) = 0, the right side of (31) reduces to MSi/MS, , or unity. Of 
course the mean r can be unity only when every r between raters is unity. 
Formula (30) adjusts ratings so as to make MS,x.) equal the originally 
smaller MS,x.×,) , thereby increasing the average agreement among raters 
but not rendering it perfect. 

Two scores for each ratee are unaffected by the adjustments of formulas 
(29) and (30): 

R R ~" 

Zx,, ,  and Z Zxi , , .  
Therefore, the adjusted trait s u m s  (over raters) and adjusted total scores 
(over both raters and traits) cannot be better for any purpose--predictive 
or otherwise--than the unadjusted ratings were. Furthermore, although the 
value of B - D in (25) remains constant, both B and D increase equally, 
while thc C of (26) becomes much smaller. In a sense, then, we remove re- 
lativc halo effect, only to assign it to the general halo effect common to 
raters without regard to traits. 

In fact, the adjustments of (30) typically cause the intercorrelation of 
the R T  rater-trait columns to rise, thereby producing a higher coefficient of 
equivalence [5] for total scores of individuals across both raters and traits, 
even though these total scores are not affected at all by the adjustments! 
This seemingly anomalous result comes about because the adjustment of 
the MS(ix,) downward to the magnitude of MS,x.x~) increases the numer- 
ator of the following formula for the ttoyt-Cronbach [10, 11, 5] coefficient 
of equivalence, a, without changing the denominator: 

M S ~  - -  SS(,×.) + SS(i~,) + SS,×.×,~ 
M S ,  - -  M S . × , , )  ( I  --  I)(RT - I) 

- ] ~ I - g 7  - M S ,  ' 
(32) a x , . .  = 

where 
R T 

x , . . = Z E x , , ,  
and where the SS's are sums of squared deviations (i.e., mean squares multi- 
plied by their respective degrees of freedom). Thus the statistical adjust- 
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ment for relative halo affect cannot affect test-retest or comparable-forms 
reliability, though when positive halo exists, it does increase the estimated 
internal consistency. (To understand this formula better, see (34) in the 
Appendix.) 

The above paradox arises because one is dealing with a test of the sort 
tha t  Cronbach [5] calls " lumpy,"  and also because one treats the new MS(~x r,) 
as if it still had (I - 1)(RT - 1) degrees of freedom, when in reality it now 
has only (I  - 1)(RT - R) d.f., because by setting MS,xr)  at  a fixed value-- 
that  of M S , × r x , ) - o n e  loses (I  - 1)(R - 1) d.f. The reduction in d.f. may 
or may  not compensate for the reduction in the magnitude of MS,×r) , so 
the alpha of (32) might change in either direction. Usually its magnitude 
will increase. 

Though one may have uses for ratings adjusted by (30), such statistical 
manipulations should by  no means substitute for careful designing of the 
rating study to minimize bias and maximize independence of traits experi- 
mentally. Typically, experimental control is superior to statistical control. 
Where the latter is needed also, Abelson's procedure [1] for finding factors 
in the traits that  maximize MSJMS(~×,) may, when there is significant 
interaction of ratees with traits, be preferable to (30). 

If one had better  estimates of error than MS(~×.×,) , he should use them, 
instead, for obtaining the a, b, and c that  appear in (30). When significant 
second-order (i X r X t) interaction occurs, (30) may adjust too little, this 
depending upon the appropriate analysis-of-variance model. If each rater 
rated each ratee S > 1 times on each trait, one might employ MS,x.x ,x , )  , 
rather than MS,x.x~) , for securing a, b, and c, again depending upon the 
relevant model. 

A Numerical Example 

Consider Guilford's individuals-raters-traits data ([8], pp. 282-288) 
from the above point of view. There were 105 ratings, with I = 7, R = 3, 
and T = 5. Table 1 contains the various mean squares and tests of signifi- 
cance. All main effects and interactions except MS(.×,) are significantly 
larger than MS(~×,x~) beyond the .05 level. 

Applying formulas (5) through (8), A = 3.351; B = 0.763, B / A  = .23; 
C = 1.851, C/A = .55; and D = 0.443, D / A  = .13. The .23 is identical 
with the comparable item in Guilford's Table 11.6, and the .55 is almost 
identical with the mean of the .70, .25, and .74 in the last column of his 
Table 11.7. 

From (2), MS,x , )  = (A - B - C + D) + T(C -- D) = 8.22, highly 
significant when compared with MSc;x,×,) = A - B - C + D = 1.18 be- 
cause of the large covariance among traits within raters (C) compared with 
the small covariance across both raters and traits (D). The mean of the 30 
intra-rater coefficients of correlations among traits, estimated by C/A,  was 
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TABLE 1 

Analysis of Variance of Ratings of Seven Ratees by Three 
Raters on Five Traits, after Guilford ([8], p. 283)* 

Source of 
Var ia t ion  

M e a n  
d J .  Squa re  M S / l . 1 8  P 

A m o n g  ra tees  (i)  6 15.82 13.41 < . 0 0 1  
A m o n g  ra te rs  (r)  2 4 . 5 2  3 . 8 3  < .  05 
A m o n g  t ra i t s  (t) 4 11.63 9 .86  < .  001 
i X r 12 8 . 2 2  6 .96  <.001 
i X t 24 2 . 1 4  1.81 < . 0 5  
r X I 8 1 .62  1 .37  > . 0 5  
i X r  X t  48 1 .18  - -  - -  

Total 104 3.56 - -  - -  

*But, using a different procedure for testing significance, Guilford failed to find r or 
(i X t) significant. 

.55, contrasted with a D/A of only .13. Clearly, strong relative halo effect 
occurred in this study. 

Similarly but  less markedly,  MS(ix~) = (A -- B -- C ~ D) + 
R(B - -  D) = 2.14, significant a t  the .05 level. The average of the 15 inter- 
correlations among raters within traits was est imated by  B/A to be .23, 
contrasted with the base-line ~ of .13. Therefore, the trai ts  are to some extent 
different, though probably not as much as the investigators desired. Finally, 
hIS(.×,) is not significant; f rom formulas (t3),  (14), and ('16) one can esti- 
mate,  via F/E, t ha t  the mean correlation across ratees within traits is --.03, 
contrasted with - . 0 6  for the ~ across both ratees and traits, est imated 
by H/E. 

Reducing MS,× , )  to the magnitude of MS(c×,×,) via the adjustment  in 
(30) changes B/A from .23 to .51, C/A from .55 to .38, and D/A from .13 
to .38. The apparent  gain in trait  independence is spurious, of course, be- 
cause both MS(;×,) and MS,×.×,) are unaltered; the ~--~" X~,'s are un- 
affected by the adjustments.  Relative halo effect did disappear, being ab- 
sorbed into the base-line correlation across both raters and traits, reflected 
by the considerable rise in D/A. 

The average of the three r 's  among raters, est imated by means of (31), 
changes h'om .24 for the original rating sums, ~- ' r  X,,, , to .81 among such 
sums of ratings adjusted by  (30). The coefficient of equivalence rises from 
.84 for unadjusted ratings to .89 or .91 for adjusted ones, depending upon 
how many  degrees of freedom, ( I  -- 1)(RT - R) or ( I  - 1)(RT -- 1), are 
~lsed in (32). 
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A n  Extension 

For many analysis-of-variance situations one needs a mean square whose 
2 mathematical expectation is just a ,  or very nearly so, in order to devise 

proper error terms and to estimate components of variance, ttaving each 
rater rate each ratee-trait combination more than once under randomized 
conditions that minimize memory carryover will help meet this need. The 
multiple ratings of each ratee on each trait can be considered an ordered 
fourth (fixed?) effect, say sequence, with s = 1, 2, . . .  , S; S > 1. Now the 
notation for the rating received by the ith ratee from the rth rater the sth 
time on the tth trait is X . . , .  If the MS.×.×.×,~ has a relatively large number 
of degrees of freedom, it might be employed as the MS with ELMS] = a~, 

2 the component of variance under the reasonable assumption that ~.×.×.×o , 
attributable to the third-order interaction, is negligible. 

A complete analysis of such ratings, both by analysis-of-variance and 
correlational methods, may be worthwhile, especially for such comparisons 
as ~.°,,.,~ with ~.,,~,,, to check upon intra-rater versus inter-rater reli- 
ability. Components of variance should also be informative. If S > 2, one 
might employ orthogonal polynomials to test for nonlinear trends in the 
rating sequence [7]. 

For the four-factor design there are seven mean eovariances, as con- 
trasted with three for the three-factor design; these are 

coy (X . . ,  , X~,o,), cov ( X , ,  , X , , , ) ,  . . .  , coy (X~o, , X~, . , , , ) .  

Because eight mean squares involve ratees, the seven mean covariances and 
"-5 s,., can be computed. 

Concluding Remark 

I t  seems quite likely that the formulas given here are applicable far 
beyond the ratee-rater-trait situation. Abelson's heuristic table [1] classi- 
fying agents, objects, and modes for six types of studies lists the following 
possibilities from sociometry, clinical ratings, the semantic differential, 
laboratory experiments, psychological testing, and psychophysical or prefer- 
ence ratings: judges-] udgees-items, raters-conCepts-scales, conditions-subjects- 
responses, subjects-conditions-responses (trials?), occasions-subjects-tests, 
and judges-stimuli-(hypothetical) scale components. 

Perhaps approaching a three-way classification of real numbers in the 
ways suggested in this paper furthers Abelson's goal of offering "a promising 
combination of experimental and correlational approaches" and partially 
resolves the dilemma to which Cronbach [6] pointed. 

Appendix:  Ouaine of Proof 

Gulliksen ([9], p. 54) and Stanley ([15], pp. 90-91) have shown that the 
MS.×~) of a two-way classification is equivalent to s~ -- cov (Xi , Xi,) 
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where j ~ j ' .  Applying this relationship to the matrix of individuals-by-trait, 
means (over raters), one can by the following proeedure secure formula 
(3): 

I R T 

MS(,xn = Y~ Y'. ~ (J('~., -- X , .  - 2 . . ,  + S[ . . . )2 / ( I  - 1)(T -- 1) 

1 T '-1- / ( I  --  1 ) ( T -  1) 

= R ~m-,..,,~, _ ~  eov.(E x , . , / R ,  _ X , . , . / R  
T T ( T -  1) 

8"(X~+X~t+ " ' ' + X R I )  

_ .~_ ~ e o v ( X , , +  - - -  + X R ,  , X , , '  + . - "  + X , , . )  / R T  
- -  T - - 1  - -  

= g ,  + ~ cov  (X. ,  , X . , , )  

-- ~2 cox" (X,, , X., .)  4. ~ coy  ( X . ,  , X . , , , )  / ( T  - .1) / R T  

= d ,  + (R - 1) coy ( X . ,  , X , . , )  - eov (X., , X. , . )  

-- ( R -  1) cov(X~,  , X . . , . )  = A + (R - 1 ) B -  C -  ( R -  I)D. 

Formulas for the other first-order interactions can be obtained in the same 
way as (3), above. 

To secure (4), for MS,x,×, )  , 

(3a) a ~ s . . . ,  = .4. - [(R -- 1)B -t- (T -- 1)C 

4- (R -- 1)(T -- 1 ) D ] / ( R T  --  1) 

and then 

(34) (Sum of Squares)(,×,,) -- SS ,x ; )  + SS,×, )  + SS(,x~×n • 

Formulas (1), (9), and (17) are readily secured in a straightforward 
manner  from the definitional formulas for MS{ , hiS, , and MS, . Finally, 
note that ,  for example, 

(35) R T ( I  -- 1)A = SS~ + SS(~×.) 4- SS,×, )  + SS(;×,xn • 

This relationship, known from fundamental considerations of the analysis 
of variance bd'orc solving for A via formulas (1)-(4), constitutes an inde- 
pendent cheek of (5) and, therefore, indirectly of (6)-(8). 
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