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Abstract

Litter nowadays presents a significant threat to the equilibrium of many ecosystems.

An example is the sea, where litter coming from coasts and cities via gutters, streets,

and waterways, releases toxic chemicals and microplastics during its decomposition.

Litter removal is often carried out manually by humans, which inherently lowers the

amount of waste that can be effectively collected from the environment. In this

paper, we present a novel quadruped robot prototype that, thanks to its natural

mobility, is able to collect cigarette butts (CBs) autonomously, the second most

common undisposed waste worldwide, in terrains that are hard to reach for wheeled

and tracked robots. The core of our approach is a convolutional neural network for

litter detection, followed by a time‐optimal planner for reducing the time needed to

collect all the target objects. Precise litter removal is then performed by a visual‐

servoing procedure which drives the nozzle of a vacuum cleaner that is attached to

one of the robot legs on top of the detected CB. As a result of this particular position

of the nozzle, we are able to perform the collection task without even stopping the

robot's motion, thus greatly increasing the time‐efficiency of the entire procedure.

Extensive tests were conducted in six different outdoor scenarios to show the

performance of our prototype and method. To the best knowledge of the authors,

this is the first time that such a design and method was presented and successfully

tested on a legged robot.

K E YWORD S

autonomous litter removal, environment preservation, legged locomotion, object detection,

optimal control, path planning, quadruped robot

1 | INTRODUCTION

Litter is an economic, biological and health‐related problem

(UNEP, 2006), and along with climate change, loss of biodiversity, ocean

acidification, and overpopulation, it is widely recognized as one of the

five main challenges that we are facing as humanity nowadays (Rangel‐

Buitrago et al., 2022). The increase in urbanization and consumerism are

driving factors in the rise of trash worldwide (Song et al., 2015), and a

considerable percentage of the produced waste is not properly disposed

of every year. This behavior contaminates soil and water, increasing the

risk for our planet and its inhabitants. Litter can easily reach marine

environments by ending up in gutters, streets, and waterways (Novotny

et al., 2009). When it breaks down, it can release toxic chemicals, metals,

and microplastic, causing changes in the fauna gene and protein

expression, inflammation, and disruption of feeding behavior

(Bhuyan, 2022), finally altering the equilibrium of our ecosystem.

Among all the different types of waste, cigarette butts (CBs) or

cigarette filters are the second most common undisposed waste
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worldwide (Rangel‐Buitrago et al., 2022). More than 5 trillion

cigarettes were consumed in 2016, two‐thirds of which were

supposedly not thrown away correctly (Araújo & Costa, 2019),

causing, therefore, a vast environmental problem. In fact, CBs are

usually composed of a cellulose‐acetate‐based material which does

not biodegrade and can remain in the environment for more than

10 years (Belzagui et al., 2020), freeing up in the marine environ-

ments microplastic and more than 700 toxic chemicals (Micevska

et al., 2006; Slaughter et al., 2010), for example, nicotine, 70 of which

are known to cause cancer in humans and animals (Belzagui

et al., 2020).

Given the dreadful impact on the environment caused by the

incorrect disposal of CBs (World Health Organization, 2022), many

awareness campaigns have been promoted by governments over the

years to mitigate the problem. Nevertheless, a waste collection

procedure performed directly in‐loco, such as in cities, beaches, and

other coastal areas, is still necessary, as demonstrated in the

Ocean Conservation Cleanup reports (Ocean Conservancy, 2023).

Unfortunately, the collection procedure faces many challenges that

make an effective scale‐up impossible. While CBs on streets can be

efficiently removed with dedicated vehicles, the majority of other

areas require labor‐intensive, manual collection. This is mainly due to

the difficulties given by the CBs' different sizes, shapes, and

materials, as well as the uneven terrain present in the different

environments they are dispersed into.

Many projects have been developed, in both industry and

academia, trying to automate the aforementioned procedure. Most of

these works have been designed with a specific target environment

in mind. For example, the robots Angsa (Angsa Robotics, 2024) and

Pixies (Pixies Urban Lab, 2024) are small‐sized wheeled systems that

aim for a more conventional scenario, such as grass and urban

environments, whereas BeachBot (Project Beach Bot, 2024) and

Bebot (4Ocean, 2024) have been developed to be operated on sandy

beaches. For this reason, they utilized tracks and specially designed

wheels to move. The developed machines also differ in the approach

chosen for the collection. In Zapata‐Impata et al. (2018), Bai et al.

(2018) and Liu et al. (2021), the authors utilized an arm to selectively

collect litter, and while this method allows for the precise selection of

the object to collect, it requires a more sophisticated vision and

control pipeline that slows down considerably the collection speed.

On the other hand, other projects like (4Ocean, 2024) opt for a more

conventional mechanism that collects everything on the ground

without the possibility of differentiating between trash, plants, or

animals. Even though all these approaches have brought progress

towards autonomous litter removal, their traversability capability is

ultimately limited by their design. In fact, in the case of small

obstacles on their path or uneven terrain, which is a common

situation in coasts and cities, wheeled robots have clear limitations

that reduce the amount of litter that can be collected.

Recently, quadrupedal robots have shown astonishing results in

traversing challenging terrain. In Lee et al. (2020), the authors

proposed a learning‐based controller able to cope with unknown

disturbances and uneven terrains. Their outdoor experiments clearly

show the great stability and versatility achievable by a quadruped

robot. Furthermore, safety can be explicitly considered during

locomotion by adopting vision‐based correction for precise footstep

planning to avoid having a foot stuck (Jenelten et al., 2022; Villarreal

Magaña et al., 2019); in this way, a long‐term autonomous operation

of these systems can be achieved. The achievable safety and the

great agility that distinguishes quadruped robots from wheeled

robots show great potential in adopting these systems for litter

removal, especially in human‐designed, uneven, and complex

scenarios. Yet, to the best of the author's knowledge, no legged

robot prototypes have been developed specifically for this applica-

tion. We present the autonomous litter removal prototype VERO that

builds upon a state‐of‐the‐art control framework for legged locomo-

tion. On the basis of the quadrupedal robot Aliengo of Unitree,1 our

design is able to autonomously collect undisposed CBs while

traversing a variety of complex scenarios that are mostly inaccessible

to wheeled robots. We equipped our prototype with a vacuum

cleaner attached to its trunk and a custom‐made nozzle connected to

one of its legs, enabling the possibility of performing collection just by

stepping with the attached nozzle over the detected CBs (Figure 1).

From a software point of view, we obtain a precise collection via a

multilevel framework that comprehends image recognition via neural

networks, planning for time‐optimal collection paths, and visual

servoing for precise positioning of the robot's foot.

1.1 | Contribution

The main contributions of this work are:

• the design and integration of a novel platform for litter collection

based on a legged robot, a vacuum cleaner, and an innovative foot

nozzle design;

• the development of a perception, estimation and control pipeline

that identifies the litter, filters out duplicated detections, and plans

the optimal collection path;

• an extensive real‐world validation of the overall system performance,

with numerical and qualitative analysis of the platform advantages

and limitations, in scenarios where CBs are commonly dispersed into;

• finally, we want to point out that this work represents, to the best

of the author's knowledge, the first instance of utilizing a legged

quadruped robot where its legs perform an additional task during

locomotion, eliminating the need for extra limbs to accomplish the

designated function.

1.2 | Outline

The paper is organized as follows: Section 2 gives an overview of our

litter collection prototype, whereas Section 3 describes the proposed

1https://www.unitree.com/products/aliengo/
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approach delving into the developed CBs detection module, along

with a state estimation and planning procedure for precise and time‐

optimized waste collection. In Section 4, we detail our locomotion

controller, while in Section 5 we report on the application of the

proposed prototype, showing both indoor and outdoor experimental

results. Finally, a discussion and some general conclusions about the

approach are drawn respectively in Sections 6 and 7.

2 | VACUUM‐CLEANER HARDWARE

For this work, the commercial quadruped robot Aliengo has been

adapted by adding a 2‐kg commercial vacuum cleaner on top of its

trunk, while a custom‐designed nozzle was attached to its left‐front

foot (Figure 2). As will be explained later, our design can be easily

modified to connect the vacuum cleaner to two or all the available

feet, increasing the overall system efficiency, described here as the

time needed to perform the collection procedure and adaptability.

We designed and 3D‐printed a custom‐made nozzle to maximize the

area around the foot of the robot where the CBs can be collected

without sacrificing the suction ability of the vacuum cleaner and the

locomotion capability of the robot. In fact, a wider suction area would

have required either a more powerful vacuum cleaner or a smaller

gap between the nozzle and the terrain. The last point has been

observed to be the most critical in our experiments since the need to

have the nozzle close to the terrain increased the collisions with the

ground. All the impacts that do not happen with the foot disturb the

stability of the motion and the accuracy of the stepping. In Figure 2,

the reader can clearly observe the adopted solution. Even if our

framework enables precise footstep placement on top of the

detected CBs, a few centimeter mismatches can result in a

nonsuccessful collection procedure. With a bigger nozzle area, this

tolerance is increased.

The vacuum cleaner mounted on top of the platform is a

modified commercial machine. We changed the power supply to

allow external control with a microcontroller board and a relay, as

F IGURE 1 A snapshot of our quadrupedal robot prototype

walking at the beach of Vernazzola, Genova, Italy. [Color figure

can be viewed at wileyonlinelibrary.com]

F IGURE 2 Prototype hardware: Image of the presented autonomous litter removal prototype with labels for the key components. The

system comprises a quadruped robot with built‐in sensors and computation, a vacuum cleaner with custom‐designed nozzle, additional sensors,

computers, electronic boards, and a LiPo battery. PC, personal computer. [Color figure can be viewed at wileyonlinelibrary.com]
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shown in Figure 2. In particular, an Arduino UNO board is connected

to an onboard MiniPC and is powered with 5V. A 24 V Lipo battery

and a DC–DC converter 24–12 V power the relay. Commanded by

the microcontroller, the relay is only closed when the vacuum cleaner

must be turned on to optimize battery life and avoid collecting

undesired objects during walking.

3 | THE LITTER COLLECTION

PROCEDURE

In this section, we describe the main components of our collection

approach. At its core, there are three main modules, namely, Litter

Detection Module (LDM), Litter Estimation Module (LEM), and Litter

Collection Module (LCM). All modules run continuously during robot

motion.

During the deployment of the quadruped robot, the operator

chooses a desired area to clean, and subsequently, the robot calculates

an exploration path to fully cover the space. For this, we divide the

chosen area into parallel lanes with a width that is relative to the field

of view of the robot's frontal camera. Alternatively, the quadruped can

be controlled via dedicated joystick commands by the operator. During

locomotion, the LDM is responsible for the CBs detection via the

onboard cameras, while the LCM generates a time‐optimal collection

path between the target objects. The same object can appear in more

than one camera frame during locomotion, and in this case, multiple

detections of the same item can happen. Therefore, a data association

routine, together with a filtering procedure, is performed in the LEM to

avoid unnecessary robot motions. Finally, once the quadruped reaches

the desired CB, a visual‐servoing routine that leverages a secondary

camera pointing down in the direction of the robot's front feet is

activated for precise step placement.

A block diagram of the proposed approach is shown in Figure 3.

3.1 | Litter detection module

The LDM is characterized by a CB detection neural network that is

used for the first identification of the object to collect utilizing the

images from the forward‐facing camera. This information is then

passed to the LCM for planning an optimal path and for performing a

visual‐servoing procedure for a precise footstep placement using the

downward‐facing camera. The latter is necessary for coping with

inevitable state estimation drifts.

F IGURE 3 Block scheme of the proposed collection procedure. Starting from the left, first, an area to clean is selected by an operator via a user

interface, or alternatively, the robot is directly commanded using a joystick. The robot starts to detect the CBs while moving and creates a map of the

collectable objects, and an optimal path planner is computed after each detection. Finally, the locomotion controller drives the robot to the collection area

while a visual‐servoing procedure precisely commands the robot's footsteps on top of the CBs. In the locomotion controller block, the current support

polygon is highlighted in green, while the Ground Reaction Forces are in red. In the last snapshot on the right, the future nominal support polygon is

highlighted in blue, while the one defined by the new stepping location is in orange. Finally, the corresponding swings for the two stepping locations are

shown, respectively, in red and green. CB, cigarette butt. [Color figure can be viewed at wileyonlinelibrary.com]
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The network utilized in this work is the broadly adopted Yolo‐

V4‐tiny (Bochkovskiy et al., 2020), a Convolutional Neural Network

renowned for its computational speed and accuracy. We used the

tiny version of the network, which has a reduced number of

parameters, to ensure online computation on the onboard PC, an

Nvidia Jetson TX2. Yolo builds a bounding box around an object in

the image and returns the probability that it contains a CB. To avoid

false positives, we consider a CB detection only if its probability is

higher than 90%. The network was retrained on the target objects

exploiting the combination of two different data sets available online

(Immersive Limit, 2024; Proença & Simões, 2020). The number of

images was increased by a further manual annotation of other 100

images and by different data‐augmentation techniques, such as

image rotation, crop, background, and luminance modification

(Shorten & Khoshgoftaar, 2019) generating 2000 more images. The

network achieves a final overall accuracy of 91% on the validation

data.

Starting from the LDM, the outputs of the detection

procedure are bounding boxes surrounding the CBs present in

the video feed. The network is employed two times in our

collection procedure. First, it is fed with 720p RGB images coming

from an Intel RealSense D435 mounted on the front of the robot

(forward‐facing camera). The CBs' detections in this case are used

for planning purposes. Second, it is queried by feeding the images

from an Intel RealSense D405, mounted on the bottom of the

robot's trunk (downward‐facing camera). Both cameras configu-

ration is shown in Figure 2. This second pipeline is used for the

visual‐servoing procedure to drive precisely the foot of the robot

(see Section 3.3), therefore, considering the camera positioning,

we opt for the D405 given its shorter‐range detection capability.

In fact, putting the camera above the trunk (Figure 2) could

produce more occlusions in the detection when the CB is located

directly below the robot, and given the normal walking height of

the system (around 30 cm), a camera with a short‐range detection

capability is needed. On the other hand, the D435 is used for the

first detection of the CBs from a distance. These cameras also

provide a depth map, aligned with the color image, that gives

information on the distance of each pixel. This data is used to

calculate the relative position of the detected CB with respect to

the camera frame as

− −
(1)

(2)

where , and are the coordinates of the selected pixel

expressed in the camera frame and and are the pixel

coordinates of the center of the bounding box. Furthermore, ,

and are the intrinsic parameters of the camera, while ⋅ ⋅ is

the depth map information of the desired coordinates. The litter

position in the camera frame is then converted into the world frame

to perform the planning procedure in the LCM.

Remark. The superscript at the left of a variable indicates in

which frame it is expressed ( camera frame, horizontal

frame, and base frame). If the superscript is omitted, the

quantity is expressed in the world frame.

3.2 | Litter estimation module

During the robot motion, the detected CBs are used to generate a

map of waypoints, used by the LCM to compute a time‐optimal path

for the collection process. To avoid unnecessary motions in the

presence of duplicate detection, a correct data‐association routine is

needed. For this, we implemented a Right‐Invariant Extended Kalman

Filter (Right‐IEKF) to reduce the amount of noise and errors due to

the state estimation drift. As demonstrated in Hartley et al. (2019),

this filter has shown promising performance thanks to the log‐linear

error dynamics.

Given the robot state and the CB positions in the world frame,

the filter updates these values each time a new CB is detected. At a

generic time instant , we express the Right‐IEKF state representa-

tion as

⋯⋯⋯⋯⋮ ⋮ ⋮ ⋮ ⋱ ⋮⋯













θ

(3)

where ∈ is an extension of the Lie Group (see,

Hartley et al., 2019) for the case of different objects saved in the

map; θ are respectively, the estimated yaw of the robot's

base, the velocity, and the position of the robot's Center of Mass

(CoM); finally, is the world position of the CB.

The described filter fuses the drifting state, coming from the

onboard odometry‐based state estimator, with the measured position

of the collectable CB, used as a fixed landmark. The right invariant

observation model for the CB measurement is written as

 
−
−

− −

− −
−

(4)

where are the measurement at time from

Equation (1), and the rotation matrix from the camera frame to

world frame. The IEKF update is then written as

 
Π
−

− −

−

(5)
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where Π and are selection matrices, is the Kalman gain and is

the measurement covariance matrix. and are respectively the

updated state and covariance matrix and ⋅ is the exponential

map of the state Lie Group.

To properly exploit the filter, data association between

the mapped objects and the new incoming measurement at

each iteration is crucial. We periodically verify if the same CBs

have been added twice to the map due to outliers in the

measurement.

For this, we decided to utilize a threshold on the Mahalanobis

distance between each CB, paired with a minimum distance

threshold for checking the possibility of unresolved duplicate

detection. The selection of this threshold is crucial when dealing

with densely distributed CBs. If the threshold is chosen too

conservatively, it may lead to the inadvertent exclusion of CBs

that are located close to each other. In our experimental results

(see Section 5), we opt for a minimum threshold of 2 cm.

To avoid the filter becoming too computationally expensive, we

erase all the previously collected objects from the filter state.

3.3 | Litter collection module

We mounted a custom‐designed suction nozzle to the left‐front

leg of our robot prototype. Therefore, planning a path is needed

to allow the quadruped to place its foot/feet close to the side of

each detected CB. One of the main challenges of this approach is

that we still need to guarantee the stability of the robot when

changing the footstep location. It is important to recall that the

robot needs to constantly actively balance on its legs, and the

foot placement represents one of the variables for the feasibility

of the planned motion. To account for this problem, we decided

to decouple planning and safety in a hierarchical manner. We split

the LCM into two submodules, one that uses the data from the

LEM to plan a first path for the CoM of the robot, and a second

module that directly modifies the footstep placement to ensure

the precision and safety of the collection procedure.

For the planning problem, given that multiple CBs can be

detected during motion, and hence multiple collection sequences

can be performed, we apply the Dijkstra search algorithm

(Dijkstra, 1959), which returns both the optimal collection order

and the optimal poses that the robot should have when placing

the nozzle on top of the CBs. The computational time will depend

on the complexity of the scenario, that is, the number of CBs on

the ground. Here we only consider the X–Y positions and yaw

angle of the robot's base, leaving to the locomotion controller the

optimization of the robot's roll and pitch base angles (see

Section 4.1). Additionally, we simplify the problem by disregard-

ing the robot's height. We assume that the CBs are located in

regions accessible by the robot directly from any other position.

In other words, we consider a scenario wherein the robot has a

perfect traversability, that is, the CBs can be reached by our

system starting from any starting position. In reality, this

assumption could not hold, and can lead to unfeasibility of the

collection order. We leave the lifting of this assumption for future

works.

Starting from an initial robot configuration, expressed as ,

and θ , defining respectively the X–Y positions and yaw orientation of

the CoM of the robot, Dijkstra expands all the detected objects

sequentially. For each of them, we compute the desired hip

configuration that the robot should have to perform the collection.

Defining for clarity

θ θ− − −θ (6)

for a generic , the optimal hip configuration of the robot can be

derived in closed form by solving the following problem

ζ

ζ

−θ θ

θ θ

θ

(7)

where represents the X–Y components of the vector connecting

the base to the hip of the leg used for collection, while

 ∈ extracts the X–Y coordinates of . The

matrix is a diagonal weight matrix defining the importance of each

cost term. ∈ maps the X–Y coordinates of the base frame

into the world frame. We collect all the expanded CBs in an ordered

priority list, from which we can expand the configuration with the

minimum cost. This will be used as the new initial robot position for

the next Dijkstra step.

Once the quadruped is close enough to one of the CBs, the

robot moves to the optimal posture, and the second submodule

computes the footstep necessary to perform the collection. This

is done by modifying the nominal footholds via a continuous

visual‐servoing procedure, which utilizes the LDM fed by the

images coming from the downward‐facing camera. The position

of the detected CB is then extrapolated by the output of Yolo,

converted into the base frame of the robot, and used as the next

touch‐down position of the robot's foot. More details about the

locomotion controller can be found in Section 4.1. Furthermore,

this submodule performs a continuous safety check to guarantee

the robot's stability. For this, we check if the robot's CoM

position projection is still inside the support polygon when a

nominal footstep is modified. If the safety check fails, the nominal

foothold is restored, preventing the robot from falling.

6 | AMATUCCI ET AL.
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Algorithm 1. Litter collection procedure.

while robot_moving do

[CBs]← LDM(front_facing_camera)

if [CBs] then

map ← LEM([CBs])

end if

if map then

collection_pose ← LCM(map)

end if

if collection_pose then

desired_speed ← goTo(collection_pose)

else

desired_speed ← UserInput()

end if

LocomotionController(desired_speed) (Section 4)

if collection_pose == robot_pose then

CB ← LDM(down_facing_camera)

if isSafe(CB) then

doCollection()

end if

end if

end while

function LDM(camera_image)

bbox ← Yolo(camera_image)

measurement ← get3dMeasurement(bbox) (Equations 1 and 2)

return measurement

end function

function LEM(measurement)

checkDataAssosiation(measurement)

map ← IEKF(measurement) (Equation 5)

return map

end function

function LCM(map)

collection_poses ← DijkstraSearch(map) (Equation 7)

return collection_poses[0]

end function

Figure 4 shows some snapshots of the collection procedure

performed by the real robotic platform. Furthermore, we summarize

the litter collection procedure in Algorithm 1, where the goTo() function

refers to a simple PD controller that drives the robot to the desired goal

commanding a desired speed to the LocomotionController() (Section 4).

On the other hand, the UserInput() function returns a desired speed read

from a joystick, or from a speed profile computed to track a predefined

path. Finally, the isSafe() function corresponds to the stability check

described above, while doCollection() activates the vacuum cleaner and

changes the target step location.

4 | LOCOMOTION CONTROLLER

Our locomotion control framework is composed of proprioceptive

and exteroceptive elements. To obtain a robust locomotion control-

ler, we focus on a robust proprioceptive and reactive layer able to

deal with irregular surfaces and uncertainties from the exteroceptive

feedback (visual information). To do so, we implement a structure

based on our Reactive Controller Framework (RCF) (Barasuol

et al., 2013), which is composed of Motion Generation and Motion

Control blocks. Both blocks, illustrated in Figure 5, are explained in

detail in the following sections.

4.1 | Motion generation

As depicted in Figure 5, the motion generation block computes the

desired robot base and leg motions. The RCF's motion generation can

provide various gait patterns, like, trotting and crawling gaits. For the

sake of space, we concentrate only on the description of the crawl

gait used for the litter collection.

The crawl gait represents a sequence for the motion of the legs

that allows achieving static stability during locomotion. Static

stability is achieved when the vertical projection of the robot's

CoM position lies inside the convex hull (so‐called support polygon)

formed by the contact foot locations (McGhee & Frank, 1968). A

robot that executes such a gait operates in slow velocities but very

robustly, being able to have long stance periods on various postures

and to deal with very irregular surfaces. Two crawling gait

sequences are implemented: leg sequence left‐front⇒ right‐

front⇒ right‐hind⇒ left‐hind when moving forward, and leg

sequence left‐front⇒ left‐hind⇒ right‐front⇒ right‐hind when

moving backwards. The different sequences are used to prevent

support polygon shrinkage in one of the speed directions, and thus

the reduction of the static stability margin and maximum velocity

the robot can achieve. The desired touch‐down location of each

foot is computed in a robot‐centric approach (Rathod et al., 2021),

and depends on high‐level trajectory references (high‐level com-

mands provided by the user or by the collection path planner) and

also proprioceptive and exteroceptive information. All the leg

motion planning is performed in the Horizontal Frame (located at

the robot's base frame with Z coordinates aligned with the gravity

vector and the X coordinate aligned with the robot's base

longitudinal axis projected in the world X–Y plane) (Barasuol

et al., 2013). The velocity references are provided without

considering the terrain irregularities and are treated as the tentative

body motion path for an effective litter collection. From the

reference velocities, the nominal foot touch‐down position and

corresponding leg swing motion are computed. The timing for the

desired leg stance and swing phases is provided by the Gait

Generator (based on desired step frequency and duty factor). It is

important to highlight that the periodicity of the crawl gait, in our

controller, is stability‐dependent. In other words, even with

predefined step frequency and duty factor for each leg (de Santos

et al., 2012), a leg lift‐off event is only executed if (1) the robot is

under a static stability condition defined by a given stability margin

value, and (2) the robot is in full‐stance condition (all legs in contact

with the ground). These conditions confer extra robustness to the

locomotion when compared to approaches that consider a strictly

AMATUCCI ET AL. | 7
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periodic crawling gait (e.g., in situations that may lead to surface

collapses, contact losses, leg slippage, or inaccuracies in the terrain

map or visual feedback). The desired foot references are provided

by the Foot Trajectory Generator and are computed based on the

actual foot lift‐off position, the desired foot touch‐down position,

and the desired step clearance (the so‐called step height).

The nominal foothold position of a leg is defined as

. The desired planar coordinates X–Y of the

nominal foot touch‐down position are computed as

 ω (8)

where is the foot home position, is the desired stance period, ω ϕ is the desired body angular velocity, and is the hip

position. The operator  selects the planar coordinates from the

vector product. We removed the dependency from leg for the sake

of clarity in the notation. The corresponding component depends

on the Z component of the lift‐off position , the pair , and

the average terrain inclination estimated by the Proprioceptive Terrain

Estimator (PTE). The PTE approximates the terrain surface with an

average plane whose normal is described in the robot horizontal

frame and inclination represented by a terrain roll angle ϕ and pitch

angle θ . Thus, is computed as ϕ θ (9)

where is the terrain rotation matrix, with zero yaw angle.

The operator  selects the scalar value corresponding to the

Z coordinate.

During the litter collection, the nominal foothold can be modified by

the visual feedback from the Visual Foothold Adaptation (VFA) (Villarreal

Magaña et al., 2019), or by the LDM. The VFA modifies the nominal

foothold to a safe location on the terrain surface if the nominal location

brings a risk to the locomotion. The LDM, instead, modifies the nominal

foothold for collection in case a litter is detected inside the local collection

region underneath the corresponding hip, at the moment just before the

leg lift‐off. If a detected litter is located in an unsafe region classified by

F IGURE 4 Snapshots and illustrations detailing the collection procedure. From left to right: The system first detects the cigarette butt (CB) using the

front‐facing camera, and afterward, the planner defines a new optimal pose for collection (highlighted in the first snapshot by the coordinate frame

centered on the hip of the robot's leg associated with the collection mechanism) deviating from the predefined path shown in red. Once the robot

reaches the collection area, it utilizes the down‐facing camera to refine the previous estimate of the CB's location. Finally, the robot proceeds to perform

the collection by stepping on the target and activating the suction. [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Block diagram illustrating the dataflow of the motion generation and control blocks of the locomotion framework. LDM, Litter

Detection Module; MPC, Model‐Predictive Controller; PD, proportional‐derivative; PTE, Proprioceptive Terrain Estimator; VFA, Visual Foothold

Adaptation; VPA, Visual Pose Adaptation; WBC, Whole‐body Controller. [Color figure can be viewed at wileyonlinelibrary.com]

8 | AMATUCCI ET AL.
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theVFA, the modified foothold is not used for support and the collection

is executed when the foot is still in the air. The CoM motion planning is

also robot‐centric and designed in the horizontal frame, whose target

location is continuously computed according to the support polygon

formed by the current location of the contact feet. The target can be

tuned to prioritize the stability margin or the robot speed. The desired

body height and orientations depend on the quality of the visual

information. If the terrain map acquired around the robot (with

exteroceptive sensors like depth cameras) is accurate, the desired body

height and roll/pitch orientations are provided by our Visual Pose

Adaptation (VPA) (Fahmi et al., 2023). In case of unreliable terrain

mapping, a desired relative body height is set and the body orientation

follows the one estimated by the PTE. This selection is represented by the

switch between VPA and PTE illustrated in Figure 5. The target location

inside the support polygon is tuned for requirements regarding maximum

locomotion speed and robustness. The motion generation provides the

motion control block with desired body CoM positions, trunk orientation,

and desired joint trajectories. The desired joint trajectories are obtained

by transforming the desired foot trajectories from the horizontal frame

into the robot base frame and applying inverse kinematics (see, Barasuol

et al., 2013, for further details). Section 4.2 describes the control actions

to track the desired references from the motion generation block.

4.2 | Motion control

The robot's motion control block is composed of a Model‐Predictive

Controller (MPC) (Amatucci et al., 2022) in series with a Whole‐body

Controller (WBC) (Fahmi et al., 2019), and a joint proportional‐derivative

(PD) controller. The MPC controller computes ground reaction forces to

track the desired CoM references from the motion generation block. It

runs at 150Hz and considers the Single‐rigid Body Model (SRBM) (Orin

et al., 2013) as a simplified robot model used for state predictions (Bledt &

Kim, 2019; Grandia et al., 2019; Wu & Sreenath, 2015). TheWBC runs at

250Hz and computes the joint torques to track the equivalent CoM

wrench (obtained from theMPC ground reactions forces), considering the

influence of leg inertial effects and the physical constraints given by the

robot and environment. Completing the control action, a joint PD

controller contributes with joint torques to cope with model uncertainties

and to better track the leg swing motion. The SRBM used for the MPC

state predictions has shown to be representative even though the inertia

of the robot legs is neglected. Using this model approximation, the system

dynamics can be written as follows:

∑ (10)

∈ω (11)

 ∑ω ω ω− (12)

where is the CoM acceleration, is the ground reaction force (GRF)

acting on the leg, and are the rotation matrix representing the

rotation between the world and the robot base and its derivative, whileω
and ω are the angular velocity and its derivative. The variable is the

vector connection the CoM and foot positions, the operator ⋅ maps the

vector in a screw‐symmetric matrix. Finally, and are the inertia matrix

and mass of the robot body, and is the gravity vector. Equation (12) is

nonlinear in the angular part, therefore we use the variation‐based

linearization scheme presented in Ding et al. (2021). We express the

rotational error in , considering the variation to the operating point

to be free from singularities in the representation.

We then perform a first‐order Taylor expansion of the matrix

exponential to then vectorize the error expressed in as

∈ξ such that ξ δ . The linearized dynamics is finally

discretized using the forward Euler scheme. The system state is

defined as ∈ξ ω and the control input as

∈ . Given the simplified model, the system state,

and control input, we can define the Optimal Control Problem

(OCP) as

∈
∑

−

−

(13)

where ⋅ is a convex quadratic cost over the user commanded

velocities and body posture. are the linearized dynamics and

is the set of feasible ground reaction forces constrained by the outer

pyramid approximation of the friction cone to guarantee nonslipping

conditions. is the state variable at the operating point. To solve the

OCP we used a specialized quadratic program (QP) solver (Pandala

et al., 2019), that exploits the sparse structure of the problem. Finally, the

GRFs obtained by solving the optimization problem (13) are then

converted into the desired CoM wrench sent to the WBC, as

where ⋅ is the function that maps the optimal ground reactions

forces from the MPC controller into forces and moments around the

robot CoM.

To realize , taking into account the robot full‐dynamics,

limitations, and environment constraints, the WBC solves a QP

problem with a cost functional that penalizes the wrench tracking

errors and the deviations from , that is,

 
γ

γ

− −

̲

γ ϵ
(14)

where the decision variables are the base accelerations , the leg

accelerations , the ground reaction forces , and the slack variables

ϵ for constraint relaxation. The equality constraints take into

consideration dynamic consistency, leg inertial effects, joint kine-

matic and torque limitations, and friction constraints. All constraints

AMATUCCI ET AL. | 9
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are stacked and described through the matrices and and

boundaries and . Finally, the values optimized by Equation (14) are

mapped into joint torques using the whole‐body dynamics equation.

For further details on the description of the constraints and the

mapping into joint torques, see Risiglione et al. (2022).

The readers can observe in the accompanying video the behavior

of our locomotion controller in challenging scenarios, such as the one

with gravel or the one with stairs.

5 | RESULTS

This section presents the results obtained with our prototype in both

indoor and outdoor scenarios. The indoor scenario, represented by our

laboratory, was chosen to validate the IEKF described in Section 3.2 in

a controlled environment, where multiple CBs are placed on the floor.

The test result is shown in Figure 6. Due to the drifts in the estimator,

the raw CBs positions (green dots) vary significantly in the map with

respect to the estimation coming from the filter (blue dots) during

robot motion. It can be observed that without the filtering procedure,

the data association process can fail without the possibility of recovery

(red dots), meaning that the same object is added more than once to

the list of the CBs to collect. In this case, the robot tries to collect the

same object multiple times, drastically affecting the speed and

collection time of the overall collection process.

Figure 7 shows six real‐world scenarios in which we successfully

tested our solution: beach (A), urban (B), industrial (C), natural (D),

nonflat (E) and park (F). During our experiments, we repeatedly found

CBs dispersed into these environments, showing that the chosen

scenarios are representative of the tackled problem. We chose six

different scenarios, instead of a single one, to test the unique

challenges that each of them contains that can hinder a reliable CBs

collection. Specifically, Scenario A is characterized by the presence of

small pebbles that can get sucked in by the nozzle of the vacuum

cleaner and deformable terrain, which represents a challenge for the

locomotion controller of a quadruped. Scenario B is a common city

street, where sidewalks and the presence of cars limit the

traversability capabilities of many robotic systems. Similar limitations

can be found in an industrial setting, such as the one in Scenario C,

and in a small alley (Scenario E), where the presence of stairs limits

the usage of wheeled robots. Scenario D represents a trail outside

Genova, where the detection of CBs can be problematic given the

presence of flora with similar sizes and colors. The same reasoning

applies to Scenario F.

We observed difficulties in the detection of the CBs in the

scenario depicted in Figure 7d given the presence of similar objects,

in color and shape, in the local flora. This issue has been mitigated by

collecting additional images in that scenario and performing a

successive fine‐tuning of the detection model. This result shows

that still, many misclassifications can still happen in a real environ-

ment, and additional data‐synthesis techniques, such as using realistic

simulators for data gathering, should be adopted to enhance the

precision of the LCM.

In our final tests, our prototype successfully recognized and

collected all the undisposed CBs. To give an intuition of the

performance of the LCM, in Figure 8 we plot the trajectory of the

left‐front foot in the X–Y–Z plane. The task is to collect three

different CBs. The circles represent the touch‐down points, and the

dashed lines the swing trajectories. The blue color indicates that the

visual‐servoing module did not change the desired foothold locations,

hence the robot has stepped in the nominal location computed by

Equation (8). The LCM is activated when the foot is close to a CB (red

cross), causing the robot to perform a touch‐down event in the

vicinity of the CB (the red circle) instead of on the discarded nominal

location (white circle with the blue border). In this experiment, the

robot was controlled with a joystick and commanded with a user‐

defined nonconstant forward velocity. Since the step frequency

remains fixed in our locomotion controller (Section 4), the nominal

footholds are not distributed uniformly in the images. Here the

reader can observe that, since the nominal footholds are coherent

with the reference velocity, to suck the CBs the robot needed to step

toward the left. In our pipeline the hip is positioned on top of the CB

during the sucking, so after performing the collection, the robot

keeps going straight forward from the reached position till the

next CB.

The readers can refer to the accompanying video for the

highlights of our results.

6 | DISCUSSION

Our prototype is endowed with a vacuum cleaner and a nozzle

connected to the left‐front leg. We want to point out that our

design can easily be modified to connect the vacuum cleaner to

all the available feet. In this way, the number of maneuvers

F IGURE 6 The estimated CB positions during a collection test in

our laboratory, with (blue) and without (green) employing the IEKF. In

red, we highlight the errors in data association due to unfiltered

outliers, which will cause the robot to perform additional collection

attempts. CB, cigarette butt; IEKF, Invariant Extended Kalman Filter.

[Color figure can be viewed at wileyonlinelibrary.com]
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required to collect the CBs can be reduced if a different foot can

be exploited more easily from the current robot position. For this,

only the Dijkstra algorithm in the LCM (Section 3.3) needs to be

updated to consider multiple hip positions in the planning

problem, hence computing the optimal robot's pose and selecting

which leg to use to collect each CB. No changes are required in

the visual servoing of the LCM.

To highlight this concept, we compare the performance in

simulation of the same pipeline having the nozzle attached to one leg

only (Figure 9 top) and on all four legs (Figure 9 bottom). In

simulation, we defined an S‐shaped path with 90‐degree angles

placing some CBs to be collected (the red disks in Figure 9). The lines'

colors indicate the velocity deviation with respect to the “ideal” one

obtained with the robot walking on the desired path without

performing any collection. By comparing the top and the bottom

plot, the readers can see the advantages of having multiple nozzles

(higher velocity). This is explained by considering that if, for example,

a CB is on the right side of the robot, the robot needs to perform a

rotation to bring the left‐front foot close to the CB. Even though we

have not tested the vacuum cleaner with four nozzles, we have

demonstrated that the software is general and can be adapted to a

different configuration of the hardware prototype.

To deal with the problem of the sucking of the small pebbles in

Scenario A, we experimentally adapted the distance of the nozzle

with respect to the base of the foot. Given the usually lighter weight

of the CBs, we were able to tune this parameter and obtain

successful collections with only few pebbles sucked in by the

machine. Nevertheless, we needed to empty the vacuum cleaner

from time to time during the experiment. In future works, we plan to

integrate a simple mechanical separation system tailored to deal with

this specific problem into our prototype. We will also assess in more

detail the effect of nozzle design and position from the foot base,

taking also into consideration a variable sucking power. We plan in

this way to enable a higher level of autonomy in all scenarios.

To evaluate the performance of the overall pipeline, we designed

a test course in our laboratory, as shown in Figure 10, where the

robot is commanded to explore repeatedly a predefined area, and a

wooden obstacle is placed in the center to challenge the litter

collection procedure. In this area, during each pass of the robot, we

randomly spread a different number of CBs (4, 5, or 6) to evaluate the

F IGURE 7 The prototype has been tested successfully in six different scenarios. Starting from the top left corner, we show the robot,

controlled with a joystick for safety reason, traversing environments named beach (a), urban (b), industrial (c), natural (d), nonflat (e), and park (f).

All these scenarios are characterized by unique challenges both from the locomotion point of view, such as stairs and slopes (scenarios a, d, e,

and f), and from the detection point of view due to the presence of similar objects in size and color (e.g., small leaves in scenarios d and f). [Color

figure can be viewed at wileyonlinelibrary.com]
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efficiency of the entire litter removal pipeline and its critical points.

During 8 trials, the robot collected 29 out of 37 CBs. which

corresponds to a success rate of 78.37% for the overall system.

Further analysis of the failures (uncollected CBs) revealed that in 4

cases the CB was not detected: in two cases the CBs never entered

the field of view of the robot's cameras during the entire lap, while in

the other two cases, the network in the LDM did not identify the CBs

with sufficient certainty. Considering both cases, the overall

detection accuracy was 89% (33 detected out of 37). Considering

only the CBs which have been seen (35) the accuracy of the network

is 94.28%. The remaining 4 misses were caused by the LCM. In three

instances, the robot's nozzle edge made contact with the CBs, rendering

them impossible to be sucked. This failure indicates the importance of

stepping precision. In the last cases, the CBs never entered the down‐

facing camera's field of view due to misalignment with the collection

pose. Consequently, the robot was unable to perform the visual‐

servoing correction and relied solely on the mapped position of the CBs.

However, due to some drift, the position in the map had degraded to

the extent that proper collection performance was compromised,

resulting in the robot missing the CBs. Nevertheless, our collection

procedure, considering how many of the detected CBs have been

collected, showed a success rate of 87.87% (29 out of a total of 33). A

summary of this statistic can be found in Table 1 where we report the

F IGURE 8 Trajectory of the left‐front foot (where the nozzle of the

vacuum cleaner is attached) during a collection procedure in Scenario A.

On the top, the dot‐lines represent the swing trajectory, while the circles

represents the footholds. A circle is blue when the touch‐down coincides

with the nominal foothold, computed by Equation (8). The red circles

represent the touch‐down points corrected by the LCM. The

corresponding nominal foothold is depicted by the white circles with blue

borders. On the bottom, we plot the top‐down view of the same foothold

locations. CB, cigarette butt; LCM, Litter Collection Module. [Color figure

can be viewed at wileyonlinelibrary.com]

F IGURE 9 Comparison of the robot CoM position during a

collection procedure when the nozzle is attached to only one leg (top)

and when the vacuum cleaner is connected to all four legs (bottom).

The red disks represent the CBs. The line color indicates the ratio

between the constant velocity obtained by the robot simply following

the path and the actual velocity during collection. In both cases, the

robot shows a sway motion due to the crawl gait, but as expected,

more maneuvers are needed when only one leg is used to collect the

CBs. CB, cigarette butt; CoM, Center of Mass. [Color figure can be

viewed at wileyonlinelibrary.com]

F IGURE 10 Configuration of the test course used to assess the

framework under controlled conditions. The robot's predefined path

is marked with a translucent gray arrow, and multiple cigarette butts

(CBs) are randomly distributed on the ground. Additionally, a wooden

obstacle 12 cm high is placed in the center of the scenario. [Color

figure can be viewed at wileyonlinelibrary.com]
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achieved results, while the execution of this experiment can be

observed in the accompanying video of the paper.

7 | CONCLUSION

In this work, we have presented both the hardware and the software of a

quadruped robot able to autonomously and efficiently collect small litter

during locomotion. The presented approach takes advantage of a

currently poorly exploited feature of legged robots: the ability and

freedom to select footholds not only for a stable locomotion, but also for

specific applications. To the best of the authors' knowledge, this is the

first time that the legs of a legged robot are concurrently utilized for

locomotion and for a different task. Differently from arms mounted onto

mobile robots, which add weight, complexity, cost, and energy demand,

exploiting legs for purpose‐oriented interactions with the ground is an

elegant and minimalist solution. On one hand, it is time‐efficient because

the feet need to touch the ground anyway for locomotion, so no

additional whole‐body arm control is needed that is generally slower

when contact with the environment is required. On the other hand, it is

potentially more precise since the kinematic chain of a leg is usually

shorter compared to the one of a mobile base with an onboard arm.

This minimalist approach can be exploited for many other

applications that are different from the presented use‐case of litter

removal, including for example:

• in agriculture and forestry: for the selective spraying of weed in

crop fields (e.g., salads), punctual measurements of soil properties

(e.g., humidity), or for the injection of seeds into the ground (e.g.,

reforestation);

• in infrastructure inspection: for surface sensing where contact

with the surface is required (e.g., crack detection);

• construction: placement of nails and rivets (e.g., construction of

large wooden structures or steel vessels).

In future works, we want to analyze the possible gain in power‐

efficiency that our prototype can enable compared to the one

achievable by using an additional arm on top of the robot to perform

the litter collection. Furthermore, we aim to build and test the

necessary hardware for enabling our prototype to use all the available

feet for litter collection. Besides increased collection speed, equip-

ping multiple feet with nozzles can easily be used for separate

collection of different types of waste. In fact, our detection module

(Section 3.1) can be easily generalized for multiple objects, and each

foot can take care of a specific type of waste.
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