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Abstract— In this paper, we focus on a human hand recog-
nition system for human–robot interaction. The motion of
the human hand is so dynamic that the hand needs to be
tracked at high speed, and non-blurred images are required
to achieve stable and correct recognition. Moreover, a wide
recognition area is necessary for natural interaction. To achieve
these aims, we constructed a new active sensing system that
can actively track and recognize the human hand by using a
high-speed vision system. An application that clearly requires
high-speed recognition and actuation is the rock–paper–scissors
game between a human and a robot, and we focused on this
task to demonstrate the proposed system. In this situation, we
track a human hand at high speed and detect its sign (rock,
paper, or scissors) correctly in every frame. Our experiments
showed that the robot hand formed its sign to beat the human
opponent in natural interaction thanks to its high speed and
wide recognition area.

I. INTRODUCTION

In recent years, many studies have been conducted in

the field of human–computer interaction (HCI) and human–

robot Interaction (HRI). In these fields, robot systems recog-

nize human motion in order to estimate human intentions

and emotions, and the robot systems react appropriately

according to the recognition result. Gestures are now widely

adopted as inputs for many systems. In particular, the hand

can convey a lot of meaning, and recognition of hand shapes

and gestures has been widely studied [1], [2].

Hand gestures are generally recognized by using a glove-

based method or by a vision-based method. In the glove-

based method [3], the human user wears a glove on which

many sensors are attached to measures the joint angles,

movement, rotation etc. On the other hand, the vision-based

method does not use any wearable devices and instead

recognizes a bare hand using a camera. These days, many

studies are being conducted utilizing Kinect sensors to detect

hand gestures [4], [5], [6].

In this paper, we focus on two problems that are important

in achieving natural interaction: the recognition area and

latency.

First, regarding the problem of the recognition area, when

we consider vision-based hand recognition, it is necessary to

note that the human hand and fingers have highly dynamic

characteristics. The hand movement area is so large that

vision systems cannot completely capture the motion within

a limited angle of view. Cameras are usually fixed, which

results in a small recognition area and restricts the range of
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detectable human motion. If we consider using a wide-angle

lens, there is a trade-off relation between the recognition area

and the image resolution. Therefore, it is difficult to maintain

sufficient resolution to recognize a hand with fixed cameras.

Second, latency, which humans perceive, results in poor

operability. In general, humans can recognize latency of

about 6 ms in continuous interaction [7] and 30 ms in impul-

sive events [8]. Latency does not matter in applications where

humans simply click on a button. However, latency is critical

in dynamic environments, for example, in tele-manipulation

requiring immersion or video games requiring continuous

input with gestures. In addition, current vision systems can

only recognize a hand at a video frame rate of 30 fps, and

are thus affected by blurring of the image. Therefore, an

interaction system that recognizes hand gestures and operates

an actuator in dynamic interactions requires a vision system

having a high frame rate because stable input is required

for system control, and latency should not be perceptible to

humans.

We constructed a new active sensing system based on a

high-speed tracking system [9], a specially designed tracking

technique [10], and high-speed image processing for hand

recognition in dynamic motion. Active sensing means that

the system actively tracks and recognizes the target at the

same time. Our system can always capture the hand at the

center of the image, even when the human user swings his or

her arm violently. We also introduce a fast sign (hand shape)

detection algorithm for recognizing a hand in motion. As a

result, we achieved

1) high-speed active hand tracking,

2) fast sign recognition,

3) and a combination of 1) and 2) in dynamic situations.

Moreover, to evaluate the performance our active sensing

system, we applied to a Janken (rock-paper-scissors) robot

[11] and controlled the robot’s hand according to human hand

signs. The existing Janken robot system can only recognize

a human hand when it appears directly in front of the vision

system, which restricts the motion of the human, thereby

impairing the range of recognizable hand gestures. In our

demonstration, we achieved a wide recognition area and

high-speed response (recognition and motion) between the

human and the robot, which allowed more natural interaction.

II. PROPOSED SYSTEM

Fig.1 shows a schematic diagram of the proposed system.

Our system consists of a recognition system for tracking

and recognition of a hand and an actuation system. The

recognition system comprises a high-speed gaze direction
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Fig. 1. The proposed system

controller (1 ms Auto Pan-Tilt) [9], a projector, and a retrore-

flective background. The actuation system comprises a high-

speed, multi-fingered hand [12] and a real-time controller for

controlling the robot hand motion.

The 1ms Auto Pan-Tilt tracks a human hand at high speed

and captures non-blurred images of the hand to enable sign

recognition. The robot hand is then controlled to display a

sign that beats the human at such high speed that the human

cannot recognize its motion. Our goal was to construct a

system that can be actuated at high speed in response to

a highly dynamic human gesture. We demonstrated stable

tracking in hand recognition and the high-speed performance

of the system through a rock–paper–scissors game between

a human and a robot.

A. Recognition System

The dynamic behavior of a human hand in the rock–paper–

scissors game is very fast, and a vision system needs to

recognize its shape in motion without blurs. To achieve this,

high-speed vision and active sensing are required.

We introduced a high-speed optical axis controller called

1 ms Auto Pan-Tilt [9] to achieve this. This system consists

of a vision system with a high frame rate (500 fps), two

small galvanometer mirrors, and pupil shift lenses. The

galvanometer mirrors change the gaze direction by 60◦, and

40◦ change in angle can be completed in 3.5 ms. The pupil

shift lenses enable a wide viewing angle even with the

small mirrors and very quick changes in the gaze direction,

resulting in a system that is suitable for human hand tracking

and acquisition of non-blurry images in a wide recognition

area.

When we apply the system to the tracking of an object,

strong illumination is required to achieve high-speed stable

tracking because of the short exposure time. However, such

levels of illumination are not desirable for humans because

they cause stress on the eyes. Moreover, the distance over

which light can sufficiently illuminate an object is limited.

We therefore introduce a robust high-speed tracking tech-

nique [10] using a projector and a retroreflective background.

The optical axis of the vision system is set to that of the

projector, which then illuminates the object at low lightning

levels. The consequent reflection from the retroreflective

background allows the system to track a human hand. The
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Fig. 2. Robot hand response: The blue plot is the reference joint angle.
The red plot is the actual joint angle. The black plot is the convergence
region, ±10 percent around the reference.

reflection setup can provide a larger recognizable distance

than simple illumination.

B. Actuation System

The robot hand needs to complete its movement before the

hand forms a sign, requiring a high-speed actuation system.

In our research, we use a high-speed multi-fingered robot

hand [12] with three fingers and a wrist which has two

degrees of freedom (DOF). Each finger is divided into a

root link and a top link, and each joint consists of a small

harmonic drive gear R© and a high-power mini-actuator. The

motors are brushless and are highly responsive because the

gears have no backlash. Consequently, the hand can close its

joints at a rate of 180◦/0.1 s. This high responsiveness was

also confirmed in our previous system [11], and 30 ms was

needed to finish forming the signs (rock, paper, or scissors)

after recognizing the human’s hand sign. In this research,

the actuation performance of the system is better owing to

parameter tuning, and a sign-forming time of only 20 ms

was needed, as shown in Fig.2.

III. HAND TRACKING AND RECOGNITION

In this section, we introduce our overall strategy for

achieving the rock–paper–scissors game between a human

and a robot. First, the human hand is tracked at high speed

and with high accuracy by the 1 ms Auto Pan-Tilt system.

A high-speed algorithm is used to classify the hand sign as

rock, paper, or scissors based on the premise that the vision

system can consistently capture the human hand with high-

speed robust tracking. Finally, we control the robot’s motion

in relation to the human’s motion. The robot is controlled

to form the sign that beats the human’s sign based on the

recognition result.

A. Preprocessing

The algorithm processes mainly binarized images for fast

recognition. The image moment is used to derive the center

position of the human hand and to classify the hand sign.

A captured image is shown in Fig. 1, at the upper left, in

which the shadow produced by the hand is represented by

the black part, and the rest, shown as the white part, results
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from retroreflective illumination. We first binarize the image

as follows:

f(i, j) =

{

0 if src(i, j) ≥ k
1 otherwise

, (1)

where src(i, j) and f(i, j) are input and binarized images,

respectively, and (i, j) are the coordinates of the image. This

results in an image in which the human hand is white. The

retroreflective illumination saturates the background, and a

sufficiently bright background provides high contrast. As a

result, the noise level is small even with simple binarization.

In general, a (p + q)-order moment of the binarized image

f(i, j)(= 0 or 1) is calculated by

mpq =
∑

i

∑

j

ipjqf(i, j), (2)

In this case, m00 is an object’s area. The center position of

the object is derived as:

ug = m10/m00, vg = m01/m00 (3)

The principal axis of inertia can be obtained by:

θ =
1

2
arctan(

2µ11

µ20 − µ02

), (4)

where µpq is a (p + q)-order moment around the center of

gravity and is defined by the following equation:

µpq =
∑

i

∑

j

(i− ug)
p(j − vg)

qf(i, j) (5)

B. High-Speed Hand Tracking

We need to track the highly dynamic motion of the human

hand. When forming a gesture, the human hand can change

its shape in the course of the motion, and its center depends

on the shape. Sueishi et al. [10] achieved a robust tracking

technique that can be applied to a hand, although it is a

deformable target. We briefly describe the method here.

We need to capture the palm as a target at the center and

to exclude the wrist. We set an adaptive window around the

center of the image whose radius changes with Sprev, which

is the size of an object in the window in the previous frame.

The window is defined as follows:

B(u, v) =

{

0 (f(u, v) > α, (u − ug)
2 + (v − vg)

2 > R2
win)

1 (otherwise)
(6)

Rwin denotes the radius of the adaptive window and is

expressed with a certain margin Rmargin given by:

Rwin =

√

Sprev

π
+Rmargin (7)

The center of gravity ug is calculated inside the window.

Defining the center of the image as uc, the two-axis small

galvanometer mirrors are controlled to reduce the difference

ug−uc = 0 by using high-speed visual feedback. Thus, the

center of the hand is captured at the center of vision unless

the shape of the hand changes dramatically. The tracking

process is completed within 2 ms in every frame.

(a) Sign 1 (Rock) (b) Sign 2 (Paper) (c) Sign 3 (Scissors)

Fig. 3. Signs in the Japanese style.

(a) (b)

Fig. 4. Sign classification: (a) the range of the fingertip and its length; (b)
the determination circle for classifying the sign.

C. Sign-classifying algorithm

Next, we need to develop a sign-classifying algorithm

utilizing the captured images. Although the hand is always

captured at the center of the image, the orientation changes

frame-by-frame in response to arm motion. Thus, the algo-

rithm needs to be robust against changing orientation. The

Japanese rock–paper–scissors signs used in this research are

shown in Fig. 3. We label “rock” as sign 1, “paper” as sign 2,

and “scissors” as sign 3. In the Japanese rock–paper–scissors

game, signs 2 and 3 can be classified by counting the number

of extended fingers. Sign 1 is detected when the hand remains

closed.

We count the fingers on a circle whose radius changes

according to the human’s fingertip position. This algorithm is

robust against changing hand orientation because the fingers

are counted from angle θ. Here, we present the proposed

algorithm:

1) Detect the fingertip and measure the length Ltip be-

tween the center and the tip.

2) Judge whether the hand is open or not on the basis of

the lengths Ltip and Lmin.

3) Count the fingers on the circle when the hand is open.

We assume that the center of the hand is captured at the

center of the image in the high-speed tracking. First, the

hand contours are detected. Since the contours include the

wrist near the elbow, the point farthest from the center cannot

simply be treated as a fingertip. We make use of the angle

of the principal axis of inertia, θ, because it inclines toward

the wrist, and the fingertip is located opposite the wrist. As

shown in Fig. 4, the fingertip is usually at θ + π − α <
φ < θ+ π + α, and the farthest contour in the range can be

regarded as the fingertip. The length from the center to the

fingertip is defined as Ltip, and the minimum distance in the

range is stored as Lmin.

When the equation Ltip > β×Lmin is satisfied, the hand is

regarded as open, and the number of the fingers is counted

with β as a threshold value. The circle with the radius of

Ljudge is shown in Fig. 4. Here, Ljudge = Ltip × γ, where
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Fig. 5. Signs formed by the robot hand.

γ is a constant.

The fingers are counted on the circle, starting from θ in

order to be robust against changing orientation. The number

of extended fingers is counted when the pixel value of the

image on the circle changes from 0 to 1. The counting works

only when the pixel value “1” is consecutive in order to

eliminate the effect of noise. Sign 2 is detected when the

number of fingers is two, and sign 3 is detected when the

number is 4 or more. The reason the threshold is set to four

is to avoid classification failure when a thumb is not on the

circle.

D. Robot Hand Control

The real-time controller receives the classification result

and θ, and then controls the robot to form the sign necessary

to beat the human opponent. Each sign is shaped by control-

ling motors in the joints. The step input of the reference

joint angle is sent to each motor of the high-speed robot

hand to form the signs, and the joint angles are controlled by

proportional and derivative (PD) control. Joint angle control

is conducted every 1 ms. Since the robot hand in our system

has only three fingers, we define each sign as shown in Fig.

5.

In Section V, we demonstrate that the robot forms its sign

just when the human does. Due to the 1 ms Auto Pan-Tilt

system, the classification algorithm can detect a sign even

before the arm of the human subject swing downwards. In

order to synchronize the robot with the human’s motion, it

is necessary to prevent the robot hand from forming its sign

before the human does. The angle of the principal axis of

inertia θ is the value that changes with the arm’s swinging

motion and can be assumed to reflect the angle of the arm

in a rock–paper–scissors gesture. We assume that the sign is

formed by the hand when the arm is swinging downwards,

and we make use of the angle θ to detect the moment at

which the human hand forms its sign and the robot is allowed

to form its sign. We define the angle θthresh as the threshold

value for detecting the timing at which the human forms a

sign and allow the robot to produce its the sign only when

the angle θ satisfies the equation θ > θthresh.

IV. EXPERIMENTAL EVALUATION

We conducted experiments to evaluate hand tracking per-

formance and the computational speed of the sign-classifying

algorithm.

A. Experimental System

For the high-speed vision system, we employed a Photron

IDP-Express R2000 high-speed camera which can capture

a 512 × 512 pixel Bayer image at 500 fps. An EPSON

EH-TW7200 (with a resolution of 1, 920× 1, 080) projector

was used as illumination. The vision system and projector

were set in the 1ms Auto Pan-Tilt system so that the optical

axis of the vision system and that of the projector matched.

The controller PC of the tracking system was a DELL

PRECISION T7610 [Windows 7 64-bit, Intel Xeon CPU 2.60

GHz (2 processors) with 32 GB RAM]. The retroreflective

background sheet was composed of Ref-lite 9301. The robot

hand was described in Section II-B. It included a real-time

controller (dSPACE) whose sampling rate was 1 ms. The

robot hand could complete formation of a sign approximately

20 ms after the controller received the reference joint angles.

As shown in Fig. 1. The retroreflective background was

hung behind the viewing scene, and the robot hand was

located 2 m away from the 1 ms Auto Pan-Tilt system.

A human participant also stood 2 m away from the vision

system and swung his or her hand to allow the vision

system to recognize the shape of the palm. The subject

then formed a sign in front of the robot. The angle θ
and the human hand sign detected by the vision system

were sent to the real-time controller. In the experiment, we

evaluated only the recognition part; therefore, the robot hand

was removed. The robot hand was used in Section V. In

order to evaluate tracking and recognition performance, the

retroreflective markers were attached to the human hand.

We used data acquired online and in the captured video.

The video was used to analyze the performance in offline

processing.

B. Hand Tracking Performance

We initially evaluated the hand tracking performance. We

manually set k = 200, α = π/9, β = 0.7, γ = 2.0,

and Rmargin = 12. In the experiment, the participant’s

hand was swung upwards and downwards at high speed,

maintaining the sign throughout the motion. The experiment

was conducted for sign 2 (paper) which is the largest sign,

in order to confirm that the vision system can fully capture

the hand in the image without the lack of displayed fingers.

We evaluated the tracking performance in offline process-

ing using the video captured by high-speed vision during

the experiment. A marker was attached, in advance, to the

back of the hand, as shown in Fig. 6(e). Fig. 6(b) shows the

difference between the center of the image and the marker in

the video as time proceeds. (The marker is used only for the

evaluation and not for tracking.) The location of the marker

in the image was varied depending on the wrist orientation

and was not equal to the center of gravity in the image.

However, tracking was achieved while keeping the difference

below 22 pixels in each frame.

Fig. 6(c) shows the size of the margin as time proceeded,

which shows that the hand could be fully captured in the

image. The margins were defined as the minimum distance

from each side of the image to the hand, as in Fig. 6(h).

Here, Mleft is the margin from the left end of the image

to the hand. The vertical margin was affected by the arm

orientation in the image and was therefore defined using θ
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Fig. 6. Tracking evaluation: the sampling rate was 2 ms. The image resolution was 512 × 512 pixels. (a) shows θ as time proceeds. The domain is
modified to avoid discontinuity. This figure indicates that the subject swung his/her arm upwards and downwards three times in 2 s. (b) is the difference
between the center and markers in the image. (c) shows horizontal and vertical margins, respectively. (d) shows the angles of the two galvanometer mirrors.
The captured images are also shown below. (e)-(g) in sequence are the captured images at 330 ms, 1358 ms, 272 ms, and 1792 ms in the video.

as follows:

Mvertical =

{

Mtop θ > 0
Mbottom (otherwise)

(8)

The minimum margin shown in Fig. 6(c) is 40 pixels and

the maximum error in (b) is under 22 pixels. These results

show that the tracking is successful enough for the hand to

be detected correctly without a lack of displayed fingers in

an image.

As shown in Fig. 6(d), our system could track the hand

in highly dynamic motion. The galvanometer mirrors were

actuated according to the motion, and the hand was captured

at the center of the image. This contributed to successful

hand tracking and image capturing in rapid motion. The

tilt mirror could be actuated to a maximum angle of about

−30◦. The 1 ms Auto Pan-Tilt system has been shown to

be capable of tracking an object through a 60◦ angle of

view [9], allowing the system to track more dynamic motion.

The non-blurry images in Fig. 6 were captured owing to

the high-speed vision system, which also resulted in stable

recognition.

C. Validity and Computational Cost of Sign Classification

In this experiment, the human user moved his/her hand

at random, and changed its sign at random. During sign

recognition processing, we converted the 512 × 512-pixel

Bayer images into 128× 128 images in order to reduce the

computational cost. Markers were attached to each fingernail

in order to evaluate the classification. The number of markers

detected was assumed to be equal to the number of fingers

extended. We defined the fingers as being extended when

the markers were detectable. The classification results and

the number of markers were compared in offline processing

using video captured during the experiment.

Fig. 7 shows the number of markers and the classification

results as time proceeded. We defined sign 1 as the hand
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Fig. 7. Evaluation of sign classification: The sampling rate was 2 ms. The
classified result (online) is shown in the blue plot, and the number of markers
is shown in the red plot (offline). The number of markers corresponded to
the number of fingers in opening motion.

shape observed when the fingers were all closed, sign 2 as

the hand shape observed when two fingers were detected, and

sign 3 as the hand shape observed when four fingers were

detected, as described in Section. III-C. The figure shows that

classification (blue plot) worked successfully as the number

of extended fingers (red plot) changed. The classification

could detect the signs more quickly compared with just

counting the fingernails.

Fig. 8 shows the computational cost of the algorithm for

each sign. Signs 2 and 3 took slightly longer because the

hand was open and the fingers were counted. The algorithm

judged the signs while the hand was being opened; therefore,

the radius changed in each frame, which explains the error

bar. However, the recognition time of less than 0.25 ms

shows that we achieved low-cost classification.

V. DEMONSTRATION

The movie [13] shows the human and the robot hand

playing the rock–paper–scissors game. It can be seen that

the robot formed its sign simultaneously with the human and

won the game in every trial, demonstrating that the system

accurately tracked the human hand and detected its sign.
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Fig. 8. The calculation cost of the classification: the average calculation
cost of sign 1 was 0.16± 0.06 ms, that of sign 2 was 0.20± 0.06 ms, and
that of sign 3 was 0.20± 0.06 ms.

Fig. 9. Wide recognition area of the system: the left images were captured
by a video camera (30 fps), and the right images by the high-speed camera.
(a) is the scene when the robot hand was waiting, and (b) shows scene when
the human hand was about to form a sign. The robot detected the sign and
formed one that beat the human’s sign in (c). The human pulled the hand
away for the next game in (d), and was about to form a sign at a different
place in (e). However, the system tracked the human hand and formed the
sign to beat the human, as shown in (f).

In the demonstration, the robot hand usually waited for the

control signals, forming its hand into the “rock” sign. The

real-time controller instructed the robot to form its sign when

θ showed that the human began to form the sign. The movie

also shows that the robot formed its sign when the human

swung his or her arm down and drew back the sign when the

human swung his or her arm up according to θ. The game

was played dynamically, and low latency was demonstrated

in the last part of the movie.

Fig. 9 shows the human forming signs in various orienta-

tions and the robot correctly reacting to the signs. In this

demonstration, the robot was controlled to show its sign

when the human hand approached the robot. The system

was able to track the dynamic human hand motion in every

frame.

VI. CONCLUSIONS

In the work described in this paper, we achieved a system

for natural interaction between a human and a robot with low

latency and a wide recognition area. Our contribution was to

develop an active sensing system based on high-speed hand

tracking and classification. In the experiment, we showed

that the system was able to capture a hand at the center of

the image even when the human user swung his or her hand

violently. Fast classification was also confirmed through the

experiment.

As an application that requires high-speed performance,

we applied our active sensing system to a Janken (rock–

paper–scissors) robot system. In the demonstration, our sys-

tem actively tracked and detected the human hand at the

same time, and the robot was able to form its sign to beat

the opponent with low latency. Our system took 2 ms for

image processing. Taking the 20 ms for robot actuation into

account, the response time was shorter than 30 ms [8], which

is the minimum time resolution of the human eye. Therefore,

the human user could not notice the latency, and the robot

was able to react according to the human’s sign, achieving

natural interaction.

In this paper, we proposed a classification algorithm

specially designed for the rock–paper–scissors game. Many

studies on hand recognition have been conducted [1], [2], and

in future work, we plan to combine these other studies with

our system. In addition, we will also apply active sensing to

tele-manipulation [14], which requires immersion and other

HRI interfaces.
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