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A B S T R A C T   

Breakthrough research plays an essential role in the advancement of the scientific system. The identification and 
recognition of scientific breakthroughs is thus of extreme importance. We propose a citing-structure perspective 
for observing the unfolding of breakthrough research from variations in knowledge structure. The hypothesis is 
empirically validated that scientific breakthroughs show distinctive knowledge structure characteristics, which 
are further utilized to predict breakthroughs in their early stage of formation. These characteristics include 
average clustering coefficient, average degree, maximum closeness centrality, and maximum eigenvector cen-
trality in the direct citing networks of a breakthrough publication. Several explanations are provided for the 
effectiveness of the predictive models. We also show that: (1) the number of direct citation counts is of low 
predictive power, with even a negative impact on prediction performance; (2) disciplinary differences exist in 
knowledge structure, and this should be taken into account; (3) breakthrough characteristics are most prominent 
in the first layer of citing networks; (4) timing is critical, and 2- to 3-year-old citing networks have greater 
predictive power.   

1. Introduction 

Tech mining is defined in Porter & Cunningham’s pioneering work 
(2004) as “the application of text mining tools to science and technology 
information, informed by understanding of technological innovation 
processes”. The original definition of tech mining thus emphasizes two 
characteristics: the approach of text mining, and the goal of under-
standing technological innovation processes. As the discussion and 
impact of tech mining grow (Madani, 2015), the interpretation and 
application of this concept evolves as well. “Advanced Tech Mining”,1 

for example, covers a broad range of methods, including bibliometrics, 
text analysis, social network analysis (Suominen et al., 2019), and deep 
learning (Zhang et al., 2018). Specific applications include development 
of novel indicators for tracking technological evolution, measurement of 
technology emergence, citation pattern analysis of emerging research 
topics (Porter et al., 2020), and identification of scientific and techno-
logical breakthroughs. In this work, we adopt a network structure 
perspective, rather than the text analysis method, but we too aim to 
broaden the understanding of the innovation processes that underlie 
scientific breakthroughs. 

Scientific breakthroughs often lead to scientific revolutions (Kuhn, 
1962) that change the way we know the world. Is it possible to forecast 
scientific breakthroughs in the early stage, based on the radical changes 
they proceed to bring about following breakthroughs’ birth? In Kuhn’s 
time, this seemed difficult, as scientific revolutions were not easily 
validated in empirical data. However, with the development of digita-
lization technologies, large-scale scholarly data has become widely 
available, bringing the possibility to quantitatively study scientific 
breakthroughs—even scientific revolutions—from the data. In this 
study, we aim to answer the previous question by exploring the unique 
features that breakthroughs have left in the space of science, from the 
perspective of their early citing structures. The logic behind this 
perspective is the simple and intuitive speculation that breakthrough 
research leads to dramatic changes (Kuhn, 1962; Koshland, 2007; Chen, 
2012; Fortunato et al., 2018) in the structure of the scientific space. To 
verify this intuition, however, is not so easy, as neither breakthrough 
research nor structural change in the scientific space can be readily 
quantified. Since citing publications are in a sense inspired by a source 
publication, we view the entire set of citing publications and their 
citation relations as a proxy of the knowledge space that is brought 
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about by the source publication. Accordingly, we operationalize the 
structural changes in the scientific space as those in the network of citing 
publications. 

It is not easy to operationalize a precise definition of breakthrough 
research or a breakthrough article. The concept of a breakthrough is 
variously defined in dictionaries but is generally considered to be 
associated with important discoveries and further development in many 
cases. Following are some representative definitions:  

• Oxford Dictionary: “a sudden, dramatic, and important discovery or 
development.”  

• Collins Dictionary: “a significant development or discovery.”  

• The Free Dictionary: “a major achievement or success that permits 
further progress.” 

In addition, breakthroughs are also referred to as transformative 
research in the literature. The U.S. National Institutes of Health define 
transformative research as “unconventional research projects that have 
the potential to create or overturn fundamental paradigms”.2 The Na-
tional Science Board (NSB) similarly describes transformative research 
as resulting in “a new paradigm or field of science or engineering” (NSB, 
2007). 

Despite these various definitions, whether a scientific work is 
considered breakthrough research is eventually decided by peers (Li 
et al., 2020; Schneider and Costas, 2017). In this study, we select Nobel 
Prize-winning papers as a benchmark of breakthrough research. Rather 
than focusing on the longitudinal depiction of individual scientific 
breakthroughs, we compare breakthrough papers with their 
non-breakthrough (or “less ground-breaking”) counterparts to find the 
differences. Based on these differences, we take a step further by 
exploring the possibility of, and the optimized strategy for, predicting 
scientific breakthroughs. More than one hundred cases of breakthroughs 
in science history are collected and analyzed, together with their 
non-breakthrough counterparts. It is worth noting that, given the lack of 
consensus on the word “breakthrough”, one should be cautious in using 
it and its variations or related terms. Nobel Prize research covers only a 
portion of all breakthrough research, and Nobel Prizes are awarded for 
individual discoveries as well as for a researcher’s scientific oeuvre. 
Within the context of this study, only Nobel Prizes awarded for indi-
vidual discoveries are relevant. 

We adopt a research perspective very distinct from prior studies (e.g., 
Ponomarev et al., 2014, 2012; Savov et al., 2020; Schneider and Costas, 
2017), namely, a citing-structure method. We define citing structure as 
the network topology of the citation network of the citing publications of 
a focus paper. In such a network, the nodes are precisely those publi-
cations that cite a paper of interest, and the citation relations among 
these citing publications are also considered. Huang et al. (2018) termed 
this network a “citing cascade.” A prior study (Min et al., 2018) has 
shown that certain features of citation patterns can differentiate 
breakthrough and non-breakthrough papers. Our further observation 
implies that this effect is most significant in the first-order citing struc-
ture, since experimental results in Min et al. (2018) show that the dif-
ference between breakthrough and non-breakthrough is more 
significant in the first generation of citations than in further generations. 
The present study extends that line of investigation by depicting the 
difference in early network topology of directly citing publications be-
tween papers with different extent of breakthrough and by exploring the 
possibility of using this information to predict scientific breakthroughs 
at an early stage. We aim to find potential answers to the following 
research questions (RQs):  

• RQ1: Do scientific breakthroughs impose particular influences on the 
knowledge structure of science? What are they, if any?  

• RQ2: How can the particular influences that scientific breakthroughs 
have (if any) be explained?  

• RQ3: Can we predict scientific breakthroughs based on their specific 
characteristics, if any? How can this prediction be performed? 

2. Related studies 

Scientific discoveries, whether theoretical or practical, are usually 
documented and recorded in formal scientific publications that exert an 
impact on the relevant research communities and change the whole 
science system. The sources and forms of scientific discoveries are quite 
complex. On the one hand, scientific discoveries can be either single-
—made by a single person—or multiple, i.e., independently made by 
multiple persons simultaneously (Merton, 1961; Burnham 2008). 
Contributing factors to multiple discoveries include the genius of sci-
entists, cultural maturation, natural logical evolution, and coincidences 
(Ogburn and Thomas, 1922; Brannigan and Wanner, 1983a, 1983b; 
Simonton, 2004). On the other hand, scientific discoveries result not 
only from the professionalism of scientists, but also from serendipitous 
interactions between the scientists and the world (Campanario, 1996; 
Deflem, 2005; Fukawa, 2006; Yaqub, 2018). Van Andel (1994) has listed 
many examples of serendipitous patterns in which discoveries came 
from a surprising observation, a wrong hypothesis, a disturbance in an 
experiment, and so forth. 

Despite an exponential increase in scientific publications over the 
years (Dong et al., 2017), only a small number of discoveries lead to a 
major achievement or success that permits further progress. These 
noteworthy discoveries are termed “scientific breakthroughs” per the 
definition of Free Dictionary. The occurrence of breakthroughs is shaped 
by institutional or organizational factors. In the setting of biomedical 
science, for example, Hollingsworth (2006), who held a path-dependent 
perspective, indicated that such institutional or organizational charac-
teristics as autonomy, flexibility, scientific sensitivity, and communi-
cation all exert an influence. Moreover, breakthroughs usually unsettle 
the status quo of their relevant research areas and even establish new 
scientific paradigms. Due to their extreme importance, the identification 
of scientific breakthroughs has been widely studied in various domains, 
such as innovation studies (e.g., Guo et al., 2019; Petzold et al., 2019), 
quantitative science studies (e.g., Bettencourt et al., 2009), and library 
and information science (e.g., Bornmann et al., 2018; Small, 2018). 

Although both qualitative and quantitative strategies have been 
adopted to identify breakthroughs in business (e.g., Hüsig et al., 2005; 
Sainio and Puumalainen, 2007), scientific breakthroughs have most 
often been investigated in a quantitative manner (Wang et al., 2013). 
Studies of such breakthroughs often employ the bibliographic data of 
scientific publications and examine their citations (e.g., Garfield, 1977; 
Shibata et al., 2007; Small et al., 2017; Schneider and Costas, 2017). 
Bettencourt et al. (2009), for example, held that the creation and spread 
of scientific discoveries lead to measurable changes in the social struc-
ture of a scientific community; they found evidence for this claim in 
topological transitions in researchers’ collaboration networks. Shi et al. 
(2010) investigated the citation relations among the papers that a 
certain paper refers to, which they termed the “citation projection 
graph.” They found that the way in which scientific papers draw pre-
vious knowledge together correlates with the papers’ forward citation 
impacts. Shibata et al. (2007) investigated the correlation between 
citation counts and such centrality measures as clustering centrality, 
closeness centrality, and betweenness centrality, among which 
betweenness centrality was found to be correlated with future citations. 
Wolcott et al. (2016) considered both time-dependent and -independent 
characteristics and utilized citation- and coauthorship-wise metrics. 

Yet purely considering citation counts may not allow for accurate 
identification of scientific breakthroughs (Wuestman et al., 2020; Min 
et al., forthcoming). One potential issue has been raised by Wuestman 
et al. (2020), who demonstrated that not all scientific breakthroughs are 
the same; thus, leveraging citation counts for detection introduces biases 2 https://factor.niehs.nih.gov/2009/october/spotlight-2010grants.cfm 
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for breakthroughs driven by research objects (versus research ques-
tions). Hence, some scholars have explored other angles in breakthrough 
detection. For example, Small and Klavant (2011) investigated the role 
of citation contexts; specifically, they assigned a citation context into 
multiple categories corresponding to varying degrees of knowledge 
modality. Afterwards, they showed that the match rate between 
different modality categories and subsets of citation contexts could be 
indicative of breakthroughs. Winnink et al. (2019) designed and 
implemented five algorithms that leveraged not only citation counts but 
also other citation features (e.g., number of citing disciplines and new 
researchers citing the paper). These algorithms could categorize papers 
into five types corresponding to varying degrees of likelihood of being 
breakthroughs. Some other prior studies seek to make empirical use of 
citation networks instead of the number of citations itself. For instance, 
Wu et al. (2019) applied a previously proposed metric (Funk and 
Owen-Smith, 2017) to characterize disruptiveness. They defined the 
disruptiveness of a scientific publication by considering the number of 
publications that cite the focal publication but not the focal publica-
tion’s reference(s), the number that cite the focal publication and its 
reference(s) simultaneously, and the number that do not cite the focal 
publication but do cite its reference(s). Min et al. (2021) proposed 
temporal and structural measurements to compare scientific break-
through and non-breakthrough publications and observed that the 
structural dimension of citing literature networks shows particular 
promise for early identification of scientific breakthroughs. 

While the problem of breakthrough identification has been 
approached from many angles, in this study we focus on an underex-
plored one: the structural properties of citing patterns. This approach is 
inspired by the observation that citation growth has a structural 
dimension (e.g., Garfield, 1977, 2006; Hu and Rousseau, 2016, 2017). 
Garfield (2006) offered the example of Albert Einstein, who published 
relatively few highly cited papers, but whose work was cited by other 
super-cited Nobel-class scientists. Another illustration of the 
second-generation citation effect appears in Francis Crick’s work, which 
has been cited by 50 super-cited papers. 

The publication of a particular paper, therefore, not only releases a 
new piece of knowledge but also changes the intellectual structure in its 
field of knowledge (Chen, 2012; Chen et al., 2009; Lv et al., 2018). 
Leydesdorff (2001) shows that newly published scientific papers may 
make fundamental changes to the existing body of knowledge. This is 
vividly illustrated by the diagrams he devised to display how a particular 
paper reduces the uncertainty in the current state of knowledge. These 
changes in network structure may in turn influence the spread of in-
formation over the networks (Lahiri et al., 2008). In citation networks 
specifically, Takeda and Kajikawa (2010) reported three stages of clus-
tering: first the formation of core clusters, then the emergence of pe-
ripheral clusters, then finally the predominance of core clusters. Upham 
et al. (2009) called these cohesive intellectual communities in knowl-
edge networks “schools of thought.” Their analysis of scientific papers 
reveals how “schools of thought” both promote and constrain knowl-
edge creation. They concluded that inclusion in a school of thought is 
particularly advantageous for new knowledge and that the most im-
pactful position within a school of thought is in the semi-periphery. 

Based on the above intuitions, we propose a hypothesis: the more 
radical the breakthrough research contained in a paper, the more drastic 
the changes it causes to the knowledge structure. We test the hypothesis 
by scrutinizing the citing structure of breakthrough and non- 
breakthrough papers. We try to determine whether there exists more 
evidence of difference in the topology of the citing structure and explore 
the possibility of predicting scientific breakthroughs based on empirical 
findings. 

3. Methods and data 

3.1. Methods 

To quantify the structure of a citation network G with a set of nodes 
(papers) V and a set of edges (citation relations) E, we adopt the 
following network metrics:  

(1) Number of nodes: |V|, the number of nodes in G;  
(2) Number of edges: |E|, the number of edges in G;  
(3) Average degree: 

average degree =

∑

v∈V deg(v)

|V|

where v ∈ V and deg(v) refers to the degree of v;  

(4) Network density: 

network density =
2|E|

|V|(|V| − 1)

(5) Average clustering coefficient: 

ACC =
1

|V|

∑

v∈V

C(v)

where C(v) is the clustering coefficient of node v and is expressed as: 

C(v) =
number of closed triads connected to v

number of triples of vertices centered on v   

(6) Maximum betweenness centrality: the highest betweenness cen-
trality of nodes in G. The betweenness of a node vi is: 

B(vi) =
∑

j<k

gjk(vi)

/

gjk   

where gjk is the number of shortest paths from node vj to node vk, and 
gjk(vi) is the number of shortest paths that pass through vi;  

(7) Maximum closeness centrality: the highest closeness centrality of 
nodes in G. The closeness of a node v is: 

C(v) =
|V| − 1

∑|V |−1

u=1 d(v, u)
,

where d(v, u) is the shortest-path distance between nodes v and u; 

(8) Maximum eigenvector centrality: the highest eigenvector cen-
trality of nodes in G. A node has more influential neighbours if it 
has a higher eigenvector centrality. The eigenvector centrality 
score of a node v is: 

xv =
1

λ

∑

tϵM(v)

xt =
1

λ

∑

tϵG

av,txt   
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where M(v) is a set of the neighbors of v, A = (av,t) is the adjacency 
matrix, and λ is a constant that can be derived from a small rearrange-
ment of the above equation: 
Ax = λx    

(9) Number of components: the number of connected components in 
a network. 

As the source paper always has the highest degree in its citing 
network, we exclude it from the network to more objectively measure 
the network structure. The citing network t years after a focal paper’s 
publication, CNett, is defined as: a network G in which the nodes V are 
publications that cite a focal paper of interest until year t, and the edges 
E are citation relations among these citing publications. 
CNett = G(V,E)

Since we are interested in the knowledge structures of breakthrough 
papers relative to non-breakthroughs, we use logistic regression models 
to predict the presence or absence of an outcome in the Nobel group or 
the control group. In this model, the explained variable (prediction 
outcome) is a binary variable that indicates whether a paper is from the 
Nobel or the control group. The explanatory variables (predictors) are 
selected from the structural metrics of the citing network triggered by 
the paper of interest. 

3.2. Data 

As an outstanding example, the Nobel Prizes are acknowledgedly 
given to important breakthroughs in science. We operationalize scien-
tific breakthroughs as papers winning the Nobel Prize in a given field 
(Physics, Chemistry, Physiology or Medicine, and Economic Sciences). 
Following Shen and Barabási (2014) and a prior study (Min et al., 2018), 
we collect 116 Nobel Prize breakthroughs, construct the prize-winning 
papers as breakthrough papers (Nobel group hereafter), and assign to 
a control group counterpart papers that were published in the same 
journal, in the same year, having received approximately equivalent 
citation counts. Next, the citing network of each of these papers is 
extracted from an in-house version of the Web of Science database. 
These citing networks are simplified to undirected graphs when we 
calculate the network metrics. As early citing structure is more useful in 
prediction and identification of breakthroughs, we focus on the citing 
networks within four years of the target paper’s publication. This 
approach helps us obtain about 270 K citation relations between the 
focal papers and their citing papers. 

4. Results 

4.1. Disciplinary differences in knowledge structure 

One could speculate that patterns of scientific knowledge accumu-
lation might vary among scientific disciplines, and so might the for-
mation and manifestation of scientific breakthroughs. If this is the case, 
disciplinary differences should be taken into account when identifying 
and predicting scientific breakthroughs. Therefore, we first of all seek to 
determine whether there do exist such differences in knowledge accu-
mulation among the four fields of Nobel Prizes (Physics, Chemistry, 
Physiology or Medicine, and Economic Sciences) and what, if any, these 
differences are. 

We analyze the structural metrics of citing networks that are initiated 
by all papers in both the Nobel group and the control group, grouped by 
disciplines. We find that the four disciplines indeed exhibit significant 
differences, given the statistics of the citing networks from all four years 
(Table 1). 

The average publication year indicates that Economics papers are the 
oldest, followed by Physics and then Chemistry, with Physiology or 

Medicine papers the most recent. However, Physiology or Medicine 
papers receive many more direct citations (NoN) while Economic Sci-
ences papers receive far fewer, with Physiology or Medicine > Chem-
istry > Physics > Economic Sciences. This is in stark contrast to the trend 
in publication date. Because the citation data end at the same time point 
for all papers, we can make the brief observation that Physiology or 
Medicine research accumulates citations the fastest and Economic Sci-
ences the slowest, with Chemistry and Physics in between. 

In terms of the number of citation relations (NoE) among the citing 
publications, a similar finding is that Physiology or Medicine > Chem-
istry > Physics > Economic Sciences. In fact, this metric widens the gap 
among the four disciplines. But this order is reversed when we consider 
the ratio between actual citation relations and the possible maximum 
number (in a complete graph), that is, network density (ND): Economic 
Sciences shows the highest density, Physics the second-highest, Chem-
istry the third, and Physiology or Medicine the lowest. In other words, 
although physiologists and medical scientists create and cite knowledge 
more frequently in absolute quantity than economists do, the knowledge 
networks they build are not as dense as those constructed by economists. 

Unlike network density, which measures a network from a global 
perspective, average clustering coefficient (ACC) measures the neigh-
borhood of an “average” node in the network. This metric distinctly 
separates the natural-science groups from Economic Sciences: Chemis-
try, Physiology or Medicine, and Physics are very close in ACC, but 
Economic Sciences shows a much lower value. This suggests that the 
citation and flow of natural-sciences knowledge occurs more frequently 
in the local neighborhood of a paper, while the knowledge flow of the 
economic sciences is relatively slow in a paper’s neighborhood. A 
reasonable speculation is that Economic Sciences papers tend to absorb 
knowledge from relatively distinct fields rather than their own fields. A 
related metric, average degree (AD), measures the number of nodes an 
“average node” links to in a network. Economic Sciences again shows 
the lowest value, while the three natural sciences are much higher: 
Physiology or Medicine has an extremely high value of 5, and Chemistry 
(3.407) and Physics (3.753) are fairly close. This further confirms the 
interdisciplinary variation in patterns of knowledge growth that was 
previously shown by ACC. 

MBC, MCC, and MEC are relatively complicated metrics that 
consider the maximum value of node degree in a network from three 
different perspectives. Again, the three metrics consistently indicate the 
difference among the four disciplines. Economic Sciences shows lower 
values in both MBC and MCC, but higher values in MEC, than the three 
natural sciences. The three metrics further reveal a distinction within the 
natural sciences: Chemistry and Physics exhibit close values, but Phys-
iology or Medicine seems to be a little different. 

Physiology or Medicine has the largest number of components (NoC) 
in its citing networks. Two factors have played a role here: on the one 
hand, there are many nodes (NoN) in those networks; on the other hand, 

Table 1 
Mean values of network metrics for papers from four disciplines (all years).  

Mean NoN NoE ND ACC MBC MCC 
Medicine 295.846 1619.723 0.092 0.460 0.007 0.194 
Chemistry 148.092 630.992 0.138 0.442 0.017 0.200 
Physics 115.528 574.545 0.172 0.474 0.019 0.235 
Economics 19.750 31.324 0.354 0.190 0.003 0.048  
Mean MEC NoC AD Pub year Prize year Prize lag 
Medicine 0.089 45.846 5.000 1985.800 2009.785 23.990 
Chemistry 0.143 31.042 3.407 1981.450 2005.980 24.530 
Physics 0.149 17.900 3.753 1980.236 2003.472 23.240 
Economics 0.365 10.951 0.433 1975.020 2004.950 29.930 

Note: NoN = number of nodes, NoE = number of edges, ND = network density, 
ACC = average clustering coefficient, MBC = maximum betweenness centrality, 
MCC = maximum closeness centrality, MEC = maximum eigenvector centrality, 
NoC = number of components, AD = average degree. 
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Physiology or Medicine also has the lowest network density. Economic 
Sciences has the lowest NoC, with Chemistry and Physics in between, 
consistent with the situation for NoN. 

With regard to award lag, Economic Sciences papers were on average 
the latest to receive a Nobel Prize after initial publication (29.93 years), 
while papers from Chemistry (24.53), Medicine (23.99), and Physics 
(23.24) received the award slightly faster. 

4.2. Comparison between two groups in the timeline 

We next compare the structure of citing networks initiated by papers 
from the Nobel group and the control group, respectively, at the reso-
lution of each year after publication. Since our data are paired but not 
normally distributed, we adopt a nonparametric test, the Wilcoxon 
signed-rank test, for the comparison. As indicated in Table 2, papers 
from the two groups have persistently shown significant differences in 
four structural metrics (NoE, ACC, MCC, and AD) in each of the first four 
years after publication. However, these papers consistently show no 
significant between-group difference in terms of other metrics (ND, 
MBC, MEC, and NoC). Moreover, the difference in NoN is statistically 
significant only in the first year; it fades away through the following 
three years. In fact, the two groups of papers are relatively close in 
average citation counts in the first four years, with the Nobel group only 
slightly higher. This reveals that direct citation counts cannot effectively 
distinguish the Nobel from the control group in the early stage of 
breakthrough formation. 

However, other metrics are able to depict the difference between the 
two groups in more detail. Generally speaking, the Nobel group shows 
higher values in most metrics, including NoN, NoE, ACC, MBC, MCC 
and AD; the exceptions are ND, MEC and NoC. 

The Nobel group has an overall larger NoE than the control group. 
The effect is statistically significant and appears consistently over the 
four years. This phenomenon is interesting, especially given that the two 
groups have a similar number of direct citations (NoN) and that NoN is 
not significantly different in the second through fourth years. This in-
dicates that a breakthrough paper has more citations in the network of 
its citing publications. Furthermore, a citing publication in such a 
network has on average more citations from (or references to) a publi-
cation that is also citing the breakthrough paper. This is revealed by the 
fact that the Nobel group has significantly higher average degree (AD) 
than does the control group. 

The Nobel group also shows a significantly higher ACC than the 
control group, suggesting that the neighborhood of an average node in 
the former’s citing network is more connected than in the latter’s citing 
network. However, it is worth noting that the control group has a higher 
network density (ND) than the Nobel group from the second to the 
fourth years. This is somewhat strange, as both average clustering co-
efficient and network density measure the density of a network to an 
extent, but they seem to contradict each other in this case. The reason 
lies in the fact that the Nobel group has increasingly more citations 
(NoN) than the control group from the second year on, leading to 
exponentially decreasing network density by definition. Moreover, the 
difference in network density is not significant through the second to the 
fourth years. Therefore, we argue that ACC can more properly and 
effectively describe breakthrough papers than ND can. 

Furthermore, the Nobel group shows higher values in terms of both 
MCC and MBC. MCC reveals that in the citing network of a break-
through paper, there is a publication that is very close to all other 
publications. MBC suggests that there is also a publication that excels at 
connecting publications that are otherwise separated. The difference is 
statistically significant for MCC, though not for MBC. 

The control group consistently displays larger NoC and MEC from 
the first year to the fourth year, although the difference is not strictly 
statistically significant. The metric NoC shows there are, on average, 
more separated subnetworks in a non-breakthrough paper’s direct citing 
network. This again suggests a more disconnected network for the 

control group than for the Nobel group, a result previously indicated by 
NoE, ACC, and AD. The metric MEC, on the other hand, seems to 
indicate that the direct citing networks of the control group are char-
acterized by an influential node that is linked to many other important 
nodes. 

To sum up, we hold that the four metrics NoE, ACC, MCC and AD 
reveal relatively strong distinguishing power in a continuous timeline; 
thus, they have potential indicative value for breakthrough prediction 
and related tasks. 

4.3. Regression analysis 

Based on these knowledge structure characteristics, we further 
quantify scientific breakthroughs with the help of predictive models. We 
run a series of logistic regression models in which the dependent vari-
able is whether a paper is from the Nobel group or the control group (1 
= Nobel group, 0 = control group), and the independent variables are 
the structure metrics of the paper’s citing network. The regressions lead 
to the elucidation of a series of metrics that can effectively characterize 
the breakthrough potential of a paper in various conditions. 

4.3.1. Economic sciences vs. natural sciences 
To start, we run regressions separately for Economic Sciences and the 

combined natural sciences in view of the overall disciplinary difference. 
As an exploration, we put all structure metrics into the models as in-
dependent variables, not distinguishing year information. 

Table 3 displays the overall performance of the logistic regression 
models, with statistical significance of all variables included. The two 
models are overall statistically significant because the p-values are much 
less than 0.01. They also adequately fit the data, as the Hosmer- 
Lemeshow goodness-of-fit has significance values both greater than 
0.05.3 For Economic Sciences, none of the variables has a statistically 
significant coefficient. For the natural sciences, however, coefficients of 
both ACC and AD are statistically significant at the level of 0.01, while 
the coefficient of MEC is statistically significant at the level of 0.1. 
Moreover, all three variables have positive coefficients consistently for 
both Economic Sciences and the natural sciences. The Cragg-Uhler 
(Nagelkerke) R-squared statistic suggests that the models explain 18% 
and 9.9% of the variability of breakthrough papers in Economic Sciences 
and the natural sciences, respectively. 

The results further suggest that we need to proceed with our analysis 
while taking this disciplinary difference into account. In addition, as 
citing networks with different ages could exhibit breakthrough charac-
teristics to varying extents, we may also need to investigate the networks 
year-by-year after their formation instead of considering all years 
together. 

4.3.2. Timing of breakthrough observation 
Following the evolutionary process of breakthrough formation, we 

conduct further regression modeling in a year-by-year manner sepa-
rately for Economic Sciences (Table 4) and the aggregated natural sci-
ences (Table 5). 

In terms of the overall performance of the models, the second year 
after the publication of breakthrough papers seems to be a breakpoint, 
both for Economic Sciences and for the natural sciences. The value of 
Prob > χ2 is rather high in the first year, indicating a poor model esti-
mation. It begins to be lower than 0.05 or 0.01 in the second year, after 
which time the value increases again. Therefore, the statistical signifi-
cance of the model is best in the second year. Likewise, the value of 
pseudo R-square reaches its maximum in the second year, suggesting 
that the model best explains the variability at that time (32.5% for 
Economic Sciences and 8.7% for the natural sciences). 

3 This statistic indicates a poor fit if the significance value is less than 0.05 
(Hosmer et al., 2013). 
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In terms of variable significance, MEC is statistically significant (p =
0.070) in the second year, and ND is statistically significant (p = 0.035) 
in the third year, for Economic Sciences. With regard to the natural 
sciences, AD is the only statistically significant variable (p = 0.040) in 
the first year. The significant effects of ACC, MCC, and AD last from the 
second to the third year, while MEC is statistically significant (p =
0.017) only in the second year. Among these variables, ACC, MEC and 
AD show positive effects on the probability of being a Nobel Prize- 

winning paper, while MCC shows a negative effect. 
With all these observations borne in mind, we next predict whether a 

scientific paper will be a breakthrough in the future based on its early 
citing network structure. 

4.4. Prediction 

In this section, we attempt to predict the potential of a paper to 
become a breakthrough in science based only on its early citing 
knowledge structures. We operationalize the prediction by choosing the 
structural metrics of citing networks as the predictors, and whether or 
not the paper comes from the Nobel group as the output. Structural 
metrics those have shown significant distinguishing power in previous 
sections are selected. Other structural metrics are also included to see 
their real effects in the prediction task. Previous observations indicate 
that 2–3 years after publication will offer the best predicting timing, and 
that Economic Sciences and the natural sciences are best separated for 
this task. A 5-fold cross-validation procedure is applied in which the data 
is randomly split into 5 groups. 80% of the cases are selected as training 
data to estimate the logistic model, and the remaining 20% are used as 
test data to validate the predictive power and generalizability of the 
model. This procedure is implemented 5 times with a bootstrap algo-
rithm to obtain a reliable average performance (AUC) of the predictive 
model. 

4.4.1. Predicting breakthroughs in the natural sciences 
First, we run the prediction model for the natural sciences at year = 2 

(Table 6). Various combinations of predictors are selected based on 

Table 2 
Wilcoxon signed-rank test result for the two groups of citing networks by year.  

Indicator NoN NoE ND ACC MBC MCC MEC NoC AD 
First year 
Sig. 0.024 0.003 0.585 0.001 0.516 0.013 0.459 0.986 0.001 
Nobel Avg. 43.052 110.809 0.270 0.333 0.011 0.149 0.256 14.435 1.662 
Control Avg. 40.983 92.139 0.244 0.237 0.012 0.095 0.275 16.609 1.057 
Second year 
Sig. 0.114 0.030 0.633 0.001 0.614 0.042 0.501 0.450 0.001 
Nobel Avg. 93.313 379.957 0.194 0.401 0.018 0.179 0.196 19.278 3.007 
Control Avg. 90.574 307.696 0.213 0.330 0.015 0.139 0.233 23.974 2.035 
Third year 
Sig. 0.274 0.081 0.422 0.000 0.392 0.017 0.775 0.230 0.000 
Nobel Avg. 149.548 799.887 0.139 0.457 0.015 0.217 0.141 22.313 4.236 
Control Avg. 145.052 632.348 0.175 0.377 0.006 0.167 0.177 28.661 2.977 
Fourth year 
Sig. 0.278 0.060 0.865 0.000 0.819 0.001 0.938 0.131 0.000 
Nobel Avg. 213.852 1364.078 0.120 0.485 0.016 0.247 0.118 25.243 5.172 
Control Avg. 198.235 989.478 0.130 0.422 0.009 0.184 0.138 32.409 3.738 

Note: Significance values less than 0.1 are in bold text. 

Table 3 
Regression results for Economic Sciences and natural sciences (all years).   

Economic Sciences Natural Sciences  
Coef. p Coef. p 

NoN 0.006 0.968 –0.002 0.201 
NoE 0.009 0.874 0.0002 0.245 
ND –1.126 0.365 0.483 0.572 
ACC 0.420 0.876 2.553 0.002 
MBC –4.145 0.722 –0.408 0.753 
MCC –2.791 0.334 –1.100 0.237 
MEC 0.175 0.888 1.388 0.084 
NoC –0.084 0.457 –0.001 0.918 
AD 1.559 0.157 0.146 0.003 
Cons 0.391 0.515 –1.542 0.000 
Observations 204 671 
LR χ2(9) 29.550 51.780 
Prob > χ2 0.001 0.000 
Hosmer and Lemeshow χ2 test 0.844 0.533 
Cragg-Uhler (Nagelkerke) R2 0.180 0.099 

Note: Significance values less than 0.1 are in bold text. 

Table 4 
Regression results for breakthroughs in Economic Sciences by year.   

Year ¼ 1 Year ¼ 2 Year ¼ 3 Year ¼ 4  
Coef. p Coef. p Coef. p Coef. p 

NoN –37.773 0.975 –4.134 0.128 0.290 0.496 –0.035 0.845 
NoE 17.316 0.977 1.945 0.117 –0.034 0.824 0.009 0.870 
ND –14.569 0.696 15.107 0.103 –6.329 0.035 –4.027 0.218 
ACC 66.436 0.648 54.853 0.111 4.616 0.465 –4.614 0.317 
MBC 0.000  403.989 0.172 –74.729 0.166 –13.999 0.398 
MCC 0.000  –39.608 0.163 –6.297 0.376 4.794 0.402 
MEC 18.009 0.690 –21.806 0.070 2.404 0.394 0.278 0.896 
NoC 20.483 0.973 1.901 0.185 –0.484 0.212 –0.009 0.960 
AD –1.745 0.987 –24.004 0.147 0.612 0.810 2.683 0.108 
Cons 34.378 0.977 10.221 0.047 1.605 0.373 0.753 0.639 
Observations 39  53  56  55  
LR χ2(9) 8.370  23.870  21.470  15.850  
Prob > χ2 0.301  0.005  0.011  0.070  
Pseudo R2 0.156  0.325  0.277  0.208  

Note: Significance values less than 0.1 are in bold text. 
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model complexity and the results reported in previous sections. Model 1 
selects the most naïve metric, direct citation counts, as the predictor, 
leading to a performance (AUC = 0.451) even worse than a random 
guess. Model 2 performs much better (AUC = 0.558) when the number 
of edges is considered. After other metrics (NoC, ND, ACC, AD, MBC, 
MCC, and MEC) are gradually added in Models 3–5, the performance 
improves accordingly. However, to our surprise, the predictive power 
becomes even stronger in Model 6 (AUC = 0.648) when two simple 
metrics (NoN and NoE) are excluded from prediction. This suggests that 
it is not the case that the addition of any predictor would increase the 
predictive power, and that some predictors can even be counterpro-
ductive. In Model 7, we choose only the four metrics that are statistically 
significant in Table 5 (year = 2) as predictors. With this set of metrics, 
the AUC increases to 0.675, the highest among all models in Table 6. 

Next, we implement the prediction at year = 3 (Table 7). Model 8 
selects three metrics that are statistically significant in Table 5 (year = 3) 
as predictors and obtains an AUC of 0.629. We further add MEC in Model 
9 and obtain an increased AUC = 0.652, but this is still lower than 0.675 
at year=2 in Table 6. Therefore, we tend to think that an optimal 

prediction strategy for natural sciences is to use ACC, AD, MCC, MEC 
two years after a paper is published. 

4.4.2. Predicting breakthroughs in economic sciences 
Predictions are also made for Economic Sciences at year = 2 and 

year = 3 with metrics that are statistically significant in Table 4, as well 
as other metrics in Table 6 for comparison. The results in Table 8 show 
that the models with statistically significant metrics in Table 4, namely 
Model 7 (year = 2, AUC = 0.695) and Model 8 (year = 3, AUC = 0.630), 
exhibit better performance than other models. Further, the former pre-
sents a better predictive power than does the latter, although the per-
formance is relatively unstable (SD of AUC is 0.210). This again suggests 
that 2 years after a paper’s publication is an ideal timing for predicting 
its potential to represent a scientific breakthrough. 

5. Discussion 

5.1. Evidence: knowledge structure as predictive of breakthroughs 

When the science system is considered as an evolving network of 
knowledge, it can be intuitively speculated that the birth of a scientific 
breakthrough would cause immense impacts on the structure of this 
network. Though this phenomenon is easy to imagine, empirical evi-
dence for it is lacking in the existing literature. By operationalizing the 
knowledge network as citing networks initiated by a scientific publica-
tion, we provide empirical evidence that scientific breakthroughs do 
impose particular influences on the knowledge structure of science, and 
that this observation is useful for predicting scientific breakthroughs. 

From the network structure, a set of metrics is carefully singled out 
that can distinguish breakthrough papers from their non-breakthrough 
counterparts. These metrics reveal that breakthrough papers have 

Table 5 
Regression results for breakthroughs in the natural sciences by year.   

Year ¼ 1 Year ¼ 2 Year ¼ 3 Year ¼ 4  
Coef. p Coef. p Coef. p Coef. p 

NoN –0.004 0.821 –0.003 0.681 –0.001 0.760 –0.002 0.478 
NoE –0.001 0.884 0.000 0.762 0.000 0.737 0.000 0.419 
ND 1.072 0.440 –1.888 0.317 0.456 0.838 3.941 0.154 
ACC 0.430 0.800 4.088 0.024 4.015 0.037 2.852 0.192 
MBC –1.674 0.530 0.201 0.931 8.958 0.357 –0.583 0.866 
MCC –0.127 0.948 –3.448 0.092 –3.477 0.074 –0.362 0.855 
MEC 0.254 0.853 4.507 0.017 2.238 0.229 –0.072 0.973 
NoC 0.008 0.760 –0.002 0.878 –0.005 0.700 0.000 0.987 
AD 0.481 0.040 0.268 0.042 0.200 0.051 0.123 0.166 
Cons –1.037 0.106 –2.205 0.013 –2.250 0.029 –2.249 0.078 
Observations 163  166  170  172  
LR χ2(9) 14.200  20.060  19.560  16.860  
Prob > χ2 0.116  0.018  0.021  0.051  
Pseudo R2 0.063  0.087  0.083  0.071  

Note: Significance values less than 0.1 are in bold text. 

Table 6 
Prediction results for natural sciences at year = 2.  

AUC Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 
Predictors NoN NoN, NoE NoN, NoE, 

NoC 
NoN, NoE, NoC, ND, 
ACC, AD 

NoN, NoE, NoC, ND, ACC, AD, 
MBC, MCC, MEC 

NoC, ND, ACC, AD, MBC, 
MCC, MEC 

ACC, AD, MCC, 
MEC 

1st fold 0.439 0.514 0.611 0.641 0.536 0.622 0.729 
2nd fold 0.388 0.71 0.71 0.735 0.658 0.618 0.643 
3rd fold 0.635 0.675 0.663 0.734 0.79 0.778 0.714 
4th fold 0.365 0.365 0.421 0.516 0.599 0.714 0.556 
5th fold 0.428 0.526 0.543 0.439 0.513 0.509 0.73 
Mean 

AUC 
0.451 0.558 0.590 0.613 0.619 0.648 0.675 

95% CI 0.291, 
0.484 

0.427, 
0.623 

0.455, 0.649 0.529, 0.721 0.523, 0.712 0.554, 0.740 0.534, 0.720 

SD AUC 0.107 0.139 0.113 0.132 0.111 0.103 0.076  

Table 7 
Prediction results for natural sciences at year = 3.  

AUC Model 8 Model 9 
Predictors ACC, AD, MCC ACC, AD, MCC, MEC 
1st fold 0.638 0.675 
2nd fold 0.592 0.608 
3rd fold 0.618 0.643 
4th fold 0.606 0.689 
5th fold 0.690 0.646 
Mean AUC 0.629 0.652 
95% CI 0.488, 0.684 0.520, 0.712 
SD AUC 0.038 0.032  
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more connected citing networks than do papers with less ground- 
breaking ideas. This is reflected in various aspects of network topol-
ogy. Compared with that of a less ground-breaking paper, the citing 
network of a breakthrough paper has more edges globally (NoE), while 
the numbers of nodes (NoN) are relatively equivalent. An average node 
in a breakthrough paper’s citing network has significantly more nodes 
linking to it (AD), coming from works that it refers to and works that cite 
it. Both sources of nodes are also located in the citing network. The 
neighbours surrounding an average node also cite each other (ACC) 
more frequently, and the network topology is more cohesive (NoC), with 
fewer components disconnected from one another, despite more nodes 
in the network. Moreover, MCC suggests that in the citing network of a 
breakthrough paper, there is a paper that is very close to all other papers. 
It is likely that this paper is another important (breakthrough) paper 
(Min et al., 2020) or a Prince paper (Braun et al., 2010) that assists the 
breakthrough. In terms of MEC, the Nobel group shows a lower value 
than the control group, although this effect is not statistically significant. 
The reason may be that breakthrough papers outshine the brilliance of 
their citing papers. Altogether, these findings provide empirical evi-
dence for our hypothesis that more radical breakthroughs would cause 
more drastic changes to the knowledge structure of science, thus 
answering RQ1 proposed in the Introduction. 

5.2. Optimal network layer and timing for prediction 

Experimental results have shown that the particular influences 
imposed by scientific breakthroughs on the knowledge structure of sci-
ence propagate across network layers and time. This poses the problem 
of choosing the best angle from which to leverage the full potential of 
this network to identify and predict breakthroughs. Digesting the results 
from a prior study (Min et al., 2018) in which we extracted four gen-
erations of citing networks, we further find that the breakthrough 
characteristics of those networks fade away generation after generation. 
That is to say, the first generation of the citing network could be the best 
network layer in which to observe scientific breakthrough’s particular 
impacts. 

In this work, we focus on the first-generation citing network, also 
called the direct citing network. We further find that breakthrough 
characteristics vary with time. There are two pieces of evidence: first, for 
the natural sciences, AD’s effect remains significant for the first three 
years and disappears in the fourth year, while the significant effects of 
ACC and MCC last only from the second to the third year. Second, both 
the statistical significance and the explanatory power of the regression 
models first increase and then decrease with time, as does the number of 
significant variables in the models. Therefore, it is reasonable to infer 
that the predictability of scientific breakthroughs presents an inverted U 
shape in the timeline, first increasing and then decreasing. Neither too 
early nor too late a timing is optimal, but 2–3 years after publication is 
more likely to yield a better prediction. 

5.3. Breakthrough prediction: performance, explanation, & improvement 

Is it possible to predict which scientific papers will become break-
throughs in science in the future? This is a difficult task (Wang et al., 
2017), but we argue that it is not totally impossible. We prove that 
breakthroughs and non-breakthroughs have shown significant differ-
ences in citing network structures in the first few years after publication, 
not just decades later when the breakthroughs receive well-known 
Nobel Prizes. These differences were not reflected in early citation 
counts, but rather in early citation structures. Using the structural 
characteristics, we are able to predict the potential of a scientific work to 
become a breakthrough in the future with an AUC of 67.5% or 69.5% 
only two years after the work’s publication. In contrast, prediction with 
citation counts can only obtain an AUC of 45%, even worse than a 
random guess. The number of direct citations is thus of very low pre-
dictive power, even exerting a negative impact on prediction tasks. 
Although adding other structure-based predictors improves the model 
performance, an optimal suite of predictors is demonstrated to be ACC, 
AD, MCC, MEC for the natural sciences and MEC for Economic Sciences, 
in each case two years after publication. 

Table 2 shows that, compared with the control group, the Nobel 
group has on average a higher number of edges (NoE), network density 
(ND), average clustering coefficient (ACC), and average degree (AD), 
but a lower number of disconnected network components (NoC)—a 
greater network connectivity, in summary. We now answer RQ2 by 
providing some possible explanations for the greater connectivity of 
breakthroughs’ citing networks than those of non-breakthroughs at the 
level of an “average” node. First, Kuhn (1962) has suggested that drastic 
changes in science structure, which he called “paradigm shifts”, take 
place during a “revolutionary” state in science. During such a time, 
scientific breakthroughs have been achieved and new theories have 
been proposed to deal with anomalies that cannot be explained by 
existing theories. We argue that the structural characteristics of break-
throughs’ citing networks are a manifestation of “paradigm shifts.” 

Second, when a scientific breakthrough occurs, it will be followed up by 
more and more subsequent works, as will these subsequent works 
themselves. This process of breakthrough formation resembles a “gold 
rush” phenomenon in which once a new lode is discovered by a scientist, 
an increasing number of scientists turn to this promising field (Suomi-
nen et al., 2019). Third, we make an analogy between breakthrough 
formation and innovation clusters. Innovative entities often emerge in 
the form of clusters where pools of expertise, talent, and capital accel-
erate the development of new technologies and new industries (Engel, 
2015; Tallman et al., 2004). The observations in the breakthrough pa-
pers’ citing networks in this study coincide with the mechanism 
whereby innovations take the shape of clusters. 

Obviously, there is space for improvement in terms prediction. 
Although an AUC of 67.5% or 69.5% represents great progress from 
random guesses, especially for a social science problem, we have to 
acknowledge that it is barely satisfactory compared with prediction 
tasks on other well-defined problems in natural sciences. This is because 

Table 8 
Prediction results for Economic Sciences.  

AUC Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 
Predictors NoN NoN, NoE NoN, NoE, 

NoC 
NoN, NoE, NoC, ND, 
ACC, AD 

NoC, ND, ACC, AD, MBC, 
MCC, MEC 

ACC, AD, MCC, 
MEC 

MEC ND 

Economic Sciences, year ¼ 2 
Mean AUC 0.5549 0.539 0.5131 0.368 0.5794 0.5998 0.695 0.589 
95% CI 0.2622, 

0.6096 
0.4026, 
0.7311 

0.3356, 
0.6674 

0.1991, 0.5110 0.3247, 0.6710 0.4360, 0.7717 0.417, 0.751 0.2652, 
0.6039 

SD AUC 0.1422 0.1617 0.1319 0.0819 0.1223 0.0502 0.21 0.1832 
Economic Sciences, year ¼ 3 
Mean AUC 0.6267 0.565 0.5798 0.6319 0.559 0.572 0.606 0.63 
95% CI 0.3433, 

0.6825 
0.4067, 
0.7490 

0.4051, 
0.7421 

0.4345, 0.7823 0.3806, 0.7220 0.4139, 0.7624 0.3678, 
0.7138 

0.365, 0.718 

SD AUC 0.099 0.2088 0.1864 0.1515 0.1583 0.138 0.1954 0.15  

C. Min et al.                                                                                                                                                                                                                                     



Technological Forecasting & Social Change 164 (2021) 120502

9

there are still many unobservable factors that influence the prediction 
but have not been found yet. These factors are hard to quantify, but they 
deserve further exploration in future research. 

5.4. Practical notes for breakthrough prediction 

Based on the results presented above, we are also inclined to answer 
RQ3 in the affirmative. From the viewpoint of practical tech mining, we 
list four points worthy of notice for researchers and practitioners in 
search of future scientific breakthroughs using the approach proposed in 
this study. 

First, among the structural metrics, only those that have positively 
predictive powers should be considered in the prediction model. By 
experiment we find that not all structural metrics are statistically 
different between breakthroughs and non-breakthroughs. We eliminate 
those indifferent metrics and are left with some predictive metrics. 
Moreover, certain metrics, such as NoN, may even have a negative effect 
on prediction. These metrics should surely be excluded from prediction 
models. 

Second, differences among disciplines ought to be taken into ac-
count. Different disciplines exhibit multifarious characteristics in terms 
of knowledge structure. Within the Nobel Prize taxonomy, Economic 
Sciences and the natural sciences (Physics, Chemistry, Physiology or 
Medicine) are two basically different classes of scientific fields in terms 
of almost all structural metrics as well as the time taken to achieve a 
Prize. It seems more difficult to predict breakthroughs in Economic 
Sciences than in the natural sciences. Furthermore, the field of Physi-
ology or Medicine is found to be somewhat different from Physics and 
Chemistry, whose respective knowledge structures share more similar 
characteristics. Therefore, it is necessary to separate disciplines to attain 
a better prediction performance. 

Third, focusing on the direct citing network is sufficient. The in-
fluences of breakthrough ideas are most prominent in the first layer of 
the citing network. It thus seems unnecessary to go deeper, incurring 
more costs only to obtain sub-optimal performance. 

Fourth, appropriate timing is critical for prediction. Structural met-
rics are statistically different in some years but not so in other years. This 
reveals that the knowledge structure variations induced by scientific 
breakthroughs can only be observed with ease in certain periods. Before 
that, they are too immature to emerge; afterward, the citing networks 
have grown too large to reveal significant differences and nuances in 
some structural features. 

6. Conclusion and future research 

As early as the 1960s, Margolis (1967) described a dilemma of using 
citation data: a short-term citation count is unreliable, but historical 
evaluation takes too long. He pointed out that an intermediate period 
must exist when citation networks begin to contain adequate informa-
tion for “meaningful analysis.” We believe that tech mining research will 
benefit from the integration of the method of citation analysis and the 
utilization of such an “intermediate period” during the evolution of 
citation networks. Echoing Margolis’s anticipation, in this study, we 
leverage the potential of early citation networks to investigate the 
knowledge structures of scientific breakthroughs and find metrics useful 
for predicting such breakthroughs, which is one of the many facets of 
tech mining. Our results so far give affirmative answers to and empirical 
and theoretical evidence for the three research questions proposed at the 
beginning of this article, and there is a long way to go in the quest to 
create practical tools for early identification of scientific breakthroughs. 
Our next steps include expanding the pool of breakthrough data to 
include more sources. There are also theoretical problems calling for 
further research efforts, e.g., (1) why certain metrics are statistically 
different but others are not, (2) how and why such differences arise and 
disappear in a longer time window after publication. Lastly, we note that 
the approach proposed in this study could be employed in real scenarios 

(e.g., government and funding agencies) to assess its practical value. 
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