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Introduction

Social media is used by more than half of humanity, by 
over nine in ten Internet users, and by seven in ten 
Americans (Auxier & Anderson, 2021; Kemp, 2021). 
Although social-media platforms have been espoused 
for their capacity to boost social capital (Appel et al., 
2020; Campante et al., 2022; Ellison et al., 2007), they 
have also been engineered to capture human attention 
and engagement (Crone & Konijn, 2018; Fogg, 2002; 
Kramer et  al., 2014; Kuss & Griffiths, 2011; Zuboff, 
2015). Over 10% of the United States population spent 
over four hours per day on social media in 2019 (Clement, 
2020).

The ubiquity of social media has profoundly altered 
the way humans communicate, socialize, and coordi-
nate. For example, social media can facilitate conversa-
tions about important issues in public health and public 
policy by incorporating voices from large segments of 

the global population (Castells, 2015). Further, the 
immediacy of social media facilitates quick access to 
products and services (Hajli, 2014), disaster awareness 
and response (Kryvasheyeu et al., 2016), crowdfunding 
(Lu et al., 2014), and rapid access to news and informa-
tion (Matsa & Walker, 2021).

However, social media has exacerbated the risk of 
cyberbullying and harassment (Hasebrink et al., 2009), 
has likely sped the spread of questionable information 
(Vosoughi et al., 2018), and has reduced privacy and 
data security (Garcia, 2017). Consistent with the 
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Abstract
Humanity spends an increasing proportion of its time interacting online, yet—given the importance of social media 
to human welfare—the external factors that regularly shape online behavior remain markedly understudied. Do 
environmental factors alter rates of online social activity? We conducted two large natural experiments to investigate how 
worse weather conditions affect social-media use in the United States, analyzing over 3.5 billion posts from Facebook 
and Twitter (now X) between 2009 and 2016. We found that extreme temperatures and added precipitation each 
independently amplified social-media activity, effects that persisted within individuals. Compounded weather extremes 
produced markedly larger increases in social-media activity. Days colder than −5 °C with 1.5 to 2 cm of precipitation 
elevated social-media activity by 35%, nearly triple the surge seen on New Year’s Eve in New York City. Our study 
highlights that environmental conditions play a critical—but overlooked—role in shaping digital social interaction.
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social-displacement hypothesis (Kraut et  al., 1998), 
higher social-media use is associated with decreased 
in-person social interaction with close contacts (Allcott 
et al., 2020; Kuss & Griffiths, 2011), and U.S. adolescents 
in 2016 spent 1 hour less per day engaged in in-person 
social interactions compared with the 1980s cohort, a 
group that predated social media (Twenge et al., 2019). 
Although recent field experimental evidence has sug-
gested that this relationship is plausibly causal in that 
direction (Allcott et al., 2020), earlier longitudinal evi-
dence by Dienlin et al. (2017) suggested that individu-
als’ social-media activity was positively associated with 
their offline social activity.

Importantly, evidence suggests the welfare effects of 
offline and online socialization diverge: Reported men-
tal health is positively associated with offline interaction 
but negatively associated with logged social-media use 
(Shakya & Christakis, 2017). Although evidence sug-
gests that social media can increase news consump-
tion and group coordination (Campante et  al., 2022; 
Mosquera et al., 2020), studies also show that social-
media use can degrade mental health, with the magni-
tude of this relationship varying considerably across 
studies (Ferguson, 2024). Though numerous studies 
(Orben et  al., 2019; Panayiotou et  al., 2023; Sewall 
et al., 2022) and multiple reviews of the psychological 
literature have questioned the strength and generality 
of this relationship (Dienlin & Johannes, 2020; Meier & 
Reinecke, 2021; Orben, 2020; Valkenburg et al., 2022), 
several rigorous experimental and quasiexperimental 
studies suggest that social media can causally degrade 
mental health (Allcott et al., 2020; Braghieri et al., 2022; 
Hunt et al., 2018; Mosquera et al., 2020; Sagioglou & 
Greitemeyer, 2014; Tromholt, 2016; Verduyn et  al., 
2015), can be habitually addictive (Allcott et al., 2022), 
can worsen performance-attention deficits (Braghieri 
et  al., 2022), and can promote online activity while 
reducing engagement in healthier tasks (Allcott et al., 
2020; Mosquera et al., 2020).

Scholars have uncovered many ways in which exter-
nal environmental factors can shape the nature of 
online behaviors among those already online. For 
example, social-media-post content can provide high-
resolution revealed cues for natural hazard detection 
and damage assessment (Arthur et  al., 2018; Guan  
& Chen, 2014; Kryvasheyeu et  al., 2016; Moore &  
Obradovich, 2020; Sakaki et  al., 2010; Spruce et  al., 
2020; Weaver et al., 2021)—recording pollution impacts 
(Burke et al., 2022; Jiang et al., 2015; Zheng et al., 2019) 
and registering social responses to heat waves and 
anthropogenic environmental disasters (Cody et  al., 
2015; Ford et al., 2016; Romanello et al., 2021, 2022). 
Further, prior research demonstrates that diurnal, sea-
sonal, and meteorological fluctuations can modify the 

nature of human lexical expressions on social media 
(Baylis, 2020; Baylis et  al., 2018; Burke et  al., 2018; 
Golder & Macy, 2011; Hannak et al., 2012; Moore et al., 
2019; Romanello et al., 2021, 2022; Wang et al., 2020).

Much is known about how environmental conditions 
shape social-media activities once individuals are 
already online. Yet given the importance of social-
media activities to human welfare, surprisingly little is 
known about how external conditions influence par-
ticipation in social media. And it remains a fundamental 
question whether such social-media participation in 
and of itself is sensitive to environmental conditions.

Here we investigated the causal effects of meteoro-
logical conditions on participation in social-media 
activities. To do this, we employed over three and a 
half billion social-media posts from tens of millions of 
Americans across both Facebook and Twitter (now X) 
between 2009 and 2016 coupled with high-resolution 
local meteorological data spanning the contiguous 
United States.

Using these data, we examine five questions: First, 
does the weather outside alter the volume of social-media 
activity online? Second, do the effects of temperature and 
precipitation alter social-media activity in independent 
or compound manners? Third, are changes in social-
media activity driven predominantly by alterations to 
weather-related posting, or are they also observed in 
postings not related to weather? Fourth, do effects 
observed at aggregate units (city level) persist when 

Statement of Relevance 

Human interactions increasingly occur on social 
media. Psychologists are investigating the implica-
tions of this recent and dramatic shift in our digital 
behavior, but the potential drivers of online 
socialization have received markedly less atten-
tion. In this study we investigate—and precisely 
measure—the causal impact of one of the more 
probable drivers of time spent socializing online: 
the weather outside. Analyzing billions of social-
media posts across two of the world’s largest plat-
forms, we found that the weather humans are 
exposed to alters individual digital behavior and 
changes online social activity at the scale of entire 
cities. People are less active on social media dur-
ing mild, temperate conditions, yet worse weather 
drives a large and socially meaningful increase in 
online social activity. Compounded weather 
extremes lead to more social-media activity than 
major social events, including Mardi Gras in New 
Orleans and New Year’s Eve in New York City.



Psychological Science XX(X) 3

examined within unique individuals over time? Fifth, how 
does the magnitude of the effects of the weather on 
social-media activity compare to the size of the effects 
produced by other salient societal events?
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Method

Social-media data

Our social media data are comprised of 3.5 billion total 
posts, with 2.4 billion Facebook posts and 1.1 billion 
Twitter posts (Baylis et al., 2018; Coviello et al., 2014). 
These data are derived from underlying unique status 
updates, which are natural language text-based mes-
sages that people’s contacts view on their own Face-
book news feed or Twitter timeline. The Facebook data 
were originally collected in partnership with Facebook 
(Coviello et al., 2014), and the Twitter data were col-
lected via the publicly accessible application program-
ming interface (API) that Twitter provided during the 
period of data collection.

Our Facebook data begin on January 1, 2009, and 
end on March 31, 2012, containing 1,176 days in total. 
The Facebook data consist of counts of status updates, 
both short form and longer form, from all individuals 
on the platform during the period under study—both 
public and private accounts—who selected English as 
their language, chose the United States as their country 
of residence, and could be linked to our sample of 
metropolitan areas by their IP-based geographic loca-
tion at time of their posting (Coviello et al., 2014). For 
each day and city in the data, our data consist of the 
total number of Facebook status updates matching 
these inclusion criteria in that U.S. city on that day. This 
results in an average of over 2.03 million posts per day 
between 2009 and 2012. Table 1 displays summary sta-
tistics for the Facebook data variables.

Our Twitter data are comprised of individual posts, 
or tweets, that are short messages limited to 140 char-
acters (in the period under study) and are publicly 
viewable by others on the platform by default. Our 

Table 1. Summary Statistics for Selected Facebook Data Variables, City–Day 
Unit of Analysis

Variable Mean SD Minimum Maximum

Number of messages 27,749.1 29,319.9 52.0 250,981.0

Log number of messages 9.7 1.2 4.0 12.4

Maximum temperature 20.4 10.8 −20.8 45.4

Precipitation 0.3 0.8 0.0 21.6
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Twitter data span the days from November 30, 2013, to 
June 30, 2016, yielding a total of 938 days in the sample. 
We gathered tweets using Twitter’s public streaming 
application programming interface, placing a bounding-
box filter over the United States to gather the set of all 
precisely geolocated tweets within the U.S. boundary 
in the period under study. We then assigned tweets 
falling within a metropolitan area’s spatial boundaries 
to that specific region, to match the unit of analysis 
associated with our Facebook data. This procedure 
allows for a high level of certainty that each included 
tweet originated within a specific metropolitan area. 
We excluded retweets from our analysis and only con-
sidered direct user-generated content. This resulted in 
an average of over 1.22 million posts per day between 
2013 and 2016. Table 2 displays summary statistics for 
Twitter data variables.

The city-level analyses for both Facebook and Twit-
ter data in this manuscript rely on social-media data 
that have been aggregated to the city level and thus 
retain no individual identifying information. The analy-
ses involving user-level Twitter data have been deter-
mined exempt by WCG’s IRB Affairs Department. There 
are no user-level Facebook analyses presented in this 
work.

Meteorological data

We use gridded (at ~4 km) meteorological data from 
the PRISM Climate Group for our daily maximum tem-
perature, temperature range, and precipitation variables 
(Di Luzio et al., 2008). We also employ cloud cover—a 
measure of sun exposure—and relative humidity data 
from the National Centers for Environmental Predic-
tion’s (NCEP’s) Reanalysis II project (Kanamitsu et al., 
2002). We matched daily meteorological variables in a 
location to the posts of individual social-media users 
geolocated to that particular location on that day via 
overlaying the spatial raster grids associated with the 
meteorological variables onto the spatial locations of 
the cities contained within our sample.

Weather-related posts

In one set of analyses, we demarcated weather-related 
and non-weather-related posting activity using a crowd-
sourced dictionary of weather-related terms (Coviello 
et al., 2014). We present our weather-term dictionary 
below:

aerovane air airstream altocumulus altostratus 
anemometer anemometers anticyclone anticy-
clones arctic arid aridity atmosphere atmospheric 
autumn autumnal balmy baroclinic barometer 
barometers barometric blizzard blizzards bluster-
ing blustery breeze breezes breezy brisk calm 
Celsius chill chilled chillier chilliest chilly chinook 
cirrocumulus cirrostratus cirrus climate climates 
cloud cloudburst cloudbursts cloudier cloudiest 
clouds cloudy cold colder coldest condensation 
contrail contrails cool cooled cooling cools cumu-
lonimbus cumulus cyclone cyclones damp damper 
dampest degree degrees deluge dew dews dewy 
doppler downburst downbursts downdraft down-
drafts downpour downpours dried drier dries dri-
est drizzle drizzled drizzles drizzly drought 
droughts dry dryline fall Fahrenheit flood flooded 
flooding floods flurries flurry fog fogbow fogbows 
fogged fogging foggy fogs forecast forecasted 
forecasting forecasts freeze freezes freezing frigid 
frost frostier frostiest frosts frosty froze frozen gale 
gales galoshes gust gusting gusts gusty haboob 
haboobs hail hailed hailing hails haze hazes hazy 
heat heated heating heats hoarfrost hot hotter hot-
test humid humidity hurricane hurricanes ice iced 
ices icing icy inclement landspout landspouts 
lightning lightnings macroburst macrobursts mael-
strom mercury meteorologic meteorologist meteo-
rologists meteorology microburst microbursts 
microclimate microclimates millibar millibars mist 
misted mists misty moist moisture monsoon mon-
soons mugginess muggy NEXRAD nippy NOAA 
nor’easter nor’easters noreaster noreasters over-
cast ozone parched parching pollen precipitate 

Table 2. Summary Statistics for Selected Twitter Data Variables, City–Day Unit of Analysis

Variable Mean SD Minimum Maximum

Number of messages 16,958.6 24,558.1 41.0 246,314.0

Log number of messages 9.1 1.2 3.7 12.4

Number of weather messages 584.8 879.6 1.0 26,481.0

Log number of weather messages 5.7 1.2 0.0 10.2

Number of nonweather messages 16,373.9 23,728.0 40.0 23,7805.0

Log number of nonweather messages 9.0 1.2 3.7 12.4

Maximum temperature 21.2 10.8 −24.2 46.9

Precipitation 0.3 0.8 0.0 27.8
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precipitated precipitates precipitating precipita-
tion psychrometer radar rain rainboots rainbow 
rainbows raincoat raincoats rained rainfall rainier 
rainiest raining rains rainy sandstorm sandstorms 
scorcher scorching searing shower showering 
showers skiff sleet slicker slickers slush slushy 
smog smoggier smoggiest smoggy snow snowed 
snowier snowiest snowing snowmageddon snow-
pocalypse snows snowy spring sprinkle sprinkles 
sprinkling squall squalls squally storm stormed 
stormier stormiest storming storms stormy strato-
cumulus stratus subtropical summer summery sun 
sunnier sunniest sunny temperate temperature 
tempest thaw thawed thawing thaws thermometer 
thunder thundered thundering thunders thunder-
storm thunderstorms tornadic tornado tornadoes 
tropical troposphere tsunami turbulent twister 
twisters typhoon typhoons umbrella umbrellas 
vane warm warmed warming warms warmth 
waterspout waterspouts weather wet wetter wet-
test wind windchill windchills windier windiest 
windspeed windy winter wintery wintry

Results

Using these data (see Fig. 1 and the Method section) 
and causal inferential tools drawn from climate econo-
metrics used to evaluate meteorological natural experi-
ments (Hsiang, 2016), we examine the five primary 
questions delineated in the Introduction.

Marginal effects of temperature and 

precipitation

To investigate our first question—does weather alter 
the volume of social-media activity online?—we com-
bined our aggregated city-level post counts with our 
daily meteorological data (see the Method section). We 
empirically model this relationship as:

 
ln Y f tmax g precip

h

jmt jmt jmt

t jm jmt

( ) = ( ) + ( )
+ ( ) + + +µ γ ν ε .

  (1)

In the longitudinal (panel) model represented in Equa-
tion 1, j  indexes cities, m indexes unique year-months, 
and t indexes the day of study. Our dependent variable 
ln Y jmt( ) represents the natural log of our city-level daily 
post count.

Our focal independent variables in this analysis con-
sisted of daily maximum temperatures (tmax jmt ) and 
total precipitation ( precip jmt). We also controlled for 
daily temperature range, percentage cloud cover, and 
relative humidity, represented here via the term h(µ). 
We estimate our primary relationships of interest using 

indicator variables for each 5 °C maximum temperature 
and for each 1-cm precipitation bin—represented here 
by f() and g(), respectively. These functions enabled us 
to semiparametrically estimate the effects associated 
with each consistently spaced interval of the meteoro-
logical variable across its distribution. This approach 
enabled flexible estimation of the relationship between 
our meteorological variables and social-media activity 
without needing to assume particular parametric func-
tional forms underlying the relationships (Baylis et al., 
2018; Hsiang, 2016; Obradovich, 2017; Obradovich & 
Fowler, 2017; Obradovich et al., 2018).

Unobserved geographic and temporal factors may 
alter social-media activity in a manner that correlates 
with meteorological conditions. For example, people 
may exhibit more or less social-media activity on average 
in cities that have better mass-transit infrastructure or on 
dates when they are likely to have more leisure time. 
Further, there may exist unobserved, city-specific trends, 
such as changes in amount of daylight throughout the 
year or evolution in city-level economic conditions over 
time, that influence the social-media activity within a 
city. To ensure that these factors did not confound our 
estimates of the effect of weather variables on social-
media activity, we include in Equation 1 νjm and γ

t
 to 

represent city-by-month-of-study and day-of-study indi-
cator variables (fixed effects), respectively. These vari-
ables account for all potentially confounding, constant, 
unobserved characteristics for each city across its sea-
sons and for each unique date in the data across cities 
(Carleton & Hsiang, 2016; Hsiang, 2016; Wooldridge, 
2010). The remaining variation in our weather variables 
is thus as good as randomly assigned to the remaining 
variation in social-media activity (Hsiang, 2016). To bias 
our estimation, a confounding series would need to sys-
tematically covary with both meteorological anomalies 
and social-media activity anomalies but would not itself 
be caused by those weather anomalies (Carleton & 
Hsiang, 2016; Hsiang, 2016).

We adjust for within-city and within-day correlation 
in ε jmt by employing heteroskedasticity-robust standard 
errors clustered on both city and day of study (Cameron 
et al., 2011). We omit nonclimatic control variables from 
Equation 1 because of their potential to generate bias 
in our parameters of interest (such variables are termed 
bad controls in the climate econometrics literature 
because they can introduce a form of posttreatment 
bias; Acharya et  al., 2016; Hsiang, 2016; Obradovich 
et al., 2017).

We omit the 15–20 °C maximum temperature and 0 
cm precipitation indicator variables when estimating 
Equation 1. Our exponentiated coefficient estimates 
(Giles, 2011) can be interpreted as the percentage 
change in social-media posts produced by a particular 
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Fig. 1. Geographic location and temporal duration of social-media data. This figure depicts the U.S. locales covered by our 
sources of social-media data as well as the national daily variation in each series. In (a) we show the cross-sectional city-level 
variation of the social-media data, with blue points indicating the location of geolocated tweet data and yellow points denoting 
the locale of cities in our analysis. In (b) the over-time variation in the Facebook data is displayed. The decrease in number of 
posts over time is due to changes in the Facebook platform over those years. In (c) we depict temporal variation in our Twitter 
data. The decline in number of posts in late 2014 is attributable to changes Twitter implemented in their geolocation process 
at that time.

weather observation range compared with these base-
line categories.

We present the results of the estimation of Equation 
1 in Figure 2. As can be seen in Figures 2a and 2d, 
compared to moderate temperatures (15–20 °C), both 
freezing temperatures and hot temperatures increase 
social-media use. Freezing temperatures produce a 

4.46% increase in social-media activity on Facebook  
(p < .001) and a 5.84% increase on Twitter (p < .001). 
Temperatures above 40 °C increase activity by 3.34% 
on Facebook (p < .001) and by 3.58% on Twitter (p < 
.001). Further, as can be seen in Figures 2b and 2e, 
added precipitation increases social-media activity 
across both samples. Compared to the no-precipitation 
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baseline, 3 to 4 cm of daily precipitation produces a 
2.93% increase in social-media activity on Facebook (p 
< .001) and a 4.44% increase on Twitter (p < .001). To 
examine whether the selection of meteorological con-
trols alters our inference, we examined the models with 
and without additional meteorological controls (Table 
3) and found that the estimates remained quite stable 
under these alternative specifications. Further, to exam-
ine whether our inference might be altered by within-
state spatial autocorrelation in the weather variables, 
we estimated models that cluster standard errors at the 
state and date level (as opposed to city and date in the 
main analyses). As can be seen in Table 4, altering the 
standard error clustering method alters the standard 
errors slightly, but our inference remains consistent 
across choice of spatial cluster.

Nonlinear effects in the interaction 

between temperature and precipitation

Thus both temperature and precipitation, when con-
sidered independently, alter social-media activity sig-
nificantly and substantively. But are these effects simply 
additive in (e.g.) cold and wet conditions, or do they 
compound to produce nonlinear effects on social-media 
activity?

To investigate this second question, we introduce 
what is to our knowledge a novel semiparametric 
approach to estimating meteorological interaction sur-
faces in the context of climate econometrics. To esti-
mate the semiparametric interaction surfaces depicted 
in Figures 2c and 2f, we estimated the model repre-
sented in Equation 2 separately for both the Facebook 
and Twitter data. This model is identical to that of 
Equation 1, but rather than estimate temperature and 
precipitation as only marginal entries into the model, 
we also estimated coefficients on the interaction of each 
meteorological bin.

 

ln Y f tmax g precip

d tmax precip h

jmt jmt jmt

jmt jmt

( ) = ( )+ ( )

+ ( )+ ( ), µ ++ + +γ ν εt jm jmt .     (2)

In order to be identified, this model requires sufficient 
sample support under each bin. Because of the limited 
support on the extremes (for example, there are very 
few observations that have both temperatures > 40 °C 
and > 2 cm of precipitation), we limited the interaction 
surface in these models to 5 °C temperature-bin ranges 
from (−Inf , −5 °C] – (35 °C, −Inf ) and half-centimeter 
precipitation ranges from [0, 0] – (2, −Inf ).

Using the coefficient estimates from Equation 2, we 
constructed the simple effects for each temperature-
precipitation bin (Aiken et al., 1991). This process omits 

as the reference bin the interaction cell with 0 cm 
precipitation and a temperature between 15 °C and  
20 °C. To properly estimate the uncertainty in our esti-
mates (Aiken et al., 1991), we calculated median esti-
mates and confidence regions for each simple effect by 
conducting 1,000 bootstrapped estimations of Equation 
2, clustered by city level, and storing these 1,000 esti-
mates for each grid cell in Figures 2c and 2f. We then 
reported the median estimate from this process in each 
cell and constructed the 0.5 to 99.5 percentile range for 
each estimate (Good, 2006). If this confidence range 
did not include zero, we labeled that grid cell with a 
star in Figures 2c and 2f.

The results of this estimation process uncover strong 
nonlinearity in the compound effects of temperature and 
precipitation on social-media activity and can be seen 
in Figures 2c and 2f. Compared to the mild-weather 
baseline, conditions with temperatures below −5 °C with 
1.5 to 2 cm of precipitation increased social-media activ-
ity by 34.22% on Facebook and by 35.47% on Twitter. 
Precipitation during hot weather produced smaller—
though still positive—effects. Compared with the mild-
weather baseline, temperatures above 35 °C with 1 to 
1.5 cm of precipitation increased social-media activity by 
4.37% on Facebook and by 5.18% on Twitter. (All results 
noted above are significant at the p < .01 level via cluster 
bootstrap inference.) As the number of parameters esti-
mated in these regressions is quite large, particularly 
when including the bootstrap regression parameters, we 
provide all estimated parameters in addition to those 
presented in Figure 2 in our shared data (see the Open 
Practices section of the Transparency statements for more 
information).

Weather-Related and Non-Weather-
Related Activity

Our prior analyses examine changes to the volume of 
all types of posts within our data, inclusive of terms 
that may refer directly to the weather. It is possible 
that much of the increased activity observed in worse 
weather conditions relates only to added discussion 
of weather on the platforms. How much of a role does 
weather-related discussion play in our observed 
effects?

To classify weather-related posts in our sample, we 
employed a large crowd-sourced dictionary of terms 
(see the Method section and previous work—Baylis 
et al., 2018—for further details). We do not have access 
to the raw Facebook posts, so weather-term-related 
analyses are restricted to our Twitter data. Approxi-
mately 4% of tweets in our sample contained one or 
more of our weather terms.

To examine changes in the share of weather posting 
that results from changes in the weather, we modified 
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Table 3. City–Day Regressions Varying Meteorological Controls

Dependent variable

 ln(# Social Media Posts)

Independent variables 1 2 3 4

TMAX ∈ (−Inf, −10] 0.059*** 0.065*** 0.076*** 0.081***

 (0.011) (0.011) (0.016) (0.017)

TMAX ∈ (−10, −5] 0.042*** 0.047*** 0.058*** 0.062***

 (0.007) (0.008) (0.010) (0.010)

TMAX ∈ (−5, 0] 0.040*** 0.044*** 0.054*** 0.057***

 (0.005) (0.005) (0.007) (0.008)

TMAX ∈ (0, 5] 0.024*** 0.027*** 0.040*** 0.042***

 (0.003) (0.003) (0.006) (0.006)

TMAX ∈ (5, 10] 0.004** 0.006*** 0.017*** 0.018***

 (0.002) (0.002) (0.004) (0.004)

TMAX ∈ (10, 15] 0.0001 0.001 0.006** 0.007***

 (0.001) (0.001) (0.003) (0.002)

TMAX ∈ (20, 25] 0.004*** 0.003*** 0.0003 −0.0003

 (0.001) (0.001) (0.002) (0.002)

TMAX ∈ (25, 30] 0.008*** 0.007*** 0.002 0.003

 (0.001) (0.001) (0.002) (0.003)

TMAX ∈ (30, 35] 0.015*** 0.013*** 0.008*** 0.011***

 (0.002) (0.002) (0.003) (0.004)

TMAX ∈ (35, 40] 0.024*** 0.023*** 0.018*** 0.022***

 (0.003) (0.003) (0.004) (0.005)

TMAX ∈ (40, Inf] 0.034*** 0.033*** 0.030*** 0.035***

 (0.004) (0.004) (0.006) (0.008)

PRECIP ∈ (0, 1] 0.010*** 0.009*** 0.015*** 0.014***

 (0.001) (0.001) (0.001) (0.001)

PRECIP ∈ (1, 2] 0.022*** 0.021*** 0.031*** 0.030***

 (0.002) (0.002) (0.003) (0.003)

PRECIP ∈ (2, 3] 0.030*** 0.029*** 0.039*** 0.037***

 (0.003) (0.002) (0.004) (0.004)

PRECIP ∈ (3, 4] 0.030*** 0.029*** 0.045*** 0.043***

 (0.003) (0.003) (0.004) (0.005)

PRECIP ∈ (4, 5] 0.033*** 0.032*** 0.058*** 0.054***

 (0.004) (0.004) (0.006) (0.006)

PRECIP ∈ (5, Inf] 0.053*** 0.051*** 0.076*** 0.077***

 (0.005) (0.005) (0.006) (0.006)

TRANGE 0.001*** 0.0004

 (0.0001) (0.0003)

HUMID 0.0002*** 0.0003***

 (0.00003) (0.0001)

CLOUD 0.00001 0.0001***

 (0.00001) (0.00002)

Date FE Yes Yes Yes Yes

City: Calendar Month FE Yes Yes Yes Yes

Facebook Yes Yes No No

Twitter No No Yes Yes

Full model R2 0.999 0.999 0.994 0.994

Projected model R2 0.053 0.055 0.021 0.024

Observations 86,140 85,801 74,971 67,972

Residual standard error 0.039 0.039 0.090 0.091

Note: Standard errors are clustered on city and date. TMAX = maximum temperature; 
PRECIP = precipitation; TRANGE = diurnal temperature range; HUMID = relative humidity; 
CLOUD = cloud cover; FE = fixed effects.  
**p < .05. ***p < .01.
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Table 4. City–Day Regressions State-Level Clustering of 
Standard Errors

Dependent variable

 ln(# Social Media Posts)

Independent variables 1 2

TMAX ∈ (−Inf, −10] 0.065*** 0.081***
 (0.013) (0.018)
TMAX ∈ (−10, −5] 0.047*** 0.062***
 (0.009) (0.011)
TMAX ∈ (−5, 0] 0.044*** 0.057***
 (0.007) (0.008)
TMAX ∈ (0, 5] 0.027*** 0.042***
 (0.004) (0.005)
TMAX ∈ (5, 10] 0.006*** 0.018***
 (0.002) (0.003)
TMAX ∈ (10, 15] 0.001 0.007***
 (0.001) (0.002)
TMAX ∈ (20, 25] 0.003*** −0.0003
 (0.001) (0.002)
TMAX ∈ (25, 30] 0.007*** 0.003
 (0.002) (0.003)
TMAX ∈ (30, 35] 0.013*** 0.011**
 (0.002) (0.004)
TMAX ∈ (35, 40] 0.023*** 0.022***
 (0.003) (0.007)
TMAX ∈ (40, Inf] 0.033*** 0.035***
 (0.006) (0.010)
PRECIP ∈ (0, 1] 0.009*** 0.014***
 (0.001) (0.001)
PRECIP ∈ (1, 2] 0.021*** 0.030***
 (0.002) (0.002)
PRECIP ∈ (2, 3] 0.029*** 0.037***
 (0.003) (0.003)
PRECIP ∈ (3, 4] 0.029*** 0.043***
 (0.003) (0.006)
PRECIP ∈ (4, 5] 0.032*** 0.054***
 (0.004) (0.006)
PRECIP ∈ (5, Inf] 0.051*** 0.077***
 (0.006) (0.007)
TRANGE 0.001*** 0.0004
 (0.0001) (0.0003)
HUMID 0.0002*** 0.0003***
 (0.00003) (0.0001)
CLOUD 0.00001 0.0001***
 (0.00001) (0.00002)
Date FE Yes Yes
City: calendar month FE Yes Yes
Facebook Yes No
Twitter No Yes
Full model R2 0.999 0.994
Projected Model R2 0.055 0.024
Observations 85,801 67,972

Residual standard error 0.039 0.091

Note: Standard errors are clustered on state and date. TMAX = 
maximum temperature; PRECIP = precipitation; TRANGE = diurnal 
temperature range; HUMID = relative humidity; CLOUD = cloud 
cover; FE = fixed effects.  
**p <.05. ***p <.01.

Equation 1, substituting as the dependent variable the 
share of all tweets that weather-related tweets comprise 
on a given day in a given city. Otherwise, estimation 
remains the same as in Equation 1.

The results of this process can be seen in Figures 3a 
and 3b. More extreme temperatures and added precipi-
tation both increased the share of weather-related 
tweets on Twitter. Freezing temperatures produced an 
increase of 1.94 percentage points in the share of 
weather tweets on the platform (p < .001). Further, 3 
to 4 cm of daily precipitation produced an increase of 
1.78 percentage points in the share of weather-related 
Twitter posts (p < .001).

Although the share of weather-related posts on Twit-
ter increased in worse conditions, so too did non-
weather-related posting activity. To examine this, we 
again modified Equation 1, but excluded from the 
sample any posts that were classified as weather-related 
by our classifier. The results—quite similar to those in 
the all-tweets analysis—can be seen in Figures 3c and 
3d. Freezing temperatures produced a 3.95% increase 
in the share of nonweather posts on the platform (p < 
.001). Further, 3 to 4 cm of daily precipitation produced 
a 2.7% increase in the share of non-weather-related 
Twitter posts (p < .001).

To again examine whether the selection of meteo-
rological controls altered our inference, we examined 
the above models with and without additional meteo-
rological controls in Table 5. We found that the esti-
mates remain quite stable under these alternative 
specifications.

Within-Individual Social-Media Activity

Thus, exposure to worse weather significantly increased 
social-media activity at the city level for both weather-
related and non-weather-related posting. However, 
effects observed at the city level of aggregation may 
obscure sample composition dynamics that could pro-
duce problems of ecological inference. Although cities 
may see more activity overall in worse weather condi-
tions, this could be due to some individuals using the 
platforms in good weather and a different (and larger) 
set of individuals using the platforms in worse weather 
conditions. Do the same individuals, tracked over time, 
alter their social-media participation in response to the 
weather?

For our individual-level analysis, we employed user-
day specific counts of posts on Twitter for a sample of 
individuals in our sample who authored messages on 
more than 25% of days, a subsample containing 2.17 
million tweets across 366,855 individuals. For the pur-
poses of computability, we took a simple random sample 
from this larger sampling frame of individuals to create 
a panel of 10,000 individuals representative of the 
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Fig. 3. The effect of worse weather on both weather-related and non-weather-related posting. Overall changes 
in social-media activity could be driven by individuals posting at much higher rates about the weather during 
more extreme weather conditions. Our Twitter data enabled applying a crowdsourced definition of weather 
posts to examine changes in weather-related activity. The fraction of weather-related posts on Twitter notably 
increased with both cold temperatures and with added precipitation (a, b). However, non-weather-related posts 
also increased in more extreme conditions (c, d). Shaded error bounds represent 95% confidence intervals 
calculated using heteroskedasticity-robust standard errors multiway clustered on both city and day of study.
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Table 5. Weather-Related and Non-Weather-Related Regressions Varying 
Meteorological Controls

Dependent variable

 ln(# nonweather posts) % weather-related posts

Independent variables 1 2 3 4

TMAX ∈ (−Inf, −10] 0.054*** 0.056*** 0.024*** 0.026***

 (0.015) (0.016) (0.002) (0.002)

TMAX ∈ (−10, −5] 0.040*** 0.041*** 0.019*** 0.022***

 (0.009) (0.010) (0.002) (0.002)

TMAX ∈ (−5, 0] 0.038*** 0.039*** 0.017*** 0.019***

 (0.007) (0.007) (0.002) (0.002)

TMAX ∈ (0, 5] 0.029*** 0.029*** 0.011*** 0.013***

 (0.005) (0.005) (0.001) (0.001)

TMAX ∈ (5, 10] 0.013*** 0.013*** 0.004*** 0.005***

 (0.004) (0.004) (0.001) (0.001)

TMAX ∈ (10, 15] 0.005** 0.005* 0.001*** 0.002***

 (0.003) (0.003) (0.0003) (0.0003)

TMAX ∈ (20, 25] 0.001 0.001 −0.0004 −0.001***

 (0.002) (0.002) (0.0003) (0.0003)

TMAX ∈ (25, 30] 0.002 0.004 −0.0002 −0.001**

 (0.002) (0.003) (0.0005) (0.0005)

TMAX ∈ (30, 35] 0.007** 0.011*** 0.001 0.0001

 (0.003) (0.004) (0.001) (0.001)

TMAX ∈ (35, 40] 0.014*** 0.020*** 0.003*** 0.002***

 (0.004) (0.005) (0.001) (0.001)

TMAX ∈ (40, Inf] 0.025*** 0.030*** 0.006*** 0.005***

 (0.006) (0.008) (0.001) (0.001)

PRECIP ∈ (0, 1] 0.011*** 0.009*** 0.005*** 0.005***

 (0.001) (0.001) (0.0003) (0.0003)

PRECIP ∈ (1, 2] 0.020*** 0.018*** 0.012*** 0.012***

 (0.002) (0.002) (0.001) (0.001)

PRECIP ∈ (2, 3] 0.024*** 0.022*** 0.016*** 0.016***

 (0.004) (0.004) (0.001) (0.001)

PRECIP ∈ (3, 4] 0.029*** 0.027*** 0.017*** 0.018***

 (0.004) (0.005) (0.001) (0.001)

PRECIP ∈ (4, 5] 0.037*** 0.033*** 0.022*** 0.023***

 (0.006) (0.006) (0.002) (0.002)

PRECIP ∈ (5, Inf] 0.047*** 0.047*** 0.031*** 0.031***

 (0.006) (0.006) (0.002) (0.002)

TRANGE 0.0001 0.0003***

 (0.0003) (0.00004)

HUMID 0.0002*** 0.00004***

 (0.0001) (0.00001)

CLOUD 0.0001*** 0.00000

 (0.00002) (0.00000)

Date FE Yes Yes Yes Yes

City: Calendar Month FE Yes Yes Yes Yes

Twitter Yes Yes Yes Yes

Full model R2 0.994 0.994 0.509 0.507

Projected model R2 0.009 0.012 0.225 0.229

Observations 74,971 67,972 74,971 67,972

Residual standard error 0.090 0.091 0.009 0.009

Note: Standard errors are clustered on city and date. TMAX = maximum temperature; PRECIP = 
precipitation; TRANGE = diurnal temperature range; HUMID = relative humidity; CLOUD = cloud 
cover; FE = fixed effects. 
**p < .05. ***p < .01.
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frequent users in our Twitter data. We restricted our 
individual-level analysis to our Twitter data because we 
did not have access to the individual-level Facebook 
data.

To investigate whether our city-level results persisted 
within the same individuals over time, we employed 
these downsampled individual-level Twitter data, along 
with slight modifications to Equation 1 to estimate an 
individual fixed-effects empirical model. We estimated 
our individual-level relationship this way:

 

ln Y f tmax g precip

h

ijmt ijmt ijmt

i t jm ijmt

( ) = ( ) + ( )
+ ( ) + + + +µ η γ ν ε .  (3)

In Equation 3, i  now indexes unique individuals and 
η
i
 represents individual-level indicator terms that con-

trol for individual-specific, time-invariant factors, such 
as average propensity to participate in social media, 
constant individual demographic characteristics, as well 
as fixed weather preferences for each Twitter user in 
the sample (Wooldridge, 2010). The model again 
included day of study and city level by year/month 
indicator terms, and estimation otherwise proceeded 
according to our city-level analysis.

As can be seen in Figures 4a and 4b, the effects of 
temperature and precipitation on within-individual 
posting activity mirrored those that we observed in the 
city-level analysis. Compared with moderate tempera-
tures (15–20 °C), the effects of both freezing tempera-
tures and hot temperatures increased individual 
social-media activity among frequent users. Freezing 
temperatures produced a 3.19% increase in tweeting 
activity (p = .002), whereas temperatures above 40 °C 
increased activity by 3.67% (p < .001). And compared 
with the no-precipitation baseline, 3 to 4 cm of daily 
precipitation produced a 2.41% increase in tweet activ-
ity (p = .003). Table 6 presents the regression table 
associated with this model estimation. We thus observed 
both increasing social-media activity among frequent 
users as well as larger increases in social-media use 
among the full sample of frequent and infrequent users 
in response to worse weather, suggesting that worse 
weather increases posting rates with frequent users and 
increases activity of the broader set of social-media 
users who post less frequently.

Effect Sizes in Context

Although the effects of the weather on social-media 
activity thus persist within individuals—even account-
ing for individual-level specific factors—how large are 

the effects we observe when compared with other sig-
nificant factors that alter social-media activity?

To understand the relative magnitude of the observed 
effects of adverse weather, we compared them to the 
increase in social-media activity observed on a select 
set of large social events that occur in specific cities. 
We again estimated Equation 2, with two modifications. 
First, we pooled both the Facebook and Twitter data 
to generate an average effect across these two sources. 
Second, in addition to the terms in Equation 2, we 
included indicator terms for each of the comparison 
events to estimate these parameters simultaneously 
alongside our meteorological variables. These events 
included the dates of the Boston Marathon in Boston, 
Massachusetts, the occurrences of New Year’s Eve in 
New York City, New York, and the dates of Mardi Gras 
in New Orleans, Louisiana. These indicator terms iso-
lated the specific dates of each respective event, so they 
are not collinear with the fixed effects in our models. 
For example, for the effect size of Mardi Gras on social-
media activity in New Orleans, our indicator variable 
is equal to one on each historical date of Mardi Gras 
for only those observations that fall within the city of 
New Orleans on those dates (Baylis et  al., 2018; 
Romanello et al., 2022).

Figure 4c indicates that each of these events is sig-
nificantly associated with increased social-media use at 
the p < .01 level. A day of temperatures below −5°C 
and precipitation of between 1.5 and 2 cm has an effect 
that is both statistically significant and substantively 
quite large. This effect of adverse weather (34%) is over 
six times the effect of the Boston Marathon in Boston 
(5%), nearly three times the effect size associated with 
New Year’s Eve in New York City (12%), and nearly 
double the effect of Mardi Gras in New Orleans (18%). 
Table 7 presents the regression table associated with 
this model estimation. As it compares to other well-
known and large-scale social events, the impact of 
adverse weather on social-media activity is large.

Another way to consider the magnitude of the mete-
orological effects is to compare them with the baseline 
variation in posting activity for the pooled Facebook 
and Twitter data once the fixed effects in Equation 1 
or Equation 2 have been partialed out. To do so, we 
deconvolved our city-level data as in Equation 4 by 
regressing our logged number of daily city-level posts 
(Yjmt) on the day-of-study (γ

t
) and city-by-month-of-

study (ν
jm

) fixed effects:

 ln Y jmt t jm jmt( ) = + +γ ν ε . (4)

This produces a residualized measure of the percentage 
change in daily posts that has had temporal factors and 
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city-level trends removed. Comparing the variation of 
this deconvolved series to the magnitude of the effects 
estimated by regressing this series upon our decon-
volved weather variables, as in Equation 2, gives a sense 
of the relative size of the effects of the weather vari-
ables compared with the baseline variation in the series 
once fixed effects have been partialed out.

In doing so, we found that the standard deviation of 
the percentage change in residualized daily posts was 
7%. Thus, the percentage change produced by tempera-
tures below −5 °C with precipitation of between 1.5 
and 2 cm (34%) represents a 5-SD event.

Discussion

Over four billion people now use social media, yet the 
influence of environmental conditions on humanity’s dom-
inant mode of digital connection has remained unstudied 
(Creutzig et al., 2022; Stokols, 2018). Drawing on billions 
of posts from two popular social-media platforms, includ-
ing the largest in the world (Facebook), we found empiri-
cal support for a causal effect of worse weather on 
social-media use, with both hot and cold temperatures and 
precipitation increasing participation in social media. Fur-
ther, we identified similar, nonlinear social-media responses 
to meteorological conditions for both Facebook and Twit-
ter and show that compound weather events induce large-
magnitude increases in online social activity.

Routine activity theory posits that certain offline 
human behaviors recur in rhythmic patterns that can 
be altered by changes in the surrounding weather  
(Felson & Cohen, 1980; Hawley, 1950). Yet inclement 
weather may also generate the circumstances in space 
and time that favor online social-media activity. For 
instance, unfavorable temperatures and wet weather 
can increase avoidance behaviors, like staying home or 
indoors (Graff Zivin & Neidell, 2014). With dampened 
social opportunities in physical space because of 
altered access or availability, people may be confined 

Table 6. Individual-Level Regression

Dependent variable

Independent variables ln(# Social Media Posts)

TMAX ∈ (−Inf, −10] 0.053***

 (0.017)

TMAX ∈ (−10, −5] 0.032***

 (0.011)

TMAX ∈ (−5, 0] 0.031***

 (0.010)

TMAX ∈ (0, 5] 0.021***

 (0.008)

TMAX ∈ (5, 10] 0.010*

 (0.005)

TMAX ∈ (10, 15] 0.008**

 (0.003)

TMAX ∈ (20, 25] −0.0004

 (0.002)

TMAX ∈ (25, 30] 0.002

 (0.003)

TMAX ∈ (30, 35] 0.008*

 (0.004)

TMAX ∈ (35, 40] 0.020***

 (0.005)

TMAX ∈ (40, Inf] 0.036***

 (0.010)

PRECIP ∈ (0, 1] 0.005***

 (0.002)

PRECIP ∈ (1, 2] 0.020***

 (0.003)

PRECIP ∈ (2, 3] 0.026***

 (0.005)

PRECIP ∈ (3, 4] 0.024***

 (0.008)

PRECIP ∈ (4, 5] 0.049***

 (0.012)

PRECIP ∈ (5, Inf] 0.056***

 (0.007)

TRANGE 0.0002

 (0.0003)

HUMID 0.0003***

 (0.0001)

CLOUD 0.00002

 (0.00003)

Date FE Yes

City: Calendar month FE Yes

Individual user FE Yes

Twitter Yes

Full model R2 0.426

Projected model R2 1e-04

Observations 2,174,433

Residual standard error 0.808

Note: Standard errors are clustered on city and date. TMAX = 
maximum temperature; PRECIP = precipitation; TRANGE = diurnal 
temperature range; HUMID = relative humidity; CLOUD = cloud 
cover; FE = fixed effects. 
*p < .1. **p < .05. ***p < .01.

Table 7. Pooled Significant Events Regression

Dependent variable:

Independent variables ln(# Social Media Posts)

Mardi Gras, New Orleans 0.166***

 (0.006)

Boston Marathon, Boston 0.045***

 (0.003)

New Year’s Eve, New York City 0.117***

 (0.006)

Date FE Yes

City: Calendar Month FE Yes

Note: Standard errors are clustered on city and date. FE = fixed effects.  
***p < .01.
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to increased social-media activity in cyberspace. 
Although prior research has tended to focus on the role 
of smartphones or social media in instigating behavioral 
displacement (Allcott et al., 2020; Dienlin et al., 2017; 
Kraut et al., 1998), the results of our study suggest that 
researchers should not ignore the contexts surrounding 
these digital behaviors (Stokols, 2018). Offline environ-
mental conditions—including physical changes in 
adverse meteorological and climatic conditions—can 
amplify online social-media activity more than some of 
the most salient human-organized social events in the 
United States.

Specifically, compounded extreme cold and heavy 
precipitation events boost local social-media participa-
tion by considerably more than the Boston Marathon, 
Mardi Gras in New Orleans, and even New Year’s Eve 
in New York City. Consistent meteorological effects on 
social media activity are evident at both the aggregate 
and individual level, adjusting for location-specific, sea-
sonal, and time-invariant between-person differences. 
Taken together with prior research showing that social-
media-post expressions become more negative and less 
positive on hot, cold, or wet days (Baylis et al., 2018), 
our results indicate that more extreme weather both 
amplifies social-media activity and increases the preva-
lence of worse sentiments online.

There are several important considerations relating 
to the findings of our study. First, by using data from 
both social-media platforms, we took advantage of the 
relative strengths of each as a data source: Facebook 
data is more likely to be representative, whereas Twitter 
data provides for comparison of results across social-
media contexts. By the end of our sampling period, 
nearly three quarters of online adults used Facebook, 
compared with between 15% and 30% for Twitter, 
LinkedIn, Pinterest, and Instagram (Greenwood et al., 
2016). Surveyed adults also indicated that they used 
Facebook more frequently than any other social-media 
platform, and similar proportions of the U.S. population 
used Facebook and Twitter 5 years later (Auxier & 
Anderson, 2021). However, even though our results 
suggest the effect of worse weather on social-media 
activity generalizes across platforms, we cannot rule 
out the possibility that other social-media platforms 
may exhibit idiosyncratic responses to meteorological 
conditions that differ from those we find here.

Second, although we observed consistent weather/
social-media responses across years in our sample, 
social-media platforms are in continuous flux, repre-
senting a moving target for researchers (Bayer et al., 
2020). Thus, it remains unclear whether the results we 
identify here will generalize to new versions of these 
social-media platforms in the distant future, or to alter-
native modes of online social engagement.

Third, although we find that the effects of meteoro-
logical factors on social-media participation persist at 
the individual level, approaches that directly monitor 
phone usage or that monitor cross-platform activity can 
enable more detailed decomposition of environmen-
tally driven social-media use and digital behavior. These 
are important avenues for future research.

Fourth, it is possible that the geolocated Twitter data 
is not representative of Twitter more broadly because 
such data constitute a subset of all tweets. However, the 
Facebook data reflects a broader set of posting across 
the United States. That the Facebook results mirror the 
Twitter results partially ameliorates this concern, sug-
gesting that Twitter users are unlikely to be selectively 
registering opt-in geolocation as a function of weather.

Fifth, measurement error may exist between observed 
weather and the weather that users actually experience, 
possibly attenuating the magnitude of our estimates 
(Hausman, 2001). Thus the quite large effects we iden-
tify may actually be underestimates compared with the 
effects that precise in situ measurements of meteorol-
ogy could produce. Issues of measurement error in 
predictors may also be particularly salient with respect 
to our measures of cloud cover and humidity, as they 
are derived from gridded reanalysis data rather than 
directly from sparse station observations (Hsiang, 2016).

Sixth, automated accounts in our data that circum-
vented bot-detection filtering may have biased our 
results if they were programmed to post as a direct 
function of worse weather; more likely, such accounts 
might attenuate our effect estimates if their behaviors 
are invariant to meteorological conditions (Shao et al., 
2018; Stella et al., 2018).

Finally, our analysis was conducted on those who 
self-selected into social-media use. Our results may not 
apply to demographic groups that are less likely to use 
either Facebook or Twitter, including older generations. 
Further, our results stem from a single country—the 
United States—that differs from other countries on 
many dimensions, including its cultural, economic, geo-
graphic, and climatic conditions. Whether our results 
generalize outside of the context of the United States 
is an important empirical question that should be inves-
tigated in future work.

Ultimately, all humans experience the meteorological 
conditions where they live. Consequently, the weather’s 
role in shaping the degree to which humans interact 
with one another in online settings—often mediated by 
social-media platforms and algorithms—or offline set-
tings is an important component of the scholarly 
attempt to characterize the external environmental and 
social factors that alter human social engagement 
(Arcaya et  al., 2020; Carleton & Hsiang, 2016; Dietz 
et al., 2020; Dube et al., 2022; Evans, 2019; Klinenberg 
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et  al., 2020). Although we uncover large effects of 
adverse weather on online social activity in this study, 
future studies are critically needed to provide broader 
insight into the suite of external factors that likely alter 
the degree to which humans interact with one another 
online versus offline.
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Table 3: City-Day Regressions

Varying Meteorological Controls

Dependent variable:

ln(# Social Media Posts)

(1) (2) (3) (4)

TMAX ∈ (-Inf,-10] 0.059∗∗∗ 0.065∗∗∗ 0.076∗∗∗ 0.081∗∗∗

(0.011) (0.011) (0.016) (0.017)
TMAX ∈ (-10,-5] 0.042∗∗∗ 0.047∗∗∗ 0.058∗∗∗ 0.062∗∗∗

(0.007) (0.008) (0.010) (0.010)
TMAX ∈ (-5,0] 0.040∗∗∗ 0.044∗∗∗ 0.054∗∗∗ 0.057∗∗∗

(0.005) (0.005) (0.007) (0.008)
TMAX ∈ (0,5] 0.024∗∗∗ 0.027∗∗∗ 0.040∗∗∗ 0.042∗∗∗

(0.003) (0.003) (0.006) (0.006)
TMAX ∈ (5,10] 0.004∗∗ 0.006∗∗∗ 0.017∗∗∗ 0.018∗∗∗

(0.002) (0.002) (0.004) (0.004)
TMAX ∈ (10,15] 0.0001 0.001 0.006∗∗ 0.007∗∗∗

(0.001) (0.001) (0.003) (0.002)
TMAX ∈ (20,25] 0.004∗∗∗ 0.003∗∗∗ 0.0003 −0.0003

(0.001) (0.001) (0.002) (0.002)
TMAX ∈ (25,30] 0.008∗∗∗ 0.007∗∗∗ 0.002 0.003

(0.001) (0.001) (0.002) (0.003)
TMAX ∈ (30,35] 0.015∗∗∗ 0.013∗∗∗ 0.008∗∗∗ 0.011∗∗∗

(0.002) (0.002) (0.003) (0.004)
TMAX ∈ (35,40] 0.024∗∗∗ 0.023∗∗∗ 0.018∗∗∗ 0.022∗∗∗

(0.003) (0.003) (0.004) (0.005)
TMAX ∈ (40, Inf] 0.034∗∗∗ 0.033∗∗∗ 0.030∗∗∗ 0.035∗∗∗

(0.004) (0.004) (0.006) (0.008)
PRECIP ∈ (0,1] 0.010∗∗∗ 0.009∗∗∗ 0.015∗∗∗ 0.014∗∗∗

(0.001) (0.001) (0.001) (0.001)
PRECIP ∈ (1,2] 0.022∗∗∗ 0.021∗∗∗ 0.031∗∗∗ 0.030∗∗∗

(0.002) (0.002) (0.003) (0.003)
PRECIP ∈ (2,3] 0.030∗∗∗ 0.029∗∗∗ 0.039∗∗∗ 0.037∗∗∗

(0.003) (0.002) (0.004) (0.004)
PRECIP ∈ (3,4] 0.030∗∗∗ 0.029∗∗∗ 0.045∗∗∗ 0.043∗∗∗

(0.003) (0.003) (0.004) (0.005)
PRECIP ∈ (4,5] 0.033∗∗∗ 0.032∗∗∗ 0.058∗∗∗ 0.054∗∗∗

(0.004) (0.004) (0.006) (0.006)
PRECIP ∈ (5, Inf] 0.053∗∗∗ 0.051∗∗∗ 0.076∗∗∗ 0.077∗∗∗

(0.005) (0.005) (0.006) (0.006)
TRANGE 0.001∗∗∗ 0.0004

(0.0001) (0.0003)
HUMID 0.0002∗∗∗ 0.0003∗∗∗

(0.00003) (0.0001)
CLOUD 0.00001 0.0001∗∗∗

(0.00001) (0.00002)

Date FE Yes Yes Yes Yes
City:Calendar Month FE Yes Yes Yes Yes
Facebook Yes Yes No No
Twitter No No Yes Yes
Full Model R

2 0.999 0.999 0.994 0.994
Projected Model R

2 0.053 0.055 0.021 0.024
Observations 86,140 85,801 74,971 67,972
Residual Std. Error 0.039 0.039 0.090 0.091

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are clustered on city and date.
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Table 4: City-Day Regressions

State-Level Clustering of Standard Errors

Dependent variable:

ln(# Social Media Posts)

(1) (2)

TMAX ∈ (-Inf,-10] 0.065∗∗∗ 0.081∗∗∗

(0.013) (0.018)
TMAX ∈ (-10,-5] 0.047∗∗∗ 0.062∗∗∗

(0.009) (0.011)
TMAX ∈ (-5,0] 0.044∗∗∗ 0.057∗∗∗

(0.007) (0.008)
TMAX ∈ (0,5] 0.027∗∗∗ 0.042∗∗∗

(0.004) (0.005)
TMAX ∈ (5,10] 0.006∗∗∗ 0.018∗∗∗

(0.002) (0.003)
TMAX ∈ (10,15] 0.001 0.007∗∗∗

(0.001) (0.002)
TMAX ∈ (20,25] 0.003∗∗∗

−0.0003
(0.001) (0.002)

TMAX ∈ (25,30] 0.007∗∗∗ 0.003
(0.002) (0.003)

TMAX ∈ (30,35] 0.013∗∗∗ 0.011∗∗

(0.002) (0.004)
TMAX ∈ (35,40] 0.023∗∗∗ 0.022∗∗∗

(0.003) (0.007)
TMAX ∈ (40, Inf] 0.033∗∗∗ 0.035∗∗∗

(0.006) (0.010)
PRECIP ∈ (0,1] 0.009∗∗∗ 0.014∗∗∗

(0.001) (0.001)
PRECIP ∈ (1,2] 0.021∗∗∗ 0.030∗∗∗

(0.002) (0.002)
PRECIP ∈ (2,3] 0.029∗∗∗ 0.037∗∗∗

(0.003) (0.003)
PRECIP ∈ (3,4] 0.029∗∗∗ 0.043∗∗∗

(0.003) (0.006)
PRECIP ∈ (4,5] 0.032∗∗∗ 0.054∗∗∗

(0.004) (0.006)
PRECIP ∈ (5, Inf] 0.051∗∗∗ 0.077∗∗∗

(0.006) (0.007)
TRANGE 0.001∗∗∗ 0.0004

(0.0001) (0.0003)
HUMID 0.0002∗∗∗ 0.0003∗∗∗

(0.00003) (0.0001)
CLOUD 0.00001 0.0001∗∗∗

(0.00001) (0.00002)

Date FE Yes Yes
City:Calendar Month FE Yes Yes
Facebook Yes No
Twitter No Yes
Full Model R

2 0.999 0.994
Projected Model R

2 0.055 0.024
Observations 85,801 67,972
Residual Std. Error 0.039 0.091

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are clustered on state and date.
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Table 5: Weather-Related and Non-Weather-Related Regressions

Varying Meteorological Controls

Dependent variable:

ln(# Non-Weather Posts) % Weather-Related Posts

(1) (2) (3) (4)

TMAX ∈ (-Inf,-10] 0.054∗∗∗ 0.056∗∗∗ 0.024∗∗∗ 0.026∗∗∗

(0.015) (0.016) (0.002) (0.002)
TMAX ∈ (-10,-5] 0.040∗∗∗ 0.041∗∗∗ 0.019∗∗∗ 0.022∗∗∗

(0.009) (0.010) (0.002) (0.002)
TMAX ∈ (-5,0] 0.038∗∗∗ 0.039∗∗∗ 0.017∗∗∗ 0.019∗∗∗

(0.007) (0.007) (0.002) (0.002)
TMAX ∈ (0,5] 0.029∗∗∗ 0.029∗∗∗ 0.011∗∗∗ 0.013∗∗∗

(0.005) (0.005) (0.001) (0.001)
TMAX ∈ (5,10] 0.013∗∗∗ 0.013∗∗∗ 0.004∗∗∗ 0.005∗∗∗

(0.004) (0.004) (0.001) (0.001)
TMAX ∈ (10,15] 0.005∗∗ 0.005∗ 0.001∗∗∗ 0.002∗∗∗

(0.003) (0.003) (0.0003) (0.0003)
TMAX ∈ (20,25] 0.001 0.001 −0.0004 −0.001∗∗∗

(0.002) (0.002) (0.0003) (0.0003)
TMAX ∈ (25,30] 0.002 0.004 −0.0002 −0.001∗∗

(0.002) (0.003) (0.0005) (0.0005)
TMAX ∈ (30,35] 0.007∗∗ 0.011∗∗∗ 0.001 0.0001

(0.003) (0.004) (0.001) (0.001)
TMAX ∈ (35,40] 0.014∗∗∗ 0.020∗∗∗ 0.003∗∗∗ 0.002∗∗∗

(0.004) (0.005) (0.001) (0.001)
TMAX ∈ (40, Inf] 0.025∗∗∗ 0.030∗∗∗ 0.006∗∗∗ 0.005∗∗∗

(0.006) (0.008) (0.001) (0.001)
PRECIP ∈ (0,1] 0.011∗∗∗ 0.009∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.0003) (0.0003)
PRECIP ∈ (1,2] 0.020∗∗∗ 0.018∗∗∗ 0.012∗∗∗ 0.012∗∗∗

(0.002) (0.002) (0.001) (0.001)
PRECIP ∈ (2,3] 0.024∗∗∗ 0.022∗∗∗ 0.016∗∗∗ 0.016∗∗∗

(0.004) (0.004) (0.001) (0.001)
PRECIP ∈ (3,4] 0.029∗∗∗ 0.027∗∗∗ 0.017∗∗∗ 0.018∗∗∗

(0.004) (0.005) (0.001) (0.001)
PRECIP ∈ (4,5] 0.037∗∗∗ 0.033∗∗∗ 0.022∗∗∗ 0.023∗∗∗

(0.006) (0.006) (0.002) (0.002)
PRECIP ∈ (5, Inf] 0.047∗∗∗ 0.047∗∗∗ 0.031∗∗∗ 0.031∗∗∗

(0.006) (0.006) (0.002) (0.002)
TRANGE 0.0001 0.0003∗∗∗

(0.0003) (0.00004)
HUMID 0.0002∗∗∗ 0.00004∗∗∗

(0.0001) (0.00001)
CLOUD 0.0001∗∗∗ 0.00000

(0.00002) (0.00000)

Date FE Yes Yes Yes Yes
City:Calendar Month FE Yes Yes Yes Yes
Facebook Yes Yes No No
Twitter No No Yes Yes
Full Model R

2 0.994 0.994 0.509 0.507
Projected Model R

2 0.009 0.012 0.225 0.229
Observations 74,971 67,972 74,971 67,972
Residual Std. Error 0.090 0.091 0.009 0.009

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are clustered on city and date.
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Table 6: Individual-Level Regression

Dependent variable:

ln(# Social Media Posts)

TMAX ∈ (-Inf,-10] 0.053∗∗∗

(0.017)
TMAX ∈ (-10,-5] 0.032∗∗∗

(0.011)
TMAX ∈ (-5,0] 0.031∗∗∗

(0.010)
TMAX ∈ (0,5] 0.021∗∗∗

(0.008)
TMAX ∈ (5,10] 0.010∗

(0.005)
TMAX ∈ (10,15] 0.008∗∗

(0.003)
TMAX ∈ (20,25] −0.0004

(0.002)
TMAX ∈ (25,30] 0.002

(0.003)
TMAX ∈ (30,35] 0.008∗

(0.004)
TMAX ∈ (35,40] 0.020∗∗∗

(0.005)
TMAX ∈ (40, Inf] 0.036∗∗∗

(0.010)
PRECIP ∈ (0,1] 0.005∗∗∗

(0.002)
PRECIP ∈ (1,2] 0.020∗∗∗

(0.003)
PRECIP ∈ (2,3] 0.026∗∗∗

(0.005)
PRECIP ∈ (3,4] 0.024∗∗∗

(0.008)
PRECIP ∈ (4,5] 0.049∗∗∗

(0.012)
PRECIP ∈ (5, Inf] 0.056∗∗∗

(0.007)
TRANGE 0.0002

(0.0003)
HUMID 0.0003∗∗∗

(0.0001)
CLOUD 0.00002

(0.00003)

Date FE Yes
City:Calendar Month FE Yes
Individual User FE Yes
Twitter Yes
Full Model R

2 0.426
Projected Model R

2 1e-04
Observations 2,174,433
Residual Std. Error 0.808

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are clustered on city and date.
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Table 7: Pooled Significant Events Regression

Dependent variable:

ln(# Social Media Posts)

Mardi Gras, New Orleans 0.166∗∗∗

(0.006)
Boston Marathon, Boston 0.045∗∗∗

(0.003)
New Year’s Eve, NYC 0.117∗∗∗

(0.006)

Date FE Yes
City:Calendar Month FE Yes
Temp. and Precip. Interactions Yes
Meteorological Controls Yes
Full Model R

2 0.997
Projected Model R

2 0.0386
Observations 153,773
Residual Std. Error 0.067

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are clustered on city and date.
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