
 MULTIPLE RANGE AND MULTIPLE F TESTS*

 DAVID B. DUNCAN**

 Virginia Polytechnic Institute
 Blacksbhrg, Virginia

 1. INTRODUC'FION

 The common practice for testing the homogenieity of a set of n

 treatment means in an analysis of variaince is to uise an F (or z) test.

 This procedure has special desirable properties for testing the homo-

 geneity hypothesis that the n population means concerned are equal.
 An F test alone, however, generally falls short of satisfying all of the
 practical requirements involved. When it rejects the homogeneity

 hypothesis, it gives no decisions as to which of the differences among
 the treatment means may be considered siginificant and which may not.

 To illustrate, Table I shows results of a barley grain yield experiment

 conducted by E. Shulkcum of this Institute at Accomac, Virginia, in
 1951. Seven varieties, A, B, . , G, were replicated six times in a

 randomized block design. The F ratio (in section b) for testing the

 homogeneity of the varietal means is highly significant. This indicates
 that one or more of the differences among the means are significant
 but it does not specify which ones.

 TABLE I. BARLEY GRAIN YIELDS IN BUSHELS PER ACRE

 a) Varietal Means Ranked in Order

 A F G D C B E

 49.6 58.1 61.0 61.5 67.6 71.2 71.3

 b) Analysis of Variance

 Source d.f. m1s. F
 Between varieties 6 366.97 4. 61**
 BetweeIn blocks 5 141.95
 Error 30 79.641

 c) Standard Err or of a Varictal Aleaab

 /= 79.64/6 = 3.643 (a12 = 30)

 The problem we wish to consider is that of testing these differences
 more specifically. Several test procedures have been proposed for

 *Sponsored by the Office of Ordnance Resear cil, U. S. Arimiy, under Cointract DA-36-034-ORD-1477.
 Technical Reports Nos. 3 (June 1953), 6 (September 1953) aind 9 (July 1934).

 **Now at the University of Florida.
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 2 BIOMETRICS, MARCH 1955

 answering this problem. The simplest of these is one which is often

 termed the least-significant-difference (or L.S.D.) test. This has devel-
 oped from a brief discussioni of the problem by R. A. Fisher (9, section
 24) and is described in detail by several authors, for example, Paterson

 (14, pp. 38-42) and Davies (4, section 5.28). In this test, the difference
 between any two means is declared significant, at the 5% level, say,

 if it exceeds a so-called least significant difference /2 tsm (t being the
 5% level significant value from the t distribution), and provided also

 that the F test for the homogeneity of the n means involved is sigiificant.

 If the F test is not significant, none of the differences is significant
 irrespective of its magnitude relative to the least significant difference.

 Many other tests have also been proposed for solving this problem,
 including several put forward within the last year or two. Further
 tests are being developed at the present time. Originators of these,
 not to mention all, include D. T. Sawkins (18), D. Newman (12),
 D. B. Duncan (5-8), J. W. Tukey (21-23), H. Scheffe (19), M. Keuls (10),
 S. N. Roy, R. C. Bose (17), H. 0. Hartley (25), and J. Cornfield, M.
 Halperin, S. Greenhouse (3). Unfortunately, these tests vary consider-
 ably and it is difficult for the user to decide which one to choose for any
 given problem.

 One objective of this paper is to consider several of the procedures
 which have been proposed and to illustrate their basic points of differ-
 ence, using a geometric method with simple cases involving only three
 means. A second objective is to present certain simple extensions of
 the concepts of power and significance which are useful in analyzing
 these procedures. The development of the simple case examples and
 the latter general conlcepts will point the way to a clearer evaluation
 of the relative properties and merits of the procedures in general and
 should help the user in making a choice among the available procedures.
 The final objective is to present a new multiple range test (8) which
 combines the features considered to be the best from the previously
 proposed tests.

 2. THE NEW MULTIPLE RANGE TEST

 Before discussing the general problem in more detail, it may be
 helpful to look ahead at an example of the application of one of the
 tests. An example of the proposed new test will be used for this purpose.
 This new multiple range test, as it will be termed, combines the simplicity
 and speed of application of a test proposed by Newman (12) and Keuls
 (10) with most of the power advantages of the multiple comparisons
 test previously proposed by the author (6, 7). For the example, we
 shall consider the application of a 5% level test to the varietal yield
 means in Table I.
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 MULTIPLE F TESTS 5

 The data necessary to perform the test are: (a) the means as shown

 in Table I; (b) the standard error of each mean, s,,, = 3.643 and (c) the
 degrees of freedom on wvhich this standard error is based, n2 = 30.

 First, a table (Table II) of special significant studentized ranges
 for a 5%0 level test is entered at the row for n2 = 30 degrees of freedom,

 and significant studentized ranges are extracted for samples of sizes
 p = 2, 3, 4, 5, 6 and 7. The values obtained in this way are 2.89, 3.04,
 3.12, 3.20, 3.25 and 3.29 respectively. (Table III shows the significant

 studentized ranges which would be used for a 1%0 level test.)
 The significant sttudentized ranges are then each multiplied by the

 standard error, s, = 3.643, to form what may be called shortest significant

 ranges. The shortest significant ranges R,2 , R3 , . *- , 1R7 are recorded
 at the top of a worksheet as showii in Table IV.

 As a finial preparatory step it is convenienit to display the means in
 ranked order from left to right, spaced so that the distances between

 them are very roughly proportional to their numerical differences.
 This may be done onl the worksheet immediately under the shortest
 significant ranges as in Table IV. The lines underscoring the means
 indicate the results arid are added as the test proceeds.

 TABLE IV. WTORISII'E'fT

 a) Shortest Significant Ranges

 p: (2) (3) (4) (5) (6) (7)
 R,: 10.53 11.07 11.37 11.66 11.84 11.99

 b) Results

 Varieties: A F G D C B E
 Means: 49.6 58.1 61.0 61.5 67.6 '71.2 71.3

 Note: Any two means not uinderscored by the same line are significantly
 different.

 Any two ineans 'underscored bv the same liie ar'e not significantly different.

 We now set out to test the differences in the followinig order: the
 largest minus the smallest, the largest minus the second smallest, up

 to the largest minus the second largest; then the second largest minus
 the smallest, the second largest minus the second smallest, and so on,
 finishing with the second smallest minus the smallest. Thus, in the
 case of this example the order for testing is: E - A, E -F, E - G,
 E-D,E-C, E -B;B-A,lB-F,B-G,B-D, B -C; C-A,
 C - F, C -G, C - D; D - A,D-F,D-G;G-A,G-F;and
 finally F - A.
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 6 BIOMETRICS, MARCH 1955

 With only one exception, given below, each difference is significant
 if it exceeds the corresponding shortest significant range; otherwise it is
 not significant. Because E - A is the range of seven means, it must
 exceed R7 = 11.99, the shortest significant range of seven means, to be
 significant; because E - F is the range of six means, it must exceed

 R6 = 11.84, the shortest significant range for six means, to be significant;
 and so on. Exception: The sole exception to this rule is that no difference
 between two means can be declared significant if the two means concerned

 are both contained in a subset* of the means which has a non-significant
 range.

 Because of this exception, as soon as a non-significant difference is

 found between two means, it is convenient to group these two means

 and all of the intervening means together by underscoring them with
 a line, as shown for the means {G, D, C, B, E}, for example, in Table IV.
 The remaining differences between all members of a subset underscored
 in this way are not significant according to the exception rule. Thus
 they need not, and should not, be tested against shortest significant
 ranges.

 The details of the test are as follows:
 1) E - A = 21.7 > 11.99; thus E - A is significant.
 2) E - F = 13.2 > 11.84; thus E - F is significant.
 3) E - G 10.3 < 11.66; thus E - G is not significant, and hence

 E - D, E - C, E - B; B - G, B - D, B - C; C - G, C - D; and
 D - G are not significant by the exception rule. These results are all
 denoted by drawing the line under the subset {G, D, C, B, E}.

 4) B - A = 21.6 > 11.84; thus B - A is significant.
 5) B - F 13.1 > 11.66; thus B - F is significant.
 6) B - G, B - D, B - C; C - G, C - D; and D - G are not sig-

 nificant from step 3. No line need be added to show this because of
 the line under {G, D, C, B, E} already.

 7) C - A 18.0 > 11.66; thus C - A is significant.

 8) C - F -9.5 < 11.37; thus C - F is not significant; and C -G,
 C - D; D - F, D - G; and G - F are not significant by the exception
 rule. These results are all denoted by drawing the line under the sub-
 set {F, G, D, C}.

 9) D - A = 11.9 > 11.37; thus D - A is significant.
 10) D - F is not significant from step 8 and D - G is not significant

 from step 3 or 8.

 11) G - A = 11.4 > 11.07; thus G - A is significant.
 12) G - F is not significant from step 8.

 *The term subset will be used to include the complete set where necessary, as is the case here.
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 MULTIPLE F TESTS 7

 13) F - A = 8.5 < 10.53; thus F - A is not significant. The
 result is denoted by drawing the line under {A, F}.

 Each of the steps can be done almost by inspection and the complete
 test takes very little time. All that is necessary for a complete recording

 of the result is the array of means with the lines underneath, together
 with the brief statement giving their interpretation, as shown in sec-
 tion b of Table IV.

 In practice there is a short cut which can be used repeatedly to

 good advantage, especially when the number of means is large. Instead

 of starting by finding the difference E - A, subtract the shortest

 significant range for seven means from the top mean E. This gives
 71.3 - 11.99 = 59.31. Since A and F are each less than 59.31, it

 follows that E - A and E - F are both significant. This is so because

 the shortest significant ranges RI, become smaller with decreases in the
 subset size p. This takes care of steps 1 and 2 in one operation. The
 same idea can be used repeatedly throughout the complete application
 and may often eliminate many steps at a time especially in a case with
 a large number of means.

 The foregoing provides a brief introduction to many of the features
 of the problem involved as well as an illustration of the proposed new

 multiple range test. We now begin afresh considering matters in more
 detail.

 3. GENERAL ASSUMPTIONS AND DECISIONS

 In the general problem we are given a sample of observed means,

 ml, m2, ... , m, which are assumed to have been drawn independently

 from n normal populations with "true" means, A, y ,A2 ... * * , n respec-
 tively, and a common standard error (Jm . This standard error is un-
 known, but there is available the usual estimate sm , which is independent
 of the observed means and is based on a number of degrees of freedom,
 denoted by n2 . (More precisely, Sm has the property that n2s5/f is
 distributed as x2 with n2 degrees of freedom, independently of

 mIl, M2, *f ..imn *)
 In the simplest case, with only two means ml and m2, there are

 three possible decisions. These are:
 1) ml is significantly less than m2

 2) m1 and m2 are not significantly different;
 3) m2 is significantly less than ml a

 It is convenient to denote these decisions by (1, 2), (1,_2), and (2, 1),
 respectively. The order of the numbers in each pair of parentheses

 indicates the ranking of the means except when underscored, in which
 case the means are not ranked.
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 8 BIOMETRICS, MARCH 1955

 In passing it should be noted that we do not initend to restrict
 conisideration, as some writers have done, for example R. E. Bechhofer
 (1), to problems in which the middle decision (1, 2) is eliminated and

 the investigator is obliged to make one of the two positive decisions

 (1, 2) or (2, 1). Problems of this type and their extensions to cases

 involving more than two means may be regarded as special cases of

 the problems treated here in which the significance level is fixed at

 100% instead of the usual 5%O or 1% level.

 In the case n = 3, with three means, ml , m2 , and m3, there are
 19 possible decisions. These comprise:

 a) Six decisions of the form: "im1 is significantly less than m2, m2 is
 significantly less than M3 , and m1 is significantly less than M3 ." This
 joint decision may be conveniently denoted by (1, 2, 3). The remaining
 five denoted in the same way are (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2),

 and (3, 2, 1).

 b) Three decisions of the form: "iml is significantly less than M2

 and m3 , but m2 and m3 are not significantly different from one another."
 This joint decision may be denoted by (1, 2, 3). The remaining two

 denoted in the same way are (2, 1, 3) and (3, 1, 2).

 c) Three decisions of the form: "im1 and m2 are significantly less
 than M3 , but m1 and M2 are not significantly different from one another."
 This one may be denoted by (1, 2, 3) and the remaining two in a similar

 way by (1,_3, 2) and (2, 3, 1).
 d) Six decisions of the form: "iml is significantly less than M3 , but

 m1 and m2 are not significantly different from one another, and m2 and
 M3 are not significantly different from one another." This decision may
 be denoted by (1, 2, 3) and the remainder by (1, 3, 2), (2, 1, 3), (2, 3, _),

 (3, 1, 2), and (3, 2, 1).

 e) One decision stating: "ml , mi , and m3 are not significantly
 different from one another," which may be denoted by (1, 2, 3).

 The number of decisions increases very rapidly as n increases.

 In the general case with n means there are n! decisions of the form

 (1, 2, ... , n) with no underscorinig, (n - I)n!/2 decisions of the form
 (1, 2, 3, *-* , n) with one pair of means underscored, (n - 2)n !/3!

 decisions of the form (1, 2, 3, 4, * , n) with three means underscored,
 *.. , (n - 2)n! decisions of the form (1, 2, 3, 4, *.. ,n) with two over-

 lapping pair of means underscored, and so on through often large

 numbers of many forms finishing with one decision of the form
 (1, 2, ... , n) in which all means are underscored with the one line.

 The underscoring has the same interpretation as before, for example
 (1, 2, ... , n) is the decision that the means m1 , m2 , m , , are not
 significantly different from one another.

This content downloaded from 173.239.216.6 on Tue, 14 Nov 2017 01:46:03 UTC
All use subject to http://about.jstor.org/terms



 MULTIPLE F TESTS 9

 The statements of the respective decisions may alternatively be

 made in terms of the true means, A I, MU2 , . ) A,n . The statement,

 "mt is significantly less than mi ," is equivalent to the statement,
 ",ti is less than gU ." Thus, the decision (1, 2, 3), for example, implies
 the acceptance of the hypothesis that A1 < A2 < A13 . The statement,
 "mi and mi are not significantly different," is equivalent to the state-
 ment "Ai is unranked relative to A, " where this is taken to mean that
 there is insufficient evidence to tell whether Ai is less than, equal to,
 or greater than gU . Thus the decision (2, 1, 3), for example, consists

 of accepting the hypothesis that "M.) < A1, b'Y < 13 , but A, is unranked
 relative to A, ."

 4. CONCEPTS OF POWER AND SIGNIFICANCE

 4.1 Power Functions.

 In analysing the power of these tests we are first faced with the
 difficulty that none of them, not even in the simplest case involving

 only two means, is a two-decision procedure, whereas a power function
 as defined by Neyman and Pearson (13) is strictly a two-decision-test
 concept.

 In the three-decision test in the simplest case of two means, one

 way of avoiding this difficulty is to group the decisions (1, 2) and (2, 1)

 together as the decision that ml and m2 are significantly different, or

 in other words as acceptance of the hypothesis A,u Y 12 . A conveniient
 notation for this decision is (1 5 2). The given three-decision test is
 reduced in this way to a two-decision procedure with decisions (1,_2)

 and (1 # 2) and as such may be analysed as an a-level test of AI = 12
 against the two-sided alternative Al, 5 A2 . The power function ob-
 tained in this way is given by the probability of the decision (1 0 2)

 expressed as a function of the true difference E = A1, - 2 . This may
 be conveniently denoted by p(l 0 2), thus

 p(1 54 2) = P[dec. (1 I 2) 1 E, f2].

 An example of p(1 I 2) is illustrated by the familiar curve shown by
 the dotted line in Figure lb.

 Although p(l 0 2) is a most desirable function for measuring the

 properties of a test of Al = 12 against A, iU 12 it has a serious weakness
 for measuring the properties of a three-decision test of two means.
 By pooling the probabilities of the two decisions (1, 2) and (2, 1) for
 any given value of the true difference, it combines the probability

 of the correct decision (that I,i or 112 is the higher mean as the truth
 may be), with the probability of the most incorrect decision (that

 Ali is the higher mean when in fact 12 is, or that 12 is the higher mean
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 10 BIOMETRICS, MARCH 1955

 when in fact p, is). A function which combines probabilities of correct
 decisions with probabilities of serious errors in this way, is of no value
 in measuring desirable or undesirable properties. For this reason

 p(l 5 2) will not be used as a measure of power in this problem. It
 has been discussed only because this function is so familiar that other-
 wise readers might have expected to have seen it used.

 A more useful analysis of a three-decision test of two means is one
 which treats it as the joint application of two two-decision tests, namely,

 a test of the hypothesis, g1 < A, against the alternative g2 < A,, and
 a test of the hypothesis A2 < g1 against the alternative p, < 82 . This
 type of analysis, which is suggested in a more general form by Leh-
 mann (11, section 11), avoids the difficulties inherent in the p(l P 2)
 function, and extends readily to cases with more than two means.

 From this point of view, a three-decision test has two power functions

 p(2, 1) = P[dec. (2, 1) J E_ S2]
 and

 p(l, 2) = P[dec. (1, 2) C a 2E

 which are the Neyman-Pearson power functions of the tests of A,.< A2
 and ,2 < g1 respectively. Examples of these functions are illustrated
 by the sigmoid and the reverse-sigmoid curves respectively in Figure lb.
 Each of these functions has the merit that for any given value of the
 true difference e, the function gives the probability of a correct or
 incorrect decision, and it is therefore clear whether the function should
 be as high or as low as possible. For example, p(2, 1) represents the

 probability of deciding that y, is the higher mean. Clearly then, it
 will be desirable for p(2, 1) to be as high as possible for e - - 2 > 0,
 and to be as low as possible for e < 0.

 In the general case of n means we shall use nP2 power functions of
 the form

 p(i,j) = P[dec. (i,j) I Al , 2 , , cA2]

 where decision (i, j) includes all decisions which rank gi lower than gc,
 and i, j = 1, 2, ... , n; i 0 j. Each function p,(i, j) is the Neyman-
 Pearson power function of the test of the hypothesis Ai < pi against
 the alternative ui < Ai . In general, therefore, p(i, j) measures the
 probability of a correct decision with respect to ui and A , over all
 values of the true means for which gi < gu , and the probability of a
 wrong decision over all values of the means for which ,u; < Ai .

 This approach is greatly simplified in all tests we wish to consider
 as a result of the reasonable symmetry restriction that all test properties
 be invariant under all n! permutations of the true means. In other
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 MULTIPLE F TESTS 11

 words any test we consider must have the same properties for any set
 of values of the means irrespective of the identification of (the varieties
 represented by) the given means. Under these conditions it is necessary
 to investigate only one of the power functions p(i, j) in order to investi-

 gate them all. An example of this is shown by the symmetry of p(2, 1)
 and p(l, 2) in Figure lb.

 4.2 Significance Levels.

 So far as joint test properties are concerned only a relatively small
 number of significance levels, need be considered. These are chosen so
 as to be as few in number as possible and yet have the property that
 once they are fixed at appropriate values, the merits of a test can then
 be judged solely in terms of its individual power functions.

 In the simplest case involving only two means the significance

 levels or maximum type 1 error probabilities of the tests of p, < A2
 andA2 < p, considered individually both occur when p, = t2 and, by
 symmetry, these levels are equal. Because of this, only one significance
 level need be considered for the joint test, and this level may be taken as

 a = P[dec. (1 F 2) 1 p, = A2],

 which is the familiar significance level of the Neyman-Pearson test
 of 91 = 42 against /u $ 2 . Given that a is fixed at ao the significance
 levels of the individual tests must be 'a,0 each.

 In further discussion a type 1 error in a test of pi < pi , namely
 the decision (j, i) in cases where pi < pu , may be usefully termed an
 error of wrong ranking or the finding of a wrong significant difference.
 The importance of fixing a at a0 may then be said to rest, not so much
 on the fact that the probability of a wrong ranking when p -.2 = 0
 has been fixed at a0 , but on the fact that the probability of a wrong
 ranking at any value of the difference, - 1A2 cannot exceed a0 .

 Any test for the case of three means may be regarded as having
 four significance levels of a nature similar to the significance level of a
 two-mean test. Three of these are of the form

 a(l, 2) = maximum P[dec. (1 $ 2) | pi = A21,

 where the decision (1 = 2) includes all decisions which rank A,u above
 or below u2 and the maximization is taken over all possible values of
 the true means , A, and A3 for which Ml = .2 . The level a(l, 2) is,
 moreover, the maximum value of the probability of making a wrong
 ranking of p, and 12 over all possible values of the true means. The
 remaining two levels of this same form are
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 12 BIOMETRICS, MARCH 1955

 a(1, 3) -maximum P[dec. (1 #z 3) 1 = A3],

 a(2, 3) = maximum P[dec. (2 5 3) 11, = 13],

 and are the maximum probabilities of making a wrong rankinig between

 A1 and g3 and between 12 and g3 in a similar way.
 The fourth significance level involves all three means anid is defined as

 ae(1, 2, 3) = P[dec. (1, 2, 3) | Al = A2 = 13],

 where the decision (1, 2, 3) includes all decisiolns Avhich rank at least
 one pair of the means relative to one another. In other words, decision
 (1, 2, 3) includes all the 19 decisions previously listed except decision

 (1, 2, 3). This three-mean significance level is simply the probability
 of finding at least one wrong significant difference between ml, M2
 and m3 , that is, of making at least one wrong ranking of any pair of

 the true means A1i, A2 , and 13
 In the case of four means there are eleven significance levels which

 may be defined in a similar way. Six of these are two-mean significance
 levels of the form

 a(1, 2) = maximum P[dec. (1 5 2) | A1 = 12],

 where, as before, the decision (1 5 2) includes all decisions ranking

 Al and g2 relative to one another, and the maximization is taken over
 all values of the means A , , L2 3 and A for which p = 92 . The re-
 maining five two-mean significance levels defined in a similar way are
 a (I, 3), a (1, 4), a (2, 3), a (2, 4) and a (3, 4).

 Four of the levels in this case are three-mean significance levels of
 the form

 ae(l, 2, 3) = maximum P[dec. (1, 2, 3) | Al 112 = 13],

 where the decision (1, 2, 3) includes all decisions which rank at least

 one pair of the means A1, ,U2 and 13 relative to one another, and where
 the maximization is taken over all values of the true means for which

 Al =1 3 * The remaining three three-mean significance levels
 similarly defined are a (1, 2, 4), a (1, 3, 4) and a (2, 3, 4).

 Finally there is a single four-mean significance level defined as

 a(l, 2, 3, 4) = P[dec. (1, 2, 3, 4) 1 A1 = A2 = 13 = 14],

 where decision (1, 2, 3, 4) represents all decisions which rank at least
 one pair of the four means relative to one another. In other words
 decision (1, 2, 3, 4) includes all decisions except decision (1, 2, 3, 4),
 which, following the previous pattern, is the decision that none of the
 differences among the four means is significant.
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 MULTIPLE F TESTS 13

 In a general test of n means, there are nC2 two-mean significance

 levels, XC3 three-mean significance levels, and so on up to Cn = 1
 n-mean significance level. A p-mean significance level in general
 represents the maximum probability of finding at least one wrong

 significant difference among p observed means.

 On careful consideration it appears that all* errors of wrong ranking

 in a test of n means can be adequately controlled by fixing these sig-

 nificance levels at appropriate values. The problem of finding a good

 test is then reduced to finding a procedure which optimizes the power

 functions p(i, j) given that these significance levels are fixed at the
 chosen values.

 4.3 Protection Levels.

 The complement of any p-mean significance level may be termed

 a p-mean protection level, and is the minimum probability of finding

 no wrong significant differences among p observed means. The name
 "protection level" is suitable in that the level measures protection

 against finding wrong significant differences.
 Thus, in a two-mean test, there is one protection level

 -y = P[dec. (1, 2) 1 /1=2] = 1-a.

 If the significance level is 5%0, for example, the protection level is 95%0.
 In a three-mean test, there are three two-mean protection levels

 -y(l, 2), y(l, 3) and -y(2, 3), where, for example,

 -y(l, 2) = minimum P[dec. (1, 2) 1 Al = ,U2] = 1-a(, 2)

 and decision (1,_2) includes all decisions for which Al and A 2 are not
 ranked relative to one another. In addition there is one three-mean

 protection level

 y(l, 2, 3) = P[dec. (1, 2, 3) | l = /12 = J3 =1 - a(1, 2, 3).

 In a geineral test of n meaiis there are ,C0 p-mean protection levels
 of the form

 ,y(a, , a2 a .* )

 = minimum P[dec. (a, , a2 * a,) I Aa = Aa2 = * *ap]

 where p = 2, 3, *., n, each one being the complement of the corre-

 sponding* significance level. The symbols a, , a, , ap stand for
 the subscripts identifying the particular set of p means concerned.

 *oee also comments on class 2 protection levels in section 5.4.4.
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 14 BIOMETRICS, MARCH 1955

 (Thus decision (ai , a2, ... , ap) represents the decision that there

 are no significant differences between the observed means ma,1
 ma X , , map) a

 In further discussion of the controlling of errors of wrong ranking

 it will be somewhat more convenient to think in terms of fixing the

 protection levels of a test rather than in terms of fixing the significance
 levels.

 4.4 Consistent Protection Levels.

 We now consider the important question: In any test of n means,

 given that 'Y2 is an appropriate value for the two-mean protection

 levels, what values y3 , 74 , * , *y7,X should be regarded as satisfactory
 for the three-mean, four-mean, etc., protection levels, and for the

 n-mean protection level?
 First it should be noted that if a symmetric test with optimum

 power functions were constructed subject only to a restriction on the

 value -y2 , the higher order protection levels would almost invariably
 be too low to be satisfactory. For example in the case of four means

 when n2 = 0, a test of this type with Y2 = 95%0 would be obtained
 by applying six 5%/0 level symmetric normal-deviate tests to each of
 the six differences between the four means. The four-mean protection
 level of this multiple normal-deviate test, as it may be termed, will be

 seen later to be only 74 = 79.770. That is, the minimum probability
 of finding no wrong significant differences between the four means. is
 only 79.770. This is too low to be satisfactory. The three-mean pro-
 tection levels in the same test have the value -y3 = 87.8%0 which is
 also too low.

 On the other hand, it does not necessarily follow that all of the
 higher order protection levels should be raised to the value -Y2 of the
 two-mean protection level as some writers have implicitly assumed.
 Any increases in the latter levels must necessarily be made at the expense
 of losses in power (that is, of increases in probabilities of type 2 errors),
 and it is most important that the levels be raised no more than is ab-
 solutely necessary. We shall now show that there are good reasons* for
 raising the higher order protection levels only part of the way towards
 the value of the two-mean protection levels.

 Suppose, for the sake of an example, that a randomized block
 experiment were designed for the purpose of testing (a) the difference
 between two varieties V1 and V2 , (b) the difference between two
 fertilizers F1 and F2 and (c) the difference between two insect control

 *See also (5, section 6) and (6, p. 177).
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 MULTIPLE F TESTS 15

 spray methods S1 and S2 If interactions could be assumed to be
 zero, as might well be reasonable, a good design would be obtained

 by randomizing the four treatment combinations V,F,S, , VlF2S2,
 V2F1 S2 and V2F2Sl within each block, where VlFl S1 , for example,
 denotes the application of fertilizer F1 and spray method S, in a plot
 sown with variety V1 . If the observed means of these combinations

 are denoted respectively by ml , mi , m3 and m4 , the varietal, fertilizer
 and spray differences would be measured respectively by the independent
 differences:

 di = (ml + M2) - (M3 + M4) M il + M2 - M3 - M4

 d2= (ml + M 3)- (M2 + M4) l - l2 + M3 - M4

 d3 = (ml + M4) - (M2 + M3) = - M2 - M3 + M4

 Now, provided that the number, r, of replications and hence the
 number of error degrees of freedom, n2 = 3r, were large enough, it
 would be possible to make independent tests of the three given differ-
 ences. Under these circumstances, if, say, a 5% level test of each
 difference were desired, no reasonable objection could be raised to the
 joint unmodified application of three 5% level tests. The joint use of
 these tests would be just as valid as if the differences were tested in
 three independent and separate experiments. In this joint test, it is
 clear that if the three null hypotheses in the individual tests were

 simultaneously true, which would imply that the true means ul , 12,
 93, and A4 of the four combinations were all equal, the probability of
 not rejecting this joint hypothesis would be (.95)3 = 85.7%o. Although

 this value is lower than 95%0, it is clearly an implicitly unobjectionable
 result of having chosen a 95% protection level for each of the inde-
 pendent tests.

 Now, the error of wrongly rejecting the hypothesis l AL2 = /3 = /14
 in this type of test is no less serious than the error of rejecting the same
 hypothesis in the type of test under consideration, and a four-mean
 protection level is the probability of not making an error of this kind.
 Hence, it is argued that the objections to the low four-mean protection
 level 74 = 79.7% of the 5% level multiple normal-deviate test above
 would be appropriately remedied if the level were raised to 74 = 85.7 %.

 A similar analogy with two independent 5%0 level tests of two
 independent differences among three means can be invoked for choosing
 an appropriate value for the three-mean protection levels in the same
 test. This leads to the conclusion that the objection to the low value
 73 = 87.8%o for these levels would be removed if they were increased
 to (.95)2 = 90.25%o.
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 16 BIOMETRICS, MARCH 1955

 The same argument readily generalizes to give the result that the

 value -y, = y 2- for any p-mean protection level is appropriate in asso-
 ciation with the value Y2 for a two-mean protection level. The exponent
 p - 1 in these levels is given by the number of independent com-

 parisons which can be specified, or the degrees of freedom, among the

 p means. For this reason the levels y, _'- may be termed protection
 levels based on degrees of freedom.

 Protection levels of this type have been used in constructing the

 multiple comparisons test (6, 7) and the new multiple range test. In

 the example of section 2 giving a 5%0 level new multiple range test of
 the seven barley variety means, the values of the protection levels are:

 72 = 95%0, 7y = 90.25%0, 74 = 85.7%0, 75 = 81.5%0, ad = 77.4%0 and
 77 = 73.5%o. Since 72 = 95%0, we know that the probability of finding
 a significant difference between anly two means when the corresponding

 true means are equal is definitely less than or equal to 570. The higher
 order protection level values are in accord with this property.

 In a similar 570 level test of 101 means, the first seven protection
 level values would be the same and the remainder would get progres-

 sively smaller down to y1o, = (.95)100 = 0.6% for the 101-mean pro-
 tection level. Despite the independent tests analogy already given,
 the higher order protection levels may appear unduly low unless their
 progressively diminishing importance is fully realized. The appro-
 priateness of these higher order protection levels in general will be

 emphasized by a further discussion of the independent tests analogy
 with particular reference to the justification of the 101-mean level

 Tio1 = 0.6%.
 To take a corresponding analogy, suppose that in the course of a

 year's work, an experimenter has tested 100 separate null hypotheses
 H1 , H2, *. , H1oo in 100 independent experiments, and that he has
 chosen a 5%0 level test in each case. Should he be alarmed over the
 obvious fact that if the 100 null hypotheses were simultaneously true
 there has been only a 0.6%7 chance of not rejecting this joint hypothesis?
 Clearly the answer is no, because it would be illogical to alter any
 given individual test for reasons entirely independent of that test.

 In choosing a 570 level of significance in each test the experimenter
 has implicitly expressed the opinion that there is some a priori chance
 that the respective null hypothesis is not true. It can be stated as a
 general rule that the more one can argue against the truth of a null
 hypothesis on a priori grounds the lower, other things being equal,

 should be the protection level of the test, in order not to waste power
 in detecting the truth of the alternative hypothesis. In choosing a

 5%/0 level test which has a 95%0 protectioni level the experimenter is
 implicitly prepared to assume that the a priori probability of the null
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 hypothesis is less than unity and lower than if, for example, he had

 chosen a 1% level test which has a 99% protection level.
 Now, if the individual null hypotheses are independent in the sense

 that their a priori probabilities are independent, and if these probabilities

 are each appreciably less than unity as is implied by the choice of 5%
 levels of significance, the joint a priori probability for p such null

 hypotheses will be the product of the individual probabilities and will
 get less and less as p increases. Hence in the interests of not wasting
 power in detecting the truth of alternatives, it can well be appropriate

 to have lower and lower protection levels for each joint null hypothesis

 as p increases. In the case of the joint iiull hypothesis that all of the
 100 individual null hypotheses are simultaneously true, for example,

 the a priori probability would be so small that it may be wasteful to
 use more than a very low protection level.

 On extending this line of argument to a full average-weighted-risk
 analysis (24) including considerations of error weight functions and
 more complete Bayes (a priori probability) functions, the appropriate-
 ness of the overall joint test can be fully substantiated. In the full
 analysis the result is found to depend lot directly on the independence
 of the Bayes functions of the individual tests, but on a closely related
 property, namely, the additivity of the error weight functions of the
 individual tests. An interestinig more general form of this result, the
 proof and discussion of which will be presented subsequently as a

 separate paper, may be suimmarized as follows:

 Let T represenit the joint test formed by k individual tests

 T1, T2, I , .Tk Suppose that the error weight functions of
 the individual tests are additive in the sense that the error

 weight or loss for any joint decision D given aniy joint hypoth-
 esis H in the joint test T is equal to the sum of the error

 weights or losses for the decisions D1 , D, * * , Dk given the
 respective hypotheses H1 , Lb . * , HA., , where the latter are
 individual test decisions and hypotheses forming D and II
 respectively.

 Then it follows, that if each individual test Ti is an opti-
 mum procedure from the point of view of minimizing average
 weighted risk, the joint test T is also an optimum procedure in
 the same sense.

 Applying this to our example with 100 independent 5% level tests,
 we can say that since the error losses from one test to the next are
 additive, which is reasonable to assume because of the independent
 nature of the tests, and if each 5% level has been chosen as the best
 level to use for each test considered individually, then all features of
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 18 BIOMETRICS, MARCH 1955

 the joint test are optimum including, among many others, the low

 0.6% protection level under special consideration.
 A corresponding argument may be developed concerning the higher

 order protection levels in a test of the differences between n means.

 The larger the number of means involved, the less the a priori chance
 that the means will be homogeneous and the less, therefore, the need
 for a high protection level. The 101-mean protection level value of
 0.6% in a 5% level multiple range test of 101 means, for example,
 may well be an optimum value for this level because of the remoteness

 of the possibility that all of the 101 true means are equal.

 Owing to added complexities, it has not been possible thus far to
 prove in complete detail that protection levels based on degrees of
 freedom are exactly optimum in these tests also. However, since such
 protection levels are optimum in sets of independent tests, and since
 their functions are so similar in these tests, it is safe to conclude at
 least that they are close to optimum, and far closer than their only

 proposed rivals, namely, levels which are all equal to the two-mean
 protection level. It therefore seems sound practice to use these levels
 until they can be further improved by a more thorough minimum
 average risk analysis.

 Having defined a set of relations among the values of the p-mean
 protection levels of a test, we therefore need to specify only one of these
 values and the remainder are fixed accordingly. From a practical
 point of view it is most pertinent and useful to define the levels in the
 way adopted in the multiple comparisons test (6, 7) and retained in the

 new multiple range test. The example given for the latter test in
 section 2 is a 5% level test in the sense that its two-mean significance

 levels are 5% and the protection levels areyrp = (.95)2-1, p = 2, 3, * * , 7.
 Likewise in a general test of n means, an a-level test denotes a procedure
 in which the two-mean significance levels are a and the protection

 levels are -y = (1 - a)p-', p = 2, 3, *.. , n. With the significance
 level of a test defined in this way, all that is necessary in choosing a
 level for a test of a given set of n means is to choose the level which
 would be considered appropriate for a test of the difference between
 any two of the means assuming that the remaining means were not present.
 Provided an appropriate value is chosen for this level, the remaining
 levels in the test are automatically fixed at their correspondingly
 appropriate values.

 5. REVIEW OF SEVERAL TESTS

 Comparisons will nlow be made between several test procedures
 which have been proposed for the given problem. In most of the detailed
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 discussion, consideration will be restricted to the following special
 simplifying conditions: The degrees of freedom for error will be assumed
 to be infinite, i.e., n2 = co; the standard error of a mean will be assumed
 to be unity, i.e., 0m = 1; and the significance level a of each test will

 be 5%, i.e., a = .05. These will be referred to briefly as the special
 conditions n2 = , 0,, = 1 and a = .05. This will provide a simple
 and familiar context for bringing out the main points of difference
 between the tests as clearly as possible. These main points are essenti-
 ally unaltered when the special conditions are removed.

 5.1 The Symmetric Three-Decision t Test of Two Mfeans.

 In the case of two means, the best test for choosing between the

 three possible decisions is the following familiar rule, which may be
 termed an a-level symmetric three-decision t test: Make the decision (1, 2)

 if ml - m2 < - V\2tasm , the decision ( 1_2) if I ml - m2 1 < V\2tasm y
 or the decision (2, 1) if m1 - m2 > -\12tas,, ; where ta is the two-tail
 a-level significant value of t.

 Under the special conditions nf2 = c m = .05, the test
 reduces to a 5% level symmetric three-decision normal-deviate test and
 the significant difference V\2tasm V 2UaOm is the familiar value
 1.96OV2 = 2.77.

 This test is satisfactory for the case of two means, and it is onily
 when we pass on to consider tests involving more than two means that
 the differences arise in proposed test procedures. It is worthwhile,
 however, to consider various special details of an analysis of the three-
 decision normal-deviate test as an introduction to methods of analysing
 the more complex tests.

 (i) Sample Space. A common useful method for representing
 this test graphically is shown in Figure la. In this figure, the horizontal
 straight line provides an example of a one-dimensional sample space
 and is used for plotting the observed difference x = m1 - m2 . Any
 point on this line representing an observed value of x is called a sample
 point. The line is divided into three intervals, x < -2.77, -2.77 <
 x < 2.77, and 2.77 < x. These represent the respective sets of points
 for which the decisions (1, 2), (1, 2) and (2, 1) are made and are termed
 decision regions. It is convenient to denote each region by the same
 symbol, (1, 2), (1,_2) or (2, 1), that is used for the corresponding
 decision.

 (ii) Parameter Space. The straight line in Figure la may also be

 used for plotting values of the "true" difference, e = A,- 2 , between
 the true means involved. When used in this way, the line provides an
 example of a parameter space, as distinct from its function as a sample
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 space when tised for plottiing x. Any poiInt oIn the line representiing a
 given value of E is called a parameter point.

 (iii) Probability Density. In the special case wve are considerinlg,
 the probability distribution functioni f(x; E) of a sample poinlt x (oh-

 f(x; O)

 2.77 0 2.77 x ml -m2

 (1,2) (1L2) O (2,1)

 F I G U R 1' la

 Regions for a 5%-level syttumetric three-desision nornial-deviate test (oa, = /2)

 1.0

 .8

 .6 p12 i p21

 p ((1/2)

 -8 -6 -4 -2 0 2 4 6 8 (

 FIGUItE lb

 Power Functions for c5% Level Symmetric Three-Decision Normal-Deviate Test (Z =

 served difference) about a given parameter point E (given true difference)
 is given by a normal probability density function with mean E and vari-
 ance 2. For example, when E = 0 this function may be represented by
 the familiar curve showni in Figure la. The curve for any other value
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 of e has the same shape and is located with its center over the given e

 value.
 (iv) Power Functions. The power function p(l, 2) representing

 the probability of decision (1, 2) for any given value of e is given by

 the area under the probability density curve for the given e, over the
 region (1, 2). Likewise the power function p(2, 1) for the same E value

 is given by the area under the same curve and over the region (2, 1).
 The functions p(l, 2) and p(2, 1) are represented by the reverse-sigmoid

 and the sigmoid curves in Figure lb.

 (v) Significance and Protection Levels. The significance level,
 a = 5%, of this test is represented by the sum of the ordinates of the

 power curves in Figure lb at e = 0, each of which is 2'7%. The protection
 level is 1 - a = 95%0. In Figure la, the significance level is the sum
 of the areas under the dotted curve for E = 0, over the regions (1, 2)

 and (2, 1). The protection level is the area of the same curve over the
 region (1, 2). Extensions of these familiar ideas will be useful in illus-
 trations of corresponding features in tests of more thain two means.

 The virtues of the 5% level normal-deviate three-decision test can
 be summarized most usefully as follows: The minimum protection

 against making a wrong ranking of the two means is 95%o, and, for all
 procedures for which this is true, the power curves of this test are
 uniformly maximized over all values of E for which they measure prob-
 abilities of correct decisions, and are uniformly minimized over all
 values of e for which they measure probabilities of incorrect decisions.
 This provides a good example of the general usefulness of the new
 multiple power function analysis which we have adopted for this and
 for the more complex procedures.

 5.2 Tests of Three Means. General Details.

 (i) Sample Space. To represent a test involving three means,

 mIlI M2, and m3 , a twvo-dimensional sample space or plane is required
 in place of the one-dimensional sample space or line used above for a
 two-mean test. In this two-dimensional space it is convenient to plot
 the difference xl = ml - `m2 on the horizontal axis and the comparison
 X2 = (ml + m2- 2m3)/ V3 on the vertical axis as rectangular Cartesian
 coordinates. Figures 2, 2a, 2b and 2c, and all subsequent sample
 space illustrations use these particular coordinates. It will be noted
 that X2 is distributed independently of x1 anld has the same variance,

 ax = 2o- . This leads to certain helpful features of symmetry which
 will become evident as we proceed.

 Any set of values for the three differences ml - m2 , mI - M3
 and m2 - m3, between the three means, can be represented by a sample
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 poiInt (xl, x2) in this two-dimensional sample space. For example,
 the set of differences ml -2 M=4, n1 M- M3 = -1, andi2 - M3 =-5,
 found in the sample of means M2 = 10, mi = 14, n3 = 15, gives x] = 4
 anid X2 = -2 V3. These differenices would thus be represented by
 the point (4, -2 V3) located 4 units to the right of and 2\/3 units
 below the center of the space. The inverse relations by which the differ-

 (3s1s2) 1 2 ~(3.,2j1

 O (312) /

 (1.,3.,2) 3( 1 j.23.1

 (1,3, 2)-32 1 ---2)(2,,j -(2,3 ,1)--X1

 FIGURE 2 ( 1 3

 (1 +. V3) 2/ad - (-31 V)

 FIGURE 2

 Regions of 5% Level Multiple Normal-Deviate Test (n2 = 00, afm=1

 ences can be obtained from a sample point are ml- M2 Xi ml-
 M3 = (xl + a/13x2)/2, andM m- M3 = (-xl +, A3X2)12. Thus a
 point (-2, 1) represents the set of differences ml - M2 = -2, mi -
 M3 = -(2 - V3)/2, andi2 - M3 = (2 + V3)/2.

 (ii) Parameter Space. The plane used as a sample space in these
 figures may also be used for plotting values of the "true" comparisons

 =l' - g2 and C2 = (Al + b2 - 2A3)/V3 between the true means
 involved. When used in this way it is termed a parameter space, and
 values for E1 and E2 constitute a parameter point (e1, E2). In the param-
 eter space we shall need to make frequent references to the parameter
 point (e1 , C2) = (0, 0), the origin, at which all true means are equal,
 i.e., at which i J -/2 = g3 . Similarly we shall need to refer to the

This content downloaded from 173.239.216.6 on Tue, 14 Nov 2017 01:46:03 UTC
All use subject to http://about.jstor.org/terms



 MULTIPLE F TESTS 23

 - m.~~~~~~~~~-
 E tr }\ _ C)

 E \ N N N N

 \~~~ N
 N~~~~~~~ I @ o/

 N - -/ V/ / - Ic

 N ~~ Nt N X

 I H 1

 El~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 HcI HO Q \

 ~? %Q4-)

 H1 H I O {

 _ j H p

 ;q Jo

 5 5

This content downloaded from 173.239.216.6 on Tue, 14 Nov 2017 01:46:03 UTC
All use subject to http://about.jstor.org/terms



 24 BIOMETRICS, MARCH 1955

 dotted lines labelled gA = M2 , Al = g3 , and M2 = g3 in Figures 2a, 2b,
 and 2c, representing all points for whichA, = M2 y Al = A3 , and 2 =M 3 y
 respectively. The position of a parameter point on any one of the lines

 depends on the magnitude of the third mean relative to the two equal

 means represented by the line.
 (iii) Probability Density. The probability distribution of a sample

 point (x1, x2) depends only on (E1 , 62) and from the definition of x1

 and X2 it is readily seen that the distribution function f(x1 , X2; E1 e E2)
 is a bivariate normal one. Each xi is distributed normally and inde-
 pendently about Ei as mean and with a variance of 2. The distribution
 for any parameter point (E1 , E2) can be visualized geometrically as a

 bell-shaped surface standing on the sample space plane with its center
 located over the given parameter point.

 5.3 The Multiple t Test.

 To illustrate the way in which a test can be represented in the

 sample space, we shall consider a previously mentioned special case of
 the procedure obtained by applying an a-level symmetric three-decision

 t test separately to each of the hypotheses, g1 = M2 , l = 3 and A2 = A3 .
 This may be termed an a-level multiple t test, and readily generalizes
 to the case of n means in which the individual t tests are applied to

 all C2 hypotheses of the form Aj = u; which equate the means considered
 in all possible pairs.

 As has been pointed out, this procedure does not provide a satis-
 factory test for our problem, and it is definitely not recommended for

 this purpose. We use it here and at other points in the discussion
 because of the excellent introduction it affords to better but more
 complex procedures.

 Under the special conditions n2 = co o, = ,a = .05, the a-level
 multiple t test reduces to the 5% level multiple normal-deviate test.
 The 19 regions of this test are as shown in Figure 2.

 (i) Decision Regions. The regions of the joint test are formed by
 the symmetrical intersection of three sets of two-mean test regions as
 shown in Figures 2a , 2b , and 2c. In Figure 2a the lines m1 - m2 =
 -2.77 and m1 - m2 = 2.77 divide the sample space into three regions
 (1, 2), (1, 2), and (2, 1). The region (1, 2) consists of the entire vertical
 strip passing down the center of the plane between the lines
 m- m2 = -2.77 and m1 - m2 = 2.77. The regions (1, 2) and (2, 1)
 are the remainders of the sample space plane lying to the left and

 right of (1,_2), respectively. These are the regions of the test of Al = A,
 and are two-dimensional extensions of the corresponding one-dimensional
 regions in Figure la. The notation has the same meaning as before;
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 for example, if a point falls in (1, 2) the decision (1, 2) is made, namely
 that ml is significantly less than m2 .

 Likewise, the lines ml -m = ?t2.77 in Figure 2b divide the sample

 plane into the three regions (1, 3), (1, 3), (3, 1) for the test of 4, = U3 ,
 and the lines m2 -m = i2.77 in Figure 2c divide the sample plane

 into the three regions (2, 3), ( (3, 2) for the test of 42 = /3 . The
 sets of regions for each of these tests are identical with those for the

 test of g4 - ,/2 , except for a rotation about the origin which is 60?
 counterclockwise for the first and 600 clockwise for the second.

 Each of the 19 product regions for the joint test in Figure 2 cor-
 responds to one of the 19 decisions previously listed for the case of

 three means. For example, in the intersection of (1, 2), (3, 1), and
 (3, 2) in the top left-hand corner of the figure, the associated decisions

 (1, 2), (3, 1), and (3, 2) constitute the joint decision (3, 1, 2). This, it

 will be recalled, is the decision that m1 is significantly less than m2,
 m3 is significantly less than m1 , and m3 is significantly less than m2
 The region involved may be thus conveniently denoted as the region
 (3, 1, 2). Likewise the intersection of the regions (1,_2), (1,_3), and
 (2,3) is the hexagonal region at the center in which the decision (1, 2, 3)

 is made. This may accordingly be denoted as the region (1, 2, 3).
 (ii) Power Functions. The power function p(l, 2), to take one

 of the six power functions involved, may be visualized as a power

 surface P[dec. (1, 2) 1 e, ,2] above the parameter space. The ordinate
 of the surface at any point (e1 , e2) is given by the integral over the
 region (1, 2) of the bell-shaped distribution for that point. Since the

 boundary of region (1, 2) is parallel to the e2 axis it is clear that sections

 of the power surface for different values of E2 are identical. Each section
 is depicted by the reverse-sigmoid p(l, 2) curve shown for the two-

 mean test in Figure lb.

 The remaining power functions p(l, 3), p(2, 3), p(2, 1), p(3, 1)
 and p(3, 2) may be visualized as power surfaces, identical with the
 surface for p(l, 2), except that the one for p(l, 3) is rotated 60? counter-

 clockwise about the origin, the one for p(2, 3) is rotated a further 600
 counterclockwise about the origin, and so on.

 (iii) Protection Levels. The two-mean protection level y(l, 2) =

 minimum P [dec. (1, 2) = /121 is the minimum integral over the
 strip-region (1, 2), of any of the normal bivariate distributions centered

 on the line 41 = A2 . Since the boundaries of (1, 2) are parallel to the
 line u4 = A2 the minimum is given by the integral for any one parameter
 point (0, E2), and is 95%. The remaining two-mean protection levels
 -y(l, 3) and y(2, 3) can be seen to be 9570 in the same way.

 The only remaining protection level is the three-mean level
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 Ty(1, 2, 3) = P[dec. (1, 2, 3) A - 2 3]. This is given by the
 integral over the hexagonal region (1, 2, 3) of the bell-shaped bivariate

 normal distribution centered at the origin (0, 0). Since this region is
 the locus of all points for samples in which the range is less than 2.77,

 it follows that the integral is the probability P[q3 < 2.77], where q,
 is the standardized range of a sample of p independent observations

 from a normal population. Tables for these probabilities are given

 by Pearson and Hartley (15), and from these a value of 87.8% is found
 for this three-mean protection level. According to the principle of
 protection levels based on degrees of freedom, the three-mean protection
 level should be 90.25%.

 In the test of four means the twelve power functions are similar
 to those of the simpler cases in that p(l, 2), for example, can be ex-
 pressed as a function of 1j - g2 alone. In the reduced form p(l, 2) is
 identical with the p(l, 2) function of the two-mean test illustrated in
 Figure lb. The six two-mean and four three-mean protection levels
 in this test are readily seen to be P [q2 < 2.77] = 95% and P[q3 <
 2.77] = 87.8% as for the corresponding levels in the three-mean test.
 The four-mean protection level is similarly found to be P[q4 <
 2.77] = 79.7%.

 As has been mentioned previously, it is the lowness of the three-
 mean and four-mean protection levels in these tests which invalidates
 them as satisfactory 5% level procedures. On the other hand their
 power functions considered individually have all of the optimum
 properties of those of the two-mean test. Similar properties are pos-
 sessed by a-level multiple t tests in general.

 The general problem of finding a satisfactory test may be regarded
 as that of raising the higher order protection level values of an a-level
 multiple t test to acceptable values, by methods which interfere as
 little as possible with its optimum power functions.

 5.4 Multiple Range Tests.

 5.4.1 The Newman-Keuls Test.

 A test proposed by Newman* (12) in 1939 and again by Keuls
 (10) in 1952 succeeds very simply in raising all of the low protection
 levels of the multiple t test. This test is equivalent to a multiple t
 test preceded by several preliminary range tests. Since the t tests of
 which the multiple t test is composed may be regarded as range tests of

 *Newman mentions that the principle of this test was initially suggested to him by "Student."
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 subsets of two means each, the overall procedure is composed entirely
 of range tests and may be usefully termed a multiple range test.

 An a-level Newman-Keuls multiple range test is given by the rule:
 The difference between any two means in a set of n means is significant
 provided the range of each and every subset which contains the given two

 means is significant according to an a-level range test. Thus in the case of
 three means under the special conditions n2 = c m = 1 ,a = .05,
 the difference ml - m2, for instance, is significant when the range of

 Ml , M2 ) m3 exceeds 3.32 (the 5% level value of the range of three
 means) and m1 - m2 exceeds 2.77. In the case of four means, m1 -M2
 is significant when the range of m1 , M2, , m4 exceeds 3.63 (the 5%
 level value of the range of four means), the ranges of m1 , m2, m3 and

 Ml, M2, m4 each exceed 3.32, and m1 -m2 exceeds 2.77.

 < / >1 >(1,23 (1,20)

 NEWMAN-KEULS TEST NEW TEST

 (WITH CONSTANT (WITH SPECIAL

 PROTECTION LEVELS) PROTECTION LEVELS)

 FIGURE 3

 5% level multiple range tests (fl2= f' = 1)

 The regions of the three-mean test are shown in Figure 3. These
 are the same as those of the corresponding multiple normal-deviate
 test except for the changes caused by the expansion of the region
 (1, 2, 3) from a regular hexagon with radius* 2.77 to a regular hexagon
 with radius 3.32. This raises the three-mean protection level from
 87.8% to 95%. On the other hand, the two-mean protection levels
 remain unaltered at 95%. For example, the level y(l, 2), which is the
 minimum integral over the modified strip region (1, 2) of any distribution

 *The radius of a hexagon will be used as short for the radius of the inscr ibed circle of the hexagon.
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 centered on the line E1 = - /12 = 0, is unchanged because the region
 (1,_2) is unaltered away from the origin (E1 , E,) = (0, 0). The integrals
 are larger than 95% at the origin but drop to 95% as I E, I increases.

 The six power functions are readily seen to be similar to those of

 the corresponding multiple normal-deviate test except for a general
 lowering in the area around the origin. For example, p(l, 2) which

 is the integral over the region (1, 2) of the distribution centered at

 any point (E1 , E2) is reduced by an amoun-t equal to the integral over
 the trapezium shaped region which has beeil taken from (1, 2) aiid

 added to (1, 2). This reduction is greatest for a distribution centered
 at (E1 , E2) = (-3.04, 0) (the center of the trapezium) and gets less
 as the distance from this point increases.

 In the test of four means, the four-mean and three-mean protection

 levels are raised from 87.8% and 79.7% respectively to 905%, anid
 corresponding reductions in the power functionis accompany these
 changes.

 5.4.2 The New Multiple Range Test.

 The new multiple range test applied to the barley yield data in

 section 2 is a multiple range test like the Newman-Keuls procedure,
 except that, as has already been emphasized, it employs the special
 protection levels system based oIn degrees of freedom. A general
 a-level multiple range test of this type is given by the rule: The difference
 between any two means in a set of n means is significant provided the

 range of each and every subset which contains the given means is significant

 according to an a,-level range test where a, 1 -I -y , -y, = (1 -
 and p is the number of means in the subset concerned.

 Figure 3 shows the regions of this test applied to three means under

 the same special conditions as before. These regions are identical
 with those of the corresponding Newman-Keuls test, also shown in
 Figure 3, except that the center hexagon has a radius of 2.92 instead
 of 3.32 and the adjacent regions are changed accordingly. This is
 sufficient to give the test a three-mean protection level of 90.25%. The
 two-mean protection levels remain unaltered at 95%, the same as in
 the Newman-Keuls test.

 The power functions of this test are similar to those of the Newman-
 Keuls test except that the reductions relative to the multiple normal
 deviate test are uniformly smaller, making the test uniformly more
 powerful. The reductions in p(l, 2), for example, are given as before
 by integrals over the trapezium formed by the intersection of the
 center hexagon (1, 2, 3) with the original (1, 2) region in Figure 2a.
 Since the hexagon is smaller than in the previous test, the trapezium
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 is smaller, and the reduction integrals are therefore uniformly decreased.

 The difference in power is greatest at a point near the center (-3.04, 0)

 of the bigger trapezium and diminishes towards zero with increase of
 distance away from this point.

 In the case of four means, this test raises the four-mean protection
 level from 79.7% to 85.7% and the three-mean levels from 87.8% to

 90.25% in a similar way. The two-mean protection levels remain
 unaltered at 95%. Likewise the power functions are uniformly lower
 than those of the corresponding multiple t test but uniformly higher

 than those of the corresponding Newman-Keuls test.
 The gains in power in the new multiple range test are quite appre-

 ciable, expecially for some parameter points and are entirely due to
 use of protection levels based on degrees of freedom. In passing, the
 independent tests analogy used in support of these new levels may be
 illustrated for purposes of comparison by the regions of the test shown
 in Figure 4. These are the regions of two 5% level independent normal

 deviate tests of x = ml- m2 and x2 = (mi ? - 2m3)/V3 respec-
 tively, assuming n2 =co and (Jm = 1 as before. Tests like these would

 be needed, for example, if ml and M2 were grain yields from two strains
 of one barley variety (A) and M3 were the yield of another variety (B).
 Attention under these circumstances might well be restricted to testing

 the difference x, between the two strains of variety A and the difference
 x2 between the two varieties A versus B.

 The case for protection levels based on degrees of freedom may be
 put very briefly in terms of the tests illustrated in Figures 3 and 4,
 as follows: Because of the independence of its two component tests,
 the joint test in Figure 4 is a valid and acceptable joint procedure.

 The square region (1 2 3) at the center of this test has the same
 function as the hexagonal region at the center of a multiple range test
 in that it is the locus of all points which do not lead to the rejection of

 the hypothesis Ml = ,2 = g3 (which implies (e1 , eA) = (0, 0)). It is
 adequate, therefore, to increase the dimensions of the hexagonal region
 in a multiple range test only so far as is needed to make the integral of
 the distribution at origin (0, 0) over this region equal to the integral
 of the same distribution over the square region in Figure 4. The latter
 integral is 90.25% and the hexagonal region of the new multiple range
 test in Figure 3 has been constructed in this way.

 5.4.3 Tukey's Test Based on "Allowances."

 In 1951 Tukey (22) introduced a procedure for estimating confidence
 intervals, or "allowances" as he called them, for the differences -
 which we have been considering. He defined a confidenice coefficient
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 f for the joint procedure as the probability that all intervals simul-
 taneously contain the values of the corresponding true differences.
 This method can be used to give, among other things, a significance
 test for our general problem. If, in a procedure with confidence co-

 efficient A, the confidence interval for Ai - Ai is denoted by Ii (i) this
 test may be expressed as the following rule: Make the decision (i, j) if

 x 2

 x1 = -2.77 = 2.77

 X2 2.77<5 l

 (1 2,93)

 90.25%

 x = -2.773i

 FIGURE 4

 Regions for 5% Level Joint Normal-Deviate Tests of Two Indepenident Comparisons (fl2 = C,= 2)

 Ii (i3) lies to the left of zero, the decision (i, _) if I i (p) includes zero, or the
 decision (j, i) if Ii (3) lies to the right of zero. An a-level test, by the
 originator's definition, is obtained by putting A = 1 - a.

 The test given in this way for three means, under the special con-
 ditions n2 = 0 ,m = 1, a = .05, is identical with the multiple normal-
 deviate test showxn in Figure 2 except that the width of each of the
 strips (1, 2), (1, 3), (2, 3) is increased from 2 X 2.77 to 2 X 3.32. The
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 method of derivation from confidence intervals implicitly imposes the
 restriction that the boundaries of (1,_2), (1,_3), and (2, 3) must be parallel
 straight lines. The distance between the lines is widened until the
 dimensions of the center hexagon (1, 2, 3) are as large as those of the

 Newman-Keuls test, thus making the three-mean protection level
 1 - a = 95%. At the same time the two-mean protection levels are

 increased uniformly from 95% to 98.1%. This test is readily seen to be
 more conservative and uniformly less powerful than any of the previous

 procedures.

 5.4.4 Tukey's 1953 Multiple Range Test.

 In 1953 Tukey (23) relaxed the conservatism of the previous test

 somewhat by proposing a multiple range procedure in which the sig-
 nificant ranges are each midway between the ones required by the
 test based on allowances and those required by the Newman-Keuls
 test. In the case of three means, under the same special conditions as
 before, the regions of this test are the same as those of the Newman-
 Keuls procedure except that the widths between the parallel lines are

 increased from 2.77 to '(2.77 + 3.32) = 3.04. The hexagon radius is
 3.32 in both tests.

 In suggesting this test, Tukey drew attention to an important

 point which may be illustrated by the following example. Suppose

 that in a 5%0 level Newman-Keuls test of four means, agailn assuming
 n2 = o and or-n = 1, the values of the true means are Al = A2 =A
 and g3 =4 = A + 6& Suppose the difference 6 between the two groups
 of means is so large that the preliminary range tests are practically
 certain to be significant, then the probability of jointly deciding that

 both I ml-M2 I and j -M4 I are not significant is P[j m -M2 I <
 2.77] X P[1 n3 -M4 I < 2.77] = 90.25%0. This is an example of a
 whole set of levels, which we may call class 2 protection levels, which
 are not raised to (1 - a) in an a-level Newman-Keuls test and are
 more akin to levels based on degrees of freedom. Both of Tukey's
 procedures have been designed with the objective of raising these
 class 2 protection levels along with the others to at least (1 - a!).
 The 1953 test is a modification of the test based on allowaances which is
 uniformly more powerful than the later but which, Tukey judges,
 still meets his given objective.

 When protection levels based on degrees of freedom are adopted,
 as in the new multiple range test, the class 2 levels are automatically
 fixed at, or slightly above (when n, is small), their appropriate values
 and need no special attention.

 In the case of the Newman-Keuls procedure it is not clear whether
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 either one of the authors was aware of the presence of these lower

 levels and whether he would wish to defend them as this writer does or

 not.

 5.5 Multiple F Tests.

 A series of tests paralleling the above multiple range tests can be

 defined using F tests instead of range tests. These may conveniently

 be termed multiple F tests. Thus, corresponding to the new multiple

 range test, an a-level multiple F test with protection levels based on degrees

 of freedom may be defined by the following rule: Rule 1. The difference

 between any two means in a set of n means is significant provided the vari-
 ance of each and every sutbset which contains the given means is significant

 according to an a,)-level F test where a, = 1 - y , I = (1a-cl)"-', and
 p is the number of means in the subset concerned.

 In the case of three meanis under the special coniditions n2 = ,
 O'M = 1, a = .05, the regions of this test are as shown in Figure 5. These
 regionis are the same as those of the correspondinig multiple normal-

 RULE 1 TESTRUE 2TS

 FIGURE 3

 5%/t level mnultiple F tests with special protectionl levels (fl2 = cD C = 1)

 deviate test except that the strip-regions (1,_2), (k3), (2,_3) have
 their boundaries expanded to those of the circle centered at the origin,

 with radius 3.05. This radius 3.05 is calculated as 4, where* F is

 the 9.75% significant value of an F ratio with degrees of freedom 2

 and co If the center region (1, 2, 3) were comprised of the circle

 alone, this would raise the three-mean protection level to just 90.25%

 -This test requires special F tables or ecquivalent tables as given in (6), Tables 1 and 2.
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 as desired. The six small areas outside the circle but inside (1, 2, 3)
 give the test a slightly higher protection level than 90.25%, which is
 not necessary and makes some modification of Rule 1 desirable.

 The multiple F test can be generalized to test the significance of

 all linear comparisons of the form c = = kimi , where ki, Io2, , kn
 is any set of arbitrary constants such that =i ki = 0. (Each
 linear function of this form can be regarded as the difference between
 weighted means of two subsets of the full set of means.) The general

 rule is: Rule 2. Any comparison of the form c = = kimi is significantly
 different from zero provided the variance of each and every subset which
 contains all of the means involved in c is significant according to an ap-level
 F test and provided also that c differs significantly from zero according to

 an a-level t test where a., = 1 - -y I, y = (1 - a<)', and p is the number
 of means in the subset concerned. By "all of the means involved in c"
 is meant all means which have non-zero coefficients in the linear func-
 tion c = =1 kimi

 The regions of this more general test, under the same special con-

 ditions, are also shown in Figure 5. The three intersecting strip regions
 given by Rule 1 are now replaced by an infinity of strips, all of which
 pass symmetrically through the center of the sample space and inter-
 sect each other at all angles. Each strip and the areas to either side
 of it represent the test regions for the comparison measured at right
 angles to the axis of the strip. For example, the strip region between
 the heavy lines in the illustration contains points for samples in which
 the comparison c = 'm, + 'm3 - ml is not significantly different
 from zero. The areas to either side of this region contain points for
 samples in which the comparison is significantly positive or negative.

 5.5.1 The Multiple Comparisons Test.

 The multiple comparisons test proposed by the author in 1951
 (6, 7) is a multiple F test which consists of a compromise between
 Rule 1 and Rule 2. As many significant differences as possible are
 found by the Rule I test. Rule 2 is then used to test any comparisons
 of interest within subsets of means not already found to contain sig-
 nificant differences by Rule 1.

 Figure 6 shows the regions of this test under the same special con-
 ditions as before. These regions are identical with those of the Rule 1
 test in Figure 5 except for the additional six regions lying outside the
 circle and inside the original hexagon. These represent regions in
 which comparisons involving all three means are found to be significant.
 In the small region at the top of the circle, for example, various weighted
 meains of ml and m2 are significantly larger than m3 .
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 ------X --x

 FIGURE 6

 5% Level Multiple Comparisons 'l'est (112 = , m= 1)

 5.5.2 The Least-Significant-Difference Test.

 The basic principle of using a preliminary homogeneity of means
 test to raise a low protection level was first proposed by R. A. Fisher (9).
 A test which has arisen out of his discussion is the least-significant-
 difference test already mentioned in the introduction.

 A general a-level test of this type is given by the rule: Thle difference
 between any two means in a set of n is significant provided that the difference
 is significant according to an a-level t test and provided also that the variance
 of the whole set is significant according to an a-level F test.

 In the case of three means, this is identical with an a-level Rule 1
 multiple F test with constant levels. The regions of the test under
 the same special conditions as before are the same as those of the Rule 1
 multiple F test with special levels in Figure 5 or the multiple comparisons
 test in Figure 6 except that the radius of the circle is increased to
 \/4F = 3.46, F now being the 5% level value of the F ratio with degrees
 of freedom 2 and c,
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 In the more general case with n means, n > 3, the least significant
 difference test does not use all of the F tests prescribed by a multiple
 F test and fails to fix adequate values for all of the protection levels

 involved. For example in a test of four means, assuming n2 = ,
 (Tm = 1, a = .05 as before, we find2 = 95%, -73 = 87.8%, andy4= 95%.
 The value Y3 of the three-mean protection levels is as low as that of the
 corresponding multiple normal deviate test. In general, the value -y
 of any p-mean protection level in an a-level least significant difference

 test is as low as the yp value in the corresponding a-level multiple t
 test with the one exception that yn is raised to 1 - a.

 Thus while this test is more conservative than the new multiple
 range test or the multiple comparisons test for the case of three means,

 it is less conservative in cases with more than three means.

 5.5.3 Scheffe's Test Based on Contrasts.

 A recent procedure proposed by Scheffe (19) may be described as
 the F test analogue of Tukey's test based on allowances.

 In the case of three means under the same conditions as before,
 the regions of this test are generated by the symmetrical intersection
 of strip regions with straight boundaries like those of the multiple
 normal-deviate test except that (i) the width of the strips is 2 X 3.46
 instead of 2 X 2.77, and (ii) the strips are infinite in number as in the

 Rule 2 multiple F test. The intersections of these strips form a circle
 of radius 3.46 at the center and this gives the test a three-mean protec-
 tion level of 95%0. At the same time the strip-region protection levels
 are raised, by the increases in strip-widths, from 95% to 98.6%.

 5.6 Other Decision Procedures.

 As mentioned previously several writers including Bechhofer (1)
 have dealt with a problem which may be regarded as a special case of

 the general one with which we have been concerned, and procedures
 have been proposed which may be regarded as degenerate multiple
 range or multiple F tests. The decision procedures proposed in the
 given reference, for example, are for deciding that the t largest means
 in a sample of n means m1 , M2, *., mn are all significantly larger
 than all of the remaining n - t means. In one procedure the true
 means corresponding to the t largest observed means are not ranked
 relative to one another; in another procedure they are. In both cases

 the true means in the remaining subgroup are left unranked relative
 to one another. To take a simple illustration, in a procedure for choos-
 ing the largest mean among four, that is, t = 1 and n = 4, the decisions
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 in terms of our previous notatioin are (1,2, 3, 4), (1, 2,4 , 3), (1, 3, 4, 2)

 and (2, 3, 4, 1), here 1, 2, 3, 4), for example, is the decision that Ha

 is larger thaii each of the remainiing means, wvhich are left unranked

 relative to another.

 One very restrictive result of eliminiating the missing decisions is

 that all of the protection levels of the proceduLre are forced to zero, or

 in other words all of the significance levels are forced to 100%10. For
 example, in a procedure involvinig only twvo meanis, the experimeiiter is
 forced to make the decision (1, 2) or (2, 1). TIhuLs, if it so happens

 that u = ,U2 the probability of making a wvrong decision is 100%1o.
 The powver curves of this test are similar to the p(l, 2) and p(2, 1) curves

 illustrated for the 5%1O level test in Figulre 1lb except that each curve is
 forced to pass through the 50%1o powver value at E -, - , = 0. The
 usefulness of these proceduLres is therefore restricted to problems in
 which the experimenter feels impelled to choose a best mean from the

 results of the given experiment alone.

 By limiting themselves to procedures wvith zero protectioni levels

 at the outset, the authors of these tests have been able to avoid the
 controversial problem of consistent protection levels and to concentrate

 on other problems such as the tabulation of relations between powver

 functions and sample sizes, (13echhofer, 1), and the optimum choice of
 the size of an experiment based oIn minimax coiisideiations, (Somerville,
 20).

 6. CONCLUDING REM ARKIIvS

 Most of the foregoing procedures caii be classified ulsefuLlly accordiing
 to three basic characteristics:

 1. Type of significant dilfereneces: separating a procedure such
 as the Newvmaii-KeLlls test having a set of significant differenices
 which decrease as the test proceeds, from a procedure such as
 Tukey's test based on allowvances which has one constant sig-
 nificant difference.
 2. Type of protection levels: separating a proceduire such as
 the Newvman-Keuils test having constant valuLes (or lowver
 limits) of (1 - a) for its protection levels*, from a test such

 as the new multiple rainge test having protection levels based
 on degrees of freedom.

 3. Type of component tests: separatiiig procedures into several
 categories according to wvhether they employ range tests,
 F tests, or componenit tests of aniother type.

 *excluding class 2 protectioil levels.
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 Table V shows the allocation of several procedures in a classification

 of this kind.

 The most important of these characteristics is the first, separating

 tests la, with decreasing significant differences, from tests lb, with
 constant significant differences. The nature of the confidence interval

 methods from which the lb tests are derived is such that in an applica-

 tion of one of these tests there is only one single sign-ificant value against
 which all differences or linear comparisons are tested. This makes fol
 considerable simplicity. However, the single significant valtue has to

 be so high that the power funetionis are severely reduced.

 TABLE V. CLASSIFICATION OF TEST PROCEDURES ACCORDING TO 'rHREE BASIC

 CHARACTERISTICS

 1. Type of Significanit Differen-ces

 2. Type of la) Decreasing lb) Constant
 Protection 3. Component Tests 3. Compon-ent Tests
 Levels _

 3a) Range 3b) F 3a) Range 3b) Fs

 2a) None less Newman- Tukey's
 than constant Keuls Test Scheff6's
 values Test Based on Test

 ,yp = (1 - a) Allowances

 2b) Protection New
 Levels Based Multiple Multiple
 on degrees Range Comparisons
 of freedom Test Test

 zP = (1 - a)P-1

 For example, in a 5% level Tukey test based on allowances for a

 case with 20 means (again assuming n2 = co o-n = 1), the significant
 ranges all have the same value 5.01, as showii in Table VI. This value
 5.01 is equal to the largest of the significant ranges of the corresponding
 la test, a 5% level Newman-Keuls test, for which the significant ranges,
 also shown in Table VI, decrease with subset size from 5.01 downi

 to 2.77. In the la test, a difference between two means which exceeds
 only 2.77 can be significant depending on the disposition of the other
 means. In the lb test no difference can be significant without exceeding

 5.01.

 Comparing these two tests further, consider two true means in

 particular, say g,u and ji2 , and suppose that gi is smaller than M2 . Let
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 Alt and it2 on one hand be well separated from the remaining true means
 A3 4, A20, on the other. For example, suppose 2(g1 + 12) = 120
 and 13- 4 = A20 = 100. Under these circumstances, recalling
 that am- 1, the observed means ml and M2 will be well separated from

 the remaining observed means M3, m., *4 iM20 . Because of this, the
 ranges of all subsets of three or more of the observed means which

 include ml and mi2 are practically certain to be significant. Thus in

 'TABLE VI. COMPARISON OF SIGNIFICANT RANGES FOR 5% LEVEL TESTS OF 20
 'MEANS

 Subset Sizes
 Test

 2 3 4 5 6 8 10 14 20

 Tukey's Test

 Based on

 Allowances 5.01 5.01 5.01 5.01 5.01 5.01 5.01 5.01 5.01
 Tukey's 1953

 Test 3.89 4.16 4.32 4.44 4.52 4.65 4.74 4.88 5.01
 Newman-Keuls

 Test 2.77i 3.32 3.63 3.86 4.03 4.29 4.47 4.74 5.01
 New Multiple

 Range Test 2.7X7 2.92 3.02 3.09 3.15 3.23 3.29 3.38 3.47

 the la test the probability of correctly deciding that g,u is less than ,u'
 will be virtually the same as if the remaining means were not present,
 that is,

 pia(l, 2) = P[dec. (1, 2) | - M1] = P[mI - m2 < -2.77 |2 - Mi.

 For the lb test, however, the corresponding power is given by

 Plb(i, 2) = P[dec. (1, 2) 1 2 - d] = P[rn, - M2 < -5.01 1 A2 - iLll]

 Table VII shows the values of these two functions and their differ-
 ences for various values of M2 - . The differences represent the losses
 in power in the lb test relative to the la test and some of these can be

 seen to be very large.
 At other parameter values in a 20-mean test, with other arrange-

 ments of the true means, the relative losses in power will not be as
 great. However, it is clear that losses will occur at all values of the

 parameters and many will be considerable. For tests involving more
 than 20 means the differences in power will be even greater, increasing
 as the number of means increases.
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 TABLE VII. SEVEREST POWER LOSSES OF lb TEST RELATIVE TO la TEST (5% LEVEL

 TESTS OF 20 MEANS)

 i2 - la Test lb Test Loss

 0 .0250 .0002 .0248
 1 .1056 .0023 .1033
 2 .2946 .0166 .2780
 3 .5636 .0778 .4858
 4 .8078 .2389 .5689

 5 .9429 .4960 .4469
 6 .9887 .7580 .2307
 7 .9986 .9207 .0779

 8 .9999 .9826 .0173
 co 1.0000 1.0000 0.0000

 Similar decreases in power must occur in all lb tests using constant
 significant differences. These losses appear unnecessary and tests of
 this type are therefore not recommended.

 A partial concession to this point of view is made by Tukey (23)
 in his 1953 test already mentioned. The significant ranges for this test
 lie midway between those of the corresponding la and lb tests. An

 example of these under the conditions already used for the previous
 20-mean test examples is also given in Table VI. A test of this type,
 however, still suffers considerable losses in power probabilities relative

 to the Newman-Keuls procedure and is also considered to be unneces-
 sarily conservative.

 The second most important characteristic is the one concerning
 protection levels. This separates tests 2a, using constant values (or
 lower limits) for protection levels, from tests 2b, using the special lower
 limits based on degrees of freedom.

 As has already been mentioned, the power functions of the 2a
 tests are uniformly lower than those of the corresponding 2b tests.
 Some further idea of this may be obtained from Table VI by comparing
 the Newman-Keuls significant ranges, discussed above, with those of
 the corresponding new multiple range test, which have been taken
 from Table II, row n2 = a).

 Each of these tests requires that a difference between any two means
 must exceed 2.77 before it can be significant and each thus has two-

 mean protection levels of 95%. The significant ranges for subsets of
 more thaln two means, however, are larger in the 2a test. As a result
 of this, some differences which may not be significant in the 2a test
 may be significant in the 2b test. It can be seen that the amounts by
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 which the power functions of the 2b test exceed those of the 2a test

 are greatest around the origin =U2 = ** 20 and decrease toward
 zero in certain directions away from this point. The same holds for

 any 2b test, relative to the corresponding 2a test.
 There appears to be no sound reason for not using protection levels

 based on degrees of freedom thereby gaining colnsiderably in power to
 detect real differences.

 Finally, there is the subdivision of the test procedures according to
 the type of component tests employed. In this paper we have considered
 only procedures based on range tests (3a) and F tests (3b). However,

 other types of component tests, for example, extreme deviate tests
 and gap tests, have been proposed and one procedure given by Tukey
 (21) is based on a combination of three types of component tests.

 The problem of deciding the relative merits of various types of

 component tests is complex, and much work needs to be done in this
 direction. At present, it appears that the best choice lies between
 range tests and F tests. The relative merits of these depend on the

 objectives involved.
 Under some circumstances (i), interest may lie in testing linear

 comparisons involving several means as well as differences between

 single means; under others (ii), interest may be restricted to testing
 only differences between single means.

 Under circumstances (i) additional power functions are needed to
 measure the power of the test with respect to the additional comparisons
 involved. When these are all included it seems safe to assume that

 multiple F tests are more powerful in some average sense than multiple
 range tests. Under circumstances (ii), however, the relations are more
 obscure. The preliminary tests in a multiple F test with decreasing

 significant differences (la tests) may cause a little less general inter-

 ference* with subsequent tests than do the preliminary range tests in
 a corresponding multiple range test. In this event, the multiple F

 tests may still be more powerful in an average sense but only slightly so.
 The important deciding factor under circumstances (ii) will often

 be the difference in time and effort required in applying the two types
 of tests. The application of a multiple range test is much easier and
 a test of this type will generally be preferred for this reason.

 To summarize, the features recommended in each classification are:

 1. Decreasing significant differences, as used in tests la;

 *This does not apply of course in lb tests with constant significant differences, in which case the
 use of range tests g;ves more powe&iul procedures. Thus, for example, under circumstances (ii),
 Tukey's test based on allowances is uniformly more powerful than ScheffM's test
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 2. Protection levels based on degrees of freedom, as used in tests 2b;

 and

 3. Range tests as used in tests 2a, uniless onie is interested in linear

 comparison other than differences betweein single means, in
 which case F tests are recommended, as used in tests 3b.

 The new multiple range test and the multiple comparisons test have

 been designed to include these recommended features.

 Computation of T'ables II and III for New Mutltiple Range Test.

 Let Q(p, n2 , a) represent the en-try for givein values of p, n2 , and
 a given ill Tables II and III for a = .05 and .01, respectively. Put

 R(p, n2, 'Yp,a) for the lOO1p,,,a percentage point of the studentized
 range where yp,,, = (1 - a)p-'. Then the tabled values have been
 computed from the relation Q(p, n2 , a) = R(p, n2 , 'Yp ,) for p = 2,
 and from Q(p, n2 , a) = R(p, n2 , 'Yp .) or Q(p - 1, n2 , a), whichever
 is the larger, for all other values of p. This ensures that each p-mean

 protection level in the new multiple range test is yp,,,a for all values of p.
 The studentized range values R(p, n2 , yp, a) for 2 < p < 20 and

 10 < n2 < o used in this process have been obtained from Pearson

 and Hartley's Tables (16). The remainder of the R (p, n2 , Yp, a) values
 involved have been obtained by newv methods (see Beyer, 2) specially

 developed for this purpose.
 Acknowledgment. The author is indebted to W. HI. Beyer for much

 of the theoretical developments and the comptutational work involved

 in getting the values R(p, n2 , 'Yp, a) of the studentized range required
 for Tables II and III as explained above.
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