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1. INTRODUCTION

If the probability differential of a set of stochastic variates contains k unknown para-
meters, the statistical hypotheses concerning them may be simple or composite. The
hypothesis leading to a complete specification of the values of the k parameters is
called a simple hypothesis, and the one leading to a collection of admissible sets a
composite hypothesis. In this paper we shall be concerned with the testing of these
two types of hypotheses on the basis of a large number of observations from any
probability distribution satisfying some mild restrictions and their use in problems
of estimation.

If we have a number of samples whose probability densities involve a set of para-
meters, we may have to test whether a single set is relevant to all the samples before
combining them to arrive at the best estimates. This test, which may be called the
test of homogeneity of parallel samples, involves a composite hypothesis. A general
test of homogeneity different from the %2 test of independence of samples each arranged
in some categories has been proposed and applied to test for agreement in gene fre-
quencies between two samples giving the distribution in 0, A, B and AB blood-group
classes.

Another important group of problems is the estimation of parameters subject to
restrictions which are sometimes derived from empirical considerations. The validity
of these restrictions may be formally tested before giving final estimates. The use of
such empirical relations among the parameters to be estimated, when known, enhances
the precision of the estimates, although they may not be strictly accurate. A slightly
inaccurate relationship may introduce bias in the estimates, but such estimates are
more useful than the less efficient estimates so long as the bias, in any case, is small in
comparison with its standard error. This, in some way, is secured when the test for
a hypothesis specifying some restrictions indicates close agreement with the obser-
vations. It is also of importance to satisfy oneself that the increase in efficiency is of
such a magnitude as to j ustify the use of some restrictions, although they may introduce
errors which are smaller in comparison with standard errors of estimates. An instance
to this point is the empirical formula y12 = (?/x + 2/2)/(l + ̂ 2/12/2) suggested by Kosambi
(1944) giving the relation connecting the recombination fractions y1 and y2 for two
successive segments of a chromosome with y12 that for the combined segment. The use
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of this has been found to enhance considerably the precision of the estimates of the

recombination fractions.

Methods for determining the confidence regions in the case of several parameters

have also been discussed in the light of the new tests proposed above.

2. THE PROBLEM OF DISTRIBUTION

There are two problems of distribution which are useful in deriving tests of significance

for simple and composite hypotheses. Let

x l t ...,xp, y 1 } . . . , y a , ...,

be independent sets of observations from probability laws with densities represented

by/I(E I 6), f2(y \6), ..., such that each function contains at least one of the unknown

parameters 6V62,...,6k. The likelihood of the parameters which is the same as the

probability density at the observed sets of data is given by

L=fx(x\6)y.fz{y\d)....

We define, following Fisher (1935), the quantities

as efficient scores. The mean values of these scores are zero. Their covariance matrix

is represented by (ai3) and its reciprocal by (ai?). We shall assume that there exist

positive quantities r/ such that / j df.YL+v

\fi 90,7

are finite. Under these conditions, if the non-vanishing terms in the sequence 3 log fjddj

(i = 1,2,...) for any j form a sufficiently large set, it follows from general limit theorems

that the limiting distribution of <j>x, ...,<frk at the true values 61,...,6k tends to the

multivariate normal form with zero mean and covariance matrix (ai?-). From this it

follows that the statistic yi _ 2Sa
i3

(i<£

is distributed, in large samples, as x2 with k degrees of freedom when the true values

of the parameters are 6X, 62> • • •> &k-

In the case where the probability densities f^fz,... are the same, it is enough for the

limiting properties to hold that n 9/^2E
\m)

is finite for every j , which is less restrictive than the condition (2-1). I am grateful to

Mr Bartlett for drawing my attention to this.

Suppose that the 8's are subject to s restrictions defined by s independent relations

fi(61,...,dk) = 0 (i=l,2,...,s). (2-2)

The maximum likelihood estimates are given by

g - - (1- 1,2,..., ( 2 3 )

^ = 0 (»= 1,2,...,«).

where A's are Lagrangian multipliers. Let 61,...,6k be the maximum likelihood

4-2
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estimates. Since the set of equations (2-3) involves (k — s) linear restrictions on

it is expected that the statistic

is distributed as x2 with s degrees of freedom which is k — s less than the degrees of

freedom for true values 6X,..., 6k.

This can be demonstrated if we assume that the restrictions (2-2) specify s of the

parameters which may be taken as 0fc_g+1,..., 6k as functions of the k—s free parameters

6X,..., 6k_s, so that the likelihood is an explicit function of these parameters only, and

further that the joint distribution of 0\, ..., 6k_a tends to the multivariate normal form

in large samples with variances and covariances of O(n~x). It is known that the latter

assumption is true provided the probability laws satisfy the condition (2-1), and

further that the maximum likelihood estimates are uniformly consistent (Wald, 1943;

Doob, 1934). I have omitted this latter condition by mistake in an earlier paper (Rao,

1947) in establishing some optimum properties of the maximum likelihood estimates.

This does not seem to be a necessary condition, and the approach to normality is

probably true under less stringent conditions.

Let us take the case of two parameters u,nd one restriction which may be taken as

62 = w{61). The differential coefficient dd2\6,dx is denoted by A(^). The maximum

likelihood estimates satisfy

<f>l(6) + \(d1)fc(d) = O, 62-w{d1) = Q. (2-4)

If the given relation is true, then the statistic

Xl = S2a«(0)&(0)^(0) (2-5)

depends only on 0x, and is distributed as x2 with 2 degrees of freedom at the true value

of 0x. The expression (2-5) treated as a function of dx may be expanded in the neigh-

bourhood of 6V The first term is

Xj = S2a«(0)&(0)0,(rf). (2-6)
The second term is

2(0i - *i) 0i(0) {a u
(a n + Aa12) + a

12
(a12 + Aoc22)} + 0,(0) {oc™(ct12 + Aa22) + a

12
(an + Aa12)}]

= 2(6, - 6,) [^(6) + A02(0)] = 0, (2-7)

in virtue of (2-4). In the expression (2-7) terms of the order (n°) only have been retained,

being replaced by a^ and terms of the type

being omitted as they are of
The third term can be easily shown to be

Xl = (^ i -

Neglecting terms of higher order of smallness we get

Since l/V(d1 - 61)~<tlx(6) + 2Aa12(0) + A2a22(0),

it follows that xt *
s
 distributed in large samples as x2

 with 1 degree of freedom.
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It can be demonstrated by expanding <f>t(d) in powers of (6X — 0\) that (6X — dj) and

tend to be uncorrelated in large samples, so that xl a n d Xl a r e independently

distributed in the limiting case.

Since xt is distributed as x2
 with 2 degrees of freedom and xl with 1 degree of freedom,

it follows that the residual part xl is distributed as x2 with 1 degree of freedom.

In the case of s relations and k (^ s) parameters xl c a n be expressed as a function of

(k — s) parameters and split into two portions, one of which is a xl with (fc — s) degrees

of freedom measuring the discrepancy of the (k — s) estimated parameters from their

true values, and another a xl with s degrees of freedom measuring the departures from

the assigned relationships.

3. DERIVATION OF STATISTICS FOE SIMPLE AND COMPOSITE HYPOTHESES

In the case of a single parameter, to test the simple hypothesis 6 — 6°, the statistic

0i(0°)/
aii(0°) is used as x2 with 1 degree of freedom. The quantity ^>x{d°) has been called

by Fisher (1935, 1946) the efficient score at the assigned value, and its use leads to

elegant analysis in statistical tests. The optimum properties of this test have been

discussed by Wald (1941) and Rao and Poti (1946).

In the multiparameter case let us consider the set of values 6\+h1,...,d% + hk,

where hu ...,hk are small as alternatives to 6\, ...,6% The proportionate increase in

the likelihood is given by h^x+...+hk<j>k. (3-1)

The best test of the hypothesis in the sense that it affords the maximum discrimination

when the alternatives differ from the assigned values by small quantities is provided

by the statistic w = / ^ + _ + ^ ^ (3.2)

which leads to the use of the statistic

X% = w^YJi^a^d0) (3-3)

as x2 with 1 degree of freedom.

If the ratios of hlt ...,hk can be assigned from a priori considerations, which is some-

times possible, the test can be carried out with exactitude. On the other hand, we may

have to determine hx, ...,hk from the departures of the assigned values d\, ...,6% from

those values indicated by the data and introduce suitable changes in judging the

significance of the derived statistic. This may be done by finding the ratios of hx,..., hk

such that x2 °f (3*3) is maximum. The maximum value comes out as

X
2
 = 22^(00)0.(00)0.(00). ( 3 .4 )

In large samples this can be used, as shown in the previous section, as x2 with k degrees

of freedom to test the hypothesis that the values of dlt..., 8k are 6\,..., 0% respectively.

This differs from the statistic proposed by Wald (1943), wherein he uses

to test the above hypothesis, where the d's are the maximum likelihood estimates.

The test associated with (3-4) besides being simpler than Wald's has some theoretical

advantages as shown in § 5.

A composite hypothesis specifies that the admissible sets of values he on the inter-

sections of surfaces ^ ^ ( Q ^ = O {J = Y> 2> ) ( 3 . 5 )
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If s ̂  k of these functions are independent the composite hypothesis is said to have
(k — s) degrees of freedom. Since a single set is responsible for the observed sample we
may find their best estimates subject to the restrictions (3-5) and change the problem
to that of testing a simple hypothesis whether these estimates agree with the data.

If the best estimates under the above restrictions are 0, #«., the statistic

can be used as x2 as shown in (2-4) with s degrees of freedom to test the composite hypo-
thesis that the parameters satisfy s conditions. The (k — s) degrees of freedom have been
lost in constructing a suitable simple hypothesis from the composite hypothesis. As
a general rule we may say that the degrees of freedom of x2

 for testing a composite
hypothesis is k, the number of parameters —/, the degrees of freedom of the hypothesis,
which is the same as (k—f) the number of restrictions they obey.

4. A GENERAL TEST OF HOMOGENEITY OF PARALLEL SAMPLES

The test of agreement of parallel samples, where each sample consists of observations
arranged in mutually exclusive classes, can be treated as a test of independence in a
contingency table if nothing is specified about the nature of the distribution in the
various classes. Thus if we have r samples each arranged in p classes, the x2 test of
independence has (r — 1) (p — 1) degrees of freedom. If the distribution in the p classes
can be specified by a probability law involving k ̂  (p — I) parameters, then the test
of agreement in parallel samples is equivalent to a test of a composite hypothesis which
specifies k(r — 1) relations among the rk parameters, and these are exactly the degrees
of freedom of the x2 test of composite hypothesis. The disagreement in parallel samples
is specified by k(r — 1) degrees of freedom, and a test for their significance need only be
carried out. The exact expression for the x2 statistic is

g=l i,j = l

where d's are obtained from the equations

(4-1)

= 0 (i = 1,2,...,k) and (a$) is the
s

matrix inverse to the information matrix for the sth sample and <f>% is the ith efficient
score for the sth sample. This test is applicable in all cases whether the variables are
continuous or discontinuous provided the sample size is large. The test is illustrated
with an example given below, and the calculations are similar in any analogous
situation.

The distributions in the four 0, A, B and AB blood-group classes of 140 Christians
who are army cadets and 295 other Christians are given in Table 1. The problem is to
test whether the two samples agree in the gene frequencies.

Table 1. Blood-group frequencies in two samples of Christians (Indian)

Army cadets
Other Christians

Total

0

56
120

176

A

60
122

182

B

18
42

60

AB

6
11

17

Total

140
295

435
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If p, q, r are the A, B, 0 gene frequencies, then the probabilities and their derivatives

are:

0
A
B
AB

Probabilities and derivatives

it

r*
p(p + 2r)
q(q + 2r)

2pq

dn

&

-2r
2r

~2q
2q

dn

9?

- 2 r
-2p

2r
2p

On the given hypothesis the maximum likelihood values are to be obtained from the

combined sample. Fairly approximate solutions as obtained from Bernstein's (1925)

method are ^ 0 - 2 6 4 4 9 , q = 0-09317, r = 0-64234.

The probabilities and coefficients for the calculation of efficient scores are:

0
A
B
AB

Probability
n

0-41260
0-40974
0-12838
0-04928

Coefficients for scores

1 cm

IT dp

-311362
313543

-1-45217
3-75086

1 &n

77 dq

-3-11362
-1-27104
10-00685
10-73307

The information matrix for a single observation is

Ipp = 9-00315, Ipq = 2-47676,

Im = 2-47676, Igq = 23-21612.

The elements of the inverse matrix are

IPP = 0-114430, /»« =-0-012208,

/P« =-0-012208, 799 = 0-044376.

The efficient scores for each sample are obtained by multiplying the observed fre-

quencies with the coefficients for scores given above and adding up over all the classes:

Sample 1
Sample 2
Total = 0

<Pv
10-30918

-10-51362
- 0-20444

- 7-30340
7-21019

-0-09321

The small additive corrections to the approximate values p and q are given by

dp = ^ vP + * %J = _ 0-0000,5116,

dq = (Im®r+ Im®J = -0-0000,0377.
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The efficient scores and informations matrix at these values are needed for the test.

They can be obtained by slight adjustments if the approximations are good to star.t

with. The changes in the elements of the information matrix are negligible. The x2

is 0-17258, which is small for 2 degrees of freedom, thus indicating close agreement.

Table 2. Adjusted efficient scores and x2

Sample

1

2

Total

n

140
295

435

« = #.->

10-37497
- 10-37497

0

-7-27341
7-27341

0

n

0-11704
0-05554

0-17258
2D.F .

We can in such cases give the best estimates of gene frequencies as derived from the

combined sample:

Tpp

p = 0-26444, V(p) - -=- = 0-00026305,

Taa
q = 0-09317, V(q) = -=- = 0-00010202,

TPP a. 2/P8 + Jii
r =0-64239, V(f) = — = 0-00030893.

The general formula for x2 m the case of two samples can be written as

where Iij are elements of the matrix inverse to the information matrix for a single

observation and nx and n2 are sample sizes, and 0's are efficient scores at the estimated

values for one of the samples. The degrees of freedom in this case are equal, to the

number of parameters under consideration.

5. CONFIDENCE REGIONS AND INTERVALS

I t has been shown in § 2 that the statistic

considered as a function of the observations and the unknown parameters 6V ...,6k is

distributed, in the limit, independently of the parameters. When such pivotal quantities

as defined by Fisher (1945) exist it is possible to divide the set of parameters into two

groups Sx and S2 such that any hypothesis assigning a set of parameters belonging to

only one of the groups Sx (say) is rejected by the observed data on a desired probability

level a %. The groups Sx and S2 are defined by the inequalities

0) 5J a % value of x2
 with k degrees of freedom,

< a % value of x2
 with k degrees of freedom,
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respectively. The region defined by the group S2 in a space of k dimensions in which

the sets of parameters may be represented, is called the confidence region. The regions

so constructed from the observations satisfy the property that in repeated samples

they exclude the true set of parameters only a % of times. Some optimum properties

of these regions are mentioned in an abstract of a paper by Wilks (1939).

The confidence region constructed above is useful only when all the parameters are

considered simultaneously. If the confidence interval for a single parameter (say) 6X

irrespective of the others is required then the following procedure is necessary. If 61

is considered known the maximum likelihood estimates 82, ...,6k can be determined

as functions of 6t and the observations. This amounts to estimating the parameters

with the restriction that the value of dx is given. Under such circumstances it has been

shown in § 2 that the statistic

is distributed as x2 with k — (k — 1) degrees of freedom. The a % confidence interval

for Qx is defined by the inequality

SSa^tfx, 6) &(0i> 6) 4>j{dx, 0) < a % value of x2 with 1 degree of freedom.

Similarly confidence regions for any subset of s parameters can be determined. The

X2 to be used in this case has k — (k — s) degrees of freedom.
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