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Children exposed to pollutants like lead have lower academic
achievement and are more likely to engage in risky behavior. How-
ever, little is known about whether lead-exposed children affect the
long-run outcomes of their peers. We estimate these spillover effects
using unique data on preschool blood lead levels (BLLs) matched to
education data for all students inNorth Carolina public schools.We
compare siblings whose school-grade cohorts differ in the propor-
tion of children with elevated BLLs, holding constant school and
peers’ demographics. Having more lead-exposed peers is associated
with lower high school graduation and SAT-taking rates and in-
creased suspensions and absences.

I. Introduction

Commonly encountered pollution sources, such as lead paint, highways,
and toxic sites, have been shown to affect children’s academic achievement
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and behavior (Persico, Figlio, and Roth 2020; Persico and Venator 2021;
Heissel, Persico, and Simon 2022). So far, researchers have focused on esti-
mating the effects of pollution on directly exposed children. However,
pollution-exposed children interact daily with peers. Because children ex-
posed to pollution have lower achievement and engage in risky behavior,
the effects of pollution might spill over to affect everyone in the classroom.
Yet few papers credibly document the long-run impacts of childhood peers
generally, and no existing studies explore the spillover effects of pollution
on peers in school. Showing that pollution exposure has spillover effects is im-
portant because it reveals the scope of the problems pollution causes. If one
child’s exposure to pollution causes negative long-run spillover effects on
the child’s peers, this increases the true costs of pollution and changes our un-
derstanding of howpollutionmight affect long-run human capital attainment.
In this paper, we focus on one type of pollution: lead poisoning. A grow-

ing literature shows that children who are lead poisoned in early life are also
more likely to be suspended and commit crimes and have worse academic
achievement and long-run outcomes.1A recentUNICEF report reveals that
lead poisoning is a global issue: as many as 800 million children, or around
one in three, have blood lead levels (BLLs) at or above 5 mg/dL, the reference

1 For recent evidence on the direct effects of lead poisoning on children’s out-
comes, see Ferrie, Rolf, and Troesken (2012), Reyes (2015), Feigenbaum andMuller
(2016), Gazze (2016), Aizer et al. (2018), Aizer andCurrie (2019), Grönqvist, Nilsson,
and Robling (2020), Hollingsworth et al. (2020), Persico, Figlio, and Roth (2020).
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value most commonly used to identify children who have elevated BLLs
(EBLLs) during our sample period (UNICEF 2020).2 At this threshold, at
least 500,000 young children are estimated to be poisoned by lead each year
in the United States (Aizer et al. 2018), generating $200 billion per cohort in
societal costs (Reyes 2014), including reduced tax revenues and increased ex-
penditure on special education, crime prevention, and health care. Low-
income and Black children are more likely to have EBLLs compared with
higher-income and White children (CDC 2005).
Because pollution sources like lead paint and highways are very common,

particularly in low-income neighborhoods, spillovers from pollution expo-
sure imply that most children and public schools in the United States suffer
from both direct effects and spillover effects of pollution exposure.Our data
indicate that inNorthCarolina public schools between2000 and2017, 98.9%
ofmiddle school studentswithout known lead exposure had at least one lead-
poisoned child in their school cohort, 79.9%were in a school cohort with at
least 5% lead-poisoned peers, and 52.5%were in a school cohortwith at least
10% lead-poisoned peers.3 Thus, the spillover effects of lead exposure are a
heretofore unexplored mechanism through which social context, pollution,
and built environment could affect schools and children’s outcomes.
Using unique data linking children’s BLLs by age 6 to the universe of

public school records in North Carolina, we are the first to investigate the
negative long-run spillover effects of lead poisoning on children who are
not directly exposed to lead but are exposed to lead-poisoned school peers.
We identify the spillover effects of lead-exposed peers by comparing siblings
whose cohorts happen to randomly differ in the proportion of childrenwith
high preschool BLLs in their grade cohort. Our preferred specification in-
cludes family, school, grade, birth month, birth order, and year fixed effects
and controls for a broad set of time-varying child and cohort demographic
characteristics, as well as school quality. Including family fixed effects con-
trols for unobserved family characteristics, such as parental traits, that could
be correlated with both peers’ quality and a child’s outcomes. Controlling
for peers’ race and socioeconomic status suggests that our estimated effects
are due to lead poisoning and not peer demographics.
We find that a 10% increase in the share of cohort peers exposed to lead is

associated with a 1.7 percentage point decrease in the likelihood that a child
graduates high school, a 2% decrease in the graduation rate. Having more

2 In this paper we use the phrases “lead poisoning” and “lead exposure”
interchangeably.

3 National Childhood Blood Lead Surveillance Data from the Centers for Dis-
ease Control and Prevention (CDC) suggest that lead exposure might be even more
pervasive in the rest of the United States. While the testing rates in North Carolina
between 2012 and 2017 were similar to the national average, the percentage of
North Carolina children with BLLs above 5 mg/dL was 0.4%–0.7%, compared
with 2%–3% in the United States overall.
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lead-exposed cohort peers is also associated with a higher likelihood of sus-
pension from school, chronic absenteeism, and dropping out of school and a
lower likelihoodof taking the SAT.Aback-of-the-envelope calculation sug-
gests that the lost earnings of classmates of lead-poisoned children not grad-
uating high school amount to $9.2 billion per cohort. Lead-exposed peers
disproportionately affect the outcomes of Black students, suggesting that
the spillover effects of pollution could be contributing to persistent inequal-
ity in human capital accumulation. These findings are generally robust to
different specifications that account for potential selection, omitted-variable,
and measurement error biases.
To explore mechanisms, we find that exposure to lead-poisoned peers in

middle school, rather than elementary school, appears to drive long-run out-
comes.We also show that students who attend school with a higher share of
lead-poisoned peers are more likely to be suspended and more likely to be
involved in behavioral incidents with these lead-poisoned peers. We inter-
pret our results as suggestive that noncognitive skill development might
drive the spillover effects of lead poisoning through peers’ influence to en-
gage in similar disruptive behavior.
This paper makes three main contributions. First, this is the first study to

investigate the spillover effects of lead exposure on peers’ academic achieve-
ment, behavior, and long-run outcomes. Furthermore, our findings have
implications for more than just lead: our estimates imply that the true costs
of pollution are likely higher than the direct costs alone, especially for pol-
lutants that affect behavior.
Second, this is among the first studies to examine the long-run impacts of

peers who are disruptive (in this case because of early childhood exposure to
pollution), aswell as the channels throughwhich these effectsmanifest. Cur-
rent evidence on the long-run effects of peers is mixed. While Carrell,
Hoekstra, and Kuka (2018) show that having peers exposed to domestic vi-
olence lowers wages and educational attainment, Bietenbeck (2020) finds
positive long-run effects frompeerswho repeat kindergarten.4We show that
exposure to lead-poisoned peers can have long-term consequences, includ-
ing dropping out of high school.
Several mechanisms could link peer composition and student outcomes,

including differential curricular offerings and instructional practices de-
pending on average ability (Jackson 2013), social dynamics in a student’s ref-
erence group (Hoxby 2000; Brenøe and Zölitz 2020), and low-performing
students not keeping up with higher-achieving peers (Imberman, Kugler,

4 Other papers find that peers’ parental education and peers’ receipt of conditional
cash transfers increases college attendance, while peers with special needs lower it
(Bobonis and Finan 2009; Bifulco, Fletcher, and Ross 2011; Balestra, Eugster, and
Liebert 2022). Evidence on the relationship between peers’ gender and long-run out-
comes is more mixed (Black, Devereux, and Salvanes 2013; Anelli and Peri 2017).
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and Sacerdote 2012). Peers might also draw disproportionately on a teach-
er’s time and influence class culture and standards. We find suggestive evi-
dence that exposure to disruptive peers in middle school might drive some
of these effects through the development of noncognitive skills. In particu-
lar, exposure to lead-poisoned peers increases suspensions and chronic ab-
senteeism, which suggests that noncognitive skills are an important mecha-
nism through which disruptive peers affect long-run outcomes.5

Third, we contribute to a growing literature that documents neighbor-
hood effects on health, education, and behavior outcomes but that is largely
silent on the mechanisms behind these effects (Chyn and Katz 2021). Our
findings on the long-run effects of exposure to lead-poisoned children sug-
gest that environmental factors might contribute to the persistent effects of
high-poverty and high-pollution neighborhoods in the United States (Chetty,
Hendren, and Katz 2016).6

II. Background: Lead Exposure

Ingestion or inhalation of lead causes lead poisoning, which can induce
widespread brain damage (Meyer, McGeehin, and Falk 2003; CDC 2022).7

Small children are especially exposed to lead-contaminated soil and dust
from paint as a result of normal hand-to-mouth activity. Moreover, lead is
most damaging to small children: they absorb and retain more lead than
adults, and their neurological development is particularly susceptible to
neurotoxins (CDC 2022). Lead exposure has been associated with problems
in cognition, executive functioning, abnormal social behavior (including ag-
gression), and fine motor control (Cecil et al. 2008).
Federal guidelines mandate that all children on Medicaid be screened for

lead poisoning at ages 1 and 2. In addition,North Carolina mandates univer-
sal screening in some zip codes based on estimated lead exposure risk.We use
these universal testing zip codes, where testing is much higher (about 60%of
children living there are tested), in a robustness check later in the paper. Con-
sistent with guidelines,most of the children in our sample who are ever tested
are first tested by 13 months of age, and 75% are tested by 25 months of age.
Testing is usually done preventatively and not in response to symptoms.

5 These findings corroborate those in Carrell, Hoekstra, and Kuka (2018). In-
deed, the literature on short-term peer effects is more robust than the literature
on long-run peer effects (Hoxby 2000; Lazear 2001; Sacerdote 2001; Figlio 2007;
Carrell and Hoekstra 2010; Fletcher 2010). See Epple and Romano (2011) and
Sacerdote (2011) for overviews of this literature.

6 Besides a higher likelihood of lead poisoning, low-income children are more
likely to live near sources of toxic waste (Banzhaf, Ma, and Timmins 2019) and have
higher asthma rates (Alexander and Currie 2017).

7 Specifically, lead causes the axons of nerve cells to degenerate and lose their my-
elin coats (Brubaker et al. 2009; Naffaa, Laprevote, and Schang 2021).
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Indeed, lead poisoning can be difficult to detect initially because most lead
poisoning is asymptomatic and does not cause distinctive symptoms in early
life (CDC2014) until dangerous amounts of lead have accumulated, which is
rare (CDC 2021; Mayo Clinic 2022).
During our study period, children with two consecutive BLL tests mea-

suring 10 mg/dL or more were eligible for an intervention that included ed-
ucation for caregivers on nutrition and reducing exposure in the home, a
home inspection, and a referral to lead remediation services.Weuse themore
recent CDC reference value of 5 mg/dL to define lead poisoning based on
current scientific understanding. To the extent that these interventionsmade
students with BLLs at or above 10 mg/dL less disruptive for their peers, our
estimates represent a lower bound of the spillover effects of lead poisoning,
and we test the robustness of our estimates to different thresholds defining
lead poisoning below.

III. Data Description

A. Education Data

We use population-level data from 1997 to 2017 on every child attending
public school, including charter schools, in North Carolina linked to the
universe of BLL test records from 1992 to 2016. These unique data include
home address identifiers that enable us tomatch siblings. To our knowledge,
this is the first state-level dataset linking individual BLLs to schooling re-
cords that allow the matching of siblings and locating students in class-
rooms. It also tracks both short- and long-run outcomes over 20 years for
the same students in a large state, which allows us to investigate the long-
run spillover effects of pollution for the first time.8

While we use the entire sample to calculate the number of children per
school-grade-year cohort who have EBLLs (as well as all of our cohort con-
trols), for our main analysis we drop children who do not have siblings and
children who live in large buildings, since we cannot reliably identify fami-
lies in those buildings. Our main analysis also drops students who them-
selves have an EBLL and estimates the spillover effects of lead exposure
on children without known lead poisoning. In section V we perform exten-
sive robustness tests using different samples and specifications. Appendix B
(apps. A–C are available online) provides more information on the linkage
performed by theNorthCarolina EducationResearchData Center, our sib-
ling identification algorithm, and variable construction.
For our long-run outcomes, we use indicators for high school graduation,

dropping out, 2- and 4-year college intentions in twelfth grade, andwhether
the student took the SAT in high school from 2005 to 2017 (the period over

8 Previous datasets from Rhode Island included only contemporaneous out-
comes (Aizer et al. 2018; Aizer and Currie 2019).

362 Gazze et al.



whichwe canmatch preschool BLLs of elementary andmiddle school peers
to long-run outcomes).9 For our contemporaneous outcomes, we use the av-
erage of standardized mathematics and reading end-of-grade (EOG) test
scores administered in grades 3–8, indicators for being absent for more than
21 days and having at least one out-of-school (OOS) suspension, and the
number of days the child was in OOS suspension each year in grades 6–12.10

We also construct indicators for being suspended on the same day as a lead-
exposed cohort peer and for being involved in a behavioral incident with a
lead-exposed cohort peer. Because exams changed multiple times over the
sample period, we limit our analysis to exams taken between 1996–97 and
2004–5,whichwere administered to all children and had a similar structure.11

We construct various individual, cohort, and time-varying school covar-
iates. Individual-level covariates include indicators for gender, race, being
economically disadvantaged in a year, having a BLL test, birth month,
and birth order. Our cohort-level covariates include the shares of cohort
peers who are non-White, economically disadvantaged, and tested for lead.
The school-year covariates include the share of teachers with a master’s de-
gree, school size, and stability rate, which is defined as the percentage of stu-
dents from the October membership count who are still present in the sec-
ond semester (90 days later).

B. Blood Lead Level Data

Weobtained the universe of individual BLL test records for children up to
age 6 from the North Carolina Department of Health and Human Services
for the years 1992–2016. Test records include the date of blood draw, test
result inmicrograms per deciliter, and the child’s identifier.Wedefine a child
as having an EBLL if their highest BLL is ≥5 mg/dL, the upper reference in-
terval value per the 2012 guidelines by the CDC (2013).12

Because childhood lead screening is targeted at high-risk children and
neighborhoods in North Carolina, we expect screening to be higher among

9 Dropping out of school is distinct from school switching, death, moving, pro-
motion, graduation, and other confounding factors, and specific reason codes are
given for dropping out.

10 Absences are grouped into 0–7, 8–14, 15–21, and more than 21 days, which is
chronic absenteeism. We focus on OOS suspensions because the reporting require-
ments for these did not change during the sample period, while in-school suspen-
sion reporting became more stringent over time.

11 During our sample period, the scale for the math EOG exam changed in 2001–
2. The scale for the reading EOG exam changed in 2002–3.

12 This value is the 97.5th percentile of BLLs in US children aged 1–5 years from
the combined 2007–8 and 2009–10 cycles of the National Health and Nutrition Ex-
amination Survey. Starting in 1991 and before 2012, the CDC defined 10 mg/dL as
the “level of concern” for children aged 1–5 years. In robustness checks, we vary
the definition of EBLL.
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low-income children (who also must be screened under the Medicaid
mandate).13 We construct indicators for children missing BLL tests and in-
clude these children in our analysis. We compute the share of a child’s peers
with EBLLs using all children in the cohort or classroom as the denomina-
tor, independently of whether they have a BLL test. Figure 1 plots the share
of children with blood tests and the share of children with EBLLs by birth
cohort in our sample, showing that as lead screening increases over time, the
incidence of lead poisoning decreases. Still, our identifying variation is not
likely to be driven by differences in outcomes between older and younger
siblings, as figure A1 (figs. A1–A5 are available online) shows that first-
born children have only 1.5 percentage points more lead-exposed peers
than their younger siblings. Since earlier-born siblings typically have better
outcomes (see, e.g., Black, Devereux, and Salvanes 2005; Conley and
Glauber 2006; Price 2008; Booth and Kee 2009), these birth order effects
would go in opposite direction to the secular trends depicted in figure 1.
Moreover, we generally control for birth order fixed effects.

C. Sample Description

Since our BLL data begin in 1992 and include children tested up to age 6,
we restrict our sample to children born after 1986. Table 1 presents summary
statistics for the sample of all children attending public schools in North
Carolina (3.3 million children; col. 1) and our analysis sample of siblings
(1.3 million children; col. 2). In our analysis sample, 39.6% of children have
a BLL test, and 10.9%have at least one test greater than or equal to 5 mg/dL,
slightly higher shares than in the full sample in column 1. Overall, children
with siblings are fairly similar to the full sample, and our results are very sim-
ilar when we include all children in a model using school-grade and grade-
year fixed effects, which lends support to the external validity of our results.
As expected on the basis of screening guidelines, children with BLL tests

are more likely to be Black, be economically disadvantaged as measured by
an indicator for having ever received free or reduced-price lunch, and have
teacherswithout amaster’s degree (col. 3), as are childrenwithEBLLs (cols. 4,
5). Consistent with findings in the literature, early childhood lead expo-
sure is also strongly associated with worse outcomes in our sample (fig. 2).
The average cohort in our sample includes 225 children. Children who
spend at least one elementary school year in a cohort with above-median
share of lead-exposed children (or >10.1% of cohort peers) have worse out-
comes and are more likely to be Black, be economically disadvantaged, and
have a BLL test themselves (cols. 6, 7). Our identification strategy controls

13 According to the North Carolina Department of Health and Human Services’
NC Childhood Lead Testing and Follow-Up Manual, BLL testing is required for
children participating in Medicaid, Health Choice, and/or the Special Nutrition
Program for Women, Infants, and Children.
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for family background with family fixed effects, assuaging concerns of
omitted-variable bias due to these differences.

IV. Identification Strategy

There are several challenges to identifying peer effects. First, because peers
influence each other simultaneously, it could be a priori unclear whether a
disruptive lead-exposed child causes their classmates to misbehave, or vice
versa. This is called the reflection problem (Manski 1993). Using a measure
of lead poisoning taken before school entry avoids the reflection problem
because a child cannot affect the BLLs of their peers, but lead poisoning af-
fects children negatively, which in turn could affect peers.
Second, peer groups are not randomly assigned; they are selected in part

according to unobserved characteristics (Angrist 2014). For example, atten-
tive parentsmight remove their children from classroomswithmore disrup-
tive peers. Because of this self-selection into groups, it is challenging to de-
termine whether the outcome is a causal effect of the peers or the reason the
individuals joined the peer group. Our preferred specification addresses this
issue with a family and school fixed effects design that holds constant
students’ family and neighborhood background, andwe test for endogenous
moves in response to peers’ composition.Moreover, over most of our study

FIG. 1.—Share of children with BLLs at or above 5 mg/dL by birth cohort and
share of children with BLL tests by cohort. This figure plots the share of children in
a school-grade-year cohort with at least one BLL test (dashed line) and with a BLL
of at least 5 mg/dL (solid line). A color version of this figure is available online.
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period, there were relatively few options for choosing public schools.14

Thus, as we will show, selection into schools was minimal.
Third, unobserved factors might simultaneously cause students and their

peers to perform poorly. For example, a child’s lead exposure could be cor-
related with socioeconomic status, which in turn has been associated with
peers’ learning disruptions (Hoxby 2000; Hoxby and Weingarth 2006).
Thus, to causally identify the spillover effect of a child’s lead exposure on
their peers, we control for the share of cohort peers who are non-White
or economically disadvantaged. We also control for the share of the stu-
dent’s peers who have been tested for lead exposure. Because screening rates
are higher among students with low socioeconomic status, additionally con-
trolling for screening rates mitigates concerns about selection into testing.
We first examine how lead exposure affects long-run outcomes—that is,

graduating fromhigh school, dropping out, intending to attend a 2- or 4-year
college, and taking the SAT—of peers without known EBLLs. We compare
students who attend the same school but whose grade cohorts randomly
happen to have different proportions of children with EBLLs. This specifi-
cation closely follows the one used by Carrell, Hoekstra, and Kuka (2018)
and includes school-grade and grade-year fixed effects. The school-grade
fixed effects control for unobservable characteristics of students who attend
the same school and grade. Grade-year fixed effects account for common
shocks to a cohort. This estimating equation is as follows:

Yisgt 5 b1
ok≠iPeersEBLLsksgt

nsgt 2 1
1 pXi 1 hsg 1 fgt 1 εisgt, (1)

whereYisgt is some outcome for child iwho either has not been screened for
lead exposure or has always tested below 5 mg/dL attending school s in grade g
in year t. The expressionok≠iPeersEBLLsksgt=ðnsgt 2 1Þ is the average share of
the student’s peers with known EBLLs across elementary andmiddle school
cohorts, not including the student. The coefficient b1 captures the effect of
having 100% of peers with known EBLLs in elementary and middle school.
The term Xi includes gender, race, and birth month fixed effects; eco-
nomically disadvantaged status; an indicator for whether a child was tested
for lead; average share of non-White peers across years; average share of eco-
nomically disadvantaged peers; average share of peers tested for lead; average
school size; school stability rate; and share of teachers with a master’s degree
over elementary andmiddle school. For each student, we use grade g andyear

14 North Carolina had no statewide voucher program (until 2015) and relatively
few charter schools, which accept students independently of catchment areas (and
whose students we observe). Thus, the only way to attend a school different from
the one assigned by catchment zone in most places was bymoving or attending, and
fully paying for, private school. Only 5.3% of all North Carolina children attended
private school over this time period (Public Schools First North Carolina 2023).
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t from the most recent (i.e., the last) observation we have for that student to
maximize sample size. The term hsg is a school-grade fixed effect to account
for school-grade-specific shocks. The term fgt is a grade-year fixed effect
to account for secular cohort-level trends. We cluster standard errors at the
school level to account for arbitrary correlation in the error terms.
However, this specification does not account for the fact that families

might select into schools. Thus, in our preferred specification, we compare
siblings whose grade cohorts randomly happen to have different propor-
tions of childrenwith EBLLs. Including familyfixed effectsmitigates the se-
lection problem by controlling for unobserved family characteristics that
could be correlated with both peer quality and child’s outcomes. Including
school fixed effects further controls for students’ characteristics that are
common to the school’s catchment area. Remaining idiosyncratic variation
in theBLLs of siblings’ cohorts offers plausibly exogenous variation to iden-
tify the spillover effects of lead and the effects of peer qualitymore broadly.15

Our main estimation equation is thus given by

Yijsgt 5 b1
ok≠iPeersEBLLsksgt

nsgt 2 1
1 pXi 1 vj

1 ds 1 tg 1 jt 1 εijsgt,

(2)

which is identical to equation (1) except for the fact that we substitute the
school-grade (hsg) and grade-year (fgt) fixed effects with family (vj), grade
(tg), school (ds), and year (jt) fixed effects and include birth order fixed ef-
fects in Xi.
To identify the effect of lead-exposed peers on student i’s outcomes in

this specification, four conditions must hold. First, conditional on our con-
trols, the share of lead-exposed peers in a school-grade-year must not be
correlated with other characteristics of student i that could affect student
i’s outcomes. Second, school characteristics and common shocks at the
school-cohort level that affect student i’s outcomes must not correlate with
the share of cohort peers who are lead exposed. Third, peers’ lead poisoning
must be uncorrelated with other characteristics of these lead-exposed peers
that could affect student i’s outcomes (except for through lead poisoning),
such as socioeconomic status. Fourth, conditional on our controls, testing
for lead must be random so that there is no selection into testing.

15 Of sibling groups in our sample, 97.9% present variation in the share of lead-
poisoned peers, suggesting that selection into treatment might not be a concern in
our sample (Miller, Shenhav, and Grosz 2023). Moreover, schools in our siblings
sample have on average 53% of students who go to a school different from that of
their siblings, meaning that a majority of students in the sample contribute to esti-
mating the school fixed effects. Figure A2 shows the distribution of our regressor of
interest, the average share of a student’s peers with EBLLs over elementary and
middle school, and the distributions of residuals obtained from regressions of this
variable on our preferred set of controls and the fixed effects in eqs. (1) and (2).
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Our preferred specification includes family and school fixed effects, as
well as student-specific school and cohort characteristics that address many
concerns about identification related to these first three conditions. In ad-
dition, we perform a battery of tests to address remaining potential viola-
tions of these conditions in sections V.D and V.E. In section V.D we also
show that the fourth identifying assumption holds: conditional on our con-
trols, testing for lead does not appear to be associated with any observable
characteristics of children.

V. Results

A. Long-Run Effects of Peers Exposed to Lead

Figure 3 shows that the share of a child’s peers with EBLLs is negatively
correlated with the child’s contemporaneous and long-run outcomes. We
next provide evidence that these patterns are causal.
Panel A of table 2 shows estimates of b1 from equation (1), which includes

school-grade and grade-year fixed effects. We find that a 10% increase in
the average share of elementary and middle school peers with EBLLs de-
creases the likelihood of a student graduating and taking the SAT by 1.6
and 2.8 percentage points, respectively, and increases the likelihood that a
student drops out of school by 1.5 percentage points. Panel B of table 2 pres-
ents estimates of b1 from equation (2), which exploits within-sibling varia-
tion and is our preferred specification.Within-sibling comparisons generally
estimate slightly smaller effects than comparisons within a school-grade,
suggesting that family fixed effects better control for endogenous selection.16

Ourpreferred specification in panel B shows that a childwhose average co-
hort in elementary andmiddle school has 10%more lead-poisoned peers has
a 1.7 percentage point lower likelihood of graduating high school—a 2% de-
crease on the mean graduation rate of 89%. We also find that having 10%
more lead-poisoned peers increases the likelihood of dropping out by 0.5 per-
centage points and decreases the likelihood of taking the SAT while in high
school by 2.3 percentage points, or a 4.3% decrease on the mean rate of
53.2%.17While a higher share of lead-poisoned peers decreases the likelihood
that a student intends to attend a 4-year college in panel A, this result is not
statistically significant at conventional levels in our preferred specification.
Finally, after controlling for the share of lead-poisoned peers, we find little

16 Because we identify siblings based on home addresses, our sibling-matching al-
gorithm could lead to error. Panel B of table A1 (tables A1–A14, B1–B4, C1 are
available online) estimates the same specification as panel A of table 2 on the sibling
sample and finds similar results using the sibling vs. all-children samples. Further-
more, col. 1 of table 7 shows results on the sample of census tracts where the major-
ity of homes are single-family homes, where sibling attribution is more precise.

17 Wealso report p-values corrected formultiple hypothesis testing,which are similar
to baseline estimates.We use the Stata command rwolf2 based onClarke, Romano, and
Wolf (2020), which allows for dependence among p-values by bootstrap resampling.
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Table 2
Long-Run Outcomes of Exposure to Peers with EBLLs by Timing
of Exposure

Ever
Graduated

(1)

Ever
Dropped

Out
(2)

Intention to
Attend a

4-Year College
(3)

Intention to
Attend a Com-
munity College

(4)

Took the
SAT
(5)

A. Share of All Peers with EBLLs Over Elementary andMiddle School
with School-Grade and Grade-Year Fixed Effects

Share of peers with
BLLs ≥5 mg/dL 2.1558*** .1453*** 2.1257*** 2.0112 2.2769***

(.0173) (.0150) (.0360) (.0343) (.0349)

Romano-Wolf
adjusted p-value .002** .002** .002** .988 .002**

Mean of outcome .8491 .0597 .4407 .3544 .4589
N students 831,147 1,155,293 666,613 665,951 657,670

B. Share of All Peers with EBLLs Over Elementary and Middle School
with Sibling, School, Grade, and Year Fixed Effects

Share of peers with
BLLs ≥5 mg/dL 2.1671*** .04701 2.1171 .0457 2.2283**

(.0350) (.0246) (.0720) (.0785) (.0740)

Romano-Wolf
adjusted p-value .002** .040* .118 .926 .002**

Mean of outcome .8904 .0529 .5069 .3288 .5320
N students 282,964 414,562 205,760 205,688 201,713

C. Share of Elementary versus Middle School Peers with EBLLs with
Sibling, School, Grade, and Year Fixed Effects

Share of peers with
BLLs ≥5 mg/dL in
elementary school 2.0611* 2.0064 2.0104 .0240 2.0024

(.0295) (.0218) (.0671) (.0685) (.0669)

Romano-Wolf
adjusted p-value .016* .988 .990 .986 .990

Share of peers with
BLLs ≥5 mg/dL in
middle school 2.1184** .0710* 2.0545 2.0106 2.2214*

(.0414) (.0299) (.0906) (.0987) (.0872)

Romano-Wolf
adjusted p-value .002** .006** .926 .990 .006**

p-value elementary
5middle .35 .08 .75 .81 .10



evidence of any effect of economically disadvantaged or non-White peers on
graduation and dropout rates and an effect of economically disadvantaged
peers on SAT taking that is less than half the effect of lead-poisoned peers.
We estimate effects on college going that are similar in magnitude to those

obtained by Carrell, Hoekstra, and Kuka (2018). Those authors find that
adding one male peer exposed to domestic violence to a classroom decreases
4-year college going by 1.4 percentage points. Using our cohort results and
assuming that there are 25 students in a class, we calculate that one additional
lead-poisoned peer in each class, a 4% increase in the share of lead-poisoned
peers, would lead to a 0.92 percentage point reduction in the likelihood of
taking the SATs, a proxy for college intentions, and a 0.67 percentage point
reduction in graduating high school.
Next,we show that spillovers of lead poisoning increase bothwith the share

of lead-exposed peers andwith the severity of peers’ lead exposure. Figure 4A
plots estimates fromequation (2) using bins for different percentages of cohort
peers with EBLLs (0%–5%, 5%–10%, 10%–15%, 15%–20%, 20%–100%),
where the 0%–5%bin is the omitted category.We also test whether estimates
are statistically different from the 5%–10% bin coefficient and find a statisti-
cally significant stronger effect of lead-poisoned peers on graduation rates as
the percentage of peers with EBLLs increases above 15%. In figure 4B we
show the effects of the average share of lead-poisoned peers on the likelihood
of graduation using different thresholds to define peers’ lead poisoning (e.g.,
BLL ≥ 2 mg/dL, BLL ≥ 3 mg/dL). As the EBLL threshold increases, so does

Table 2 (Continued)

Ever
Graduated

(1)

Ever
Dropped

Out
(2)

Intention to
Attend a

4-Year College
(3)

Intention to
Attend a Com-
munity College

(4)

Took the
SAT
(5)

Mean of outcome .8945 .0519 .5108 .3299 .5380
N students 248,391 354,195 182,305 182,248 178,831

NOTE.—This table reports the effect of a child’s share of peers with EBLLs on the child’s long-run out-
comes. Column 1 reports the effects on the likelihood a student ever graduates from high school, and col. 2
shows the effects on the likelihood of ever dropping out of school. Columns 3 and 4 show the effects on
self-reported intention of enrolling in a 4-year college and community college, respectively. Column 5
shows the effects on the likelihood of taking the SAT test by grade 12. Panel A includes school-grade
and grade-year fixed effects. Panels B and C instead include family, school, grade, and year fixed effects,
controlling for birth order and birth month. All regressions include individual controls for gender, race,
whether the student has a BLL test, and economically disadvantaged status measured in the highest grade
a student is observed in. We also control for the average share of elementary and middle school peers that
are non-White or economically disadvantaged, average share of children with a BLL test, school size, sta-
bility rate, and percentage of teachers with a master’s degree averaged over elementary and middle school.
Standard errors are in parentheses and clustered at the school level. We also report p-values corrected for
multiple hypothesis testing. We use the Stata command rwolf2 based on Clarke, Romano, andWolf (2020),
which allows for dependence among p-values by bootstrap resampling.

1 p < .10.
* p < .05.
** p < .01.
*** p < .001.
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the negative effect on graduation.18 Estimates with lead poisoning defined as
BLL ≥ 7 mg/dL are significantly larger than our main estimates (defined as
BLL≥ 5mg/dL). These results suggest that BLLs drive thesepeer effects rather
than other potentially correlated characteristics of children.
Because peers might impact each other differently at different ages, in

panel C of table 2 we show the long-run effects of lead-poisoned peers from
elementary and middle school cohorts separately. Peers in middle school
could be especially impactful for long-run outcomes if middle school is
when students decide whether to remain in school. Recent interventions
in middle school have been very effective at reducing crime, suspensions,
and dropping out of school, suggesting that students’ outcomes can be
strongly affected beyond early childhood.19 Indeed, we find that our esti-
mated long-run effects appear to be largely driven by middle school

FIG. 4.—Spillover effects on graduation by binned share of peers with BLLs ≥5
mg/dL and by different EBLL thresholds. A plots nonparametric estimates of the
effect of having different proportions (binned) of peers with BLLs ≥5 in a child’s
cohort on the likelihood of high school graduation, where the omitted category
is an indicator for share of peers with BLLs ≥5 that is lower than 0.05. The p-values
for each bin relative to the 5%–10% bin are shown under each confidence interval.
B plots the effect of the average share of peers with different EBLLs >x in the cohort
on graduation. As the BLLs increase, so does the negative effect on graduation. The
p-values relative to our baseline coefficient are shown under each confidence inter-
val. In both panels, we control for all fixed effects and controls in our primary spec-
ification (which includes family, school, year, and grade fixed effects and individual
and demographic controls by cohort, averaged over elementary and middle school).
Vertical bars represent 95% confidence intervals based on standard errors clustered
at the school level.

18 The effects of having more peers with at least 10 mg/dL flatten out, possibly be-
cause of interventions triggeredwhen a child has BLLs above the 10mg/dL threshold.

19 See, e.g., Guryan et al. (2021) and Heller et al. (2017).
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peers.20 Yet we note that elementary and middle school peers are highly
correlated.

B. Mechanisms: Contemporaneous Effects of Peers Exposed to Lead

To understand themechanisms throughwhich lead-poisoned peersmight
affect long-run outcomes, we next examine the effects of peers with EBLLs
on contemporaneous test scores, OOS suspensions, and absences. To do so,
we estimate analogs of equations (1) and (2) at the student-year level:

Yisgt 5 b1
ok≠iPeersEBLLsksgt

nsgt 2 1
1 pXit 1 qSsgt

1hsg 1 fgt 1 ge 1 εisgt,

Yijsgt 5 b1
ok≠iPeersEBLLsksgt

nsgt 2 1
1 pXit 1 qSsgt 1 vj 1 ds

1tg 1 jt 1 ge 1 εijsgt,

where ok≠iPeersEBLLsksgt=ðnsgt 2 1Þ is the share of students in a child’s
school-grade-year cohort (or school-classroom-grade-year cohort)
with known EBLLs, not including the student. The coefficient b1 on
ok≠iPeersEBLLsksgt=ðnsgt 2 1Þ captures the effect of having 100% of a child’s
peers in a given year with known EBLLs. Equation (3) mirrors equation (1)
by including school-grade (hsg) and grade-year (fgt) fixed effects. The termXit

is a vector of child-specific control variables, including gender, race, and birth
month fixed effects; economically disadvantaged status in each year; and an
indicator for whether a child was tested for lead. The vector Ssgt controls
for time-varying characteristics at the school-grade-year level: percentage
of non-White students, percentage of economically disadvantaged students,
and share of students who have been tested for lead exposure. We also control
for school time-varying characteristics: annual school size, share of teachers
with a master’s degree, and school-level stability rate. In equation (4), vj, ds, tg,
and jt are family, school, grade, and yearfixed effects, as in equation (2). In addi-
tion,whenwe look at test scores,we includege, an examfixed effect that restricts
our comparison to children who took the same test.
Panel A of table 3 presents the results for the effect of additional cohort

peers who are lead poisoned on a child’s outcomes using equation (3), while
panel B uses our preferred specification in equation (4).21 The two panels
show very similar results: a higher share of peers with EBLLs is associated

20 While the coefficients on middle school peers are always larger in magnitudes
than those on elementary school peers, we detect a statistically significant difference
(at the 10% level) only for dropping out and taking the SAT.

21 The sample size is smaller than in col. 1 of table 1 because of singletons and
missing outcomes.

(3)

(4)
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with a higher likelihood of, and longer, OOS suspensions and a higher like-
lihood of absences. Again, within-sibling comparisons generally estimate
slightly smaller effects than comparisons within a school-grade.22

Table 3
Potential Mechanisms: Contemporaneous Effects of Attending School with
an Increased Share of Children with EBLLs

Average
Test
Score
(1)

OOS
Suspension

(2)

Days
Suspended

(3)

OSS Suspension
Same Day as
Lead-Exposed

Child
(4)

Incident
with
Lead-

Exposed
Child
(5)

Absent
22 or
More
Days
(6)

A. Cohort Peers with School-Grade and Grade-Year Fixed Effects

Share of peers
with BLLs
≥5 mg/dL 2.0272 .0677*** 1.0974*** .2250*** .1107*** .0234*

(.0351) (.0188) (.2424) (.0143) (.0118) (.0091)

Romano-Wolf
adjusted p-value .196 .020* .020* .020* .020* .020*

Observations 3,284,720 7,916,670 7,916,670 7,189,301 6,540,081 8,128,020
N students 930,228 1,906,345 1,906,345 1,883,489 1,764,684 1,902,185
Mean of outcome .0572 .1048 .7732 .0318 .0202 .0611

B. Cohort Peers with Family, School, Grade, and Year Fixed Effects

Share of peers
with BLLs
≥5 mg/dL .0190 .02051 .6099*** .1929*** .1041*** .0434***

(.0361) (.0117) (.1807) (.0106) (.0082) (.0072)

Romano-Wolf
adjusted p-value .373 .020* .020* .020* .020* .020*

Observations 1,409,299 4,287,750 4,287,750 3,919,448 3,672,544 4,395,695
N students 373,801 944,335 944,335 933,508 891,259 939,430
Mean of outcome .1298 .0942 .6762 .0285 .0187 .0520

NOTE.—This table reports the effect of a child’s share of peers with EBLLs on the child’s school out-
comes. Both panels use the share of peers with maximum BLLs ≥5 mg/dL at the school-grade-year level
as the main explanatory variable. Panel A includes school-grade, grade-year, and birth month fixed effects.
Panel B instead includes family, school, grade, and year fixed effects, controlling for birth order. In col. 1 we
take the average of math and reading test scores and additionally control for subject–test type fixed effects.
In cols. 2–6 we limit the sample to grades 6 and above. All regressions control for individual and cohort
controls, which include indicators for gender, race, economically disadvantaged status, whether the student
has a BLL test, share of non-White peers, share of children with a BLL test, and share of peers who are
economically disadvantaged at the school-grade-year level. We also control for school size, stability rate,
and percentage of teachers with a master’s degree. Standard errors are in parentheses and clustered at the
school level. We also report p-values corrected for multiple hypothesis testing. We use the Stata command
rwolf2 based on Clarke, Romano, and Wolf (2020), which allows for dependence among p-values by boot-
strap resampling.

1 p < .10.
* p < .05.
** p < .01.
*** p < .001.

22 Because we observe long-run outcomes for only early cohorts of students, stu-
dents move out of state, and some data become available only in later years, the num-
bers of students differ for short- and long-run outcomes. However, in panel A of
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In panel B we find that a 10% increase in the proportion of cohort-level
peers with EBLLs in a given year leads to a 0.2 percentage point increase in
the likelihood of OOS suspensions—a 2.1% increase over the mean of
9.4%—and increases the suspension duration by 40 minutes based on a
6-hour school day. Moreover, these increased suspensions appear to be driven
at least in part by suspensions on the same day as suspensions for lead-poisoned
children and behavioral incidents including lead-poisoned children.23

Increased suspensions for peers of lead-poisoned children could be due to
more punitive policies at the cohort-level, such as teachers’ responses. To
disentangle peers’ behavior from school policies, we look at the effects of
lead-poisoned peers on absences, which should not be driven by school pol-
icies. We find that a 10% increase in the proportion of cohort-level peers
with EBLLs increases the likelihood of chronic absenteeism by 0.4 percent-
age points, or 8%on a base of 5.2%, suggesting that our results are not driven
by school policies. Finally, we find little evidence of lead-poisoned students
affecting their peers’ test scores, with estimates changing sign across specifica-
tions. Thisfinding suggests that the effects of lead-poisoned peers on the long-
run outcomes described in section V.A may operate through noncognitive
skills and behavior rather than a learning channel.24 Yet we cannot fully dis-
ambiguate between these channels.
While we use cohort-level variation in our primary specification to avoid the

issue of selection into classrooms by students, tableA2 presents the estimates of
the effect of having more lead-poisoned peers in the same classroom.25 Class-
room peers have a larger effect on suspensions and absences than cohort peers,
which couldbedue to stronger connectionswithin or selection into classrooms.

C. Heterogeneity of Estimated Effects by Own and
Peers’ Characteristics

Because exposure to lead-poisoned peers could interact with a child’s
background to shape their outcomes, we next study heterogeneity in peer

table A1 we estimate our primary specification only on students for whom we ob-
serve outcomes consistently. The results on this sample are very similar to our main
results in tables 2 and 3.

23 Placebo estimates in fig. A3 show that our estimated effects of higher shares of
peers with EBLLs on the likelihood of being suspended or involved in an incident
with a student with an EBLL are 154%–165% of what the mere proportion of chil-
dren with EBLLs in a given cohort implies.

24 Several recent papers, such as Chetty et al. (2011) and Jackson (2018), have
shown that noncognitive skills are very important to long-run outcomes over
and above test scores.

25 Wehave classroom-level data for only a subset of the children in the sample from
2006 to 2017, whereas the cohort-level variation is available from 1997 to 2017. Since
we restrict test scores to 1997–2005, we cannot estimate the effects of classroom peers
on test scores. Children in grades 6 and up usually switch classrooms, so they appear
as many times as the number of classes they take with each student.
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effects by demographic subgroups. For example, students of different socio-
economic statusmight have differential access to resources, such as academic
help outside of school, that could mitigate the effects of peers with EBLLs.
Table 4 presents our preferred estimates by race/ethnicity (White, non-
Hispanic students in panel A, Black students in panel B, and Hispanic stu-
dents in panelC), by economically disadvantaged status (never economically
disadvantaged in panelD, sometimes economically disadvantaged in panel E,
and always economically disadvantaged in panel F), and by gender (girls in
panel G and boys in panel H).
Wefind some evidence of heterogeneous effects of lead-poisoned peers on

graduation by race and gender. Black students see the largest decrease in high
school graduation from lead-poisoned peers. A 10% increase in the average
share of lead-poisoned peers in elementary and middle school decreases the
likelihoodBlack students graduate high school by 3 percentage points, com-
pared with 1.5 percentage points for White students. Boys also seem more
affected than girls by lead-poisoned peers, although the difference is not sta-
tistically significant. Importantly, Black and male students have lower grad-
uation rates to start with, suggesting that peers might exacerbate existing
educational disparities. However, we find little systematic evidence of het-
erogeneity by socioeconomic status.26

We also hypothesize that friend groups might drive peer effects.27 As we
lack data on friendship networks,we use the fact that children likely sort into
groups with similar characteristics (Jackson 2010). Table A4 presents both
the effect of exposure to a higher share of lead-poisoned peers and the addi-
tional effect of exposure to a higher share of lead-poisoned peers of the same
gender (panel A), race (panel B), and same gender and same race (panel C).
We find that peers of the same gender, but not peers of the same race, with
EBLLs have an additional effect on high school graduation on top of the
general effect generated by all lead-exposed peers, although the results are
statistically significant only at the p < :1 level. Moreover, panel A of table A5
shows that lead-poisoned boys have larger negative effects on their peers
than lead-poisoned girls for SAT taking. Together, these results suggest that
peer effects are mediated by assortative matching of peer groups.

D. Addressing Potential Measurement Error in BLLs
and Omitted-Variable Bias

We do not observe lead exposure for all children, and there may be selection
in who is tested for lead. Since we compute the share of lead-poisoned peers

26 Table A3 shows similar patterns when we estimate the effects of lead-poisoned
peers for children in schools with different levels of poverty.

27 Given that long-run outcomes are the focus of the paper, we examine only the
likelihood of high school graduation and SAT taking for the rest of the paper, since
these outcomes are those for which we find the most consistent spillover effects.
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Table 4
Heterogeneity by Demographic Subgroups, All Long-Run Outcomes

Ever
Graduated

(1)

Ever
Dropped

Out
(2)

Intention to
Attend a

4-Year College
(3)

Intention to Attend a
Community College

(4)

Took
the SAT

(5)

A. White, Non-Hispanic Students

Share of peers with
BLLs ≥5 mg/dL 2.1467*** .0489 2.0952 .0013 2.1202

(.0404) (.0301) (.0890) (.0985) (.0871)

B. Black, Non-Hispanic Students

Share of peers with
BLLs ≥5 mg/dL 2.3140*** .0384 .0465 .0454 2.3714*

(.0768) (.0526) (.1731) (.1588) (.1683)

p-value 5White .05 .86 .47 .81 .19

C. Hispanic Students

Share of peers with
BLLs ≥5 mg/dL 2.1367 .0324 2.1250 2.1480 2.40381

(.1250) (.0823) (.2231) (.2452) (.2403)

p-value 5White .94 .85 .90 .57 .27

D. Never Economically Disadvantaged Students

Share of peers with
BLLs ≥5 mg/dL 2.0911* .0257 2.0419 2.0645 2.0157

(.0401) (.0222) (.1041) (.1138) (.1106)

E. Sometimes Economically Disadvantaged Students

Share of peers with
BLLs ≥5 mg/dL 2.1809** .0476 2.1700 .1566 2.2764*

(.0682) (.0457) (.1388) (.1400) (.1361)
p-value 5never .26 .67 .46 .22 .14

F. Always Economically Disadvantaged Students

Share of peers with
BLLs ≥5 mg/dL .0266 2.0445 2.1496 2.0163 2.1426

(.1032) (.0776) (.1813) (.2028) (.2019)

p-value 5never .29 .38 .61 .84 .58

G. Girls

Share of peers with
BLLs ≥5 mg/dL 2.1105

1

.0328 2.0546 .0556 2.2376
1

(.0605) (.0403) (.1306) (.1428) (.1311)



over all students in a cohort, irrespective of whether they have a BLL test, un-
known lead-poisoned peers could attenuate our results if measurement error is
random. The direction of the bias depends on selection if instead measurement
error is not random. To address this potential measurement error as well as
concerns about other potential correlates of peers’ lead poisoning, we flip
ourmain specification and regress the average outcomes for a student’s peers
on an indicator for that student having an EBLL using block group–birth
year fixed effects.We estimate this specification only on the sample of tested
children, forwhom lead-poisoning status is known.The estimating equation
for this specification is as follows:

�Yisg 5 b1LeadPoisonedisg 1 pXi 1 hbt ið Þ 1 ds 1 tg 1 εisg, (5)

where �Yisg represents the average outcomes of student i’s peers in a cohort in
school s as of grade g, that is, the last grade we observe a student. The term
LeadPoisonedisg is an indicator for student i attending school s in grade g
having an EBLL by age 6. Thus, the coefficient of interest, b1, estimates
the effect of child i being lead poisoned on the average outcomes of their
peers relative to other screened children who tested negative. We include
block group–birth year fixed effects (hbt(i)), as well as grade (tg) and school
(ds) fixed effects. The termXi includes gender, race, economically disadvan-
taged status, birth month, and birth order fixed effects; share of non-White
peers; share of economically disadvantaged peers; share of peers tested for
lead; share of peers with EBLLs; student’s school size; school stability rate;

Table 4 (Continued)

Ever
Graduated

(1)

Ever
Dropped

Out
(2)

Intention to
Attend a

4-Year College
(3)

Intention to Attend a
Community College

(4)

Took
the SAT

(5)

H. Boys

Share of peers with
BLLs ≥5 mg/dL 2.2513*** .0724 2.0592 .0276 2.2072

(.0668) (.0486) (.1295) (.1461) (.1358)

p-value 5girls .12 .53 .98 .89 .87

NOTE.—This table reports the effect of a child’s share of peers with EBLLs on the child’s school out-
comes for children with different observable characteristics in each panel. For each outcome, results are
from three regressions, one for each characteristic (race, economic status, gender). All regressions include
cohort and individual controls, as well as family, birth month, birth order, school, grade, and year fixed
effects. Individual controls include indicators for whether the student has a BLL test, gender, race, and eco-
nomically disadvantaged status. Cohort controls include share of non-White peers, share of children with a
BLL test, and share of peers who are economically disadvantaged at the school-grade-year level. We also
control for school size, stability rate, and percentage of teachers with a master’s degree. Cohort and school
controls are averaged over elementary and middle school. Standard errors are clustered at the school level.

1 p < .10.
* p < .05.
** p < .01.
*** p < .001.
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and share of teachers with a master’s degree in the last grade we observe stu-
dent i. The term εisg represents the error term.
We use block group–birth year fixed effects to absorb any time-varying

neighborhood characteristics, including gentrifying patterns that could be
correlated with home renovations and time-varying pollution that could cor-
relate with lead poisoning. Thus, we identify the effect of lead poisoning by
comparing peers’ outcomes of children living in the same small neighborhood
and time but who happen to have different EBLLs. Abbasi, Pals, and Gazze
(2020) suggest that evenwithin a census block, the age of the housing is highly
predictive of BLLs, so we aim to capture this source of variation with this
specification. In table 5, panel A, we find that one lead-poisoned student in
a cohort of 220 is associated with a 0.09 percentage point decrease in the share
of peers who graduate high school or take the SATwhen using our full sample
of BLL tests. This is very similar towhat we obtain if we scale our main result
in table 2, panel B.28

Table A6 further investigates whether our results might be driven by
characteristics of the lead-poisoned student that are correlated with that
student’s lead poisoning, such as family background. We note that adding
individual controls (gender, race, economic disadvantage) in column 2 de-
creases our estimates by about a quarter, in line with our suggestive findings
of potential homophily by gender, for example. Yet adding additional con-
trols for parental education, family composition (number of children in fam-
ily and siblings’ gender mix), and school controls (share non-White, share
economically disadvantaged, school size, stability rate, and percentage of
teachers with a master’s degree) does not alter our estimates from equa-
tion (5) significantly (cols. 3, 4). Finally, column 5 shows that controlling
for family fixed effects in this specification decreases our sample size by
two-thirds and our effective sample size by 85%. Consistently, estimates
in column 5 are noisier, with smaller point estimates in the whole sample
(panel A) but much larger point estimates in the samples of children tested
by 37 and 25 months (panels B and C, respectively).29

28 As one in 220 students is a 0.46% increase in the share of peers with EBLLs,
we multiply that by our estimate of the effect of 100% of peers with EBLLs on
graduation (216.71 percentage points) to obtain the impact of one child with
EBLLs through elementary and middle school on graduation rates: 20.077 per-
centage points, or a decrease in the probability of 0.00077.

29 Screening at an early age is consistent with being on Medicaid or living in older
housing, sowe suspect that our estimates are larger because there is lessmeasurement
error inBLLs among siblingswho are all tested early.Moreover,Gazze (2022) shows
that families are more likely to test a second sibling if the first one has an EBLL but
less likely to test a second sibling if the first one is tested and does not have an EBLL.
Thus, we do not use this much smaller and potentially selected sample as our main
estimate for the “flipped” analysis.
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To address potential selection into screening due to manifested behavior
at older ages, in tables 5 (panels B and C) and A7 we limit our variation to
BLL tests taken by 25 or 37months of age. TableA7 presents estimates from
ourmain estimating equation (2) on this subsample,which are largely similar
to our main results in table 2.
Next, we directly test whether screening appears random conditional on

our preferred set of controls andfixed effects. InfigureA4wefind that as the
share of tested children increases by 10% in a school cohort, the share of
children testing positive for lead decreases by only 0.006 percentage
points—essentially zero. This finding is consistent with the same law of
small numbers that we exploit for identification. In other words, conditional
on neighborhood and family time-invariant observable factors that predict
lead exposure risk, which children actually get testedwithin a cohort is plau-
sibly exogenous. In appendix C we also simulate selection under different
testing regimes and estimate biases in the range of22.3% to 8% of the true

Table 5
Effects of Having an EBLL on Peers’ Average Long-Run Outcomes Using
Block Group–Birth Year Fixed Effects

Ever Graduated
(1)

Took the SAT
(2)

A. Tested by 72 Months of Age

Child’s maximum BLL is ≥5 2.0009** 2.0009***
(.0003) (.0002)

Observations 338,232 322,115
Mean of outcome .6153 .2740

B. Tested by 37 Months of Age

Child’s maximum BLL is ≥5 2.0011* 2.0011***
(.0004) (.0003)

Observations 225,382 232,965
Mean of outcome .6217 .2673

C. Tested by 25 Months of Age

Child’s maximum BLL is ≥5 2.00081 2.0009**
(.0005) (.0003)

Observations 190,155 198,367
Mean of outcome .6226 .2636

NOTE.—This table reports the effect of one additional child with EBLLs on the average long-run out-
comes for their peers (eq. [5]). Column 1 reports the effects on the likelihood peers ever graduate from high
school, and col. 2 shows the effects on the likelihood of ever taking the SAT. Panel A uses all BLL tests in
our sample. Panels B and C limit the sample to children screened by 37 and 25 months of age, respectively.
We control for census block group–birth year fixed effects, as well as school, grade, birth month, and birth
order fixed effects. We also control for share of peers with EBLLs, share of peers who are non-White or
economically disadvantaged, share of children with a BLL test, school size, stability rate, and percentage of
teachers with a master’s degree. Standard errors are in parentheses and clustered at the school level.

1 p < .10.
* p < .05.
** p < .01.
*** p < .001.
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effect. Thus, selection into testing is unlikely to bias our findings in an eco-
nomically significant way.
Finally, we find no evidence of selection into screening when we regress

child, family, and school characteristics on an indicator for whether a child
was tested for lead, controlling for all of the same controls andfixed effects in
our primary specification. The results, presented in table A8, show that, on
average, being tested for lead is not correlated with parental education, race,
or school characteristics. However, children tested for lead are 2 percentage
points more likely to be female. Nevertheless, we control for gender in all
regressions. Thus, we conclude that measurement error plausibly attenuates
our estimates.
To further assess the extent of bias frommeasurement error, we perform a

bounding exercise inwhichwe assign different shares of untested children to
have EBLLs. Specifically, we assign the 90th or 10th percentile of the distri-
bution of observed shares of studentswithEBLLswithin schools or districts
to peers with missing BLL data. Then we average these imputed estimates
for untested children with the observed percentage of peers in a cohort with
EBLLs, weighting by share untested and tested, respectively, as follows:

ImputedShareEBLLp
sgt 5

ok≠iPeersEBLLsksgt
NTestedsgt 2 1

� �

NTestedsgt 2 1

Nsgt 2 1

� �

1 ps
ok≠iPeersEBLLsksgt
NTestedsgt 2 1

� �

1 2
NTestedsgt 2 1

Nsgt 2 1

� �

,

(6)

where ps½ok≠iPeersEBLLsksgt=ðNTestedsgt 2 1Þ� is the pth percentile of the
distribution of observed shares of students with EBLLs within school s (or
the district the school belongs to), NTestedsgt is the number of tested children
in the school-grade-year, and Nsgt is the total number of students in the
school-grade-year.
In panels A and B of table 6, we use the 90th and 10th percentiles of the

empirical distribution of observed BLLs by school formissing BLLdata, re-
spectively. Imputing the 90th percentile of the distribution of children with
EBLLs reduces the magnitude of our estimates on graduation and SAT tak-
ing by 25%–40%, but both coefficients remain negative and statistically sig-
nificant at the p < :01 level.30 Imputing the 10th percentile instead produces
estimates that are very similar to our preferred ones in panel B of table 2.
Panels C andD repeat this exercise using the 90th and 10th percentiles with-
in school districts, respectively, and yield similar outcomes, albeit attenuated
likely because of wider averaging. Finally, panel E presents results where we

30 There is also reason to believe that untested children are less likely to have
EBLLs. As shown in table 1, they are less likely to be minority and economically
disadvantaged, which is correlated with lead poisoning. Gazze (forthcoming) and
Abbasi, Pals, and Gazze (2022) also find that children who are not tested for lead
are less likely to have EBLLs than those who are tested for lead.
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Table 6
Bounding Our Estimates to Account for Missing BLL Data

Ever Graduated
(1)

Took the SAT
(2)

A. Imputing the 90th Percentile of the BLL Distribution
by School for Missing BLL Data

Share of peers with BLLs ≥5 mg/dL 2.0882*** 2.1396**
(.0231) (.0514)

Mean of outcome .8904 .5320
N students 282,964 201,711

B. Imputing the 10th Percentile of the BLL Distribution
by School for Missing BLL Data

Share of peers with BLLs ≥5 mg/dL 2.1370*** 2.1980**
(.0318) (.0642)

Mean of outcome .8904 .5320
N students 282,964 201,711

C. Imputing the 90th Percentile of the BLL Distribution
by District Cohort for Missing BLL Data

Share of peers with BLLs ≥5 mg/dL 2.1121*** 2.1672***
(.0261) (.0420)

Mean of outcome .8904 .5320
N students 282,964 201,711

D. Imputing the 10th Percentile of the BLLDistribution
by District Cohort for Missing BLL Data

Share of peers with BLLs ≥5 mg/dL 2.0908*** 2.1628***
(.0204) (.0422)

Mean of outcome .8904 .5320
N students 282,964 201,711

E. Using Predicted BLLs

Share of peers with BLLs ≥5 mg/dL 2.1216*** 2.2201***
(.0304) (.0664)

Mean of outcome .8939 .5408
N students 264,999 189,611

NOTE.—This table reports the effect of a child’s share of peers with EBLLs on the child’s long-run out-
comes accounting for missing data on children’s BLLs by bounding our estimates. In panel A we use the
90th percentile of the empirical distribution of observed BLLs by school to impute missing BLL data for a
student’s peers, and in panel B we use the 10th percentile of the empirical distribution of observed BLLs by
school. Panels C and D replicate panels A and B using district-level percentiles. In panel E we regress an
indicator for having an EBLL (5 mg/dL or above) on the share of tested students by cohort, the share of
tested students who have an EBLL, gender, individual race, racial demographics of the first school and cen-
sus block group, all other census block group controls, and school, block group, birth year, birth month,
and birth order fixed effects. We then predict whether an unscreened child is likely to have an EBLL (out of
sample) and calculate the shares of children by school-grade-year predicted to have EBLLs. We use the
predicted shares of EBLLs for our share of missing BLLs and average it with the share of students who
are tested. Standard errors are in parentheses and clustered at the school level.
** p < .01.
*** p < .001.



predict BLLs for the sample of unscreened children based on our rich school
and census data and set offixed effects anduse the predicted shares of EBLLs
for the share of missing BLLs. Again, we obtain estimates similar to those in
table 2. We interpret these findings as suggestive that missing BLL data are
not causing us to attribute spurious effects to lead-poisoned peers. As an ad-
ditional check, column 2 of table 7 shows the effects of lead-poisoned peers
on children in universal screening zip codes, where screening rates are 16%
higher than average.31Wefind only a slightly larger effect on graduation than
in the full sample.
To address further concerns on measurement of lead poisoning, in pan-

els B–Dof table A5, we show that our results are largely robust to using dif-
ferent measures of lead-exposed peers. Moreover, missing information on a
student’s own lead-poisoning status does not bias our estimates: when we
estimate the effects of lead-poisoned peers only on students who have tested
negative for lead poisoning (panel E), we obtain coefficients that are very
similar to those in table 2. The same is true when we also include children
who tested positive (panel F), suggesting that spillover effects are not medi-
ated by one’s own poisoning status.

E. Additional Threats to Internal Validity

This section discusses and tests for threats to internal validity, including
spurious correlation and endogenous sorting. Our estimates could be bi-
ased if the share of peers with EBLLs in a school-grade-year is systematically
correlated with a student’s or peers’ characteristics that affect a student’s
outcome other than those included in equation (2). In addition to the alter-
native specification in table 5, column 3 of table 7 controls for the share of a
student’s peers who live in block groups with above-median income, share
Black andHispanic residents, share in poverty, and share with a high school
degree. The estimate of the effects of lead-poisoned peers is virtually indis-
tinguishable from our main estimate in table 2. Column 4 of table 7 adds
fixed effects for the census block group where students reside when they
first appear in the school data. Both columns suggest that neighborhood
characteristics, such as air pollution, do not drive the results. Column 5 of
table 7 further shows that estimates usingmore stringent school-grade fixed
effects are similar to our main results.
We also test whether our estimated effect of lead poisoning is driven by

the socioeconomic status of the lead-poisoned children. Todo so,we estimate

31 These zip codes cover at least one block group with 27% or more homes built
before 1950 and areas with high prevalence of EBLLs (Hanchette 1999). Table A9
repeats the robustness exercise shown in table 7 for SAT taking, as well as OOS
suspensions and chronic absenteeism. Our results on SAT taking and absences
are very robust to different samples and specifications. Our suspensions results
are similarly robust in terms of magnitude but noisy at times.
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the effect of lead-poisoned children with higher income and who are White
(table A10, panels A and B) and further control for peers’ parental education
(table A10, panel C).Our results are robust to these alternative specifications,
which suggests that our results are not driven by socioeconomic status of
children with EBLLs.
To further rule out spurious correlation, table A11 shows the robustness

of our specification to different sets of controls. When we omit all controls
other than family, school, grade, and year fixed effects and the share of peers
tested for lead (panel A), estimates are similar to those in our main specifica-
tion, albeit slightly larger. Panel B shows that once we add individual and
school-level controls, omitting the average share of students who are non-
White and the average share of students who are economically disadvan-
taged does not affect our estimates comparedwith ourmain results. So peers’
characteristics other than lead poisoning do not appear to explain much of
the variation in students’ outcomes after including the set of fixed effects
and controls that provides our identification. Relatedly, table A12 shows
limited evidence that peers’ composition at the cohort level is related to
school quality or resources in a way that could confound our estimates. Co-
hortswith a higher share of studentswithEBLLs appear tobe in school-years
with a higher stability rate, if anything, and larger student bodies.32Panel C of
table A11 shows that excluding school fixed effects yields slightly larger peer
effects on suspensions compared with our main results. These results suggest
that our more conservative primary specification controls for unobserved
time-invariant school characteristics. Our results also hold when we add
school-specific linear time trends to our preferred specification (panel D).
Figure A5 further shows that our estimates are unlikely to be due to spu-

rious correlation. This figure plots the results from estimating 500 placebo
specifications in which we assign a random share of lead-poisoned peers
to each school-grade-year cohort drawn from a distribution with the same
mean and standard deviation as the empirically observed peers’ distribution.
Our true estimates for the effects of lead-poisoned peers on graduation rates
and SAT taking fall well outside the distribution of estimates from the pla-
cebo specifications.
Because the incidence of lead poisoning has decreased over time (fig. 1),

our primary estimatesmight capture similarly occurring trends in outcomes,
despite controlling for grade and year fixed effects. To assuage this concern,

32 While we find no difference in school quality or characteristics between sib-
lings in table A12, lead poisoning is correlated with race and socioeconomic status,
as seen in table 1. Thus, we do not include these observed characteristics of peers in
the table and instead control for them in our main specification. This fact also un-
derscores why we use family fixed effects to account for time-invariant character-
istics of families, such as race and economic status, that could affect outcomes. On
average, these individual characteristics also do not vary within families.
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in column 6 of table 7, we control for school-year fixed effects and find peer
effects that are larger than our main results.
Endogenous sorting into peer groups could also bias our results if high-

achieving students sort out of cohorts with many lead-poisoned students,
for example. Importantly, most of North Carolina did not offer school
choice options for public schools up until the 2014–15 school year, unless
students switched to a charter or magnet school, which we observe.33 Col-
umn 7 of table 7 shows that our results are larger for children in zip codes
with no charter schools or other school choice options (at the time), which
are effectively no-choice zip codes. Column 8 of table 7 controls for siblings-
school fixed effects, effectively comparing siblings only in grades during
which they attend the same school, as in Bertoni, Brunello, and Cappellari
(2020). We find spillover effects of lead-poisoned peers that are two-thirds
the size of our main result. Finally, table A13 formally investigates the asso-
ciation between a student’s share of lead-poisoned peers and students or
their siblings switching to public or charter schools. The results indicate that
endogenous sorting is not a concern in our setting.
Finally, including siblings fixed effects could lead us to underestimate the

spillover effects of lead exposure in the presence of within-family spillovers.
For example, if parents respond to their children’s performance by shifting
resources across offspring, a student’s peers could also affect the outcomes of
that student’s siblings. Table A14 shows no evidence of this by controlling
for the share of lead-exposed peers of a student’s siblings. Our results are
also similar whenwe add controls for sibling gender composition and family
size to our preferred specification (table A11, panel E).

VI. Conclusion

This is thefirst study showing that pollution has long-run spillover effects
on school peers. By comparing siblings, we show that a child’s own lead ex-
posure spills over to affect other children’s long-run outcomes, including
high school graduation and SAT taking. These effects suggest that the social
cost of lead exposure has been underestimated so far. In addition, we reveal
some mechanisms through which peer effects manifest—namely, behavior
shaping while in middle school likely through noncognitive skills. Thus,
ourfindings have implications for other types of commonpollution that have
been linked to suspensions from school, such as traffic and industrial pollu-
tion (Persico andVenator 2021;Heissel, Persico, andSimon2022), suggesting

33 In the 2014–15 school year North Carolina implemented the Opportunity
Scholarships program, a voucher program for low-income children. Children
whose families make less than 133% of the qualifying amount for the federal free
or reduced-price lunch program qualify for the voucher, which can be used for
any school. Because the Charlotte-Mecklenburg public school district has had a
school choice program since 2002, we exclude it in this robustness check.
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that the cost of pollution has been underestimated. These findings hold even
though we likely underestimate the effect of lead-poisoned peers because of
potential within-family spillovers and measurement error. Thus, environ-
mental hazards appear to contribute to human capital accumulation, even
for children who are not themselves exposed to these hazards.
While external validity issues make it difficult to extrapolate how lead ex-

posure might affect labor market outcomes, we attempt a back-of-the-
envelope calculation for the social cost of the spillovers of lead poisoning.
We find that being exposed to one additional lead-poisoned peer in a cohort
of 220 is associated with $84 in lost earnings per student from lower gradu-
ation rates alone, that is, excluding the additional costs of behavioral issues
and absences.34 This estimate implies a spillover effect of a lead-poisoned
child of $18,368 on their 219 school peers. As half a million young children
are poisoned by lead each year (Aizer et al. 2018), these spillovers total almost
$9.2 billion per birth-year cohort. Reyes (2014) estimates that the direct social
cost of lead poisoning is $200 billion per birth-year cohort. Thus, our lower-
bound estimates suggest that the social cost of lead has been underestimated by
at least 4.6% by not including these spillover effects. Because lead-poisoned
students are quite dispersed across schools, most public school children in
the United States are likely affected by the spillover effects of lead.
Our results imply some important lessons for policy. Remediating lead

hazards is likely to be more cost effective than previously supposed, since
lead exposure affects everyone in the classroom. Lead remediation efforts
have shown positive impacts on children’s BLLs and test scores (Sorensen
et al. 2019). In addition, Billings and Schnepel (2018) show that offering early
interventions for lead-poisoned children improves their school performance
and decreases antisocial behavior, for a total benefit of $9,666 per directly
exposed child.Our estimates suggest an additional potential benefit of about
twice the direct benefit when accounting for the spillover effects of lead poi-
soning on school peers.
Finally, school segregation by race and socioeconomic status likely exac-

erbates these peer effects, suggesting that efforts to desegregate studentsmight
be beneficial. Low-income schools have some of the largest achievement gaps
(e.g., see Reardon 2015). Lead exposure and exposure to lead-poisoned peers
are both mechanisms through which poverty produces worse human capital
outcomes.

34 Following Heckman, Lochner, and Todd (2006), we estimate the net present
value of graduating high school to be $93,188. We estimate a schooling-experience-
earnings profile nonparametrically in the 2018 March Current Population Survey
data and predict earnings conditional on years of schooling at each age between
18 and 65, assuming a growth rate of real labor productivity growth of 1.9% and
a discount rate of 3.38% (i.e., the 30-year Treasury bond rate). Thus, one child with
an EBLL in a cohort decreases the net present value of lifetime earnings by
0:0009 � $93,188 5 $84.
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