
1

Netnews: The Origin Story
Steven M. Bellovin

Department of Computer Science

Columbia University

https://www.cs.columbia.edu/∼smb

✦

Abstract—Netnews, sometimes called Usenet, was arguably the first

social network. Quarterman describes it as “one of the oldest coopera-

tive networks”. It had a profound influence on online socializing, includ-

ing helping to give to the world the current slang meanings of words such

as “spam” , “troll”, and “flame”. It was where many technologies we now

take for granted were first announced, including Linux, the World Wide

Web, and the graphical web browser. But its design was a function of

both its design goals and the technological context of the time. I describe

those and a variety of other early design decisions, those which were

right, those which were wrong, and those which were inevitable.

Index Terms—Netnews, Usenet, Dial-up networking, Social network

1 INTRODUCTION

Netnews, sometimes called Usenet,1 was arguably the first social

network. That is, it was a network useful for both work and non-

work purposes, one in which most people could have may different

types of discussions with others across long distances: technical

queries and solutions, discussions of child-rearing, debates about

politics, and more. Quarterman describes it as “one of the oldest

cooperative networks” [22][§10.2.2]. It was in principle a fully

decentralized network, but in practice—and by intent at the

beginning—was more a series of linked star networks. But why

did it take the shape that it did? Some decisions were forced

by the technology of the time, some others were arbitrary, and

some were due to the relative ignorance of its creators: none of

us were specialists in networking, computer-human interaction,

cryptography, and more.

At its peak, Netnews was the forum where major announce-

ments appeared. Linus Torvalds used it to announce Linux; Tim

Berners-Lee used it to announce the World Wide Web, and,

ironically, it was where Marc Andreessen announced Mosaic, the

first graphical web browser, and arguably the technology that did

the most to make Netnews obsolescent.

As a major cultural force, Netnews fell into eclipse by the

late 1990s. The advent of AOL as a more available alternative

1. Strictly speaking, “Netnews” is the name of the technology. “Usenet”
was a particular instantiation, at one point defined as “the set of machines
that receive the newsgroup NET.general.” Conceptually, there could have been
completely disjoint sets of computers running Netnews technology, e.g., for
intra-company use. In practice, separate newsgroups served that purpose.

Jim Ellis coined the name “Usenet” as a riff on “Usenix.” Shortly before we
created Netnews, the then-Unix Users Group was forced to change its name
by Bell Labs’ trademark lawyers. They adopted the name “Usenix”; we said
explicitly that we hoped that Usenix would “take an active (indeed central)
role in the network.”

for ordinary users, Web-based chatrooms, and the later rise of

social networks such as Friendster and MySpace (and of course

somewhat later Facebook, now part of Meta, and Twitter, now

known as X) led to its decline: people could find the content and

the communication they needed in other forms, forms that were

often much more user-friendly. And to some extent, Netnews was

a victim of its own success: it was carrying so much traffic that

most sites could no longer handle the load, nor could users keep

up with the volume. More focused fora gained ground.

All that said, even in retrospect most of the early decisions

were correct, save for one: the designers never planned sufficiently

for success. As a then-graduate student, I was one of the original

designers and the first implementor of Netnews; this is its early

history as I remember it.

1.1 What is Netnews?

Netnews is a distributed bulletin board system. That is, it was

a shared space that all users could “post” to: create a message

that would be seen by other users. It was distributed: the contents

existed simultaneously on multiple sites, no one of which was

central or controlling , and there was no authoritative source for

all content. Instead, each node—and virtually all were timesharing

computers in the early days—would carry the traffic it wanted. It

was composed of multiple sections, called “newsgroups;” these

can be topic-oriented, e.g., sci.crypt for discussing cryptography,

or geographic: tri.used-cars might be for posting car ads within

the Research Triangle area of North Carolina. The hierarchy could

have been many levels deep, but that was not done initially.

Messages were threaded in some logical sense, in that much of

the content was a reply to earlier content, but the need and support

for threading in the user interface was not realized until the traffic

load grew, and was not part of the initial design.

Users create “posts”: text messages to be shared with other

users. These were relayed to neighboring machines via a flooding

© 2024 IEEE. Personal use of this material is permitted. Per-

mission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this

material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work

in other works. IEEE Annals of the History of Computing, to

appear. DOI: 10.1109/MAHC.2024.3420896.

2

algorithm. Duplicate detection was done by the receiving system,

though there was some ability to prevent forwarding loops. Replies

to posts could be either new posts or direct email messages.

In the early days (and always in the original design), transmis-

sion was via dial-up modem; later on, Internet transmission, using

a different protocol, became possible.

2 TECHNOLOGICAL AND ECONOMIC BACK-

GROUND

The original design of Netnews dates to the fall of 1979. Most

computing power then was concentrated in large mainframes.

Some academic departments had so-called mini-computers such

as the DEC (Digital Equipment Corporation) PDP-11 or the later

VAX-11, but these were all at best timesharing machines. Users

connected to them via dumb terminals, generally at speeds no

greater than 9600 bps. Dial-up, if available at all, was generally

limited to 300 bps; 1200 bps modems were just entering service.

IBM had a line of high-speed 3270 terminals, but these were

generally connected via coaxial cable within a building.

Personally owned computers—microcomputers, in the termi-

nology of the day—were rare and were the domain of a few

hobbyists. Most were very small and generally lacked hard drives;

bulk storage was via audio cassette tape or (for the lucky few) on

floppy disks with a capacity of about 1.5 megabytes.

This was also an era before most inter-vendor networking;

such interconnections as did exist tended to use vendor-proprietary

hardware and protocols. To be sure, there were production net-

works [30], and Ethernet had been invented [19], but few sites had

access to such and their reach was not very great.

The notable exception to the networking story was, of course,

the ARPANET. It was explicitly a long-haul, vendor-independent

network. Maps from that era show connections to computers made

by DEC, IBM, Univac, Honeywell, ICL, and more. However, there

was a catch: to be on the ARPANET, you needed to be part of the

military, be a defense contractor, or have a Department of Defense

research contract. The IMPs—Interface Message Processors, the

analog to today’s routers—were actually minicomputers in their

own right, and hence were expensive.

Even modems were comparatively unusual. The reason was

partly technological and partly cost, though you could buy a high-

quality 300 bps acoustic coupler—a device that had a microphone

and a speaker that used sound to connect a telephone handset

to a jack that could be connected to a computer’s serial port—

for a few hundred U.S. dollars. The bigger issue was regulatory:

generally speaking, only phone company-owned equipment could

be hard-wired to the telephone network. AT&T, the dominant

phone company at the time in the U.S., would only lease modems

and the like, which meant that even offering external connections

incurred a continuing monthly cost.

There was one further technological issue, this time a positive

one: the Unix operating system from Bell Labs. It ran quite nicely

on PDP-11 minicomputers. By today’s standards, the PDP-11

was a very limited machine—it had a 16-bit address space, and

although a computer could have more physical memory than 64K

bytes, no more than that was addressable at any one time. (In

fact, the PDP-11 allowed programs to have separate 16-bit address

spaces for instructions and data. A number of standard, large

programs took advantage of that.) Duke University’s computer

science department had a PDP-11/70; my graduate computer

science department, at the University of North Carolina at Chapel

Hill (UNC), had a smaller, slower, but nevertheless still capable

PDP-11/45. Furthermore, 7th Edition Unix came with a communi-

cations package known as UUCP, which ran on dial-up links and

provided file copy and remote execution facilities. UUCP was the

eventual technical underpinning of Netnews.

The cost of phone calls was a major issue. Though local phone

calls were free, any calls outside the local area were expensive

and depended on time of day and distance. Furthermore, the

definition of “local area” often seemed arbitrary and was set by

a combination of phone company decisions and state regulators.

To give just one example, although Duke University and UNC

were less than 15 kilometers apart, they were served by different

telephone companies, so calls between them were “toll calls”, i.e.,

not local and not free.

3 PROBLEM DEFINITION

Although 7th Edition Unix was released in early 1979, upgrading

to it from the 6th Edition was often not a simple matter. Apart from

anything else, early Unix distributions were primarily in source

code form, which led to a thriving culture of shared modifications

to the code base. (At the early meetings of Usenix that I attended,

it was customary to bring a reel of magnetic tape, to distribute

your own changes and to bring back other sites’ changes. This was

similar to the spirit of other vendor-oriented user groups, such as

DECUS for Digital Equipment Corporation users and SHARE for

users of IBM mainframes.) When upgrading to a new version of

Unix, each of these modifications needed to be ported, replaced,

or abandoned as not worth the effort. One useful change to the

login command was some code to display a message once, and

once only, to a user who logged in. There was a standard system

facility to display a login-time message, but at 15 characters per

second, the speed of some of the hardcopy terminals in use,

printing a longer message at every login was undesirable. This

change to the base system was seen as desirable, but it wasn’t

straightforward to carry forward; the login command had changed

dramatically between 6th Edition and 7th Edition Unix. Besides,

there was a desire for more functionality.

It is not 100% clear, today, why bulk email was rejected as

a solution. Part of the answer was that we wanted people to be

notified at login time of something different than a personal com-

munication, and when Netnews traffic was very low that would

certainly work. Later, when traffic grew, we saw the advantages of

separating bulk discussions from more important personal email.

Two Duke grad students, the late Jim Ellis [8] and Tom

Truscott, had grander goals. They conceived of not just a system

to display local administrative messages, but rather a networked

system, one where a message created on one system could be

seen on others. This was partly a response to the computing

environment at Duke University, where there were at least two

other PDP-11s running Unix, and partly a desire to tie together a

broader community. At a minimum, we wanted a system that could

be used to, for example, announce a talk at one local university

and have the announcement seen at others in the area. But there

was never an intent to restrict the network to “official” use; from

the very start, we wanted to support things like used car ads that

would reach the entire area.

Our goals, then, were simple: we wanted to create a distributed

system that could be used for local administrative purposes but

also support discussions on many different topics, across many

computers.

3

Ellis and Truscott called a meeting at Duke University to

discuss the problem; I was invited to attend the meeting. We

fleshed out the goals, made some preliminary engineering esti-

mates, designed a first cut at the protocol, and discussed the con-

nectivity problem. Rather than designing and implementing our

own network protocol, we decided to use UUCP (see the following

section for more details) over dial-up modems. I had sufficient data

communications experience with IBM’s multileaving [20] to know

how difficult a new protocol would be. Besides, we already had

UUCP available to us, as did most research universities; there was

no point to reinventing the wheel. There was another problem:

autodial modems, modems that could make calls under computer

control, were very rare. We built our own; see Appendix A for

details.

With all that settled, the meeting broke up; I returned to Chapel

Hill to build the first prototype.

3.1 A Star Topology

The autodialer problem was not the only economic issue that had

to be solved. As noted, in 1979 “long distance phone calls”—

phone calls outside the local calling area—were expensive, with

prices varying with distance and time of day. Both UNC and Duke

had the technical ability to call remote sites, but we did not want

to pay for many such calls. Dialing a local call was free, which

was advantageous at Duke, since it let the CS department feed the

other two Unix machines on campus, but it would not work for

the larger network we envisioned.

The solution was simple: Duke would poll any site that wished,

as frequently as they wished, on one condition: that site would

reimburse Duke for the phone calls.

There is an important corollary to this idea, one that speaks

well of the Duke computer science department at the time. There

was no way that a group of graduate students could have done

billing, collected payment, and reimbursed the department for

the phone calls, and that’s even without taking into account the

administrative procedures necessary, such as sending out bills

and dunning notices. Even though Usenet was a student-led

skunkworks project, there was faculty support for this part of it. (I

never asked the UNC CS department for a similar setup, but I also

received significant faculty cooperation and funding for things like

better serial ports for our Unix computer.)

Truscott and Ellis saw a significant advantage to Duke to

being the central node in this star. In the words of the original

announcement, “We avoid phone charges ourselves, and we get

news sooner than anyone else.” If a site was polled once a day, per

the original scheme, it might take a couple of days for a Netnews

post to be answered—but Duke would see the answer much more

quickly. We did not appreciate the danger of central nodes: they

effectively controlled what other sites could be on the network,

and what they could see. To be sure, any other site could dial out

on its own, but again, very few places had autodialers.

4 PROTOCOL DESIGN

Our next task was to design a protocol and file format. The

transport mechanism had to be UUCP; it was already there, and

writing a new one would have been extremely time-consuming.

As noted, we probably could have done it, but it would have been

pointless. The file format was a more interesting question, since

it depended on (and determined) desired functionality, expected

traffic, and more.

The first decision was easy: we used a simple, fixed-format,

easy-to-parse set of header lines. This was partly in homage to

the Unix tradition of the time, and partly in recognition of C’s

limited and painful character string-handling capabilities. (We

were familiar with the yacc and lex compiler-writing tools

[14], but those only solved the problem of the initial parse; they

did not ease later handling of arbitrary-length strings.) We also

decided that all messages would start with the letter A, to allow

for easy migration to a newer file format as Netnews evolved. (A

full description of the original file format is shown in Appendix B

and in an RFC [11].)

The remainder of the first line was the article-ID: the originat-

ing host name, which could be up to eight characters, a period, and

a serial number of up to five digits. A number of factors went into

this decision. First, having a unique ID for each article made it

easy to detect and drop duplicates. Our original topology included

a loop; we knew that duplication could occur. But there was a

more subtle implementation issue as well. 7th Edition Unix did not

implement user-level locking [24]. The normal way to implement

locking was via the file system; we took this a step farther by

using the article-ID as the actual file name for a received article.

This inherently prevented duplicate articles from appearing on a

system.

There was another implication, though: this scheme only

worked for relatively small amounts of traffic, from relatively

few hosts. 7th Edition Unix limited filename components to 14

characters; there was no room for a fully qualified hostname

(although the domain name system did not yet exist, so that

question wasn’t even raised). And the limit of five digits came

from this 14-character limit: eight characters for the hostname,

plus a period, left room for only five more digits. This was not

an accidental consequence; rather, it was my mistake: I estimated

that the peak eventual traffic would be 1–2 articles per day, from

50–100 sites maximum, ever. It goes without saying that this was

grossly wrong even in the short term.

The second header line contained the list of newsgroups to

which the article was posted. Although cross-posting later came

to be seen as rude, it was an intentional feature from the very

beginning, and was supported by the earliest implementations.

The path line—the list of systems through which the article

had passed, culminating in the username—served two purposes.

First, a sending machine would never transmit an article to a site

whose name appeared in that list.

Second, and also quite important, the path line permitted easy

email replies to the poster of a message. UUCP did not have

an underlying routing network as in today’s Internet; rather, the

sender would have to specify a sequence of machines through

which a messages should be forwarded. The path line was in

precisely the format used by UUCP for multihop mail forwarding.

This was not an accident. (The inconvenience of remembering

paths when sending emails that were not direct replies led to the

development of pathalias [10].)

The last line of the header was the posting date; the body

followed immediately thereafter, with no further delimiters.

It is a fair question why we did not use a mail-like header, with

From:, Date:, etc., lines. The answer is quite simple: none of us

had much experience with the ARPANET, and we did not know

how its email was formatted. Even if we had known, it is unclear

if we would have emulated it: transmissions over our modems

transmitted and received at 300bps, and the overhead would have

been considerable.

4

Little of this was obvious to us at the meeting. Rather, it

was the result of intensive experimentation. I wrote the first

version in about 150 lines of Bourne shell. It supported multiple

newsgroups and “cross-posting” an article to multiple newsgroups;

each newsgroup was a separate directory, so cross-posting was

implemented by having the article linked to in each relevant

directory. In the Unix implementations of the time, every file on a

disk had a unique index called the i-node number [24].When there

were multiple names for a single file—multiple links, perhaps

from different directories—they all pointed to the same i-node.

This permitted an easy way to find duplicates, one implementable

via a shell script: look for files newer than some marker, list them

and their i-node numbers, and delete all but the first instance of

any such number. Apart from helping to find duplicates, linking

cross-posted articles (and hence only having one copy) saved disk

space, at a time when disk space was expensive.

There were three major limitations to this scheme. The first

was performance: on the hardware of the time, a shell script of

this length and complexity was much too slow. I solved that by

rewriting my script in C, though without changing any of the

semantics. (Using the shell permitted what is now called rapid

prototyping—on that hardware, doing even a small compilation

took a significant amount of time.)

The second limitation was that only articles posted to the

special newsgroup NET were sent to remote sites. That is, there

could be many local newsgroups but only one remote one. That

was eventually changed in the production version written by

Truscott and Steve Daniel, also a Duke grad student. His version

transmitted anything matching NET.* to remote sites, sending

each peer site only the newsgroups to which it had subscribed.

There was a subtle problem which we realized but never

fully resolved: it conflated the notions of topic and distribution.

Supposed there was going to be a talk on, say, Unix system

administration. That would obviously be of interest to the local

system administrators, so it should be in a system administration

newsgroup, perhaps NET.sys-admin. However, the distribution

should be local, since no one was going to fly from Cali-

fornia to attend such a talk. Certainly, we could have created

NET.tri.sys-admin, but that would mean that local system

administrators would need to subscribe to—and know about—

both newsgroups.

Finally, even the production version got one thing badly

wrong, echoing an error in my original design: it only kept a high

water mark for articles read, by timestamp of receipt. This made

it impossible to read things out of order. You could skip an article

to come back to it later, but the system would not remember that

you had read any later articles. This wasn’t a big problem as long

as my traffic estimate was correct, but in that sense, Netnews was

far too successful. We never planned for overwhelming success.

5 AUTHENTICATION

We knew that a successful production network would require some

sort of management, to denote ownership of sites and articles,

and to control the creation of newsgroups. If nothing else, users

should be able to cancel their own posts. We knew that doing this

securely would require cryptography. And we deliberately did not

implement anything, because we knew that we did not know how

to engineer a secure, usable solution.

5.1 Cryptographic Authentication

Truscott, Ellis, and I knew about public key cryptography; we’d

all seen Martin Gardner’s column in Scientific American [6] and

we’d all seen the original RSA paper [25]. For that matter, 7th

Edition Unix included the xsend command for encrypted email

using trapdoor knapsacks [18]. But we ran up against what was,

to us, an unsolvable problem: how do you know which public key

belongs to which site or user?

Today, there are obvious answers. Public key infrastructure

is one. In fact, certificates had been invented at MIT [16], but

in a pre-search engine era we had no way of knowing about a

bachelor’s thesis we had no reason to suspect existed. Even if we

had known, we had no way to operate a PKI, especially on an

ongoing basis.

There are other ways that I now know. Every message could

have been signed with an included public key; the site could

have attached its own signature and key. But that would have

dramatically increased the size of messages at a time of low

bandwidth, and none of knew enough about cryptography at the

time to even think of such a thing. The same is true of the

resurrecting duckling protocol [27] to link articles to their creator,

but it wouldn’t be invented for some 20 years. Furthermore, it

relies on cryptographic hash functions, which did not exist at the

time.

There is an interesting pair of legal footnotes to the cryp-

tography discussion. As those of us working in cryptography

in the 1990s learned, there were some obstacles to doing what

we wanted. First, after the publication of their groundbreaking

paper on public key cryptography [5], Diffie and Hellman, along

with Merkle, applied for and eventually received a US patent—

4,200,770, issued April 29, 1980—on public key cryptography.

Similarly, Rivest, Shamir, and Adleman received patent 4,405,829

on September 20, 1983. These patents all issued after the initial

announcement of Netnews, but would have impacted later distri-

bution and even use of the code afterwards. US patent applications

were not published then; we would have had no way of knowing

that the applications were in progress.

The second issue would have been more troubling, had we

gone ahead and deployed some cryptographic code: under Amer-

ican law, cryptography was considered a munition, and a license

would have been required to export the code. Our uses might have

qualified for a license—we only wanted to do authentication, not

confidentiality—but the RSA code base would have been capable

of either. It is quite possible that Netnews and its coders would

have attracted the interest of Federal prosecutors.

5.2 Site-Spoofing

We also considered other ways to prevent site-spoofing. We could

not come up with any that worked. Anyone could have created

a Netnews article with some other site’s name in the path—and

per Section 4, that meant that the site being impersonated would

never see the message; no one would forward it to them. Nor could

anything be done by secure coding of the local Netnews command;

all users had the ability to invoke the UUCP remote execution on

their own. Arguably, large-scale reconfiguration of permissions,

setuid or setgid commands, and the like, might have done

the trick, but we knew that asking sites to make massive changes to

the distribution’s configurations would not have been acceptable.

(The setuid and setgid options let a program execute with

privileges of the file’s owner, rather than the privileges of the user

5

invoking the command [24]. This meant that creating a privileged

executable was not an ability restricted to system administrators;

any user could do that, using their own account.) Furthermore,

writing correct, secure setuid/setgid programs is quite chal-

lenging [7]; randomly granting new privileges to a program not

intended to have them is a recipe for disaster.

In the end, we decided to do nothing. Promising false security

is worse than leaving things insecure. (It’s ironic that both Ellis

and I ended up specializing in security for our careers.)

6 BEHAVIORAL NORMS

In lieu of strong management mechanisms, Netnews had to rely on

behavioral norms. This worked very well for a while. Since Net-

news only ran on Unix timesharing systems, all users of Netnews

had to have logins on such systems. Initially, those were largely

in university computer science departments, corporate research

labs, and the like. It’s not that people in such environments are

inherently better behaved; however, they were more susceptible to

pressure from above.

All that said, even early on there was questionable behavior.

By the late 1980s, someone who claimed to be an officer of

a pro-pedophilia organization started posting to misc.kids, a

newgroup about child-rearing. The strong negative reaction to him

caused him to stop posting, but there was no equivalent to today’s

“block” function to keep him from reading. Even earlier, there was

a neo-Nazi posting to assorted newsgroups.

Misbehavior did not have to be that extreme. When I joined

Bell Labs, less than three years after the start of Netnews, my

manager three levels up greeted me with “Hi, Steve, I’ve seen

your flames on Netnews.” This was my early warning that things

that happen online don’t stay online. (Though the Oxford English

Dictionary dates that usage of “flame” to 1981, there is at least

one mailing list post from 1978 that uses the word (http://mercury.

lcs.mit.edu/∼jnc/tech/header/mins05.txt) in that sense.)

When we were planning Netnews, we were aware of the

possibility of misbehavior. It was even mentioned in the original

public announcement. Quoting it:

4) What about abuse of the network?

In general, it will be straightforward to detect when

abuse has occurred and who did it. The UUCP system,

like UNIX, is not designed to prevent abuses of

overconsumption. Experience will show what uses of

the net are in fact abuses, and what should be done

about them.

Certain abuses of the net can be serious indeed. As

with ordinary abuses, they can be thought about,

looked for, and even programmed against, but only

experience will show what matters. UUCP provides

some measure of protection. It runs as an ordinary

user, and has strict access controls. It is safe to say

that it poses no greater threat than that inherent in a

call-in line.

5) Who would be responsible when something bad hap-

pens?

Not us! And we do not intend that any innocent

bystander be held liable either. We are looking into

this matter. Suggestions are solicited.

We were worried about other abuses as well. The announce-

ment mentions overconsumption of resources as a risk; we knew of

that from an article we had seen by Dennis Ritchie [23]. Quoting

him:

The weakest area is in protecting against crashing, or

at least crippling, the operation of the system. Most

versions lack checks for overconsumption of certain

resources, such as file space, total number of files, and

number of processes (which are limited on a per-user

basis in more recent versions). Running out of these

things does not cause a crash, but will make the system

unusable for a period. When resource exhaustion occurs,

it is generally evident what happened and who was

responsible, so malicious actions are detectable, but the

real problem is the accidental program bug.

Note the similarity between our “it will be straightforward. . . ”

and Ritchie’s conclusion.

The real message from the announcement, though, was sim-

pler: “here is something that has properties that are a priori

unknown and unknowable. Let’s see what the real problems

are and then figure out how to fix them.” This attitude worked

remarkably well for almost 15 years.

7 THE PUBLIC ANNOUNCEMENT

Netnews was announced to the public in at a Usenix meeting in

Boulder, Colorado, in January 1980. (The original announcement

is reproduced as Appendix B.) The code base we had was the

rewrite of my C version. Among the notable changes: there were

multiple top-level hierarchies, not just NET.*. It was also much

more designed for operation: what the remote sites were, and what

newsgroups they would receive, were now stored in a file rather

than being hard-coded into the program.

We also had to contend with an issue that we had not thought

of originally: the unwillingness of many sites to modify the UUCP

distribution. There were, for fairly obvious security reasons, re-

strictions on what commands a remote site was allowed to execute.

We wanted to add a new command, rnews, to the authorized list,

but that list was compiled into the UUCP code and could not be

changed by a site without changing the source and recompiling.

Many sites were not willing to do that. Accordingly, we imple-

mented a variant scheme: send email to a given email address at

the remote site; a clock-driven daemon would periodically “read”

the emailed news articles and post them locally.

The other striking thing is what we envisioned as the purpose

of Netnews: “The first articles will probably concern bug fixes,

trouble reports, and general cries for help.” We also discussed

locating and arranging for the distribution of software packages,

though we suggested that these not be flooded to the network.

To pick an arbitrary point of comparison, the source to UUCP

was about 120KB. Per the effective transfer speed estimate in the

announcement, about 1000 bytes per minute, it would take two

hours and cost about US$20 to send that much data. Adjusting for

inflation, that’s over US$60 in today’s money—and most people

don’t want most packages but would have to receive them anyway

if they were simply posted. And there was another issue: Duke

only had two autodialers; there simply wasn’t the bandwidth to

send big files to many places, and trying to do so would block

all news transfers to other sites. Instead, the proposal was for

someone—Duke?—to be a central repository; software could then

be retrieved on demand. That model was later adopted by UUNET.

There was one major omission in the announcement: there

was no mention of the social uses of the network. We simply

6

did not anticipate the many things that people would want to

talk about with random strangers. This short-sightedness—and it

was short-sighted; we certainly knew of ham radio—contributed

significantly to my gross underestimate of traffic volume.

8 NETWORK GROWTH AND B-NEWS

Netnews grew slowly at first. Figure 1 shows how small the

network was, about 15 months after the original announcement.

Almost all nodes were at Duke University, the University of

North Carolina, Bell Labs, Berkeley and other institutions in the

Bay Area, or the University of California at San Diego. There

was a chicken-and-egg problem: without more content, there was

nothing to attract users, but without more users, there was no one

to generate content. The ARPANET came to the rescue.

Among other things, the ARPANET had two popular, very

active mailing lists, SF-LOVERS for science fiction fans and

HUMAN-NETS, covering how computers interacted with society.

Mary Ann Horton [12], then a PhD student at Berkeley, set

up a gateway between those mailing lists and Usenet.2 That

created the necessary traffic. Horton also created uuencode and

uudecode, a pair of commands that represented binary files

using only printable ASCII characters, thus permitting sharing of

executable files over Netnews. It wasn’t long before a protocol

to transfer Netnews articles over the early Internet was developed

[15].

The increase in traffic, though, underscored the weakness of

the very old decision to disallow out-of-order reading. Further-

more, the limits of the A-news file format were becoming critical;

there was no easy way to add control messages for things like

newsgroup creation or message cancellation. Horton and a high

school student, Matt Glickman, implemented what became known

as B-news; it rapidly (and rightly) displaced the original code.

That story has often been told before [9].

A lot of the topology remained star-centric: the expense of

long distance telephone calls was serious for most sites. However,

the central nodes (and there were generally more than one) did

vary over time. At one point, Bell Labs Research was a key node,

until traffic volume grew too great. Its role was taken over by the

group at Digital Equipment Corporation responsible for liaison

with the Unix community. Other key nodes included a Bell Labs

site outside Chicago, a US government site whose administrator

later set up UUNET (a separate company to provide that and

other services), and more. It took deep pockets and cooperative

management to run such a node. Indeed, the closest that Usenet

ever had to a governing body was the so-called “Backbone Cabal”:

the administrators of the key nodes plus a very few others (such

as me) who were members for historical reasons. All that said, the

underlying technology remained decentralized; if your local star

node did not carry a newsgroup that you wanted to receive, you

could always arrange to receive just that group from somewhere

else.

But with that growth came controversy and the breakdown of

norms. For better and for worse, growth has always been the driver

in Netnews’ evolution.

2. There is some confusion over exactly who created the original gateway. I
am following the history given in [9].

9 CONCLUSION

In looking back at the events of more than 40 years ago, it’s

important to place things in context. Some things just were not

knowable then, even if they’re obvious today.
The choice to use UUCP over dial-up modems and a flooding

algorithm were clearly correct. Other than dial-up, there were no

other link technologies broadly available. Easy availability of a

TCP/IP stack, especially for machines with such limited address

space, was years in the future, and we would have needed to invent

something like SLIP [26]. UUCP was the only rational choice.
A star network was also inevitable—as noted, very few places

had autodialers. Even when that problem was solved, with the

advent of the Hayes autodial modem, the cost of long distance

calls (especially as traffic volumes grew) meant that someone

with enough resources had to foot the bill. The “each node

pays for their own traffic” model could have worked, but the

administrative overhead of doing the billing would, I think, have

been considerable and we didn’t think about it enough.
In hindsight, then, the emergence of a few key star nodes

was crucial to the success of Netnews. These nodes incurred

really enormous phone bills and required good-sized banks of

autodialers. Without these nodes, the traffic volume would have

made Netnews unaffordable until Internet transmission became

available—and it is unclear if it would have lasted that long.
We did anticipate the creation of some sort of I-have/I-want

protocol, though we didn’t design one: with only daily connectiv-

ity, the latency would have been too great. Furthermore, with most

of the topology being star-like, there would have been few loops:

if a star node had an article and your site was not in the path, you

almost certainly did not already have it.
The decision to omit cryptographic authentication was likely

correct. As noted, we simply did not know enough, nor were there

readily available sources of information—the major cryptography

and security conferences were also in the future. Furthermore—

and this is mentioned explicitly in the announcement—we were

amateurs and we knew it. The legal issues could have been

devastating, but since we didn’t know of them we obviously did

not take them into account.
Abusive behavior is a more interesting question. We realized

that that could happen; we simply had no idea what forms it could

take. Even in retrospect, I don’t know of any papers documenting

such on the ARPANET of that era. That’s why we said “only

experience will show what matters.” For some things, there is no

substitute for the actual experiment. We expected to change things

later, but wanted to learn what was wrong first: “Yes, there are

problems. . . Once the net is in place, we can start a committee.

And they will actually use the net, so they will know what the real

problems are.”
One problem that did show up as the net grew was governance.

It has never been solved satisfactorily. Netnews is, by intent,

distributed and decentralized, and anyone could join if they had

just a single node willing to peer with them. Even if it was possible

to map the net (and there were attempts to automate that, a few

years later [10]), who should vote? Every user? Every system

administrator of a node? Do you weight sites by the number of

users at them? By the traffic they generate? By the traffic they

relay? That latter would privilege the star nodes, and in fact did

happen in the form of the Backbone Cabal—but that was dissolved

because of complaints that it lacked legitimacy.
Our biggest failure, though, was that we never planned for

success. Granted, it would have been impossible to even con-

7

Fig. 1. Early Netnews map, from April 5, 1981. Map created by Mary Ann Horton, and is used by permission of the creator.

template today’s traffic volumes, given the link speeds and disk

capacities of the time—as of March 2024, Newsdemon, a major

commercial Netnews site, reported an average daily volume of

300 TiB, up about 50% from a year earlier.3 Note that the disk

drives of the day had capacities measured in 10s of megabytes;

even contemplating a gigabyte of storage was insane, never mind

the link speeds necessary.

But we didn’t even adequately plan for the traffic of a very

few years later, especially in the ways we handled newsgroups (a

deeper hierarchy would have been useful) or in the lack of any real

capability to read things out of order. At 1–2 articles a day, what

we had worked, but even a single order of magnitude increase

made that untenable. If we had had more ARPANET experience,

we might have realized this [21][p. 6], but as noted, we did not.

Did we do a good job? Netnews is still around, more than

40 years later, though it’s used for very different purposes—a lot

of today’s traffic volume is apparently music and videos, often

pirated. (MP3 and MP4 didn’t exist back then, either. Indeed, the

first consumer CD players weren’t yet available.) It is interesting

to compare Netnews to CSnet [3], [4], which is almost as old. We

joked that CSnet was created by professors, who wrote proposals,

got grants, etc. We were grad students—we just did it. CSnet was

good for email and had some ability to retrieve files, but it did not

provide for open discussion fora—and when widespread Internet

connectivity became available, CSnet went away.

Today’s discussion sites are either very distributed—some site

will host a chat room for a particular subject—or are run by

large, corporate entities such as Facebook and X. Some of those,

e.g., Reddit, do have multiple topic areas, but even with corporate

oversight the governance problem remains difficult. And corporate

governance policies can change with management. Elon Musk’s

takeover of Twitter is one example, but there have been radical

changes of policy by some sites[1] even without new ownership.

The Fediverse [17] comes close to the original spirit of Netnews,

in that it’s fully distributed and non-profit, but there have been

3. Statistics are from https://www.newsdemon.com/
usenet-newsgroup-feed-size.

complaints about the difficulty of moderating abusive content [2],

[28].

And thus we see the two biggest problems, ones that are not

solved even today: coping with large amounts of information, and

governing who can say what and where, without unduly infringing

on free speech. Netnews encountered these problems first, because

it was a pioneering network, but we now know just how hard those

problems are.

ACKNOWLEDGMENTS

Tom Truscott, one of the other creators of Netnews, made many

useful suggestions. Errors, of course, are mine.

REFERENCES

[1] J. Brodkin, “YouTube now allows videos that falsely claim

Trump won 2020 election,” Ars Technica, Jun. 2, 2023.

[Online]. Available: https: / /arstechnica.com/tech- policy/

2023/06/youtube-now-allows-videos- that- falsely-claim-

trump-won-2020-election/.

[2] D. Caelin, “Decentralized networks vs the trolls,” in Fun-

damental Challenges to Global Peace and Security : The

Future of Humanity, H. Mahmoudi, M. H. Allen, and K.

Seaman, Eds. Cham, Switzerland: Springer International

Publishing, 2022, pp. 143–168, ISBN: 978-3-030-79072-1.

DOI: 10.1007/978-3-030-79072-1 8. [Online]. Available:

https://doi.org/10.1007/978-3-030-79072-1 8.

[3] D. Comer, “The computer science research network

CSNET: A history and status report,” Commun. ACM,

vol. 26, no. 10, pp. 747–753, Oct. 1983, ISSN: 0001-0782.

DOI: 10.1145/358413.358423. [Online]. Available: https:

//doi.org/10.1145/358413.358423.

[4] P. J. Denning, A. Hearn, and C. W. Kern, “History and

overview of CSNET,” ACM SIGCOMM Computer Com-

munication Review, vol. 13, no. 2, pp. 138–145, Apr. 1983.

[Online]. Available: https://dl.acm.org/doi/abs/10.1145/

1024840.1035267.

8

[5] W. Diffie and M. E. Hellman, “New directions in cryptogra-

phy,” IEEE Transactions on Information Theory, vol. IT-22,

no. 6, pp. 644–654, Nov. 1976. [Online]. Available: https:

//ieeexplore.ieee.org/abstract/document/1055638.

[6] M. Gardner, “Mathematical games: A new kind of cipher

that would take millions of years to break,” Scientific

American, Aug. 1977. [Online]. Available: https : / /www.

scientificamerican.com/article/mathematical-games-1977-

08/.

[7] F. T. Grampp and R. H. Morris, “Unix operating sys-

tem security,” AT&T Bell Laboratories Technical Journal,

vol. 63, no. 8, Part 2, pp. 1649–1672, Oct. 1984. [Online].

Available: https:/ / ieeexplore.ieee.org/abstract/document/

6771912.

[8] K. Hafner, “James T. Ellis, 45, a developer of Internet dis-

cussion network,” New York Times, Jul. 1, 2001. [Online].

Available: https://www.nytimes.com/2001/07/01/us/james-

t - ellis - 45- a - developer- of - internet - discussion- network .

html.

[9] M. Hauben and R. Hauben, “On the early days of Usenet:

The roots of the cooperative online culture. (chapter 10),”

First Monday, vol. 3, no. 8, Aug. 3, 1998. DOI: 10.5210/

fm.v3i8.613. [Online]. Available: https://firstmonday.org/

ojs/index.php/fm/article/view/613.

[10] P. Honeyman and S. M. Bellovin, “PATHALIAS or the care

and feeding of relative addresses,” in Proc. Summer Usenix

Conference, 1986. [Online]. Available: https : / / www. cs .

columbia.edu/∼smb/papers/pathalias.paper.pdf.

[11] M. Horton, “Standard for interchange of USENET mes-

sages,” IETF, RFC 850, Jun. 1983. DOI: 10 . 17487 /

RFC0850. [Online]. Available: http://www.rfc-editor.org/

info/rfc850.

[12] M. A. Horton, Trailblazer: Lighting the Path for Transgen-

der Equality in Corporate America. Poway, California: Red

Ace Press, 2022.

[13] A. Inglis and W. Tuffnell, “An improved telephone set,”

Bell System Technical Journal, vol. 30, no. 2, pp. 239–270,

Apr. 1951. [Online]. Available: https://onlinelibrary.wiley.

com/doi/abs/10.1002/j.1538-7305.1951.tb03659.x.

[14] S. C. Johnson and M. E. Lesk, “UNIX time-sharing system:

Language development tools,” The Bell System Technical

Journal, vol. 57, no. 6, pp. 2155–2175, 1978. DOI: 10.1002/

j.1538-7305.1978.tb02147.x.

[15] B. Kantor and P. Lapsley, “Network News Transfer Proto-

col,” IETF, RFC 977, Feb. 1986. DOI: 10.17487/RFC0977.

[Online]. Available: http://www.rfc-editor.org/info/rfc977.

[16] L. M. Kohnfelder, “Toward a practical public-key cryp-

tosystem,” Bachelor’s thesis, Department of Electrical Engi-

neering, Massachusetts Institute of Technology, May 1978.

[17] L. La Cava, S. Greco, and A. Tagarelli, “Understanding

the growth of the Fediverse through the lens of Mastodon,”

Applied Network Science, vol. 6, no. 1, p. 64, Sep. 1, 2021.

DOI: 10.1007/s41109- 021- 00392- 5. [Online]. Available:

https://doi.org/10.1007/s41109-021-00392-5.

[18] R. Merkle and M. Hellman, “Hiding information and

signatures in trapdoor knapsacks,” IEEE Transactions on

Information Theory, vol. 24, no. 5, pp. 525–530, 1978. DOI:

10.1109/TIT.1978.1055927.

[19] R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed

packet switching for local computer networks,” Commun.

ACM, vol. 19, no. 7, pp. 395–404, Jul. 1976, ISSN: 0001-

0782. DOI: 10.1145/360248.360253. [Online]. Available:

https://doi.org/10.1145/360248.360253.

[20] M. Oakley and P. Hazel, “HASP “IBM 1130” multileaving

remote job entry protocol with extensions as used on

the University of Cambridge IBM 370/165,” University

of Cambridge, Computer Laboratory, Tech. Rep. UCAM-

CL-TR-12, Sep. 1979. DOI: 10 . 48456 / tr - 12. [Online].

Available: https://www.cl.cam.ac.uk/techreports/UCAM-

CL-TR-12.pdf.

[21] C. Partridge, “The technical development of internet email,”

IEEE Annals of the History of Computing, vol. 30, no. 2,

pp. 3–29, 2008. DOI: 10.1109/MAHC.2008.32.

[22] J. S. Quarterman, The Matrix: Computer Networks and

Conferencing Systems Worldwide. Bedford, MA: Digital

Press, 1990.

[23] D. M. Ritchie, “Unix time-sharing system: A retrospective,”

Bell System Technical Journal, vol. 57, no. 6, pp. 1947–

1969, Jul.–Aug. 1978.

[24] D. M. Ritchie and K. Thompson, “The UNIX time-sharing

system,” Commun. ACM, vol. 17, no. 7, pp. 365–375, Jul.

1974, ISSN: 0001-0782. DOI: 10 . 1145 / 361011 . 361061.

[Online]. Available: http://doi.acm.org/10.1145/361011.

361061.

[25] R. L. Rivest, A. Shamir, and L. Adleman, “A method of

obtaining digital signatures and public-key cryptosystems,”

Communications of the ACM, vol. 21, no. 2, pp. 120–126,

Feb. 1978. [Online]. Available: http://doi.acm.org/10.1145/

359340.359342.

[26] J. Romkey, “Nonstandard for transmission of IP datagrams

over serial lines: SLIP,” IETF, RFC 1055, Jun. 1988. DOI:

10.17487/RFC1055. [Online]. Available: http://www.rfc-

editor.org/info/rfc1055.

[27] F. Stajano and R. Anderson, “The resurrecting duckling:

Security issues for ad-hoc wireless networks,” in Interna-

tional workshop on security protocols, Springer, Apr. 1999,

pp. 172–182. [Online]. Available: https://www.cl.cam.ac.

uk/∼fms27/duckling/duckling.html.

[28] A. Stamos and S. Shah, “Common abuses on Mastodon:

A primer,” Stanford Internet Observatory (blog), Oct. 17,

2023. [Online]. Available: https://cyber.fsi.stanford.edu/io/

news/common-abuses-mastodon-primer.

[29] T. Truscott, “Invitation to a general access UNIX network,”

in Australian Unix Users Group Newsletter, IV, vol. II,

Australian Unix Users Group, Apr.–May 1980, pp. 15–18.

[Online]. Available: https : / / www . tuhs . org / Archive /

Documentation/AUUGN/AUUGN-V02.4.pdf.

[30] L. H. Williams, “A functioning computer network for

higher education in North Carolina,” in Proceedings of

the December 5-7, 1972, Fall Joint Computer Confer-

ence, Part II, ser. AFIPS ’72 (Fall, part II), Anaheim,

California: Association for Computing Machinery, Dec. 5,

1972, pp. 899–904, ISBN: 9781450379137. DOI: 10.1145/

1480083.1480116. [Online]. Available: https://doi.org/10.

1145/1480083.1480116.

Steven M. Bellovin is the Percy K. and Vida L.W. Hudson

professor of computer science and affiliate law faculty at Columbia

University, New York, NY 10027. His research areas include

security, privacy, and their legal and policy implications. He

received his doctorate from the University of North Carolina at

Chapel Hill. Contact him at smb@cs.columbia.edu.

9

APPENDIX A

HOME-BUILT AUTO-DIALERS

Per the discussion in Section 2, neither UNC nor Duke had

“official” autodialers. Modems with built-in autodialers were still

several years in the future. As a student-run skunkworks project

we couldn’t simply buy a DEC DN11 interface and lease a Bell

801 autodialer, so we had to design around the problem. Duke

implemented a solution first; inspired by their design, I came

up with my own, which was implemented by the department’s

excellent electronics techician. In both cases, we used acoustic

couplers that had phone handsets permanently inserted into them.
A normal phone circuit of the time was two-wire, with a

potential of 48 volts across those wires. When someone lifted the

handset, the phone went “off-hook”, lowering the voltage to 3–

9V. This drop was recognized by the central office, which would

then listen for dialing instructions (or complete a call, for inbound

calls). Crucially, an on-hook phone presented essentially infinite

DC resistance; this mean that an open line was indistinguishable

from an on-hook phone. We took advantage of that by connecting

a normally open relay across one of the wires. We then used serial

port control signals to activate that relay.
The full version of the standard for serial ports, RS-232, was

quite complex, but most of the complexity is irrelevant to what

we did. Two of the control lines, Data Terminal Ready (DTR)

and Carrier Detect (CD), did the work. When a program wanted

to use a serial port, the device driver raised the DTR signal; this

caused the relay to close, and hence the phone to be perceived as

off-hook. The handset, as noted, was already removed from the

base and inserted into the acoustic coupler. (Signals we did not

use include Data Set Ready, Ring Indicate, Request to Send, and

Clear to Send.)
The next problem was dialing. Pulse dialing, for rotary dial

phones, was still extremely common at the time; in fact, virtually

all telephones in Chapel Hill were rotary dial. Pulse dialing

worked by going back on-hook briefly, at a specified rate; a brief

interruption of the circuit was seen as a dial pulse, not as the phone

hanging up [13]. Dialing the digit “1” took a single pulse, a “2”

was two pulses, etc. The standard called for a 3:2 break:make ratio

over the course of one second. That is, the phone was effectively

on-hook for .06 seconds and back off-hook for .04 seconds for

each pulse. A longer off-hook interval separated individual digits.

The timing standard, though, was fairly loose—it had to be,

since phone dials were mechanical and could be affected by wear,

dirt, temperature, and more. We used software to control the

timing of the relay going back on-hook. The timer resolution of

the Unix systems of the day was 60 Hz; this let us implement a 2:1

make-break ratio, which was adequate. I wrote a device driver that

emulated the standard DN11 driver, permitting seamless interface

to UUCP. When our modem detected a carrier signal from the

far end, it raised the CD signal; this let the open request to the

serial port complete. (A year or two later, we obtained a 1200

bps modem, which was hardwired to the phone line; it required a

somewhat more complex signaling interface to the computer, but

one that was well within the abilities of our electronics technician,

and the dialing interface remained the same.)

The scheme may not have been elegant, and it certainly

violated phone company tariffs, but it worked.

APPENDIX B

THE ORIGINAL ANNOUNCEMENT

Below is a reproduction of the original public announcement of

Netnews first present at Usenix in January, 1980. This copy was

taken from the archived April-May 1980 edition of the Australian

Unix Users Group Newsletter [29] and is reproduced with the

permission of the author.

10

11

12

13

	Introduction
	What is Netnews?

	Technological and Economic Background
	Problem Definition
	A Star Topology

	Protocol Design
	Authentication
	Cryptographic Authentication
	Site-Spoofing

	Behavioral Norms
	The Public Announcement
	Network Growth and B-News
	Conclusion
	Appendix A: Home-Built Auto-Dialers
	Appendix B: The Original Announcement

